WorldWideScience

Sample records for high-let beam irradiation

  1. Microdosimetry of high LET therapeutic beams

    International Nuclear Information System (INIS)

    Ito, Akira

    1980-01-01

    Experimental microdosimetry of high LET therapeutic beams were presented. The cyclotron produced fast neutron beams at IMS, TAMVEC and NRL, a reactor fast neutron at YAYOI, a proctor beam at Harvard and a pion beam at TRIUMF are included. Measurements were performed with a conventional tissue equivalent spherical proportional counter with a logarithmic amplifier which made the recording and analysis quite simple. All the energy deposition spectra were analysed in the conventional manner and anti y F, anti y D as well as anti y D* were calculated. The spectra and their mean lineal energies showed wide variations, depending on the particle type, energy, position in phantom. Fractional contribution of elemental particles ( electron, muon, pion, proton, alpha and so on) to the total dose were analysed. For fast neutron beams, the y spectra stayed almost constant at any depth along the central axis in the phantom. The y spectra of proton beam changed slightly along the depth. On the other side, the y spectra of pion beam change drastically in the phantom between plateau and dose peak region. A novel technique of time-of-flight microdosimetry was employed, which made it possible to separate the fractional contribution of contaminant electrons and muons out of pions. Finally, a map of the radiation quality for all the beams is presented and its significances are discussed. (author)

  2. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  3. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation

    International Nuclear Information System (INIS)

    Supiot, Stephane; Thillays, Francois; Rio, Emmanuel; Gouard, Sebastien; Morgenstern, Alfred; Bruchertseifer, Frank; Mahe, Marc-Andre; Chatal, Jean-Francois; Davodeau, Francois; Cherel, Michel

    2007-01-01

    The radiosensitizing properties of gemcitabine in relation to low Linear Energy Transfer (LET) particles (Cobalt 60) and high-LET particles (alpha-RIT 213 Bi-radiolabeled CHX-DTPA-B-B4) were analyzed. Three multiple myeloma cell lines (LP1, RPMI 8226, U266) were irradiated with or without 10 nM gemcitabine 24 h prior to radiation. Gemcitabine led to radiosensitization of LP1 and U266 cells with low-LET (Radiation Enhancement Ratio: 1.55 and 1.49, respectively) but did not radiosensitize any cell line when combined with high-LET

  4. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation

    International Nuclear Information System (INIS)

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-01-01

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation. The online version of this article (doi:10.1186/s13014-015-0464-y) contains supplementary material, which is available to authorized users

  5. Radiation-induced epigenetic alterations after low and high LET irradiations

    International Nuclear Information System (INIS)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-01-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the

  6. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  7. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  8. Gene-expression profiling of Saccharomyces cerevisiae irradiated by high-LET radiations

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionizing radiations are categorized by linear energy transfer (LET) into low-LET and high-LET. High-LET is considered to have a higher relative biological...

  9. Efficiency of radical yield in alkylthymine and alkyluracil by high-LET irradiation

    International Nuclear Information System (INIS)

    Nakagawa, Seiko; Ohta, Nobuaki; Murakami, Takeshi

    2010-01-01

    Penthylthymines and hexyl-, nonyl-, and decyl- uracils were irradiated by C-ion (3.5 GeV) and γ-ray at 77 K. ESR spectra were measured to study radiation induced radicals in the temperature range from 108 to 273 K. A dihydro-5-yl (5-yl) radical formed by H addition to C6 carbon and a secondary alkyl radical by C-H bond fission at the second carbon from the end of the alkyl group were produced at 108 K. A dihydrouracil-6-yl (6-yl) radical formed by H addition to C5 carbon increased with increasing temperature for alkyluracils. The spectral feature obtained by C-ion irradiation was coincident with that by γ-irradiation. Total radical yields increased by alkylation and with increasing the length of alkyl chain. Yields of both 5-yl and secondary alkyl radicals irradiated by C-ion were less than those by γ-ray for penthylthymines and hexyluracil. On the contrary, radical yields were almost the same between ion and γ-ray irradiation for nonyl- and decyl-uracil. Mechanism of radical formation and effect of high-LET irradiation were discussed.

  10. What can we learn from the neutron clinical experience for improving ion-beam techniques and high-LET patient selection?

    International Nuclear Information System (INIS)

    Wambersie, A.; Jones, D.T.L.; Gueulette, J.; Gahbauer, R.; DeLuca, P.M.

    2010-01-01

    Historically, improvements in radiotherapy have been mainly due to improvements in physical selectivity: beam penetration, collimation, dosimetry, treatment planning; and advances in imaging. Neutrons were the first high-LET (linear energy transfer) radiation to be used clinically and showed improvement in the differential response of radiation resistant tumors and normal tissues. The benefits of fast neutrons (and other forms of high LET radiations) are due to their biological effects: a reduction of the OER, a reduction in the differential cell radiosensitivity related to their position in the mitotic cycle, and a reduction in cellular repair capacity (thus less importance of fractionation). The poor physical selectivity of the early neutron therapy beams introduced a systematic bias in comparison with the photon treatments and created a negative perception for neutron therapy. However, significant improvements in the neutron therapy equipment resulted in a physical selectivity similar to modern MV photon therapy. The tumor types or sites where the best therapeutic results were obtained included inoperable or recurrent salivary gland tumors locally extended prostatic adenocarcinomas, and slowly growing well-differentiated sarcomas. The benefit of neutrons for some other well-defined groups of patients was demonstrated in randomized trials. It was estimated that about 20 % of all radiotherapy patients could benefit from fast neutrons (if neutrons are delivered under satisfactory physical conditions). An important issue for fast neutron therapy is the selection of the types of patients who could most benefit from high-LET radiations. The same issue is raised today with other high-LET radiations (e.g., 12 C ions). It is reasonable to assume that the same types of patients would benefit from 12 C irradiation. Of course the better physical selectivity of ion beams enhances the treatment possibilities but this is true for both the high-LET and low-LET radiations (i

  11. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Hirano, Tomonari; Kazama, Yusuke; Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa; Abe, Tomoko

    2012-01-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101–124 keV μm −1 . In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV μm −1 . We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M 2 pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3–5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV μm −1 radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5–30.0 keV μm −1 and 27% for 101–124 keV μm −1 ). Therefore, the 290 keV μm −1 heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  12. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tomonari; Kazama, Yusuke [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko, E-mail: tomoabe@riken.jp [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124 keV {mu}m{sup -1}. In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV {mu}m{sup -1}. We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M{sub 2} pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV {mu}m{sup -1} radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0 keV {mu}m{sup -1} and 27% for 101-124 keV {mu}m{sup -1}). Therefore, the 290 keV {mu}m{sup -1} heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  13. PARP-1 is a key player in controlling apoptosis induced by high LET carbon ion beam and low LET gamma radiation in HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Ghosh, Utpal; Bhattacharyya, Nitai P.; Sarma, Asitikantha

    2014-01-01

    PARP-1 inhibitors have long been used as chemo-sensitizer or radio-sensitizer and specific PARP-1 inhibitors are also in clinical trial for the treatment of various cancers. PARP-1 is not only involved in DNA repair but also plays very complex role in induction of apoptosis in postirradiation condition. Our objective is to investigate role of PARP-1 in apoptosis triggered by high LET carbon ion beam (CIB) and low LET gamma. We have treated HeLa and PARP-1 knock down HeLa (Hsil) cells with various doses of CIB and gamma. We measured DNA damage by comet assay and various apoptotic parameters such as nuclear fragmentation, activation of caspase-3,8,9, AIF translocation etc. We observed higher DNA breaks and also higher apoptosis in HsiI cells compared with HeLa cells. Both CIB and gamma treatment results G2/M arrest but unlike gamma CIB makes S-phase delay, implicating that gamma and CIB triggers different pathway after DNA damage. Cell death by CIB or by gamma increased up on knocking down of PARP-1 but increase is higher for high LET CIB compared with low LET gamma. Furthermore, expression level of PARP-1 controls the intensity of overall apoptosis in cells in post-irradiation condition. So, combination of PARP-1 inhibition with high LET CIB could be a promising tool to combat cancer. (author)

  14. Risk assessment for cancer induction after low- and high-LET therapeutic irradiation

    International Nuclear Information System (INIS)

    Engels, H.; Menzel, H.G.; Pihet, P.; Wambersie, A.

    1999-01-01

    The risk of induction of a second primary cancer after a therapeutic irradiation with conventional photon beams is well recognized and documented. However, in general, it is totally overwhelmed by the benefit of the treatment. The same is true to a large extent for the combinations of radiation and drug therapy. After fast neutron therapy, the risk of induction of a second cancer is greater than after photon therapy. Neutron RBE increases with decreasing dose and there is a wide evidence that neutron RBE is greater for cancer induction (and for other late effects relevant in radiation protection) than for cell killing. Animal data on RBE for tumor induction are reviewed, as well as other biological effects such as life shortening, malignant cell transformation in vitro, chromosome aberrations, genetic effects. These effects can be related, directly or indirectly, to cancer induction to the extent that they express a 'genomic' lesions. Almost no reliable human epidemiological data are available so far. For fission neutrons a RBE for cancer induction of about 20 relative to photons seems to be a reasonable assumption. For fast neutrons, due to the difference in energy spectrum, a RBE of 10 can be assumed. After proton beam therapy (low-LET radiation), the risk of secondary cancer induction, relative to photons, can be divided by a factor of 3, due to the reduction of integral dose (as an average). The RBE of heavy-ions for cancer induction can be assumed to be similar to fission neutrons, i.e. about 20 relative to photons. However, after heavy-ion beam therapy, the risk should be divided by 3, as after proton therapy, due to the excellent physical selectivity of the irradiation. Therefore, a risk 5 to 10 times higher than photons could be assumed. This range is probably a pessimistic estimate for carbon ions since most of the normal tissues, at the level of the initial plateau, are irradiated with low-LET radiation. (orig.)

  15. Vitamin C, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in AL cells irradiated with high LET carbon ions

    International Nuclear Information System (INIS)

    Ueno, A.M.; Vannais, D.B.; Lenarczyk, M.; Waldren, C.A.

    2003-01-01

    Miazaki, Watanabe, Kumagai and their colleagues reported that induction of HPRT - mutants by X-rays in cultured human cells was prevented by vitamin C (ascorbate) added 30 minutes after irradiation. They provided data that mutation extinction was due to neutralization by vitamin C of radiation-induced long-lived mutagenic radicals (LLR) with half-lives of several hours. We find that post-irradiation treatment with vitamin C reduces, but does not eliminate, the induction of CD59 - mutants in human-hamster hybrid A L cells exposed to high-LET carbon ions (LET of 100 keV/μm). The lethality of the carbon ions was not altered by vitamin C. Preliminary experiments indicate that post-radiation addition of vitamin C also changes the quality of CD59 - mutations induced by the carbon beam. The change in spectrum is seen as a reduction in prevalence of small mutations (not detectable by PCR) and of mutants displaying transmissible genomic instability (TGI) measured by chromosome translocation frequencies. Our results confirm the essential effect of vitamin C on X-ray induced mutation and suggest a role for LLR in genomic instability. (author)

  16. Measurement and protection of the oxidative damage induced by high-LET carbon-ion irradiation in salmon sperm DNA solution

    International Nuclear Information System (INIS)

    Moritake, T.; Nose, T.; Tsuboi, K.; Anzai, K.; Ikota, N.; Ozawa, T.; Ando, K.

    2003-01-01

    The aims of this study are to quantify the yield of hydroxyl radicals (OH) , and to evaluate the oxidative damage on DNA after high-linear energy transfer (LET) carbon-ion beams and x-rays. For this purpose, the relationship between the radiolytic yield of OH in aqueous solution and 8-hydroxydeoxyguanosine (8-OHdG) level in DNA solution were assessed after radiation. In addition, the anti-oxidative effect of 3-methyl-1-phenyl-2-pyrazonline-5-one (edaravone) on DNA was evaluated. Culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/μm, and the yields of OH were measured using an electron spin resonance (ESR) spectrometer. Salmon sperm DNA solution at a concentration of 1.0 mg/ml was irradiated with 10 Gy of x-rays or 290 MeV/nucleon carbon-ion beams with an LET range of 20-80 keV/μm. 8-OHdG levels in the DNA solution were measured by HPLC with an electrochemical detector (ECD) after each irradiation. Edaravone was added to the DNA solution in final concentrations of 10 μM to 1 mM and 8-OHdG levels were measured by the same method after irradiation. The yield of OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy, and the yield of OH decreased as LET increased logarithmically from 20 to 90 keV/μm. The level of 8-OHdG increased dose-dependently after x-ray irradiation, and it was significantly suppressed by edaravone. Furthermore, the yield of 8-OHdG and the protection efficiency by edaravone decreased as LET value increased. These unique findings provide further understanding of the indirect effect of high-LET radiation, and chemical protection of oxidative damage on DNA is important for clinical application of high-LET radiation

  17. Measurement and protection of the oxidative damage induced by high-LET carbon-ion irradiation in salmon sperm DNA solution

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, T; Nose, T [University of Tsukuba, (Japan); Tsuboi, K [Institute of Clinical Medical Center, (Japan); Anzai, K; Ikota, N [National Institute of Radiological Sciences, (Japan); Ozawa, T [Redox Regulation Research Group, (Japan); Ando, K [Research Center of Charged Particle Therapy, (Japan). National Institution

    2003-07-01

    The aims of this study are to quantify the yield of hydroxyl radicals (OH) , and to evaluate the oxidative damage on DNA after high-linear energy transfer (LET) carbon-ion beams and x-rays. For this purpose, the relationship between the radiolytic yield of OH in aqueous solution and 8-hydroxydeoxyguanosine (8-OHdG) level in DNA solution were assessed after radiation. In addition, the anti-oxidative effect of 3-methyl-1-phenyl-2-pyrazonline-5-one (edaravone) on DNA was evaluated. Culture medium containing 200 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was irradiated with doses of 0 to 20 Gy with an LET of 20 to 90 keV/{mu}m, and the yields of OH were measured using an electron spin resonance (ESR) spectrometer. Salmon sperm DNA solution at a concentration of 1.0 mg/ml was irradiated with 10 Gy of x-rays or 290 MeV/nucleon carbon-ion beams with an LET range of 20-80 keV/{mu}m. 8-OHdG levels in the DNA solution were measured by HPLC with an electrochemical detector (ECD) after each irradiation. Edaravone was added to the DNA solution in final concentrations of 10 {mu}M to 1 mM and 8-OHdG levels were measured by the same method after irradiation. The yield of OH by carbon-ion radiolysis increased in proportion to the absorbed dose over the range of 0 to 20 Gy, and the yield of OH decreased as LET increased logarithmically from 20 to 90 keV/{mu}m. The level of 8-OHdG increased dose-dependently after x-ray irradiation, and it was significantly suppressed by edaravone. Furthermore, the yield of 8-OHdG and the protection efficiency by edaravone decreased as LET value increased. These unique findings provide further understanding of the indirect effect of high-LET radiation, and chemical protection of oxidative damage on DNA is important for clinical application of high-LET radiation.

  18. Neuroimmune response and sleep studies after whole body irradiation with high-LET particles

    Science.gov (United States)

    Marquette, C.; Mathieu, J.; Bertho, J.-M.; Galonnier, M.; Wysoki, J.; Maubert, C.; Balanzat, E.; Gerbin, R.; Aigueperse, J.; Clarençon, D.

    2009-10-01

    In order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12C, 16O and 20Ne (95 MeV/u, at 42-76 mGy). Animals were also exposed to 42 mGy of 60Co radiation for comparison with HZE. The neuroimmune response, evaluated by interleukin-1 (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16O or 60Co. In contrast, neither 12C (56.7 mGy) nor 20Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16O and 76 mGy of 20Ne: only the 20Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12C and 16O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight.

  19. Neuro-immune response and sleep studies after whole body irradiation with high-LET particles

    International Nuclear Information System (INIS)

    Marquette, C.; Bertho, J.M.; Wysoki, J.; Maubert, C.; Gerbin, R.; Aigueperse, J.; Mathieu, J.; Galonnier, M.; Clarencon, D.; Balanzat, E.

    2009-01-01

    In order to investigate the biological effects of galactic rays on astronaut cerebral functions after space flight, mice were exposed to different heavy ions (HZE) in whole-body conditions at doses comparable to the galactic flux: 12 C, 16 O and 20 Ne (95 MeV/u, at 42-76 mGy). Animals were also exposed to 42 mGy of 60 Co radiation for comparison with HZE. The neuro-immune response, evaluated by interleukin-I (IL-1) measurement, showed that this cytokine was produced 3 h after irradiation by 16 O or 60 Co. In contrast, neither 12 C (56.7 mGy) nor 20 Ne (76 mGy) induced IL-1 production. However, immunohistochemical staining of 12 C-irradiated mouse brain tissue showed 2 months later a marked inflammatory reaction in the hippocampus and a diffuse response in parenchyma. Sleep studies were realized before and after exposure to 42 mGy of 16 O and 76 mGy of 20 Ne: only the 20 Ne radiation displayed a small effect. A slight decrease in paradoxical sleep, corresponding to a reduction in the number of episodes of paradoxical sleep, was manifested between 8 and 22 days after exposure. Exposure to 12 C and 16 O induced no changes either in cellularity of spleen or thymus, or in caspase 3 activity (as much as four months after irradiation). Taken together, these data indicate that the CNS could be sensitive to heavy ions and that responses to HZE impact depend on the nature of the particle, the dose threshold and the time delay to develop biological processes. Differences in responses to different HZE highlight the complex biological phenomena to which astronauts are submitted during space flight. (authors)

  20. High-let radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads

  1. Vitamin C (Vit C) added after irradiation reduces the number and alters the spectrum of CD59- mutants in human/CHO AL cells exposed to high LET carbon ions

    International Nuclear Information System (INIS)

    Vannais, D.B.; Hirai, Y.; Waldren, C.A.; Ueno, A.

    2003-01-01

    Full text: Miyazaki, Watanabe, Kumagai and colleagues discovered the existence in mammalian cells of long-lived radicals (LLR) with half-lives of minutes to hours. They further showed that concentrations of LLR were increased in a dose dependent manner by X-rays; that LLR were transforming and mutagenic but not clastogenic or lethal; that they were scavenged by Vit C but not by DMSO, and that they occured mainly (>99.8%) in proteins from which they escape by atomic tunneling. They also showed that Vit C added after radiation (but not DMSO) eliminated HPRT mutants in human cells exposed to X-rays. Following on their work, we found that Vit C (5 mM) added 30 min after radiation significantly reduced, but did not eliminate, induction of CD59- mutants in human-CHO hybrid AL cells exposed to high LET carbon beam radiation (NIRS-HIMAC, 290 MeV/nucleon, LET 100 KeV/μ: m). Lethality of the carbon beam was not affected by Vit C. DMSO decreased mutation and killing, only when present during radiation. Lycopene, reported to reduce spontaneous mutation, did not affect radiation killing or mutagenesis. Our findings with Vit C for high LET generally support the results reported for X-rays. Analysis of the spectrum of mutations in CD59- mutant cells isolated after carbon beam irradiation (2.5 Gy), indicates a substantial reduction by post-radiation Vit C in mutants with small mutations and those displaying genomic instability, seen as increased levels of translocations. Our results substantiate a role for LLR in radiation mutagenesis and implicate them in radiation-induced genomic instability

  2. The open-quotes synergisticclose quotes action of mixed irradiation with high-LET and low-LET radiation

    International Nuclear Information System (INIS)

    Suzuki, Shozo

    1994-01-01

    The combined modalities of various agents such as radiation, chemicals and physical agents are often used, and exposure to mixture of agents sometimes occurs in nature. However, it is not clear whether these combined effects are synergistic, partly because definition of the term open-quotes synergismclose quotes is confusing, as pointed out by Streffer and Mueller. It is, of course, desirable that the definition should be simple and widely applicable to all agents. Yet the underlying mechanisms of the effects of different agents are probably different, and the mechanisms of combined effects are different and more complicated than those of a single agent. It is therefore important to define synergism taking each underlying mechanism into consideration. From this viewpoint, the definitions of synergism which have been used to date are examined with respect to the effect of a mixture of different types of radiation on cells, and they are shown to be inappropriate and misleading. This is probably attributable to simply treating the resulting phenomena (cell survival in most cases) without adequately taking into consideration the knowledge of underlying biological mechanisms in defining the synergism that may occur with irradiation. This commentary discusses the inappropriateness of current definitions and proposes a new definition in terms of biological mechanisms as a counterproposal. 16 refs., 6 figs

  3. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  4. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  5. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  6. Radiolysis study of actinide complexing agent by irradiation with helium ion beam

    International Nuclear Information System (INIS)

    Sugo, Yumi; Taguchi, Mitsumasa; Sasaki, Yuji; Hirota, Koichi; Kimura, Takaumi

    2009-01-01

    α-Radiolysis of N,N,N',N'-tetraoctyldiglycolamide (TODGA) in n-dodecane was investigated by the irradiation with helium ion beam provided by a tandem accelerator. The radiation chemical yield for the degradation of TODGA by helium ion beam irradiation was less than that by γ-rays irradiation. It is considered that the radical cations of n-dodecane, which contribute to the charge transfer reaction with the TODGA molecules, decrease by recombination in track by high LET radiations such as α-particles.

  7. Bystander effect in human hepatoma HepG2 cells caused by medium transfers at different times after high-LET carbon ion irradiation

    International Nuclear Information System (INIS)

    Wu Qingfeng; Li Qiang; Jin Xiaodong; Liu Xinguo; Dai Zhongying

    2011-01-01

    Although radiation-induced bystander effects have been well documented in a variety of biological systems, whether irradiated cells have the ability to generate bystander signaling persistently is still unclear and the clinical relevance of bystander effects in radiotherapy remains to be elucidated. This study examines tumor cellular bystander response to autologous medium from cell culture irradiated with high-linear energy transfer (LET) heavy ions at a therapeutically relevant dose in terms of clonogenic cell survival. In vitro experiments were performed using human hepatoma HepG2 cell line exposed to 100 keV/μm carbon ions at a dose of 2 Gy. Two different periods (2 and 12 h) after irradiation, irradiated cell conditioned medium (ICCM) and replenished fresh medium were harvested and then transferred to unirradiated bystander cells. Cellular bystander responses were measured with the different medium transfer protocols. Significant higher survival fractions of unirradiated cells receiving the media from the irradiated cultures at the different times post-irradiation than those of the control were observed. Even replenishing fresh medium for unirradiated cells which had been exposed to the ICCM for 12 h could not prevent the bystander cells from the increased survival fraction. These results suggest that the irradiated cells could release unidentified signal factor(s), which induced the increase in survival fraction for the unirradiated bystander cells, into the media sustainedly and the carbon ions triggered a cascade of signaling events in the irradiated cells rather than secreting the soluble signal factor(s) just at a short period after irradiation. Based on the observations in this study, the importance of bystander effect in clinical radiotherapy was discussed and incorporating the bystander effect into the current radiobiological models, which are applicable to heavy ion radiotherapy, is needed urgently.

  8. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yosuke [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Takahashi, Akihisa [Advanced Scientific Research Leader Development Unit, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511 (Japan); Kajihara, Atsuhisa; Yamakawa, Nobuhiro; Imai, Yuichiro [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ota, Ichiro; Okamoto, Noritomo [Department of Otorhinolaryngology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Mori, Eiichiro [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Noda, Taichi [Department of Dermatology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Furusawa, Yoshiya [Heavy-ion Radiobiology Research Group, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kirita, Tadaaki [Department of Oral and Maxillofacial Surgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ohnishi, Takeo, E-mail: tohnishi@naramed-u.ac.jp [Department of Radiation Oncology, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High-LET radiation induces efficiently apoptosis regardless of p53 gene status. Black-Right-Pointing-Pointer We examined whether high-LET radiation depresses the Akt-survival signals. Black-Right-Pointing-Pointer High-LET radiation depresses of survival signals even in the mp53 cancer cells. Black-Right-Pointing-Pointer High-LET radiation activates Caspase-9 through depression of survival signals. Black-Right-Pointing-Pointer High-LET radiation suppresses cell growth through depression of survival signals. -- Abstract: Although mutations and deletions in the p53 tumor suppressor gene lead to resistance to low linear energy transfer (LET) radiation, high-LET radiation efficiently induces cell lethality and apoptosis regardless of the p53 gene status in cancer cells. Recently, it has been suggested that the induction of p53-independent apoptosis takes place through the activation of Caspase-9 which results in the cleavage of Caspase-3 and poly (ADP-ribose) polymerase (PARP). This study was designed to examine if high-LET radiation depresses serine/threonine protein kinase B (PKB, also known as Akt) and Akt-related proteins. Human gingival cancer cells (Ca9-22 cells) harboring a mutated p53 (mp53) gene were irradiated with 2 Gy of X-rays or Fe-ion beams. The cellular contents of Akt-related proteins participating in cell survival signaling were analyzed with Western Blotting 1, 2, 3 and 6 h after irradiation. Cell cycle distributions after irradiation were assayed with flow cytometric analysis. Akt-related protein levels decreased when cells were irradiated with high-LET radiation. High-LET radiation increased G{sub 2}/M phase arrests and suppressed the progression of the cell cycle much more efficiently when compared to low-LET radiation. These results suggest that high-LET radiation enhances apoptosis through the activation of Caspase-3 and Caspase-9, and suppresses cell growth by suppressing Akt-related signaling, even in mp

  9. Oxygen tension in transplanted mouse osteosarcomas during fractionated high-LET- and low-LET radiotherapy - predictive aspects for choosing beam quality?

    International Nuclear Information System (INIS)

    Auberger, T.; Thuerriegel, B.; Freude, T.; Weissfloch, L.; Kneschaurek, P.; Molls, M.; Senekowitsch-Schmidtke, R.; Wagner, F.M.

    1999-01-01

    Murine OTS64 - osteosarcomas were tranplanted in 102 balb-C mice and irradiated by 36 Gy of photons in fractions of 3 Gy five times a week (group P-36/3) or by 12 Gy of reactor fission neutrons in fractions of 2 Gy two times a week (group N-12/2). Irradiations started at a tumor volume of 500 to 600 mm 3 . A third group received no radiotherapy, but all investigations (group CG). Tumor volume and tumor oxygenation were measured once a week under therapy and during three weeks after therapy. For in vivo-evaluation of oxygen status a computerized polarographic needle electrode system (KIMOC pO 2 histograph, Eppendorf) was used. The median pO 2 and the hypoxic fraction (pO 2 values 2 decreased from 20 mm to 8 mm Hg and the hypoxic fraction increased from 7% to 31%. After fractionated photon therapy a growth delay of three weeks was observed. Six weeks after beginning of the irradiation the median tumor volume had been doubled again. After fission neutron therapy growth delay continued until the end of the follow-up period. In both of the irradiated groups a significant decrease of median pO 2 values and an increase of the hypoxic fraction were observed under radiotherapy. Hypoxia was more intensive after neutrons with a decrease of the median pO 2 from 20 mm Hg to 1 mm Hg vs. 10 mm Hg after photon therapy and with an increase of the hypoxic fraction from 7% to 78% vs. 36% respectively. Two weeks after the end of therapy the median pO 2 and the hypoxic fraction of both treated groups reached the levels prior to irradiation indicating a complete reoxygenation. (orig.)

  10. Modeling of DNA damage-cluster, cell-cycle and repair pathway dependent radiosensitivity after low- and high-LET irradiation

    International Nuclear Information System (INIS)

    Guenther, Paul

    2017-01-01

    This work focuses on modeling of the effects of ionizing radiation on cells, primarily on, the influence of the DNA repair pathway availability and the radiation quality on the cell-survival probability. The availability of DNA repair pathways depends on the replication state and defects of the DNA repair pathways. The radiation quality manifests itself in the microscopic ionization pattern. The Giant LOop Binary LEsion (GLOBLE) model and the Local Effect Model (LEM) describe the cell-survival after photon and ion irradiation, respectively. Both models assume that cell survival can be modeled based on the spatial distribution of Double-Strand Breaks (DSB) of the DNA (damage pattern), within a higher order chromatin structure. Single DSB are referred to as isolated DSB (iDSB) and two or more DSB in close proximity (within 540 nm) are called complex DSB (cDSB). In order to predict the cell-survival, the GLOBLE-Model considers different iDSB repair-pathways and their availability. One central assumption of the LEM is that the same damage patterns imply same effects, regardless of the radiation quality. In order to predict the damage pattern the microscopic local dose distribution of ions, described by the amorphous track structure, is evaluated. The cell survival after ion irradiation is predicted from a comparison with corresponding damage patterns after photon irradiation. The cell-survival curves after high dose photon irradiation cannot be predicted from the Linear Quadratic (LQ) Model due to their transition towards a linear dose dependence. This work uses the GLOBLE-Model to introduce a novel mechanistic approach, which allows the threshold dose to be predicted for the transition from a linear quadratic dose dependence, of survival curves at low doses, to a linear dose dependence at high doses. Furthermore, a method is presented, which allows LEM to predict the survival of synchronous cells after ion irradiation based on the cell survival after photon

  11. High-LET radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.

    1985-01-01

    The dose-response curves for the induction of tumors by high-LET radiation are complex and are insufficiently understood. There is no model or formulation to describe the dose-response relationship over a range 0 to 100 rad. Evidence suggests that at doses below 20 rad the response is linear, at least for life shortening and some tumor systems. Thus, limiting values of RBEs for the induction of cancer in various tissues can be determined, but it will require sufficient data obtained at low single doses or with small fractions. The results obtained from experiments with heavy ions indicate an initial linear response with a plateauing of the curve at a tumor incidence level that is dependent on the type of tissue. The RBE values for the heavy ions using 60 Co gamma rays as the reference radiation increase with the estimated LET from 4 for 4 H to about 27 for 56 Fe, 40 Ar. The dose-responses and RBEs for 56 Fe and 40 Ar are similar to those for fission neutrons. These findings suggest the possibility that the effectiveness for tumor induction reaches a maximum. 26 refs., 4 figs., 2 tabs

  12. Hardness enhancement and crosslinking mechanisms in polystyrene irradiated with high energy ion-beams

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Mansur, L.K.

    1996-01-01

    Surface hardness values several times larger than steel were produced using high energy ion beams at several hundred keV to MeV. High LET is important for crosslinking. Crosslinking is studied by analyzing hardness variations in response to irradiation parameter such as ion species, energy, and fluence. Effective crosslinking radii at hardness saturation are derived base on experimental data for 350 keV H + and 1 MeV Ar + irradiation of polystyrene. Saturation value for surface hardness is about 20 GPa

  13. Cell survival in spheroids irradiated with heavy-ion beams

    International Nuclear Information System (INIS)

    Rodriguez, A.; Alpen, E.L.

    1981-01-01

    Biological investigations with accelerated heavy ions have been carried out regularly at the Lawrence Berkeley Laboratory Bevalac for the past four years. Most of the cellular investigations have been conducted on cell monolayer and suspension culture systems. The studies to date suggest that heavy charged particle beams may offer some radiotherapeutic advantages over conventional radiotherapy sources. The advantages are thought to lie primarily in an increased relative biological effectiveness (RBE), a decrease in the oxygen enhancement ratio (OER), and better tissue distribution dose. Experiments reported here were conducted with 400 MeV/amu carbon ions and 425 MeV/amu neon ions, using a rat brain gliosarcoma cell line grown as multicellular spheroids. Studies have been carried out with x-rays and high-energy carbon and neon ion beams. These studies evaluate high-LET (linear energy transfer) cell survival in terms of RBE and the possible contributions of intercellular communication. Comparisons were made of the post-irradiation survival characteristics for cells irradiated as multicellular spheroids (approximately 100 μm and 300 μm diameters) and for cells irradiated in suspension. These comparisons were made between 225-kVp x-rays, 400 MeV/amu carbon ions, and 425 MeV/amu neon ions

  14. Chemical protection from high LET radiation

    International Nuclear Information System (INIS)

    Ando, Koichi; Koike, Sachiko; Matsushita, Satoru; Kanai, Tatsuaki; Ohara, Hiroshi

    1992-01-01

    Radioprotection by WR151327 from high LET fast neutrons was investigated and compared with that from low LET radiation. Radiation damage in bone marrow, intestine, skin and leg length were all protected by a pretreatment with 400 mg/kg WR151327. Most prominent protection was observed for bone marrow, which gave a Dose Modifying Factor (DMF) of 2.2 against γ rays. Identical protection was observed between early and late radiation damage. WR151327 protected fast neutrons less efficiently than γ rays; 40% for bone marrow and 80% for skin leg. Pathological findings indicated that hyperplastic change in both dermis and epidermis associated with late skin shrinkage. Laser doppler flow-metry showed a good relationship between reduction of blood flow and late skin shrinkage. Irradiation of skin by heavy particle Carbon-12 indicated that skin shrinkage was modified by unirradiated surrounding normal tissues, which proposed a significant role of 'Volume Effect' in radiation damage. Tumor tissues were less protected by WR151327 than normal tissues. Dependence of radioprotection by WR151327 on tissue oxygen concentration is a probable reason to explain the difference between normal and tumor tissues. (author)

  15. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  16. Study on interaction of swift cluster ion beam with matter and irradiation effect (Joint research)

    International Nuclear Information System (INIS)

    Saito, Yuichi; Shibata, Hiromi

    2010-07-01

    This review covers results of the 'Study of interaction on swift cluster ion beam with matter and irradiation effect' supported by the Interorganization Atomic Energy Research Program from 2006FY to 2008FY. It is composed of a research abstract for each sub-group with viewgraphs which were presented at the group meeting held on March 2009 or 'Meeting of High LET radiation -From fundamental study among physics, chemistry and biology to medical applications-' sponsored by Japan Society of Radiation Chemistry, cosponsored by this research group. (author)

  17. Adaptive response to high LET radiations

    International Nuclear Information System (INIS)

    Dam, Annamaria; Bogdandi, E. Noemi; Polonyi, Istvan; Sardy, M. Marta; Balashazy, Imre; Palfalvy, Jozsef

    2001-01-01

    The biological consequences of exposure to ionizing radiation include gene mutation, chromosome aberrations, cellular transformation and cell death. These effects are attributed to the DNA damaging effects of the irradiation resulting in irreversible changes during DNA replication or during the processing of the DNA damage by enzymatic repair processes. These repair processes could initiate some adaptive mechanisms in the cell, which could lead to radioadaptive response (RAR). Adaptive responses have typically been detected by exposing cells to a low radiation dose (1-50 mGy) and then challenging the cells with a higher dose of radiation (2-4 Gy) and comparing the outcome to that seen with the challenge dose only. For adaptive response to be seen the challenge dose must be delivered within 24 hour of the inducing dose. Radio-adaptation is extensively studied for low LET radiation. Nevertheless, few data are available for high LET radiation at very low doses and dose rate. Our study was aimed to investigate the radioadaptive response to low-dose neutron irradiation by detection of the genotoxic damage i.e.: hprt-mutant colonies induced. Altered protein synthesis was also studied to identify stress proteins may responsible for radio-adaptation. New alpha particle irradiator system was also built up to study the biological effects of low dose alpha irradiation. The experiments were carried out on monolayers of human melanoma and CHO (Chines Hamster Ovary) cells irradiated by neutrons produced in the biological irradiation channel of the Research Reactor of Budapest Neutron Center. Cells were exposed to 0.5-50 mGy neutron doses with dose rates of 1.59-10 mGy/min. The challenge doses of 2-4 Gy gamma rays were administrated within 1-48 hours after priming treatment. The induced mutants at hprt locus were selected by adding 6-thioguanine and allow to grow for 10 days for expression of the phenotype. The protein synthesis was studied by PAGE, the molecular mass of specific

  18. Special photographic emulsions for high LET dosimetry

    International Nuclear Information System (INIS)

    Katz, R.

    1978-12-01

    The purpose of these investigations into photographic emulsion dosimetry is to attempt to use the photographic emulsion to mimic the response of human tissues to high LET radiations. The program therefore requires that a systematic understanding of the response of mammalian cells to ionizing radiations be achieved. We have been concerned with differences in RBE and in radiation response to both high and LET radiations, and in the interrelationship between observations with these different radiations

  19. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    Science.gov (United States)

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. AECL IMPELA electron beam industrial irradiators

    International Nuclear Information System (INIS)

    Labrie, J.P.; Drewell, N.H.; Ebrahim, N.A.; Lawrence, C.B.; Mason, V.A.; Ungrin, J.; White, B.F.

    1989-01-01

    A family of industrial irradiators is being developed by AECL to cover an electron-beam energy range from 5 to 18 MeV at beam powers between 20 and 250 kW. The IMPELA family of irradiators is designed for push button, reliable operation. The major irradiator components are modular, allowing for later upgrades to meet increased demands in either electron or X-ray mode. Interface between the control system, irradiator availability and dose quality assurance is in conformance with the most demanding specifications. The IMPELA irradiators use a klystron-driven, standing-wave, L-band accelerator structure with direct injection from a rugged, triode electron gun. Direct control of the accelerating field during the beam pulse ensures constant output beam energy, independent of beam power. The first member of the family, the IMPELA 10/50 (10 MeV, 50 kW), is in the final stages of assembly at Chalk River Nuclear Laboratories. The IMPELA 10/50 is constructed around a 3.25 m long, high-power-capacity accelerator structure operated at a duty factor of 5%. Beam loading exceeds 60%. The rf power is provided by a 2 MW/150 kW modulated-anode klystron protected from load mismatches by a circulator. This prototype will be used to demonstrate the reliability and dose uniformity targets of the IMPELA family. Full beam operation of the IMPELA 10/50 is scheduled for early 1989. (orig.)

  1. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-01-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  2. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    Science.gov (United States)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  3. Omega: A 24-beam UV irradiation facility

    International Nuclear Information System (INIS)

    Richardson, M.C.; Beich, W.; Delettrez, J.

    1985-01-01

    The authors report on the characterization and performance of the 24-beam Omega laser facility under full third harmonic (351-nm) upconversion. This system provides for the first time a multibeam laser facility for the illumination of spherical targets with UV laser light in symmetric irradiation conditions with energies in the kilojoule range. This facility is capable of providing sufficient irradiation uniformity to test concepts of direct drive laser fusion with UV-driven ablation targets. The results of initial studies of ablatively driven DT-fueled glass microballoon targets will be described. The 24-beam Omega Nd:phosphate glass facility is capable of providing at 1054 nm output powers in excess of 10 TW in short ( 10 4 full system shots to date) irradiation facility with beam synchronism of approx. =3 psec, beam placement accuracy on target of 10 μm, and interbeam energy variance of approx. =2%. From measured target plane intensity distributions, overall illumination uniformity with tangentially focused beams is estimated to be approx. =5%. In 1984, a symmetric set of six beams was upconverted to 351-nm radiation using the polarization-mismatch scheme developed by Craxton. Monolithic cells of 20-cm clear aperture containing both frequency and doubler and tripler type II KDP crystals in index-matching propylene carbonate liquid were incorporated to output of six of the Omega beams with a full set of UV beam diagnostics

  4. Protein-directed modulation of high-LET hyperthermic radiosensitization

    International Nuclear Information System (INIS)

    Chang, P.Y.

    1991-01-01

    A pair of Chinese Hamster Ovary cell lines, the wild-type CHO-SC1, and its temperature-sensitive mutant (CHO-tsH1) was used to examine the importance of protein synthesis in the development of thermotolerance. The classical biphasic thermotolerant survival response to hyperthermia was observed in the SC1 cells after continuous heating at 41.5C to 42.5C, while tsH1 showed no thermotolerance. In separate experiments, each cell line was triggered and challenged at 45C. The heat doses were separated with graded incubaton periods at 35C or 40C for thermotolerance development. SC1 cells expressed thermoresistance, with the synthesis of heat shock proteins, under both incubation conditions. tsH1 cells expressed thermotolerance similar to that seen in the SC1 cells when incubated at 35C, but the survival response with the non-permissive 40C incubation was much reduced in the absence of protein synthesis. The combined effects of heavy-ion radiation and hyperthermia were examined using the same cell system. A mild heat dose of 41.5C was used in conjunction with Neon particle radiation of various high LET values. The cell killing effects were highly dependent on the sequence of application of heat and Neon radiation. Heat applied immediately after Neon irradiation was more cytotoxic to SC1 cells than when heat was applied prior to the irradiation. The ability of cells to synthesize new proteins plays a key role in this sequence-dependent thermal radiosensitization. In the absence of protein synthesis in the tsH1 cells, the high-LET thermal enhancement for cell-killing was unchanged regardless of the sequence. In the presence of protein synthetic activity in the SC1 cells, the thermal enhancement of radiation-induced cell killing was LET-dependent

  5. Ion beam irradiation effects on aromatic polymers

    International Nuclear Information System (INIS)

    Shukushima, Satoshi; Ueno, Keiji

    1995-01-01

    We studied the optical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H + , H 2 + and He + ions. The examined aromatic polymers were polyetherether ketone(PEEK), polyetherimide(PEI), polyether sulfon(PES), polysulfon(PSF), and polyphenylene sulfide(PPS). The optical densities at 300nm of PES and PSF greatly increased after the irradiation. The optical densities at 400nm of all the examined polymer lineally increased with the irradiation dose. The PEEK film which had been irradiated with 1 MeV H + was not deformed above melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the aromatic polymers for the same absorption energy. (author)

  6. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    Heyse, J.

    2009-01-01

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  7. Apparatus for electron beam irradiation of objects

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Ivanov, A.S.; Sviniin, M.P.; Fedotov, M.T.

    1984-01-01

    This patent provides an apparatus for electron beam irradiation of objects, comprising a shaper of a ribbon-shaped electron beam and a deflecting electromagnet having a frame-type magnetic circuit and used to direct said electron beam onto an irradiated object substantially at an angle of 90 degrees. The deflecting electromagnet has two poles extended over the width of the irradiated object and comprises two windings embracing said poles and connected to a d.c. source. The deflecting electromagnet is arranged in such a manner that the trajectories of the electrons at an area from the shaper to the electromagnet are inclined to the plane of the frame of its magnetic circuit

  8. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Sarada Idris; Mohd Suhaimi Jusoh; Siti Aiasah Hashim

    2011-01-01

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  9. WEBEXPIR: Windowless target electron beam experimental irradiation

    International Nuclear Information System (INIS)

    Dierckx, Marc; Schuurmans, Paul; Heyse, Jan; Rosseel, Kris; Tichelen, Katrien Van; Nactergal, Benoit; Vandeplassche, Dirk; Aoust, Thierry; Abs, Michel; Guertin, Arnaud; Buhour, Jean-Michel; Cadiou, Arnaud; Abderrahim, Hamid Ait

    2008-01-01

    The windowless target electron beam experimental irradiation (WEBEXPIR) program was set-up as part of the MYRRHA/XT-ADS R and D effort on the spallation target design to investigate the interaction of a proton beam with a liquid lead-bismuth eutectic (LBE) free surface. In particular, possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation were assessed. An experiment was conceived at the IBA TT-1000 Rhodotron, where a 7 MeV electron beam was used to simulate the high power deposition at the MYRRHA/XT-ADS LBE free surface. The geometry and the LBE flow characteristics in the WEBEXPIR set-up were made as representative as possible of the actual situation in the MYRRHA/XT-ADS spallation target. Irradiation experiments were carried out at beam currents of up to 10 mA, corresponding to 40 times the nominal beam current necessary to reproduce the MYRRHA/XT-ADS conditions. Preliminary analyses show that the WEBEXPIR free surface flow was not disturbed by the interaction with the electron beam and that vacuum conditions stayed well within the design specifications

  10. Electron beam irradiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1992-01-01

    This paper reviews research and development of application of electron beam (EB) irradiation technology for treatment of flue gas and waste water, and for disinfection of sewage sludge. Feasibility studies on EB purification of flue gases have been performed with pilot-scale experiments in Japan, the USA and Germany, and is being carried out in Poland for flue gases from iron-sintering furnaces or coal burning boilers. Based on results obtained by experiments using simulated flue gas, pilot scale test for treatment of flue gas of low-sulfur containing coal combustion has recently started in Japan. Organic pollutants in waste water and ground water have been found to be decomposed by EB irradiation. Synergetic effect of EB irradiation and ozone addition was found to improve the decomposition efficiency. Electron beam irradiation technology for disinfection of water effluent from water treatment plants was found to avoid formation of chlorinated organic compounds which are formed in using chlorine. Efficient process for composting of sewage sludge disinfected by EB irradiation has been developed by small scale and pilot scale experiments. In the new process, disinfection by EB irradiation and composing can be done separately and optimum temperature for composting can be, therefore, selected to minimize period of composting. (author)

  11. Fast neutrons: Inexpensive and reliable tool to investigate high-LET particle radiobiology

    International Nuclear Information System (INIS)

    Gueulette, J.; Slabbert, J.P.; Bischoff, P.; Denis, J.M.; Wambersie, A.; Jones, D.

    2010-01-01

    Radiation therapy with carbon ions as well as missions into outer space have boosted the interest for high-LET particle radiobiology. Optimization of treatments in accordance with technical developments, as well as the radioprotection of cosmonauts during long missions require that research in these domains continue. Therefore suitable radiation fields are needed. Fast neutrons and carbon ions exhibit comparable LET values and similar radiobiological properties. Consequently, the findings obtained with each radiation quality could be shared to benefit knowledge in all concerned domains. The p(66+Be) neutron therapy facilities of iThemba LABS (South Africa) and the p(65)+Be neutron facility of Louvain-la-Neuve (Belgium) are in constant use to do radiobiological research for clinical applications with fast neutrons. These beams - which comply with all physical and technical requirements for clinical applications - are now fully reliable, easy to use and frequently accessible for radiobiological investigations. These facilities thus provide unique opportunities to undertake radiobiological experimentation, especially for investigations that require long irradiation times and/or fractionated treatments.

  12. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  13. Determination of the electron beam irradiated area

    International Nuclear Information System (INIS)

    Zarbout, K.; Kallel, A.; Moya, G.

    2005-01-01

    The investigation of the charge trapping properties of non-conductive materials open the way to an understanding of the degradation of their characteristics due to ageing and catastrophic phenomena, such as breakdown, which originate from the rapid relaxation of trapped charges. The defects, in particular those introduced during the fabrication process, are responsible for the charging phenomena which limit the technological performances and the reliability of these materials. Several characterisation techniques have been developed and among them the one which uses the electron beam of the scanning Electron Microscope (SEM). The study of the charge trapping properties in non-conductive solids by using the electron beam of a SEM requires the knowledge of the current beam and injected charges densities. These densities depend on the irradiated sample area. For this reason, we report in this work two experimental procedures allowing a direct determination of the irradiated area size by the incident defocused beam. The first is based on the charging effect of oxide surfaces (SiO2, MgO, AL2O3) and the second is derived from the electron beam lithography technique. The latter procedure constitutes a convenient experimental method

  14. Modeling of DNA damage-cluster, cell-cycle and repair pathway dependent radiosensitivity after low- and high-LET irradiation; Modellierung der DNA-Schadenscluster-, Zellzyklus- und Reparaturweg-abhaengigen Strahlenempfindlichkeit nach niedrig- und hoch-LET-Bestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Paul

    2017-07-17

    This work focuses on modeling of the effects of ionizing radiation on cells, primarily on, the influence of the DNA repair pathway availability and the radiation quality on the cell-survival probability. The availability of DNA repair pathways depends on the replication state and defects of the DNA repair pathways. The radiation quality manifests itself in the microscopic ionization pattern. The Giant LOop Binary LEsion (GLOBLE) model and the Local Effect Model (LEM) describe the cell-survival after photon and ion irradiation, respectively. Both models assume that cell survival can be modeled based on the spatial distribution of Double-Strand Breaks (DSB) of the DNA (damage pattern), within a higher order chromatin structure. Single DSB are referred to as isolated DSB (iDSB) and two or more DSB in close proximity (within 540 nm) are called complex DSB (cDSB). In order to predict the cell-survival, the GLOBLE-Model considers different iDSB repair-pathways and their availability. One central assumption of the LEM is that the same damage patterns imply same effects, regardless of the radiation quality. In order to predict the damage pattern the microscopic local dose distribution of ions, described by the amorphous track structure, is evaluated. The cell survival after ion irradiation is predicted from a comparison with corresponding damage patterns after photon irradiation. The cell-survival curves after high dose photon irradiation cannot be predicted from the Linear Quadratic (LQ) Model due to their transition towards a linear dose dependence. This work uses the GLOBLE-Model to introduce a novel mechanistic approach, which allows the threshold dose to be predicted for the transition from a linear quadratic dose dependence, of survival curves at low doses, to a linear dose dependence at high doses. Furthermore, a method is presented, which allows LEM to predict the survival of synchronous cells after ion irradiation based on the cell survival after photon

  15. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  16. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  17. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  18. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  19. Treatment of supernatant from sewage sludge by elctron beam irradiation

    International Nuclear Information System (INIS)

    Arai, Hidehiko; Sugiyama, Masashi; Shimizu, Ken.

    1988-01-01

    Part of the results was presented on the investigation of treatment of supernatant from sewage sludge by combination of electron beam irradiation and microbiological treatment. Supernatant is electron-beam irradiated after microbiologically treated, and then treated microbiologically again. Based this method, by irradiation of 10 kGy, chemical oxygen demand (COD) in supernatant can be decreased lower than 30 ppm. Moreover, electron-beam irradiation induces remarkable decolorization and deodorization. (author)

  20. Injury to the central nervous system after high LET radiation

    International Nuclear Information System (INIS)

    Laramore, G.E.

    1991-01-01

    To date, clinical experiments with high LET irradiation have used fast neutrons, π-mesons, and heavy ions. The data for all of these modalities will be reviewed here, but by far the greatest body of information is for fast neutrons. Boron neutron capture therapy work for brain tumors, and interesting area in its own right, will not be discussed. In the paper, the author considered separately the brain and the spinal cord in terms of radiation effects. Most of the information on the brain comes from the treatment of high-grade gliomas and so the effects of the tumor and its surrounding edema must be folded in. There is, however, some information relating to the treatment of tumors lying adjacent to the brain. The spinal cord data come primarily from the treatment of head and neck tumors and intrathoracic tumors. Because the majority of these tumors were quite advanced, they often caused the patient's early death, and many patients may not have survived long enough to show the effects of radiation damage even if doses were given that exceeded cord tolerance

  1. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  2. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Science.gov (United States)

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  3. Genetic effects of high LET radiations

    International Nuclear Information System (INIS)

    Grahn, D.; Garriott, M.L.; Farrington, B.H.; Lee, C.H.; Russell, J.J.

    1981-01-01

    The objectives of this project are: (1) to assess genetic hazards from testicular burdens of 239 Pu and determine its retention and microdistribution in the testis; (2) to compare effects of 239 Pu with single, weekly, and continuous 60 Co gamma irradiation and single and weekly fission neutron irradiation to develop a basis for estimating relative biological effectiveness (RBE); and (3) to develop detailed dose-response data for genetic end points of concern at low doses of neutrons and gamma rays. Comparatively short-term genetic end points are used, namely: (1) the dominant lethal mutation rate in premeiotic and postmeiotic cell stages; (2) the frequency of abnormal sperm head morphology measured at various times after irradiation; and (3) the frequency of reciprocal chromosome translocations induced in spermatogonia and measured at first meiotic metaphase. Male hybrid B6CF 1 mice, 120 days old, are used for all studies. Measures of the retention, microdistributionand pollutant related changes. Assessment of human risk associated with nuclearing collective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  4. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    Science.gov (United States)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  5. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  6. Radiobiological effectiveness of high LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Urano, M; Koike, S; Suzuki, Y; Todoroki, T [National Inst. of Radiological Sciences, Chiba (Japan)

    1977-03-01

    The effect of cyclotron-produced neutrons (30 MeV d ..-->.. Be) on an animal tumors was studied. The experimental tumors were 5th generation isotransplants of spontaneous mouse squamous cell carcinoma. C3Hf/He mouse were used throughout. Cell survival was examined by the TD/sub 50/ method after neutron or x-ray irradiation. Tumor regrowth was also analysed by measuring tumor size daily. Results indicated that RBE was higher at low dose level, tumor cells surviving a neutron dose were not capable of repairing potentially lethal damage, and the OER was less after neutrons than after x rays. Implications of these results in radiation oncology and therapy were discussed.

  7. Mutation induced with ion beam irradiation in rose

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. E-mail: yhiroya@nias.affrc.go.jp; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  8. Electron beam irradiation of fluoropolymers containing polyethers

    Science.gov (United States)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P. E.

    2009-02-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield ( Gs) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission ( Gs) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its Mn decreases to only 24% of original.

  9. Electron beam irradiation of fluoropolymers containing polyethers

    International Nuclear Information System (INIS)

    Bucio, E.; Burillo, G.; Tapia, F.; Adem, E.; Cedillo, G.; Cassidy, P.E.

    2009-01-01

    A highly fluorinated monomer, 1,3-bis(1,1,1,3,3,3-hexafluoro-2-pentafluorophenyl methoxy-2-propyl)benzene (12F-FBE) was polymerized with some diphenols by polycondensation and then was electron beam irradiated between 100 and 1000 kGy to determine degradation radiochemistry yield (G s ) by gel permeation chromatography (GPC). The samples were characterized after irradiation by DSC, FTIR, and nuclear magnetic resonance (NMR). The fluoropolymers show apparent degradation in mechanical properties at 300 kGy, except 12F-FBE polymerized with biphenol and bisphenol A, when they did not show any apparent physical change up to 300 kGy; and continue to be flexible and transparent, with a radiochemical yield scission (G s ) of 0.75, 0.53, 0.88, and 0.38 for 12F-FBE/SDL aliphatic, 12F-FBE/biphenol, 12F-FBE/bisphenol A, and 12F-FBE/bisphenol O, respectively. The number average molecular weights for three of the polymers decrease upon 1000 kGy irradiation to 10% of their original values; however, the polymer from bisphenol A is much more stable and its M n decreases to only 24% of original

  10. Commercializing ALURTRONs electron beam irradiation services

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Mohd Sidek Othman; Shari Jahar; Sarada Idris; Naurah Mohd Isa; Muhamad Zahidee Taat

    2010-01-01

    ALURTRON has been the nation's sole electron irradiation service provider for research sectors. The main irradiation is done by utilising the EPS 3000 Cockcroft-Walton type 3.0 MeV, 90 k Watts electron beam machine (EBM). With more than 15 years experience in the operation and maintenance of the EPS, the challenge is now to commercialize the service at a larger and profitable scale. Medical products sterilization at commercial level has been ruled out since the energy is insufficient to penetrate dense and non-homogenous items. Recently, the demand for irradiation of wire and heat shrinkable tubes is showing bigger commercial potential. Therefore, prudent planning considerations need to be taken to ensure profitable return to the agency. Calculations were made to estimate ALURTRON service capacity, based on the existing EBM and its auxiliary systems. Details of the calculation including all the variables are presented. Results indicated that Alurtron should be able to process a minimum of 1000 km of small wires per month, running at 150 m/ min, working in two shifts, 5 days a week. The projected revenue is dependent on the charges imposed on the basis of total length delivered. (author)

  11. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  12. High-LET particle exposure of Skylab astronauts

    International Nuclear Information System (INIS)

    Benton, E.V.; Peterson, D.D.; Bailey, J.V.; Parnell, T.

    1977-01-01

    High-LET particle radiation was registered in nuclear track recording plastic dosimeters worn on the wrists of Skylab astronauts and located in a heavily shielded film vault. The mission-average planar flux of high-LET particles with LET >= 100 keV/micron . tissue has been determined to be 2.7 +- 0.6 particles/cm 2 . day . 2π sr and 0.34 +- 0.4 particles/cm 2 . day . 2π sr, respectively, for the nine astronauts and for the film vault. Comparison of results representative of a wide range of shielding depths reveals that the magnitude and slope of the integral LET spectrum of high-LET particles inside spacecraft are proportional to the amount of shielding. (author)

  13. Application of electron beam irradiation. 4. Treatment of pollutants by electron beam irradiation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko

    1994-01-01

    Electron beam irradiation is capable of dissolving and removing pollutants, such as sulfur oxides, nitrogen oxides, and organic compounds, by easy production of OH radicals in flue gas and water. This paper deals with current status in the search for techniques for treating flue gas and waste water, using electron beam irradiation. Pilot tests have been conducted during the period 1991-1994 for the treatment of flue gas caused by coal and garbage burning and road tunnels. Firstly, techniques for cleaning flue gas with electron beams are outlined, with special reference to their characteristics and process of research development. Secondly, the application of electron beam irradiation in the treatment of waste water is described in terms of the following: (1) disinfection of sewage, (2) cleaning of water polluted with toxic organic compounds, (3) treatment for eliminating sewage sludge, (4) promotion of sewage sludge sedimentation, (5) disinfection and composting of sewage sludge, and (6) regeneration of activated carbon used for the treatment of waste water. (N.K.)

  14. A Review: Some biological effects of high LET radiations

    Science.gov (United States)

    Wiley, A., Jr.

    1972-01-01

    There are qualitative and quantitative differences in the biological damage observed after exposure to high LET radiation as compared to that caused by low LET radiations. This review is concerned with these differences, which are ultimately reflected at the biochemical, cellular and even whole animal levels. In general, high LET radiations seem to produce biochemical damage which is more severe and possibly less repairable. Experimental data for those effects are presented in terms of biochemical RBE's with consideration of both early and late manifestations. An LET independent process by which significant biochemical damage may result from protons, neutrons and negative pion mesons is discussed.

  15. High-LET dose-response characteristics by track structure theory of heavy charged particles

    International Nuclear Information System (INIS)

    Hansen, J.W.; Olsen, K.J.

    1981-09-01

    The track structure theory developed by Katz and co-workers ascribes the effect of high-LET radiation to the highly inhomogeneous dose distribution due to low energy Δ-rays ejected from the particle track. The theory predicts the effectiveness of high-LET radiation by using the ion parameters zsub(eff') effective charge of the ion, and β = v/c, the relative ion velocity, together with the characteristic dose D 37 derived from low-LET dose-response characteristic of the detector and the approximate size asub(0) of the sensitive element of the detector. 60 Co gamma-irradiation is used as a reference low-LET radiation, while high-LET radiation ranging from 16 MeV protons to 4 MeV/amu 16 0-ions covering an initial LET range of 30-5500 MeVcm 2 /g is obtained from a tandem Van de Graaff accelerator. A thin film (5mg/cm 2 ) radiochromic dye cyanide plastic dosemeter was used as detector with the characteristic dose of 16.8 Mrad and a sensitive element size of 10 -7 cm. Theoretical and experimental effectiveness, RBE, agreed within 10 to 25% depending on LET. (author)

  16. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Science.gov (United States)

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  17. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  18. The future of high-let radiation in cancer therapy. Justification of the heavy-ion therapy programmes

    International Nuclear Information System (INIS)

    Wambersie, A.

    1989-01-01

    The introduction of new types of ionizing radiations to control the primary tumour is a promising approach in radiation therapy. High-LET (linear energy transfer) radiations produce different biological effects compared to conventional X-rays, leading to a potential therapeutic advantage over low-LET (e.g., protons or helium ions) beams, which only are aimed at improving the physical selectivity. Introduced historically to reduce the OER (oxygen enhancement ratio), there is evidence for a reduction in radiosensitivity differences, which implies an advantage or disadvantage depending on the tumour characteristics and the normal tissues at risk, which in turn raises the problem of patient selection. From clinical data, fast neutrons were found to be superior to photons in the treatments of salivary gland tumours, prostatic adenocarcinomas, and some carcinomas. Heavy ions combine the advantages of a high physical selectivity and the potential advantage of high-LET for some tumour types. Clinical indications for the use of heavy-ion beams are therefore those tumours that reside in problematic sites but are of a type for which high-LET radiations were already shown to be useful. This review discusses the improvement of the physical selectivity with proton and helium ion beams; the differential effect and the potential advantage of neutrons and high-LET radiations (including both the radiological considerations and the clinical data); and presents the rationale for heavy-ion therapy. 38 refs, 7 figs, 10 tabs

  19. Coating composition curable by electron beam irradiation

    International Nuclear Information System (INIS)

    Masuda, Hiromasa; Iijima, Ken-ichi.

    1971-01-01

    Here is provided a coating composition curable with low dose of electron beams to give a smooth coating film having no surface tackiness. In one example, 126 parts of melamine was reacted with 682 parts of formalin followed by 697 parts of β-hydroxyethyl acrylate to produce component (A) (viscosity 780 cp). On the other hand, 900 parts of tung oil was reacted with 343 parts of maleic anhydride followed by 22 parts of dimethylaminoethyl methacrylate and 406 parts of β-hydroxyethyl acrylate. The resulting product was diluted with 508 parts of methyl methacrylate to give component (B) (dark red, viscous substance). 900 parts of (A), 100 parts of (B), 0.5 part of bees wax and 0.2 part of paraffin wax were blended together. A sized material was coated with the mixture and irradiated with electron beams (6 Mrad) in the presence of air. A smooth film free from surface tackiness was obtained. β-hydroxyethyl acrylate may be replaced by other hydroxyalkyl esters of α,β-unsaturated acids, and melamine may be replaced by urea, benzoguanamine or acetoguanamine. Tung oil may be replaced by linseed, safflower, soybean, rice, oiticica or cotton seed oil. A more flexible film is obtained by using component (B) in a larger proportion. (A)/(B) ratio should be in the range of 90/10 to 10/90 by wt. (Kaichi, S.)

  20. Biomarkers specific to densely-ionising (high LET) radiations

    International Nuclear Information System (INIS)

    Brenner, D.J.; Okladnikova, N.; Hande, P.; Burak, L.; Geard, C.R.; Azizova, T.

    2001-01-01

    There have been several suggestions of biomarkers that are specific to high LET radiation. Such a biomarker could significantly increase the power of epidemiological studies of individuals exposed to densely-ionising radiations such as alpha particles (e.g. radon, plutonium workers, individuals exposed to depleted uranium) or neutrons (e.g. radiation workers, airline personnel). We discuss here a potentially powerful high LET biomarker (the H value) which is the ratio of induced inter-chromosomal aberrations to intra-arm aberrations. Both theoretical and experimental studies have suggested that this ratio should differ by a factor of about three between high LET radiation and any other likely clastogen, and will yield more discrimination than the previously suggested F value (ratio of inter-chromosomal aberrations to intra-chromosomal inter-arm aberrations). Evidence of the long-term stability of such chromosomal biomarkers has also been generated. Because these stable intra-arm and inter-chromosomal aberrations are (1) frequent and (2) measurable at long times after exposure, this H value appears to be a practical biomarker of high LET exposure, and several in vitro studies have confirmed the approach for unstable aberrations. The approach is currently being tested in a population of Russian radiation workers exposed several decades ago to high- or low LET radiation. (author)

  1. Evaluation of normal tissue responses to high-LET radiations

    International Nuclear Information System (INIS)

    Halnan, K.E.

    1979-01-01

    Clinical results presented have been analysed to evaluate normal tissue responses to high-LET radiations. Damage to brain, spinal cord, gut, skin, connective tissue and bone has occurred. A high RBE is probable for brain and possible for spinal cord and gut but other reasons for damage are also discussed. A net gain seems likely. Random controlled trials are advocated. (author)

  2. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    Science.gov (United States)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  3. Effect of electron beam irradiation on seed germination

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seunghee; Bae, Youngmin [Changwon Univ., Changwon (Korea, Republic of)

    2013-07-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber.

  4. Effect of electron beam irradiation on seed germination

    International Nuclear Information System (INIS)

    Han, Seunghee; Bae, Youngmin

    2013-01-01

    Effect of electron beam irradiation on seed germination was investigated in this research. Electron beam of 0.5, 1.0, 1.5 and 2.0 kGy was irradiated to the seeds of lettuce, green onion and cucumber, and the irradiated seeds were incubated at 25 .deg. Cn Nitsch medium solidified with 0.2% Phytagel. Germination percentage and the length of the sprouts were determined after 72 hours. Germination percentage of lettuce seeds was greatly reduced by the irradiation, and that of the green onion and cucumber were moderately reduced or unchanged by the irradiation. Although average length of the lettuce sprouts was reduced severely, that of the green onion and cucumber was unchanged or moderately reduced. Conclusively, electron beam irradiation might be a useful way of disinfecting some plant seeds including green onion and cucumber

  5. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    1994-01-01

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  6. Fractionated proton beam irradiation of pituitary adenomas

    International Nuclear Information System (INIS)

    Ronson, Brian B.; Schulte, Reinhard W.; Han, Khanh P.; Loredo, Lilia N.; Slater, James M.; Slater, Jerry D.

    2006-01-01

    Purpose: Various radiation techniques and modalities have been used to treat pituitary adenomas. This report details our experience with proton treatment of these tumors. Methods and Materials: Forty-seven patients with pituitary adenomas treated with protons, who had at least 6 months of follow-up, were included in this analysis. Forty-two patients underwent a prior surgical resection; 5 were treated with primary radiation. Approximately half the tumors were functional. The median dose was 54 cobalt-gray equivalent. Results: Tumor stabilization occurred in all 41 patients available for follow-up imaging; 10 patients had no residual tumor, and 3 had greater than 50% reduction in tumor size. Seventeen patients with functional adenomas had normalized or decreased hormone levels; progression occurred in 3 patients. Six patients have died; 2 deaths were attributed to functional progression. Complications included temporal lobe necrosis in 1 patient, new significant visual deficits in 3 patients, and incident hypopituitarism in 11 patients. Conclusion: Fractionated conformal proton-beam irradiation achieved effective radiologic, endocrinological, and symptomatic control of pituitary adenomas. Significant morbidity was uncommon, with the exception of postradiation hypopituitarism, which we attribute in part to concomitant risk factors for hypopituitarism present in our patient population

  7. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  8. The inactivation of papain by high LET radiations

    International Nuclear Information System (INIS)

    Bisby, R.H.; Cundall, R.B.; Sims, H.E.; Burns, W.G.

    1984-01-01

    The effect of varying LET over a wide range (0.2-1570 eV/nm) on the radiation-induced inactivation of the enzyme papain in dilute aqueous solution has been investigated. Measurements of total, reparable and non-reparable inactivation G values in oxygen, nitrous oxide and argon saturated solutions have allowed the contributions to inactivation from radicals and hydrogen peroxide to be evaluated. At high LET the results demonstrate an increasing component due to reaction of the superoxide radical, formed from oxygen produced in the track as a primary radiolysis product. This effect was not observed in our previous study with ribonuclease due to the insensitivity of ribonuclease to inactivation by superoxide and hydrogen peroxide. The results obtained with papain clearly demonstrate a maximum in G(H 2 O 2 ) at an LET of equivalent to 140 eV/nm. Generation of O 2 within the track as a primary radiolysis product at high LET now appears to be confirmed as an important mechanism leading to reduction in the oxygen enhancement ratio for cellular systems exposed to high LET radiations (Baverstock and Burns 1981). (author)

  9. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    and converts polymeric structure into hydrogen depleted carbon network. ... Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. ..... Coat. Technol. 201 8225. Raja V, Sharma A K and Narasimha V V R 2004 Mater.

  10. Effects of electron beam irradiation on cut flowers and mites

    International Nuclear Information System (INIS)

    Dohino, Toshiyuki; Tanabe, Kazuo

    1994-01-01

    Two spotted spider mite, Tetranychus urticae KOCH were irradiated with electron beams (2.5MeV) to develop an alternative quarantine treatment for imported cut flowers. The tolerance of eggs increased with age (1-5-day-old). Immature stages (larva-teleiochrysalis) irradiated at 0.4-0.8kGy increased tolerance with their development. Mated mature females irradiated at 0.4kGy or higher did not produce viable eggs, although temporary recovery was observed at 0.2kGy. Adult males were sterilized at 0.4kGy because non-irradiated virgin females mated with yielded female progeny malformed and sterilized. Various effects of electron beam irradiation were observed when nine species of cut flowers were irradiated in 5MeV Dynamitron accelerator. Chrysanthemum and rose were most sensitive among cut flowers. (author)

  11. Regeneration of used activated carbon by electron beam irradiation

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Zhu, G.; Miyata, T.

    1992-01-01

    The adsorbing power of granular activated carbons which adsorbed sodium laurylsulfate were most effectively recovered by irradiation of high energy electron beams in nitrogen stream, and the carbon was hardly lost by irradiation. The regeneration was induced mainly by microscopic heating of adsorption sites. Regeneration was also confirmed by adsorption endotherms. Regeneration cost was tentatively evaluated. (author)

  12. Effects of electron beam irradiation on tin dioxide gas sensors

    Indian Academy of Sciences (India)

    WINTEC

    sensitivity increases more rapidly under high doses of irra- diation than under low doses of irradiation. The electron beam irradiation effects were simulated and the mecha- nism was discussed. Acknowledgements. The authors gratefully acknowledge financial support from the MOST 973 program, grant no. 2006CB705604 ...

  13. Moving beam irradiation in combined therapy of cervix uteri cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, O M; Zholkiver, K I

    1976-07-01

    Postoperative moving beam irradiation in a dose of 3900 to 365 rad was conducted in 98 patients with the I--II stages of cervix uteri cancer. Skin reactions to irradiation were absent, marked leukopenia developed in 4 patients. Of 39 patients followed up for more than 5 years 35 have lived without relapses and metastases.

  14. Sterilization of ground spices by electron beams irradiation

    International Nuclear Information System (INIS)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi

    1999-01-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  15. Sterilization of ground spices by electron beams irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi [K. Kobayashi and Co., Ltd., Kako, Hyogo (Japan)

    1999-09-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  16. On the use of distributions of stopping pions as an indicator of the spatial distribution of the high-LET dose in negative pion radiotherapy

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1991-01-01

    A semi-empirical across the treatment volume of a therapeutic negative pion beam. Such beams deliver dose partially at high LET (through alphas and heavier particles produced both directly in pion stars and via intermediate star-produced neutrons), and partially at low LET (through scattering of pions, electrons and muons, as well as protons produced directly from pion stars and via intermediate neutrons). The problem is how to understand the spatial distribution of the high-LET dose, which is responsible for the potentially improved biological response in the treatment volume

  17. 'The future of the electron beam irradiation service business'

    International Nuclear Information System (INIS)

    Yamase, Yutaka

    1998-01-01

    The high energy electron beam has less penetration power in comparison with the gamma ray which has been used from before. However, the dose rate of the electron beam is considerably high in comparison with the gamma ray with more than several thousand times. Therefore, the irradiation of the product can be done in a short time, and there are cheap characteristics further in the irradiation cost as well. And, an electron beam is the technology which is very easy to accept in the country of a nuclear allergy constitution like our country so that it may not use radioactive substance. This time, I'd like to think about the present condition of the electron beam irradiation service business and a future based on the experience of Tsukuba EBcenter until now. (J.P.N.)

  18. Electron beam irradiation on cation exchanger used for strontium recovery

    International Nuclear Information System (INIS)

    Watanabe, Sou; Nakamura, Masahiro; Nomura, Kazunori; Nakajima, Yasuo; Okamoto, Yoshihiro

    2014-01-01

    Titanate is promising material for radioactive Sr recovery from liquid waste generated in the nuclear facilities. "9"0Sr is one of the most important nuclides in order to release the liquid waste into the environment due to its strong beta-ray decay energy. Although the titanate is applied to radioactive Sr decontamination facility, their resistance to irradiations from radioactive elements adsorbed is not widely investigated so far. In this study, durability of a hydrous titanic acid ion exchanger against beta-ray irradiation were evaluated through electron beam irradiation, elution behaviour of Sr after the irradiation and local structural analysis of the titanate. 1.4 MGy irradiation led to 1% of Sr elution, and the elution could be attributed to defects of O in the titanate induced by the irradiation. Chemical state of Ti of the titanate must be stable up to 2.7 MGy irradiation. (author)

  19. High LET Radiation Amplifies Centrosome Overduplication Through a Pathway of γ-Tubulin Monoubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Mikio [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto (Japan); Hirayama, Ryoichi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Komatsu, Kenshi, E-mail: komatsu@house.rbc.kyoto-u.ac.jp [Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto (Japan)

    2013-06-01

    Purpose: Radiation induces centrosome overduplication, leading to mitotic catastrophe and tumorigenesis. Because mitotic catastrophe is one of the major tumor cell killing factors in high linear energy transfer (LET) radiation therapy and long-term survivors from such treatment have a potential risk of secondary tumors, we investigated LET dependence of radiation-induced centrosome overduplication and the underlying mechanism. Methods and Materials: Carbon and iron ion beams (13-200 keV/μm) and γ-rays (0.5 keV/μm) were used as radiation sources. To count centrosomes after IR exposure, human U2OS and mouse NIH3T3 cells were immunostained with antibodies of γ-tubulin and centrin 2. Similarly, Nbs1-, Brca1-, Ku70-, and DNA-PKcs-deficient mouse cells and their counterpart wild-type cells were used for measurement of centrosome overduplication. Results: The number of excess centrosome-containing cells at interphase and the resulting multipolar spindle at mitosis were amplified with increased LET, reaching a maximum level of 100 keV/μm, followed by sharp decrease in frequency. Interestingly, Ku70 and DNA-PKcs deficiencies marginally affected the induction of centrosome overduplication, whereas the cell killings were significantly enhanced. This was in contrast to observation that high LET radiation significantly enhanced frequencies of centrosome overduplication in Nbs1- and Brca1-deficient cells. Because NBS1/BRCA1 is implicated in monoubiquitination of γ-tubulin, we subsequently tested whether it is affected by high LET radiation. As a result, monoubiquitination of γ-tubulin was abolished in 48 to 72 hours after exposure to high LET radiation, although γ-ray exposure slightly decreased it 48 hours postirradiation and was restored to a normal level at 72 hours. Conclusions: High LET radiation significantly reduces NBS1/BRCA1-mediated monoubiquitination of γ-tubulin and amplifies centrosome overduplication with a peak at 100 keV/μm. In contrast, Ku70 and DNA

  20. ESR investigataions of electron-beam irradiated cellulose nitrate

    International Nuclear Information System (INIS)

    Chipara, M.I.; Catana, D.; Grecu, V.; Romero, J.R.; Chipara, D.

    1994-01-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311) are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and its is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author)

  1. ESR investigataions of electron-beam irradiated cellulose nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Chipara, M.I.; Catana, D. [Institute of Atomic Physics, Bucharest (Romania); Grecu, V.; Romero, J.R. [Bucharest Univ. (Romania). Faculty of Physics; Coca, S. [Chemical Research Inst., Bucharest (Romania); Chipara, D. [Research Inst. for Electrotechnics, Bucharest (Romania)

    1994-10-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311) are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and its is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author).

  2. ESR investigations of electron-beam irradiated cellulose nitrate

    International Nuclear Information System (INIS)

    Chipara, M.I.; Grecu, V.; Catana, D.; Romero, J.R.; Coca, S.; Chipara, M.D.

    1994-01-01

    Electron spin resonance investigations on an electron-beam irradiated solid state nuclear track detector, based on cellulose nitrate (KODAK LR-311), are reported. The nature of free radicals induced in polymers by irradiation is discussed. The dependence of resonance spectral parameters on irradiation times, as well as on storage time and temperature, is studied. The experimental results are related to the stability of latent tracks and it is concluded that the free radicals induced by irradiation are located within the latent tracks. We have shown that both latent track and free radical thermal fading obey an Arrhenius-like dependence, with the same activation energy. (Author)

  3. Waste treatment by microwave and electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Craciun, G.; Manaila, E.; Ighigeanu, D; Oproiu, C.; Iacob, N.; Togoe, I.; Margaritescu, I.

    2007-01-01

    Comparative results obtained by applying separate and combined (successive and simultaneous) electron beam (EB) and microwave (MW) irradiation to waste treatment, such as food residuals (minced beef, wheat bran and wheat flour) and sewage sludge performed from a food industry wastewater treatment station (vegetable oil plant), are presented. The research results demonstrated that the simultaneous EB and MW irradiation produces the biggest reduction of microorganisms. The tests also demonstrated that the irradiation time and the upper limit of required EB absorbed dose, which ensures a complete sterilization effect, could be reduced by a factor of two by an additional use of MW energy to EB irradiation

  4. Effect of electron beam irradiation on fisheries water

    International Nuclear Information System (INIS)

    Sarala Selambakkannu; Khomsaton Abu Bakar; Jamaliah Shariff; Suhairi Alimon

    2012-01-01

    This paper studies about water obtained from fish pond of fisheries research centre. Usual water quality parameters such as pH, COD, Turbidity and Ammonia content were analyzed before and after irradiation. Electron beam irradiation was used to irradiate the water with the dose 100 kGy, 200 kGy and 300 kGy. Only high dose was applied on this water as only a limited amount of samples was supplied. All the parameters indicated a slight increase after irradiation except for the ammonia content, which showed a gradual decrease as irradiation dose increases. Sample condition was changed before irradiation in order to obtain more effective results in the following batch. The water sample from fisheries was diluted with distilled water to the ratio of 1:1.This was followed with irradiation at 100 kGy, 200 kGy and 300 kGy. The results still showed an increase in all parameters after irradiation except for ammonia content. For the following irradiation batch, the pH of the sample was adjusted to pH 4 and pH 8 before irradiation. For this sample the irradiation dose selected was only 100 kGy. A higher value of ammonia was observed for the sample with pH 4 after irradiation. Other parameters were almost the same as the first two batches. (author)

  5. Uniform irradiation system using beam scanning method for cyclotron

    International Nuclear Information System (INIS)

    Agematsu, Takashi; Okumura, Susumu; Arakawa, Kazuo

    1994-03-01

    JAERI AVF-cyclotron is equipped with an ion beam scanner for large area irradiation. The two-dimensional fluence distribution of ion beam obtained using cellulose triacetate film dosimeter was not uniform. This is resulted from the distortion of excitation current for electromagnet of the scanner. So, the beam scanning condition, i.e., the relation between the ion species, the beam profile and the scanning width, was extremely limited to make a good uniformity. We have developed a beam scanning simulator to get fluence distributions by calculation and then compared the simulated distributions with the measured ones. It was revealed that the both of them are in good agreement and the beam scanning condition to get good uniformity was led by using this simulator. On the basis of these results, the power supply of scanner was improved. A good uniformity of beam distribution was available. (author)

  6. Induction and Rejoining of DNA Double Strand Breaks Assessed by H2AX Phosphorylation in Melanoma Cells Irradiated with Proton and Lithium Beams

    International Nuclear Information System (INIS)

    Ibanez, Irene L.; Bracalente, Candelaria; Molinari, Beatriz L.; Palmieri, Monica A.; Policastro, Lucia; Kreiner, Andres J.; Burlon, Alejandro A.; Valda, Alejandro; Navalesi, Daniela; Davidson, Jorge; Davidson, Miguel; Vazquez, Monica; Ozafran, Mabel; Duran, Hebe

    2009-01-01

    Purpose: The aim of this study was to evaluate the induction and rejoining of DNA double strand breaks (DSBs) in melanoma cells exposed to low and high linear energy transfer (LET) radiation. Methods and Materials: DSBs and survival were determined as a function of dose in melanoma cells (B16-F0) irradiated with monoenergetic proton and lithium beams and with a gamma source. Survival curves were obtained by clonogenic assay and fitted to the linear-quadratic model. DSBs were evaluated by the detection of phosphorylated histone H2AX (γH2AX) foci at 30 min and 6 h post-irradiation. Results: Survival curves showed the increasing effectiveness of radiation as a function of LET. γH2AX labeling showed an increase in the number of foci vs. dose for all the radiations evaluated. A decrease in the number of foci was found at 6 h post-irradiation for low LET radiation, revealing the repair capacity of DSBs. An increase in the size of γH2AX foci in cells irradiated with lithium beams was found, as compared with gamma and proton irradiations, which could be attributed to the clusters of DSBs induced by high LET radiation. Foci size increased at 6 h post-irradiation for lithium and proton irradiations in relation with persistent DSBs, showing a correlation with surviving fraction. Conclusions: Our results showed the response of B16-F0 cells to charged particle beams evaluated by the detection of γH2AX foci. We conclude that γH2AX foci size is an accurate parameter to correlate the rejoining of DSBs induced by different LET radiations and radiosensitivity.

  7. Manufacture of electron beam irradiation vessel and its characteristics

    International Nuclear Information System (INIS)

    Kanazawa, Takao; Haruyama, Yasuyuki; Yotsumoto, Keiichi

    1992-05-01

    Electron beam irradiation vessel, which is used for the irradiation of samples under an inert or a vacuum atmosphere, is made by considering the temperature control during or after irradiation. The vessel was composed of the temperature controlable samples supporting plate, beam slit with water cooling plate and the insert of thermosensor. The four samples supporting plate was produced with the materials made up of aluminium, stainless steel (SUS304), and copper. The stainless steel supporting plate has a heater inside the cooling pipes for the high temperature treatment of samples without exposure to atmosphere after the irradiation. In this report, the temperature distribution and dose characteristics such as dose distribution and effects of backscattered electron were studied by using several supporting plate and the comparison of the experimental results with the simulated results was also carried out. (author)

  8. Postharvest quality of cut roses following electron-beam irradiation

    International Nuclear Information System (INIS)

    Chang, A.Y.; Gladon, R.J.; Gleason, M.L.; Parker, S.K.; Agnew, N.H.; Olson, D.G.

    1997-01-01

    Cut Rosa x hybrida L. 'Royalty' flowers were used to determine the efficacy of electron-beam irradiation for increasing postharvest quality and decreasing petal infection by Botrytis cinerea Pers. In an experiment for determining the injury threshold, roses received electron-beam irradiation of 0, 0.5, 1, 2, and 4 kGy. Irradiation dosages greater than or equal to 4 kGy caused necrosis on petal tissue and decreased postharvest life at 20 degrees C. In a second experiment to evaluate postharvest quality, roses were irradiated at 0, 0.25, 0.5, 0.75, and 1 kGy. Dosages of 0.25 and 0.5 kGy slowed the rate of flower bud opening for 2 days but did not decrease postharvest quality when compared with nonirradiated roses. Roses that received irradiation dosages of 0.75 and 1 kGy showed unacceptable quality. In a third experiment, roses that had or had not been inoculated with B. cinerea were irradiated at 0, 0.25, 0.5, and 0.75 kGy. Irradiation did not control B. cinerea populations, and rose quality decreased as dosage increased. In a fourth experiment to determine the effect of irradiation on B. cinerea, conidia on water-agar plates exposed to dosages less than or equal to 1, 2, and 4 kGy germinated at rates of approximately 90%, 33%, and 2%, respectively, within 24 h

  9. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  10. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  11. Behaviour of some fresh fruits under electron-beam irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.; Stroia, A.L.; Potcoava, A.; Cojocaru, M.; Mihnea, R.; Oproiu, C.

    1994-01-01

    The use of ionizing radiation in preservation of fruits and vegetables is widely recognized. In this paper it is presented a study of the effect of electron-beam irradiation of some fresh, early and perishable fruits, like strawberries, cherries, and sour cherries concerning their shelf-life time extension. The irradiations were performed on common varieties in normal conditions to the IPTRD's electron-beam accelerator (Bucharest-Magurele) having the following parameters: flow current 10 μA, power 60 W and electron mean energy 6.23 MeV. The irradiation doses varied between 0.5-3.0 kGy and the dose rates between 100-1500 Gy/min. It was observed the fruit preservation capability of the treatment and it was analysed the main characteristics as organoleptic properties, weight of dry component, acidity, total and reducing sugars, ascorbic acid content and others. It was evidenced an increase in freshness and shelf-life extension by 5-7 days for strawberries and up to two weeks for cherries without any significant changes in the values of the considered parameters. Otherwise, for the applied doses, the electron-beam irradiation did not produce any significant changes in the values of fruit characteristic parameters. The results lead to the conclusion that the electron-beam irradiation is a good technological solution for fresh fruit processing. (Author) 1 Tab., 7 Refs

  12. Electron beam irradiation of gemstone for color enhancement

    Science.gov (United States)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  13. Electron beam irradiation of gemstone for color enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A' iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  14. Electron beam irradiation of gemstone for color enhancement

    International Nuclear Information System (INIS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-01-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  15. Modification of bamboo surface by irradiation of ion beams

    International Nuclear Information System (INIS)

    Wada, M.; Nishigaito, S.; Flauta, R.; Kasuya, T.

    2003-01-01

    When beams of hydrogen ions, He + and Ar + were irradiated onto bamboo surface, gas release of hydrogen, water, carbon monoxide and carbon dioxide were enhanced. Time evolution of the gas emission showed two peaks corresponding to release of adsorbed gas from the surface by sputtering, and thermal desorption caused by the beam heating. The difference in etched depths between parenchyma lignin and vascular bundles was measured by bombarding bamboo surface with the ion beams in the direction parallel to the vascular bundles. For He + and Ar + , parenchyma lignin was etched more rapidly than vascular bundles, but the difference in etched depth decreased at a larger dose. In the case of hydrogen ion bombardment, vascular bundles were etched faster than parenchyma lignin and the difference in etched depth increased almost in proportion to the dose. The wettability of outer surface of bamboo was improved most effectively by irradiation of a hydrogen ion beam

  16. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  17. Clarification of leachate from reclaimed ground by electron beam irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Masao; Sawai, Teruko; Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    To decompose organic matters such as humic acid and fulvous acid in the leachate from reclaimed ground, an electron beam irradiation technique was examined because of availability of higher dose rate than a 60 Co γ-ray source. This paper describes results of the above-mentioned preliminary examination. Test water was collected from No.15 dumping site at the Tokyo Bay. Irradiation sample was prepared by filtration with a filter and decarbonation with sulfuric acid. Fulvous acid solution by eliminating humic acid was also served for the examination. Electron beam irradiation of the sample solution was made with a Van de Graaf accelerator by 1.5 MeV, 140 Gy/sec of irradiation condition and with a dynamitron by 2.0 MeV, 25 kGy/pass of the condition. It was clarified that oxygen bubbling velocity during the irradiation did not affect much for the decrease rate of total organic matters (TOC) within 0.5 to 3.0 1/min of an experimental condition. As for radiation doses and TOC decrease, TOC was decreased much for lower dose rate irradiation (Van de Graaf accelerator), lower initial TOC concentration, or addition of hydrogen peroxide. For the combined treatment of radiation and flocculation to aim at irradiation dose decrease, fulvous acid solution was served for the test. Lower dose irradiation with a 60 Co source showed better TOC elimination and it was concluded that combination with flocculation was effective for the dose reduction. It was also found experimentally that TOC decrease behavior by the both radiation source was different due to temperature effect and further study should be made for the development of the practical electron beam irradiation technique. (Takagi, S.)

  18. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. ATS Department

    2018-01-01

    In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.

  19. Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)

    CERN Document Server

    Margraf, Rachel; CERN. Geneva. EN Department

    2017-01-01

    In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.

  20. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  1. Beam transfer line for food irradiation microtron at CAT

    International Nuclear Information System (INIS)

    Kant, Pradeep; Singh, Gurnam

    2003-01-01

    A 10 MeV microtron is being developed at CAT for irradiation of food products. A beam transfer line comprising a 90 deg bending magnet, a quadrupole doublet and a rectangular scanning magnet has been designed to irradiate food products from the upper side. The bending magnet has an edge angle of 22.5 deg. The length of the beam transfer line has been minimized to keep the whole unit as compact as possible. The beam optics has been optimized keeping in view the requirement of a small beam pipe aperture (25mm radius) and a large range of circular as well as elliptical beam sizes on the food product. The speed of the conveyor belt has been assumed to be very small. The results of the beam optics chosen and the variation of the linear charge density on a food product during the scanning are presented in this paper. The effects of path length variation within the scanning magnet and beam size variation during a scanning are also discussed

  2. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  3. Effects of mixed neutron-gamma beams in both sequential and simultaneous irradiation modalities on chromosomal aberrations of human peripheral blood lymphocytes in-vitro

    International Nuclear Information System (INIS)

    Blake, P.K.; DeLuca, P.M. Jr.; Pearson, D.W.; Meisner, L.F.; Gould, M.N.

    1984-01-01

    Initial irradiations have been performed in preparation for testing the independent action hypothesis for chromosomal abnormality production between low- and high-LET radiation. Results of these irradiations are compared with typical dose response curves. Lessons learned and proposed experiments for the future are discussed. 25 refs., 3 figs

  4. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility.

  5. Preliminary Beam Irradiation Test for RI Production Targets at KOMAC

    International Nuclear Information System (INIS)

    Yoon, Sang Pil; Kwon, Hyeok Jung; Kim, Han Sung; Cho, Yong Sub; Seol, Kyung Tae; Song, Young Gi; Kim, Dae Il; Jung, Myung Hwan; Kim, Kye Ryung; Min, Yi Sub

    2016-01-01

    The new beamline and target irradiation facility has been constructed for the production of therapeutic radio-isotope. Sr-82 and Cu-67 were selected as the target isotope in this facility, they are promising isotope for the PET imaging and cancer therapy. For the facility commissioning, the irradiation test for the prototype-target was conducted to confirm the feasibility of radio-isotope production, the proto-type targets are made of RbCl pellet and the natural Zn metal for Sr-82 and Cu-67 production respectively, In this paper, an introduction to the RI production targetry system and the results of the preliminary beam irradiation test are discussed. the low-flux beam irradiation tests for proto-type RI target have been conducted. As a result of the beam irradiation tests, we could obtain the evidence of Sr-82 and Cu-67 production, have confirmed the feasibility of Sr-82 and Cu-67 production at KOMAC RI production facility

  6. Degradation behaviour of fiber reinforced plastic under electron beam irradiation

    International Nuclear Information System (INIS)

    Sonoda, Katsumi; Yamamoto, Yasushi; Hashimoto, Osamu

    1989-01-01

    Various mechanical properties of four kinds of glass fiber-reinforced plastics irradiated with electron beams were examined at three temperatures; room temperature, 123 K and 77 K. Dynamic viscoelastic properties were measured, and fractography by means of scanning electron microscopy was observed in order to clarify degradation behaviour. A considerable decrease in interlaminar shear strength (ILSS) at room temperature was observed above 60 MGy. On the other hand, the three-point bending strength at 77 K and the ILSS at 123 K decreased with increasing irradiation. Fractography reveals that the degradation of the interface layer between matrix resin and fiber plays an important role in the strength reduction at 123 K and 77 K. These findings suggest that the interface between matrix resin and fiber loses its bondability at 123 K arid 77 K after electron beam irradiation. (author)

  7. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  8. New cultivar produced by heavy-ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kanaya, Takeshi; Miyazaki, Kiyoshi; Suzuki, Kenichi; Iwaki, Kazunari [Suntory Flowers Ltd., Higashiomi, Shiga (Japan); Ichida, Hiroyuki; Hayashi, Yoriko; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko [RIKEN, Nishina Center, Wako, Saitama (Japan)

    2007-03-15

    The RIKEN accelerator research facility (RARF) is the one of the biggest facilities to accelerate heavy ions in all over the world since 1986. We started our trials in plant breeding since 1993. Soon we found that the ion beam is highly effective in the cause of mutagenesis of tobacco embryos during the fertilization without damage to other plant tissue. RIKEN and Suntory Flowers Ltd. have jointly developed some new ornamental varieties of Verbena and Petunia using ion-beam irradiation. We already put 5 new flower cultivars on the market in Japan, USA, Canada and EU since 2002. We report here a new variety of Torenia obtained by ion-beam irradiation. (author)

  9. New cultivar produced by heavy-ion beam irradiation

    International Nuclear Information System (INIS)

    Kanaya, Takeshi; Miyazaki, Kiyoshi; Suzuki, Kenichi; Iwaki, Kazunari; Ichida, Hiroyuki; Hayashi, Yoriko; Saito, Hiroyuki; Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko

    2007-01-01

    The RIKEN accelerator research facility (RARF) is the one of the biggest facilities to accelerate heavy ions in all over the world since 1986. We started our trials in plant breeding since 1993. Soon we found that the ion beam is highly effective in the cause of mutagenesis of tobacco embryos during the fertilization without damage to other plant tissue. RIKEN and Suntory Flowers Ltd. have jointly developed some new ornamental varieties of Verbena and Petunia using ion-beam irradiation. We already put 5 new flower cultivars on the market in Japan, USA, Canada and EU since 2002. We report here a new variety of Torenia obtained by ion-beam irradiation. (author)

  10. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    Energy Technology Data Exchange (ETDEWEB)

    Yasumoto, Kyoden; Fujino, Masayuki; Supriyadi (Kyoto Univ., Uji (Japan). Research Inst. for Food Science); Suzuki, Tetsuya; Hayashi, Toru

    1991-08-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10{sup 8}/g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author).

  11. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Yasumoto, Kyoden; Fujino, Masayuki; Supriyadi; Suzuki, Tetsuya; Hayashi, Toru.

    1991-01-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10 8 /g. Turmeric finger which was irradiated by electron beam at 10 kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10 kGy and 20 kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers. (author)

  12. Evaluation of electron beam irradiation for disinfection of turmeric fingers

    International Nuclear Information System (INIS)

    Yasumoto, K.; Fujino, M.; Supriyadi; Suzuki, T.; Hayashi, T.

    1991-01-01

    Turmeric finger as one of the most popular spices has been widely used for food manufacturing. However, it has also been a major cause of bacterial infestation of food materials especially in curry, ham and sausage manufacturing. In this study decontamination of bacteria in turmeric finger by electron beam irradiation was evaluated by comparing with several other decontamination methods: i.e., boiling, microwave irradiation, treatment by twin screw extruder and gamma-ray irradiation. By estimation of colony counting on nutrient agar plate, turmeric finger without any treatment gave total viable cell at 10 8 /g. Turmeric finger which was irradiated by electron beam at 10kGy dose dramatically reduced thermotolerant cell population below self restriction level (<1000/g), which has been required by food hygiene law. The same level of sterilization effect was obtained only by gamma-ray irradiation at 10kGy and 20kGy. On the other hand, although treatment through twin screw extruder slightly reduced bacterial numbers, neither boiling nor microwave irradiation gave sufficient decontamination effect on turmeric fingers

  13. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  14. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  15. Ion beam techniques for analyzing polymers irradiated by ions

    International Nuclear Information System (INIS)

    Rickards, J.; Zironi, E.P.; Andrade, E.; Dominguez, B.

    1992-01-01

    In the study of the effects of ion beam irradiation of polymers very large doses can be administered in short times. Thousands of MGy can be produced in a small volume of a sample in a few minutes by bombarding with typical ion beam currents. For instance, in an experiment done to observe the effects of 750 keV proton irradiation PVC, using a collimator of 1 mm diameter, 1 μC of charge integration deposits a dose of 50 MGy. The use of ion beams also opens up the possibility of using the same beam for irradiation and for analysis of the effects, using the well known ion beam analysis techniques. PIXE allows the measurement of chlorine in PVC. Polymers containing fluorine can be measured with the resonant nuclear reaction (RNR) technique, which is specific only to certain elements. The amount of hydrogen in the sample and its profile can be obtained using energy recoil detection analysis (ERDA); carbon, oxygen, and nitrogen can be measured and profiled using Rutherford backscattering (RBS) and also using the (d,p) and (d, α) nuclear reactions (NR). Loss of mass is one effect that can be studied using these techniques. It was studied in two different polymers, PVC and CR-39, in order to determine carbon buildup during ion irradiation. It was concluded that carbon builds up following different mechanisms in these two materials, due to the different possibilities of forming volatile compounds. It is also suggested that CR-39 should be a good material for ion beam lithography. (author)

  16. 1-Chloronaphthalene decomposition in air using electron beam irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Sun, Y.; Bulka, S.; Zimek, Z.

    2006-01-01

    A method for the preparation of model gas containing 1-chloronaphthalene can be referred to 1,1-DCE (dichloroethene). A pulsed electron beam (EB) accelerator ILU-6 (2.0 MeV max., 20 kW max.) was used as an irradiation source. The absorbed dose rate inside the irradiation vessel was 10.835 kGy/min. Total absorbed dose was adjusted by changing irradiation time of the Pyrex glass vessels. 1-Chloronaphthalene concentration was analyzed using gas-chromatography. It has been found, that 1-chloronaphthalene can be decomposed in air or N 2 using EB irradiation. Decomposition efficiency of 1-chloronaphthalene in air is higher than that in N 2 . Positive charge transfer reactions and OH radicals' reaction may play a main role in 1-chloronaphthalene decomposition process

  17. Development of Irradiation Procedure for Gamma Irradiation Chamber Bio beam GM 8000

    International Nuclear Information System (INIS)

    Shuhaimi Shamsudin; Affrida Abu Hassan; Zaiton Ahmad; Abdul Rahim Harun; Ahmad Zainuri Mohd Dzomir

    2015-01-01

    Bio Beam GM 8000 gamma irradiation chamber obtained a conditional approval to operate on March 27, 2012, and later acquired a full approval on December 13, 2012. The objective for the procurement of this gamma chamber is to develop an acute irradiation facility for biological samples, including plants tissues, insects, pupae, microorganisms, as well as animal and human cells. To ensure a smooth and efficient operation, irradiation procedures were developed and improved over time. This paper discusses the operation and management of the Bio Beam GM 8000 facility, including irradiation procedures and sample preparation, application for services through online e-client system, consultancy, quality assurance and information dissemination to internal as well as external clients. In addition, this paper also discusses the potential, constraints and improvement measures taken to optimize the use of this facility in order to meet its objectives. (author)

  18. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  19. Plastic coating on paper by electron beam irradiation

    International Nuclear Information System (INIS)

    Ametani, Kazuo; Tsuchiya, Mitsuaki; Sawai, Takeshi

    1984-01-01

    It has been known long since that the resin system of unsaturated polyester and vinylmonomer mixture cures by irradiation. Ford of USA for the first time industrialized the radiation curing reaction of resins for the coating of automobile parts. Thereafter, accompanying the development and technical advance of the low energy electron beam irradiation apparatus which is suitable to surface treatment such as coating and easy to handle and the development of resins, the electron beam curing method has become to be utilized for coating hardboard and wooden doors, coating automobile tire rims, adhering printing papers and others. The electron beam curing method has advantage such as energy conservation, resource saving and little pollution because solvent is not used, high production rate and small floor space. In glossing industry, for the purpose of developing the techniques to apply electron beam curing method to glazed paper production, the selection of the composition of resins suitable to glazed papers, the irradiating condition and the properties of cured films were examined. The films withstanding bending can be obtained at low dose with urethane group, ester group or the combination of monomers. (Kako, I.)

  20. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Adamus, T.; Banas, D.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw University. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as the plateau of the Bragg curve as well as in the Bragg peak. The passive beam spread out by a thin scattering foil provides a homogeneous irradiation field over an area of at least 1 x 1 cm 2 . For in vitro irradiation of biological samples the passive beam spreading combined with the x - y mechanical scanning of the irradiated sample was found to be an optimum solution. Using x - y step motor, the homogenous beam of ions with the energy loss range in the cells varied from 1 MeV/μm to 200 keV/μm is able to cover a 6 cm in diameter Petri dish that holds the biological samples. Moreover on-line fluence monitoring based on single-particle counting is performed to determine the dose absorbed by cells. Data acquisition system for dosimetry and ion monitoring based on a personal computer is described. (author)

  1. Cytotoxic and mutagenic effects of high let charged particles on human skin fibroblasts

    International Nuclear Information System (INIS)

    Tsuboi, Koji.; Park, M.S.; Chen, D.J.; Yang, T.C.

    1992-01-01

    Cytotoxic and mutagenic effects of high LET charged particles were quantitatively measured using primary cultures of human skin fibroblasts. The span of LETs selected were from 25 keV/μm(330 MeV/u) to 920 keV/μm (600 MeV/u). Mutations were scored at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus using 6-thioguanine (6-TG) for selection. Exposure to these high LET charged particles resulted in exponential survival curves whereas mutant induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (σ i ) and the action cross-section for mutant induction (σ m ) ranged from 2.2 to 92.0 μm 2 and 0.09 to 5.56 x 10 -3 μm 2 respectively, the maximum values were obtained by 56 Fe with an LET of 200 keV/μm. The mutagenicity (σ m /σ i ) ranged from 2.05 to 7.99 x 10 -5 with the maximum value at 150 keV/μm. Furthermore, the results of multiplex polymerase chain reaction (PCR) of some of the mutants induced by charged particles indicate that higher LET beams are more likely to cause larger deletions in the hprt locus. (author)

  2. Polymerization of vinyl stearate multilayers by electron beam irradiation

    International Nuclear Information System (INIS)

    Nishii, Masanobu; Hatada, Motoyoshi

    1975-01-01

    Studies on the radiation-induced polymerization of vinyl stearate (VST) multilayers were carried out. The VST multilayers built-up on an aluminum plated glass plate by Langmuir-Blodgett technique were irradiated with electron beams from a Van de Graaff electron accelerator in nitrogen atmosphere. The structure of the multilayers and the effects of irradiation were investigated by X-ray diffractometry, contact angle measurement, multireflection infrared spectroscopy, and scanning electron microscopy. The VST multilayers became insoluble to methanol by the irradiation, and the multi-reflection infrared spectrum of the VST multilayers turned into that of poly (VST) with increasing dosage. The polymerization proceeded during the irradiation at the temperature range between -10 0 and 10 0 C, and the conversion attained to 90% within 2.5 minutes (total dose, 5.6 Mrads). The multilayers irradiated above 13 Mrads turned into the polymer film insoluble to benzene, indicating that the polymer chains were cross-linked by the irradiation. Stearic acid which was formed by the irradiation of VST at nitrogen-water interface as a hydrolysis product was not detected in this system. (auth.)

  3. Nanostructured surface processing by an intense pulsed ion beam irradiation

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Masuda, T.; Yamasaki, T.; Uchida, H.; Nobuhara, S.; Hashimoto, Y.; Yoshihara, Y.

    1997-01-01

    Metal surface modification by irradiating an intense pulsed ion beam (IPIB) with short pulse width has been studied experimentally. An IPIB irradiation to a target leads to rapid heating above its melting point. After the beam is turned off, the heated region is immediately cooled by thermal conduction at a cooling rate of typically 10 10 K/s. This rapid cooling and resolidification results in generation of nanostructured phase in the top of surface. The typical hydrogen IPIB parameters are 200 kV of energy, 500 A/cm 2 of current density and 70 ns of pulsewidth. The IPIB was irradiated on a pure titanium to generate nanocrystalline phase. The IPIB-irradiated surface was examined with X-ray diffraction, SEM, and HR-TEM. The randomly oriented lattice fringes as well as a halo diffraction pattern are observed in the HR-TEM micrograph of IPIB-irradiated titanium. The average grain size is found to be 32 nanometers

  4. Immunological aspect of the electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K [Hyogo College of Medicine, Nishinomiya (Japan)

    1978-05-01

    In the present study, sciatic nerve tissues of the cat were emulsified with the complete Freund's adjuvant and injected into the foot-pads of the guinea pig. Frozen and frozen-irradiated feline sciatic nerve tissues were treated in the similar manner, and their encephalitogenicity was comparatively studied. Affected animals became skinny, weak in the hind limbs and sometimes solid their tails. Antigenic mixtures of the fresh peripheral nerves with adjuvant have sensitized 75% (15 out of 20) of guinea pigs, whereas none of the 41 animals manifested any sign of experimental allergic neuritis (EAN) after intradermal Frozen-preserved peripheral nerve-adjuvant mixtures gave rise to EAN in 29% (6 out of 21) of guinea pigs. The present results appear to show that the electron-beam irradiation might have modified the specific chemical structures of the myelin basic protein to completely suppress the encephalitogenicity of the peripheral nerve-tissues. High-voltage cathode irradiations would be capable of depressing the antigenicity of the transplantation immunology when the antigenic determinants have the chemical structures in common with the encephalitogenic antigens. Excessive amount of the irradiation used to result in severe tissue damages, therefore, an optimum dosis of electron-beams should be determined for each tissue destined for grafting. As the frozen peripheral nerve-adjuvant mixtures have been less encephalitogenic, freezing alone might well be considered partially to improve the acceptability of the grafts. Cryopreservation of the irradiated allografts would be worth further studying.

  5. Immunological aspect of the electron-beam irradiation

    International Nuclear Information System (INIS)

    Ikeda, Kimiyuki

    1978-01-01

    In the present study, sciatic nerve tissues of the cat were emulsified with the complete Freund's adjuvant and injected into the foot-pads of the guinea pig. Frozen and frozen-irradiated feline sciatic nerve tissues were treated in the similar manner, and their encephalitogenicity was comparatively studied. Affected animals became skinny, weak in the hind limbs and sometimes solid their tails. Antigenic mixtures of the fresh peripheral nerves with adjuvant have sensitized 75% (15 out of 20) of guinea pigs, whereas none of the 41 animals manifested any sign of experimental allergic neuritis (EAN) after intradermal Frozen-preserved peripheral nerve-adjuvant mixtures gave rise to EAN in 29% (6 out of 21) of guinea pigs. The present results appear to show that the electron-beam irradiation might have modified the specific chemical structures of the myelin basic protein to completely suppress the encephalitogenicity of the peripheral nerve-tissues. High-voltage cathode irradiations would be capable of depressing the antigenicity of the transplantation immunology when the antigenic determinants have the chemical structures in common with the encephalitogenic antigens. Excessive amount of the irradiation used to result in severe tissue damages, therefore, an optimum dosis of electron-beams should be determined for each tissue destined for grafting. As the frozen peripheral nerve-adjuvant mixtures have been less encephalitogenic, freezing alone might well be considered partially to improve the acceptability of the grafts. Cryopreservation of the irradiated allografts would be worth further studying. (author)

  6. Biological fingerprint of high LET radiation. Brenner hypothesis

    International Nuclear Information System (INIS)

    Kodama, Yoshiaki; Awa, Akio; Nakamura, Nori

    1997-01-01

    Hypothesis by Brenner et al. (1994) that in chromosome aberrations in human peripheral lymphocytes induced by radiation exposure, F value (dicentrics/rings) differs dependently on the LET and can be a biomarker of high LET radiation like neutron and α-ray was reviewed and evaluated as follows. Radiation and chromosome aberrations; in this section, unstable aberrations like dicentric and rings (r) and stable ones like translocation and pericentric inversions were described. F value. Brenner hypothesis. Bauchinger's refutation. F value determined by FISH method; here, FISH is fluorescence in situ hybridization. F value in studies by author's Radiation Effect Research Facility. Frequency of chromosome aberration in A-bomb survivors and ESR (ESR: electron spin resonance). The cause for fluctuation of F values. The Brenner hypothesis could not be supported by studies by author's facility, suggesting that the rate of inter-chromosomal and intra-chromosomal exchange abnormalities can not be distinguishable by the radiation LET. This might be derived from the difference in detection technology of r rather than in LET. (K.H.)

  7. Irradiation Effects on RIA Fragmentation Cu Beam Dump

    CERN Document Server

    Reyes, Susana; Boles, Jason; Stein, Werner; Wirth, Brian

    2005-01-01

    Within the scope of conceptual R&D activities in support of the Rare-Isotope Accelerator (RIA) facility, high priority is given to the development of high-power fragmentation beam dumps. A pre-study was made of a static water-cooled Cu beam dump that can meet requirements for a 400 MeV/u uranium beam. The issue of beam sputtering was addressed and found to be not a significant issue. Preliminary radiation transport simulations show significant damage (dpa) in the vicinity of the Bragg peak of uranium ions. Experimental data show that defects in Cu following neutron or high-energy particle irradiation tend to saturate at doses between 1 and 5 dpa, and this saturation in defect density also results in saturation of mechanical property degradation. However, effects of swift heavy ion irradiation and the production of gaseous and solid transmutant elements still need to be addressed. Initial calculations indicate that He concentrations on the order of 100 appm are produced in the beam dump after several weeks...

  8. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  9. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  10. Effects on focused ion beam irradiation on MOS transistors

    International Nuclear Information System (INIS)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-01-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 μm minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga + focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated

  11. Electron beam irradiation effect on nanostructured molecular sieve catalysts

    International Nuclear Information System (INIS)

    Yuan Zhongyong; Zhou Wuzong; Parvulescu, Viorica; Su Baolian

    2003-01-01

    Electron impact can induce chemical changes on particle surfaces of zeolites and molecular sieve catalysts. Some experimental observations of electron irradiation effect on molecular sieve catalysts are presented, e.g., electron-beam-induced growth of bare silver nanowires from zeolite crystallites, formation of vesicles in calcium phosphate, migration of microdomains in iron-oxide doped mesoporous silicas, structural transformation from mesostructured MCM-41 to microporous ZSM-5, etc. The formation mechanisms of the surface structures are discussed

  12. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  13. Improvement in properties of plastic teeth by electron beam irradiation

    International Nuclear Information System (INIS)

    Sano, Yuko; Ishikawa, Shun-ichi; Seguchi, Tadao

    2011-01-01

    Improvement of the comfort and esthetics of artificial plastic teeth is desirable for the recently increasing numbers of elderly in society. Plastic teeth made of polycarbonate (PC) were modified by electron beam (EB) irradiation under specific conditions, and the change in the chemical properties of the PC was investigated. The water absorption, glucose attachment, level of bis-phenol-A (BPA) extraction, maltose adhesion, and mucin adhesion on the PC teeth were measured before and after EB irradiation. EB irradiation to a dose of 3.5 kGy at 150 o C in a nitrogen gas atmosphere reduced the water absorption by 20%, glucose absorption by 40%, maltose adhesion by 20%, and the amount of various amino acids, formed as the hydrolysis products of mucin, adhering on the PC teeth were reduced by 60-99%. The BPA content was lower than the detection limit for analysis of both the original and the EB irradiated PC teeth. - Highlights: → Radiation improvement of polycarbonate for plastic teeth by EB irradiation 3.5 kGy at 150 o C in inert gas. → Water and glucose absorption and maltose adhesion on PC teeth were much reduced. → Bis-phenol-A content from PC teeth was lower than the detection limit after irradiation.

  14. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    International Nuclear Information System (INIS)

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented. -- Highlights: ► The ATLAS inner tracker will be extended with a so called Insertable B-Layer (IBL). ► The IBL modules are required to withstand irradiation up to 5×10 15 n eq /cm 2 . ► Two types of silicon pixel detector technologies (Planar and 3D) were tested in beam. ► The irradiated sensor efficiency exceeds 97% both with and without magnetic field. ► The leakage current, power dissipation, module active area ratio requirements are met.

  15. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Henderson, M.A.; Rusek, A.; Valluri, S.; Garrett, J.; Lopez, J.; Caperell-Grant, A.; Mendonca, M.; Bigsby, R.; Dynlacht, J.

    2010-01-01

    Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of 60 Co γ rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-β-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV 56 Fe ions. Lens opacification was measured at 2-4 week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.

  16. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  17. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  18. Electron beam irradiation facility for low to high dose irradiation applications

    International Nuclear Information System (INIS)

    Petwal, V.C.; Wanmode, Yashwant; Verma, Vijay Pal; Bhisikar, Abhay; Dwivedi, Jishnu; Shrivastava, P.; Gupta, P.D.

    2013-01-01

    Electron beam based irradiation facilities are becoming more and more popular over the conventional irradiator facilities due to many inherent advantages such as tunability of beam energy, availability of radiation both in electron mode and X-ray mode, wide range of the dose rate, control of radiation from a ON-OFF switch and other safety related merits. A prototype experimental facility based on electron accelerator has been set-up at RRCAT to meet the low-dose, medium dose and high-dose requirements for radiation processing of food, agricultural and medical products. The facility can be operated in the energy range from 7-10 MeV at variable power level from 0.05-3 kW to meet the dose rate requirement of 100 Gy to kGy. The facility is also equipped with a Bremsstrahlung converter optimized for X-ray irradiation at 7.5 MV. Availability of dose delivery in wide range with precision control and measurement has made the facility an excellent tool for researchers interested in electron/X-ray beam irradiation. A precision dosimetry lab based on alanine EPR and radiochromic film dosimetry system have been established to characterize the radiation field and precise dose measurements. Electron beam scattering technique has been developed to achieve low dose requirement for EB irradiation of various seeds such as groundnut, wheat, soybeans, moong beans, black gram etc. for mutation related studies. This paper describes various features of the facility together with the dosimetric measurements carried out for qualification of the facility and recent irradiation experiments carried out using this facility. (author)

  19. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng

    1999-01-01

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  20. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  1. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  2. Compaction of PDMS due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Rajta, I.; Kokavecz, J.

    2011-01-01

    that at low fluences the surface topography does not follow the phase change that corresponds to the irradiation pattern. At higher fluences the surface topography follows the irradiation pattern, i.e. the phase change, quite well but not perfectly. The irradiated regions are compacted significantly but their bottom is not flat. Between the irradiated regions, the unirradiated areas show a regular curved surface. This can be explained with the developed stress caused by compaction due to irradiation. During irradiation the irradiated areas start to shrink while the unirradiated areas try to remain unchanged. The topographical transition between the two phases is not a step function, but it is continuous due to the rubbery nature of PDMS. The PBW technique, that utilizes a focused MeV ion beam, is capable of the production of devices in PDMS, which have curved-edge relatively shallow, a couple of microns deep, structures on the surface. The curvature of the surface and the degree of compaction can be adjusted with the applied ion fluence and with the distance of the structures. By choosing the proper irradiation parameters short or even long range symmetrical surface curvatures can be achieved.

  3. Comparison of electron beam and gamma irradiation for the sterilization of allograft

    International Nuclear Information System (INIS)

    Jong il Choi; Nak Yun Sung; Hee Sub Lee; Jae Hun Kim; Myung Woo Byun; Ju Woon Lee

    2008-01-01

    Full text: For human use, it is necessary to sterilize the allograft in order to reduce the risk of infections and associated complications. In this study, we compared the effects of electron beam and gamma irradiation for the sterilization of the demineralized bone matrix (DBM) in a carboxymethylcellulose (CMC) carrier with regard to the physiological and osteoinductive properties. The CMC carrier was irradiated at the various doses. and the viscosity of the irradiated CMC was measured. The viscosity of the CMC irradiated with electron beam was higher than that with gamma ray. Also, the addition of vitamin C as the radical scavenger and irradiation at -70 degree C were shown to be effective in preventing the degradation of CMC by the irradiation. To investigate the effect of irradiation on the osteoinduction of DBM, alkaline phosphatase (ALP) activity with C2C12 cells was measured. The ALP activity of DBM in CMC was higher when irradiated with the electron beam compared with the gamma ray. The bone morphogenetic proteins (BMP) were extracted from DBM irradiated with electron beam and gamma ray, and it was found that the extraction efficiency of BMP was higher from DBM irradiated with the electron beam. This was reasoned for the higher APL activity of the electron beam irradiated DBM. With the advantages of electron beam such as short processing time, in-line processing, and low equipment cost, these results suggest that electron beam irradiation is recommendable for the sterilization of DBM allograft. (Author)

  4. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation

    Science.gov (United States)

    Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong

    2003-05-01

    Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.

  5. Lifetime of Macroradicals in UHMWPE Irradiated with Electron Beam

    International Nuclear Information System (INIS)

    Costa, L.

    2006-01-01

    Interaction of high energy radiation with UHMWPE leads to the scission of C-C and C-H bonds both in the amorphous and in the criystalline phase, giving H radicals, macroradicals and trans vinylene double bonds. If oxygen is present, alkyl macroradicals react immediately with it and the oxidation chain process begins. In this case the main products are hydroperoxides. In our laboratory ultra high molecular weight polyethylene (medical grade GUR 1050) has been irradiated with electron beam in vacuum and in presence of oxygen at room temperature. Electron beam irradiation has been considered in order to neglect irradiation time, that is shorter (maximum 2 minutes) than gamma irradiation time and negligible compared to the following observation time. UHMWPE irradiated has been examined with two different techniques, FTIR and EPR spectroscopy. Micro FTIR Spectroscopy has been carried out on UHMWPE to evaluate hydroperoxide concentration in samples irradiated in presence of oxygen. Hydroperoxides and their distribution inside samples can be observed very well with FTIR microscopy after a derivatization process (with NO). The obtained hydroperoxide profile decreases when distance from the outer surface increases till it achieves a plateau. The first decrease can be attributed to macroradicals reaction with oxygen, that can diffuse only in the amorphous phase. Value obtained in the centre of block is correlated only with oxygen dissolved in UHMWPE before irradiation. If radicals live for some hours, oxygen can diffuse into UHMWPE during the macroradicals lifetime and the hydroperoxides profile is a curve similar to that obtained. Comparing the oxygen diffusion curve, calculated in the function of Fick's law, with the hydroperoxide profile, we have obtained a good agreement when oxygen diffusion is calculated over two hours. This means that the macroradicals must survive at least for two hours in the amorphous phase. EPR Spectroscopy was undertaken to explore the nature of

  6. Irradiation of aluminium alloy materials with electron beam

    International Nuclear Information System (INIS)

    Konno, Osamu; Masumoto, Kazuyoshi

    1982-01-01

    It is a theme with a room for discussion to employ the stainless steel composed of longer half-life materials for the vacuum system of accelerators, from the viewpoint of radiation exposure. Therefore, it is desirable to use aluminium of shorter half-life in place of stainless steel. As a result of investigation on the above theme in the 1.2 GeV electron linac project in Tohoku University, it has been concluded that aluminium alloy vacuum chambers can reduce exposure dose by about one or two figures as compared with stainless steel ones. Of course, aluminium alloy contains trace amounts of Mg, Si, Ti, Cr, Mn, Fe, Zn, Cu and others. Therefore, four kinds of aluminium alloy considered to be usable have been examined for induced radioactivity by electron beam irradiation. Stainless steel SUS 304 has been also irradiated for comparison. Radiation energy has been 30 MeV and 200 MeV. When stainless steel and aluminium alloy were compared, aluminium alloy was very effective for reducing surface dose in low energy irradiation. In 200 MeV irradiation, the dose ratio of aluminium alloy to stainless steel became 1/30 to 1/100 after one week, though the dose difference between these two materials became smaller in 100 days or more after irradiation. If practical inspection and repair are implemented during the period from a few days to one week after shutdown, the aluminium alloy is preferable for exposure dose reduction even in high energy irradiation. (Wakatsuki, Y.)

  7. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  8. Effective mutagenesis of Arabidopsis by heavy ion beam-irradiation

    International Nuclear Information System (INIS)

    Yamamoto, Y.Y.; Saito, H.; Ryuto, H.; Fukunishi, N.; Yoshida, S.; Abe, T.

    2005-01-01

    Full text: Arabidopsis researches frequently include the genetic approach, so efficient, convenient, and safe methods for mutagenesis are required. Currently, the most popular method for in house mutagenesis is application of EMS. Although this method is very effective, its base substitution-type mutations often gives leaky mutants with residual gene functions, leading some difficulty in understanding the corresponding gene functions. Heavy ion beam generated by accelerators gives highest energy transfer rates among known radiation-based mutagenesis methods including X ray, gamma ray, fast neutron, electron and proton irradiation. This feature is thought to give high frequency of the double strand break of genomic DNA and resultant short deletions, resulting frame shift-type mutations. At RIKEN Accelerator Research Facility (RARF, http://www.rarf.riken.go.jp/index-e.html), we have optimized conditions for effective mutagenesis of Arabidopsis regarding to ion species and irradiation dose, and achieved comparable mutation rates to the method with EMS. (author)

  9. Beam irradiation pretreatment on enzymatic hydrolysis of biomass

    International Nuclear Information System (INIS)

    Yoo, Hah Young; Choi, Han Suk; Yang, Soo Jeong; Lee, Ja Hyun; Kim, Sung Bong; Jung, Da Un; Kim, Seung Wook

    2013-01-01

    As a renewable energy resource, lignocellulosic biomass has become great attention these days. Miscanthus is considered as one of the best feed stock for sugar production due to its high carbohydrate conversion, more efficient pretreatment process was necessary for removal of enzymatic hydrolysis barriers. In this study, electron beam irradiation pretreatment was utilized to Miscanthus straw for the enhancement of sugar conversion. The prepared samples were exposed 20 ∼ 500 kGy of doses and 5 ∼ 100 kGy of dose rate under 1 MeV of energy. Optimum irradiation conditions were 300 kGy of doses, 10 kGy of doses rate and 7.4 mA of current. Finally, compared with untreated Miscanthus, the glucose conversion was 2 fold increased under optimal conditions

  10. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    Lou Yinhong; Guo Hongxia; Zhang Keying; Wang Yuanming; Zhang Fengqi

    2011-01-01

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  11. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  12. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  13. Color formation study of irradiated polymers by electron beam

    International Nuclear Information System (INIS)

    Nardi, Daniela Teves

    2004-01-01

    Color formation on national and commercial polymers (polymethyl methacrylate, polystyrene and polycarbonate) irradiated by electrons beam was investigated by colorimetry (CIELab), electron spectroscopy resonance (ESR), photoacoustic infrared spectroscopy (FTIR-PAS) and differential exploratory calorimetry (DSC). The heat effect on colorimetric properties was investigated after heating (110 deg C for 1 hour) of irradiated polymers at 150 kGy. The rule of oxygen in colorimetric properties of irradiated polycarbonate was investigated in the air presence and absence (p = 10 -3 mmHg). The visual aspect did not agree with colorimetric parameters only for polycarbonate. Yellow color and darkness were induced by radiation for all studied polymers varying only the intensity and behavior in function of post-irradiation time and heating. Polymethyl methacrylate and polystyrene ESR spectra showed that radicals could be responsible by yellow color centers. Wherever, in polycarbonate, color centers were not due radical species. The nature of color centers for any studied polymer was not study by FTIR-PAS because there were no changes in FTIR-PAS spectra neither in function of dose nor heating. Polycarbonate was the most radiosensible and polystyrene was the most radioresistant of all studied polymers in concern of colorimetric properties. (author)

  14. Irradiation Effects of Electron Beam on Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Cho, Gyu Seong [KAIST, Daejeon (Korea, Republic of); Choi, Hong Gu; Oh, Kyung Hwan [Yonsei University, Seoul (Korea, Republic of); Cho, Ho Jin [Nucron Co. Ltd., Seoul (Korea, Republic of)

    2009-10-15

    The surveillance or monitoring systems used in space station, nuclear power plant and nuclear waste repository, are often equipped with optical fibers to remotely locating expensive camera systems so as to protect them from direct irradiation. Especially in nuclear power plant and nuclear waste repository, irradiation by gamma-ray and beta-ray are most concerned. The effective life-time of such surveillance system may depend on the soundness of the optical fiber because it is the component to be exposed the high intensity of radiation field by purpose. Though the degradation of mechanical properties such as hardness and elasticity may occur but the degradation of the optical property such as spectral transmittance is the most possible cause of the effective life-time limitation. Generally 30 % reduction of light signal transmittance is considered as the life-time threshold point of such optical systems. In this paper, we studied irradiation effects on spectral transparency of various commonly-used optical fibers with high energy electron beam to conveniently simulate the both gamma-ray and beta-ray irradiation situation.

  15. Electron beam irradiation effects on xanthan gum. Rheological aspects

    International Nuclear Information System (INIS)

    Vieira, F.F.; Del Mastro, N.L.

    2001-01-01

    The paper describes the application of electron beam irradiation to xanthum gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. The edible powder of xanthum gum samples were irradiated in 1mm thick layers of Petri dishes covered by a transparent PVC of films using an EB accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, dose rate 11.17 kGy/s, 0.637 MeV, 1.78 mA, 5 kGy per passage, 3.36 m min -1 with doses of 5, 10, 20 and 50kGy. One % aqueous solutions from irradiated and non-irradiated xanthum gum were prepared and the radiation effects were measured following viscosity changes at 25 deg. C using a Brookfield viscometer; model DVIII, spindel L, with Rheocalc software. Viscosity measurements were performed according to our previous experience and the results are the mean of at least 3 experiments

  16. An experimental investigation of wastewater treatment using electron beam irradiation

    Science.gov (United States)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  17. Issues for Bringing Electron Beam Irradiators On-Line

    International Nuclear Information System (INIS)

    Kaye, R.J.; Turman, B.N.

    1999-01-01

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined

  18. Issues for Bringing Electron Beam Irradiators On-Line

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.J.; Turman, B.N.

    1999-04-20

    Irradiation of red meat and poultry has been approved by the U.S. FDA, and the U.S. Department of Agriculture's rule for processing red meat is out for comment. Looking beyond the current issues of packaging materials, labeling, and consumer acceptance, this paper reviews the next step of implementation and how to remove, or at least reduce, the barriers to utilization. Polls of the user community identified their requirements for electron beam or x-ray processing of meat or poultry and their concerns about implementation for on-line processing. These needs and issues are compared to the capabilities of the accelerator industry. The critical issues of beam utilization and dose uniformity, factors affecting floor space requirements, and treatment costs are examined.

  19. Vulcanization of rubber mixtures by simultaneous electron beam and microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. E-mail: martin@ifin.nipne.ro; Ighigeanu, D.; Mateescu, E.; Craciun, G.; Ighigeanu, A

    2002-08-01

    The comparative results obtained by applying separate electron beam (EB) irradiation and simultaneous EB and microwave (MW) irradiation to vulcanization of rubber mixtures based on natural rubber and polybutadiene rubber with carbon black are presented. In the absence of MW, EB irradiation doses of 200-250 kGy are required in order to obtain a higher vulcanization degree. The irradiation doses as well as irradiation times were markedly diminished, from 2 to 6 times, by simultaneous EB and MW irradiation.

  20. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly due to their mechanical properties, and additional features such as high strength-to-weight ratio, stiffness-to-weight ratio, corrosion resistance and wear properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between the components that are fiber and polymeric matrix. The greatest challenge is to improve adhesion between components having elasticity modulus which differ by orders of magnitude and furthermore they are immiscible in each other. Another important factor is the sizing material on the carbon fiber, which protects the carbon fiber filaments and must be compatible with the matrix material in order to improve the adhesion process. The interaction of ionizing radiation from electron beam can induce in the irradiated material the formation of very active centers and free radicals. Further evolution of these active species can significantly modify structure and properties not only in the irradiated polymeric matrix but also on the fiber surface. So that, fiber and matrix play an important role in the production of chemical bonds, which promote better adhesion between both materials improving the composite mechanical performance. The aim of this work was to improve the surface properties of the carbon fiber surface using ionizing radiation from an electron beam in order to obtain improvement of the adhesion properties in the resulted composite. Commercial carbon fiber roving of high tensile strength with 12 000 filaments named 12 k, and sizing material of epoxy resin modified by ester groups was studied. EB irradiation has been carried out at the Institute for Nuclear and Energy Research (IPEN) facilities using a 1.5 MeV 37.5 kW Dynamitron electron accelerator model JOB-188. Rovings of carbon fibers with 1.78 g cm -3 density and 0.13 mm thickness were irradiated with 0.555 MeV, 6.43 mA and

  1. Microdosimetric Characteristics of the Clinical Proton Beams at the JINR Phasotron, Dubna

    CERN Document Server

    Vlcek, B; Spurny, F

    2002-01-01

    The contribution of the high LET particles to dosimetric and microdosimetric characteristics of 150 and 205 MeV clinical proton beams was experimentally studied using track etched detectors. Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. The method of the LET spectra measurement with track etched detectors allows one to determine the contribution of high LET particles to dosimetric characteristics of clinical proton beams: absorbed dose, equivalent dose and the value of the Relative Biological Effectiveness (RBE). Track detectors were irradiated in the various depth of clinical proton beams with the primary energies of 150 and 205 MeV. The LET spectra between 10 and 700 keV/m were measured by means of CR-39 track etched detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to absorbed dose increases from several per cent at the beam entrance to several ten...

  2. Dosimetry study for electron beam irradiation in radiation processing

    International Nuclear Information System (INIS)

    Sunaga, Hiromi; Haruyama, Yasuyuki; Takizawa, Haruki; Kojima, Takuji; Yotsumoto, Keiichi

    1995-01-01

    For certain critical applications such as medical device sterilization and food irradiation, accurate calibration of electron energy and absorbed dose is required to assure the quality of irradiated products. To meet this requirement, TRCRE, JAERI has carried out research and development on high dose radiation dosimetry for electron beams in the energy range used in radiation processing (0.15 - 3.0 MeV). JAERI has developed a simultaneous electron beam energy and dosimeter calibration system that consist of a total absorption calorimeter, an electron current density meter, and a stacked thin-film dosimeter set. For low energy electrons, where it is important to measure the depth-dose profile in materials with high depth resolution, we studied the feasibility of a method using Gafchromic film dosimeters. This film, which has an 8-μm thick sensitive layer, is combined with a stepped array of absorber films of the same thickness to produce a high-resolution depth-dose profile on the Gafchromic film. The depth-dose profile obtained in this manner has about five times greater resolution than conventional radiochromic film dosimetry. (author)

  3. Proteomic analysis of proton beam irradiated human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Kedracka-Krok

    Full Text Available Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH, (ii cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70, (iii cell metabolism (TIM, GAPDH, VCP, and (iv cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B. A substantial decrease (2.3 x was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.

  4. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    Science.gov (United States)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  5. Irradiation uniformity of spherical targets by multiple uv beams from OMEGA

    International Nuclear Information System (INIS)

    Beich, W.; Dunn, M.; Hutchison, R.

    1984-01-01

    Direct-drive laser fusion demands extremely high levels of irradiation uniformity to ensure uniform compression of spherical targets. The assessment of illumination uniformity of targets irradiated by multiple beams from the OMEGA facility is made with the aid of multiple beams spherical superposition codes, which take into account ray tracing and absorption and a detailed knowledge of the intensity distribution of each beam in the target plane. In this report, recent estimates of the irradiation uniformity achieved with 6 and 12 uv beams of OMEGA will be compared with previous measurements in the IR, and predictions will be made for the uv illumination uniformity achievable with 24 beams of OMEGA

  6. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  7. Application of electron beams irradiation in science and industry

    International Nuclear Information System (INIS)

    Hilmy, N.; Razzak, M.T.; Chosdu, R.; Soebianto, Y.S.

    1996-01-01

    The research and development of radiation technology in Indonesia is mainly conducted at the Center for Application of Isotopes and Radiation of the National Atomic Energy Agency (CAIR-BATAN). During the past 10 years, the center has gained a great progress in the development of gamma irradiation techniques for industrial processing, food preservation, health care products sterilization, and waste treatment. A low energy (300 keV, 50 mA) electron beam accelerator has been installed in cooperation with IAEA/UNDP as a training and demonstration facility for wood surface coating. In spite of the advantages of radiation curing, this technique is still unacceptable in the industries due to the uneconomical reasons and inferiority of the products. The research and development using this facility is also considered expensive, due to the high cost of the liquid nitrogen consumed by the accelerator. The medium energy (2 MeV, 10 mA) accelerator has been installed recently. This is a multipurpose irradiator provided with a belt conveyer, but also designed for wire and cable irradiation. The main technical parameters have been measured under different operating conditions during its commissioning, and the nominal dose measurement has been performed using alanine polyethylene, ethanol-chlorobenzene solution, and FWT-60 film dosimeters. Research and development of polymer cross-linking and shrinkable tubes have become the concern of the accelerator application. The radiation curable polyethylene compound for the cable insulation has been formulated with a characteristic of high voltage and heat resistant. Dosimetry of spices with 0.3-0.6 g/cm 3 density and health care products of 0.2-0.3 g/cm 3 density have been carried out for the promising food preservation and radiation sterilization, energy beam on micro-organism, and surface modification of some synthetic and natural polymers are also carried out. (J.P.N.)

  8. Electron beam irradiation: novel technology for phytosanitary purposes

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Dwivedi, J.; Gautam, S.; Sharma, Arun

    2015-01-01

    In the WTO regime, flow of agricultural commodities has increased, posing risk of inadvertent introduction of exotic pests. This can be minimized by undertaking quarantine measures. Quarantine/phytosanitary disinfestation treatments demand a very high level of security as the pest tolerance in quarantine is zero. Methyl bromide, a potent fumigant has been restricted in its use due to ozone depleting effect. Also, the conventional chemicals/fumigants being used world over are being restricted globally because of the various associated problems. Therefore, there is a need for an alternative ecofriendly strategy for controlling the pests. Irradiation, an approved technology by International Plant Protection Convention, appears to be a viable, nonchemical, residue-free strategy. Disinfestation of pulses with low energy electron irradiation potentially will have less deleterious effects on commodity quality than irradiation with other sources. Internationally, new radiation generating sources as Electron beam (EB) are being explored to meet import standards of quality and quarantine. The EB has a machine source and can be simply switched on or off. Irradiation of legume seeds viz., blackgram, greengram and soybean infested with pulse beetles (Callosobruchus maculatus and C. chinensis) at different doses at an energy level of 500 keV using the Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore revealed the dose-dependent effects on the insect growth parameters. Adult emergence from seeds infested with different stages was negligible and eggs laid by beetles that survived treatment did not develop into adults at higher doses. The lower doses viz., 170, 340 and 510 Gy on the other hand caused sterility effect on the insect but showed stimulatory effect on the physiological seed parameters . viz., seedling vigour and vigour index. Electron beam irradiation has a great potential for use in the disinfestation for phytosanitary purposes. Nevertheless

  9. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  10. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-01-01

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  11. Production and excision of thymine damage in the DNA of mammalian cells exposed to high-LET radiations

    International Nuclear Information System (INIS)

    Mattern, M.R.; Welch, G.P.

    1979-01-01

    HeLa S3 and Chinese hamster ovary cells were irradiated with high doses of carbon ions having linear energy transfers (LETs) of 170 and 780 keV/μm. The DNA was analyzed for 5,6-dihydroxydihydrothymine (t'-type) radiation products both before and after postirradiation incubation at 37 0 C. In HeLa cells, 2.1 x 10 -5 ring-damaged thymines were produced per kilorad per 10 6 daltons after irradiation with high-LET carbon ions - approximately one-fifth the efficiency of t' formation in HeLa cells exposed to low-LET x rays. t' products were also formed less efficiently in Chinese hamster ovary cells exposed to carbon ions than in those exposed to x rays. In both cell lines, up to 80% of the t' formed initially was excised selectively from the DNA during 60 min of postirradiation incubation at 37 0 C. Product excision was accompanied by small amounts of DNA degradation (less than 1%). Radiation with LET of 170 keV/μm - nearly the most effective LET for cell killing and the generation of unrejoined DNA strand breaks - produced ring-damaged thymines that were removed selectively from the DNA. This result is consistent with the conclusion that t'-type products do not contribute substantially to lethality after high-LET irradiation, although the alternative possibilities remain that t' is not excised as efficiently after biological doses, or that a particular subclass of t' or defective postexcision events contribute to cell killing

  12. The effect of carbon beam on the survival of hematopoietic stem cells in irradiated mice

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Kojima, Eiichi; Tanaka, Kaoru

    1993-01-01

    The new cyclotron for heavy ion radiotherapy will be completed in the very near future at NIRS. High LET radiations having different qualities are known to produce differences in biological effectiveness. It is necessary to determine the biological effectiveness of this new radiation source in both normal and tumor tissues. In this paper, the effects of 200 kVp x-rays and a 135 MeV/u carbon 12 beam on hematopoietic stem cells (CFU-S and GM-CFC) are described. The rationale for this experimental approach is that the sensitivity of hematopoietic stem cells and the committed stem cells to radiation is often the treatment limiting-factor for radiotherapy. (author)

  13. Electron beam irradiation: laboratory and field studies of cowpea seeds

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chauhan, S.K.; Prasad, T.V.; Pramod, R.; Verma, V.P.; Petwal, V.; Dwivedi, J.; Bhalla, S.

    2015-01-01

    Cowpea (Vigna unguiculata) rich in protein and vitamins is emerging as one of the most important food legumes to tackle malnutrition. Pulse beetles (Callosobruchus chinensis and C. maculatus) are the pests of economic importance causing enormous losses during storage. Although various pest management strategies exist for the control of these pests, environmental concerns necessitate developing ecofriendly strategies. Electron beam (EB) irradiation has the potential to be a viable, non-chemical, residue-free strategy for management of pulse beetles during storage, but higher doses affect seed germination and viability. Hence, the present investigation was taken up to analyse the dosage effect of the irradiation on seed attributes of cowpea. Healthy cowpea seeds were irradiated with low energy electrons at different doses viz., 180, 360, 540, 720, 900, 1080, 1260, 1440 and 1620 Gy at 500 keV using the EB Accelerator facility at Raja Ramanna Centre for Advanced Technology, Indore. EB irradiated seeds were tested for physiological viz., germination, seedling vigour and vigour index and biochemical parameters viz., electrical conductivity of seed leachate, seed viability/tetrazolium test and dehydrogenase activity. Germination and vigour of the irradiated seeds were evaluated as per the ISTA Rules (ISTA, 1996). Vigour index was calculated as the product of germination percentage and seedling vigour. About 3,000 irradiated seeds from each dose were grown in the field at the Experimental farm, National Bureau of Plant Genetic Resources, New Delhi. Seeds harvested from 1500 individual plants of M 1 generation from each dose (50 seeds from each plant individually) were sown in next season and observed for chlorophyll mutations, if any. Results revealed that doses upto 1080 Gy (88%) did not affect the germination of cowpea seeds drastically as compared to untreated seeds (98%). Lower doses viz., 180 and 360 Gy had no impact on vigour components while higher doses (1080 Gy

  14. Advanced Oxidation Treatment of Drinking Water and Wastewater Using High-energy Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2007-03-01

    Full Text Available Application of electron beam as a strong oxidation method for disinfection of drinking water and wastewater has been investigated. Drinking water samples were prepared from wells in rock zones in Yazd Province. Wastewater samples were collected from Yazd Wastewater Treatment Plant. Samples were irradiated by 10 MeV electron beam accelerator at Yazd Radiation Processing Center. The irradiation dose range varied from 0.5-5 kGy. Biological parameters and microbial agents such as aerobic mesophiles and coliforms including E. coli count before and after irradiation versus irradiation dose were obtained using MPN method. The data obtained from irradiated water and wastewater were compared with un-irradiated (control samples. The results showed a removal of 90% of all microorganisms at irradiation doses below 5 kGy, suggesting electron beam irradiation as an effective method for disinfection of wastewater.

  15. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  16. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  17. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo [Hokkaido Univ., Hakodate (Japan). Faculty of Fisheries; Hayashi, Toru; Yasumoto, Kyoden

    1990-10-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author).

  18. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Abo, M.; Abe, Y.; Mariya, Y.; Ando, K.

    2000-01-01

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  19. Development of over-production strain of saccharification enzyme and biomass pretreatment by proton beam irradiation

    International Nuclear Information System (INIS)

    Kim, S. O.; Lee, J. Y.; Song, Y. S.; Shin, H. S.

    2009-04-01

    - The first year : Pre-treatment of biomass by proton beam irradiation and characterization of the pretreated biomass by IR and SEM - The second year : Strain development by proton beam irradiation for the production of cellulase and hemicellulase - The third year : Optimization of Saccharification process by cellulase and hemicellulase

  20. Intensity modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Forster, K.; Lee, H.; Lutz, W.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1997-01-01

    Purpose/Objective: The purpose of this study was to evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. The primary goal was to develop an intensity modulated treatment which would substantially decrease the dose to coronary arteries, lung and contralateral breast while still using a standard tangential beam arrangement. Improved target dose homogeneity, within the limits imposed by opposed fields, was also desired. Since a major goal of the study was the development of a technique which was practical for use on a large population of patients, the design of 'standard' intensity profiles analogous in function to conventional wedges was also investigated. Materials and Methods: Three dimensional treatment planning was performed using both conventional and intensity modulated tangential beams. Plans were developed for both the right and left breast for a range of patient sizes and shapes. For each patient, PTV, lung, heart, origin and peripheral branches of the coronary artery, and contralateral breast were contoured. Optimum tangential beam direction and shape were designed using Beams-Eye-View display and then used for both the conventional and intensity modulated plans. For the conventional plan, the optimum wedge combination and beam weighting were chosen based on the dose distribution in a single transverse plane through the field center. Intensity modulated plans were designed using an algorithm which allows the user to specify the prescribed, maximum and minimum acceptable doses and dose volume constraints for each organ of interest. Plans were compared using multiple dose distributions and DVHs. Results: Significant improvements in the doses to critical structures were achieved using the intensity modulated plan. Coronary artery dose decreased substantially for patients treated to the left breast. Ipsilateral lung and contralateral breast doses decreased for all patients. For one patient treated to

  1. Microporous polyurethane-acrylamide film cured by electron beam irradiation

    International Nuclear Information System (INIS)

    Ando, Masayuki; Goto, Takakazu; Tsuchiya, Mitsuru; Uryu, Toshiyuki

    1988-01-01

    The morphology and aggregation structure of electron beam (EB)-cured microporous polyurethane-acrylamide film was investigated. The urethane-acrylamide prepolymer was synthesized by the reaction of poly(butylene adipate)diol, diphenylmethane diisocyanate, and N-(hydroxymethyl)acrylamide. It was found from scanning electron microscopy that the urethane-acrylamide film, which was prepared by using a methyl ethyl ketone and dimethylformamide (3:1 v/v) mixture as casting solvent, had a microporous structure with pore size of several micrometers, and that the morphology was fixed by EB irradiation. The pore volume of the EB-cured microporous film was determined to be about 460 mm 3 g -1 by mercury porosimetry. The micropores were not destroyed even after immersing in solvent, possibly because the cured film had high crystallinity and dense crosslinking. Moreover, it was found by X-ray photelectron spectroscopy that terminal portions of urethane-acrylamide were localized at the film surface. (author)

  2. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  3. Retting effect of kenaf bast fiber by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hye Kyoung; Kangm Hyo Kyoung; Jeun, Joon Pyo; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    Kenaf (Hibiscus cannabinus) retting were separated from a kenaf bast fiber by a combination of Electron beam irradiation (EBI) and NaOH solution treatment. The methods were based on a 6% NaOH solution treatment after various doses of EBI. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the retted kenaf fibers decreased as the EBI dose increased. Specifically, the lignin in the retted kenaf fiber treated with 300 kGy of EBI was almost completely removed. The morphology of retted kenaf fibers were characterized by SEM image, and the studies showed that the fibrillated degree of retted kenaf fibers treated with various EBI doses and was increased as EBI dose increased. The retted kenaf fibers treated with the EBI at 300 kGy was uniformly fibrillated with 10 {approx} 30 {mu}m diameters.

  4. Retting effect of kenaf bast fiber by electron beam irradiation

    International Nuclear Information System (INIS)

    Shin, Hye Kyoung; Kangm Hyo Kyoung; Jeun, Joon Pyo; Kang, Phil Hyun

    2010-01-01

    Kenaf (Hibiscus cannabinus) retting were separated from a kenaf bast fiber by a combination of Electron beam irradiation (EBI) and NaOH solution treatment. The methods were based on a 6% NaOH solution treatment after various doses of EBI. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the retted kenaf fibers decreased as the EBI dose increased. Specifically, the lignin in the retted kenaf fiber treated with 300 kGy of EBI was almost completely removed. The morphology of retted kenaf fibers were characterized by SEM image, and the studies showed that the fibrillated degree of retted kenaf fibers treated with various EBI doses and was increased as EBI dose increased. The retted kenaf fibers treated with the EBI at 300 kGy was uniformly fibrillated with 10 ∼ 30 μm diameters

  5. Electron beam irradiation experiments of monoblock divertor mock-up

    International Nuclear Information System (INIS)

    Satoh, Kazuyoshi; Akiba, Masato; Araki, Masanori; Suzuki, Satoshi; Yokoyama, Kenji; Smid, I.; Cardella, A.; Duwe, R.; Di Pietro, E.

    1993-03-01

    It is one of the key issues for ITER to develop the divertor plate. Electron beam irradiation tests were carried out on a NET divertor mock-up using JEBIS at JAERI under a collaboration between The NET team, JAERI and KFA Juelich. Screening tests (maximum heat flux of 23 MW/m 2 ) and thermal cycling tests (18 MW/m 2 , 30s, 1000cycle) were carried out. As a result of the screening tests, the erosion caused by sublimation of C/C was observed on the surface of armor tile. No serious damage such as cracks or detachments, however, were found. As a result of the thermal cycling tests, no major damage was detected on the C/C surface. However cooling time constant of the divertor mock-up increased over 600cycle. Therefore it implies that some defects would occur at the brazing interface of the divertor mock-up. (author)

  6. Pretreatment of Cellulose By Electron Beam Irradiation Method

    Science.gov (United States)

    Jusri, N. A. A.; Azizan, A.; Ibrahim, N.; Salleh, R. Mohd; Rahman, M. F. Abd

    2018-05-01

    Pretreatment process of lignocellulosic biomass (LCB) to produce biofuel has been conducted by using various methods including physical, chemical, physicochemical as well as biological. The conversion of bioethanol process typically involves several steps which consist of pretreatment, hydrolysis, fermentation and separation. In this project, microcrystalline cellulose (MCC) was used in replacement of LCB since cellulose has the highest content of LCB for the purpose of investigating the effectiveness of new pretreatment method using radiation technology. Irradiation with different doses (100 kGy to 1000 kGy) was conducted by using electron beam accelerator equipment at Agensi Nuklear Malaysia. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analyses were studied to further understand the effect of the suggested pretreatment step to the content of MCC. Through this method namely IRR-LCB, an ideal and optimal condition for pretreatment prior to the production of biofuel by using LCB may be introduced.

  7. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  8. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Park, Hyi Gook; Jung, Il Lae; Seo, Yong Won; Chang, Chul Seong; Kim, Jae Yoon; Ham, Jae Woong

    2005-08-01

    The aim of this study is to develop new, useful and high-valuable genetic resources through the overproduction of biodegradable plastics and the propagation of wheat using proton-beam irradiation. Useful host strain was isolated through the mutagenization of the Escherichia coli K-12 strain, followed by characterizing the genetic and physiological properties of the E. coli mutant strains. The selected E. coli mutant strain produced above 85g/L of PHB, showed above 99% of PHB intracellular content and spontaneously liberated intracellular PHB granules. Based on the results, the production cost of PHB has been estimated to approximately 2$/kg, leading effective cost-down. Investigated the propagation of wheat and its variation, a selectable criterion of wet pro of was established and genetic analysis of useful mutant was carried out

  9. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  10. Physicochemical Study of Irradiated polypropylene/Organo :Modified Montmorillonite Composites by Using Electron Beam Irradiation Technique

    International Nuclear Information System (INIS)

    Hassan, M.S.

    2008-01-01

    Polypropylene/ Organo modified montmorillonite composites (PP/ OMMT) were prepared by melt blending with a twin screw extruder. The thermal properties by thermo gravimetric analysis (TGA), the dispersion of OMMT of macromolecules by X-ray diffraction (XRD), mechanical properties and the morphology by scanning electron microscopy (SEM) were investigated. The effect of electron beam irradiation on these properties was also studied. The results showed an intercalation between the silicate layers and the PP polymer matrix. The (PP/ OMMT) composites exhibit higher thermal stability and lower mechanical properties than pure polypropylene

  11. Radiation disinfestation of used packagings: irradiation trials with electron beams

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Zaedee, I.

    1994-01-01

    Used bags, sacks and other packagings are often infested with insects and mites - pest of stored products. Such packagings provide a source of infestation of a new lot or unit of agricultural products. Cleaning of repeatedly used packages is the most important preventive method. After using, the bags and sacks should be carefully beaten with a mechanical or hand beater. When pests are found, the packages should be disinfested with hot air or hot water. Larger numbers of bags are usually fumigated in a special fumigation chamber. Disinfestation by radiation processing is potentially a feasible substitute for chemical fumigation. In the present paper trials of radiation disinfestation of used bags are described and discussed. Information about using electron beams for pest disinfestation of jute and polyvinyl chloride bags (plastic bags) is provided. The absorbed dose is the most important irradiation process parameter. The lethal effects equivalent to chemical insecticides are obtained by high doses of ionizing radiation. Control of insect and/or mite infestation of the repeatedly used packagings may be secured by ionizing radiation applied at 2-3 kGy. These doses result in complete mortality of stored product pests within a few days. The radiation must penetrate deeply into the target product at sufficient level. Gamma rays and X-rays penetrate into the treated products easily but electron radiation penetrating is much lower, depending on electron energy applied. The results of this study indicate that bags made of polyvinyl chloride may be disinfested with electron beams when are created as separate units or batches up to 50 bags. Penetrability of jute bags is lower than the plastic bags. Therefore the jute bags should be irradiated with electrons as batches containing no more than 30 bags. (author)

  12. Hydrogel coating of RVNRL film by electron beam irradiation

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Hj, Mohd Dahlan; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The tackiness properties of Radiation Vulcanized Natural Rubber Latex (RVNRL) film surfaces coated by various monomers have been investigated in order to understand the suitable hydrogels which reduce the tackiness of the film. In this context , different types of monomers namely, N-vinyl-2-pyrrolidone (NVP), N,N-dimethyl amino ethyl amide (DMAEA), acrylic acid (AAc), N-butyl acrylate (n-BA) and 2-hydroxyethyl methacrylate (HEMA) as well as monomer mixtures have been tried with varying degrees of success. It was found that coating the RVNRL with 80% HEMA/20% n-BA by irradiation at 80 kGy using low Energy Electron Beam gave remarkable reduction in surface tackiness of the RVNRL film. Several other attempts were made such as priming with acid and aluminum sulfate, mixing the aluminum sulfate into the monomer and dipping the partially wet RVNRL film into the monomer to enhance the wettability of he monomers with the film. Studies on surface topography revealed that the decrease in tackiness with coating is due to the increase of the surface roughness at 80 kGy, irradiation dose

  13. Demonstration plant of smoke treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Kawamura, Keita

    1989-01-01

    The acid rain caused by sulfur oxides and nitrogen oxides has become the large social problem as it damages forests, lakes and agricultural crops and also buildings in Europe and America. In such circumstances, concern has been expressed in various countries on the smoke treatment technology, EBA process, which removes the sulfur oxides and nitrogen oxides contained in smoke simultaneously by irradiating electron beam on the smoke which is exhausted from power station boilers and industrial boilers and mainly causes acid rain. The research and development of this technology were begun in 1971 based on the original idea of Ebara Corp., and from 1972, those were advanced as the joint research with Japan Atomic Energy Research Institute. Thereafter, by the joint research with the technical research association on prevention of nitrogen oxides in iron and steel industry, by ammonia addition and irradiation process, the desulfurization and denitration performance was heightened, and the byproduct was successfully captured as powder, in this way, the continuous dry treatment process was established. The demonstration test plant was constructed in a coal-firing power station in Indiana, USA, and the trial operation was carried out from 1985 for two years. (K.I.)

  14. Ocular complications after external-beam irradiation - a literature overview

    International Nuclear Information System (INIS)

    Ziolkowska, E.; Zarzycka, M.; Wisniewski, T.; Meller, A.

    2009-01-01

    Radiotherapy is one of the treatment methods applied to patients suffering from head and neck cancer. The efficiency of this method is comparable to surgery, yet it allows one to save the organ and avoid its permanent deformation. In the case of radiation not only the tumour is influenced but the surrounding, normal structures as well. Radiation causes deformation of normal structures as early or side effects. The aim of this study is to present plausible ocular complications after external beam irradiation of head and neck cancer, such as radiation- induced cataract, radiation retinopathy, dry-eye syndrome or radiation neuropathy. By the use of basic principles of radiotherapy planning we can avoid or minimize possible ocular complications occurring after irradiation. The treatment of ocular complications is difficult and very often does not give the expected outcome. Therefore, in such cases in order to restore vision surgery is required. This study shows that radiotherapy can be helpful but can increase the risk of occurrence of some ocular complications. (authors)

  15. Beam-induced temperature changes in HVEM irradiations

    International Nuclear Information System (INIS)

    Garner, F.A.; Thomas, L.E.; Gelles, D.S.

    1975-01-01

    The peak value of the temperature distribution induced by energy loss of 1.0 MeV electrons in traversing a typical HVEM irradiation specimen can be very substantial. The origin and various features of this distribution were analyzed for a variety of specimen geometries. The major parametric dependencies are shown to be relatively independent of specimen geometry, however, and allow the definition of a scaling relationship that can be employed to predict temperature rises in materials that cannot be measured directly. The use of this scaling relationship requires that the experimenter minimize perturbations of the heat flow due to proximity of the central hole in the specimen. An experimental method of determining directly the magnitude and distribution of beam-induced temperature profiles was developed which utilizes the order-disorder transformation in Fe 3 Al and Cu 3 Au. Scaling of experimentally determined temperature changes leads to more realistic estimates of the total temperature rise than are currently available in various literature tabulations. The factors which determine the optimum selection of irradiation parameters for a given experiment are also discussed

  16. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  17. Sterilizing effect of irradiation for Zuogui power with electron beam and γ-rays

    International Nuclear Information System (INIS)

    Yue Ling; Kong Qiulian; Qi Wenyuan; Bao Yingzi; Chen Zhijun; Yuan Zhongyi

    2011-01-01

    The sterilizing effect of irradiation for Zuogui powder with accelerator (electron beam) and a cobalt unit (γ-rays) was studied. The results indicated that the D 10 values of E-beam irradiation and γ-rays irradiation were 2.602 kGy and 2.597 kGy for aerobic bacterial count, while those were 3.112 kGy and 3.208 kGy for mould and yeasts. (authors)

  18. Intensity-modulated tangential beam irradiation of the intact breast

    International Nuclear Information System (INIS)

    Hong, L.; Hunt, M.; Chui, C.; Spirou, S.; Forster, K.; Lee, H.; Yahalom, J.; Kutcher, G.J.; McCormick, B.

    1999-01-01

    Purpose: To evaluate the potential benefits of intensity modulated tangential beams in the irradiation of the intact breast. Methods and Materials: Three-dimensional treatment planning was performed on five left and five right breasts using standard wedged and intensity modulated (IM) tangential beams. Optimal beam parameters were chosen using beams-eye-view display. For the standard plans, the optimal wedge angles were chosen based on dose distributions in the central plane calculated without inhomogeneity corrections, according to our standard protocol. Intensity-modulated plans were generated using an inverse planning algorithm and a standard set of target and critical structure optimization criteria. Plans were compared using multiple dose distributions and dose volume histograms for the planning target volume (PTV), ipsilateral lung, coronary arteries, and contralateral breast. Results: Significant improvements in the doses to critical structures were achieved using intensity modulation. Compared with a standard-wedged plan prescribed to 46 Gy, the dose from the IM plan encompassing 20% of the coronary artery region decreased by 25% (from 36 to 27 Gy) for patients treated to the left breast; the mean dose to the contralateral breast decreased by 42% (from 1.2 to 0.7 Gy); the ipsilateral lung volume receiving more than 46 Gy decreased by 30% (from 10% to 7%); the volume of surrounding soft tissue receiving more than 46 Gy decreased by 31% (from 48% to 33%). Dose homogeneity within the target volume improved greatest in the superior and inferior regions of the breast (approximately 8%), although some decrease in the medial and lateral high-dose regions (approximately 4%) was also observed. Conclusion: Intensity modulation with a standard tangential beam arrangement significantly reduces the dose to the coronary arteries, ipsilateral lung, contralateral breast, and surrounding soft tissues. Improvements in dose homogeneity throughout the target volume can also be

  19. Characterization of polymeric films subjected to lithium ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, Gary S., E-mail: gary.groenewold@inl.gov [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Cannon, W. Roger; Lessing, Paul A. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States); Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark [Image and Chemical Analysis Laboratory, Montana State University, Bozeman, MT 59717 (United States); Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D. [Idaho National Laboratory, 2351 North Boulevard, Idaho Falls, ID 83415-2208 (United States)

    2013-02-01

    Highlights: ► Polyethylene glycol (PEG) and paraffinic polymers were subjected to Li ion irradiation. ► Small oligomers detected in irradiated PEG by electrospray ionization (ESI) mass spectrometry. ► Radiolytic scission observed in X-ray photoelectron and electrospray ionization mass spectra. ► Radiation modified paraffinics characterized by changes in non-ionic surfactant additives. ► Results suggest that extent of radiolysis, and radiolytic pathways can be inferred. -- Abstract: Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H{sub 2}O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with H{sup ·} and OH{sup ·}. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp{sup 2} carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H{sub 2}O or a H{sub 2}O–methanol solution, and

  20. Structure modification and medical application of the natural products by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S. [Dongguk University, Gyeongju (Korea, Republic of)

    2008-04-15

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  1. Structure modification and medical application of the natural products by proton beam irradiation

    International Nuclear Information System (INIS)

    Lee, D. W.; Park, J. K.; Kang, J. E.; Shin, S. C.; Ahn, J. H.; Lee, E. S.

    2008-04-01

    This study was performed for the investigation of changes of constituent contents of Korean ginseng (Panax genseng C.A. Meyer) after proton beam irradiation (Beam energy from MC-50 cyclotron : 36.5MeV) with beam range of 500 - 10000Gy

  2. A method of beam control for NFZ-10 industrial irradiation linac

    International Nuclear Information System (INIS)

    Zhao Minghua

    2000-01-01

    Traditionally negative feedback coming from output beam is used to stabilize output beam by regulating filament voltage of bombarding diode electron gun. The authors analysed the shortcomings of the method in detail and put forward a new method of regulating bombarding high voltage in NFZ-10 industrial irradiation linac. Output beam with high stability and high accuracy was obtained

  3. Effect of electron beam irradiation on nutritional ingredient of Tegillarca granosa meat

    International Nuclear Information System (INIS)

    Li Chao; Yang Wenge; Xu Dalun; Ou Changrong; Shi Huidong

    2011-01-01

    The influences of 0, 1, 3, 5, 7 and 9 kGy electron beam irradiation on the contents of protein and amino acid and the composition of amino acids and fatty acids in Tegillarca granosa meat were investigated. The results showed that the electron beam had no significant effect on contents of moisture, ash and protein. Fat was sensitive to electron beam irradiation, which decreased with the increasing of irradiation dose. The composition of amino acids remained stable with different doses. The values of EAA/TAA and EAA/NEAA were kept in accordance with FAO/WHO protein model. Besides, electron beam irradiation made no effect on the limiting amino acid (the first and second limiting amino acids were Met + Cys and Val, respectively). The relative content of PUFA increased significantly 1 ∼ 7 kGy irradiation. Electron beam irradiation produced a notable impact on the essential fatty acid, induced the increase of linoleic acid, linolenic acid and arachidonic acid at the doses of 5 ∼ 9 kGy. After the irradiation of 9 kGy, the increments of relative contents of the three essential fatty acids reached 94.61%, 41.37% and 89.91%, respectively. Electron beam irradiation had positive effect on EPA with the doses of 3, 5 and 9 kGy. However, DHA was sensitive to electron beam irradiation, whose relative content decreased with the increasing of irradiation dose and undetected at the dose of 9 kGy. According to the research of decontamination effect, the recommended dose of electron beam irradiation on Tegillarca granosa ws fixed at 3 ∼ 5 kGy. (authors)

  4. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    Science.gov (United States)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  5. Discrimination of damages depending on the types of lactic dehydrogenase isozymes in electron beam irradiation

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Liu Xiaolan; Takizawa, Haruki.

    1995-01-01

    Lactate dehydrogenase (EC 1.1.1.27,LDH) was a tetrameric molecule. The five different combinations of two different polypeptide chains can be readily identified by electrophoresis and ion-exchange chromatography. Injury patterns of LDH activity following electron-beam irradiation was investigated by assaying activities of three isozymes (pig heart LDH;M 4 , rabbit muscle LDH;H 4 , chicken heart LDH;M 3 H 1 ). Following results were obtained in the electron beam irradiation to three kinds of LDH isozymes: 1) Each isozyme has respective different reactivities to the electron beam irradiation. 2) Among the isozymes, M 4 enzyme was increased its enzymatic activity by the irradiations of low-level doses. 3) For the H 4 enzymes, an increasing phenomenon of -SH group was found in the low-level doses of electron beam irradiation. (author)

  6. Change of the functional properties in polysaccharides irradiated by electron beam

    International Nuclear Information System (INIS)

    Sakaue, Kazushi; Murata, Yoshiyuki; Tada, Mikiro; Hayashi, Toru; Todoriki, Setsuko; Asai, Kazuo

    1998-01-01

    Polysaccharides widely used in the food industry were studied in terms of sterilization of bacteria by irradiation. 12 items of polysaccharides irradiated by electron beam ware investigated for bacteria count and the functional property of pH, gel strength, bloom and viscosity. This study aims to determine the sterilization effect by absorption dose and the applicability of the electron beam irradiation toward polysaccharides. Results shows that 1) Over 5kGy absorption dose are enough to be able to sterilize bacteria in the polysaccharide themselves. 2) We reconfirm that Arabic gum will be applicable for the electron beam irradiation, which has been used in some foreign countries. 3) Electron beam irradiation will be useful for Gellan gum b (acetyl type), as gelling agents in the food application. (author)

  7. The JANNUS Saclay facility: A new platform for materials irradiation, implantation and ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, S., E-mail: stephanie.pellegrino@cea.fr [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Trocellier, P.; Miro, S.; Serruys, Y.; Bordas, E.; Martin, H. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Chaabane, N.; Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Gallien, J.P.; Beck, L. [CEA, DEN, Service de Recherches de Metallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2012-02-15

    The third accelerator of the multi-ion irradiation platform JANNUS (Joint Accelerators for Nanosciences and NUclear Simulation), a 6SDH-2 Pelletron from National Electrostatic Corporation, Middleton was installed at Saclay in October 2009. The first triple beam irradiation combining Fe, He and H ion beams has been performed in March 2010. In the first part of this paper, we give a technical description of the triple beam facility, its performances and experimental capabilities. Typically, damage dose up to 100 dpa can be reached in 10 h irradiation with heavy ion beams, with or without simultaneous bombardment by protons, helium-4 ions or any other heavy ion beam. In the second part of this paper, we illustrate some IBA results obtained after irradiation and implantation experiments.

  8. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  9. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Yong Joo [Department of Biobased Materials, College of Agriculture and Life Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Shin, Soo-Jeong [Department of Wood and Paper Science, College of Agriculture and Life Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2011-07-15

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using {sup 1}H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: {yields} The more severe degradation of structural components induced by higher irradiation. {yields} Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. {yields} Xylan was more sensitive to electron beam irradiation than cellulose.

  10. Compositional changes in industrial hemp biomass (Cannabis sativa L.) induced by electron beam irradiation Pretreatment

    International Nuclear Information System (INIS)

    Sung, Yong Joo; Shin, Soo-Jeong

    2011-01-01

    The effects of electron beam irradiation on chemical decomposition of industrial hemp biomass were evaluated at doses of 150, 300, and 450 kGy. The quantity of decomposed components was indirectly estimated by measuring changes in alkaline extraction. The more severe degradation of structural components induced by higher irradiation doses resulted in larger amounts of alkaline extract. Carbohydrate compositional analysis using 1 H-NMR spectroscopy was applied to quantitatively investigate changes in the polysaccharides of the industrial hemp. The xylose peak intensity in the NMR spectra decreased with increasing electron irradiation dose, indicating that xylan was more sensitive to electron beam irradiation than cellulose. -- Highlights: → The more severe degradation of structural components induced by higher irradiation. → Carbohydrate analysis was applied to quantitatively investigate changes in the industrial hemp. → Xylan was more sensitive to electron beam irradiation than cellulose.

  11. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Schnabel, Thomas; Huber, Hermann; Grünewald, Tilman A.; Petutschnigg, Alexander

    2015-01-01

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  12. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  13. Severe dry-eye syndrome following external beam irradiation

    International Nuclear Information System (INIS)

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1994-01-01

    There are limited data in the literature on the probability of dry-eye complications according to radiotherapy dose. This study investigates the risk of radiation-induced severe dry-eye syndrome in patients in whom an entire orbit was exposed to fractionated external beam irradiation. Between October 1964 and May 1989, 33 patients with extracranial head and neck tumors received irradiation of an entire orbit. Most patients were treated with 60 Co. The dose to the lacrimal apparatus was calculated at a depth of 1 cm from the anterior skin surface, the approximate depth of the major lacrimal gland. The end point of the study was severe dry-eye syndrome sufficient to produce visual loss secondary to corneal opacification, ulceration, or vascularization. Twenty patients developed severe dry-eye syndrome. All 17 patients who received dose ≥57Gy developed severe dry-eye syndrome. Three (19%) of 16 patients who received doses ≥45 Gy developed severe dry-eye syndrome; injuries in the latter group were much more slower to develop (4 to 11 years) than in the higher dose group, in whom corneal vascularization and opacification were usually pronounced within 9-10 months. There were no data for the range of doses between 45.01 and 56.99 Gy. The data did not suggest an increased risk of severe dry-eye syndrome with increasing age. Data from the current series and the literature are combined to construct a sigmoid dose response curve. The incidence of injury increases from 0% reported after doses ≥30 Gy to 100% after doses ≥57 Gy. 13 refs., 3 figs., 5 tabs

  14. Process for producing a coating composition. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, T; Harada, H; Kobayashi, S; Nakamoto, H; Sunano, K

    1968-07-19

    An easily hardenable acrylic coating composition is produced by irradiation with low energy electron beams to economize the industrial application of the composition. A polymer with molecular weights in the 5,000 to 500,000 range is composed of 1 to 40% by weight of a vinyl monomer containing a glycidyl radical, 30 to 99% of a methacrylic monomer and 0 to 69% of other copolymerizable vinyl monomers. This polymer dissolves in a monomer containing at least 30% of an acrylic monomer and 70% of other vinyl monomers. The reaction takes place between 0.1 to 1.0 mole of vinyl monomer containing a carboxyl radical and one mole of glycidyl radical in the solution. In an embodiment, 17.5% by weight of glycidyl methacrylate and 82.5% of alkyl acrylate are polymerized in suspension in the presence of a catalyst to form a bead like polymer with molecular weights in the 5,000 to 500,000 range. After 120 parts of the bead like polymer are dissolved in 180 parts of the acrylic monomer in the presence of a polymerization inhibitor by heating, 22 parts of ..cap alpha.., ..beta..- unsaturated monocarboxylic acid are added to the solution to react with the glycidyl radical, whereby a non-solvent type coating material containing the polymer having a vinyl radical side chain is produced. In the place of the catalyst, electron beams can be used at an energy level of 0.1 to 20 MeV. The dose rate may be in the range of 0.1 to 2.0 Mrad/sec.

  15. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    Science.gov (United States)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  16. The effects of electron beam irradiation on sterilization and preservation of chilled pork

    International Nuclear Information System (INIS)

    Bai Yanhong; Mao Duobin; Zhao Dianbo; Zhang Xiaoyan; Li Quanshun; Yang Gongming

    2009-01-01

    S The effects of electron beam irradiation on the sterilization and preservation of chilled pork were studied. The aim of this investigation was to provide academic and technical basis for application of electron beam irradiation on meat industry. The response surface analysis was used with electron beam energy(X 1 ) and dose(X 2 ) as factors and colony form unit(Y) as responses. The results have been shown that the model of sterilization of chilled pork by electron beam irradiation can be expressed Y=3.78-0.24X 1 -0.13X 2 -0.16X 1 X 2 -0.18X 1 2 +0.15X 1 2 (R 2 =0.9755). It has been found there is a interaction between electron beam energy and absorbed doses, and the significance sequence of factors is absorbed dose>interaction> electron beam energy. When absorbed doses are in range from 3.23 kGy to 4.0 kGy and electron beam energy is in range from 2.3 MeV to 3.8 MeV, the colony form unit would drop 2 logarithm units. The shelf life of samples treated with electron beam irradiation is longer by about 12 d than that of control samples when the samples are stored at 4 degree C. When the samples are stored at 7∼10 degree C, shelf life of samples treated with electron beam irradiation is longer by about 9 d than that of control samples. The results showed that electron beam irradiation has the effects of sterilization and preservation on chilled pork. This study has been confirmed that the application of electron beam irradiation is very useful for meat industry. (authors)

  17. Effect of electron beam irradiation on the quality of mackerel (Pneumatophorus japonicus) Meat

    International Nuclear Information System (INIS)

    Wu Dongxiao; Yang Wenge; Xu Dalun; Zhou Xingyu; Ou Changrong; Shi Huidong

    2012-01-01

    The effect of 3, 5, 7 kGy electron beam irradiation on the volatile basic nitrogen (VBN) and peroxide value (POV), the contents of histamine and unsaturated fatty acid (UFA) in Pneumatophorus japonicus meat with vacuum or ordinary package were measured during refrigeration. The results showed that electron beam treatment could effectively control the contents of histamine and VBN, postpone the oxidation of unsaturated fatty acid in P. japonicus meat. The shelf life of P. japonicus meat could be extended with electron beam irradiation. Before cold storage, it is appropriate that the P. japonicus meat were ordinary packaged and irradiated at the dose of 5 kGy. (authors)

  18. Bending of metal-filled carbon nanotube under electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Abha Misra

    2012-03-01

    Full Text Available Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM. In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

  19. Realistic respiratory motion margins for external beam partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Leigh; Quirk, Sarah [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Smith, Wendy L., E-mail: wendy.smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2015-09-15

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  20. Realistic respiratory motion margins for external beam partial breast irradiation

    International Nuclear Information System (INIS)

    Conroy, Leigh; Quirk, Sarah; Smith, Wendy L.

    2015-01-01

    Purpose: Respiratory margins for partial breast irradiation (PBI) have been largely based on geometric observations, which may overestimate the margin required for dosimetric coverage. In this study, dosimetric population-based respiratory margins and margin formulas for external beam partial breast irradiation are determined. Methods: Volunteer respiratory data and anterior–posterior (AP) dose profiles from clinical treatment plans of 28 3D conformal radiotherapy (3DCRT) PBI patient plans were used to determine population-based respiratory margins. The peak-to-peak amplitudes (A) of realistic respiratory motion data from healthy volunteers were scaled from A = 1 to 10 mm to create respiratory motion probability density functions. Dose profiles were convolved with the respiratory probability density functions to produce blurred dose profiles accounting for respiratory motion. The required margins were found by measuring the distance between the simulated treatment and original dose profiles at the 95% isodose level. Results: The symmetric dosimetric respiratory margins to cover 90%, 95%, and 100% of the simulated treatment population were 1.5, 2, and 4 mm, respectively. With patient set up at end exhale, the required margins were larger in the anterior direction than the posterior. For respiratory amplitudes less than 5 mm, the population-based margins can be expressed as a fraction of the extent of respiratory motion. The derived formulas in the anterior/posterior directions for 90%, 95%, and 100% simulated population coverage were 0.45A/0.25A, 0.50A/0.30A, and 0.70A/0.40A. The differences in formulas for different population coverage criteria demonstrate that respiratory trace shape and baseline drift characteristics affect individual respiratory margins even for the same average peak-to-peak amplitude. Conclusions: A methodology for determining population-based respiratory margins using real respiratory motion patterns and dose profiles in the AP direction was

  1. Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Wan [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of); Lee, Byung Cheol [Laboratory for Quantum Optics, Korea Atomic Energy Research Institute, Daejeon 305-600 (Korea, Republic of); Lee, Jong-Hwa [School of Bioresource Sciences, Andong National University, Andong 760-749 (Korea, Republic of); Nam, Ki-Chang [Chemistry and Biotechnology Examinations Bureau, Korean Intellectual Property Office, Daejeon 302-701 (Korea, Republic of); Lee, Seung-Cheol [Department of Food Science and Biotechnology, Kyungnam University, Masan 631-701 (Korea, Republic of)], E-mail: sclee@kyungnam.ac.kr

    2008-01-15

    After electron-beam irradiation of citrus pomaces (CP), the total phenolic content (TPC), radical scavenging activity (RSA), and reducing power (RP) were evaluated. When CP were irradiated at 37.9 kGy; the TPC, RSA and RP of water extract of CP increased from 6543.2 to 7405.4 {mu}M, 37.6% to 52.9%, and 0.64 to 0.90, respectively, compared with the non-irradiated control. The results indicate that the electron-beam irradiation can be an efficient process for increasing the antioxidant activity of CP.

  2. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang

    2010-01-01

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  3. Effect of electronic beam irradiation on development of Plodia interpunctella (Huebner)

    International Nuclear Information System (INIS)

    Fan Jialin; Chen Yuntang; Li Xuzhao; Guo Dongquan; Lu Xiaohua; Zhang Jianwei; Yang Bao'an; Liu Jiangyu; Tian Zhanjun; Zhang Xiaoyan

    2011-01-01

    The electronic beam irradiation effects on different developed stages of Plodia interpunctella Huebner were studied. The hatch rate, pupation rate, emergence rate and reproductive capacity of insect after irradiation were tested. The results showed that the order of sensitivity of the life stages of Plodia interpunctella Huebner to electron beam irradiation was: egg > larva > pupae > adult. The hatch rate, pupation rate, emergence rate and reproductive capacity significantly decreased with the increasing of irradiation dose (P<0.05). The egg, larvae, pupae couldn't grow to adults after irradiation at 100, 250 and 600 Gy, respectively. No new generation adult was found after the adults were irradiation at 600 Gy. It is concluded that 600 Gy irradiation could be used as a suitable dose to prevent the reproduction of Plodia interpunctella Huebner during the storage of tobacco. (authors)

  4. Effects of Electron Beam Irradiated Natural Casings on the Quality Characteristics of Emulsion Sausage

    International Nuclear Information System (INIS)

    Kim, Hyunwook; Kim, Hackyoun; Hwang, Koeun; Choi, Sunmi; Kim, Cheonjei; Choi, Jihun; Choi, Yunsang; Lee, Juwoon

    2011-01-01

    The effects of electron beam irradiated hog and sheep casings (1, 3, and 8 KGy) on the physicochemical properties and shelf stability of emulsion sausage were evaluated. There were no significantly differences in ph, instrumental color, and sensory evaluation among all the samples tested (p>0.05). The cooking yields for the irradiated treated samples were larger than the yields obtained for the non-irradiated samples for both the hog and sheep casing. However, the results on the purge loss after storage for 5 weeks were contradictory. The hardness of the sausage was lower when the irradiated natural casings were used. The irradiated natural casings accelerated lipid oxidation. The volatile basic nitrogen values were lower in samples treated with electron beam irradiation. The natural casings irradiated up to a dose of 3kGy not only had different total aerobic bacteria counts during the initial storage period but also displayed higher TAB counts at the final storage period

  5. Effect of ion beam irradiation of fresh-keeping of strawberry

    International Nuclear Information System (INIS)

    Lei Qing; Huang Min; Wu Ling; Mo Yan; Du Xiaoying; Xie Yan; Wang Yan; Gao Peng; Kang Ju

    2011-01-01

    Effects of ion beam irradiation on strawberry quality were studied, in this study and microbial biomass, decay index, weight loss and biological index were detected. Irradiation dosage were 1.0, 2.0 and 3.0 kGy. The results showed that the irradiation decreased the number of microorganism in the strawberry and delayed the rotten speed. The soluble solide, Vc and total acid content of irradiated strawberry reduced slower than that of control. It indicated that the irradiation dosage did not affect the quality of strawberry in this study . Therefore, 2.0 ∼ 3.0 kGy of ion beam irradiation were an excellent irradiation dosage for strawberry preservation. (authors)

  6. Interstitial gold and external beam irradiation for prostate cancer

    International Nuclear Information System (INIS)

    Boileau, M.A.; Dowling, R.A.; Gonzales, M.; Handel, P.H.; Benson, G.S.; Corriere, J.N. Jr.

    1988-01-01

    We treated 65 patients with prostatic cancer confined clinically to the prostate or periprostatic area during an 8-year period. Seven patients had stage A2, 38 stage B and 20 stage C disease. All 65 patients underwent staging pelvic lymphadenectomy and implantation of gold grains into the prostate (mean dose 3,167 rad). A total of 64 patients then completed a course of external beam irradiation to a mean total tumor dose of 6,965 rad. Complications of therapy were mild and limited (less than 3 months in duration) in most patients, and they included radiation cystitis (32 per cent), diarrhea (31 per cent), extremity lymphedema (7.7 per cent) and wound infection (3 per cent). Two patients suffered urinary incontinence after therapy and 2 (3 per cent) had diarrhea more than 3 months in duration. The actuarial 5-year survival rate for all patients was 87 per cent and the 5-year survival free of disease was 72 per cent

  7. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  8. Electrical properties of irradiated PVA film by using ion/electron beam

    Science.gov (United States)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  9. Degradation Of Aggregate Pollutant In Textiles Wastewater By Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Zulkafli Ghazali; Siti Aiasah Hashim; Selambakkannu, S.; Ming, T.T.; Natasha Isnin; Hasnul Nizam Osman; Khasmidatul Akma Mohd Khairul Azmi

    2016-01-01

    Aggregate pollutant were refer to the mixture of the excess material that is used in the manufacturing proses of textiles, present in wastewater. This paper studies the effect of the beam energy, beam current and absorbed dose on degradation of aggregate pollutant in textiles effluent which was indicate by COD, pH and UV-Vis spectrum. The impact of beam energy was conducted when sample were exposed to the irradiation at various beam energy (1 to 3 MeV) at 20 mA and 17 kGy. The COD reduced from 495 mg/l to the range 398.00 -358 mg/l at beam energy 1 MeV to 3 MeV. The irradiated sample also slightly become more acidic at higher beam energy. While 1 MeV beam energy was sufficient to eliminate the exposed peak at wavelength of 425 nm, 550 nm and 650 nm in the UV spectrum. In the case effect of current, the COD effluent tested at constant beam energy of 1 MeV and 3 MeV at various beam current (3 mA, 5 mA, 10 mA, 15 mA and 20 mA) decreased with higher beam current. While interested peak in UV spectrum of irradiated samples was varnish at 3 mA beam current and 1 MeV energy applied. Considering to the 19.66 % COD removal and electric power used, 1 MeV beam energy and 20 mA beam current was the optimum irradiation parameter selected for this study. At 1 MeV:20 mA textiles wastewater irradiated at various dose of 17, 20, 25, 30, 35, 100 and 200 kGy shows removal of COD, were in the range 4.42 % - 30.09 %. (author)

  10. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Wirth, Brian; Motta, Athur; Morgan, Dane; Kaoumi, Djamel; Hosemann, Peter; Odette, Robert

    2018-04-30

    Project Objective: The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiated microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations

  11. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  12. Enhancement of CNT-based filters efficiency by ion beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  13. Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low LET γ - rays and high LET fast neutrons

    International Nuclear Information System (INIS)

    Vral, Anne; Thierens, Hubert; Baeyens, Ans; De Ridder, Leo

    2001-01-01

    In view of the potential importance of the G2 assay for detecting chromosomal radiosensitivity and possible predisposition to cancer the need to elucidate the mechanism underlying the formation of chromatid breaks, observed with the G2 assay after low dose irradiation, has been recognised. In this study we irradiated blood samples of 4 healthy donors with low LET γ-rays and high LET neutrons, which initially produce the same number of dsb but of a different quality. By means of the G2 assay, we determined the number of chromatid breaks induced by γ-rays and neutrons and compared the kinetics of chromatid break rejoining for radiations of different quality. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for γ-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments the kinetics of chromatid break formation and disappearance was investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 h and 3.5 h. For the highest dose of 0.5 Gy the number of isochromatid breaks were also scored. No significant differences in the number of chromatid breaks were observed between low LET γ-rays and high LET neutrons for the 4 donors at any of the doses given. The dose response curves for the formation of chromatid breaks are linear for both radiation qualities and RBE values equal to one were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high LET neutrons are however more effective at inducing isochromatid breaks (RBE of 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low LET γ-rays or high-LET neutrons are not significantly different. T 1/2 0.92 h for γ-rays and t 1/2 = 0.84 h for neutrons were obtained. In conclusion, our results show that at low doses of radiation the induction as well as the disappearance of G2 chromatid breaks is LET

  14. Preparation of highly oriented poly-diacetylene LB-films with ion beam irradiation

    International Nuclear Information System (INIS)

    Hosoi, F.; Aoki, Y.; Hagiwara, M.; Omichi, H.

    1992-01-01

    Langmuir-Blodgett (LB) films such as 10,12-heptacosa-diynoic acid, 10,12-pentacosa-diynoic acid, 10,12-tricosa-diynoic acid were irradiated with ion beam, electron beam and UV-light, and the effect of irradiation on morphology of the polymerized film was studied. A sharp and intense X-ray diffraction pattern with higher order peaks which was not observed in the original films was obtained by Fe + beam irradiation. The interlayer spacing of diacetylene molecules calculated from the X-ray diffraction experiment was much longer than that theoretically anticipated. Similar results were observed when LB-films were treated with Ar + beam of 1keV for a short time although there was little observation of polymerization. In contrast, the diffraction pattern of the films polymerized with UV-light was broad and weak, and higher order peaks disappeared with the increase in irradiation dose. (author)

  15. A control technique of oxygen contamination by Ga beam irradiation in InN MOMBE growth

    International Nuclear Information System (INIS)

    Isamoto, K.; Uesaka, Y.; Yamamoto, A.; Hashimoto, A.

    2006-01-01

    We have investigated about a control technique of oxygen contamination into the InN layers by simultaneous irradiation of Ga beam during RF-MOMBE growth using the combination of the TMIn and the RF-plasma nitrogen sources. Red shifts of the band gap energy and the improvement of the electrical properties have been achieved by the Ga beam irradiation. The suppression mechanism of the oxygen contamination has been discussed from the experimental results of the InN growth by the RF-MOMBE with the Ga beam irradiation. The present results strongly indicate that the simultaneous irradiation of the Ga beam would be useful to suppress the oxygen contamination into the InN layers during the growth. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    International Nuclear Information System (INIS)

    Yotsumoto, Keiichi; Kanazawa, Takao; Haruyama, Yasuyuki; Agematsu, Takashi; Mizuhashi, Kiyoshi; Sunaga, Hiromi; Washino, Masamitsu; Tamura, Naoyuki

    1984-02-01

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  17. Treatment of toxic gases SO2 and NO X by electron beam irradiation

    International Nuclear Information System (INIS)

    Castro Rubio Poli, D. de; Vieira, J.M.; Campos, C.A. de.

    1993-01-01

    The removal of S O 2 and N O x by electron beam irradiation will be studied using a small scale flow system which is being set up in order to obtain basic data for the process technical and economical feasibility concerning industrial applications. The gas irradiation will be performed using a Electron Beam Accelerator with 1,5 MeV power, 25 m A current from Radiation Dynamics, Inc. USA. (author)

  18. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    Science.gov (United States)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    majority of RPA-coated ssDNA is generally present only during DNA replication, ATR activation in G1 and G2-phase might still require formation of RPA-coated ssDNA, probably initiated by the MRN-CtIP complex and then extended by the Exo1- or BLM-dependent mechanisms at the sites of DSBs. Evidence accumulates that activation of ATM and ATR are oppositely regulated by the length of single stranded overhangs generated at the break sites by processes mentioned above and these stretches of single stranded overhangs hold the clue for ATM to ATR switch at broken DNA ends. We irradiated 82-6hTERT human fibroblast cells with low LET gamma-rays and high LET Fe and Si particles. Preliminary results with cells exposed to 1Gy gamma-rays show that the kinetics of pChk2-pT68 foci formation is comparable to that of gamma-H2AX although they appear to recede quicker. The number and intensity of observed foci reaches a maximum at 30 min and 60 min post IR for Chk2-pT68 and gamma-H2AX foci respectively and all Chk2-pT68 foci colocalize with gamma-H2AX foci. The kinetics of Chk1-pS345 and ATRIP are being determined. Results of Chk2-pT68 foci kinetics was also corroborated by western blot experiments, although phosphorylation was detected as early as 10 min and started receding 30 min post IR with 2Gy of gamma-rays. On the other hand, level of ATR-pS428 reached its maximum between 60 and 120 min and was maintained until the last measured time point of 4 hours post IR as determined by western blotting. Experiments performed with high LET Fe and Si particles will be reported.

  19. Focused ion beam (FIB) milling of electrically insulating specimens using simultaneous primary electron and ion beam irradiation

    International Nuclear Information System (INIS)

    Stokes, D J; Vystavel, T; Morrissey, F

    2007-01-01

    There is currently great interest in combining focused ion beam (FIB) and scanning electron microscopy technologies for advanced studies of polymeric materials and biological microstructures, as well as for sophisticated nanoscale fabrication and prototyping. Irradiation of electrically insulating materials with a positive ion beam in high vacuum can lead to the accumulation of charge, causing deflection of the ion beam. The resultant image drift has significant consequences upon the accuracy and quality of FIB milling, imaging and chemical vapour deposition. A method is described for suppressing ion beam drift using a defocused, low-energy primary electron beam, leading to the derivation of a mathematical expression to correlate the ion and electron beam energies and currents with other parameters required for electrically stabilizing these challenging materials

  20. Comparison of the effects of gamma ray and e-beam irradiation on the quality of minced beef during storage

    International Nuclear Information System (INIS)

    Park, Jae Nam; Han, In Jun; Kim, Wang Geun; Song, Beom Seok; Kim, Jae Hun; Choi, Jong Il; Yoon, Yo Han; Byun, Myung Woo; Hwang, Han Joon; Lee, Ju Woon; Park, Jin Gyu

    2009-01-01

    This study was conducted to compare the microbiological and physicochemical qualities of minced beef irradiated with gamma ray of e-beam at the absorbed doses from 5 to 20 kGy. The total bacterial counts of minced beef were decreased depending upon the irradiation doses, but sterilizing effect of gamma irradiation was higher than that of e-beam irradiation. The contents of malondialdegyde of minced beef were increased depending upon irradiation doses as well as storage periods (p< 0.05). Volatile basic nitrogen in minced beef was constantly increased during storage, but the increasing rate were retarded by irradiation. The hunter's color values(L*, a* and b*) of gamma or e-beam irradiated minced beef were decreased as irradiation dose increasing. Meanwhile, the quality changes of gamma irradiated samples were faster than e-beam irradiated samples

  1. Influence of E-beam irradiation on dielectric relaxation of recycled polypropylene

    International Nuclear Information System (INIS)

    Fazilova, Z.; Gafurov, U.; Tolstov, A.

    2004-01-01

    Full text: The dielectric relaxation connected with molecular groups and polymer chain mobility for un-irradiated and e-beam irradiated recycled polypropylene was investigated. It was studied films of samples produced from virgin (initial) and e- beam irradiated of the polymer granules (E-beam source with 5 MeV energy). The dielectric losses were measured with temperature increasing and decreasing regime. The losses were measured with E8-4 bridge help (the frequency is 1kH). Heating velocity was 2 grad/min. The dielectric losses did not appeared in minus temperature region for the initial polypropylene samples. The measurement in temperature increasing and decreasing shows that the relaxation peak at ∼ 35 o C for un-irradiated and ∼70 o C for irradiated polymer samples connected with macromolecular segments mobility with water molecular groups participation. The main relaxation peak (higher 100 o C) shifts after e-beam irradiation is result of the cross-links formation. ) The peak connected with macromolecular segments mobility in polymer amorphous regions (β-relaxation process). In irradiated polypropylene on IR spectroscopy data oxygen molecular groups is increased. The molecular groupings form inter-molecular hydrogen bonds. The intermolecular bonds also hindered molecular groups and macromolecular mobility. The e-beam stimulated cross-links formation was confirmed by method of sol-gel analyses. The work was supported by STCU Fund (Project No 3009)

  2. Study of the Clinical Proton Beam Relative Biological Effectiveness at the JINR Phasotron, Dubna

    CERN Document Server

    Vitanova, A; Gaevskii, V N; Molokonov, A G; Spurny, F; Fadeeva, T A; Shmakova, N L

    2002-01-01

    Proton clinical beams contain particles with high linear energy transfer (LET). Secondary heavy charged particles produced from nuclear interactions and degraded protons at the Bragg peak region are particles with high LET. These particles could enhance the Relative Biological Effectiveness (RBE) of the proton beam. We have carried out two radiobiological experiments to investigate the RBE of 150 MeV clinical proton beam. The irradiation of the Chinese Hamster V79 cells were performed at two points of the depth-dose distribution - at the beam entrance and at the Bragg peak. The contribution of the high LET particles to dosimetric and microdosimetric characteristics in the various depth of proton beam was also experimentally studied using the CR-39 track etched detectors. The LET spectra between 10 and 700 keV/{\\mu}m were measured by means of track detectors and the automatic optical image analyzer LUCIA-II. The relative contribution of the high LET particles to ab! sorbed dose increases from several per cent ...

  3. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    Science.gov (United States)

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  4. Contribution of Brazil nut shell fiber and electron-beam irradiation in thermomechanical properties of HDPE

    International Nuclear Information System (INIS)

    Polato, Pamella; Lorusso, Leandro Alex; Souza, Clecia de Moura; Moura, Esperidiana Augusta Barretos de; Chinellato, Anne; Rosa, Ricardo de

    2010-01-01

    In the present work, the influence of electron-beam irradiation on thermo-mechanical properties of HDPE and HDPE/Brazil nut shell fiber composite was investigated. The materials were irradiated at radiation dose 50 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated samples were submitted to thermo-mechanical tests and the correlation between their properties was discussed. The results showed that the incorporation of Brazil nut shell fiber represented a significant gain (p < 0,05) in tensile strength at break, flexural strength, flexural module, Vicat softening temperature and heat distortion temperature (HDT) properties of the HDPE. In addition, the irradiated HDPE/Brazil nut shell fiber composite presented a significant increase (p < 0.05) in this properties compared with irradiated HDPE. (author)

  5. Influence of electron beam irradiation on the impact properties of polystyrene/EPDM rubber blends

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Sanden, van der M.C.M.; Haan, de J.W.; Ven, van de L.J.M.; Lemstra, P.J.

    1991-01-01

    The influence of electron beam (EB) irradiation on the impact properties of compatibilized polystyrene/ethylene-propylene-diene-monomer (PSIEPDM) blends was studied. The change in impact value upon irradiation proved to be strongly dependent on the type of compatibilizer used. Using a

  6. Polymerization of polyethers initiated by irradiation with high power pulsed electron beams

    International Nuclear Information System (INIS)

    Gerber, V.D.; Tolkachev, V.S.; Chmukh, V.N.

    1982-01-01

    Air oxygen effect on thin-layer polymerization of polyethers, initiated by irradiation with powerful pulse electron beams is studied using the method of IR-spectrophotometry. The analysis of experimental data has shown that in polyether surface layer polymerization is suppressed by oxygen, concentration of which in the layer remains stable at the expense of diffusion from air during two consequent irradiation pulses

  7. Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport

    Science.gov (United States)

    Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.

    2018-04-01

    Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.

  8. Effect of Gamma and Electron Beam Irradiation on Textile Waste Water

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Khomsaton Abu Bakar; Ting, T.M.

    2011-01-01

    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water was done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy, was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation. (author)

  9. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    International Nuclear Information System (INIS)

    S, Honey; S, Naseem; A, Ishaq; M, Maaza; M T, Bhatti; D, Wan

    2016-01-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H + ) ion beam irradiation. Ag-NWs are irradiated under H +  ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H + ion beam-induced welding of Ag-NWs at intersecting positions. H +  ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H +  ion beam, and networks are optically transparent. Morphology also remains stable under H +  ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H +  ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. (paper)

  10. A GIF++ Gamma Irradiation Facility at the SPS H4 Beam Line

    CERN Document Server

    Capéans-Garrido, M; Linssen, L; Moll, M; Rembser, C

    2009-01-01

    The current document describes a proposal to implement a new gamma irradiation facility, combined with a high-energy particle beam in the SPS H4 beam line in hall EHN1. This new GIF++ facility is motivated by strong needs from the LHC and sLHC detector and accelerator communities for the tests of LHC components and systems.

  11. Analytical examination of a spiral beam scanning method for uniform irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Mitsuhiro; Okumura, Susumu; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A new circular beam scanning method for uniform irradiation of high-energy, intense ion beams over a large area has been developed. A sweeping speed and a trajectory density in a radial direction are kept constant to obtain uniform fluence distribution. A radial position of a beam spot on a target and an angular frequency of the circular motion are expressed by an irrational function of time. The beam is swept continuously, and a beam trajectory becomes spiral. More than 90 % uniformity of the fluence distribution can been achieved over a large area. (author)

  12. Development of small scale mechanical testing techniques on ion beam irradiated 304 SS

    International Nuclear Information System (INIS)

    Reichardt, A.; Abad, M.D.; Hosemann, P.; Lupinacci, A.; Kacher, J.; Minor, A.; Jiao, Z; Chou, P.

    2015-01-01

    Austenitic stainless steels are widely used for structural components in light water reactors, however uncertainty in their susceptibility to irradiation assisted stress corrosion cracking (IASCC) has made long term performance predictions difficult. In addition, the testing of reactor irradiated materials has proven challenging due to the long irradiation times required, limited sample availability, and unwanted activation. To address these problems, we apply recently developed techniques in nano-indentation and micro-compression testing to small volume samples of 10 dpa proton-beam irradiated 304 stainless steel. Cross sectional nano-indentation was performed on both proton beam irradiated and non-irradiated samples at temperatures ranging from 22 to 300 C. degrees to determine the effects of irradiation and operating temperature on hardening. Micro-compression tests using 2 μm x 2 μm x 5 μm focused-ion beam milled pillars were then performed in situ in an electron microscope to allow for a more accurate look at stress-strain behavior along with real-time observations of localized mechanical deformation. Large sudden slip events and significant increase in yield strength are observed in irradiated micro-compression samples at room temperature. Elevated temperature nano-indentation results reveal the possibility of thermally-activated changes in deformation mechanism for irradiated specimens. Since the deformation mechanism information provided by micro-compression testing can provide valuable information about IASCC susceptibility, future work will involve ex situ micro-compression tests at reactor operating temperature

  13. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation

    Science.gov (United States)

    Senna, Magdy M.; Mostafa, Abo El-Khair B.; Mahdy, Sanna R.; El-Naggar, Abdel Wahab M.

    2016-11-01

    Blend hydrogels based on aqueous solutions of plasticized starch and different ratios of cellulose acetate (CA) and carboxymethyl cellulose (CMC) were prepared by electron beam irradiation (EB). The blends before and after EB irradiation were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The physico-chemical properties of blend hydrogels prepared by electron beam irradiation were improved compared to unirradiated blends.

  14. RBE-LET relationships of high-LET radiations in drosophila mutations

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Takatsuji, Toshihiro; Nagano, Masaaki; Takada, Jun; Endo, Satoru; Hoshi, Masaharu

    1999-01-01

    The relative biological effectiveness (RBE) of 252 Cf neutrons and synchrotron-generated high-energy charged particles for mutation induction was evaluated as a function of linear energy transfer (LET), using the loss of heterozygosity for wing-hair mutations and the reversion of the mutant white-ivory eye-color in Drosophila melanogaster. Loss of heterozygosity for wing-hair mutations results predominantly from mitotic crossing over induced in wing anlage cells of larvae, while the reverse mutation of eye-color is due to an intragenic structural change (2.96 kb-DNA excision) in the white locus on the X-chromosome. The measurements were performed in a combined mutation assay system so that induced mutant wing-hair clones as well as revertant eye-color clone can be detected simultaneously in the same individual. Larvae were irradiated at the age of 3 days post oviposition with 252 Cf neutrons, carbon beam or neon beam. For the neutron irradiation, the RBE values for wing-hair mutations were larger than that for eye-color mutation by about 7 fold. The RBE of carbon ions for producing the wing-hair mutations increased with increase in LET. The estimated RBE values were found to be in the range 2 to 6.5 for the wing-hair. For neon beam irradiation, the RBE values for wing-hair mutations peak near 150 keV/μm and decrease with further increase in LET. On the other hand, the RBE values for the induction of the eye-color mutation are nearly unity in 252 Cf neutrons and both ions throughout the LET range irradiated. We discuss the relationships between the initial DNA damage and LET in considering the mechanism of somatic mutation induction. (author)

  15. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    International Nuclear Information System (INIS)

    Lim, D.G.; Seol, K.H.; Jeon, H.J.; Jo, C.; Lee, M.

    2008-01-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage

  16. Experimental research on fresh mussel meat irradiated by high-dose electron beam

    International Nuclear Information System (INIS)

    Xiao Lin; Lu Ruifeng; Hu Huachao; Wang Chaoqi; Liu Yanna

    2011-01-01

    The sterilization storage of fresh mussel irradiated high-dose electron beam was studied. From the subjective assessment by the weighted average of the test and other determined parameters, it can be concluded that the flavor of fresh mussel meat sealed canned food irradiated by high-dose electron beam has not been significant affected, and various micro-organisms can be killed effectively, which means that the irradiated fresh mussel meat can be preserved for long-term at room temperature. Therefore the method might resolve the problems induced by traditional frozen preservation methods. (authors)

  17. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  18. Current state and prospects of industrial application of electron beam irradiation

    International Nuclear Information System (INIS)

    Washio, Masakazu

    2000-01-01

    This paper reviewed the low energy, medium energy, and high energy accelerators used for the industrial application of electron beams. Next, it described the absorption of electron beam energy, distribution of the absorbed dose of electron beams in a substance, and the basis of electron beam reaction. Furthermore, as the industrial application examples of electron beams, it briefly described about the reforming and curing of polymers, irradiation effect of inorganic material (characteristic control of semiconductors), and sterilization. Regarding curing, as examples using mainly low energy electron beams (300 keV or below), this paper briefly explained the manufacture of thermosensitive recording materials, electron beam cured silicone for release papers, tunnel metal interior finishing board, high gloss - high smooth paper. Finally, it looked at latest trends and prospects of electron beam generators. (A.O.)

  19. Degradation mechanism of polyurethane foam induced by electron beam irradiation

    International Nuclear Information System (INIS)

    Huang Wei; Fu Yibei; Bian Zhishang; He Meiying

    2002-01-01

    The degradation mechanism of irradiated polyurethane foam has been studied in detail. The changes of chemical structure and micro-phase separation have been determined by DTG. The gas products from irradiated samples are analyzed quantitatively and qualitatively by GC. The degradation mechanism of irradiated polyurethane foam has been deduced according to the experimental results. It provides some basis of the application on the polyurethane in the radiation field

  20. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    International Nuclear Information System (INIS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-01-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated ‘Fuji’ apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph–mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated ‘Fuji’ apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of ‘Fuji’ apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds. - Highlights: ► We analyzed the volatile organic compounds of electron beam irradiated Fuji apples. ► The major compounds of samples were butanol, hexanal, [E]-2-hexenal, and hexanol. ► The contents of major flavor compounds of non-irradiated and irradiated samples were similar.

  1. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    CERN Document Server

    Gencer, A.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-01-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between View the MathML source10μA and View the MathML source1.2mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam ...

  2. Effect of electron beam irradiation on pollen mother cells of gladiolus 'chaoji'

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Wen Fangping Zhang Xiaoxue

    2008-01-01

    In order to test the effects of various doses of electron beam on M1 generation pollen mother cells (PMC), the corm of gladiolus 'chaoji' was irradiated by electron beam with 3 MeV energy. Some abnormalities of meiosis of pollen mother cells were studied and the bands of protein subunit were analyzed by SDS-PAGE for the irradiated corm. The genetic damage at meiosis of gladiolus is observed, and the types of chromosomal aberrations are laggard chromosomes, chromosomal bridge, chromosome outside nucleus, unequal separation of chromosome, micronuclei and so on. Some trispores and paraspores are viewed at tetraspore period. The shape and size of the microspores vary in some treated materials, and most of microspores display little volume. The statistic of aberrance types and frequencies in PMCs show that aberrance types are chromosome outside nucleus and micronuclei mostly. The SDS-PAGE result shows that protein expression of M1 generation pollen is obviously changed by electron beam irradiation. Low dose of electron beam has obvious effects, and some special proteins subunit bands are found among varieties of irradiation dosage respectively. The protein bands are absent at the dose more than 160 Gy compared to low dose of electron beam. The results indicate that electron beam irradiation is an effective way for gladiolus breeding. (authors)

  3. Electron beam irradiation of simulated diluted sulfurous off-gases from copper smelters

    International Nuclear Information System (INIS)

    Villanueva, L.; Ahumada, L.; Chmielewski, A.G.; Zimek, Z.; Bulka, S.; Licki, J.

    1998-01-01

    An experimental work for the verification of potential use of electron-beam irradiation processing for S O 2 removal from reduced-S O 2 -strength gases, between 1,000 and 10,000 ppm, was conducted in a laboratory unit equipped with a multi-purpose electron accelerator working with beam energy of 800 keV. During experimental tests performed, influence of different operating parameters on the overall S O 2 removal process was established. Tests were conducted under two main conditions, using only electron beam irradiation and using electron beam irradiation plus ammonia injection. Tests results proved the technical feasibility to move S O 2 from off-gases under working experimental conditions, i.e., S O 2 removal is achieved under the two modes of operation. When using only electron beam irradiation S O 2 removal efficiencies found were rather low, up to 40%, but in the case of using electron beam irradiation in conjunction with ammonia injection, it was found that S O 2 removal efficiency raises up to 85% under experimental conditions. (author)

  4. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  5. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    International Nuclear Information System (INIS)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-01-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  6. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Science.gov (United States)

    Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2008-12-01

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  7. Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2008-12-15

    In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.

  8. Formation of novel reactive intermediate by electron-laser dual beam irradiation

    International Nuclear Information System (INIS)

    Ishida, Akito; Takamuku, Setsuo

    1992-01-01

    The pulse radiolysis system of the Institute of Scientific and Industrial Research, Osaka University, (ISIR) has been progressed to observe a highly reactive species, which is produced by successive irradiation of electron and laser or of CW-UV-light and electron. The dual beam irradiation system, which consists of the beam synchronization system, the optical alignment, and the measurement system, is described in detail. Dual beam irradiation studies on 2-methylbenzophenone and some compounds with a C=N bond have been carried out by use of this system. Pulse radiolysis of 2-methylbenzophenone in benzene induced formation of an unstable photoenol via the triplet state, which was irradiated by a visible laser pulse to give dihydroanthrone. Pulse radiolysis of syn-benzalaniline and a nitrileylide in 2-methyltetrahydrofuran, which were produced by steady state photoirradiation at low temperature, enabled us to observe their very unstable radical anions. (author)

  9. Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth.

    Science.gov (United States)

    Tavakol, Moslem; Dehshiri, Saeedeh; Vasheghani-Farahani, Ebrahim

    2016-11-05

    In the present study, electron beam irradiation was applied to prepare a chemically crosslinked hydrogel based on tyramine conjugated gum tragacanth. Then, the gel content, swelling behavior and cytotoxicity of the hydrogels were evaluated. The gel content of the hydrogels was in the range of 75-85%. Equilibrium swelling degree of the hydrogels decreased from 51 to 14 with increasing polymer concentration and irradiation dose. Moisture retention capability of the hydrogels after 5h incubation at 37°C was in the range of 45-52 that is comparable with of commercial hydrogels. The cytotoxicity analysis showed the good biocompatibility of hydrogels. These results indicated that electron beam irradiation is a promising method to prepare chemically crosslinked tyramine conjugated gum tragacanth hydrogels for biomedical applications. Also, the versatility of electron beam irradiation for crosslinking of a variety of polymers possessing tyramine groups was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2013-01-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  11. Effect of electron beam irradiation on the nutritional ingredient of Sciaenops ocellatus meat

    International Nuclear Information System (INIS)

    Zhang Chunfang; Yang Wenge; Xu Dalun; Shi Huidong

    2011-01-01

    The influences of electron beam irradiation and package pattern (vacuum or ordinary) on the nutritional ingredient of Sciaenops ocellatus meat were investigated. The results were summarized as follows: (1) Electron-beam irradiation dose had notable effect on the moisture content, but no significant impact on the content of ash, protein, lipid and total carbohydrate. Teh package pattern had no significant effect on the common nutrional composition of Sciaenops ocellatus meat. (2) Either package pattern or irradiation dose showed little influence on the total amino acids, delicious amino acid, EAA/TAA and EAA/NEAA of Sciaenops ocellatus meat. The first limiting amino acid of Sciaenops ocellatus meat changed from Met plus Cys to Val in virtue of electron beam irradiation. (3) Both irradiation dose and package pattern showed no difference to the total fatty acid content. But the irradiation dose had notable effect on the relative content of unsaturated fatty acid, polyunsaturated fatty acid and DHA. The vacuum-packaged group had less DHA loss than the ordinary-packaged group with the same absorbed dose, and low dose groups had less DHA loss than the high groups. As conclusion, combining with the bactericidal effect of electron beam irradiation to Sciaenops ocellatus meat, the recommended dose has been proposed to be 3-5 kGy. (authors)

  12. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  13. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B., E-mail: maiara.sferreira@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  14. Application of polymers cross-linked by electron beam irradiation to electric wire industry

    International Nuclear Information System (INIS)

    Oda, Eisuke

    1976-01-01

    Applications of the polymers cross-linked by electron beam irradiation to electric wire industry as an example of dully developed utilization are reviewed. The report is divided into five parts, namely 1) radiation sources and irradiation processes, 2) development of crosslinking materials, 3) accumulation of electric charge and accumulation of heat, 4) examples of application, and 5) future prospect. Such a phenomenon as discharge destruction pattern (Lichtenberg figure) must be solved, when cable insulation materials are cross-linked by electron beam irradiation. The measures for preventing the discharge destruction are required, especially when the layers of polyethylene insulation for high voltage cables are irradiated. The accumulation of heat causes the troubles in foaming, degeneration and wire running of high potential cables, when the layers of insulation are thick. Effective promoters for cross-linking must be studied to reduce the radiation dose. The irradiators capable of irradiating wires uniformly are desirable. Electron beam accelerators will be used, as far as the radiation dose of 10 or more Mrad is required for cross-linking irradiation. If the dose of one tenth or less of the above value is required, gamma-ray sources (RI) are rather easily applicable than focused strong beam. The utilization of spent nuclear fuel is desirable. (Iwakiri, K.)

  15. Physics design of heavy-ion irradiation beam line on HI-13 tandem accelerator

    International Nuclear Information System (INIS)

    Zhu Fei; Peng Zhaohua; Hu Yueming; Jiao Xuesheng; Chen Dongfeng; Cao Yali

    2014-01-01

    Background: Heavy-ion microporous membrane is a new kind of filter material, which has prosperous application in the fields of medical and biological agents, electronic, food, environmental science, materials science, etc. Purpose: Polyester membranes were irradiated with 32 S produced by HI-13 tandem accelerator to develop a microporous membrane at CIAE, and the irradiation uniformity is determined by the beam distribution, also the microporous uniformity is required higher than 90%. Methods: An octupole magnet was used to correct the beam distribution from Gauss to uniform. Meanwhile, main parameters of beam line were given, and the alignment tolerances for optical elements were also analyzed. Results: Alignment tolerance of the optical elements could cause great influence on the beam center deviation in the process of correction, which would destroy the irradiation uniformity. Steering magnet was applied to meet with the design requirements. Conclusion: This study provides a practical and feasible way for industrial production of heavy-ion microporous membrane. (authors)

  16. Enhancement of biodegradability of real textile and dyeing wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    He, Shijun; Sun, Weihua; Wang, Jianlong; Chen, Lvjun; Zhang, Youxue; Yu, Jiang

    2016-01-01

    A textile and dyeing wastewater treatment plant is going to be upgraded due to the stringent discharge standards in Jiangsu province, China, and electron beam irradiation is considering to be used. In order to determine the suitable location of the electron accelerator in the process of wastewater treatment plant, the effects of electron beam (EB) irradiation on the biodegradability of various real wastewater samples collecting from the different stages of the wastewater treatment plant, the values of chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), and the ratio of BOD 5 and COD (BOD 5 /COD), were compared before and after EB irradiation. During EB irradiation process, color indices and absorbance at 254 nm wavelength (UV 254 ) of wastewater were also determined. The results showed that EB irradiation pre-treatment cannot improve the biodegradability of raw textile and dyeing wastewater, which contains a large amount of biodegradable organic matters. In contrast, as to the final effluent of biological treatment process, EB irradiation can enhance the biodegradability to 224%. Therefore, the promising way is to apply EB irradiation as a post-treatment of the conventional biological process. - Highlights: • Irradiation pre-treatment did not improve the raw textile wastewater biodegradability. • Irradiation can highly enhance the biodegradability of biological treated effluent. • EB irradiation can be used as a post-treatment after biological process.

  17. The change of pollen traits in gladiolus irradiated by electron beam

    International Nuclear Information System (INIS)

    Zhang Zhiwei; Wang Dan; Zhang Dongxue; Yuan Xianghui

    2007-01-01

    In order to investigate the feasibility of electron beam induced mutation on Gladiolus and the effects of electron beam with different doses on pollen traits, M1 generation pollen traits were studied by use of 3MeV electron beams with seven doses of 0Gy, 40Gy, 80Gy, 120Gy, 160Gy, 200Gy, 240Gy. It has been shown that the sterile pollen rate of M1 generation is higher than that of control. At low dose there had no obvious effects on the viability and germination rate of M1 generation pollen. With the increase of irradiation dose, the viability and germination rate of pollen was decreased and the difference had statistical significance (P<0.05). Comparing (SEM) photograph of the pollen shapes of M1 generation with control, within a certain doses level, mutagenic effects on pollen increased with the dose increasing in the angle of polynology. Variations of mutagenic effect extent were found at the different irradiation dosage. The EST isozymes expression of M1 generation pollen was obviously changed by electron beam irradiation confirmed by use of PAGE electrophoresis. EST patterns of pollen of Gladiolus irradiated at the dose no more than 120Gy were similar to CK, but there were some differences in the vigor of isozymes. The EST bands added or absent had been observed at the dose more than 160Gy compared to CK. There were a special EST band more and 2 EST bands less in plants treated by both 160Gy and 200Gy electron beam irradiation, and a special EST band more and 1 EST bands less in plants treated by 240Gy electron beam irradiation. The vigor of isozymes of plants treated at the dose more than 160Gy showed some respective differences compared to the other treated and CK's. These results revealed that electron beam irradiation is an effective way for Gladiolus breeding. (authors)

  18. Effects of ion beam irradiation on Oncidium lanceanum orchids

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ions, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as molecular characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, after 4 months of irradiation, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Some morphological changes were seen on in vitro plantlets derived from PLBs irradiated at doses of 1.0 and 2.0 Gy. Most of the regenerated seedlings have been transferred to glasshouse for further morphological selection. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses of irradiation. (Author)

  19. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  20. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  1. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  2. Pre-feasibility study of electron beam irradiation of fresh water

    International Nuclear Information System (INIS)

    Finshi V, Silvia.

    1997-01-01

    A technical/economic evaluation of electron beam irradiation for the decontamination of liquids in the country is presented. Irradiation of fresh water is evaluated for the production of drinking water as a replacement for chlorine disinfection, which can lead to the formation of tri halo methanes. that are carcinogenic compounds. The technical literature states that the percentage of microorganisms removed by electro beam irradiation is high and similar to that found with chlorine disinfection. From an economic point of view, irradiation technology is not presently competitive as an alternative to conventional chlorination in terms of processing costs (US$0.23/m 3 ) instead of US$0.013/m 3 for conventional chlorination. Nevertheless, irradiation costs decreased sharply when unit costs for the accelerator machine are decreased with a resulting drop in capital costs

  3. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  4. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel; Hattar, Khalid

    2017-09-29

    Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.

  5. In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects

    Directory of Open Access Journals (Sweden)

    Caitlin Anne Taylor

    2017-09-01

    Full Text Available Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM. This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs: zirconium alloys and LiAlO2.

  6. The effect of electron beam irradiation on lipid oxidation in sausages

    Directory of Open Access Journals (Sweden)

    atefeh yousefi

    2017-09-01

    Full Text Available Introduction: Irradiation treatment is one of the best techniques to extend the shelf-life of meat, without emerging the nutritional properties and sensory quality of irradiated meat products.  However electron -beam  may cause transformations in foods but has been known as to the most easily-applied irradiation technique in food industries. Electron-beam irradiation is an environment friendly, low cost and time effective alternative to other decontamination technologies. Lipid oxidation could produce of irradiated meat. This study aimed at evaluating the state of lipid oxidation of irradiated sausages. Its findings could help the control, improve food safety and quality properties to food industries. Methods: Sausages were purchased in a local supermarket, minced sausages blended for thiobarbituric acid reactive substances (TBARS analysis and divided into 25 g pieces. The samples including one control group and four case groups. Packaged sausage were exposed at doses of 0 (control, 1, 2, 3 and 5 kGy and analyzed on various days 0, 5, 10 and 30. Results: Thiobarbituric acid reactive substances (TBARS has increased as time goes on (P<0.05. A significant relationship was observed on different Doses. But, the maximum of TBARS was observed in 3 kGy. Conclusion: Utilizing of Electron-beam irradiation in low doses does not have significant difference on lipid oxidation. Irradiating of meat products by addition of antioxidants can minimize or avoid the development of rancidity.

  7. Technology of irradiation of liquids by electron beams

    International Nuclear Information System (INIS)

    Tofaute, K.

    1979-01-01

    The methods of pretreatment, the technical details of the irradiating equipment, the applied radiation doses and the general requirements of the effectively working system are described. The extent of reinfection is compared in cases of heat-treated and electron-irradiated mud. The latter method gave significantly better results. (L.E.)

  8. Effects of ion beam irradiation on Oncidium lanceanum

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Affrida Abu Hassan; Nurul Aliaa Idris; Mohd Nazir Basiran

    2006-01-01

    Protocorm-like bodies (PLBs) of an orchid (Oncidium lanceanum) were irradiated using 220 MeV 12 C 5+ ion, accelerated by AVF cyclotron at JAEA, Japan in 2005. Five different doses were applied to the PLBs; 0, 1.0, 2.0, 6.0 and 12.0 Gy. Following irradiation, these PLBs were maintained in cultures for germination and multiplication. Irradiation effects on growth and seedling regeneration patterns as well as morphological characteristics of the in vitro cultures were monitored and recorded. In general, average fresh weights of the irradiated PLBs increased progressively by irradiating the explants at 1.0, 2.0 and reached the maximum at 6.0 Gy. The figure however dropped when the explants were irradiated at 12 Gy. Surprisingly, although the highest average fresh weight was recorded on PLBs irradiated at 6.0 Gy, most of these PLBs were not able to regenerate into complete shoots. On average, only 21 seedlings were successfully regenerated from each gram of these PLBs. The highest shoot regeneration was recorded on cultures irradiated at 2.0 Gy in which 102 seedlings were obtained from one gram of the PLBs. Most of the regenerated seedlings have been transferred to glass house for morphological screening. Molecular analysis showed the presence of DNA polymorphisms among the seedlings from different doses

  9. Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation

    International Nuclear Information System (INIS)

    Song Weihua; Zheng Zheng; Rami, Abual-Suud; Zhou Tao; Hang Desheng

    2002-01-01

    The goal of this research was to study the degradation of nitrophenol solutions by high-energy electron beam irradiation. The results showed that the degradation processes obey an apparent first-order degradation. At the higher irradiation doses the pH of solutions decreased; however, the dissolved organic carbon of the solutions was essentially unchanged. To investigate the toxicity of the radiolytic products the oxygen uptake rate of activated sludge was determined. The toxicity of irradiated nitrophenol solutions decreased from the initial non-irradiated solutions

  10. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  11. A study on displacement of crystalline diffraction peaks in electron-beam irradiated filter paper cellulose

    International Nuclear Information System (INIS)

    Zhou Ruimin; Xiang Qun; Song Jing

    1997-01-01

    It is found that the crystalline diffraction angles of the electron-beam irradiated filter paper cellulose shift regularly when the irradiation dose is increased. The experiments indicate that the molecules between crystalline area and amorphous area in the filter paper cellulose will be degraded by the irradiation and the cellulose molecules in the surface of crystal will come off, thus the microcrystalline dimension will be reduced and the diffraction angle will become smaller. The fact that intensity of the 002 peak for filter paper samples decreases gradually with the increasing storage time can be attributed to the post-irradiation effect

  12. The prophylactic effect of neck irradiation combined with intra-oral electron beam irradiation for early tongue cancer

    International Nuclear Information System (INIS)

    Kawamori, Jiro; Kamata, Rikisaburo; Sanuki, Eiichi

    1993-01-01

    Between 1967 and 1988, 102 patients with Stage T1-2N0 squamous cell carcinoma of the tongue were treated with uneven fractional irradiation therapy (intra-oral electron beam irradiation with and without prophylactic ipsilateral upper neck irradiation at the Dept. of Radiology, Nihon University School of Medicine. Of 102 primary lesions, 89 cases were controlled with this therapy. In this study, these 89 cases were investigated in order to analyze the prophylactic effect of upper neck irradiation. Of the 89 patients, 42 received only intra-oral electron beam irradiation, while the remaining 47 received a combination of intra-oral electron beam irradiation and prophylactic irradiation to the ipsilateral upper neck. Twenty three of the 89 (25.8%) developed metastasis to the neck after the radiotherapy. A breakdown of these 23 cases reveals that 3/21 (14.3%) received 40-50 Gy to the neck, 9/26 (34.6%) received 20-40 Gy to the neck, and 11/42 (26.2%) received no irradiation to the neck (p<0.05 between first and second groups, and between first and third groups). The neck metastasis was classified into one of three categories based on the region in which it first appeared (ipsilateral upper neck, ipsilateral lower neck or contralateral neck). The first metastasis was seen in the ipsilateral upper neck, in the ipsilateral lower neck and in the contralateral neck in 17, 4 and 2 patients, respectively. In 1/19 who had received 40-50 Gy, in 5/21 who had received 20-40 Gy and in 11/42 who had not received neck irradiation the first metastasis appeared in the ipsilateral upper neck. The five year survival rate was 94%, 75% and 85% in the patients receiving 40-50 Gy, 20-40 Gy and no neck irradiation, respectively. These results suggest that prophylactic irradiation of 40-50 Gy to the ipsilateral upper neck might decrease the incidence of neck metastasis and slightly prolong survival time. (author)

  13. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  14. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  15. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pruminal degradation and reducing antinutritional factors of irradiated canola meal.

  16. A preliminary study on action mechanisms of surviving expression in cell apoptosis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Jin Xiaodong; Li Qiang; Gong Li; Wu Qingfeng; Li Ping; Dai Zhongying; Liu Xinguo; Tao Jiajun

    2010-01-01

    It has been proven that over-expression of surviving in cancerous cell lines is related to the radioresistance of cells to high-LET radiation in previous work. In this study, action mechanisms of surviving gene in apoptosis induced by high-LET radiation were investigated. We found that inhibiting surviving by siRNA had no notable influence on Bcl-2 and Bax expressions induced by carbon ions. Surviving depressed cell apoptosis through the inhibition of the activities of caspase-3 and -9 possibly in cell apoptosis induced by high-LET radiation. (authors)

  17. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo [Dongguk University, Gyeongju (Korea, Republic of); Shon, Yun-Hee [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2012-07-15

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor-β (TGF-β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF-β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused the MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF-β and VEGF transcription.

  18. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  19. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin; Min, Daomin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shengtao, E-mail: stli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Zhen; Xie, Dongri [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xuan [Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040 (China); Lin, Shengjun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Pinggao Group Company Ltd., State Grid High Voltage Switchgear Insulation Materials Laboratory, Pingdingshan 467001 (China)

    2017-06-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al{sub 2}O{sub 3} microcomposite was investigated. Epoxy resin/Al{sub 2}O{sub 3} microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  20. Effects of tissue inhomogeneities on dose patterns in cylinders irradiated by negative pion beams

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.

    1975-10-01

    Effects of the presence of inhomogeneities in tissue irradiated by negative pion beams are investigated. Soft-tissue targets are considered with embedded regions of bone and cavities of air. The absorbed dose is calculated as a function of position in the targets for parallel and converging beams and for two parallel beams that enter the target from opposite sides. Isodose contours are calculated and displayed in each case. While these studies show expected trends, they indicate that specific calculations are needed for other beam parameters and target geometries. The contributions of neutrons to the dose contours can be seen from several calculations made both with and without neutrons

  1. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  2. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  3. Crystalline structure of polypropylene in blends with thermoplastic elastomers after electron beam irradiation

    International Nuclear Information System (INIS)

    Steller, Ryszard; Zuchowska, Danuta; Meissner, Wanda; Paukszta, Dominik; Garbarczyk, Jozef

    2006-01-01

    Isotactic polypropylene (PP) was blended in extruder with 0-50% addition of styrene-ethylene/butylene-styrene (SEBS) and styrene-butadiene-styrene (SBS) block copolymers. Granulated blends were irradiated with electron beam (60 kGy) and 1 week later processed with injection molding machine. Properties of samples molded from irradiated and non-irradiated granulates were investigated using DSC, WAXS, MFR, SEM and mechanical and solubility tests. It was found that the SEBS based systems are more resistant to irradiation in comparison to similar blends with SBS copolymer. Such behavior can be explained by the presence of double bonds in elastic SBS block. Irradiation of PP-SBS blends leads to considerable structure changes of crystalline and amorphous PP phases and elastic SBS phase. It indicates creation of new (inter)phase consisting of products of grafting and cross-linking reactions. Irradiated PP-SBS blends show significant improvement of impact strength at low temperatures

  4. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  5. Dose rate distribution of the GammaBeam: 127 irradiator using MCNPX code

    International Nuclear Information System (INIS)

    Gual, Maritza Rodriguez; Batista, Adriana de Souza Medeiros; Pereira, Claubia; Faria, Luiz O. de; Grossi, Pablo Andrade

    2013-01-01

    The GammaBeam - 127 Irradiator is widely used for biological, chemical and medical applications of the gamma irradiation technology using Cobalt 60 radioactive at the Centro de Desenvolvimento da Tecnologia Nuclear CDTN/CNEN, Belo Horizonte, Brazil. The source has maximum activity of 60.000Ci, which is composed by 16 double encapsulated radioactive pencils placed in a rack. The facility is classified by the IAEA as Category II (dry storage facility). The aim of this work is to present a modelling developed to evaluate the dose rates at the irradiation room and the dose distribution at the irradiated products. In addition, the simulations could be used as a predictive tool of dose evaluation in the irradiation facility helping benchmark experiments in new similar facilities. The MCNPX simulated results were compared and validated with radiometric measurements using Fricke and TLDs dosimeters along several positions inside the irradiation room. (author)

  6. The combined effects of e-beam irradiation and microwaves on starch, flour and ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.S.; Martin, D.; Minea, R.; Tirlea, A.; Badea, M.

    1998-01-01

    The influences of both microwave field and electron beam irradiation, separately and combined, mainly on physical parameters of corn starch, wheat flour and black pepper were studied. These treatments have been used to achieve the hygienic and microbiological quality requirements of these materials and for their dehydration. The electron-beam irradiation has been carried out by using an ALIN-7 linear accelerator with the following parameters: electron mean energy 6 MeV, mean bean current 10 μA, pulse period 3.5 μs. repetition frequency 100 Hz. For microwave experiments, a special designed microwave applicator consisting of a special cavity, a power controlled generator with a 2.45 GHz standard frequency CW magnetron of 850 W maximum output power was used. The experiments were carried out in 5 variants: microwave treatment solely; electron beam irradiation solely; microwave treatment followed by electron beam irradiation; electron beam irradiation followed by microwave treatment; simultaneous microwave and electron beam treatment. The samples were treated by microwaves at 4 different power values from 250 W to 550 W for 5 different exposure times. The electron beam irradiation took place within the dose range of 1 - 10 kGy, at the same dose rate of approximately 2 kGy/min. The influence of these two physical fields on some common properties (r.h., pH), spectrophotometric (UV-VIS spectra), viscometric (rheograms) and microbiological (CFU/g) properties of the food materials was evaluated. A direct relationship between the variables was observed. The microwave effects are mainly thermal effects, although a non-thermal effect was also observed. The main microbiocidal action is due to the electron beam effect, although the microwave treatment affects sometimes significantly both the microbial population and its sensitivity to irradiation. The combined treatment indicates the presence of a synergistic effect of microwaves and electron-beams, which is of non

  7. Effect of Electron Beam Irradiation on the Structure and Optical Properties of Poly (vinyl alcohol)

    International Nuclear Information System (INIS)

    Abutalib, M.M.

    2011-01-01

    Samples from of the polymeric material poly (vinyl alcohol) PVA have been exposed to electron beam in the dose range 5-100 kGy. The modifications induced in PVA samples due to electron beam irradiation have been studied through different characterization techniques such as X-ray diffraction XRD, Fourier Transform Infrared spectroscopy FTIR and color difference studies. The FTIR spectroscopy indicated that the degradation is the dominant mechanism at the dose range 5-60 kGy. Above 60 and up to 100 kGy, crosslinking is achieved. The crosslinking reported by FTIR spectroscopy destroyed the degree of ordering in the PVA samples as revealed by XRD. Additionally, the non irradiated PVA samples showed significant color sensitivity towards electron beam irradiation that appeared in the increase of the green and blue color components. This was accompanied by a net increase in the darkness of the samples

  8. Mechanical and thermal properties of commercial multilayer PET/PP film irradiated with electron-beam

    International Nuclear Information System (INIS)

    Ortiz, Angel V.; Nogueira, Beatriz R.; Oliveira, Vitor M.; Moura, Esperidiana A.B.

    2009-01-01

    The effects of electron-beam irradiation on mechanical and thermal properties, for one commercial flexible food packaging multilayer structure, were studied. The laminated poly(ethylene terephthalate) (PET)/ polypropylene (PP) structure was irradiated up to 60 kGy, using a 1.5 MeV electron beam accelerator, at room temperature in the presence of air. Mechanical properties showed significant changes (p < 0.05). In addition, the DSC analysis, after treatment, showed that the fusion enthalpy and crystallinity of the PET/PP structure components presented significant changes (p < 0.05) with the electron-beam radiation doses applied. It was observed an increase in PP crystallinity while the PET crystallinity decreases. Such decrease in PET crystallinity indicates the predominance of a cross-linking process on the irradiated PET layer; responsible for the increase in some mechanical properties of the studied film. (author)

  9. A study on chemical composition of spices irradiated by electron beam

    International Nuclear Information System (INIS)

    Ding Lianzhong; Ding Shiyue; Zhu Yan; Li Yixu; Zhu Songmei

    1998-01-01

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000i ion chromatograph. The results showed that the acids content of either chilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 deg. C, 30min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating

  10. A study on chemical composition of spices irradiated by electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Lianzhong, Ding [Inst. of Applied Technical Physics of Zhejiang Province (China); Shiyue, Ding; Yan, Zhu; Yixu, Li [Testing Technology Inst. of Zhejiang Province (China)

    1992-02-01

    Quantitative changes in common organic acids and inorganic acids from spices irradiated by electron beam were studied by Dionex-4000 ion Chromatograph. The results showed that the acids content of either achilli or the five-spice powder irradiated with a dose of 9.94 kGy did not undergo significant changes in comparison with the control samples. The flavour composition in the five-spice powder irradiated by electron beam was also determined by Finnigan MAT-8230B gas chromatograph-mass spectrometer, and compared to the results by heating treatment (120 C, 30 min). The comparison indicated that the effect of electron beam treatment on flavour composition was less than that of heating.

  11. Radiomodifying effect of caffeine on mammalian cellular system using gamma radiation and proton beam radiation

    International Nuclear Information System (INIS)

    Samanth, Sneha P.; Yadav, Usha; Shirsath, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Bhat, Nagesh N.; Anjaria, K.B.; Sapra, B.K.

    2016-01-01

    Caffeine is a commonly consumed neurostimulant in the world. Reports suggest the radiomodifying effects of caffeine against low Linear Energy Transfer (LET) radiation when administered pre and post irradiation by releasing checkpoint arrest. In the present report, the radioprotective and radiosensitizing ability of caffeine (10μM - 2mM) were studied on Chinese Hamster Ovary (CRO) cell line against low as well as high LET radiation when administered pre, post and continuously during radiation. Effect of caffeine treatment on the genotoxicity induced by gamma and proton beam radiation was assessed by micronucleus assay. Effect of caffeine treatment on clonogenic survival of irradiated cells was also assessed

  12. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    International Nuclear Information System (INIS)

    Lu Dong; Li Wenjian; Wu Xin; Wang Jufang; Ma Shuang; Liu Qingfang; He Jinyu; Jing Xigang; Ding Nan; Dai Zhongying; Zhou Jianping

    2010-01-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20 Ne 10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  13. Study on DNA Damage Induced by Neon Beam Irradiation in Saccharomyces Cerevisiae

    Science.gov (United States)

    Lu, Dong; Li, Wenjian; Wu, Xin; Wang, Jufang; Ma, Shuang; Liu, Qingfang; He, Jinyu; Jing, Xigang; Ding, Nan; Dai, Zhongying; Zhou, Jianping

    2010-12-01

    Yeast strain Saccharomyces cerevisiae was irradiated with different doses of 85 MeV/u 20Ne10+ to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Gy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T→G and T→C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

  14. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my; Hairaldin, Siti Zulaiha, E-mail: sarada@nuclearmalaysia.gov.my; Tajau, Rida, E-mail: sarada@nuclearmalaysia.gov.my; Karim, Jamilah, E-mail: sarada@nuclearmalaysia.gov.my; Jusoh, Suhaimi, E-mail: sarada@nuclearmalaysia.gov.my; Ghazali, Zulkafli, E-mail: sarada@nuclearmalaysia.gov.my [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); Ahmad, Shamshad [School of Chemicals and Material Engineering, NUST Islamabad (Pakistan)

    2014-02-12

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

  15. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    Science.gov (United States)

    Idris, Sarada; Hairaldin, Siti Zulaiha; Tajau, Rida; Karim, Jamilah; Jusoh, Suhaimi; Ghazali, Zulkafli; Ahmad, Shamshad

    2014-02-01

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive.

  16. An experience of electron beam (EB) irradiated gemstones in Malaysian nuclear agency

    International Nuclear Information System (INIS)

    Idris, Sarada; Hairaldin, Siti Zulaiha; Tajau, Rida; Karim, Jamilah; Jusoh, Suhaimi; Ghazali, Zulkafli; Ahmad, Shamshad

    2014-01-01

    In Nuclear Malaysia, a study on gemstone irradiation using beta particle is conducted. The purpose of the study is to evaluate the gemstone colour enhancement by using different kind of precious and non-precious gemstones. By using irradiation technique, selected gemstones are exposed to highly ionizing radiation electron beam to knock off electrons to generate colour centres culminating in the introduction of deeper colours. The colour centres may be stable or unstable depending on the nature of colour centre produced. The colour change of irradiated stones were measured by HunterLab colour measurement. At 50 kGy, Topaz shows changes colour from colourless to golden. Meanwhile pearl shows changes from pale colour to grey. Kunzite and amethyst shows colour changes from colorless to green and pale colour to purple. Gamma survey meter measurement confirmed that irradiation treatment with 3 MeV electron beam machine does not render any activation that activate the gems to become radioactive

  17. Dose effects on damage of thymidylic acid and its components irradiated by A N+ ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Yu Zengliang

    1996-08-01

    Research into damage of DNA components is an important field in mechanism study to the low energy ion beam irradiation. It was found that the UV difference spectra of irradiated thymine (T) had two positive peaks caused by the changes of π electron conjugation of the pyrimidine ring, and that the residual activity of T sample irradiated by a N + ion beam was not influenced by treatments of acid and alkali as well as heat. In addition, the residual activities of irradiated thymidine (dTR) and thymidine 5'-phosphate (5'-dTMP) with and without treating of strong acid and strong alkali were also measured. With UV absorption spectrophotometry, the yield of T released from the irradiated samples of dTR and 5'-dTMP and the residual concentration of these target molecules were deduced, and it was found that the yield of T increased when the solution of the irradiated dTR sample was treated by heat but decreased when this solution was treated by acid and alkali for these treatments splitting T-S or T-S-P. On the other hand, the yield of inorganic phosphate released from the irradiated 5'-dTMP was investigated and found that it was increased by the treatment of alkali and that the increase degree was depended on the time scale of the treatment. Moreover, G(Pi) of the irradiated 5'-dTMP non-linearly decreased with increasing dose. (10 figs.)

  18. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    Science.gov (United States)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  19. Evaluation of antimicrobial and antibiofilm activity of electron beam irradiated endodontic sealer

    International Nuclear Information System (INIS)

    Shetty, Veena; Geethashri, A.; Palaksha, K.J.; Shridhar, K.R.; Sanjeev, Ganesh

    2013-01-01

    The complete disinfection of root canal is achieved by endodontic instrumentation, irrigation and medications followed by complete filling of the canal space by appropriate sealer. However careful cleaning and shaping of the canal system do not assure the complete eradication of microorganisms from tubular or lateral canals. Therefore, to avoid the possible growth of microorganisms, the filling endodontic material should have good antimicrobial effect on the pathogens causing root canal failure or pulpo-periapical pathosis. Zinc Oxide- Eugenol (ZOE) is the most commonly used filling material in endodontics. Electron beam (e-beam) radiation is a form of ionizing radiation known to induce physiochemical and biological changes in the irradiated substances. Hence, the present study was carried out to evaluate the effect of e-beam radiation on antimicrobial property of ZOE sealer against root canal pathogens like Enterococcus faecalis, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The homogenous paste of Zinc oxide and Eugenol prepared by mixing at the ratio of 3:1 was loaded into the sterile molds of 6 mm diameter. After complete drying of paste, discs were aseptically separated from the mould. The prepared discs were subjected to e-beam irradiation of 250 Gy, 500 Gy, 750 Gy and 1000 Gy at Microtron Centre, Mangalore University. Antimicrobial and antibiofilm properties of control and irradiated sealer were determined by well diffusion method and growing the biofilm according to O'Toole method, respectively. The antimicrobial effect was observed only against S.aureus and C. albicans in non-irradiated ZOE. The ZOE sealer irradiated at 1000 Gy showed the significantly increased (P<0.001) antimicrobial effect against S. aureus and C. albicans. However, the substantially increased antibiofilm activity against C.albicans was noticed in the ZOE irradiated at 250 Gy. This study showed that e-beam irradiation at 1000 Gy and 250 Gy were found to be optimum

  20. Gemstone color enhancement by electron beam irradiation-A preliminary study

    International Nuclear Information System (INIS)

    Sarada Idris; Zulkafli Ghazali; Shamshad Ahmad; Mohd Suhaimi Jusoh

    2010-01-01

    Treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9 MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones mined in Pakistan and elsewhere. The study shows that EB Irradiation not only enhances the color but also improves the clarity of the gemstones. The treated stones included kunzite tourmaline topaz quartz aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 kGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the rough and the faceted gems. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market. (author)

  1. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Gil-Hah, E-mail: khkim@chungbuk.ac.kr [Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2012-01-15

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii. - Highlights: > Electron beam irradiation inhibited normal development of the leaf miner. > Electron beam irradiation inhibited normal reproduction of the leaf miner. > Electron beam irradiation increased levels of DNA damage. > Electron beam irradiation induced p53 stability.

  2. In-situ synthesis of Ag nanoparticles by electron beam irradiation

    International Nuclear Information System (INIS)

    Gong, Jiangfeng; Liu, Hongwei; Jiang, Yuwen; Yang, Shaoguang; Liao, Xiaozhou; Liu, Zongwen; Ringer, Simon

    2015-01-01

    Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber at room temperature and the growth mechanism was explored in detail. The sizes of the Ag nanoparticles are controlled by the electron beam current density. Two nanoparticle growth stages were identified. The first growth stage was dominated by the discharging effect, while the second stage was controlled by the heating effect. The nanoparticle synthesis method should be applicable to the synthesis of other metallic nanoparticles. - Highlights: • Ag nanoparticles were synthesized by electron beam irradiation in the transmission electron microscope chamber. • The sizes of the Ag nanoparticles are controlled by the electron beam current density. • The growth mechanism was studied, two growth stages were confirmed. • The first growth stage was dominated by the discharging effect, and the second stage was controlled by the heating effect.

  3. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  4. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Oliveira, L.N. de.

    1975-01-01

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  5. Degradation of ampicillin in pig manure slurry and an aqueous ampicillin solution using electron beam irradiation

    Science.gov (United States)

    Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Min Hee; Lee, Kang Soo; Hwang, Seon Ah; Cho, Jae Young

    2009-07-01

    This study was carried out to evaluate the efficiency of degradation of antibiotic ampicillin in pig manure slurry and an aqueous ampicillin solution with the use of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of ampicillin was close to 95% at an absorbed dose of 10 kGy. The degradation of ampicillin followed a "first-order" reaction rate with respect to absorbed dose. The results demonstrate that the electron beam irradiation technology is an effective means to remove antibiotics in manure and bodies of water.

  6. Surface nanostructuring of TiO2 thin films by ion beam irradiation

    International Nuclear Information System (INIS)

    Romero-Gomez, P.; Palmero, A.; Yubero, F.; Vinnichenko, M.; Kolitsch, A.; Gonzalez-Elipe, A.R.

    2009-01-01

    This work reports a procedure to modify the surface nanostructure of TiO 2 anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N + ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S + ) and lighter (B + ) ions under similar conditions

  7. Degradation of ampicillin in pig manure slurry and an aqueous ampicillin solution using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Min Hee; Lee, Kang Soo; Hwang, Seon Ah; Cho, Jae Young

    2009-01-01

    This study was carried out to evaluate the efficiency of degradation of antibiotic ampicillin in pig manure slurry and an aqueous ampicillin solution with the use of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of ampicillin was close to 95% at an absorbed dose of 10 kGy. The degradation of ampicillin followed a 'first-order' reaction rate with respect to absorbed dose. The results demonstrate that the electron beam irradiation technology is an effective means to remove antibiotics in manure and bodies of water.

  8. Fabrication of carbon layer coated FE-nanoparticles using an electron beam irradiation

    Science.gov (United States)

    Kim, Hyun Bin; Jeun, Joon Pyo; Kang, Phil Hyun; Oh, Seung-Hwan

    2016-01-01

    A novel synthesis of carbon encapsulated Fe nanoparticles was developed in this study. Fe chloride (III) and polyacrylonitrile (PAN) were used as precursors. The crosslinking of PAN molecules and the nucleation of Fe nanoparticles were controlled by the electron beam irradiation dose. Stabilization and carbonization processes were carried out using a vacuum furnace at 275 °C and 1000 °C, respectively. Micro structures were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fe nanoparticles were formed with diameters of 100 nm, and the Fe nanoparticles were encapsulated by carbon layers. As the electron beam irradiation dose increased, it was observed that the particle sizes decreased.

  9. Thermoluminescent characteristics of CaSO4:Dy+PTFE irradiated with high energy electron beams

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y.; Rodriguez, J.; Oviedo, O.; Azorin, J.

    2011-10-01

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO 4 :Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO 4 :Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO 4 :Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO 4 :Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  10. Effect of ammonia and electron beam irradiation on lignocelulosic materials

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Gennari, S.M.; Castagnet, A.C.G.

    1986-01-01

    Reports on some of the effects produced on sugarcane bagasse and eucaliptus wood saccharification by combining irradiation and NH 3 treatment. The samples irradiated at 10 5 Gy, 2x10 5 Gy and 5x10 5 Gy with an electron accelerator were treated with anhydrous gaseous ammonia. Cellulase complex from T. reesei was used for hydrolysis assays. Bromatological analysis and 'in vitro' digestibility tests were performed. The combination of EBI and ammonia treatments produced and increase in the saccharification yield, 'in vitro' digestibility and protein content for the two kinds of sample. (Author) [pt

  11. Ion-irradiated polymer studied by a slow positron beam

    International Nuclear Information System (INIS)

    Kobayashi, Yoshinori; Kojima, Isao; Hishita, Shunichi; Suzuki, Takenori.

    1995-01-01

    Poly (aryl-ether-ether ketone) (PEEK) films were irradiated with 1MeV and 2MeV 0 + ions and the positron annihilation Doppler broadening was measured as a function of the positron energy. The annihilation lines recorded at relatively low positron energies were found to become broader with increasing the irradiation dose, suggesting that positronium (Ps) formation may be inhibited in the damaged regions. A correlation was observed between the Doppler broadening and spin densities determined by electron spin resonance (ESR). (author)

  12. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  13. Optimization of the irradiation beam in the BNCT research facility at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Castro, Vinicius Alexandre de

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapeutic technique for the treatment of some types of cancer whose useful energy comes from a nuclear reaction that occurs when thermal neutron impinges upon a Boron-10 atom. In Brazil there is a research facility built along the beam hole number 3 of the IEA-R1 research reactor at IPEN, which was designed to perform BNCT research experiments. For a good performance of the technique, the irradiation beam should be mostly composed of thermal neutrons with a minimum as possible gamma and above thermal neutron components. This work aims to monitor and evaluate the irradiation beam on the sample irradiation position through the use of activation detectors (activation foils) and also to propose, through simulation using the radiation transport code, MCNP, new sets of moderators and filters which shall deliver better irradiation fields at the irradiation sample position In this work, a simulation methodology, based on a MCNP card, known as wwg (weight window generation) was studied, and the neutron energy spectrum has been experimentally discriminated at 5 energy ranges by using a new set o activation foils. It also has been concluded that the BNCT research facility has the required thermal neutron flux to perform studies in the area and it has a great potential for improvement for tailoring the irradiation field. (author)

  14. A variable electron beam and its irradiation effect on optical and ...

    Indian Academy of Sciences (India)

    A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by ...

  15. Liquid holding recovery kinetics in wild-type and radiosensitive mutants of the yeast Saccharomyces exposed to low- and high-LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Petin, Vladislav G. [Biophysical Laboratory, Medical Radiological Research Center, 249036 Obninsk (Russian Federation); Kim, Jin Kyu [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)]. E-mail: jkkim@kaeri.re.kr

    2005-02-15

    Three wild-type diploid yeast strains Saccharomyces ellipsoideus and Saccharomyces cerevisiae and five radiosensitive mutants of S. cerevisiae in the diploid state were irradiated with {gamma}-rays from {sup 60}Co and {alpha}-particles from {sup 239}Pu in the stationary phase of growth. Survival curves and the kinetics of the liquid holding recovery were measured. It was shown that the irreversible component was enhanced for the densely ionizing radiation in comparison to the low-LET radiation while the probability of the recovery was identical for both the low- and high-LET radiations for all the strains investigated. It means that the recovery process itself is not damaged after densely ionizing radiation and the enhanced RBE of the high-LET radiation may be caused by the increased yield of the irreversible damage. A parent diploid strain and all its radiosensitive mutants showed the same probability for recovery from radiation damage. Thus, the mechanism of the enhanced radiosensitivity of the mutant cells might not be related to the damage of the repair systems themselves but with the production of some kind of radiation damage from which cells are incapable to recover.

  16. Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls

    International Nuclear Information System (INIS)

    Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong

    2013-01-01

    The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D 10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D 10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D 10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D 10 -values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein. - Highlights: ► Our research material is steamed tofu rolls, a kind of soybean products. ► We compared the effects of gamma ray and electron beam irradiation. ► Total bacterial and three strains of pathogens are studied in our research. ► We reported electron beam has similar decontamination effect as gamma ray. ► Radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.

  17. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang [Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-09-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure.

  18. Effects of electron beam irradiation on the structural properties of polylactic acid/polyethylene blends

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Ratnam, C.T.; Sin, Lee Tin; Tee, Tiam-Ting; Wong, Wai-Kien; Lee, Jiuun-Xiang; Rahmat, A.R.

    2014-01-01

    Highlights: •Electron beam irradiation on polyethylene (LDPE) and polylactic acid (PLA) blends. •Irradiated PLA/LDPE blends exhibit structural rearrangement to highly ordered structure. •Irradiated PLA/LDPE matrix extends continuity of polymer matrix with larger fibrils diameter. -- Abstract: The purpose of this research was to investigate the effects of electron beam irradiation on the properties of polylactic acid (PLA) and low density polyethylene (LDPE) blends. The PLA were compounded with 20–80% LDPE and were exposed to electron beam irradiation dosages of 20–120 kGy. The results from gel content and X-ray diffraction analyses showed that the addition of LDPE to PLA effectively increased the gel content and crystallinity. However, an increasing percentage of LDPE reduced the tensile strength and Young’s modulus of the PLA/LDPE samples due to the lower intermolecular bonding of LDPE than of PLA. Moreover, an increase in irradiation dosages gradually decreased the mechanical properties of low-LDPE PLA/LDPE. In contrast, the increasing irradiation dosage enhanced the mechanical properties of higher-LDPE PLA/LDPE. These results indicate that higher amounts of LDPE effectively react with the release of free radicals within the amorphous phase if the blends are subjected to irradiation. The higher amounts of free radicals induce the formation of three-dimensional cross-linked networks in the polymer matrix and thus increase the gel content. The irradiation-induced cross-linking in PLA/LDPE samples improves the mechanical properties and crystallinity by promoting a structural rearrangement of the polymer matrix into a highly ordered structure

  19. Quality of 'Climax' blueberries after low dosage electron beam irradiation

    International Nuclear Information System (INIS)

    Miller, W.R.; McDonald, R.E.; McCollum, T.G.; Smittle, B.J.

    1994-01-01

    Fruit of 'Climax' rabbiteye blueberries (Vaccinium ashei Reade) were irradiated by a linear accelerator at 0, 0.25, 0.5, 0.75, 1.0, and 1.25 kGy and evaluated for various quality attributes after storage for 1, 3, 7, or 14 days at 1C plus 2 days at 15C, respectively. Weight loss increased during storage and averaged 4.2% after the final inspection and was not affected by irradiation dosage. About 5% of total berries were decayed after 14 days at 1C, about 6% after the final inspection at 15C, but decay was not affected by the level of irradiation. Electrolyte leakage, skin color, total soluble solids, acidity, and pH were also not affected by irradiation dosage. There was a significant decline in berry firmness, flavor, and texture as dosage increased. Berries treated at 1.0 kGy or above were softer and had lower flavor and texture preference scores than berries treated at lower dosages or nontreated berries

  20. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  1. Projected beam irradiation at low latitudes using Meteonorm database

    DEFF Research Database (Denmark)

    Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn

    2009-01-01

    by a collector provided the projection angle lies within the acceptance angle. The Meteonorm method of calculating solar radiation on any arbitrary oriented surface uses the globally simulated meteorological databases. Meteonorm has become a valuable too for estimating solar radiation where measured solar...... radiation data is missing or irregular. In this paper we present the projected beam solar radiation at low latitudes based on the standard Meteonorm calculations. The conclusion is that there is potential in using solar concentrators at these latitudes since the projected beam radiation is more during...

  2. The reactivity of plant, murine and human genome to electron beam irradiation

    International Nuclear Information System (INIS)

    Gavrila, L.; Usurelu, D.; Radu, I.; Timus, D.

    2005-01-01

    A broad spectrum of chromosomal rearrangements is described in plants (Allium cepa), mouse (Mus musculus domestics) and in humans (Homo sapiens sapiens), following in vivo and in vitro beta irradiation. Irradiations were performed at EAL, using a 2.998 GHz traveling-wave electron accelerator. The primary effect of electron beam irradiation is chromosomal breakage followed up by a variety of chromosomal rearrangements i.e. chromosomal aberrations represented mainly by chromatid gaps, deletions, ring chromosomes, dicentrics, translocations, complex chromosomal interchanges, acentric fragments and double minutes (DM). The clastogenic effects were associated in some instances with cell sterilization (i.e. cell death)

  3. Positron annihilation and thermally stimulated current of electron beam irradiated polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Shigetaka; Shinyama, Katsuyoshi; Baba, Makoto [Hachinohe Inst. of Tech., Hachinohe, Aomori (Japan); Suzuki, Takenori

    1997-03-01

    Positron lifetime measurements were applied to electron beam irradiated poly(ether-ether-ketone). The lifetime, {tau}{sub 3}, of the ortho-positronium of unirradiated and 5 MGy irradiated specimen became rapidly longer above about 150degC. {tau}{sub 3} of 50 MGy and 100 MGy irradiated specimen was shorter than that of unirradiated one. Thermally stimulated current (TSC) decreased with increasing the dose before voltage application. In the case of voltage application, a TSC peak appeared and the peak value decreased with increased the dose. The correlation between the results of positron annihilation and TSC was investigated. (author)

  4. Effect of electron beam irradiation on viscosity/temperature characteristics of cellulose derivatives

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.; Yamasaki, M.C.R.

    1991-11-01

    The direct relationship between intrinsic viscosity and molecular weight of polymers allowed to attend the aggregation, cross-linking and degradation processes induced by electron beam irradiation on carboxymethylcellulose and hydroxiethylcellulose in aqueous solutions. The changes in viscosity were related to irradiation doses from 2.5x10 4 Gy to 25x10 4 Gy at 5 0 C, 25 0 C, 50 0 C and 75 0 C measured at different intervals after irradiation. The results showed the viscosity decrease characteristics as a function of those parameters for each one of the polymers. (author)

  5. Radioprotective efficacy of Carica papaya (L.) leaf extract in electron beam irradiated Swiss albino mice

    International Nuclear Information System (INIS)

    Yogish Somayaji, T.; Suchetha Kumari, N.

    2016-01-01

    Previous studies have shown that leaf extract of Carica papaya (Linn.) has antibacterial, antitumor, antioxidant, anti-sickling properties and has shown to increase the platelets in patients with dengue fever. In the present study, the radioprotective effects and radioadaptive response of Carica papaya (L.) was evaluated in mice irradiated with electron beam radiation. Radiation induced hematological suppression was seen at sublethal doses of 6 Gy irradiated groups. There was a decrease in hemoglobin, red blood cell, total white blood cell count and platelet counts in irradiated groups whereas papaya leaf extract enhanced platelet levels indicated thrombopoietic effect

  6. Gamma and electron beam irradiation effects on SiR-EPDM blends

    Directory of Open Access Journals (Sweden)

    R. Deepalaxmi

    2014-07-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM is widely used as Cable Insulation Material (CIM due to its good mechanical strength. Silicone Rubber (SiR is used in high temperature environments due to its good di-electric properties/hydrophobicity. The blending of SiR-EPDM may result in the improvement in their specific properties. The SiR-EPDM blend of equal composition (50:50 was prepared. When such blends are used as Cable Insulation Materials (CIM, they should perform their safety functions throughout their installed life in Nuclear Power Plants (NPP. The CIM will be exposed to Gamma irradiation at the installed locations. The short time accelerated testing was carried out, in order to forecast long-term performance of CIM. Electron beam irradiation is widely used in cable manufacturing industries to improve the performance of the polymeric materials. In the current study, on the purpose to investigate the effect of gamma/electron beam irradiation on the 50–50 composition of SiR-EPDM blend, blend was exposed to 25 Mrad dose of gamma/electron beam irradiation. The electrical and mechanical parameters like Volume Resistivity (VRY, Surface Resistivity (SRY, Tensile Strength (TS, Elongation at Break (EB, Hardness (H of the virgin, gamma/electron beam irradiated blends were determined as per ASTM/IEC standards. The nature of degradation was investigated using Fourier Transform Infrared Spectroscopy (FTIR. To determine the elemental composition of the materials at the surface, Energy Dispersive X-ray Analysis (EDAX has been done. Scanning Electron Microscopy (SEM analysis has been done to study the morphological changes. The occurrence of cross-linking is found to be the mechanism for ageing in gamma/electron beam irradiated SiR-EPDM blends.

  7. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  8. Detection of irradiated fresh fruits treated by e-beam or gamma rays

    International Nuclear Information System (INIS)

    Marin-Huachaca, N.S.; Lamy-Freund, Maria Tereza; Mancini-Filho, Jorge; Delincee, Henry; Villavicencio, A.L.C.H.

    2002-01-01

    Since about 1990, the amount of commercially irradiated food products available worldwide has increased. Commercial irradiation of foods has been allowed in Brazil since 1973 and now more than 20 different food products are approved. Among these products are a number of fresh fruits which may be irradiated for insect disinfestation, to delay ripening and to extend shelf-life. Today, there is a growing interest to apply radiation for the treatment of fruits instead of using fumigation or e.g. vapour-heat treatments, and an increased international trade in irradiated fruits is expected. To ensure free consumer choice, methods to identify irradiated foods are highly desirable. In this work, three detection methods for irradiated fruits have been employed: DNA Comet Assay, the half-embryo test and ESR. Both electron-beam (e-beam) and gamma rays were applied in order to compare the response with these two different kinds of radiation. Fresh fruits such as oranges, lemons, apples, watermelons and tomatoes were irradiated with doses in the range 0, 0.50, 0.75, 1.0, 2.0 and 4.0 kGy. For analysis, the seeds of the fruits were utilized. Both DNA Comet Assay and the half-embryo test enabled an easy identification of the radiation treatment. However, under our conditions, ESR measurements were not satisfactory

  9. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, A. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Lupinacci, A. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Frazer, D.; Bailey, N.; Vo, H.; Howard, C. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Jiao, Z. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States); Minor, A.M. [National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Chou, P. [Electric Power Research Institute, Palo Alto, CA (United States); Hosemann, P., E-mail: peterh@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2017-04-01

    Recent developments in micromechanical testing have allowed for the efficient evaluation of radiation effects in micron-scale volumes of ion-irradiated materials. In this study, both nanoindentation and in situ SEM microcompression testing are carried out on 10 dpa proton beam irradiated 304 stainless steel to assess radiation hardening and radiation-induced deformation mechanisms in the material. Using a focused ion beam (FIB), arrays of 2 μm × 2 μm cross-section microcompression pillars are fabricated in multiple dose regimes within the same grain, providing dose-dependent behavior in a single crystal orientation. Analysis of the microcompression load-displacement data and real-time SEM imaging during testing indicates significant hardening, as well as increased localization of deformation in the irradiated material. Although nanoindentation results suggest that irradiation hardening saturates at low doses, microcompression results indicate that the pillar yield stress continues to rise with dose above 10 dpa in the tested orientation. - Highlights: •Mechanical properties are probed in small volumes of proton irradiated 304SS. •Nanoindentation indicates saturation of irradiation hardening at doses of 5–10 dpa. •Microcompression of irradiated specimens suggest localized deformation.

  10. Effectiveness of electron beam irradiation in the control of some soilborne pathogens

    International Nuclear Information System (INIS)

    Orlikowski, L.B.; Ptaszek, M.; Migdal, W.; Gryczka, U.

    2011-01-01

    Electron beam (EB) irradiation was tested against Botrytis cinerea, Pythium ultimum and Phytophthora citricola the most dangerous pathogens causing stem and root rot of seedlings, cuttings and older plants. In the laboratory trials cultures of 3 species were irradiated with doses 0 (control), 1.5, 3.0, 4.5 and 6.0 kGy whereas peat was treated with 10, 15 and 25 kGy. P. citricola was the most sensitive species for irradiation. In greenhouse trials 15 kGy irradiation of peat protected chrysanthemum cuttings against B. cinerea and P. ultimum as well as rhododendron young plants against P. citricola. Irradiation of peat did not influence the growth and development of the tested plants. (authors)

  11. Effect of electronic beam irradiation on last instar larvae of lasioderma serricorne fabricius

    International Nuclear Information System (INIS)

    Chen Yuntang; Guo Dongquan; Lu Xiaohua; Zhang Jianwei; Yang Baoan; Du Yueguang; Liu Jiangyu; Tian Zhanjun; Zhang Xiaoyan

    2010-01-01

    The electronic beam irradiation effects on the last instar larvae of cigarette beetle (Lasioderma serricorne Fabricius) in tobacco were studied, and the mortality in 42 days, lethal time, pupation rate, emergence rate and reproductive capacity after irradiation were measured. The results showed that the mortality increased with the increase of irradiation dosage, but the larvae did not dead immediately. The last instar larvae irradiated by the dosages higher than 480 Gy could prevent the development of larvae to adults. No new generation was found after 300 Gy treatment of the last instar larvae. So 300 Gy irradiation could be considered as a suitable dose to prevent the reproduction of cigarette beetle of the last instar larvae in the tobacco. (authors)

  12. Low temperature electron beam irradiation effects on the lactate dehydrogenase activity

    International Nuclear Information System (INIS)

    Catana, D.; Hategan, Alina; Oproiu, C.; Popescu, Alina; Hategan, Dora; Morariu, V. V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range 0-400 Gy at 20 deg. C, -3 deg. C and -196 deg. C on the global enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed a monoexponential decrease in the enzymatic activity of irradiated LDH at all irradiation temperatures independently of direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 deg. C drastically influences the results. Our data suggest that freeze-thawing in two steps down to -196 deg. C make LDH insensitive to irradiation, while one step freeze-thawing procedure results in a gradual activity loss with increasing dose irradiation. This data can be interpreted in terms of different conformational changes during the particular freeze-thawing process. (authors)

  13. Effect of electron beam irradiation on post harvest quality of Agaricus bisporus

    International Nuclear Information System (INIS)

    Zhang Juanpin; Xing Zengtao; Bai Bing; Song Weiguo

    2011-01-01

    The effects of electron beam irradiation on fresh-keeping of Agaricus bisporus was studied after sporecarp samples were irradiated at 1.0, 2.0, 3.0 and 4.0 kGy and then stored at 4 degree C for 14d. The contents of water-soluble vitamins, amino acids and sugars were measured. Results showed that the contents of water-soluble sugars, amino acids, and aneurin, lactochrome, nicotinic acid in sporecarp did not significantly change after irradiation. However, asoribic acid was sensitive to irradiation, and the content was significantly reduced 31.1% at the dose of 4.0 kGy. It is concluded that 2 kGy irradiation can effectively prolong the shelf life, and almost no significant effect on the nutrient components of Agaricus bisporus. (authors)

  14. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation.

    Directory of Open Access Journals (Sweden)

    Pallavi Srivastava

    Full Text Available High linear energy transfer (LET radiation or heavy ion such as carbon ion radiation is used as a method for advanced radiotherapy in the treatment of cancer. It has many advantages over the conventional photon based radiotherapy using Co-60 gamma or high energy X-rays from a Linear Accelerator. However, charged particle therapy is very costly. One way to reduce the cost as well as irradiation effects on normal cells is to reduce the dose of radiation by enhancing the radiation sensitivity through the use of a radiomodulator. PNKP (polynucleotide kinase/phosphatase is an enzyme which plays important role in the non-homologous end joining (NHEJ DNA repair pathway. It is expected that inhibition of PNKP activity may enhance the efficacy of the charged particle irradiation in the radioresistant prostate cancer cell line PC-3. To test this hypothesis, we investigated cellular radiosensitivity by clonogenic cell survival assay in PC-3 cells.12Carbon ion beam of62 MeVenergy (equivalent 5.16 MeV/nucleon and with an entrance LET of 287 kev/μm was used for the present study. Apoptotic parameters such as nuclear fragmentation and caspase-3 activity were measured by DAPI staining, nuclear ladder assay and colorimetric caspase-3method. Cell cycle arrest was determined by FACS analysis. Cell death was enhanced when carbon ion irradiation is combined with PNKPi (PNKP inhibitor to treat cells as compared to that seen for PNKPi untreated cells. A low concentration (10μM of PNKPi effectively radiosensitized the PC-3 cells in terms of reduction of dose in achieving the same survival fraction. PC-3 cells underwent significant apoptosis and cell cycle arrest too was enhanced at G2/M phase when carbon ion irradiation was combined with PNKPi treatment. Our findings suggest that combined treatment of carbon ion irradiation and PNKP inhibition could enhance cellular radiosensitivity in a radioresistant prostate cancer cell line PC-3. The synergistic effect of PNKPi

  15. Long-term degradation of chemical structures and mechanical properties in polyethylene induced by ion-beam irradiation

    International Nuclear Information System (INIS)

    Oka, T.; Hama, Y.

    2004-01-01

    The long-term degradation in polyethylene irradiated with ion beams was studied. We found the changes of the chemical structures and the mechanical properties with time storage. S-PE has a good resistance to ion-beam irradiation because the crystallinity and density were very low. (author)

  16. Target volume delineation in external beam partial breast irradiation: Less inter-observer variation with preoperative- compared to postoperative delineation

    International Nuclear Information System (INIS)

    Leij, Femke van der; Elkhuizen, Paula H.M.; Janssen, Tomas M.; Poortmans, Philip; Sangen, Maurice van der; Scholten, Astrid N.; Vliet-Vroegindeweij, Corine van; Boersma, Liesbeth J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of twenty-four breast cancer patients

  17. Target volume delineation in external beam partial breast irradiation: less inter-observer variation with preoperative- compared to postoperative delineation

    NARCIS (Netherlands)

    Leij, F. van der; Elkhuizen, P.H.M.; Janssen, T.M.; Poortmans, P.M.P.; Sangen, M. van der; Scholten, A.N.; Vliet-Vroegindeweij, C. van; Boersma, L.J.

    2014-01-01

    The challenge of adequate target volume definition in external beam partial breast irradiation (PBI) could be overcome with preoperative irradiation, due to less inter-observer variation. We compared the target volume delineation for external beam PBI on preoperative versus postoperative CT scans of

  18. An irradiation facility with a horizontal beam for radiobiological studies

    International Nuclear Information System (INIS)

    Czub, J.; Banas, D.; Braziewicz, J.; Choinski, J.; Jaskola, M.; Korman, A.; Szeflinski, Z.; Wojcik, A.

    2006-01-01

    A facility with a horizontal beam for radiobiological experiments with heavy ions has been designed and constructed at the Heavy Ion Laboratory in Warsaw Univ.. The facility is optimal to investigate the radiobiological effects of charged heavy particles on a cellular or molecular level as in the region of the Bragg peak. (authors)

  19. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  20. Detection of electron beam irradiated crude drugs by electron spin resonance (ESR)

    International Nuclear Information System (INIS)

    Yamaoki, Rumi; Kimura, Shojiro; Aoki, Kenji; Nishimoto, Susumu

    2007-01-01

    Perillae Herba, Sennae Folium, Cinnamomi Cortex, Phellodendri Cortex, Ginseng Radix, Glycyrrhizae Radix, Paeoniae Radix, and Zingiberis Rhizoma were irradiated with electron beam (5 MeV) and organic radicals were detected by ESR measurement, before and after irradiation (10 kGy). A single line spectrum was detected at around g=2.005 in non-irradiated crude drugs, and radical concentrations were high in the leaf varieties of crude drugs. After irradiation, the signal intensity around g=2.005 increased, and a new subsignal was detected as a 3 mT shoulder of this signal. Broad, asymmetrically divided signals were also detected in irradiated root varieties of crude drugs. The free radical localized on the organic components of irradiated crude drugs tended to decrease with the water content. After irradiation, signal intensity reduced and reached a steady state after about 1 to 2 months. However, specificity of the ESR signal shape appearing after irradiation continued to be detectable for 6 months in leaf varieties and for a year in bark and root varieties of crude drugs. Consequently, it was concluded that ESR could be applied as an initial screening procedure to detect irradiated crude drugs. (author)

  1. HiRadMat: A high‐energy, pulsed beam, material irradiation facility

    CERN Multimedia

    Charitonidis, Nikolaos

    2016-01-01

    HiRadMat is a facility constructed in 2011, designed to provide high-intensity pulsed beams to an irradiation area where different material samples or accelerator components can be tested. The facility, located at the CERN SPS accelerator complex, uses a 440 GeV proton beam with a pulse length up to 7.2 μs and a maximum intensity up to 1E13 protons / pulse. The facility, a unique place for performing state-of-the art beam-to-material experiments, operates under transnational access and welcomes and financially supports, under certain conditions, experimental teams to perform their experiments.

  2. Electron irradiation effects in amorphous antimony thin films obtained by cluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Treilleux, M.; Santos Aires, F.; Cabaud, B.; Melinon, P.; Hoareau, A. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1991-03-01

    In order to understand the differences existing between films obtained with a classical molecular beam deposition (MBD) and the new low-energy cluster beam deposition (LECBD), transmission electron microscopy has been used to characterize the first stages of antimony LECBD. Antimony deposits are discontinuous and amorphous up to 2 nm in thickness. They are formed with isolated amorphous antimony particles surrounded by an amorphous antimony oxide shell. Moreover, under electron beam exposure in the microscope, an amorphous-crystal transformation has been observed in the oxide shell. Electron irradiation induces the formation of a crystallized antimony oxide (Sb{sub 2}O{sub 3}) around the amorphous antimony core. (author).

  3. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    International Nuclear Information System (INIS)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-01-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth. - Highlights: ► Electron beam irradiation is effective against soil-borne pathogens. ► Application of irradiation at dose 1.5 kGy completely inhibited in vitro development of Phytophthora cinnamomi. ► Irradiation of horticultural substrata did not influence the growth of plants.

  4. Effects of electron beam irradiation on inorganic exchanger AMP

    International Nuclear Information System (INIS)

    Rao, K.L.N.; Mathew, C.; Deshpande, R.S.; Jadhav, A.V.; Pande, B.M.; Shukla, J.P.

    1996-01-01

    The heteropolyacid salt inorganic exchanger ammonium molybdophosphate (AMP) was subjected to an electron dose upto 2 MGy to assess any possible radiation damage. The breakthrough and total exchange capacity of AMP for Cs + from simulated fission product solutions were determined for both control and irradiated samples. The scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX) were deployed to examine any marked microscopic changes taking place in this exchanger. (author). 3 refs., 3 figs

  5. Effects of gamma ray and electron-beam irradiations on survival of anaerobic and facultatively anaerobic bacteria

    International Nuclear Information System (INIS)

    Miyahara, Michiko; Miyahara, Makoto

    2002-01-01

    An extension of the approval for food irradiation is desired due to the increase in the incidence of food poisoning in the world. One anaerobic (Clostridium perfringens) and four facultatively anaerobic (Bacillus cereus, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Enteritidis) bacteria irradiated with gamma ray or electron beam (E-beam) were tested in terms of survival on agar under packaging atmosphere. Using pouch pack, effects of two irradiations on survival of anaerobic and facultatively anaerobic bacteria were evaluated comparatively. E-beam irradiation was more effective than gamma ray irradiation in decreasing the lethal dose 10% (D 10 ) value of B. cereus at 4 deg C, slightly more effective in that of E. coli O157, and similarly effective in that of the other three bacteria at 4 deg C. The gamma irradiation of the bacteria without incubation at 4 deg C before irradiation was more effective than that of the bacteria with incubation overnight at 4 deg C before irradiation in decreasing the D10 values of these bacteria (B. cereus, E. coli O157, and L. monocytogenes). Furthermore, ground beef patties inoculated with bacteria were irradiated with 1 kGy by E-beam (5 MeV) at 4 deg C. The inoculated bacteria in the 1-9 mm beef patties were killed by 1 kGy E-beam irradiation and some bacteria in more than 9 mm beef patties were not killed by the irradiation. (author)

  6. Study on application of the physical detection methods for electron beam-irradiated agricultural products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yong; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong; Jeong, Il Yun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Yook, Hong Sun [Chungnam National University, Daejeon (Korea, Republic of)

    2010-09-15

    Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controlled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were <700 counts/60s (lower threshold, T{sub 1}) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold (T{sub 2}) in black pepper, raisin, and beef seasoning and intermediates values of T{sub 1}-T{sub 2} in red pepper, walnut, and pistachio. Minerals separated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of 50 {approx} 400 .deg. C with TL ratio (0.01 {approx} 0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about 150 {approx} 250 .deg. C with TL ratio (0.28 {approx} 3.10). ESR measurements of irradiated samples any specific signals to irradiation. The samples of both red pepper ad pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggested that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam.

  7. Study on application of the physical detection methods for electron beam-irradiated agricultural products

    International Nuclear Information System (INIS)

    Kim, Dong Yong; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong; Jeong, Il Yun; Yook, Hong Sun

    2010-01-01

    Physical detection methods, photostimulated luminescence (PSL), thermoluminescence (TL) and electron spin resonance (ESR) were applied to detect electron beam-irradiated agricultural products, such as red pepper, black pepper, raisin, walnut, beef seasoning and pistachio. The absorbed irradiation doses for representative samples were controlled at 0, 1, 3, 5 and 10 kGy. PSL values for non-irradiated samples were 1 ) except beef seasoning, whereas those of irradiated samples were more than 5,000 photon counts, upper threshold (T 2 ) in black pepper, raisin, and beef seasoning and intermediates values of T 1 -T 2 in red pepper, walnut, and pistachio. Minerals separated from the samples for TL measurement showed that non-irradiated samples except pistachio (TL ratio, 0.12) were characterized by no glow curves situated at temperature range of 50 ∼ 400 .deg. C with TL ratio (0.01 ∼ 0.08), while irradiated samples except pistachio at only 1 kGy (TL ratio, 0.08) indicated glow curve at about 150 ∼ 250 .deg. C with TL ratio (0.28 ∼ 3.10). ESR measurements of irradiated samples any specific signals to irradiation. The samples of both red pepper ad pistachio were produced specific signals derived from cellulose radicals as well as single line signals for black pepper and walnut, and multiple signals derived from crystalline sugar radicals for raisin and beef seasoning. In conclusion, The ESR methods can apply for detection of pistachio exposed to electron beam but PSL and TL are not suitable methods. Furthermore, TL and ESR suggested that both techniques were more useful detection method than PSL to confirm whether red pepper, walnut and beef seasoning samples have been exposed to electron beam

  8. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  9. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  10. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Zhang Ting; Qiao Yongjin; Chen Zhaoliang

    2011-01-01

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  11. Distribution of Energy Deposited in Plastic Tubing and Copper-Wire Insulation by Electron Beam Irradiation

    DEFF Research Database (Denmark)

    Pedersen, Walther Batsberg; Miller, Arne; Pejtersen, K.

    1978-01-01

    chloride insulation. Radiochromic dye films equivalent to the insulating materials were used as accurate dosimeters having a response independent of dose rate. Irradiations were in various geometries, wire and plastic thicknesses, positions along the beam scan, and with different backing materials near...

  12. Impact behaviour of polystyene/EPDM-rubber blends : influence of electron beam irradiation

    NARCIS (Netherlands)

    Gisbergen, van J.G.M.; Borgmans, C.P.J.H.; Sanden, van der M.C.M.; Lemstra, P.J.

    1990-01-01

    Electron beam irradiation of polystyrene/ethylene propylene diene monomer (PS/EPDM) blends, using polystyrene/polybutadiene block copolymers as compatibilizers, resulted in a two to three fold increase in Izod impact value. This greatly increased impact resistance is probably related to

  13. Progress on flue gas desulfurization and denitration with electron beam irradiation in CAEP

    International Nuclear Information System (INIS)

    Ren Min; Wang Baojian; Yang Ruizhuang; Huang Wenfeng; He Xiaohai; Mao Benjiang

    2005-01-01

    The first pilot plant with electron beam irradiation for desulfurization and denitration of flue gas in China and the experimental results based on the pilot plant are briefly introduced in this paper. The FGD (flue gas desulfurization) demonstration installation designed by CAEP (China Academy of Engineering Physics) in Beijing Jingfeng Thermal Powe Co., Ltd. is recommended. (author)

  14. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions

    International Nuclear Information System (INIS)

    Fiedler, F.

    2008-01-01

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for 3 He irradiations. For this experiments on a 3 He beam were performed. The activity yield is at equal applied dose about three times larger than at 12 C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the 3 He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work

  15. Preparation of thermal resistant-enhanced separators for lithium ion battery by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Joon Yong; Shin, Junhwa; Nho, Youngchang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Micro-porous membrane made of polyethylene (PE) or polypropylene (PP) is most widely used as physical separators between the cathode and anode in lithium secondary batteries. However, the polymer membranes so soften or melt when the temperature reaches 130 .deg. C or higher because of thermal shrinkage of the polyolefin separators, and thaw low thermal stability may cause internal short circuiting or lead to thermal runaway. In this study, to realize a highly safe battery, we prepared three type separators as crosslinked PE separator, polymer-coated PE separator, and ceramic-coated PE separators, for lithium secondary battery by electron beam irradiation. We prepared crosslinked PE separators with the improved thermal stability by irradiating a commercial PE separator with an electron beam. A polymer-coated PE separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. Ceramic-coated PE separator was prepared by coating ceramic particles on a PE separator followed by an electron beam irradiation. The prepared separators were characterized with FT-IR, SEM, electrolyte uptake, ion conductivity, thermal shrinkage and battery performance test.

  16. Investigation of plasma stream collision produced by thin films irradiated by powerful pulsed electron beam

    International Nuclear Information System (INIS)

    Efremov, V P; Demidov, B A; Ivkin, M V; Mescheryakov, A N; Petrov, V A; Potapenko, A I

    2006-01-01

    Collision of fast plasma streams in vacuum is investigated. Plasma streams were produced by irradiation of thin foils with a powerful pulsed electron beam. Interaction of the plasma flows was studied by using frame and streak cameras. One-dimensional numerical simulation was carried out. Application of this method for porous ICF targets and high-energy physics is discussed

  17. Hydrogel Based on Crosslinked Methylcellulose Prepared by Electron Beam Irradiation for Wound Dressing Application

    Directory of Open Access Journals (Sweden)

    Ambyah Suliwarno

    2014-10-01

    Full Text Available The aim of this research is to explore the possibility of methylcellulose polymer to be used as wound dressing material prepared using electron beam technique. The methylcellulose paste solution with various of molecular weight (SM-4, SM-100, SM-400, SM-4000 and SM-8000 at different concentration (15-30% w/v were irradiated by using electron beam on the dose range of 10 kGy up to 40 kGy. Gel fraction and swelling ratio of hydrogels were determined gravimetrically. Tensile strength and elasticity of hydrogels were measured using a universal testing machine. It was found that with the increasing of irradiation dose from 10 up to 40 kGy, gel fraction and tensile strength were increased for all of hydrogels with various of molecular weight. On contrary, the swelling ratio of hydrogels decreased with increasing of irradiation dose. The optimum hydrogels elasticity were obtained from methylcellulose solution with the concentration range of 15-20% with irradiation dose of 20 kGy and showed excellent performance. The hydrogels based on methylcellulose prepared by electron beam irradiation can be considered for wound dressing material.

  18. The effects of electron beam irradiation on additives present in food-contact polymers

    International Nuclear Information System (INIS)

    Crowson, Andrew.

    1991-09-01

    A range of additives (Irganox 1010, Irganox 1076, Irganox 1330, Irgafos 168 and Tinuvin 622) has been incorporated into a variety of food-contact polymers including polypropylene and low density polyethylene. Samples of these stabilized polymers were subjected to electron-beam or gamma irradiation to receive doses of 1,5,10,25 and 50 kGy. The effects of electron-beam irradiation on the amount of extractable antioxidant in polymers were determined. Using hplc techniques it was found that there was a dose-related reduction in the amount of extractable antioxidant similar to that caused by gamma irradiation. The magnitude of this reduction was found to be dependent upon the nature of both the antioxidant and the polymer type. Electron-beam irradiation was also found to cause a dose-related reduction in the levels of the antioxidants Irganox 1010 and Irganox 1076 migrating from polymers into a food simulant. This effect was similar to that caused by gamma irradiation. (author)

  19. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  20. Analysis of target implosion irradiated by proton beam, (1)

    International Nuclear Information System (INIS)

    Tamba, Moritake; Nagata, Norimasa; Kawata, Shigeo; Niu, Keishiro.

    1982-10-01

    Numerical simulation and analysis were performed for the implosion of a hollow shell target driven by proton beam. The target consists of three layers of Pb, Al and DT. As the Al layer is heated by proton beam, the layer expands and pushes the DT layer toward the target center. To obtain the optimal velocity of DT implosion, the optimal target size and optimal layer thickness were determined. The target size is determined by, for example, the instability of the implosion or beam focusing on the target surface. The Rayleigh-Taylor instability and the unstable implosion due to the inhomogeneity were investigated. Dissipation, nonlinear effects and density gradient at the boundary were expected to reduce the growth rate of the Rayleigh-Taylor instability during the implosion. In order that the deviation of the boundary surface during the implosion is less than the thickness of fuel, the inhomogeneity of the temperature and the density of the target should be less than ten percent. The amplitude of the boundary surface roughness is required to be less than 4 micrometer. (Kato, T.)

  1. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  2. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  3. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    Feroza Akhtar; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  4. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M. -C.; Berthelot, T.; Baudin, C.; Déléris, G., E-mail: giancarlo.rizza@polytechnique.edu [Commissariat à l' énergie atomique (CEA), Institut Rayonnement Matière de Saclay (IRaMIS), B.P. 52, 91191 Gif Sur Yvette Cedex (France)

    2010-07-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy.

  5. Effect of electron beam irradiation on the thermal properties of polycarbonate / polyester blend

    International Nuclear Information System (INIS)

    Zarie, K.A.

    2007-01-01

    The effect of electron beam irradiation on the thermal properties of Bayfol (polycarbonate/polyester blend) solid state nuclear track detector (SSNTD) was investigated. Non-isothermal studies were carried out using thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) to obtain the activation energy of thermal decomposition for Bayfol detector. The thermogravimetric analysis (TGA) indicated that the Bayfol samples were decomposed in one main break down stage. Samples of 250 μm thickness sheets were exposed to electron beam irradiations in the dose range 20-600 KGy. The variation of melting temperatures with the electron dose was determined using differential thermal analysis (DTA). The results indicated that the electron irradiation in the dose range 200-600 KGy decreases the melting temperature of the Bayfol samples and this is most suitable for applications requiring the molding of this polymer at lower temperatures

  6. Synthesis of Specific Nanoparticles for Targeting and Imaging Tumor Angiogenesis Using Electron-Beam Irradiation

    International Nuclear Information System (INIS)

    Rizza, G.; Deshayes, S.; Maurizot, V.; Clochard, M.-C.; Berthelot, T.; Baudin, C.; Déléris, G.

    2010-01-01

    We have succeeded to synthesize PVDF nanoparticles by nanoemulsion polymerization and their functionalization with a peptide that presents an anti-angiogenic activity. Resulted nanoparticles present a radius of 60 nm. From FESEM images and light scattering measurements, we deduced that they were spherical and monodisperse. The alkyl radicals induced from electron beam irradiation combine immediately with the oxygen to form peroxide radicals. Because of a high specific area and small crystallite size, the radical decay with time is evidenced from EPR measurements. Despite this radical decay, electron beam irradiation allows us to graft PAA by radical polymerization onto freshly irradiated PVDF nanoparticles and then to immobilize CBO-P11 by click chemistry via a spacer arm. Evidences of grafting were shown using HRMAS NMR and MALDI-TOF mass spectrometry. Nanoparticles functionalized with an angiogenesis-targeting agent are an attractive option for anti-tumor therapy

  7. Possibility of electron beam irradiation degradation of many pesticides in ginseng oral liquid

    International Nuclear Information System (INIS)

    Chen Qiyong; Liu Yang; Ge Hanguang; Wu Ruoxin

    2013-01-01

    This paper is to explore the technological feasibility in degradation of pesticides in ginseng oral liquid under the irradiation of electron beam. Sixteen residual concentration-restricted pesticides in ginseng oral liquid were experimented under the dose of 0 ∼ 15 kGy. Results showed that, when the dose of the irradiation of electron beam increased, the degradation rates of all the pesticides enhanced, and the electron beam radiation showed the most remarkable effect on the degradation of pesticides such as imidacloprid and fenpropathrinwith degradation rates of more than 90% and 50%, respectively. The degradation rates of fonofos, methidathion, diazinon, phosalone and carbaryl were all higher than 30%. No significant degradation was observed in the other 9 pesticides under the same condition. (authors)

  8. Morphological change of self-organized protrusions of fluoropolymer surface by ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Satoh, Takahiro; Koka, Masashi; Kamiya, Tomihiro; Suzuki, Akihiro; Terai, Takayuki

    2013-01-01

    Polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are typical fluoropolymers displaying several desirable technological properties such as electrical insulation and high chemical resistance. When their surfaces are irradiated with ion beams, dense micro-protrusions formed after the emergence and spread of micropores across the entire irradiated area, allowing culture cells to spread on the top of the protrusions. In this study, we investigate the morphological changes introduced in the fluoropolymer surfaces by ion beams as the energy of the beams is increased. When an FEP sample was irradiated with a nitrogen ion beam with an energy of less than 350 keV at 1.0 μA/cm 2 , protrusions were formed with a density between 2 × 10 7 /cm 2 and 2 × 10 8 /cm 2 . However, at energies higher than 350 keV, the protrusions became sparse, and the density dropped to 5 × 10 2 /cm 2 . Protrusions appeared sporadically during irradiation at high energies, and the top of the protrusions appeared as spots inside the sample, which were difficult to etch and became elongated as the erosion of the surface progressed. Erosion was caused by sputtering of FEP molecules and evaporation at notably elevated temperatures on the surface. Analysis based on attenuated total reflectance/Fourier transform infrared spectroscopy showed the presence of C=C bonds as well as –COOH, –C=O, and –OH bonds on all irradiated samples. Their concentration on the surface densely covered with micro-protrusions was higher than that on the surface with sparse protrusions after irradiation at energies exceeding 350 keV. Thus, we determined a suitable range for the ion energy for creating FEP surfaces densely covered with protrusions

  9. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  10. Surface decontamination of cheddar cheese by electron-beam irradiation

    International Nuclear Information System (INIS)

    Shamsuzzaman, K.

    1991-01-01

    Cheddar cheese samples inoculated with two different levels of Penicillium cyclopium or Aspergillus ochraceus spores were vacuum-packed and irradiated at various doses up to 3.5 kGy with electrons from a 10-MeV linear accelerator. Unirradiated cheese showed visible mold growth in 8-25 d at 10 degrees C, and 7-12 d at 15 degrees C, depending on species and spore concentration. Only marginal extension of shelf life at 15 degrees C was achieved with cheese inoculated with 10 2 cfu per sample of either of the mold spores, followed by irradiation at 0.21 or 0.52 kGy. However, at these doses the average shelf life at 10 degrees C was extended by 41.5 and 50.5 d respectively when the inoculum was A. ochraceus. When the inoculum level was increased tenfold, irradiation at 1.2 and 3.5 kGy extended the average shelf life of cheese containing P. cyclopium by 44.5 and >262 d respectively at 10 degrees C, and by 3 and >166 d respectively at 15 degrees C. The shelf life of samples containing A. ochraceus and irradiated at 1.2 or 3.5 kGy was extended by at least 255.5 d at 10 degrees C and at least 160 d at 15 degrees C. The results clearly showed that low radiation doses are effective in the mold decontamination of cheese. The results also suggest that P. cyclopium in Cheddar cheese is more radiation-resistant than A. ochraceus. This was supported by determination of radiation survival curves for the two species incorporated into Cheddar cheese: D 10 values for P. cyclopium and A. ochraceus were found to be 0.40 and 0.21 kGy respectively. The radiation sensitivity of the two organisms was found not to vary with pH in the pH range 5.0-6.2

  11. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  12. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  13. A permanent magnet electron beam spread system used for a low energy electron irradiation accelerator

    International Nuclear Information System (INIS)

    Huang Jiang; Xiong Yongqian; Chen Dezhi; Liu Kaifeng; Yang Jun; Li Dong; Yu Tiaoqin; Fan Mingwu; Yang Bo

    2014-01-01

    The development of irradiation processing industry brings about various types of irradiation objects and expands the irradiation requirements for better uniformity and larger areas. This paper proposes an innovative design of a permanent magnet electron beam spread system. By clarifying its operation principles, the author verifies the feasibility of its application in irradiation accelerators for industrial use with the examples of its application in electron accelerators with energy ranging from 300 keV to 1 MeV. Based on the finite element analyses of electromagnetic fields and the charged particle dynamics, the author also conducts a simulation of electron dynamics in magnetic field on a computer. The results indicate that compared with the traditional electron beam scanning system, this system boosts the advantages of a larger spread area, non-power supply, simple structure and low cost, etc., which means it is not only suitable for the irradiation of objects with the shape of tubes, strips and panels, but can also achieve a desirable irradiation performance on irregular constructed objects of large size. (authors)

  14. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Kijima, Toshiyuki; Nakase, Yoshiaki

    1993-01-01

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  15. High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro

    Science.gov (United States)

    Heselich, Anja; Frieß, Johannes L.; Ritter, Sylvia; Benz, Naja P.; Layer, Paul G.; Thielemann, Christiane

    2018-02-01

    It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology. As electrophysiological endpoints beat rate and field action potential duration were analyzed. The cultures clearly exhibited the capacity to repair induced DNA damage almost completely within 24 h, even at doses of 7 Gy, and almost completely recovered from radiation-induced changes in proliferative behavior. Interestingly, no significant effects on apoptosis could be detected. Especially the functionality of primary cardiac cells exhibited a surprisingly high robustness against heavy ion radiation, even at doses of up to 7 Gy. In contrast to our previous study with X-rays the beat rate remained more or less unaffected after heavy ion radiation, independently of beam quality. The only change we could observe was an increase of the field action potential duration of up to 30% after titanium irradiation, diminishing within the following three days. This potentially pathological observation may be an indication that heavy ion irradiation at high doses could bear a long-term risk for cardiovascular disease induction.

  16. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.

    Science.gov (United States)

    Predmore, Ashley; Sanglay, Gabriel C; DiCaprio, Erin; Li, Jianrong; Uribe, R M; Lee, Ken

    2015-04-02

    Ionizing radiation, whether by electron beams or gamma rays, is a non-thermal processing technique used to improve the microbial safety and shelf-life of many different food products. This technology is highly effective against bacterial pathogens, but data on its effect against foodborne viruses is limited. A mechanism of viral inactivation has been proposed with gamma irradiation, but no published study discloses a mechanism for electron beam (e-beam). This study had three distinct goals: 1) evaluate the sensitivity of a human norovirus surrogate, Tulane virus (TV), to e-beam irradiation in foods, 2) compare the difference in sensitivity of TV and murine norovirus (MNV-1) to e-beam irradiation, and 3) determine the mechanism of inactivation of these two viruses by e-beam irradiation. TV was reduced from 7 log10 units to undetectable levels at target doses of 16 kGy or higher in two food matrices (strawberries and lettuce). MNV-1 was more resistant to e-beam treatment than TV. At target doses of 4 kGy, e-beam provided a 1.6 and 1.2 log reduction of MNV-1 in phosphate buffered saline (PBS) and Dulbecco's Modified Eagle Medium (DMEM), compared to a 1.5 and 1.8 log reduction of TV in PBS and Opti-MEM, respectively. Transmission electron microscopy revealed that increased e-beam doses negatively affected the structure of both viruses. Analysis of viral proteins by SDS-PAGE found that irradiation also degraded viral proteins. Using RT-PCR, irradiation was shown to degrade viral genomic RNA. This suggests that the mechanism of inactivation of e-beam was likely the same as gamma irradiation as the damage to viral constituents led to inactivation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    Science.gov (United States)

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of Electron Beam Irradiation on Physicochemical and Sensory characteristics of Traditional Ice cream

    Directory of Open Access Journals (Sweden)

    F Hoseinpour Ganjaroudy

    2016-03-01

    Full Text Available Introduction: Due to the increasing use of irradiation in food safety as an efficient and supplement method, it is needed to investigate effects of this new technology on the apparent and organoleptic characteristics of different products. Because primarily thing that attracts the attention of the customer to buy a food product is its appearance characteristics. The aim of this study was to determine the effect of electron beam irradiation on traditional ice cream. Methods: Ice cream samples were shopped in the city and were moved to the laboratory in defined conditions into the cool box to keep sample frozen. In keeping with freezing conditions, samples were irradiated by electron beam in -18at doses of 0, 1, 2, 3 and 5 kGy. And after one week of storage at -18℃, physicochemical tests including moisture, fat, sugar, pH and sensory tests including color, odor, taste and overall acceptability, were done on it. Results: Results showed that there was no significant difference between irradiated and non-irradiated in the amount of sugar, fat and pH. However, it can be seen significant differences in the moisture content measured in the treated samples with electron beam and untreated one (p<0.05 Also, although the doses of 1 and 2 kGy had no significant effect on the organoleptic characteristics of the product, but with increasing irradiation dose up to 2 kGy, overall acceptability  ​​and color significantly decreased (p<0.05. Conclusion: According to the result,  it can be concluded that the maximum recommended dose is 2 kGy for irradiation traditional ice cream product and  higher doses caused a decline in quality of product.

  19. Electron beam irradiation and zeolites adsorption applied to dyeing effluents

    International Nuclear Information System (INIS)

    Higa, Marcela C.; Fungaro, Denise A.; Somessari, Elizabeth S.R.; Magdalena, Carina P.; Grosche, Lucas C.; NNeto, Antonio C.; Borrely, Sueli I.

    2007-01-01

    Wastewater generated from the textile industries contain large amount of azo dyes and many of them present low biodegradability capability. Today several countries are facing with evidences that water pollution is related to toxicity, mutagenicity and carcinogenic nature. Once reactive dyes are commercial products they will be discharged to the waterways and rivers causing ecological damages and health problems. The aim of this paper was to consider the potential of two techniques for colour and toxicity removal: ionizing radiation and adsorption by zeolites synthesized from fly ash. Real effluents from chemical and textile industries (hardly coloured) were submitted to radiation and adsorption using zeolites. It was necessary to dilute some effluents prior the treatments in order to get any success. When electrons irradiation was performed radiation doses applied were from 0.5 kGy up to 20 kGy. This radiation process accounted for a partial decolouring as higher doses were implemented. Coal fly ashes were used as starting material for zeolite synthesis by means of hydrothermal treatment with alkaline medium. The adsorption was performed by batch experiments. It was obtained about 77% - 90% color removal from dye wastewater after 24h of contact time with two types of zeolite. The irradiation accounted for 72% of the initial toxicity. The ionizing radiation and adsorption by zeolites synthesized from fly ash can be used as an alternative for the treatment of aqueous waste containing dyes. (author)

  20. Results of treatment of Icenko-Cushing disease with proton beam irradiation of the pituitary gland

    International Nuclear Information System (INIS)

    Marova, E.I.; Starkova, N.T.; Kirpatovskaya, L.E.; Kolesnikova, G.S.; Bukhman, A.I.; Rozhinskaya, L.Ya.; Bel'chenko, L.V.

    1987-01-01

    Proton beam therapy was given to 98 patients with Icenko-Cushing disease aged 15 to 40. Mild cases were treated by proton beam irradiation only while severe cases were managed using proton beam therapy combined with unilateral adrenalectomy or ortho-para-DDD. Catamnesis duration varied from 3 to 5 years. In most cases the exposure dose was 80-90 Gy (50-110 Gy). The procedure was well tolerated by all the patients. A dynamic multipolar converting method with 15-20 entrance poles in the left temporal area was employed (with the beam energy of 200 MeV). Stabilization of the course of disease and some clinical improvement were observed in most of the patients 3-4 months after proton beam therapy. In 6-36 months after irradiation 90% of the patients showed normal biochemical indices and the absence of any clinical signs of the disease. Thus the results of proton beam therapy of 98 patients with Icenko-Cushing disease after a follow-up of 3-5 years showed a high efficacy of this type of treatment. The method can be used alone or in combination with unilateral adrenalectomy as well as with oral administration of ortho-para-DDD

  1. Developing of the protocol for electron beam food irradiation facility

    International Nuclear Information System (INIS)

    Petreska, Svetlana

    2012-01-01

    By establishing the needs for institution of new technologies in the process of food processing, in this case a randomized choice of electron beam accelerator facility, arises the need for designing a protocol for safe and secure performance of the facility. The protocol encompasses safety and security measures for protection from ionizing radiation of the individuals who work at the facility, as well as, the population and the environment in the immediate neighborhood of the facility. Thus, the adopted approach is the establishment of appropriate systems responding to the protocol. Dosimetry system, which includes appropriate procedures for accurate measure and recording of the absorbed dose values, according to the provisions for protection from ionizing radiation. Ionizing radiation protection system and providing the safety and security of the facility for food processing by means of ionizing radiation. System for providing quality and safety control of the facility for food processing by means of ionizing radiation. Pursuant to the designed a protocol for safe and secure performance of the facility for electron beam food processing, contributes to protection against ionizing radiation as occupationally exposed persons as well the population. (Author)

  2. Method for coating a resinous coating material. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, T; Fujioka, S; Mibae, J; Takahashi, M

    1968-07-13

    The strength, flexibility and durability of a vinyl chloride resin, acryl resin and the like are improved. This method of application comprises the steps of applying and thereafter radically curing a mixture composed of a polymer (II) having double bond(s) on its side chain and an ethylenic unsaturated monomer, said polymer (II) being obtained by the reaction between an unsaturated carboxylic acid or anhydride represented by the formula XCH = CHY (X = (CH/sub 2/)sub(n)COOH, where 0 <= n <= 2, Y = COOR/sub 1/ or R/sub 2/(R/sub 1/ and R/sub 2/ are hydrogen or an alkyl group having from 1 to 10 atoms of carbon)) and the acrylic copolymer (I), containing a hydroxyl group, obtained by copolymerization of 10 to 50% by weight of at least one selected from the group of beta-hydroxy alkyl acrylate, beta-hydroxy alkyl methacrylate, N-methylol acrylamide and N-methylol methacryl amide with at least one selected from the group of acrylic ester, methacrylic ester and stylene. The copolymer (I) can be obtained by the usual radical polymerization such as bulk polymerization, solution polymerization, suspension polymerization or the like. The polymer (II) is dissolved in the ethylenic unsaturated monomer and radically cured with radical polymerization catalysts or electron beams, etc. The energy range of the electron beams may be 0.1 to 3 MeV. Any type of electron accelerator may be used.

  3. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takahisa [Department of Radiation Oncology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo (Japan); Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Saito, Soichiro; Fujimori, Hiroaki [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Matsushita, Keiichiro; Nishio, Teiji [Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima-shi, Hiroshima (Japan); Okayasu, Ryuichi [International Open Laboratory, National Institute of Radiological Science, Chiba-shi, Chiba (Japan); Masutani, Mitsuko, E-mail: mmasutan@nagasaki-u.ac.jp [Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo (Japan); Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  4. Electron beam irradiation: a novel technology to enhance the quality of soybean seeds

    International Nuclear Information System (INIS)

    Bhalla, Shashi; Srinivasan, K.; Singh, Subadas; Thakur, Manju; Sharma, S.K.; Pramod, R.; Dwivedi, J.; Bapna, S.C.

    2010-01-01

    Soybean seeds, rich in protein and oil, maintain their germinability only for short durations under ambient conditions. Loss of viability of stored seeds often hampers soybean production in harsh environments worldwide. Physiological factors favored by high temperature and high moisture content accelerate the seed deterioration in the tropics. Several chemical and physical treatments are being used to enhance quality. Irradiation is a novel technology for food preservation and is gaining importance all over the world. Low doses of irradiation bring about improvement in quality of food/seeds, which can be beneficial in several ways. Electron Beam (EB) irradiation is a new approach in this area. The objective of present study was to investigate the effect of EB irradiation in enhancing the quality of low vigour soybean seeds

  5. Influence of Gamma and Electron Beam Irradiation on Microbial Load of Pueraria mirifica

    International Nuclear Information System (INIS)

    Eamsiri, J.; Pewlong, W.; Sajjabut, S.; Chookaew, S.

    2014-01-01

    The purpose of this study is to investigate the effect of gamma ray and electron beam on the microbial load of Pueraria mirifica at selected storage period post exposure to irradiation. The samples were irradiated at 0, 5, 10, 15 and 20 kGy and then analyzed for the total bacteria, total yeast and mold, and the presence of Coliform bacteria, Escherichia coli, Salmonella sp., Bacillus cereus and Clostridium perfringens after 0, 3, 6, 9 and 12 months of storage. Results demonstrated that both irradiation techniques significantly reduced microbial contamination. As the reduction in bacteria count decreased linearly with the absorbed dose, the dose of 5 kGy was found to be sufficient in eliminating pathogens with the total bacteria count decreased to the value accepted by the Thai Industrial standard 1441/2552. In addition, we found that total bacteria, total yeast and mold and pathogens did not change significantly after storage up to 12 months post irradiation.

  6. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek

    2017-01-01

    profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis...... and angiogenesis. RESULTS: Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated...... fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue damage in patients treated with proton beam therapy....

  7. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Soo-Jeong [Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of); Sung, Yong Joo [KT and G Central Research Institute, 302 Shinseong-Dong, Yuseong-Gu, Daejeon 305-805 (Korea, Republic of)], E-mail: yosung17@yahoo.co.kr

    2008-09-15

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  8. Distribution of products in polymer materials induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masaki; Kudoh, Hisaaki; Sasuga, Tsuneo; Seguchi, Tadao [Japan Atomic Energy Research Inst., Tokyo (Japan); Hama, Yoshimasa; Hamanaka, Ken-ichi; Matsumoto, Hideya

    1997-03-01

    The depth profile of double bond formed in low density polyethylene (LDPE) sheet by ion beams irradiation was observed by a micro FT-IR spectrometer in order to investigate the linear energy transfer (LET) dependency on radiation effects to polymer materials. The distribution of double bond formation in LDPE by irradiation of light ions as H+ was found to be same with the dose distribution calculated from TRIM code, and the yield was also same with that by gamma-rays irradiation, which means that the LET dependency is very small. However, the distribution of double bond to depth was much different from the calculated depth-dose in heavy ions irradiation as Ar and Kr. Then, the dose evaluation was difficult from the TRIM code calculation for heavy ions. (author)

  9. Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation

    International Nuclear Information System (INIS)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-01-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose

  10. Improving enzymatic hydrolysis of industrial hemp ( Cannabis sativa L.) by electron beam irradiation

    Science.gov (United States)

    Shin, Soo-Jeong; Sung, Yong Joo

    2008-09-01

    The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of hemp biomass with doses of 150, 300 and 450 kGy. The higher irradiation dose resulted in the more extraction with hot-water extraction or 1% sodium hydroxide solution extraction. The higher solubility of the treated sample was originated from the chains scission during irradiation, which was indirectly demonstrated by the increase of carbonyl groups as shown in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra. The changes in the micro-structure of hemp resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The improvement in enzymatic hydrolysis by the irradiation was more evident in the hydrolysis of the xylan than in that of the cellulose.

  11. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  12. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  13. RAPD analysis of mutants obtained by ion beam irradiation to hinoki cypress shoot primordia

    International Nuclear Information System (INIS)

    Ishii, K.; Yamada, Y.; Hase, Y.; Shikazono, N.; Tanaka, A.

    2003-01-01

    Mutants were induced by irradiation of the shoot primordia of Hinoki cypress with 50 MeV 4 He 2+ heavy ion beam. Fresh shoot primordia on the CD medium in the plastic Petri dish (35 x 10 mm) were irradiated. Xanta mutants were induced from 38 to 266 Gy irradiation. Waxy mutants were induced from 76 to 266 Gy irradiation. Xanta, waxy and control type of regenerated Hinoki cypress in vitro were checked for their DNA level difference using RAPD analysis. Among 81 primers used, 23 primers produced the 68 bands. Among them stable 44 bands produced by 15 primers were compared between mutants and control plant. So far, there is no variation among the RAPD analysis band patterns of those mutants. Bigger test size may detect the gene variation specific for mutants

  14. Irradiation effect of electronic beam on older larvae of Lasioderma serricorne (Fabricius)

    International Nuclear Information System (INIS)

    Chen Yuntang; Guo Dongquan; Zhang Jianwei; Yang Baoan

    2010-01-01

    Cigarette beetle [ Lasioderma serricorne (Fabricius) ] is an important pest of stored tobacco distributing over the world, and it is also one of the most serious pests in the tobacco warehouse. The larvae is the most serious detriment in the four states of cigarette beetle. The objective of this study was to control the damage on tobacco from cigarette beetle. The irradiation effects of electronic beam on the older larvae of cigarette beetle in tobacco were studied. The results showed that the older larvae irradiated by the doses higher than 480 Gy could prevent the development to adults; and no new generation was found after 300 Gy irradiation for older larvae. Thus 300Gy irradiation could prevent the reproduction of cigarette beetle for the older larvae in the tobacco. (authors)

  15. Dynamic rheology behavior of electron beam-irradiated cellulose pulp/NMMO solution

    International Nuclear Information System (INIS)

    Zhou Ruimin; Deng Bangjun; Hao Xufeng; Zhou Fei; Wu Xinfeng; Chen Yongkang

    2008-01-01

    The rheological behavior of irradiated cellulose pulp solution by electron beam was investigated. Storage modulus G', loss modulus G'', the dependence of complex viscosity η* and frequency ω of cellulose solutions were measured by DSR-200 Rheometer (Rheometrics co., USA). The molecular weight of irradiated cellulose was measured via the intrinsic viscosity measurement using an Ubbelohde capillary viscometer. The crystalline structure was studied by FTIR Spectroscopy. The results congruously showed that the molecular weight of pulp cellulose decrease and the molecular weight distribution of cellulose become narrow with increase in the irradiation dose. Moreover, the crystalline structure of the cellulose was destroyed, the force of the snarl between the cellulose molecules weakens and the accessibility of pulp spinning is improved. The study supplies some useful data for spinnability of irradiated cellulose and technical data to the filature industry

  16. Analysis of Surface Dose Refer to Distance between Beam Spoiler and Patient in Total Body Irradiation

    International Nuclear Information System (INIS)

    Choi, Jong Hwan; Kim, Jong Sik; Choi, Ji Min; Shin, Eun Hyuk; Song, Ki Won; Park, Young Hwan

    2007-01-01

    Total body irradiation is used to kill the total malignant cell and for immunosuppression component of preparatory regimens for bone-marrow restitution of patients. Beam spoiler is used to increase the dose to the superficial tissues. This paper finds the property of the distance between beam spoiler and patient. Set-up conditions are 6 MV-Xray, 300 MU, SAD = 400 cm, field size = 40 x 40 cm 2 . The parallel plate chamber located in surface, midpoint and exit of solid water phantom. The surface dose is measured while the distance between beam spoiler and patient is altered. Because it should be found proper distance. The solid water phantom is fixer and beam spoiler is moving. Central dose of phantom is 10.7 cGy and exit dose is 6.7 cGy. In case of distance of 50 cm to 60 cm between beam spoiler and solid water phantom, incidence dose is 14.58-14.92 cGy. Therefore, The surface dose was measured 99.4-101% with got near most to the prescription dose. In clinical case, distance between beam spoiler and patient affect surface dose. If once 50-60 cm of distance between beam spoiler and patient, surface dose of patient got near prescription dose. It would be taken distance between beam spoiler and patient into account in clinical therapy.

  17. High-LET particle dosimetry in the ASTP-Biostack III: Zea mays experiment

    International Nuclear Information System (INIS)

    Peterson, D.D.; Benton, E.V.; Tran, M.; Yang, T.; Freeling, M.; Craise, L.; Tobias, C.A.

    1977-01-01

    High-LET particle hits in embryos of Zea mays (corn) seeds, flown as part of the ASTP-Biostack III, were determined via plastic nuclear track detectors. Based on etched particle-tracks measurements, 41 embryos were hit in seed layer 1 which contained 80 seeds, and 49 hits occurred in layer 2 which contained 79 seeds. The mean LET value and range of atomic numbers of recorded hits is, respectively, 210 +- 57 keV/μm and 9 approximately less than Z approximately less than 26. Detailed analysis of one particular seed showing marked growth anomalies revealed two hits in the central region of the embryo. These two hits had LET values in the region of 100 to 150 keV/μm, and Z less than approximately 20. (author)

  18. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    International Nuclear Information System (INIS)

    Murphy, J.J.

    2003-01-01

    Irradiation of polymer samples using an accelerated beam of He 2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H 2 , CO and CO 2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO 2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H 2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  19. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    Energy Technology Data Exchange (ETDEWEB)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; Habte, Aron; Sengupta, Manajit; Kutchenreiter, Mark

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.

  20. Etching behavior of poly (vinylidene fluoride) thin films irradiated with ion beams. Effect of irradiated ions and pretreatment

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Rohani, Rosiah; Koshikawa, Hiroshi; Takahashi, Shuichi; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari; Voss, Kay-Obbe; Neumann, Reinhard

    2008-01-01

    Poly (vinylidene fluoride) thin films irradiated with four kinds of ion beams were exposed to a 9M KOH aqueous solution after their storage in air for 30 or 90 days at different temperatures. According to the conductometry, the heating at 120degC was found to enhance the etch rate in the latent track without changing that in the bulk, thereby enabling us to obtain very high etching sensitivity for the preparation of nano-sized through-pores. The formation of hydroperoxides during this pretreatment should facilitate the introduction of the etching agent to improve etchability. Additionally, the irradiation of higher-LET ions, causing each track to contain more activated sites (like radicals), was preferable to achieve high sensitivity of the etching. (author)

  1. Influence of electron beam Irradiation on PP/Piassava fiber composite prepared by melt extrusion process

    International Nuclear Information System (INIS)

    Gomes, Michelle G.; Ferreira, Maiara S.; Oliveira, Rene R.; Silva, Valquiria A.; Teixeira, Jaciele G.; Moura, Esperidiana A.B.

    2013-01-01

    In the latest years, the interest for the use of natural fibers in materials composites polymeric has increased significantly due to their environmental and technological advantages. Piassava fibers (Attalea funifera) have been used as reinforcement in the matrix of thermoplastic and thermoset polymers. In the present work (20%, in mass), piassava fibers with particle sizes equal or smaller than 250 μm were incorporated in the polypropylene matrix (PP) no irradiated and polypropylene matrix containing 10 % and 30 % of polypropylene treated by electron-beam radiation at 40 kGy (PP/PPi/Piassava). The composites PP/Piassava and PP/PPi/Piassava were prepared by using a twin screw extruder, followed by injection molding. The composite material samples obtained were treated by electron-beam radiation at 40 kGy, using a 1.5 MeV electron beam accelerator, at room temperature, in presence of air. After irradiation treatment, the irradiated and non-irradiated specimens tests samples were submitted to thermo-mechanical tests, melt flow index (MFI), sol-gel analysis, X-Ray diffraction (XRD) and scanning electron microscopy (SEM). (author)

  2. Development of abiotic-stress resistant warm season trufgrasses by proton-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y. W.; Kim, J. Y.; Jeong, S. H. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    The direct use of mutation is a valuable approach to generate genetic variation in crop species by altering agronomically useful major traits. The proton beam, as a mutagen, was applied to improve resistance traits of Zoysia grass under various abiotic stresses. Proton beam was irradiated to mature dry seeds of Zenith (Zoysia grass), which is well-adapted to Korean climate, using a proton- accelerator with seven different doses (50, 100, 150, 200, 250, 300, 400 Gy). Individual seedling of M1 plant was transplanted from the seed bed and allowed to reach appropriate plant mass. Clones that showed superior growth were chosen and transplanted to pots for further clone propagation and field evaluation. Growth characteristics of turfgrass, such as plant height, leaf length, leaf width, number of tiller were evaluated ninety days after sowing. Although large variation within each dose, noticeable differences were found among different irradiated doses. Most of the mutant clones derived from the irradiation treatment showed more vigorous growth than the control plants. RAPD (Random Amplified Polymorphic DNA) and AFLP (Amplified Fragment Length Polymorphism) methods were conducted to analyze genomic variations associated with proton beam irradiation. In order to establish selection criteria for selection of salt-stress resistance plants, an in vitro method that is able to select salt-stress resistant mutants in liquid media without ambient disturbances. Total 647 predominance clones that were considered as abiotic stress resistant mutants were transplanted to the field for further evaluation.

  3. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  4. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    Science.gov (United States)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  5. Effect of ion beam irradiation on morphological and flowering characteristics of chrysanthemum

    International Nuclear Information System (INIS)

    Shakinah Salleh; Zaiton Ahmad; Affrida Abu Hassan; Thohiroh Lee Abdullah

    2012-01-01

    Chrysanthemum morifolium is an important temperate cut flower for Malaysian floriculture industry and the lack of new local owned varieties led to this mutation breeding research. The objective of this study was to compare the effectiveness of ion beam irradiation in generating mutations on ray florets and nodal explants of Chrysanthemum morifolium cv. Reagan Red. Ion beams has become a new physical mutagens for mutation breeding. The ray florets and nodal explants were irradiated with ion beam at doses 0, 0.5, 1.0, 2.0, 3.0, 5.0, 8.0, 10, 15, 20 and 30 Gy. The 50 % of in vitro shoot regeneration (RD 50 ) for ray florets explants was 2.0 Gy and for nodal explants was 4.0 Gy. Thus, relative biological effectiveness (RBE) for ray florets was found 2.0 times higher than the nodal explants. The regenerated plant lets were planted in the greenhouse at MARDI, Cameron Highlands for morphological screening. Overall performance of survival plant lets derived from in vitro nodal and ray florets explants was recorded. The characters studied include plant morphology and flowering characteristic. The ray florets explants were found to be more sensitive to ion beam irradiation and generated more mutations as compared to nodal explants. (author)

  6. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    International Nuclear Information System (INIS)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun

    2015-01-01

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications

  7. Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation.

    Science.gov (United States)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Gautier, Romain

    2016-10-06

    In this communication, we report on the growth, direct writing and nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation using a scanning electron microscope. The nanoblocks are produced by placing a droplet of an ethylene glycol solution containing silver nitrate and polyvinylpyrrolidone diluted in ethanol directly on a hot substrate heated up to 150 °C. Upon complete evaporation of the droplet, nanospheres, nano- and micro-triangles and nanoblocks made of silver-containing polymers, form over the substrate surface. Considering the nanoblocks as a model system, we demonstrate that such nanostructures are extremely sensitive to the e-beam extracted from the source of a scanning electron microscope operating at low acceleration voltages (between 5 and 7 kV). This sensitivity allows us to efficiently create various nanopatterns (e.g. arrays of holes, oblique slits and nanotrenches) in the material under e-beam irradiation. In addition to the possibility of writing, the nanoblocks revealed a self-healing ability allowing them to recover a relatively smooth surface after etching. Thanks to these properties, such nanomaterials can be used as a support for data writing and erasing on the nanoscale under low energy electron beam irradiation.

  8. Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa

    2012-01-01

    We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO 2 substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 μC/cm 2 ) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

  9. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-02-15

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

  10. LC/MS/MS identification of some folic acid degradation products after E-beam irradiation

    International Nuclear Information System (INIS)

    Araújo, M.M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A.L.C.H.; Bergaentzle, M.

    2012-01-01

    Folates belong to the B vitamin group based on the parental compound folic acid (FA). They are involved in important biochemical processes like DNA synthesis and repair. FA is composed of a pteridine ring, p-aminobenzoic acid and glutamate moieties. The human metabolism is not able to synthesize folates and therefore obtain them from diet. FA, a synthetic vitamin, is used as a food fortificant because of its low price, relative stability and increased bioavailability compared to natural folate forms. FA is known to be a sensitive compound easily degradable in aqueous solution by ultraviolet and visible light towards various by-products. Irradiation is a process for preservation of foods that uses accelerated electrons, gamma rays or X-rays. Irradiation is proposed for the treatment of various food products, eliminating or reducing pathogens and insects, increasing the storage time and replacing chemical fumigants. This study concerns the identification of degradation products of FA after E-beam irradiation. FA aqueous solutions were irradiated with a Van de Graaff electrons beam accelerator (2 MeV, 100 μA current, 20 cm scan width, dose rate about 2 kGy/s). Applied doses were between 0 (control) and 10.0 kGy. Absorbed doses were monitored with FWT 60.00 radiochromic dosimeters. - Highlights: ► We investigated the degradation of folic acid aqueous solution after electron beam treatment. ► Radiation doses over 5 kGy promote huge folic acid degradation and appearance of several degradation products. ► PCA, PABA and pABGA, already known folic acid degradation products, are formed due to E-beam treatment. ► Xanthopterin, a new radio-induced breakdown product, is formed after irradiation treatment.

  11. Effect of electron beam-irradiation to b-glucan on its immunomodulating and antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yeon Hwan; Lee, Jung Lim; Yoo, Yung Choon [Konyand Univ., Daejeon (Korea, Republic of); Kim, Jae Hoon; Lee, Ju Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    In this study, in order investigated the effect of electron beam irradiation to b-glucan on its biological activities, we compared immunomodulating and antitumor activity between non-irradiated and electron beam-irradiated b-glucan. EB-glucan was irradiated by electron beam with 10, 30 and 50 kGy. Treatment with EB-glucan resulted in a slight increase of the proliferation of ConA-stimulated splenocytes, and the strongest activity was seen in 50 kGy-treated EB-glucan. EB-glucan teated with 50 kGy also showed increased secretion of cytokines such as IL-2 IFN-{gamma} and IL-6 from ConA-stimulated splenocytes. The activity of EB-glucan to enhance the proliferation of splenocytes and cytokine secretion from ConA-stimulated splenocytes was higher than that of NI-glucan. Furthermore, EB-glucan treated with 50 kGy showed higher activity to activate RAW 264.7 macrophages, comparing with that of NI-glucan. In experiments of antitumor activity, EB-glucan treated with 50 kGy prior to tumor inoculation inhibited an experimental lung metastasis produced by B16-BL6 melanoma cells in mice. But NI-glucan did show no effect. In addition, EB-glucan treated with 50 kGy induced a decrease a decrease of tumor growth in tumor-bearing mice. Collectivelt, these results indicates that electron beam irradiation {beta}-glucan leads its biological functions to enhance immunomodulating and antitumor activity.

  12. Effect of electron beam-irradiation to b-glucan on its immunomodulating and antitumor activity

    International Nuclear Information System (INIS)

    Jung, Yeon Hwan; Lee, Jung Lim; Yoo, Yung Choon; Kim, Jae Hoon; Lee, Ju Woon

    2010-01-01

    In this study, in order investigated the effect of electron beam irradiation to b-glucan on its biological activities, we compared immunomodulating and antitumor activity between non-irradiated and electron beam-irradiated b-glucan. EB-glucan was irradiated by electron beam with 10, 30 and 50 kGy. Treatment with EB-glucan resulted in a slight increase of the proliferation of ConA-stimulated splenocytes, and the strongest activity was seen in 50 kGy-treated EB-glucan. EB-glucan teated with 50 kGy also showed increased secretion of cytokines such as IL-2 IFN-γ and IL-6 from ConA-stimulated splenocytes. The activity of EB-glucan to enhance the proliferation of splenocytes and cytokine secretion from ConA-stimulated splenocytes was higher than that of NI-glucan. Furthermore, EB-glucan treated with 50 kGy showed higher activity to activate RAW 264.7 macrophages, comparing with that of NI-glucan. In experiments of antitumor activity, EB-glucan treated with 50 kGy prior to tumor inoculation inhibited an experimental lung metastasis produced by B16-BL6 melanoma cells in mice. But NI-glucan did show no effect. In addition, EB-glucan treated with 50 kGy induced a decrease a decrease of tumor growth in tumor-bearing mice. Collectivelt, these results indicates that electron beam irradiation β-glucan leads its biological functions to enhance immunomodulating and antitumor activity

  13. Sterilizing effect of irradiation for Zuogui powder with electron beam and γ rays

    International Nuclear Information System (INIS)

    Yue Ling; Kong Qiulian; Qi Wenyuan; Bao Yingzi; Chen Zhijun; Yuan Zhongyi

    2012-01-01

    The sterilizing effect of electron beam and γ-rays on Zuogui powder was studied. The D 10 values of electron beam and γ-rays on aerobic bacterial count and mould and yeasts were ascertained by survival microorganism. The results indicated that the D 10 values of electron beam and γ-rays irradiation for aerobic bacterial count were 2.602 kGy and 2.597 kGy, compared to 3.112 kGy and 3.208 kGy for mould and yeasts. The results in the current study suggested that the sterilizing effect of electron beam and γ-rays on Zuogui powder complied with D 10 rules. (authors)

  14. Ripple structures on surfaces and underlying crystalline layers in ion beam irradiated Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Grenzer, J.; Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, Dresden (Germany); Biermanns, A.; Grigorian, S.A.; Pietsch, U. [Institute of Physics, University of Siegen (Germany)

    2009-08-15

    We report on the formation of ion beam induced ripples in Si(001) wafers when bombarded with Ar+ ions at an energy of 60 keV. A set of samples varying incidence and azimuthal angles of the ion beam with respect to the crystalline surface orientation was studied by two complementary near surface sensitive techniques, namely atomic force microscopy and depth-resolved X-ray grazing incidence diffraction (GID). Additionally, cross-section TEM investigations were carried out. The ripple-like structures are formed at the sample surface as well as at the buried amorphous-crystalline interface. Best quality of the ripple pattern was found when the irradiating ion beam was aligned parallel to the (111) planes. The quality decreases rapidly if the direction of the ion beam deviates from (111). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. Outline of irradiation service equipment and properties of its electron beam

    International Nuclear Information System (INIS)

    Kagehira, K.; Shakudo, T.

    2002-01-01

    Current ethylene oxide sterilization becomes a subject of discussion on the safety for workers' health. On the other hand, demands for sterilization of disposable health care products and food packaging materials are increasing. On this situation, it is progressing to switch to radiation sterilization witch is easy to adapt to requirements of ISO validation, in particular to electron beam sterilization using electron accelerator, which is safer and easier to control. Our company started electron beam treatment service such as pasteurization, disinfestation, and improvement of polymers as well as sterilization, with introducing a high energy and high power electron accelerator. In this paper, basics of e-beam sterilization, outline of the irradiation service plant and the electron accelerator, and the properties of its electron beam are described. (author)

  16. Outline of irradiation service equipment and properties of its electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kagehira, K.; Shakudo, T. [Nuclear Fuel Industries, Ltd., Osaka (Japan)

    2002-10-01

    Current ethylene oxide sterilization becomes a subject of discussion on the safety for workers' health. On the other hand, demands for sterilization of disposable health care products and food packaging materials are increasing. On this situation, it is progressing to switch to radiation sterilization witch is easy to adapt to requirements of ISO validation, in particular to electron beam sterilization using electron accelerator, which is safer and easier to control. Our company started electron beam treatment service such as pasteurization, disinfestation, and improvement of polymers as well as sterilization, with introducing a high energy and high power electron accelerator. In this paper, basics of e-beam sterilization, outline of the irradiation service plant and the electron accelerator, and the properties of its electron beam are described. (author)

  17. Effect of triple ion beam irradiation on mechanical properties of high chromium austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Futakawa, Masatoshi; Nanjyo, Yoshiyasu; Kiuchi, Kiyoshi; Anegawa, Takefumi

    2003-01-01

    A high-chromium austenitic stainless steel has been developed for an advanced fuel cladding tube considering waterside corrosion and irradiation embrittlement. The candidate material was irradiated in triple ion (Ni, He, H) beam modes at 573 K up to 50 dpa to simulate irradiation damage by neutron and transmutation product. The change in hardness of the very shallow surface layer of the irradiated specimen was estimated from the slope of load/depth-depth curve which is in direct proportion to the apparent hardness of the specimen. Besides, the Swift's power low constitutive equation (σ=A(ε 0 + ε) n , A: strength coefficient, ε 0 : equivalent strain by cold rolling, n: strain hardening exponent) of the damaged parts was derived from the indentation test combined with an inverse analysis using a finite element method (FEM). For comparison, Type304 stainless steel was investigated as well. Though both Type304SS and candidate material were also hardened by ion irradiation, the increase in apparent hardness of the candidate material was smaller than that of Type304SS. The yield stress and uniform elongation were estimated from the calculated constitutive equation by FEM inverse analysis. The irradiation hardening of the candidate material by irradiation can be expected to be lower than that of Type304SS. (author)

  18. Effect of electron beam irradiation on quality of fresh chilled pork

    International Nuclear Information System (INIS)

    Shang Yibin; Gao Meixu; Li Shurong; Pei Ying; Wang Zhidong

    2013-01-01

    The effects of electron beam irradiation on nutrient quality, lipid oxidation and sensory quality of fresh chilled pork were investigated. Fresh chilled pork whose fat to muscle ratio was 1 : 6 was grounded and packaged, and then irradiated at doses of 0, 2.0, 3.8, 6.2, 8.3 and 10.5 kGy. The contents of fat andprotein, chromaticity, sensory characteristics, lipid oxidation index of TBARS value, POV, diene value of irradiated and unirradiated samples were measured. The results showed that there were no significant differences (5% level) in content of proteinand fat between irradiated and control samples, but irradiation could significantly increase TBARS value and POV. EB irradiation enhanced the increase of total diene value. The samples treated with 3.8 and 6.2 kGy showed good color during storage. There were no significant differences in sensory characteristics among different EB doses. It is concluded that 4-6 kGy EB irradiation, which is effective for decontamination, shows no significant effect on qualities of fresh chilled pork. (authors)

  19. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  20. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates

    Science.gov (United States)

    MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula

    2012-08-01

    Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.

  1. Wood Sawdust/Natural Rubber Ecocomposites Cross-Linked by Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Elena Manaila

    2016-06-01

    Full Text Available The obtaining and characterization of some polymeric eco-composites based on wood sawdust and natural rubber is presented. The natural rubber was cross-linked using the electron beam irradiation. The irradiation doses were of 75, 150, 300 and 600 kGy and the concentrations of wood sawdust were of 10 and 20 phr, respectively. As a result of wood sawdust adding, the physical and mechanical properties such as hardness, modulus at 100% elongation and tensile strength, showed significant improvements. The presence of wood sawdust fibers has a reinforcing effect on natural rubber, similar or better than of mineral fillers. An increase in the irradiation dose leads to the increasing of cross-link density, which is reflected in the improvement of hardness, modulus at 100% elongation and tensile strength of blends. The cross-linking rates, appreciated using the Flory-Rehner equation, have increased with the amount of wood sawdust in blends and with the irradiation dose. Even if the gel fraction values have varied irregularly with the amount of wood sawdust and irradiation dose it was over 90% for all blends, except for the samples without wood sawdust irradiated with 75 kGy. The water uptake increased with increasing of fiber content and decreased with the irradiation dose.

  2. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials

    International Nuclear Information System (INIS)

    Tokunaga, K.; Fujiwara, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Kurishita, H.; Nagata, S.; Tsuchiya, B.; Tonegawa, A.; Yoshida, N.

    2009-01-01

    High heat flux experiments using a hydrogen-helium mixture beam have been carried out on powder metallurgy tungsten (PM-W) and ultra fine grain W-TiC alloy (W-0.5 wt%TiC-H 2 ). The energy of is 18 keV. Beam flux and heat flux at the beam center is 2.0 x 10 21 atoms/m 2 s and 7.0 MW/m 2 , respectively. Typical ratio of He/D ion is 0.25. Beam duration is 1.5-3 s and interval of beam shot start is 30 s. The samples are irradiated up to a fluence of 10 22 -10 24 He/m 2 by the repeated irradiation pulses. After the irradiation, surface modification by the irradiation and hydrogen retention, surface composition have been investigated. Surface modification by hydrogen-helium mixture beams is completely different from results of single beam irradiation. In particular, mixture beam irradiation causes remarkably high hydrogen retention.

  3. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  4. Comparative effectiveness of gamma-rays and electron beams in food irradiation

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1991-01-01

    Ionizing radiations which can be used for the treatment of foods are gamma-rays from Co-60 and Cs-137, accelerated electrons from a machine at an energy of 10 MeV or lower and X-rays from a machine at an energy of 5 MeV or lower. The Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food held in 1980 concluded that the foods irradiated at overall average doses up to 10 kGy with the radiation listed above are wholesome for human consumption. While most of the commercial food irradiations are conducted with gamma-rays from Co-60, accelerated electrons are increasingly utilized for treating foods. An important difference between gamma-rays and accelerated electrons is the penetration capacity in materials. The penetration capacity of gamma-rays is much higher than that of accelerated electrons. Another important difference is the dose rate. The dose rates of gamma-rays from commercial Co-60 sources are 1-100 Gy/min, while those of electron beams from electron accelerators are 10 3 -10 6 Gy/s. Ideally a comparison of the effect of different types of ionizing radiation should be carried out at the same dose rate but this has been difficult due to the design of irradiators. It is very difficult to draw a definite conclusion on the difference in the effectiveness in food irradiation between gamma-rays and electron beams based on published data. This chapter deals with as many reports as possible on the comparative effectiveness of gamma-rays and electron beams and on the effect of dose rate on chemical reactions and living organisms, whether or not they demonstrate any dependency of the effect of irradiation on dose rate and type of radiation. (author)

  5. First application of hemi-body electron beam irradiation for Kaposi sarcoma at the lower extremities.

    Science.gov (United States)

    Platoni, Kalliopi; Diamantopoulos, Stefanos; Dilvoi, Maria; Delinikolas, Panagiotis; Kypraiou, Efrosyni; Efstathopoulos, Efstathios; Kouloulias, Vassilis

    2018-01-01

    Kaposi's sarcoma (KS) is a systemic neoplastic disease that can present cutaneous symptoms and is usually treated with a systematic approach due to its extent. Due to its radiosensitivity, radiotherapy is considered one of its main treatments, for palliation and local control of the skin and mucosal lesions. The aim of this paper was to report the first case of KS treated by hemi-body electron irradiation protocol in Greece. A fractionated 40 Gy hemi-body electron irradiation was prescribed to a 60-year-old male patient with KS at his legs. Dose uniformity was verified on a daily basis by thermoluminescence dosimetry (TLD). The treatment resulted to complete clinical response. Limited irradiation-derived side effects appeared. This is the first case ever to be treated with hemi-body electron irradiation protocol in Greece. To the best of our knowledge, this is also the first time that a single field hemi-body electron beam irradiation at a total skin electron beam (TSEB)-like configuration is reported to be used for KS.

  6. Influence of gamma and e-beam irradiation on microhardness of recycled polyolefin-rubber composites

    International Nuclear Information System (INIS)

    Atabaev, B.G.; Gafurov, U.G.; Fainleib, A.M.; Tolstov, A.

    2006-01-01

    Full text: The dose dependencies of surface Vickers microhardness (H) for gamma and e-beam irradiated (E=5 MeV) recycled polyethylene-rubber and polypropylene-rubber composites has been investigated. The new techniques for measuring of polymer surface microhardness using decoration of indenter imprint under load lower 100g are developed. The measurements under 50g load shown the microhardness sharp decreasing for e-beam irradiation up to dose 50-150 kGy. The optimal dose D opt for improving of viscoelastic properties at minimal microhardness HV for HDPE-rubber blends-100 kGy and PP-rubber blends-75 kGy are defined. The microhardness change depend on irradiation dose can be explained by concurrence of irradiation stimulated chain cross-linking, oxidation and destruction processes. In our work samples of polyolefin powder were irradiated in air to form peroxide and hydroperoxide groups and heated to form polar groups capable of improving the compatibility with the radiation devulcanized rubber particles. The absolute value of microhardness of polyolefin-rubber composites extremely low for polyolefins and close to microhardness of high elastic rubber. The viscoelastic properties can be explained by new model of formation mixing amorphous interface between semicrystalline polyolefin and devulcanized rubber. The work was supported by EC (STCU Project U3009). (author)

  7. Microstructural evolution in austenitic stainless steel irradiated with triple-beam

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo; Miwa, Yukio; Yamaki, Daiju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yichuan, Zhang

    1997-03-01

    An austenitic stainless steel was simultaneously irradiated with nickel, helium and hydrogen ions at the temperature range of 573-673 K. The damage level and injected concentration of He and H ions in the triple-beam irradiated region are 57 dpa, 19000 and 18000 at.ppm, respectively. Following to irradiation, the cross sectional observation normal to the incident surface of the specimen was carried out with a transmission electron microscope. Two bands parallel to the incident surface were observed in the irradiated specimen, which consist of dislocation loops and lines of high number density. These locate in the range of the depth of 0.4 to 1.3 {mu}m and 1.8 to 2.4 {mu}m from the incident surface, respectively. The region between two bands, which corresponds to the triple beam irradiated region, shows very low number density of dislocations than that in each band. Observation with higher magnification of this region shows that fine cavities with high number density uniformly distribute in the matrix. (author)

  8. Virus inactivation studies using ion beams, electron and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Smolko, Eduardo E. [Laboratorio de Polimeros, Grupo Aplicaciones Industriales, Unidad de Aplicaciones Tecnologicas y Agropecuarias, Centro Atomico Ezeiza, Comision Nacional de Energia Atomica, Pbro. Juan Gonzalez y Aragon 15, C.P. B1802AYA Ezeiza, Buenos Aires (Argentina)]. E-mail: smolko@cae.cnea.gov.ar; Lombardo, Jorge H. [Biotech S.A., C.P. 1754 Buenos Aires (Argentina)

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle ({alpha}, d and ss) and {gamma} irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D{sub 37} dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  9. Virus inactivation studies using ion beams, electron and gamma irradiation

    International Nuclear Information System (INIS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-01-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ss) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D 37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule

  10. Influence of electron beam irradiation on some properties of polypropylene membrane

    International Nuclear Information System (INIS)

    Buczkowski, M.; Wawszczak, D.; Starosta, W.

    2006-01-01

    In case of PP membrane material during electron irradiation outweighed degradation processes of polymeric chains and formation of radicals should be taken into account that stimulate another changes. From the point of view of increasing hydrophilic property, the formation of oligomers of polarity type is important. In the course of presented studies seven samples were treated by electron beam with doses: 5, 10, 14, 20, 25 and 35 kGy. It has been found, that radiation treatment does not change permeability in case of air stream, but causes a decrease of mechanical strength. Irradiation dose, however, should not be higher than about 14 kGy

  11. Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review

    Science.gov (United States)

    Hossain, Kaizar; Maruthi, Y. Avasn; Das, N. Lakshmana; Rawat, K. P.; Sarma, K. S. S.

    2018-03-01

    Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.

  12. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.

    Science.gov (United States)

    Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco

    2017-04-01

    Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  14. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipments such as TV sets, microwave ovens, duplicators and etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through property and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  15. Development of high voltage lead wires using electron beam irradiation

    International Nuclear Information System (INIS)

    Bae Hunjai; Sohn Hosoung; Choi Dongjung

    1995-01-01

    It is known to those skilled to the art that the electric wires used in high voltage operating electric equipment such as TV sets, microwave ovens, duplicators etc., have such a structure that a conductor is coated with an insulating layer which is encapsulated with a protecting jacket layer. The electric wire specification such as UL and CSA requires superior cut-through and flame-retardant property of the wire for utilization safety. The cut-through property of insulation material, for example, high density polyethylene, can be increased by crosslinking of the polymer. Also the flame-retardant property of jacket material which protects the flammable inner insulation can be raised by flame-retardant formulating of the material. In the wire and cable industry, crosslinking by electron beam processing is more effective than that by chemical processing in the viewpoint of through-put rate of the products. The jacket layer of the wire plays the role of protecting the insulation material from burning. The protecting ability of the jacket is related to its inherent flammability and formability of swollen carbonated layer when burned. Crosslinking of the material gives a good formability of swollen carbonated layer, and it protects the insulation material from direct flame. In formulating the flame-retardant jacket material, a crosslinking system must be considered with base polymers and other flame-retardant additives. (Author)

  16. Improving external beam radiotherapy by combination with internal irradiation.

    Science.gov (United States)

    Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-07-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.

  17. Intraoperative plus external beam irradiation in nonresectable lung cancer

    International Nuclear Information System (INIS)

    Arian-Schad, K.S.; Juettner, F.M.; Ratzenhofer, B.; Leitner, H.; Porsch, G.; Pinter, H.; Ebner, F.; Hackl, A.G.; Friehs, G.B.

    1990-01-01

    Since 1987, 24 patients with inoperable non-small-cell lung cancer (NSCLC), stage T 1-3 N 0-2 M 0 , have undergone lymph node dissection and intraoperative radiation therapy (IORT) to the primary with 10-20 Gy. Patient selection criteria were nonresectability based on severe cardiorespiratory impairment, no radiological evidence of distant metastases and a Karnofsky performance status of >80. In 18 patients the IORT procedure was followed by an external beam radiation series (EBR) including the tumor with 46 Gy and the regional lymph nodes with 45/56 Gy. The tumor response was assessed by CAT-scan volumetry before the institution of IORT, 4 weeks later, before the onset of EBR, 8 weeks after the combined treatment course and on a 3 months basis thereafter. Prospectively, MRI of the thorax with/without Gadolinium-DTPA was performed to examine contrast enhancement and signal behavior of the tumor, in an attempt to differentiate residual disease compared to therapy-related collateral damage. So far, 18 patients have completed the combined treatment course with a median follow-up of 11 months (range 4.5 to 25 months). The overall local response rate (CR and PR) was 88.2 per cent. In detail, 11 complete responses, 6 partial responses and one minimal response were observed. The overall and recurrent-free survival at 25 months was 49.6 per cent and 83.3 per cent, respectively. (author). 31 refs.; 2 figs.; 3 tabs

  18. The structural design of an electron gun for an E-beam irradiator

    International Nuclear Information System (INIS)

    Yu Xiaojuan; Wu Xunlei; Jiang Zhenbo; Meng Mingfeng

    2011-01-01

    In this paper, an electron gun for a linac E-beam irradiator is developed with a replaceable cathode and filament. The structure of cathode and filament and the concentric technique, with molds and clamps, are described in detail. The electron gun was assembled with care to reduce the error, and ensure the concentricity of electron gun. The test results indicated a 99.99% pass ratio of the electron beams at 60-65 kV. The electron gun design meets the technical requirement of clients. (authors)

  19. Design of an irradiation facility with thermal, epithermal and fast neutron beams

    International Nuclear Information System (INIS)

    Pfister, G.; Bernnat, W.; Seidel, R.; Schatz, A.K.; Wagner, F.M.; Waschkowski, W.; Schraube, H.

    1992-01-01

    The main features of a neutron irradiation facility to be installed at the planned research reactor FRM-II are presented. In addition to the operational possibilities of the existing facility at the reactor FRM-I, the new facility will produce quasi-monoenergetic neutron fields and a neutron beam in the keV region whose spectrum can be modified by application of suitable filters and scatterers. For this beam, which is well suited for boron capture therapy, calculated boron reaction rates inside a phantom and an experimental verification of the calculations at the existing facility are presented. (orig.) [de

  20. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  1. Effect of electron beam irradiation on forensic evidence. 2. Analysis of writing inks on porous surfaces.

    Science.gov (United States)

    Ramotowski, Robert S; Regen, Erin M

    2007-05-01

    The effect of electron beam irradiation on a series of different writing inks is described. As the anthrax-tainted letters were discovered in October 2001, the U.S. government began to experiment with the use of the electron beam irradiation process for destroying such biological agents. Plans initially considered a large-scale countrywide use of this technology. However, over time the scope of this plan as well as the radiation dosage were reduced, especially when some adverse consequences to mailed items subjected to this process were observed. Little data existed at the time to characterize what level of damage might be expected to occur with common items sent through the mail. This was especially important to museums and other institutions that routinely ship valuable and historic items through the mail. Although the Smithsonian Institution initiated some studies of the effect of electron beam irradiation on archived materials, little data existed on the effect that this process would have on forensic evidence. Approximately 97 different black, blue, red, green, and yellow writing inks were selected. Writing ink types included ballpoint, gel, plastic/felt tip, and rollerball. All noncontrol samples were subjected to standard mail irradiation conditions used by the U.S. Postal Service at the time this experiment was performed. A video spectral comparator and thin-layer chromatography (TLC) analysis were used to evaluate both the control and the irradiated samples. Some published studies reported changes in the presence/absence of dye bands in the chromatograms of irradiated writing inks. Some of these studies report the formation of additional dye bands on the chromatogram while others report missing dye bands. However, using standard testing guidelines and procedures, none of the 97 irradiated inks tested were found to show any significant optical or chemical differences from the control samples. In addition, random testing of some of the ink samples using a

  2. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Kyung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Srinivasan, Periasamy; Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Ene