WorldWideScience

Sample records for high-frequency mode conversion

  1. A frequency conversion mode for dispenser in the service station based on flow rate signal

    International Nuclear Information System (INIS)

    Liu, Y J; Tang, D; Huang, J B; Liu, J; Jia, P F

    2012-01-01

    Dispenser is an integrated fuel transport and measurement system at the service station. In this paper, we developed a frequency conversion mode for the dispenser, based on the flow rate signal which is obtained from the converter measuring flow capacity. After introducing the frequency conversion mode to dispenser, we obtained that pump rotates at a high speed when fuelled with high flow rate, and it rotates at a low speed when fuelled with low flow rate. This makes the fuel dispenser more energy-efficient and controllable. We also did some valve optimizations on the dispenser and developed a new control mode for preset refuelling based on the frequency conversion mode, Experimental and theoretical studies have shown that the new dispenser not only can meet the national standards, but also performs better than the ordinary one especially in preset refuelling.

  2. Frequency conversion of structured light.

    Science.gov (United States)

    Steinlechner, Fabian; Hermosa, Nathaniel; Pruneri, Valerio; Torres, Juan P

    2016-02-15

    Coherent frequency conversion of structured light, i.e. the ability to manipulate the carrier frequency of a wave front without distorting its spatial phase and intensity profile, provides the opportunity for numerous novel applications in photonic technology and fundamental science. In particular, frequency conversion of spatial modes carrying orbital angular momentum can be exploited in sub-wavelength resolution nano-optics and coherent imaging at a wavelength different from that used to illuminate an object. Moreover, coherent frequency conversion will be crucial for interfacing information stored in the high-dimensional spatial structure of single and entangled photons with various constituents of quantum networks. In this work, we demonstrate frequency conversion of structured light from the near infrared (803 nm) to the visible (527 nm). The conversion scheme is based on sum-frequency generation in a periodically poled lithium niobate crystal pumped with a 1540-nm Gaussian beam. We observe frequency-converted fields that exhibit a high degree of similarity with the input field and verify the coherence of the frequency-conversion process via mode projection measurements with a phase mask and a single-mode fiber. Our results demonstrate the suitability of exploiting the technique for applications in quantum information processing and coherent imaging.

  3. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  4. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  5. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramodal...

  6. Is the bulk mode conversion important in high density helicon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Shogo; Hada, Tohru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, Takao [Research Institute of Science and Technology, Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included in the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.

  7. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    International Nuclear Information System (INIS)

    Dong Guo-Xiang; Xia Song; Li Wei; Zhang An-Xue; Xu Zhuo; Wei Xiao-Yong; Shi Hong-Yu

    2016-01-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. (paper)

  8. Evidence of conversion from Z-mode waves to the electromagnetic L-O mode waves at the plasmapause detected by JIKIKEN (EXOS-B)

    International Nuclear Information System (INIS)

    Oya, Hiroshi; Morioka, Akira

    1982-01-01

    JIKIKEN satellite that has the initial perigee and apogee of 250 km and 30,050 km, respectively, and has an inclination of -31 0 has passed through critical regions where the AKR spectra were carved out by the plasma surounding the satellite, at least five times during a period from January 31, 1979, to June 21, 1980. On all these occasions the usual type of AKR spectra are disclosed to show cutoff phenomena at the local Z-cutoff frequency indicating a continuation crossing over the local X-cutoff frequency from the high frequency side down to the Z mode wave frequency range rather than to be cut at the local X-cutoff frequency; i.e., the AKR waves consist of the spectra that continuously cover the frequency range corresponding to Z-mode and L-O mode waves when the observation is made near the source region. The most posible mechanism that can give cinsistent interpretations to this spectra characteristics is the mode conversion theory; i.e., the plasma waves generated in the form of the hybrid mode waves in the source regions is converted into the Z-mode wave which propagates towards dense plasma regions where the wave frequency coincides with the local plasma frequency and a part of the energy of Z-mode waves is transported to the L-O mode waves that can escape towards outer space. This conversion mechanism gives also a self-consistent interpretation of previously presented evidences reported as the cutoff phenomena of AKR near the local electron cyclotron frequency, using the mechanism of the propagation of the Z-mode waves. There is no confliction between the conversion mechanism of the AKR generation and the previous polarization observation carried out by the Voyager spacecrafts because there remains wide variety of the selection of the source region that are pertinent to give the possiblity of the LH polarization waves as the results of the conversion of the radiation waves from the Z-mode to the L-O mode in the northern polar regions. (author)

  9. Low-frequency modes with high toroidal mode numbers. A general formulation

    International Nuclear Information System (INIS)

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  10. Optimization of Quantum-state-preserving Frequency Conversion by Changing the Input Signal

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Reddy, D. V.; McKinstrie, C. J.

    We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal.......We optimize frequency conversion based on four-wave mixing by using the input modes of the system. We find a 10-25 % higher conversion efficiency relative to a pump-shaped input signal....

  11. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  12. Mode Conversion of High-Field-Side-Launched Fast Waves at the Second Harmonic of Minority Hydrogen in Advanced Tokamak Reactors

    International Nuclear Information System (INIS)

    Sund, R.; Scharer, J.

    2003-01-01

    Under advanced tokamak reactor conditions, the Ion-Bernstein wave (IBW) can be generated by mode conversion of a fast magnetosonic wave incident from the high-field side on the second harmonic resonance of a minority hydrogen component, with near 100% efficiency. IBWs have the recognized capacity to create internal transport barriers through sheared plasma flows resulting from ion absorption. The relatively high frequency (around 200 MHz) minimizes parasitic electron absorption and permits the converted IBW to approach the 5th tritium harmonic. It also facilitates compact antennas and feeds, and efficient fast wave launch. The scheme is applicable to reactors with aspect ratios < 3 such that the conversion and absorption layers are both on the high field side of the magnetic axis. Large machine size and adequate separation of the mode conversion layer from the magnetic axis minimize poloidal field effects in the conversion zone and permit a 1-D full-wave analysis. 2-D ray tracing of the IBW indicates a slightly bean-shaped equilibrium allows access to the tritium resonance

  13. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  14. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  15. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Science.gov (United States)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  16. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  17. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  18. Temperature dependence of mode conversion in warm, unmagnetized plasmas with a linear density profile

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dae Jung; Lee, Dong-Hun [School of Space Research, Kyung Hee University, Yongin (Korea, Republic of); Kim, Kihong [Division of Energy Systems Research, Ajou University, Suwon (Korea, Republic of)

    2013-06-15

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  19. Mode conversion of fast Alfvacute en waves at the ion endash ion hybrid resonance

    International Nuclear Information System (INIS)

    Ram, A.K.; Bers, A.; Schultz, S.D.; Fuchs, V.

    1996-01-01

    Substantial radio-frequency power in the ion-cyclotron range of frequencies can be effectively coupled to a tokamak plasma from poloidal current strap antennas at the plasma edge. If there exists an ion endash ion hybrid resonance inside the plasma, then some of the power from the antenna, delivered into the plasma by fast Alfvacute en waves, can be mode converted to ion-Bernstein waves. In tokamak confinement fields the mode-converted ion-Bernstein waves can damp effectively and locally on electrons [A. K. Ram and A. Bers, Phys. Fluids B 3, 1059 (1991)]. The usual mode-conversion analysis that studies the propagation of fast Alfvacute en waves in the immediate vicinity of the ion endash ion hybrid resonance is extended to include the propagation and reflection of the fast Alfvacute en waves on the high magnetic-field side of the ion endash ion hybrid resonance. It is shown that there exist plasma conditions for which the entire fast Alfvacute en wave power incident on the ion endash ion hybrid resonance can be converted to ion-Bernstein waves. In this extended analysis of the mode conversion process, the fast Alfvacute en waves can be envisioned as being coupled to an internal plasma resonator. This resonator extends from the low magnetic-field cutoff near the ion endash ion hybrid resonance to the high magnetic-field cutoff. The condition for 100% mode conversion corresponds to a critical coupling of the fast Alfvacute en waves to this internal resonator. As an example, the appropriate plasma conditions for 100% mode conversion are determined for the Tokamak Fusion Test Reactor (TFTR) [R. Majeski et al., Proceedings of the 11th Topical Conference on RF Power in Plasmas, Palm Springs (American Institute of Physics, New York, 1995), Vol. 355, p. 63] experimental parameters. copyright 1996 American Institute of Physics

  20. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  1. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  2. Mode-conversion process and overdense-plasma heating in the electron cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Nakajima, S.; Abe, H.

    1988-01-01

    Through a particle-simulation investigation, a new mode-conversion process, through which an incident fast extraordinary mode (fast X mode) is converted into an electron Bernstein mode (B mode) via a (slow extraordinary mode slow X mode), is discovered in plasmas whose maximum density exceeds the cutoff density of the slow X mode. The converted B mode is found to heat the electrons efficiently in an overdense plasma region, when the plasma has the optimum density gradient at the plasma surface

  3. Microwave plasma mode conversion

    International Nuclear Information System (INIS)

    Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.

    1985-01-01

    The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt

  4. Coupling analysis of energy conversion in multi-mode vibration structural control using a synchronized switch damping method

    International Nuclear Information System (INIS)

    Ji, Hongli; Qiu, Jinhao; Xia, Pinqi; Inman, Daniel

    2012-01-01

    Modal coupling is an important issue in the analysis and control of structural systems with multi-degrees of freedom (MDOF). In this paper, modal coupling induced by energy conversion in the structural control of an MDOF system using a synchronized switch damping method is investigated theoretically and validated numerically. In the analysis, it is supposed that the voltage on the piezoelectric actuator is switched at the displacement extrema of a given mode. Two types of coupling in energy conversion are considered. The first is whether the switching action based on one mode induces energy conversion of the other modes. The second is whether the vibration of one mode affects the energy conversion of the other modes. The results indicate that the modal coupling in energy conversion is very complicated. In most cases the switching action based on one mode does induce energy conversion of another mode, but the efficiency depends on the frequency ratio of the two modes. The vibration of one mode affects the energy conversion of another mode only when the frequency ratio of the two modes takes some special values. Discussions are also given on the potential application of the theoretical results in the design of an energy harvesting device. (paper)

  5. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  6. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    International Nuclear Information System (INIS)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-01-01

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for (Omega) ∝ (ωL) 1/3 (ω c /ω) ∼ 1.5. Here ω c is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as (Omega) increases. (4) As (Omega) increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as (Omega) increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50-70%. (7) The interference effect and the disappearance of the x mode at (Omega) ∼> 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for solar and interplanetary radio bursts. It is therefore possible that linear mode conversion

  7. Effect of toroidicity during lower hybrid mode conversion

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.

    1985-11-01

    The effect of toroidicity during lower hybrid mode conversion is examined by treating the wave propagation in an inhomogeneous medium as an eigenvalue problem for ω 2 (m,n),m,n poloidal and toroidal wave numbers. Since the frequency regime near ω 2 = ω/sub LH/ 2 is an accumulation point for the eigenvalue spectrum, the degenerate perturbation technique must be applied. The toroidal eigenmodes are constructed by a zeroth order superposition of monochromatic solutions with different poloidal dependence m, thus they generically exhibit a wide spectrum in k/sub parallel/ for given fixed ω 2 even for small inverse aspect ratio epsilon. In case that the average is in the neighborhood of k/sub min/, the minimum wave number for accessibility of the mode conversion regime, it is expected that excitation of toroidal modes rather than geometric optics will determine the wave coupling to the plasma

  8. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  9. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    Science.gov (United States)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  10. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2016-01-01

    Roč. 6, Sep (2016), 1-12, č. článku 33802. ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : four-mode Gaussian states * parametric down-conversion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016

  11. A Multifunctional Isolated and Non-Isolated Dual Mode Converter for Renewable Energy Conversion Applications

    Directory of Open Access Journals (Sweden)

    Yiwang Wang

    2017-11-01

    Full Text Available In this paper, a multifunctional isolated and non-isolated dual-mode low-power converter was designed for renewable energy conversion applications such as photovoltaic power generation to achieve different operating modes under bi-directional electrical conversion. The proposed topology consists of a bidirectional non-isolated DC/DC circuit and an isolated converter with a high-frequency transformer, which merge the advantages of both the conventional isolated converter and non-isolated converter with the combination of the two converter technologies. Compared with traditional converters, the multifunctional converter can not only realize conventional bi-directional functions, but can also be applied for many different operation modes and meet the high output/input ratio demands with the two converter circuits operating together. A novel control algorithm was proposed to achieve the various functions of the proposed converter. An experimental platform based on the proposed circuit was established. Both the simulation and experimental results indicated that the proposed converter could provide isolated and non-isolated modes in different applications, which could meet different practical engineering requirements.

  12. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  13. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)

    2016-07-15

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  14. Analytic expressions for mode conversion in a plasma with a parabolic density profile: Generalized results

    International Nuclear Information System (INIS)

    Hinkel-Lipsker, D.E.; Fried, B.D.; Morales, G.J.

    1993-01-01

    This study provides an analytic solution to the general problem of mode conversion in an unmagnetized plasma. Specifically, an electromagnetic wave of frequency ω propagating through a plasma with a parabolic density profile of scale length L p is examined. The mode conversion points are located a distance Δ 0 from the peak of the profile, where the electron plasma frequency ω p (z) matches the wave frequency ω. The corresponding reflection, transmission, and mode conversion coefficients are expressed analytically in terms of parabolic cylinder functions for all values of Δ 0 . The method of solution is based on a source approximation technique that is valid when the electromagnetic and electrostatic scale lengths are well separated. For large Δ 0 , i.e., (cL p /ω) 1/2 much-lt Δ 0 p , the appropriately scaled result [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 559 (1992)] for a linear density profile is recovered as the parabolic cylinder functions asymptotically become Airy functions. When Δ 0 →0, the special case of conversion at the peak of the profile [D. E. Hinkel-Lipsker et al., Phys. Fluids B 4, 1772 (1992)] is obtained

  15. Ions and electrons thermal effects on the fast-slow mode conversion process in a three components plasma

    International Nuclear Information System (INIS)

    Fidone, I.; Gomberoff, L.

    1977-07-01

    Fast-slow mode conversion in a deuterium plasma with a small amount of hydrogen impurity, for frequencies close to the two-ion hybrid frequency, is investigated. It is shown that while electron thermal effects tend to inhibit the wave conversion process, ion thermal effects tend to restore, qualitatively, the cold plasma properties, favouring therefore, the energy exchange between the two modes. The aforementioned effects are competitive for zetasub(o)sup(e)=1/nsub(parall).vsub(e)>=1. For zetasub(o)sup(e)<=1, electron thermal effects, in particular Landau damping, dominate over ion Larmor radius effects, drastically diminishing the wave conversion efficacy. For zetasub(o)sup(e)<<1, the coupling between the modes disappears altogether

  16. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  17. High-efficiency frequency doubling of continuous-wave laser light.

    Science.gov (United States)

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  18. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  19. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Directory of Open Access Journals (Sweden)

    F.Y. Fangyu Li

    2016-10-01

    Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  20. A simple theory of linear mode conversion

    International Nuclear Information System (INIS)

    Cairns, R.A.; Lashmore-Davies, C.N.; Woods, A.M.

    1984-01-01

    A summary is given of the basic theory of linear mode conversion involving the construction of differential equations for the mode amplitudes based on the properties of the dispersion relation in the neighbourhood of the mode conversion point. As an example the transmission coefficient for tunneling from the upper hybrid resonance through the evanescent region to the adjacent cut-off is treated. 7 refs, 3 figs

  1. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  2. Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion

    Science.gov (United States)

    Cally, Paul S.; Khomenko, Elena

    2018-03-01

    It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”

  3. Sensibility to Changes of Vibrational Modes of Excited Electron: Sum Frequency Signals Versus Difference Frequency Signals

    International Nuclear Information System (INIS)

    Gu Anna; Liang Xianting

    2011-01-01

    In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  5. Absorption and emission from mode conversion theory

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-02-01

    The effects of mode conversion theory on emission have led to some surprising results. The classical expressions were originally derived from models which did not include mode conversion or its attendant reflection. When mode conversion was included, the first surprise was that the transmission coefficient is totally independent of absorption and due exclusively to tunneling. The other surprise is that the observed emission arises from two distinct sources, one direct, and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for laboratory plasmas, leading to the validation of the classical formula, but via an entirely new paradigm in its interpretation. This paper includes a summary of the absorption process for electron cyclotron harmonics, and reviews the emission physics, including both potential error estimates and a discussion of the spatial emission source distribution

  6. Linear mode conversion in a toroidal plasma

    International Nuclear Information System (INIS)

    Hellsten, T.

    1980-05-01

    Linear mode conversion at the perpendicular ion cyclotron resonance has been treated for an axially symmetric toroidal plasma. The mode conversion appears between a fast electromagnetic wave and a slow-quasi electrostatic wave, due to finite electron inertia. The problem reduces to the Orr-Sommerfeld equation where the coefficients determining the reflectron, transmission and conversion are functions of the arc length along a poloidal intersection of the resonance surface. These coefficients can be determined from eigenfunctions of an ordinary differential equation. (author)

  7. Toroidal mode-conversion in the ICRF

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode-conversion is studied in the ion-cyclotron range of frequencies (ICRF) taking into account the toroidal geometry relevant for tokamaks. The global wavefields obtained using the gyrokinetic toroidal PENN code illustrate how the fast wave propagates to the neighborhood of the ion-ion hybrid resonance, where it is converted to a slow wave which deposits the wave energy through resonant interactions with the particles. The power deposition profiles obtained are dramatically different from the toroidal resonance absorption, showing that Budden's model is not a good approximation in the torus. Radially and poloidally localized wavefield structures characteristic of slow wave eigenmodes are predicted and could in experiments be driven to large amplitudes so as to interact efficiently with fast particles. (author) 5 figs., 1 tab., 48 refs

  8. Signatures of mode conversion and kinetic Alfven waves at the magnetopause

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Cheng, C. Z.

    2000-01-01

    It has been suggested that resonant mode conversion of compressional MHD waves into kinetic Alfven waves at the magnetopause can explain the abrupt transition in wave polarization from compressional to transverse commonly observed during magnetopause crossings. The authors analyze magnetic field data for magnetopause crossings as a function of magnetic shear angle (defined as the angle between the magnetic fields in the magnetosheath and magnetosphere) and compare with the theory of resonant mode conversion. The data suggest that amplification in the transverse magnetic field component at the magnetopause is not significant up to a threshold magnetic shear angle. Above the threshold angle significant amplification results, but with weak dependence on magnetic shear angle. Waves with higher frequency are less amplified and have a higher threshold angle. These observations are qualitatively consistent with theoretical results obtained from the kinetic-fluid wave equations

  9. Mode conversion in magneto photonic crystal fibre

    International Nuclear Information System (INIS)

    Otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; Benmerkhi, Ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  10. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  11. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    International Nuclear Information System (INIS)

    Breger, M.; Montgomery, M. H.

    2014-01-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  12. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  13. Quasi-normal frequencies: Semi-analytic results for highly damped modes

    International Nuclear Information System (INIS)

    Skakala, Jozef; Visser, Matt

    2011-01-01

    Black hole highly-damped quasi-normal frequencies (QNFs) are very often of the form ω n = (offset) + in (gap). We have investigated the genericity of this phenomenon for the Schwarzschild-deSitter (SdS) black hole by considering a model potential that is piecewise Eckart (piecewise Poschl-Teller), and developing an analytic 'quantization condition' for the highly-damped quasi-normal frequencies. We find that the ω n = (offset) + in (gap) behaviour is common but not universal, with the controlling feature being whether or not the ratio of the surface gravities is a rational number. We furthermore observed that the relation between rational ratios of surface gravities and periodicity of QNFs is very generic, and also occurs within different analytic approaches applied to various types of black hole spacetimes. These observations are of direct relevance to any physical situation where highly-damped quasi-normal modes are important.

  14. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor (...

  15. ICRF Mode Conversion Current Drive for Plasma Stability Control in Tokamaks

    International Nuclear Information System (INIS)

    Grekov, D.; Kock, R.; Lyssoivan, A.; Noterdaeme, J. M.; Ongena, J.

    2007-01-01

    There is a substantial incentive for the International Thermonuclear Experimental Reactor (ITER) to operate at the highest attainable beta (plasma pressure normalized to magnetic pressure), a point emphasized by requirements of attractive economics in a reactor. Recent experiments aiming at stationary high beta discharges in tokamak plasmas have shown that maximum achievable beta value is often limited by the onset of instabilities at rational magnetic surfaces (neoclassical tearing modes). So, methods of effective control of these instabilities have to be developed. One possible way for neoclassical tearing modes control is an external current drive in the island to locally replace the missing bootstrap current and thus to suppress the instability. Also, a significant control of the sawtooth behaviour was demonstrated when the magnetic shear was modified by driven current at the magnetic surface where safety factor equals to 1. In the ion cyclotron range of frequencies (ICRF), the mode conversion regime can be used to drive the local external current near the position of the fast-to-slow wave conversion layer, thus providing an efficient means of plasma stability control. The slow wave energy is effectively absorbed in the vicinity of mode conversion layer by electrons with such parallel to confining magnetic field velocities that the Landau resonance condition is satisfied. For parameters of present day tokamaks and for ITER parameters the slow wave phase velocity is rather low, so the large ratio of momentum to energy content would yield high current drive efficiency. In order to achieve noticeable current drive effect, it is necessary to create asymmetry in the ICRF power absorption between top and bottom parts of the plasma minor cross-section. Such asymmetric electron heating may be realized using: - shifted from the torus midplane ICRF antenna in TEXTOR tokamak; - plasma displacement in vertical direction that is feasible in ASDEX-Upgrade; - the

  16. Time Reversal of Arbitrary Photonic Temporal Modes via Nonlinear Optical Frequency Conversion

    OpenAIRE

    Raymer, Michael G; Reddy, Dileep V; van Enk, Steven J; McKinstrie, Colin J

    2017-01-01

    Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is blind reversal of a photon's temporal wave-packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. This scheme allows for quantum operations such as a...

  17. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  18. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    Science.gov (United States)

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  19. High-ratio voltage conversion in CMOS for efficient mains-connected standby

    CERN Document Server

    Meyvaert, Hans

    2016-01-01

    This book describes synergetic innovation opportunities offered by combining the field of power conversion with the field of integrated circuit (IC) design. The authors demonstrate how integrating circuits enables increased operation frequency, which can be exploited in power converters to reduce drastically the size of the discrete passive components. The authors introduce multiple power converter circuits, which are very compact as result of their high level of integration. First, the limits of high-power-density low-voltage monolithic switched-capacitor DC-DC conversion are investigated to enable on-chip power granularization. AC-DC conversion from the mains to a low voltage DC is discussed, enabling an efficient and compact, lower-power auxiliary power supply to take over the power delivery during the standby mode of mains-connected appliances, allowing the main power converter of these devices to be shut down fully. Discusses high-power-density monolithic switched-capacitor DC-DC conversion in bulk CMOS,...

  20. Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion

    International Nuclear Information System (INIS)

    Sergienko, A.V.; Walton, Z.D.; Booth, M.C.; Saleh, B.E.A.; Teich, M.C.

    2005-01-01

    Full text: A new method for generating entangled photons with controllable frequency correlation via spontaneous parametric down-conversion (SPDC) is presented. The method entails initiating counter-propagating SPDC in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. In a typical spontaneous parametric down-conversion (SPDC) experiment, a photon from a monochromatic pump beam decays into two photons (often referred to as signal and idler) via interaction with a nonlinear optical crystal. While the signal and idler may be broadband individually, conservation of energy requires that the sum of their respective frequencies equals the single frequency of the monochromatic pump. This engenders frequency anti-correlation in the down-converted beams. Two developments in quantum information theory have renewed interest in the generalized states of frequency correlation. First, quantum information processes requiring the synchronized creation of multiple photon pairs have been devised, such as quantum teleportation. The requisite temporal control can be achieved by pumping the crystal with a brief pulse. The availability of pump photons of differing frequencies relaxes the strict frequency anti-correlation in the down-converted beams. Second, applications such as entanglement-enhanced clock synchronization and one-way auto-compensating quantum cryptography have been introduced that specifically require frequency correlation, as opposed to the usual frequency anticorrelation. Our method for obtaining controllable frequency entanglement entails initiating type-I SPDC (signal and idler identically polarized) in a single-mode nonlinear waveguide by pumping with a pulsed beam perpendicular to the waveguide. The down-converted photons emerge from opposite ends of the waveguide with a joint spectrum that can be varied from frequency anti-correlated to frequency correlated by adjusting the temporal and spatial characteristics of the

  1. The O-X-B mode conversion scheme for ECRH of a high-density Tokamak plasma

    DEFF Research Database (Denmark)

    Hansen, F. R.; Lynov, Jens-Peter; Michelsen, Poul

    1985-01-01

    A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X......-mode) into an electron Bernstein mode (B-mode). Radial profiles for the power deposition and the wave-drive current due to the B-waves are calculated for realistic antenna radiation patterns with parameters corresponding to the Danish DANTE Tokamak and to Princeton's PLT....

  2. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  3. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  4. High degree modes and instrumental effects

    Energy Technology Data Exchange (ETDEWEB)

    Korzennik, S G [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Rabello-Soares, M C; Schou, J [Stanford University, Stanford, CA (United States)], E-mail: skorzennik@cfa.harvard.edu

    2008-10-15

    Full-disk observations taken with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, or the upgraded Global Oscillations Network Group (GONG) instruments, have enough spatial resolution to resolve modes up to {iota} = 1000 if not {iota} = 1500. The inclusion of such high-degree modes (i.e., {iota} {<=} 1000) improves dramatically inferences near the surface. Unfortunately, observational and instrumental effects cause the characterization of high degree modes to be quite complicated. Indeed, the characteristics of the solar acoustic spectrum are such that, for a given order, mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases. A direct consequence of this property is that individual modes are resolved only at low and intermediate degrees. At high degrees the individual modes blend into ridges and the power distribution of the ridge defines the ridge central frequency, masking the underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than an ad hoc correction scheme) that results in a methodology that can produce unbiased estimates of high-degree modes. This requires that the instrumental characteristics are well understood, a task that has turned out to pose a major challenge. We also present our latest results, where most of the known instrumental and observational effects that affect specifically high-degree modes were removed. These new results allow us to focus our attention on changes with solar activity. Finally, we present variations of mode

  5. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  6. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  7. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  8. Bifurcation and chaos in high-frequency peak current mode Buck converter

    Science.gov (United States)

    Chang-Yuan, Chang; Xin, Zhao; Fan, Yang; Cheng-En, Wu

    2016-07-01

    Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i L-v C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current I ref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding I ref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller. Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX15_0092).

  9. Mode conversion of lower hybrid waves at high ion cyclotron harmonics. Appendix F

    International Nuclear Information System (INIS)

    Swanson, D.G.; Cho, S.

    1985-05-01

    The problem of ion cyclotron harmonic absorption for a lower hybrid wave is shown to be a mode conversion problem. A new form of the dispersion relation is developed and then expanded to get a differential equation identical to that for the second harmonic problem. The validity of this model is restricted to the region far from the lower hybrid resonance layer. It is shown that mode couplings occur among the incident cold wave and two other waves, and the tunneling factor becomes singular there

  10. Mode conversion and its utilization of degenerating surface wave modes on a plasma column

    International Nuclear Information System (INIS)

    Nonaka, S.; Akao, Y.

    1983-01-01

    Both mode conversion at degenerating points of dispersion relations for surface wave modes on a discharge plasma column and the methods for their detection and utilization are presented. Mode conversions at three degenerating points become observable by using a surface wave resonator when an azimuthal inhomogeneity of plasma is produced by a static magnetic field of about 1 G applied perpendicular to the column axis. Two of the three detected degenerating points can be utilized for an easy and exact determination of the electron density and its distribution in the discharge tube

  11. Linear mode conversion of Langmuir/z-mode waves to radiation: Scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation

    International Nuclear Information System (INIS)

    Schleyer, F.; Cairns, Iver H.; Kim, E.-H.

    2013-01-01

    Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence θ of the Langmuir/z-mode wave, temperature β=T e /m e c 2 , adiabatic index γ, and orientation angle φ between the ambient density gradient ∇N 0 and ambient magnetic field B 0 in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of θ, γ, and β with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency ε is strongly dependent on γβ, φ and θ, with ε∝(γβ) 1/2 and θ∝(γβ) 1/2 . The power conversion efficiency ε p , on the other hand, is independent of γβ but does vary significantly with θ and φ. The efficiencies are shown to be maximum for approximately perpendicular density gradients (φ≈90°) and minimal for parallel orientation (φ=0°) and both the energy and power conversion efficiencies peak at the same θ.

  12. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...... of fiberoptic Cherenkov radiation (FCR) using ultrafast pulses as a means for generating tunable visible (VIS) light at higher frequencies. Two different polarization maintaining (PM) RFL cavities are studied with an emphasis on stability and spectral broadening. The cavities are formed by inscription of fiber...

  13. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  14. Ka-band to L-band frequency down-conversion based on III-V-on-silicon photonic integrated circuits

    Science.gov (United States)

    Van Gasse, K.; Wang, Z.; Uvin, S.; De Deckere, B.; Mariën, J.; Thomassen, L.; Roelkens, G.

    2017-12-01

    In this work, we present the design, simulation and characterization of a frequency down-converter based on III-V-on-silicon photonic integrated circuit technology. We first demonstrate the concept using commercial discrete components, after which we demonstrate frequency conversion using an integrated mode-locked laser and integrated modulator. In our experiments, five channels in the Ka-band (27.5-30 GHz) with 500 MHz bandwidth are down-converted to the L-band (1.5 GHz). The breadboard demonstration shows a conversion efficiency of - 20 dB and a flat response over the 500 MHz bandwidth. The simulation of a fully integrated circuit indicates that a positive conversion gain can be obtained on a millimeter-sized photonic integrated circuit.

  15. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    Science.gov (United States)

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613

  16. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode

    International Nuclear Information System (INIS)

    Jones, B.; Efthimion, P.C.; Taylor, G.; Munsat, T.; Wilson, J.R.; Hosea, J.C.; Kaita, R.; Majeski, R.; Maingi, R.; Shiraiwa, S.; Spaleta, J.

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  17. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  18. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  19. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Directory of Open Access Journals (Sweden)

    M. Ali Asgarian

    2018-04-01

    Full Text Available Electron Bernstein waves (EBW consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  20. Excitation of half-integer up-shifted decay channel and quasi-mode in plasma edge for high power electron Bernstein wave heating scenario

    Science.gov (United States)

    Ali Asgarian, M.; Abbasi, M.

    2018-04-01

    Electron Bernstein waves (EBW) consist of promising tools in driving localized off-axis current needed for sustained operation as well as effective selective heating scenarios in advanced over dense fusion plasmas like spherical tori and stellarators by applying high power radio frequency waves within the range of Megawatts. Here some serious non-linear effects like parametric decay modes are highly expect-able which have been extensively studied theoretically and experimentally. In general, the decay of an EBW depends on the ratio of the incident frequency and electron cyclotron frequency. At ratios less than two, parametric decay leads to a lower hybrid wave (or an ion Bernstein wave) and EBWs at a lower frequency. For ratios more than two, the daughter waves constitute either an electron cyclotron quasi-mode and another EBW or an ion wave and EBW. However, in contrast with these decay patterns, the excitation of an unusual up-shifted frequency decay channel for the ratio less than two is demonstrated in this study which is totally different as to its generation and persistence. It is shown that this mode varies from the conventional parametric decay channels which necessarily satisfy the matching conditions in frequency and wave-vector. Moreover, the excitation of some less-known local non-propagating quasi-modes (virtual modes) through weak-turbulence theory and their contributions to energy leakage from conversion process leading the reduction in conversion efficiency is assessed.

  1. The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2004-01-01

    Full Text Available Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958 and Chandrasekhar et al. (1958 from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1. It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped

  2. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  3. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  4. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  5. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  6. High resolution switching mode inductance-to-frequency converter with temperature compensation.

    Science.gov (United States)

    Matko, Vojko; Milanović, Miro

    2014-10-16

    This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85-100 µH to 2-560 kHz.

  7. High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensation

    Directory of Open Access Journals (Sweden)

    Vojko Matko

    2014-10-01

    Full Text Available This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal’s natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 µH to 2–560 kHz.

  8. Effects of Raman scattering in quantum state-preserving frequency conversion

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Lasse Mejling; Castaneda, Mario A. Usuga

    2014-01-01

    We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure.......We analyse frequency conversion by Bragg scattering numerically including Raman scattering. The frequency configuration that performs the best under influence of Raman noise results in 95% conversion over a 3.25 THz bandwidth with a 2.5-dB noise figure....

  9. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace

    International Nuclear Information System (INIS)

    Yuan, Shuai; Zhou, Zhi-jie; Li, Jun; Wang, Fu-chen

    2012-01-01

    Highlights: ► Use a high-frequency furnace to study N-conversion during rapid pyrolysis of coal. ► Scarcely reported N-conversion during rapid pyrolysis of petroleum coke was studied. ► Both of NH 3 and HCN can be formed directly from coal during rapid pyrolysis. ► NH 3 –N yields are higher than HCN–N yields in most conditions. ► NH 3 –N yields of petroleum coke increase with temperature and no HCN detected. -- Abstract: Rapid pyrolysis of three typical Chinese coals, lignite from Inner Mongolia, bituminous from Shenfu coalfield, and anthracite from Guizhou, as well as a petroleum coke were carried out in a drop-style high-frequency furnace. The reactor was induction coil heated and had a very small high-temperature zone, which could restrain secondary conversions of nitrogen products. The effects of temperature and coal rank on conversions of fuel-N to primary nitrogen products (char-N, HCN–N, NH 3 –N and (tar + N 2 )–N) have been investigated. The results showed that, the increasing temperature reduced the yields of char-N and promoted the conversion of fuel-N to N 2 . Char-N yields increased, while volatile-N yields decreased as the coal rank increased. In most of the conditions, NH 3 –N yields were higher than HCN–N yields during rapid pyrolysis of coal. In the case of petroleum coke, NH 3 –N yields increased gradually with the increasing temperature, but no HCN was detected. We argue that NH 3 –N can be formed directly through the primary pyrolysis without secondary reactions. Although volatile-N yields of lignite were higher than those of bituminous, yields of (HCN + NH 3 )–N in volatile-N of lignite were lower than those of bituminous. While the (HCN + NH 3 )–N yields of anthracite were the lowest of the three coals. Both of the (HCN + NH 3 )–N yields and (HCN + NH 3 )–N proportions in volatile-N of petroleum coke were lower than the three coals.

  10. Kinetic Alfven Waves at the Magnetopause-Mode Conversion, Transport and Formation of LLBL; TOPICAL

    International Nuclear Information System (INIS)

    Jay R. Johnson; C.Z. Cheng

    2002-01-01

    At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity[Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D(approx) 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 and gt; 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in

  11. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    Science.gov (United States)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  12. Enhanced loss of fusion products during mode conversion heating in TFTR

    International Nuclear Information System (INIS)

    Darrow, D.S.; Majeski, R.; Fisch, N.J.; Heeter, R.F.; Herrmann, H.W.; Herrmann, M.C.; Zarnstorff, M.C.; Zweben, S.J.

    1995-07-01

    Ion Bernstein waves (IBWS) have been generated by mode conversion of ion cyclotron range of frequency (ICRF) fast waves in TFTR. The loss rate of fusion products in these discharges can be large, up to 10 times the first orbit loss rate. The losses are observed at the passing/trapped boundary, indicating that passing particles are being moved onto loss orbits either by increase of their v perpendicular due to the wave, by outward transport in minor radius, or both. The lost particles appear to be DD fusion produced tritons heated to ∼1.5 times their birth energy

  13. Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus.

    Science.gov (United States)

    Ling, Xi; Liang, Liangbo; Huang, Shengxi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2015-06-10

    As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.

  14. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  15. Enhanced Mode Conversion of Thermally Emitted Electron Bernstein Waves (EBW)to Extraordinary Mode; TOPICAL

    International Nuclear Information System (INIS)

    B. Jones; P.C. Efthimion; G. Taylor; T. Munsat; J.R. Wilson; J.C. Hosea; R. Kaita; R. Majeski; R. Maingi; S. Shiraiwa; J. Spaleta

    2002-01-01

    In the CDX-U spherical torus, approximately 100% conversion of thermal EBWs to X-mode has been observed by controlling the electron density scale length (Ln) in the conversion region with a local limiter outside the last closed flux surface. The radiation temperature profile agrees with Thomson scattering electron temperature data. Results are consistent with theoretical calculations of conversion efficiency using measured Ln. By reciprocity of the conversion process, prospects for efficient coupling in EBW heating and current drive scenarios are strongly supported

  16. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shengren, E-mail: 785751053@qq.com; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  17. Efficient frequency conversion through absorptive bands of the nonlinear crystal

    OpenAIRE

    Porat, Gil; Arie, Ady

    2012-01-01

    Two simultaneous three wave mixing processes are analyzed, where an input frequency is converted to an output frequency via an intermediate stage. By employing simultaneous phase-matching and an adiabatic modulation of the nonlinear coupling strengths, the intermediate frequency is kept dark throughout the interaction, while obtaining high conversion efficiency. This feat is accomplished in a manner analogous to population transfer in atomic stimulated Raman adiabatic passage (STIRAP). Applic...

  18. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar

    2015-01-01

    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  19. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    Science.gov (United States)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  20. FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems

    International Nuclear Information System (INIS)

    Xiao-Dong, Huang; Sheng-Zhi, Zhao; Jian-Jun, Wang; Ming-Zhong, Li; Dang-Peng, Xu; Hong-Huan, Lin; Rui, Zhang; Ying, Deng; Xiao-Min, Zhang

    2010-01-01

    The conversion of the frequency modulated pulse induced from frequency modulation (FM) to amplitude modulation (AM) by the polarization mode dispersion (PMD) is theoretically and experimentally investigated. When there is no polarizer at the output end of a fiber system, the amplitude modulation depth is stable by 8%. Random amplitude modulation is observed when a polarizer is placed at the output end of the fiber system. The observed minimum and maximum modulation depths in our experiment are 5% and 80%, respectively. Simulation results show that the amplitude modulation is stable by 4% induced mainly by group velocity dispersion (GVD) when there is no polarizer, and the amplitude modulation depth displays the random variation character induced by the GVD and PMD. Lastly, a new fiber system scheme is proposed and little amplitude modulation is observed at the top of the output pulse

  1. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  2. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern.

    Science.gov (United States)

    Schunk, Gerhard; Fürst, Josef U; Förtsch, Michael; Strekalov, Dmitry V; Vogl, Ulrich; Sedlmeir, Florian; Schwefel, Harald G L; Leuchs, Gerd; Marquardt, Christoph

    2014-12-15

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

  3. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  4. Electron heating mode transition induced by mixing radio frequency and ultrahigh frequency dual frequency powers in capacitive discharges

    International Nuclear Information System (INIS)

    Sahu, B. B.; Han, Jeon G.

    2016-01-01

    Electron heating mode transitions induced by mixing the low- and high-frequency power in dual-frequency nitrogen discharges at 400 mTorr pressure are presented. As the low-frequency (13.56 MHz) power decreases and high-frequency (320 MHz) power increases for the fixed power of 200 W, there is a transition of electron energy distribution function (EEDF) from Druyvesteyn to bi-Maxwellian type characterized by a distinguished warm electron population. It is shown that this EEDF evolution is attributed to the transition from collisional to collisionless stochastic heating of the low-energy electrons.

  5. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  6. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  7. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    Science.gov (United States)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  8. Experiments on quantum frequency conversion of photons

    International Nuclear Information System (INIS)

    Ramelow, S.

    2011-01-01

    Coherently converting photons between different states offers intriguing new possibilities and applications in quantum optical experiments. In this thesis three experiments on this theme are presented. The first experiment demonstrates the quantum frequency conversion of polarization entangled photons. Coherent frequency conversion of single photons offers an elegant solution for the often difficult trade-off of choosing the optimal photon wavelength, e.g. regarding optimal transmission and storage of photons in quantum memory based quantum networks. In our experiments, we verify the successful entanglement conversion by violating a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and fully characterised our close to unity fidelity entanglement transfer using quantum state- and process tomography. Our implementation is robust and flexible, making it a practical building block for future quantum technologies.The second part of the thesis introduces a deterministic scheme for photonic quantum information processing. While single photons offer many advantages for quantum information technologies, key unresolved challenges are scalable on-demand single photon sources; deterministic two-photon interactions; and near 100%-efficient detection. All these can be solved with a single versatile process - a novel four-wave mixing process that we introduce here as a special case of the more general scheme of coherent photon conversion (CPC). It can provide valuable photonic quantum processing tools, from scalably creating single- and multi-photon states to implementing deterministic entangling gates and high-efficiency detection. Notably, this would enable scalable photonic quantum computing. Using photonic crystal fibres, we experimentally demonstrate a nonlinear process suited for coherent photon conversion. We observe correlated photon-pair production at the predicted wavelengths and experimentally characterise the enhancement of the interaction strength by varying the pump

  9. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  10. Tomography and Purification of the Temporal-Mode Structure of Quantum Light

    Science.gov (United States)

    Ansari, Vahid; Donohue, John M.; Allgaier, Markus; Sansoni, Linda; Brecht, Benjamin; Roslund, Jonathan; Treps, Nicolas; Harder, Georg; Silberhorn, Christine

    2018-05-01

    High-dimensional quantum information processing promises capabilities beyond the current state of the art, but addressing individual information-carrying modes presents a significant experimental challenge. Here we demonstrate effective high-dimensional operations in the time-frequency domain of nonclassical light. We generate heralded photons with tailored temporal-mode structures through the pulse shaping of a broadband parametric down-conversion pump. We then implement a quantum pulse gate, enabled by dispersion-engineered sum-frequency generation, to project onto programmable temporal modes, reconstructing the quantum state in seven dimensions. We also manipulate the time-frequency structure by selectively removing temporal modes, explicitly demonstrating the effectiveness of engineered nonlinear processes for the mode-selective manipulation of quantum states.

  11. On the frequency and field linewidth conversion of ferromagnetic resonance spectra

    International Nuclear Information System (INIS)

    Wei, Yajun; Svedlindh, Peter; Liang Chin, Shin

    2015-01-01

    Both frequency swept and field swept ferromagnetic resonance measurements have been carried out for a number of different samples with negligible, moderate and significant extrinsic frequency independent linewidth contribution to analyze the correlation between the experimentally measured frequency and field linewidths. Contrary to the belief commonly held by many researchers, it is found that the frequency and field linewidth conversion relation does not hold for all cases. Instead it holds only for samples with negligible frequency independent linewidth contributions. For samples with non-negligible frequency independent linewidth contribution, the field linewidth values converted from the measured frequency linewidth are larger than the experimentally measured field linewidth. A close examination of the literature reveals that previously reported results support our findings, with successful conversions related to samples with negligible frequency independent linewidth contributions and unsuccessful conversions related to samples with significant frequency independent linewidth. The findings are important in providing guidance in ferromagnetic resonance linewidth conversions. (paper)

  12. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  13. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    Science.gov (United States)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  14. Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jung Yu, Dae [School of Space Research, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Kim, Kihong [Department of Energy Systems Research, Ajou University, Suwon 443-749 (Korea, Republic of)

    2013-12-15

    We study the effects of a random spatial variation of the plasma density on the mode conversion of electromagnetic waves into electrostatic oscillations in cold, unmagnetized, and stratified plasmas. Using the invariant imbedding method, we calculate precisely the electromagnetic field distribution and the mode conversion coefficient, which is defined to be the fraction of the incident wave power converted into electrostatic oscillations, for the configuration where a numerically generated random density variation is added to the background linear density profile. We repeat similar calculations for a large number of random configurations and take an average of the results. We obtain a peculiar nonmonotonic dependence of the mode conversion coefficient on the strength of randomness. As the disorder increases from zero, the maximum value of the mode conversion coefficient decreases initially, then increases to a maximum, and finally decreases towards zero. The range of the incident angle in which mode conversion occurs increases monotonically as the disorder increases. We present numerical results suggesting that the decrease of mode conversion mainly results from the increased reflection due to the Anderson localization effect originating from disorder, whereas the increase of mode conversion of the intermediate disorder regime comes from the appearance of many resonance points and the enhanced tunneling between the resonance points and the cutoff point. We also find a very large local enhancement of the magnetic field intensity for particular random configurations. In order to obtain high mode conversion efficiency, it is desirable to restrict the randomness close to the resonance region.

  15. Effects of a random spatial variation of the plasma density on the mode conversion in cold, unmagnetized, and stratified plasmas

    International Nuclear Information System (INIS)

    Jung Yu, Dae; Kim, Kihong

    2013-01-01

    We study the effects of a random spatial variation of the plasma density on the mode conversion of electromagnetic waves into electrostatic oscillations in cold, unmagnetized, and stratified plasmas. Using the invariant imbedding method, we calculate precisely the electromagnetic field distribution and the mode conversion coefficient, which is defined to be the fraction of the incident wave power converted into electrostatic oscillations, for the configuration where a numerically generated random density variation is added to the background linear density profile. We repeat similar calculations for a large number of random configurations and take an average of the results. We obtain a peculiar nonmonotonic dependence of the mode conversion coefficient on the strength of randomness. As the disorder increases from zero, the maximum value of the mode conversion coefficient decreases initially, then increases to a maximum, and finally decreases towards zero. The range of the incident angle in which mode conversion occurs increases monotonically as the disorder increases. We present numerical results suggesting that the decrease of mode conversion mainly results from the increased reflection due to the Anderson localization effect originating from disorder, whereas the increase of mode conversion of the intermediate disorder regime comes from the appearance of many resonance points and the enhanced tunneling between the resonance points and the cutoff point. We also find a very large local enhancement of the magnetic field intensity for particular random configurations. In order to obtain high mode conversion efficiency, it is desirable to restrict the randomness close to the resonance region

  16. Chaos in high-power high-frequency gyrotrons

    International Nuclear Information System (INIS)

    Airila, M.

    2004-01-01

    Gyrotron interaction is a complex nonlinear dynamical process, which may turn chaotic in certain circumstances. The emergence of chaos renders dynamical systems unpredictable and causes bandwidth broadening of signals. Such effects would jeopardize the prospect of advanced gyrotrons in fusion. Therefore, it is important to be aware of the possibility of chaos in gyrotrons. There are three different chaos scenarios closely related to the development of high-power gyrotrons: First, the onset of chaos in electron trajectories would lead to difficulties in the design and efficient operation of depressed potential collectors, which are used for efficiency enhancement. Second, the radio-frequency signal could turn chaotic, decreasing the output power and the spectral purity of the output signal. As a result, mode conversion, transmission, and absorption efficiencies would be reduced. Third, spatio-temporal chaos in the resonator field structure can set a limit for the use of large-diameter interaction cavities and high-order TE modes (large azimuthal index) allowing higher generated power. In this thesis, the issues above are addressed with numerical modeling. It is found that chaos in electron residual energies is practically absent in the parameter region corresponding to high efficiency. Accordingly, depressed collectors are a feasible solution also in advanced high-power gyrotrons. A new method is presented for straightforward numerical solution of the one-dimensional self-consistent time-dependent gyrotron equations, and the method is generalized to two dimensions. In 1D, a chart of gyrotron oscillations is calculated. It is shown that the regions of stationary oscillations, automodulation, and chaos have a complicated topology in the plane of generalized gyrotron variables. The threshold current for chaotic oscillations exceeds typical operating currents by a factor of ten. However, reflection of the output signal may significantly lower the threshold. 2D

  17. Cyclotron absorption and emission in mode conversion layers emdash a new paradigm

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1995-01-01

    When the analysis of absorption with mode conversion effects included began to mature in recent years, the study of the corresponding effects on emission began and has led to some surprising results. The classical expressions for cyclotron or synchrotron emission from a harmonic resonance were originally derived from models that did not include mode conversion or its attendant reflection, and classical expressions for the optical depth and opacity were obtained. When mode conversion was included, the principal surprise was that the transmission coefficient, which was understood as being due to absorption, is totally independent of absorption and due exclusively to tunneling. The other surprise from the mode conversion analysis is that the observed emission arises from two distinct sources, one direct and one from an indirect Bernstein wave source which is partially converted in the cyclotron layer to outgoing electromagnetic waves, with the net result that mode conversion cancels out for the electron case, but not for ions. The only corrections to electron cyclotron emission are then due to reflection effects, and these have been shown to be small for many laboratory plasmas, leading to the validation of the classical formula for these cases, but via an entirely new paradigm in its interpretation. This review includes a summary of the absorption process for both electron and ion cyclotron harmonics, and reviews carefully the emission physics, including both potential error estimates and a discussion of the emission source distribution in space

  18. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.

    Science.gov (United States)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2016-02-10

    van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

  19. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    Science.gov (United States)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  20. A survey of mode-conversion transparency windows between external electromagnetic waves and electron Bernstein waves for various plasma slab boundaries

    International Nuclear Information System (INIS)

    Igami, H; Tanaka, H; Maekawa, T

    2006-01-01

    For the plasma slab boundary with monotonically increasing density profile along the x axis and the magnetic field along the z axis, both N z and N y components of the refractive index are parallel to the plasma slab and are conserved in the mode-conversion process between the vacuum transverse electromagnetic (TEM) waves and the electron Bernstein (B) waves. Information of N z and N y is sufficient to identify the waves uniquely both for TEM waves and B waves coupled by mode conversion. Furthermore, the wave differential equation which governs the mode-conversion process can be written in the normalized form with a few numbers of the normalized parameters and variables for the linear density profile. Thus, the mode-conversion transparency window, which is presented as a contour plot of the mode-conversion rate versus the N z -N y plane, can be categorized for the pair of parameters of the density scale length normalized to the wavelength in vacuum L n /λ 0 and the frequency to the cyclotron frequency ω/Ω. A survey of the transparency windows for various parameter ranges of L n /λ 0 and ω/Ω is presented. The windows are categorized into four types. The frosted type at the steepest density gradient region has a broad transparency profile but even the peak is not completely transparent. The perpendicular-X type at the next steep density gradient region also has a broad transparency profile with a completely transparent peak by the perpendicularly propagating extraordinary waves. The OXB type at the gentle density gradient region has a pair of completely transparent sharp peaks by the obliquely propagating ordinary waves at the optimal propagation angles with N z = ±N parallelopt and N y 0. The fourth is the g 1 type in the intermediate density gradient region between the above two cases, which has two completely transparent peaks in the window. Finally, a simulation to examine the applicability of the survey to experiments is made using a test density profile

  1. Alfven frequency modes and global Alfven eigenmodes

    International Nuclear Information System (INIS)

    Villard, L.; Vaclavik, J.

    1996-07-01

    The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs

  2. Mode conversions by a discontinuous junction of two helix loaded waveguides

    International Nuclear Information System (INIS)

    Choe, J.Y.; Ahn, S.; Ganquly, A.K.; Uhm, H.S.

    1983-01-01

    For various reasons, it is desirable to vary the primary propagating mode from one section of the waveguide to another. We choose the base structure to be the sheath helix loaded waveguide. Specifically, we join two physically different helix loaded waveguides axisymmetrically, thereby providing the required discontinuities at the junction (Z = 0). The helix loaded waveguide is more advantageous to the simple waveguide in that the helix mode that exists uniquely in the helix waveguide in addition to the usual fast wave hybrid modes, is without cutoff and thus behaves like a transmission line. In order to obtain the mode conversion rates, we expand the waves in the both sides of the junction with its own eigenmodes including the evanescent modes, and by matching fields at the junction (Z = 0) obtain the matrix equation for the coefficients for the eigenmodes in both sides. By choosing the propagating incident wave (Z = 0) the resulting outgoing waves in the other end (Z > 0) will be computed from the matrix equation. A computer program is devised to solve the suitably truncated matrix equation, and the numerical examples for the mode conversion rates with the parameter variations will be presented. The relevant physical parameters to yield discontinuities at the junction are the radii of the outer conductor and the helix wire and the pitch angle of the helix. Special emphases are on the conversion rates from the helix mode (Z 0) for the application to the tapered gyrotron amplifier

  3. Constant-frequency, clamped-mode resonant converters

    Science.gov (United States)

    Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.

    1987-01-01

    Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.

  4. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  5. Hybrid code simulation on mode conversion in the second harmonic ICRF heating

    International Nuclear Information System (INIS)

    Sakai, K.; Takeuchi, S.; Matsumoto, M.; Sugihara, R.

    1985-01-01

    ICRF second harmonic heating of a single-species plasma is studied by using a 1-1/2 dimensional quasi-neutral hybrid code. Mode conversion, transmission and reflection of the magnetosonic waves are confirmed, both for the high- and low-field-side excitations. The ion heating by waves propagating perpendicularly to the static magnetic field is also observed

  6. Numerical optimization of quasi-optical mode converter for frequency step-tunable gyrotron

    International Nuclear Information System (INIS)

    Drumm, O.

    2002-08-01

    This work concentrates on the design of a quasi-optical mode converter for a frequency step-tunable gyrotron. Special attention is paid to the optimization of the conversion and forming of the exited wave of different frequencies inside the resonator. The investigations were part of the HGF-strategy-fonds-project ''Optimization of Tokamak Operation with controlled ECRH-Deposition''. In the resonator of the gyrotron modes can be exited at frequencies between 105 and 140 GHz. With the designed converter the desired field distribution at the output window for all frequencies will be approximately obtained. The newly gained knowledge and invented synthesis methods are applied to this practical example and verified. In this work, the waveguide antenna and the mirror system of the quasi-optical mode converter are presented separately from each other. At the beginning the synthesis of the aperture antenna for a frequency step-tunable design of the Vlasov-type as well as the Denisov-type is considered. As a conclusion of the investigation, the important parameters for the design of all antennas are summarized and the frequency behavior is compared. In the second part of this work new broadband design methods for the synthesis of the mirror surface are presented. These mirrors make an optimal wave forming for all frequencies equally possible. Therefore new quality criteria are introduced for the broadband evaluation of the mirror. Afterwards the surface is varied until the criteria reach an optimum. For the numerical optimization, in this work the gradient method and the extended Katsenelenbaum-Semenov algorithm are invented and applied. The efficient realization of the described algorithms on a computer is the significant point. The theoretical background of the presented methods for the synthesis of a mirror system is based on the general solution of the Helmholtz equation. Due to this, these methods can be utilized in other fields outside the microwave applications in

  7. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-01-01

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  8. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    Science.gov (United States)

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  9. Refraction, scattering, absorption and mode conversion of ECRH waves in RTP

    International Nuclear Information System (INIS)

    Smits, F.M.A.; Oomens, A.A.M.; Bank, S.L.; Bongers, W.A.; Polman, R.W.; Schueller, F.C.

    1993-01-01

    A diagnostic, TraP, has been installed which measures the Transmitted Power fraction of one of the two additional Electron Cyclotron Heating sources on the RTP tokamak (R=0.72 m, B 0 ≤2.5 T, a=0.164 m). The ECH power (60 GHz, 180 kW) of this source is launched in O-mode radially from the low field side into RTP. TraP is installed opposite to this launcher at the high field side to measure the transmitted power fraction. With TraP, studies on the refraction, scattering, absorption and mode conversion of the incoming beam have been performed. (orig.)

  10. Modeling of mode purity in high power gyrotrons

    International Nuclear Information System (INIS)

    Cai, S.Y.; Antonsen, T.M. Jr.; Saraph, G.P.

    1993-01-01

    Spurious mode generation at the same frequency of the operational mode in a high power gyrotron can significantly reduce the power handling capability and the stability of a gyrotron oscillator because these modes are usually not matched at the output window and thus have high absorption and reflection rates. To study the generation of this kind of mode, the authors developed a numerical model based on an existing multimode self-consistent time-dependent computer code. This model includes both TE and TM modes and accounts for mode transformations due to the waveguide inhomogeneity. With this new tool, they study the mode transformation in the gyrotron and the possibility of excitation of parasitic TE and TM modes in the up taper section due to the gyroklystron mechanism. Their preliminary results show moderate excitation of both TE and TM modes at the same frequency as the main operating mode at locations near their cutoff. Details of the model and further simulation results will be presented

  11. Reciprocity relations and the mode conversion-absorption equation with an inhomogeneous source term

    International Nuclear Information System (INIS)

    Cho, S.; Swanson, D.G.

    1990-01-01

    The fourth-order mode conversion equation is solved completely via the Green's function to include an inhomogeneous source term. This Green's function itself contains all the plasma responsive effects such as mode conversion and absorption, and can be used to describe the spontaneous emission. In the course of the analysis, the reciprocity relations between coupling parameters are proved

  12. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    Science.gov (United States)

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  13. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  14. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation

    Science.gov (United States)

    Huang, Bin; Yi, Qian; Yang, Lingling; Zhao, Chujun; Wen, Shuangchun

    2018-02-01

    We report a vectorial fiber laser with controlled transverse mode conversion by intra-cavity polarization manipulation. By combining a q-plate and two quarter-wave plates (QWPs), we can generate a switchable polarization state output represented by the higher-order Poincaré sphere (l = +1, l = -1), and distinguish the fourfold degenerate LP11 mode. The four transverse vector modes can be obtained and switched in a flexible way, and the slope efficiency of the fiber laser can reach up to 39.4%. This compactness, high efficiency, and switchable operation potential will benefit a range of applications, such as materials processing, particle manipulation, etc.

  15. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  16. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  17. Mode Identification of Guided Ultrasonic Wave using Time- Frequency Algorithm

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Cho, Yong Sang; Kim, Yong Sik; Lee, Hee Jong

    2007-01-01

    The ultrasonic guided waves are waves whose propagation characteristics depend on structural thickness and shape such as those in plates, tubes, rods, and embedded layers. If the angle of incidence or the frequency of sound is adjusted properly, the reflected and refracted energy within the structure will constructively interfere, thereby launching the guided wave. Because these waves penetrate the entire thickness of the tube and propagate parallel to the surface, a large portion of the material can be examined from a single transducer location. The guided ultrasonic wave has various merits like above. But various kind of modes are propagating through the entire thickness, so we don't know the which mode is received. Most of applications are limited from mode selection and mode identification. So the mode identification is very important process for guided ultrasonic inspection application. In this study, various time-frequency analysis methodologies are developed and compared for mode identification tool of guided ultrasonic signal. For this study, a high power tone-burst ultrasonic system set up for the generation and receive of guided waves. And artificial notches were fabricated on the Aluminum plate for the experiment on the mode identification

  18. An experimentally validated model for geometrically nonlinear plucking-based frequency up-conversion in energy harvesting

    Science.gov (United States)

    Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A.

    2018-01-01

    It is well known that plucking-based frequency up-conversion can enhance the power output in piezoelectric energy harvesting by enabling cyclic free vibration at the fundamental bending mode of the harvester even for very low excitation frequencies. In this work, we present a geometrically nonlinear plucking-based framework for frequency up-conversion in piezoelectric energy harvesting under quasistatic excitations associated with low-frequency stimuli such as walking and similar rigid body motions. Axial shortening of the plectrum is essential to enable plucking excitation, which requires a nonlinear framework relating the plectrum parameters (e.g. overlap length between the plectrum and harvester) to the overall electrical power output. Von Kármán-type geometrically nonlinear deformation of the flexible plectrum cantilever is employed to relate the overlap length between the flexible (nonlinear) plectrum and the stiff (linear) harvester to the transverse quasistatic tip displacement of the plectrum, and thereby the tip load on the linear harvester in each plucking cycle. By combining the nonlinear plectrum mechanics and linear harvester dynamics with two-way electromechanical coupling, the electrical power output is obtained directly in terms of the overlap length. Experimental case studies and validations are presented for various overlap lengths and a set of electrical load resistance values. Further analysis results are reported regarding the combined effects of plectrum thickness and overlap length on the plucking force and harvested power output. The experimentally validated nonlinear plectrum-linear harvester framework proposed herein can be employed to design and optimize frequency up-conversion by properly choosing the plectrum parameters (geometry, material, overlap length, etc) as well as the harvester parameters.

  19. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  20. Ray tracing of auroral Z mode radiation, AKR and auroral hiss

    International Nuclear Information System (INIS)

    Horne, R.B.; Jones, D.; Kimura, I.; Sawada, A.

    1990-01-01

    While observed frequency bandwidths of auroral Z mode radiation cannot be directly accounted for in terms of direct cyclotron maser instability generation, ray tracing in a hot plasma indicates that if the radiation near a plasma frequency lower than the gyrofrequency, the observed bandwidths are explainable in terms of upward propagation away from the earth. An auroral Z-mode generation mechanism is proposed involving mode conversion from O-mode auroral kilometric radiation (AKR) at the plasma frequency, as well as mode conversion from upgoing auroral hiss. Ray tracings in the O mode identify a possible AKR source region along L = 8.55. 11 refs

  1. Novel Cavities in Vertical External Cavity Surface Emitting Lasers for Emission in Broad Spectral Region by Means of Nonlinear Frequency Conversion

    Science.gov (United States)

    Lukowski, Michal L.

    Optically pumped semiconductor vertical external cavity surface emitting lasers (VECSEL) were first demonstrated in the mid 1990's. Due to the unique design properties of extended cavity lasers VECSELs have been able to provide tunable, high-output powers while maintaining excellent beam quality. These features offer a wide range of possible applications in areas such as medicine, spectroscopy, defense, imaging, communications and entertainment. Nowadays, newly developed VECSELs, cover the spectral regions from red (600 nm) to around 5 microm. By taking the advantage of the open cavity design, the emission can be further expanded to UV or THz regions by the means of intracavity nonlinear frequency generation. The objective of this dissertation is to investigate and extend the capabilities of high-power VECSELs by utilizing novel nonlinear conversion techniques. Optically pumped VECSELs based on GaAs semiconductor heterostructures have been demonstrated to provide exceptionally high output powers covering the 900 to 1200 nm spectral region with diffraction limited beam quality. The free space cavity design allows for access to the high intracavity circulating powers where high efficiency nonlinear frequency conversions and wavelength tuning can be obtained. As an introduction, this dissertation consists of a brief history of the development of VECSELs as well as wafer design, chip fabrication and resonator cavity design for optimal frequency conversion. Specifically, the different types of laser cavities such as: linear cavity, V-shaped cavity and patented T-shaped cavity are described, since their optimization is crucial for transverse mode quality, stability, tunability and efficient frequency conversion. All types of nonlinear conversions such as second harmonic, sum frequency and difference frequency generation are discussed in extensive detail. The theoretical simulation and the development of the high-power, tunable blue and green VECSEL by the means of type I

  2. Integral criterion for selecting nonlinear crystals for frequency conversion

    International Nuclear Information System (INIS)

    Grechin, Sergei G

    2009-01-01

    An integral criterion, which takes into account all parameters determining the conversion efficiency, is offered for selecting nonlinear crystals for frequency conversion. The angular phase-matching width is shown to be related to the beam walk-off angle. (nonlinear optical phenomena)

  3. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  4. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  5. Electrocorticography and the early maturation of high-frequency suppression within the default mode network.

    Science.gov (United States)

    Weaver, Kurt E; Poliakov, Andrew; Novotny, Edward J; Olson, Jared D; Grabowski, Thomas J; Ojemann, Jeffrey G

    2018-02-01

    OBJECTIVE The acquisition and refinement of cognitive and behavioral skills during development is associated with the maturation of various brain oscillatory activities. Most developmental investigations have identified distinct patterns of low-frequency electrophysiological activity that are characteristic of various behavioral milestones. In this investigation, the authors focused on the cross-sectional developmental properties of high-frequency spectral power from the brain's default mode network (DMN) during goal-directed behavior. METHODS The authors contrasted regionally specific, time-evolving high gamma power (HGP) in the lateral DMN cortex between 3 young children (age range 3-6 years) and 3 adults by use of electrocorticography (ECoG) recordings over the left perisylvian cortex during a picture-naming task. RESULTS Across all participants, a nearly identical and consistent response suppression of HGP, which is a functional signature of the DMN, was observed during task performance recordings acquired from ECoG electrodes placed over the lateral DMN cortex. This finding provides evidence of relatively early maturation of the DMN. Furthermore, only HGP relative to evoked alpha and beta band power showed this level of consistency across all participants. CONCLUSIONS Regionally specific, task-evoked suppression of the high-frequency components of the cortical power spectrum is established early in brain development, and this response may reflect the early maturation of specific cognitive and/or computational mechanisms.

  6. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology

  7. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    Science.gov (United States)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  8. Frequency up-conversion and spectral breaking of a high power microwave pulse propagation in a self-generated plasma

    International Nuclear Information System (INIS)

    Kuo, S.P.; Ren, A.

    1993-01-01

    The main concern of the propagation of high power microwave pulse is the energy loss of the pulse before reaching the destination. The loss is caused by self-generated plasma. There are two processes which are responsible for the energy loss (so called tail erosion). They are collisional damping and cutoff reflection. In very high power region, the cutoff reflection is much more severe than the collisional damping. A frequency up-conversion process may help to avoid the cutoff reflection of powerful electromagnetic pulse propagating in a self-generated plasma. Both chamber experiments and numerical simulation are performed. When the field amplitude only slightly exceeds the breakdown threshold field of the background gas, the result shows that the carrier frequency ω of the pulse shifts upward during the growth of local plasma frequency ωpe 2 . Thus, the self-generated plasma remains underdense to the pulse. However, the spectrum of the pulse starts to break up into two major peaks when the amplitude of the pulse is further increased. The frequency of one of the peaks is lower than the original carrier frequency and that of the other peak is higher than the original carrier frequency. These phenomena are observed both experimentally and numerically. The frequency down shift result is believed to be caused by damping mechanisms. Good agreement between the experimental results and the numerical simulation is obtained

  9. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    International Nuclear Information System (INIS)

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-01-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  10. Congruent reduction and mode conversion in 4-dimensional plasmas

    International Nuclear Information System (INIS)

    Friedland, L.; Kaufman, A.N.

    1987-04-01

    Standard eikonal theory reduces, to N=1, the order of the system of equations underlying wave propagation in inhomogeneous plasmas. The condition for this remarkable reducibility is that only one eigenvalue of the unreduced NxN dispersion matrix D(k,x) vanishes at a time. If, however, two or more eigenvalues of D become simultaneously small, the geometric optics reduction scheme becomes singular. These regions are associated with linear mode conversion, and are described by higher order systems. A new reduction scheme based on congruent transformations of D is developed, and it is shown that, in ''degenerate'' plasma regions, a partial reduction of order is possible. The method comprises a constructive step-by-step procedure, which, in the most frequent (doubly) degenerate case, yields a second order system, describing the pairwise mode conversion problems, the solution of which in general geometry has been found recently

  11. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  12. Quantum Frequency Conversion by Four-wave Mixing Using Bragg Scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Rottwitt, Karsten; McKinstrie, C. J.

    2012-01-01

    Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection.......Two theoretical models for frequency conversion (FC) using nondegenerate four-wave mixing are compared, and their range of validity are discussed. Quantum-statepreserving FC allows for arbitrary reshaping of states for an appropriate pump selection....

  13. Efficient broadband third harmonic frequency conversion via angular dispersion

    International Nuclear Information System (INIS)

    Pennington, D.M.; Henesian, M.A.; Milam, D.; Eimerl, D.

    1995-01-01

    In this paper we present experimental measurements and theoretical modeling of third harmonic (3ω) conversion efficiency with optical bandwidth. Third harmonic conversion efficiency drops precipitously as the input bandwidth significantly exceeds the phase matching limitations of the conversion crystals. For Type I/Type II frequency tripling, conversion efficiency be-gins to decrease for bandwidths greater than ∼60 GHz. However, conversion efficiency corresponding to monochromatic phase-matched beams can be recovered provided that the instantaneous Propagation vectors are phase matched at all times. This is achieved by imposing angular spectral dispersion (ASD) on the input beam via a diffraction grating, with a dispersion such that the phase mismatch for each frequency is zero. Experiments were performed on the Optical Sciences Laser (OSL), a 1--100 J class laser at LLNL. These experiments used a 200 GHz bandwidth source produced by a multipassed electro-optic phase modulator. The spectrum produced was composed of discrete frequency components spaced at 3 GHz intervals. Angular dispersion was incorporated by the addition of a 1200 gr/mm diffraction grating oriented at the Littrow angle, and capable of rotation about the beam direction. Experiments were performed with a pulse length of 1-ns and a 1ω input intensity of ∼ 4 GW/cm 2 for near optimal dispersion for phase matching, 5.2 μrad/GHz, with 0.1, 60, and 155 GHz bandwidth, as well as for partial dispersion compensation, 1.66 μrad/GHz, with 155 GHz and 0.1 GHz bandwidth. The direction of dispersion was varied incrementally 360 degrees about the beam diameter. The addition of the grating to the beamline reduced the narrowband conversion efficiency by approximately 10%

  14. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  15. Radio frequency heating in the ion-cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1985-01-01

    Both the theory of the absorption process in the ion-cyclotron range of frequencies and some of the experiments which slow the promise and problems with radio frequency plasma heating in this range are discussed. It is shown that mode conversion is invariably involved in the process and so an extensive review of mode conversion theory, expecially as it applies to problems with back-to-back cutoff-resonance pairs, is included. This includes a discussion of the tunneling equation with and without absorption effects and with and without energy conservation. The general theory is applied to various ion-cyclotron harmonics, the two-ion hybrid resonance, and to a case where a wave converts to a Bernstein mode at the plasma edge. The results are given analytically for a variety of cases without absorption, and empirical formulas are given for the second and third harmonics of the ion-cyclotron frequency, which include effects of absorption. Various problem areas in the theory are also discussed with some of the limitations caused by the approximations involved. A number of experiments are also discussed which show effective heating, and some show the features of the mode conversion process, indicating that the general processes of absorption are reasonably well understood. Areas where further work is necessary, both in fundamental theory and in comparing theory with experiment, are also discussed

  16. Experimental investigation of linear mode conversion in laser-produced plasmas

    International Nuclear Information System (INIS)

    Maaswinkel, A.G.M.

    1980-12-01

    In this work absorption mechanisms are investigated in hot dense plasmas produced by intense laser irradiation of planar targets. Central in this investigation stands the absorption by linear mode conversion; this process occurs in inhomogeneous plasmas if the electric field vector of the incident EM-wave has a component parallel to the density gradient; this causes electrostatic oscillations at the critical density (where ωsub(p)sub(e) = ω). In addition, absorption of the laser light by inverse bremsstrahlung is investigated. The absorption is determined by the reflection of the laser light from the plasma. To this aim optical diagnostics are used. The reflection into 4π sr is measured with an Ulbricht sphere, also the reflection in specular (geometric) direction is recorded. The absorption mechanisms have been isolated by variation of the polarization of the beam and the angle of incidence to the target. An essential part of the work has been the frequency up-conversion of the laser beam by nonlinear crystals; in this way the wavelength-dependence of the absorption in the plasma has been investigated at wavelengths 1.06 μm, 0.53 μm and 0.26 μm; the pulse duration in the experiments was 30 ps, the maximum irradiation on target was 10 14 W/cm 2 . (orig./HT)

  17. Multichannel spectral mode of the ALOHA up-conversion interferometer

    Science.gov (United States)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-06-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  18. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  19. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  20. Acoustic one-way mode conversion and transmission by sonic crystal waveguides

    Science.gov (United States)

    Ouyang, Shiliang; He, Hailong; He, Zhaojian; Deng, Ke; Zhao, Heping

    2016-09-01

    We proposed a scheme to achieve one-way acoustic propagation and even-odd mode switching in two mutually perpendicular sonic crystal waveguides connected by a resonant cavity. The even mode in the entrance waveguide is able to switch to the odd mode in the exit waveguide through a symmetry match between the cavity resonant modes and the waveguide modes. Conversely, the odd mode in the exit waveguide is unable to be converted into the even mode in the entrance waveguide as incident waves and eigenmodes are mismatched in their symmetries at the waveguide exit. This one-way mechanism can be applied to design an acoustic diode for acoustic integration devices and can be used as a convertor of the acoustic waveguide modes.

  1. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

    Science.gov (United States)

    Gaziv, Guy; Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

  2. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  3. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    KAUST Repository

    Jackson, Scott

    2016-03-24

    The propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane-oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half of the Chapman-Jouguet detonation velocity (DCJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3-2.0 m or 317-488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 DCJ and 0.95 DCJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas

  4. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    International Nuclear Information System (INIS)

    Ya-Jun, Zhao; Qian, Cheng; Meng-Lu, Qian

    2010-01-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions

  5. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  6. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  7. Quantum frequency conversion with ultra-broadband tuning in a Raman memory

    Science.gov (United States)

    Bustard, Philip J.; England, Duncan G.; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J.

    2017-05-01

    Quantum frequency conversion is a powerful tool for the construction of hybrid quantum photonic technologies. Raman quantum memories are a promising method of conversion due to their broad bandwidths. Here we demonstrate frequency conversion of THz-bandwidth, fs-duration photons at the single-photon level using a Raman quantum memory based on the rotational levels of hydrogen molecules. We shift photons from 765 nm to wavelengths spanning from 673 to 590 nm—an absolute shift of up to 116 THz. We measure total conversion efficiencies of up to 10% and a maximum signal-to-noise ratio of 4.0(1):1, giving an expected conditional fidelity of 0.75, which exceeds the classical threshold of 2/3. Thermal noise could be eliminated by cooling with liquid nitrogen, giving noiseless conversion with wide tunability in the visible and infrared.

  8. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  9. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations*

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Wright, D. J.; De Cat, P.; Cottrell, P. L.

    2018-04-01

    The prototype star for the γ Doradus class of pulsating variables was studied employing photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found are self-consistent between the observation types and almost identical to those found in previous studies (1.3641 d-1, 1.8783 d-1, 1.4742 d-1, and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l, m = (2, 0) and (2, -2) modes. Two frequencies are shown to be stable over 20 yr since their first identification. The agreement in ground-based work makes this star an excellent calibrator between high-precision photometry and spectroscopy with the upcoming TESS observations and a potential standard for continued asteroseismic modelling.

  10. Selective injection locking of a multi-mode semiconductor laser to a multi-frequency reference beam

    Science.gov (United States)

    Pramod, Mysore Srinivas; Yang, Tao; Pandey, Kanhaiya; Giudici, Massimo; Wilkowski, David

    2014-07-01

    Injection locking is a well known and commonly used method for coherent light amplification. Usually injection locking is obtained on a single-mode laser injected by a single-frequency seeding beam. In this work we show that selective injection locking of a single-frequency may also be achieved on a multi-mode semiconductor laser injected by a multi-frequency seeding beam, if the slave laser provides sufficient frequency filtering. This selective injection locking condition depends critically on the frequency detuning between the free-running slave emission frequency and each injected frequency component. Stable selective injection locking to a set of three seeding components separated by 1.2 GHz is obtained. This system provides an amplification up to 37 dB of each component. This result suggests that, using distinct slave lasers for each frequency line, a set of mutually coherent high-power radiation modes can be tuned in the GHz frequency domain.

  11. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  12. Inherited differences in crossing over and gene conversion frequencies between wild strains of Sordaria fimicola from "Evolution Canyon".

    Science.gov (United States)

    Saleem, M; Lamb, B C; Nevo, E

    2001-12-01

    Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in "Evolution Canyon," Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.

  13. A Study on the Guided Wave Mode Conversion using Self-calibrating Technique

    International Nuclear Information System (INIS)

    Park, Jung Chul; Cho, Youn Ho

    2000-01-01

    The guided wave mode conversion phenomena were investigated for the NDE of a plate-like structure with thickness variation. The ratios of reflection and transmission (R/T) were measured via the self-calibrating procedure which allows us to obtain experimental guided wave data in a more reliable way regardless of the coupling uncertainty between transducer and specimen. The results on R/T could be used to determine the thickness reduction of the structure. It was shown that not only the incident modes but also the converted ones need to be considered in the self-calibrating guided wave inspection to extract a reasonable correlation between experimental data and the thickness variation. Through this study, the potential of guided wave inspection as a quantitative NDE technique was explored based on the combined concept of self-calibration and multi-mode conversion in guided wave scattering problems

  14. Time-Frequency Analysis of the Dispersion of Lamb Modes

    Science.gov (United States)

    Prosser, W. H.; Seale, Michael D.; Smith, Barry T.

    1999-01-01

    Accurate knowledge of the velocity dispersion of Lamb modes is important for ultrasonic nondestructive evaluation methods used in detecting and locating flaws in thin plates and in determining their elastic stiffness coefficients. Lamb mode dispersion is also important in the acoustic emission technique for accurately triangulating the location of emissions in thin plates. In this research, the ability to characterize Lamb mode dispersion through a time-frequency analysis (the pseudo Wigner-Ville distribution) was demonstrated. A major advantage of time-frequency methods is the ability to analyze acoustic signals containing multiple propagation modes, which overlap and superimpose in the time domain signal. By combining time-frequency analysis with a broadband acoustic excitation source, the dispersion of multiple Lamb modes over a wide frequency range can be determined from as little as a single measurement. In addition, the technique provides a direct measurement of the group velocity dispersion. The technique was first demonstrated in the analysis of a simulated waveform in an aluminum plate in which the Lamb mode dispersion was well known. Portions of the dispersion curves of the A(sub 0), A(sub 1), S(sub 0), and S(sub 2)Lamb modes were obtained from this one waveform. The technique was also applied for the analysis of experimental waveforms from a unidirectional graphite/epoxy composite plate. Measurements were made both along, and perpendicular to the fiber direction. In this case, the signals contained only the lowest order symmetric and antisymmetric modes. A least squares fit of the results from several source to detector distances was used. Theoretical dispersion curves were calculated and are shown to be in good agreement with experimental results.

  15. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    Science.gov (United States)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  16. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  17. Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment

    Energy Technology Data Exchange (ETDEWEB)

    Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-08-15

    The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.

  18. Solid state frequency conversion technology for remote sensing

    International Nuclear Information System (INIS)

    Velsko, S.P.; Webb, M.S.; Cook, W.M.; Neuman, W.A.

    1994-07-01

    Long range remote sensing from airborne or other highly mobile platforms will require high average power tunable radiation from very compact and efficient laser systems. The solid state laser pumped optical parametric oscillator (OPO) has emerged as a leading candidate for such high average power, widely tunable sources. In contrast to laboratory systems, efficiency and simplicity can be the decisive issues which determine the practicality of a particular airborne remote sensing application. The recent advent of diode laser pumped solid state lasers has produced high average power OPO pump sources which are themselves both compact and efficient. However, parametric oscillator technology which can efficiently convert the average powers provided by these pump sources remains to be demonstrated. In addition to the average power requirement, many airborne long range sensing tasks will require a high degree of frequency multiplexing to disentangle data from multiple chemical species. A key advantage in system simplicity can be obtained, for example, if a single OPO can produce easily controlled multispectral output. In this paper the authors address several topics pertaining to the conversion efficiency, power handling, and multispectral capabilities of OPOs which they are currently investigating. In Section 2, single pulse conversion efficiency issues are addressed, while average power effects are treated in Section 3. Section 4 is concerned with multispectral performance of a single OPO. The last section contains a short summary and some concluding remarks

  19. Topological Coherent Modes in Trapped Bose Gas

    International Nuclear Information System (INIS)

    Yukalov, V.I.; Marzlin, K.-P.; Yukalova, E.P.; Bagnato, V.S.

    2005-01-01

    The report reviews the problem of topological coherent modes, which are nonlinear collective states of Bose-condensed atoms. Such modes can be generated by means of alternating external fields, whose frequencies are in resonance with the transition frequencies between the related modes. The Bose gas with generated topological coherent modes is a collective nonlinear analog of a resonant atom. Such systems exhibit a variety of nontrivial effects, e.g. interference fringes, interference current, mode locking, dynamic transitions, critical phenomena, chaotic motion, harmonic generation, parametric conversion, atomic squeezing, and entanglement production

  20. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    OpenAIRE

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 ...

  1. A New Normal Form for Multidimensional Mode Conversion

    International Nuclear Information System (INIS)

    Tracy, E. R.; Richardson, A. S.; Kaufman, A. N.; Zobin, N.

    2007-01-01

    Linear conversion occurs when two wave types, with distinct polarization and dispersion characteristics, are locally resonant in a nonuniform plasma [1]. In recent work, we have shown how to incorporate a ray-based (WKB) approach to mode conversion in numerical algorithms [2,3]. The method uses the ray geometry in the conversion region to guide the reduction of the full NxN-system of wave equations to a 2x2 coupled pair which can be solved and matched to the incoming and outgoing WKB solutions. The algorithm in [2] assumes the ray geometry is hyperbolic and that, in ray phase space, there is an 'avoided crossing', which is the most common type of conversion. Here, we present a new formulation that can deal with more general types of conversion [4]. This formalism is based upon the fact (first proved in [5]) that it is always possible to put the 2x2 wave equation into a 'normal' form, such that the diagonal elements of the dispersion matrix Poisson-commute with the off-diagonals (at leading order). Therefore, if we use the diagonals (rather than the eigenvalues or the determinant) of the dispersion matrix as ray Hamiltonians, the off-diagonals will be conserved quantities. When cast into normal form, the 2x2 dispersion matrix has a very natural physical interpretation: the diagonals are the uncoupled ray hamiltonians and the off-diagonals are the coupling. We discuss how to incorporate the normal form into ray tracing algorithms

  2. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  3. Shear Alfven wave excitation by direct antenna coupling and fast wave resonant mode conversion

    International Nuclear Information System (INIS)

    Borg, G.G.

    1994-01-01

    Antenna coupling to the shear Alfven wave by both direct excitation and fast wave resonant mode conversion is modelled analytically for a plasma with a one dimensional linear density gradient. We demonstrate the existence of a shear Alfven mode excited directly by the antenna. For localised antennas, this mode propagates as a guided beam along the steady magnetic field lines intersecting the antenna. Shear Alfven wave excitation by resonant mode conversion of a fast wave near the Alfven resonance layer is also demonstrated and we prove that energy is conserved in this process. We compare the efficiency of these two mechanisms of shear Alfven wave excitation and present a simple analytical formula giving the ratio of the coupled powers. Finally, we discuss the interpretation of some experimental results. 45 refs., 7 figs

  4. A continuous-discrete approach for evaluation of natural frequencies and mode shapes of high-rise buildings

    Science.gov (United States)

    Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman

    2016-09-01

    In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.

  5. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  6. Effects on microstrain and conversion of flowable resin composite using different curing modes and units.

    Science.gov (United States)

    Tseng, Wan-Yu; Chen, Ruey-Song; Wang, Jaw-Lin; Lee, Ming-Shu; Rueggeberg, Frederick A; Chen, Min-Huey

    2007-05-01

    The flowable resin composite, Tetric Flow, was used to measure microstrain and degree of conversion after hardening with each of three curing machines: XL3000(XL) for 10, 20, 30, and 40 s; Optilux 501 using conventional mode (OC) for 10, 20, 30, and 40 s, as well as Optilux boost (OB, 10 s) and ramp modes (OR, 20 s); and LEDemetron (LEDe) for 10, 20, 30, and 40 s. The emitted power density and spectral distribution of the three light curing units were also measured. The LEDe output energy spectrum was centralized between 425 and 490 nm, which encompasses the excited wavelength of camphorquinone. The microstrain produced by the curing process is as a second-degree polynomial for each light source. The OB microstrain was highest, while the OR microstrain was lower. The ranking in order of degree of monomer conversion was as follows: XL10 conversion cured with OB was significant higher than other curing modes except OC30, OC40, LEDe30, LEDe40, and XL40. The conversion value of XL10 was the lowest. The LEDe produced higher conversion for the same emitted energy compared to the two halogen units.

  7. Local fields for asymptotic matching in multidimensional mode conversion

    International Nuclear Information System (INIS)

    Tracy, E. R.; Kaufman, A. N.; Jaun, A.

    2007-01-01

    The problem of resonant mode conversion in multiple spatial dimensions is considered. Using phase space methods, a complete theory is developed for constructing matched asymptotic expansions that fit incoming and outgoing WKB solutions. These results provide, for the first time, a complete and practical method for including multidimensional conversion in ray tracing algorithms. The paper provides a self-contained description of the following topics: (1) how to use eikonal (also known as ray tracing or WKB) methods to solve vector wave equations and how to detect conversion regions while following rays; (2) once conversion is detected, how to fit to a generic saddle structure in ray phase space associated with the most common type of conversion; (3) given the saddle structure, how to carry out a local projection of the full vector wave equation onto a local two-component normal form that governs the two resonantly interacting waves. This determines both the uncoupled dispersion functions and the coupling constant, which in turn determine the uncoupled WKB solutions; (4) given the normal form of the local two-component wave equation, how to find the particular solution that matches the amplitude, phase, and polarization of the incoming ray, to the amplitude, phase, and polarization of the two outgoing rays: the transmitted and converted rays

  8. Toroidal coupling and frequency spectrum of tearing modes

    International Nuclear Information System (INIS)

    Edery, D.; Samain, A.

    1989-05-01

    The frequency spectrum of tearing modes is analyzed with the help of a mode coupling model including toroidal effects in the MHD regions and various non linear effects in the resonant layers. In particular it is shown that the sudden damping of the mode rotation and the simultaneous enhancement of the growth rate observed in tokamak, could be explained as a bifurcating solution of the dispersion equation

  9. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  10. Two-photon spectral amplitude of entangled states resolved in separable Schmidt modes

    International Nuclear Information System (INIS)

    Avella, A; Brida, G; Gramegna, M; Shurupov, A; Genovese, M; Chekhova, M

    2015-01-01

    The ability to access high dimensionality in Hilbert spaces represents a demanding key-stone for state-of-the-art quantum information. The manipulation of entangled states in continuous variables, wavevector as well frequency, represents a powerful resource in this sense. The number of dimensions of the Hilbert space that can be used in practical information protocols can be determined by the number of Schmidt modes that it is possible to address one by one. In the case of wavevector variables, the Schmidt modes can be losslessly selected using single-mode fibre and a spatial light modulator, but no similar procedure exists for the frequency space. The aim of this work is to present a technique to engineer the spectral properties of biphoton light, emitted via ultrafast spontaneous parametric down conversion, in such a way that the two-photon spectral amplitude (TPSA) contains several non-overlapping Schmidt modes, each of which can be filtered losslessly in frequency variables. Such TPSA manipulation is operated by a fine balancing of parameters like the pump frequency, the shaping of pump pulse spectrum, the dispersion dependence of spontaneous parametric down-conversion crystals as well as their length. Measurements have been performed exploiting the group velocity dispersion induced by the passage of optical fields through dispersive media, operating a frequency-to-time two-dimensional Fourier transform of the TPSA. Exploiting this kind of measurement we experimentally demonstrate the ability to control the Schmidt modes structure in TPSA through the pump spectrum manipulation. (paper)

  11. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-02-01

    The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction

  12. Engineering the Frequency Spectrum of Bright Squeezed Vacuum via Group Velocity Dispersion in an SU(1,1) Interferometer

    OpenAIRE

    Lemieux, Samuel; Manceau, Mathieu; Sharapova, Polina R.; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2016-01-01

    Bright squeezed vacuum, a promising tool for quantum information, can be generated by high-gain parametric down-conversion. However, its frequency and angular spectra are typically quite broad, which is undesirable for applications requiring single-mode radiation. We tailor the frequency spectrum of high-gain parametric down-conversion using an SU(1,1) interferometer consisting of two nonlinear crystals with a dispersive medium separating them. The dispersive medium allows us to select a narr...

  13. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  14. Photon - axion conversions in a periodic electromagnetic field with axion frequency

    International Nuclear Information System (INIS)

    Dang Van Soa

    1998-09-01

    The conversion of photons into axions in a periodic external electromagnetic field with axion frequency is considered in detail by Feynman methods. The differential cross sections are given. It is shown that there is a resonant conversion for the considered process. (author)

  15. UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM

    International Nuclear Information System (INIS)

    Tripathy, S. C.; Jain, K.; Hill, F.; Leibacher, J. W.

    2010-01-01

    We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We also analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.

  16. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  17. Photon energy conversion by near-zero permittivity nonlinear materials

    Science.gov (United States)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    2017-12-19

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  18. Ion-Bernstein wave mode conversion in hot tokamak plasmas

    International Nuclear Information System (INIS)

    Jaun, A.; Hellsten, T.; Chiu, S.C.

    1997-08-01

    Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs

  19. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Budden, K.G.; Jones, D.

    1987-01-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft

  20. Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Shin Young Heo

    2015-10-01

    Full Text Available This paper presents a hybrid intelligent control method that enables frequency support control for permanent magnet synchronous generators (PMSGs wind turbines. The proposed method for a wind energy conversion system (WECS is designed to have PMSG modeling and full-scale back-to-back insulated-gate bipolar transistor (IGBT converters comprising the machine and grid side. The controller of the machine side converter (MSC and the grid side converter (GSC are designed to achieve maximum power point tracking (MPPT based on an improved hill climb searching (IHCS control algorithm and de-loaded (DL operation to obtain a power margin. Along with this comprehensive control of maximum power tracking mode based on the IHCS, a method for kinetic energy (KE discharge control of the supporting primary frequency control scheme with DL operation is developed to regulate the short-term frequency response and maintain reliable operation of the power system. The effectiveness of the hybrid intelligent control method is verified by a numerical simulation in PSCAD/EMTDC. Simulation results show that the proposed approach can improve the frequency regulation capability in the power system.

  1. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...

  2. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  3. Spike train generation and current-to-frequency conversion in silicon diodes

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  4. Thermal heat-balance mode flow-to-frequency converter

    Science.gov (United States)

    Pawlowski, Eligiusz

    2016-11-01

    This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.

  5. A two-fluid interpretation of low frequency modes in Tokamaks

    International Nuclear Information System (INIS)

    Thyagaraja, A.; Haas, F.A.

    1983-01-01

    The linear stability of low frequency modes (ω/ωsub(ci) << 1) of a dissipationless two-fluid cylindrical analogue of Tokamak is investigated. The eigenvalue problem comprises a coupled first-order and second-order differential equation. Given certain plausible assumptions, the case of an internal resonant point is solved analytically. The resulting modes and frequencies are qualitatively similar to those observed. The analogue of the MHD uniform current model is solved exactly and the usual MHD marginal stability boundary is shown to be modified. More general considerations show, that even in the absence of dissipation, the magnetic field is not ''frozen'' to the ions or the electrons. Furthermore, in general the MHD equations can only be recovered by a limiting process which is inappropriate to Tokamaks. For very low frequencies (ω << ω*), however, single and two-fluid theories predict the same magnetic field structure but different electric fields. The present analysis which covers frequencies from zero to ωsub(Alfven), including drift and acoustic frequencies predicts that both discrete and continuum modes can be unstable which is in contrast to ideal MHD. (author)

  6. Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber

    Science.gov (United States)

    Tamura, Shuhei; Ikeda, Kohei; Okamura, Kotaro; Yoshii, Kazumichi; Hong, Feng-Lei; Horikiri, Tomoyuki; Kosaka, Hideo

    2018-06-01

    Long-distance quantum communication requires entanglement between distant quantum memories. For this purpose, photon transmission is necessary to connect the distant memories. Here, for the first time, we develop a two-step frequency conversion process (from a visible wavelength to a telecommunication wavelength and back) involving the use of independent two-frequency conversion media where the target quantum memories are nitrogen-vacancy centers in diamonds (with an emission/absorption wavelength of 637.2 nm), and experimentally characterize the performance of this process acting on light from an attenuated CW laser. A total conversion efficiency of approximately 7% is achieved. The noise generated in the frequency conversion processes is measured, and the signal-to-noise ratio is estimated for a single photon signal emitted by a nitrogen-vacancy (NV) center. The developed frequency conversion system has future applications via transmission through a long optical fiber channel at a telecommunication wavelength for a quantum repeater network.

  7. Dispersive-cavity actively mode-locked fiber laser for stable radio frequency delivery

    International Nuclear Information System (INIS)

    Dai, Yitang; Wang, Ruixin; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2013-01-01

    We report a novel technique for highly stable transfer of a radio frequency (RF) comb over long optical fiber link, which is highly dispersive and is a part of an actively mode-locked fiber laser. Phase fluctuation along the fiber link, which is mainly induced by physical vibration and temperature fluctuations, is automatically compensated by the self-adapted wavelength shifting. Without phase-locking loop or any tunable parts, stable radio frequency is transferred over a 2-km fiber link, with a time jitter suppression ratio larger than 110. (letter)

  8. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  9. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  10. ICRF Mode Conversion Studies with Phase Contrast Imaging and Comparisons with Full-Wave Simulations

    International Nuclear Information System (INIS)

    Tsujii, N.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Porkolab, M.; Jaeger, E. F.; Harvey, R. W.

    2011-01-01

    Waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat toka-mak plasmas. In a multi-ion-species plasma, the FW converts to ion cyclotron waves (ICW) and ion Bernstein waves (IBW) around the ion-ion hybrid resonance (mode conversion). The mode converted wave is of interest as an actuator to optimise plasma performance through flow drive and current drive. Numerical simulations are essential to describe these processes accurately, and it is important that these simulation codes be validated. On Alcator C-Mod, direct measurements of the mode converted waves have been performed using Phase Contrast Imaging (PCI), which measures the line-integrated electron density fluctuations. The results were compared to full-wave simulations AORSA and TORIC. AORSA is coupled to a Fokker-Planck code CQL3D for self-consistent simulation of the wave electric field and the minority distribution function. The simulation results are compared to PCI measurements using synthetic diagnostic. The experiments were performed in D-H and D- 3 He plasmas over a wide range of ion species concentrations. The simulations agreed well with the measurements in the strong absorption regime. However, the measured fluctuation intensity was smaller by 1-2 orders of magnitudes in the weakly abosorbing regime, and a realistic description of the plasma edge including dissipation and antenna geometry may be required in these cases.

  11. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.

    Science.gov (United States)

    Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik

    2013-09-09

    We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers ( 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

  12. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  13. Extraordinary mode absorption at the electron cyclotron harmonic frequencies as a Tokamak plasma diagnostic

    International Nuclear Information System (INIS)

    Pachtman, A.

    1986-09-01

    Measurements of Extraordinary mode absorption at the electron cyclotron harmonic frequencies are of unique value in high temperature, high density Tokamak plasma diagnostic applications. An experimental study of Extraordinary mode absorption at the semi-opaque second and third harmonics has been performed on the ALCATOR C Tokamak. A narrow beam of submillimeter laser radiation was used to illuminate the plasma in a horizontal plane, providing a continuous measurement of the one-pass, quasi-perpendicular transmission

  14. Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    OpenAIRE

    Sharapova, P. R.; Tikhonova, O. V.; Lemieux, S.; Boyd, R. W.; Chekhova, M. V.

    2018-01-01

    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an an...

  15. Evidence for the frequency-shift of the OA A_1g mode in Hg-based superconductors

    Science.gov (United States)

    Yang, In-Sang; Lee, Hye-Gyong

    1996-03-01

    The Hg-based superconductors, HgBa_2Ca_n-1Cu_nO_2n+2+δ (n=1,2,3) have two strong Raman peaks at ~ 570 and 590 cm-1 in the high-frequency region. From the results of Raman measurements of Tl-doped Hg-1223 system, it is concluded that the peak at ~ 570 cm-1 does not arise from the vibration of the interstitial oxygen O_δ in the Hg/Tl-O plane, but from the frequency-shift of the A_1g-type vibration of the apical oxygen O_A. The peak at 570 cm-1 is from the O_As surrounded by the O_δs in the nearest neighbor, while the 590 cm-1 mode is from the O_As without the O_δs in the immediate neighbor. The intensity of the 570 cm-1 mode increases with the O_δ content, but the Raman frequencies of both modes do not change significantly. This suggests that the increase of the frequency of the OA A_1g mode under high pressure (I.-S. Yang et al., Phys. Rev. B 51, 644 (1995)) is independent from the O_δ content, in the Hg-based superconductors.

  16. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  17. Word and phoneme frequency of occurrence in conversational ...

    African Journals Online (AJOL)

    Frequency of occurrence of Setswana consonant phonemes in a conversational sample of 49 358 Setswana-words was deter- mined. The percentage of occurrence of each consonant in each of the three positions of words was found to be 53.9% in the initial, 41.8% in the medial and 4.1% in the final positions. In addition ...

  18. Word Inventory and Frequency Analysis of French Conversations.

    Science.gov (United States)

    Malecot, Andre

    This word frequency list was extracted from a corpus of fifty half-hour conversations recorded in Paris during the academic year 1967-68. The speakers, who did not know that they were being recorded, were all well-educated professionals and all speakers of the most standard dialect of French. The list is made up of all phonetically discrete words…

  19. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  20. Frequency-bin entanglement of ultra-narrow band non-degenerate photon pairs

    Science.gov (United States)

    Rieländer, Daniel; Lenhard, Andreas; Jime`nez Farìas, Osvaldo; Máttar, Alejandro; Cavalcanti, Daniel; Mazzera, Margherita; Acín, Antonio; de Riedmatten, Hugues

    2018-01-01

    We demonstrate frequency-bin entanglement between ultra-narrowband photons generated by cavity enhanced spontaneous parametric down conversion. Our source generates photon pairs in widely non-degenerate discrete frequency modes, with one photon resonant with a quantum memory material based on praseodymium doped crystals and the other photon at telecom wavelengths. Correlations between the frequency modes are analyzed using phase modulators and narrowband filters before detection. We show high-visibility two photon interference between the frequency modes, allowing us to infer a coherent superposition of the modes. We develop a model describing the state that we create and use it to estimate optimal measurements to achieve a violation of the Clauser-Horne (CH) Bell inequality under realistic assumptions. With these settings we perform a Bell test and show a significant violation of the CH inequality, thus proving the entanglement of the photons. Finally we demonstrate the compatibility with a quantum memory material by using a spectral hole in the praseodymium (Pr) doped crystal as spectral filter for measuring high-visibility two-photon interference. This demonstrates the feasibility of combining frequency-bin entangled photon pairs with Pr-based solid state quantum memories.

  1. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  2. ALMA High Frequency Techniques

    Science.gov (United States)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  3. Multi-dimensional conversion to the ion-hybrid mode

    International Nuclear Information System (INIS)

    Tracy, E.R.; Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.

    1996-01-01

    We first demonstrate that the dispersion matrix for linear conversion of a magnetosonic wave to an ion-hybrid wave (as in a D-T plasma) can be congruently transformed to Friedland's normal form. As a result, this conversion can be represented as a two-step process of successive linear conversions in phase space. We then proceed to study the multi-dimensional case of tokamak geometry. After fourier transforming the toroidal dependence, we deal with the two-dimensional poloidal xy-plane and the two-dimensional k x k y -plane, forming a four-dimensional phase space. The dispersion manifolds for the magnetosonic wave [D M (x, k) = 0] and the ion-hybrid wave [D H (x, k) = 0] are each three-dimensional. (Their intersection, on which mode conversion occurs, is two-dimensional.) The incident magnetosonic wave (radiated by an antenna) is a two-dimensional set of rays (a lagrangian manifold): k(x) = ∇θ(x), with θ(x) the phase of the magnetosonic wave. When these rays pierce the ion-hybrid dispersion manifold, they convert to a set of ion-hybrid rays. Then, when those rays intersect the magnetosonic dispersion manifold, they convert to a set of open-quotes reflectedclose quotes magnetosonic rays. This set of rays is distinct from the set of incident rays that have been reflected by the inner surface of the tokamak plasma. As a result, the total destructive interference that can occur in the one-dimensional case may become only partial. We explore the implications of this startling phenomenon both analytically and geometrically

  4. Time-frequency analysis : mathematical analysis of the empirical mode decomposition.

    Science.gov (United States)

    2009-01-01

    Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...

  5. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  6. High density terahertz frequency comb produced by coherent synchrotron radiation

    Science.gov (United States)

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-07-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10-10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

  7. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...... interact at the beginning or the end of the fiber, and complete collisions, in which the four fields interact at the midpoint of the fiber. If the Green function is separable, there is only one output Schmidt mode, which is free from temporal entanglement. We find that nonlinear phase modulation always...... chirps the input and output Schmidt modes and renders the Green function formally nonseparable. However, by pre-chirping the pumps, one can reduce the chirps of the Schmidt modes and enable approximate separability. Thus, even in the presence of nonlinear phase modulation, frequency conversion...

  8. A Frequency-Weighted Energy Operator and complementary ensemble empirical mode decomposition for bearing fault detection

    Science.gov (United States)

    Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc

    2017-01-01

    Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.

  9. Frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Science.gov (United States)

    Salabert, D.; Régulo, C.; Pérez Hernández, F.; García, R. A.

    2018-04-01

    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence on radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 μHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main sequence solar-like stars, the F-star HD 49933, and the young 1 Gyr-old solar analog KIC 10644253, although with different amplitudes of the shifts of about 2 μHz and 0.5 μHz, respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l = 0 and l = 1 modes individually. Given the quality of the data, the results could indicate that a physical source of perturbation different from that in the Sun is dominating in this sample of solar-like stars.

  10. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  11. An astrophysical interpretation of the remarkable g-mode frequency groups of the rapidly rotating γ Dor star, KIC 5608334

    Science.gov (United States)

    Saio, Hideyuki; Bedding, Timothy R.; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria; Shibahashi, Hiromoto; Li, Gang; Takata, Masao

    2018-06-01

    The Fourier spectrum of the γ-Dor variable KIC 5608334 shows remarkable frequency groups at ˜3, ˜6, ˜9, and 11-12 d-1. We explain the four frequency groups as prograde sectoral g modes in a rapidly rotating star. Frequencies of intermediate-to-high radial order prograde sectoral g modes in a rapidly rotating star are proportional to |m| (i.e. ν ∝ |m|) in the corotating frame as well as in the inertial frame. This property is consistent with the frequency groups of KIC 5608334 as well as the period versus period-spacing relation present within each frequency group, if we assume a rotation frequency of 2.2 d-1, and that each frequency group consists of prograde sectoral g modes of |m| = 1, 2, 3, and 4, respectively. In addition, these modes naturally satisfy near-resonance conditions νi ≈ νj + νk with mi = mj + mk. We even find exact resonance frequency conditions (within the precise measurement uncertainties) in many cases, which correspond to combination frequencies.

  12. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    International Nuclear Information System (INIS)

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  13. Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars

    Science.gov (United States)

    Yatabe, Akihiro; Yamada, Shoichi

    2017-12-01

    In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.

  14. A second, low-frequency mode of vibration in the intact mammalian cochlea.

    Science.gov (United States)

    Lukashkin, Andrei N; Russell, Ian J

    2003-03-01

    The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.

  15. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  16. Study of a high-order-mode gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Tsai, C. Y.; Kao, S. H.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2010-01-01

    Physics and performance issues of a TE 01 -mode gyrotron traveling-wave amplifier are studied in theory. For a high order mode, absolute instabilities on neighboring modes at the fundamental and higher cyclotron harmonic frequencies impose severe constraints to the device capability. Methods for their stabilization are outlined, on the basis of which the performance characteristics are examined in a multidimensional parameter space under the marginal stability criterion. The results demonstrate the viability of a high-order-mode traveling-wave amplifier and provide a roadmap for design tradeoffs among power, bandwidth, and efficiency. General trends are observed and illustrated with specific examples.

  17. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  18. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...

  19. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    Science.gov (United States)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against

  20. Conversion of electrostatic upper hybrid emissions to electromagnetic O and X mode waves in the Earth's magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Budden, K.G.; Jones, D.

    1987-02-01

    The linear conversion of electrostatic upper hybrid emissions via the Z mode to electromagnetic ordinary (O) mode waves has for some time been invoked for the source of Terrestrial and Saturnian myriametric and Jovian kilometric radiations. The conversion occurs by virtue of the emissions' propagation in concentration gradients, and for it to be efficient it is necessary for the gradient to be normal to the ambient magnetic field. Suitable concentration gradients are believed to occur at the plasmapause and at the magnetopause. Ray theory predicts only O mode production whereas full wave theory in a cold plasma shows that both O and X (extraordinary) mode are produced, their relative intensities depending on the plasma parameters. Full wave theory in a warm plasma, besides yielding more accurate information on the O and X modes also provides an insight into the effect of conversion on the source plasma wave. Results obtained from these three levels of theory are compared using plasma parameters derived from wave experiments on spacecraft.

  1. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    Science.gov (United States)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  2. ON THE HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM BLACK HOLES

    International Nuclear Information System (INIS)

    Erkut, M. Hakan

    2011-01-01

    We apply the global mode analysis, which has been recently developed for the modeling of kHz quasi-periodic oscillations (QPOs) from neutron stars, to the inner region of an accretion disk around a rotating black hole. Within a pseudo-Newtonian approach that keeps the ratio of the radial epicyclic frequency κ to the orbital frequency Ω the same as the corresponding ratio for a Kerr black hole, we determine the innermost disk region where the hydrodynamic modes grow in amplitude. We find that the radiation flux emerging from the inner disk has the highest values within the same region. Using the flux-weighted averages of the frequency bands over this region we identify the growing modes with highest frequency branches Ω + κ and Ω to be the plausible candidates for the high-frequency QPO pairs observed in black hole systems. The observed frequency ratio around 1.5 can therefore be understood naturally in terms of the global free oscillations in the innermost region of a viscous accretion disk around a black hole without invoking a particular resonance to produce black hole QPOs. Although the frequency ratio (Ω + κ)/(Ω) is found to be not sensitive to the black hole's spin which is good for explaining the high-frequency QPOs, it may work as a limited diagnostic of the spin parameter to distinguish black holes with very large spin from the slowly rotating ones. Within our model we estimate the frequency ratio of a high-frequency QPO pair to be greater than 1.5 if the black hole is a slow rotator. For fast rotating black holes, we expect the same ratio to be less than 1.5.

  3. Mode of recording and modulation frequency effects of auditory steady state response thresholds

    OpenAIRE

    Jalaei, Bahram; Shaabani, Moslem; Zakaria, Mohd Normani

    2017-01-01

    Abstract Introduction The performance of auditory steady state response (ASSR) in threshold testing when recorded ipsilaterally and contralaterally, as well as at low and high modulation frequencies (MFs), has not been systematically studied. Objective To verify the influences of mode of recording (ipsilateral vs. contralateral) and modulation frequency (40 Hz vs. 90 Hz) on ASSR thresholds. Methods Fifteen female and 14 male subjects (aged 18–30 years) with normal hearing bilaterally were ...

  4. Enhanced coupling of the fast wave to electrons through mode conversion to the ion hybrid wave

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Ram, A.K.; Bers, A.

    1996-07-01

    The mode conversion of the fast compressional Alfven wave to the ion hybrid wave is analyzed with particular reference to a plasma with two ion species present in approximately equal proportions. Two configurations are considered, the first referring to the usual resonance-cut-off case and the second to a cut-off-resonance-cut-off situation. The optimum conditions for maximising the mode converted energy are given. The second order fast wave equation is generalised to include the effect of the parallel electric field. Hence, all ion and electron loss mechanisms for the fast wave are incorporated, including mode conversion at the two-ion hybrid resonance. The significance of the approximate equality of the two ion species concentrations is that the mode converted ion hybrid wave is damped only by the electrons. The damping of the ion hybrid wave is described with the aid of the local dispersion relation and by means of a toroidal ray tracing code. In particular, the ray tracing calculation shows that the mode converted energy is totally absorbed by the electrons close to the two-ion hybrid resonance. The generalised fast wave equation is solved to determine how much energy is lost from the fast wave, incident from the low field side, before it encounters the two-ion hybrid resonance. For comparable concentrations of the two ion species, the mode converted power can be separated from the power directly absorbed by the ions and electrons from the fast wave. This allows the conditions to be ascertained under which strong electron heating through mode conversion dominates the direct dissipation of the fast wave. (UK)

  5. Localized radio frequency communication using asynchronous transfer mode protocol

    Science.gov (United States)

    Witzke, Edward L.; Robertson, Perry J.; Pierson, Lyndon G.

    2007-08-14

    A localized wireless communication system for communication between a plurality of circuit boards, and between electronic components on the circuit boards. Transceivers are located on each circuit board and electronic component. The transceivers communicate with one another over spread spectrum radio frequencies. An asynchronous transfer mode protocol controls communication flow with asynchronous transfer mode switches located on the circuit boards.

  6. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2016-01-31

    The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)

  7. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  8. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    Science.gov (United States)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  9. Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Chu, M.S.

    1996-01-01

    The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics

  10. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  11. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    Science.gov (United States)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  12. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion

    Science.gov (United States)

    Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias

    2018-05-01

    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.

  13. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  14. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  15. A multi-mode multi-band RF receiver front-end for a TD-SCDMA/LTE/LTE-advanced in 0.18-μm CMOS process

    International Nuclear Information System (INIS)

    Guo Rui; Zhang Haiying

    2012-01-01

    A fully integrated multi-mode multi-band directed-conversion radio frequency (RF) receiver front-end for a TD-SCDMA/LTE/LTE-advanced is presented. The front-end employs direct-conversion design, and consists of two differential tunable low noise amplifiers (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The two independent tunable LNAs are used to cover all the four frequency bands, achieving sufficient low noise and high gain performance with low power consumption. Switched capacitor arrays perform a resonant frequency point calibration for the LNAs. The two LNAs are combined at the driver stage of the mixer, which employs a folded double balanced Gilbert structure, and utilizes PMOS transistors as local oscillator (LO) switches to reduce flicker noise. The front-end has three gain modes to obtain a higher dynamic range. Frequency band selection and mode of configuration is realized by an on-chip serial peripheral interface (SPI) module. The front-end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.3 mm 2 . The measured double-sideband (DSB) noise figure is below 3.5 dB and the conversion gain is over 43 dB at all of the frequency bands. The total current consumption is 31 mA from a 1.8-V supply. (semiconductor integrated circuits)

  16. Present and Future Modes of Low Frequency Climate Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  17. Evidence of L-mode electromagnetic wave pumping of ionospheric plasma near geomagnetic zenith

    Directory of Open Access Journals (Sweden)

    T. B. Leyser

    2018-02-01

    Full Text Available The response of ionospheric plasma to pumping by powerful HF (high frequency electromagnetic waves transmitted from the ground into the ionosphere is the strongest in the direction of geomagnetic zenith. We present experimental results from transmitting a left-handed circularly polarized HF beam from the EISCAT (European Incoherent SCATter association Heating facility in magnetic zenith. The CASSIOPE (CAScade, Smallsat and IOnospheric Polar Explorer spacecraft in the topside ionosphere above the F-region density peak detected transionospheric pump radiation, although the pump frequency was below the maximum ionospheric plasma frequency. The pump wave is deduced to arrive at CASSIOPE through L-mode propagation and associated double (O to Z, Z to O conversion in pump-induced radio windows. L-mode propagation allows the pump wave to reach higher plasma densities and higher ionospheric altitudes than O-mode propagation so that a pump wave in the L-mode can facilitate excitation of upper hybrid phenomena localized in density depletions in a larger altitude range. L-mode propagation is therefore suggested to be important in explaining the magnetic zenith effect.

  18. General Properties of Scattering Matrix for Mode Conversion Process between B Waves and External EM Waves and Their Consequence to Experiments

    International Nuclear Information System (INIS)

    Maekawa, T.; Tanaka, H.; Uchida, M.; Igami, H.

    2003-01-01

    General properties of scattering matrix, which governs the mode conversion process between electron Bernstein (B) waves and external electromagnetic (EM) waves in the presence of steep density gradient, are theoretically analyzed. Based on the analysis, polarization adjustment of incident EM waves for optimal mode conversion to B waves is possible and effective for a range of density gradient near the upper hybrid resonance, which are not covered by the previously proposed schemes of perpendicular injection of X mode and oblique injection of O mode. Furthermore, the analysis shows that the polarization of the externally emitted EM waves from B waves is uniquely related to the optimized polarization of incident EM waves for B wave heating and that the mode conversion rate is the same for the both processes of emission and the injection with the optimized polarization

  19. A power scalable PLL frequency synthesizer for high-speed Δ—Σ ADC

    International Nuclear Information System (INIS)

    Han Siyang; Chi Baoyong; Zhang Xinwang; Wang Zhihua

    2014-01-01

    A 35–130 MHz/300–360 MHz phase-locked loop frequency synthesizer for Δ—Σ analog-to-digital converter (ADC) in 65 nm CMOS is presented. The frequency synthesizer can work in low phase-noise mode (300–360 MHz) or in low-power mode (35–130 MHz) to satisfy the ADC's requirements. To switch between these two modes, a high frequency GHz LC VCO followed by a divided-by-four frequency divider and a low frequency ring VCO followed by a divided-by-two frequency divider are integrated on-chip. The measured results show that the frequency synthesizer achieves a phase-noise of −132 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 1.12 ps with 1.74 mW power consumption from a 1.2 V power supply in low phase-noise mode. In low-power mode, the frequency synthesizer achieves a phase-noise of −112 dBc/Hz at 1 MHz offset and an integrated RMS jitter of 7.23 ps with 0.92 mW power consumption from a 1.2 V power supply. (semiconductor integrated circuits)

  20. Stochastic reduced-order model for an automotive vehicle in presence of numerous local elastic modes in the low-frequency range

    OpenAIRE

    Arnoux , A.; Batou , Anas; Soize , Christian; Gagliardini , L.

    2012-01-01

    International audience; This paper is devoted to the construction of a stochastic reduced-order model for dynamical structures having a high modal density in the low-frequency range, such as an automotive vehicle. This type of structure is characterized by the fact that it exhibits, in the low-frequency range, not only the classical global elastic modes but also numerous local elastic modes which cannot easily be separated from the global elastic modes. An approach has recently been proposed ...

  1. Large scale modulation of high frequency acoustic waves in periodic porous media.

    Science.gov (United States)

    Boutin, Claude; Rallu, Antoine; Hans, Stephane

    2012-12-01

    This paper deals with the description of the modulation at large scale of high frequency acoustic waves in gas saturated periodic porous media. High frequencies mean local dynamics at the pore scale and therefore absence of scale separation in the usual sense of homogenization. However, although the pressure is spatially varying in the pores (according to periodic eigenmodes), the mode amplitude can present a large scale modulation, thereby introducing another type of scale separation to which the asymptotic multi-scale procedure applies. The approach is first presented on a periodic network of inter-connected Helmholtz resonators. The equations governing the modulations carried by periodic eigenmodes, at frequencies close to their eigenfrequency, are derived. The number of cells on which the carrying periodic mode is defined is therefore a parameter of the modeling. In a second part, the asymptotic approach is developed for periodic porous media saturated by a perfect gas. Using the "multicells" periodic condition, one obtains the family of equations governing the amplitude modulation at large scale of high frequency waves. The significant difference between modulations of simple and multiple mode are evidenced and discussed. The features of the modulation (anisotropy, width of frequency band) are also analyzed.

  2. Design of practical sliding-mode controllers with constant switching frequency for power converters

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Lopez, Eva M. [School of Computer Science, Centre for Interdisciplinary Computational and Dynamical Analysis, The University of Manchester, Oxford Road, Kilburn Building, Manchester M13 9PL (United Kingdom); Cortes, Domingo [Seccion de Mecatronica, Departamento de Ingenieria Electrica, CINVESTAV-IPN, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico City (Mexico); Castro, Christian [Centro de Investigacion en Computacion del IPN, Av. Jose Othon de Mendizabal s/n, Col. Nueva Industrial Vallejo, 07738 Mexico City (Mexico)

    2009-05-15

    A novel experimentally motivated method in order to design a family of easy-to-implement sliding-mode controllers for power converters is proposed. Two main results are presented. First, the relation between sliding-mode control and average control is reinterpreted so that the limitation of the switching frequency for the closed-loop system is achieved in a more direct way than other methods so far reported in the literature. For this purpose, a class of sliding surfaces which makes the associated equivalent control be the system average control is proposed. Second, the achievement of a constant switching frequency in the controlled system is assured without requiring the sliding-mode-based controller to be modified, unlike most previous works. As a result, the proposed sliding surfaces-type can be directly implemented via a pulse-width modulator. The control methodology is implemented for the voltage control in a boost converter prototype in which the load is considered unknown. Experimental results confirm high performance and robustness under parameters variation. Furthermore, the solution proposed is easy to implement and well-suited for other power converters. (author)

  3. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-12-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  4. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    International Nuclear Information System (INIS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  5. Electron cyclotron heating and current drive approach for low-temperature startup plasmas using O-X-EBW mode conversion

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Bigelow, T.S.

    1997-01-01

    A mechanism for heating and driving currents in very overdense plasmas is considered based on a double-mode conversion: Ordinary mode to Extraordinary mode to electron Bernstein wave. The possibility of using this mechanism for plasma buildup and current ramp in the National Spherical Torus Experiment is investigated

  6. On temporal correlations in high-resolution frequency counting

    OpenAIRE

    Dunker, Tim; Hauglin, Harald; Rønningen, Ole Petter

    2016-01-01

    We analyze noise properties of time series of frequency data from different counting modes of a Keysight 53230A frequency counter. We use a 10 MHz reference signal from a passive hydrogen maser connected via phase-stable Huber+Suhner Sucoflex 104 cables to the reference and input connectors of the counter. We find that the high resolution gap-free (CONT) frequency counting process imposes long-term correlations in the output data, resulting in a modified Allan deviation that is characteristic...

  7. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  8. High quality factor gigahertz frequencies in nanomechanical diamond resonators

    OpenAIRE

    Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.

    2007-01-01

    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...

  9. Nova frequency conversion and focusing system

    International Nuclear Information System (INIS)

    Summers, M.A.; Seppala, L.G.; Williams, J.D.

    1985-01-01

    New developments in crystal array technology provided significant improvements in the mechanical design and optical performance of the Nova 2 omega/3 omega array hardware. The final Nova array configuration was tested on the Novette laser and on the first arm of Nova. Ten Nova 2 omega/3 omega crystal arrays were assembled and tested for crystal alignment and wave front distortion before installation on the Nova target chamber. Ten Nova focus lens positioners were assembled and tested last year. The positioning accuracy and repeatability of each assembly were evaluated before installation on the target chamber. A cylindrical focusing system was also developed for installation in the Nova lens positioner assembly. Finally, 10 completed frequency conversion and focusing systems were activated

  10. Extended exergy concept to facilitate designing and optimization of frequency-dependent direct energy conversion systems

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2014-01-01

    Highlights: • Proved exergy method is not adequate to optimize frequency-dependent energy conversion. • Exergy concept is modified to facilitate the thermoeconomic optimization of photocell. • The exergy of arbitrary radiation is used for a practical purpose. • The utility of the concept is illustrated using pragmatic examples. - Abstract: Providing the radiation within the acceptable (responsive) frequency range(s) is a common method to increase the efficiency of the frequency-dependent energy conversion systems, such as photovoltaic and nano-scale rectenna. Appropriately designed auxiliary items such as spectrally selective thermal emitters, optical filters, and lenses are used for this purpose. However any energy conversion method that utilizes auxiliary components to increase the efficiency of a system has to justify the potential cost incurred by those auxiliary components through the economic gain emerging from the increased system efficiency. Therefore much effort should be devoted to design innovative systems, effectively integrating the auxiliary items and to optimize the system with economic considerations. Exergy is the widely used method to design and optimize conventional energy conversion systems. Although the exergy concept is used to analyze photovoltaic systems, it has not been used effectively to design and optimize such systems. In this manuscript, we present a modified exergy method in order to effectively design and economically optimize frequency-dependent energy conversion systems. Also, we illustrate the utility of this concept using examples of thermophotovoltaic, Photovoltaic/Thermal and concentrated solar photovoltaic

  11. High-power non linear frequency converted laser diodes

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Andersen, Peter E.; Hansen, Anders Kragh

    2015-01-01

    We present different methods of generating light in the blue-green spectral range by nonlinear frequency conversion of tapered diode lasers achieving state-of-the-art power levels. In the blue spectral range, we show results using single-pass second harmonic generation (SHG) as well as cavity enh...... enhanced sum frequency generation (SFG) with watt-level output powers. SHG and SFG are also demonstrated in the green spectral range as a viable method to generate up to 4 W output power with high efficiency using different configurations....

  12. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  13. Dominant phonon polarization conversion across dimensionally mismatched interfaces: Carbon-nanotube-graphene junction

    Science.gov (United States)

    Shi, Jingjing; Lee, Jonghoon; Dong, Yalin; Roy, Ajit; Fisher, Timothy S.; Ruan, Xiulin

    2018-04-01

    Dimensionally mismatched interfaces are emerging for thermal management applications, but thermal transport physics remains poorly understood. Here we consider the carbon-nanotube-graphene junction, which is a dimensionally mismatched interface between one- and two-dimensional materials and is the building block for carbon-nanotube (CNT)-graphene three-dimensional networks. We predict the transmission function of individual phonon modes using the wave packet method; surprisingly, most incident phonon modes show predominantly polarization conversion behavior. For instance, longitudinal acoustic (LA) polarizations incident from CNTs transmit mainly into flexural transverse (ZA) polarizations in graphene. The frequency stays the same as the incident mode, indicating elastic transmission. Polarization conversion is more significant as the phonon wavelength increases. We attribute such unique phonon polarization conversion behavior to the dimensional mismatch across the interface, and it opens significantly new phonon transport channels as compared to existing theories where polarization conversion is neglected.

  14. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  15. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both...

  16. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler

    Science.gov (United States)

    Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr

    2017-02-01

    Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.

  17. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  18. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  19. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  20. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  1. A graphical method for estimating the tunneling factor for mode conversion processes

    International Nuclear Information System (INIS)

    Swanson, D.G.

    1994-01-01

    The fundamental parameter characterizing the strength of any mode conversion process is the tunneling parameter, which is typically determined from a model dispersion relation which is transformed into a differential equation. Here a graphical method is described which gives the tunneling parameter from quantities directly measured from a simple graph of the dispersion relation. The accuracy of the estimate depends only on the accuracy of the measurements

  2. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. A mode converter to generate a Gaussian-like mode for injection into the VENUS electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lyneis, C., E-mail: CMLyneis@lbl.gov; Benitez, J.; Hodgkinson, A.; Strohmeier, M.; Todd, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Plaum, B. [Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie (IGVP), Stuttgart (Germany); Thuillier, T. [Laboratoire de Physique Subatomique et de Cosmologie, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des martyrs 38026 Grenoble cedex (France)

    2014-02-15

    A number of superconducting electron cyclotron resonance (ECR) ion sources use gyrotrons at either 24 or 28 GHz for ECR heating. In these systems, the microwave power is launched into the plasma using the TE{sub 01} circular waveguide mode. This is fundamentally different and may be less efficient than the typical rectangular, linearly polarized TE{sub 10} mode used for launching waves at lower frequencies. To improve the 28 GHz microwave coupling in VENUS, a TE{sub 01}-HE{sub 11} mode conversion system has been built to test launching HE{sub 11} microwave power into the plasma chamber. The HE{sub 11} mode is a quasi-Gaussian, linearly polarized mode, which should couple strongly to the plasma electrons. The mode conversion is done in two steps. First, a 0.66 m long “snake” converts the TE{sub 01} mode to the TE{sub 11} mode. Second, a corrugated circular waveguide excites the HE{sub 11} mode, which is launched directly into the plasma chamber. The design concept draws on the development of similar devices used in tokamaks and stellerators. The first tests of the new coupling system are described below.

  4. Identification of trapped electron modes in frequency fluctuation spectra of fusion plasmas

    International Nuclear Information System (INIS)

    Arnichand, Hugo

    2015-01-01

    This thesis shows that the analysis of frequency fluctuation spectra can provide an additional experimental indication of the dominant mode. Depending on the plasma scenario, fluctuation spectra can display different frequency components: Broadband spectra (Δf ∼ hundreds of kHz) which are always observed. Their amplitude is maximum at the zero frequency and they are attributed to turbulence. Coherent modes (Δf ∼ 1 kHz) which oscillate at a very well defined frequency. They can for example be due to geodesic acoustic or magnetohydrodynamic (MHD) modes; Quasi-Coherent (QC) modes (Δf ∼ tens of kHz) which oscillate at a rather well defined frequency but which are reminiscent of broadband fluctuations. The fluctuation study performed in the plasma core region shows that the fluctuation spectra in TEM-dominated regimes can be noticeably different from the ones in ITG-dominated regimes, as only TEM can induce QC modes. Such a finding has been achieved by comparing fluctuations measurements with simulations Measurements are made with a reflectometry diagnostic, a radar-like technique able to provide local indications of the density fluctuations occurring in the vicinity of the reflection layer. Frequency fluctuation spectra are inferred from a Fourier analysis of the reflectometry signal. First, the main properties of QC modes are characterized experimentally. Their normalized scale is estimated to k(perpendicular)ρ i ≤1, their amplitude is ballooned on the low field side mid-plane and they can be observed at many different radii. These indications are in agreement with what could be expected for ITG/TEM instabilities. Then reflectometry measurements are analyzed in Ohmic plasmas. QC modes are observed in the Linear Ohmic Confinement (LOC) regime dominated by TEM whereas only broadband spectra are seen in the Saturated Ohmic Confinement (SOC) regime dominated by ITG. Frequency spectra from nonlinear gyrokinetic simulations show that TEM induce a narrow

  5. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion

    International Nuclear Information System (INIS)

    Fu, Hailing; Yeatman, Eric M.

    2017-01-01

    Energy harvesting from vibration for low-power electronics has been investigated intensively in recent years, but rotational energy harvesting is less investigated and still has some challenges. In this paper, a methodology for low-speed rotational energy harvesting using piezoelectric transduction and frequency up-conversion is analysed. The system consists of a piezoelectric cantilever beam with a tip magnet and a rotating magnet on a revolving host. The angular kinetic energy of the host is transferred to the vibration energy of the piezoelectric beam via magnetic coupling between the magnets. Frequency up-conversion is achieved by magnetic plucking, converting low frequency rotation into high frequency vibration of the piezoelectric beam. A distributed-parameter theoretical model is presented to analyse the electromechanical behaviour of the rotational energy harvester. Different configurations and design parameters were investigated to improve the output power of the device. Experimental studies were conducted to validate the theoretical estimation. The results illustrate that the proposed method is a feasible solution to collecting low-speed rotational energy from ambient hosts, such as vehicle tires, micro-turbines and wristwatches. - Highlights: • A topology to harvest low-frequency broad-band rotational energy is studied. • Different configurations were considered; arrangement (a)-repulsive was the best. • Theoretical analysis shows the harvester has a wide bandwidth at low frequency. • The ripples of output power are related to the beam's natural frequency. • Experimental results show a good performance (over 20 μW) from 15 Hz to 35 Hz.

  6. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  7. Self-induced neutrino flavor conversion without flavor mixing

    International Nuclear Information System (INIS)

    Chakraborty, S.; Izaguirre, I.; Raffelt, G.G.; Hansen, R. S.

    2016-01-01

    Neutrino-neutrino refraction in dense media can cause self-induced flavor conversion triggered by collective run-away modes of the interacting flavor oscillators. The growth rates were usually found to be of order a typical vacuum oscillation frequency Δ m 2 /2E. However, even in the simple case of a ν e beam interacting with an opposite-moving ν-bar e beam, and allowing for spatial inhomogeneities, the growth rate of the fastest-growing Fourier mode is of order μ=√2 G F  n ν , a typical ν–ν interaction energy. This growth rate is much larger than the vacuum oscillation frequency and gives rise to flavor conversion on a much shorter time scale. This phenomenon of 'fast flavor conversion' occurs even for vanishing Δ m 2 /2E and thus does not depend on energy, but only on the angle distributions. Moreover, it does not require neutrinos to mix or to have masses, except perhaps for providing seed disturbances. We also construct a simple homogeneous example consisting of intersecting beams and study a schematic supernova model proposed by Ray Sawyer, where ν e and ν-bar e emerge with different zenith-angle distributions, the key ingredient for fast flavor conversion. What happens in realistic astrophysical scenarios remains to be understood

  8. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    .8 micron BiCMOS process. The performance of the first DAC presented is a SFDR of 43dB for a generated frequency of approximately 30MHz and at a sampling rate of 100MSamples/s. The SFDR is 50dB for a generated frequency of approximately 10MHz. The maximum conversion rate is 140MSamples/s. The second DAC......This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods...... of noise in SI is presented which leads to a new optimization methodology for SI. The optimization methodology minimizes the power consumption for a given performance (SNR and THD). The optimization methodology also takes process variations into account.Six chips have been implemented based on the theory...

  9. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  10. Causes and frequency of conversion during laparoscopic cholecystectomy in own material

    Directory of Open Access Journals (Sweden)

    Bogdan Kopeć

    2010-12-01

    Full Text Available Aim: To assess the causes, frequency and time of conversion from laparoscopic to classic cholecystectomy in our ownmaterial.Material and methods: 547 patients were qualified for laparoscopic cholecystectomy in the Surgery Department ofthe Mogilno District Hospital in Strzelno during the period of 1999-2005; 515 minimally invasive operations were performedand 32 patients required conversion.Results: The 547 patients were qualified for the laparoscopic operation; of these 148 were operated on as emergencycases and 399 as elective cases. There were 20 conversions among emergency patients and 12 conversions amongelective patients. On average the decision to convert was made in the 35th min of the operation. The shortest time toconversion was 15 min and the longest was 90 min. Five conversions were performed in the 25th and 35th minand 4 in the 20th, 30th, and 40th mine. Most frequently conversions occurred between the 20th and 40th min of theprocedure. Intentional conversions were performed in 27 patients. Adhesions and clumps around the gallbladder werethe cause of conversion in 10 patients and that was the most frequent reason for the operative modality change. Thenext cause of conversion was changes observed in the course of acute cholecystitis in the form of gallbladder empyemaor cholecystocele (9 patients. Small, fibrotic gallbladder, immersed in the liver, was the reason for conversion ina further 4 patients. In 4 cases the conversion was caused by difficulties in the identification of anatomical structures.Four cases of forced conversions and 1 anticipated conversion were found in the analysed material.Conclusions: A change of operative modality during laparoscopic cholecystectomy was made on average in 5.85% ofoperations. The average time before the conversion was 35 min. Emergency patients required a change of operativemodality 4 times more often. The most frequent were intentional conversions (84%, caused by pericystic adhesionsand by

  11. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. On the application of frequency selective common mode feedback for multifrequency EIT.

    Science.gov (United States)

    Langlois, Peter J; Wu, Yu; Bayford, Richard H; Demosthenous, Andreas

    2015-06-01

    Common mode voltages are frequently a problem in electrical impedance tomography (EIT) and other bioimpedance applications. To reduce their amplitude common mode feedback is employed. Formalised analyses of both current and voltage feedback is presented in this paper for current drives. Common mode effects due to imbalances caused by the current drives, the electrode connections to the body load and the introduction of the body impedance to ground are considered. Frequency selective narrowband common mode feedback previously proposed to provide feedback stability is examined. As a step towards multifrequency applications the use of narrowband feedback is experimentally demonstrated for two simultaneous current drives. Measured results using standard available components show a reduction of 62 dB for current feedback and 31 dB for voltage feedback. Frequencies ranged from 50 kHz to 1 MHz.

  13. Fano resonances in a high-Q terahertz whispering-gallery mode resonator coupled to a multi-mode waveguide.

    Science.gov (United States)

    Vogt, Dominik Walter; Leonhardt, Rainer

    2017-11-01

    We report on Fano resonances in a high-quality (Q) whispering-gallery mode (WGM) spherical resonator coupled to a multi-mode waveguide in the terahertz (THz) frequency range. The asymmetric line shape and phase of the Fano resonances detected with coherent continuous-wave (CW) THz spectroscopy measurements are in excellent agreement with the analytical model. A very high Q factor of 1600, and a finesse of 22 at critical coupling is observed around 0.35 THz. To the best of our knowledge this is the highest Q factor ever reported for a THz WGM resonator.

  14. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2015-02-01

    Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.

  15. Increased acceptance bandwidths in optical frequency conversion by use of multiple walk-off-compensating nonlinear crystals

    International Nuclear Information System (INIS)

    Smith, A.V.; Armstrong, D.J.; Alford, W.J.

    1998-01-01

    We show by experiment and mathematical model that angular and frequency acceptance bandwidths for frequency mixing in a nonlinear crystal can often be improved by segmenting the crystal and reversing the spatial or temporal walk-off in alternating segments. We analyze nonlinear mixing primarily in real space, (x,t), rather than Fourier space, (k,ω), and show that acceptance bands for sum- and difference-frequency mixing can be increased by up to a factor equal to the number of crystal segments. We consider both high- and low-efficiency mixing as well as parametric gain, and show that in many cases of practical interest the increased bandwidth substantially improves conversion efficiency. We also attempt to clarify the role of acceptance bandwidths in frequency mixing. copyright 1998 Optical Society of America

  16. A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II. MODE FREQUENCIES

    International Nuclear Information System (INIS)

    Bedding, Timothy R.; Bruntt, Hans; Kiss, Laszlo L.; Kjeldsen, Hans; Campante, Tiago L.; Appourchaux, Thierry; Bonanno, Alfio; Chaplin, William J.; Garcia, Rafael A.; Martic, Milena; Mosser, Benoit; Butler, R. Paul; O'Toole, Simon J.; Kambe, Eiji; Izumiura, Hideyuki; Ando, Hiroyasu; Sato, Bun'ei; Hartmann, Michael; Hatzes, Artie

    2010-01-01

    We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges, which we identify with even and odd values of the angular degree (l = 0 and 2, and l = 1 and 3, respectively). We interpret a strong, narrow peak at 446 μHz that lies close to the l = 1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of ∼1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55 -0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.

  17. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chunhua; Ma Minglin; Sun Jingru; Du Sichun; Guo Xiaorong; He Haizhen, E-mail: wch1227164@sina.com [School of Information Science and Technology, Hunan University, Changsha 410082 (China)

    2011-02-15

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (G{sub m}-LNA) and a differential current-mode down converted mixer. The single terminal of the G{sub m}-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, C{sub x1} and C{sub x2}, can not only reduce the effects of gate-source C{sub gs} on resonance frequency and input-matching impedance, but they also enable the gate inductance L{sub g1,2} to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 {mu}m CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations. (semiconductor integrated circuits)

  18. Sliding Mode Control of a Bidirectional Buck/Boost DC-DC Converter with Constant Switching Frequency

    Directory of Open Access Journals (Sweden)

    A. Safari

    2018-03-01

    Full Text Available In this paper, sliding mode control (SMC for a bidirectional buck/boost DC-DC converter (BDC with constant frequency in continuous conduction mode (CCM is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.

  19. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  20. Measuring high-frequency responses of an electro-optic phase modulator based on dispersion induced phase modulation to intensity modulation conversion

    Science.gov (United States)

    Zhang, Shangjian; Wang, Heng; Wang, Yani; Zou, Xinhai; Zhang, Yali; Liu, Shuang; Liu, Yong

    2014-11-01

    We investigate the phase modulation to intensity modulation conversion in dispersive fibers for measuring frequency responses of electro-optic phase modulators, and demonstrate two typical measurements with cascade path and fold-back path. The measured results achieve an uncertainty of less than 2.8% within 20 GHz. Our measurements show stable and repeatable results because the optical carrier and its phase-modulated sidebands are affected by the same fiber impairments. The proposed method requires only dispersive fibers and works without any small-signal assumption, which is applicable for swept frequency measurement at different driving levels and operating wavelengths.

  1. Superthin resonator dye laser with THz intermode frequency separation

    International Nuclear Information System (INIS)

    Rudych, P D; Surovtsev, N V

    2014-01-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)

  2. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  3. Drift-kinetic Alfven modes in high performance tokamaks

    International Nuclear Information System (INIS)

    Jaun, A.; Fasoli, A.F.; Testa, D.; Vaclavik, J.; Villard, L.

    2001-01-01

    The stability of fast-particle driven Alfven eigenmodes is modeled in high performance tokamaks, successively with a conventional shear, an optimized shear and a tight aspect ratio plasma. A large bulk pressure yields global kinetic Alfven eigenmodes that are stabilized by mode conversion in the presence of a divertor. This suggests how conventional reactor scenarii could withstand significant pressure gradients from the fusion products. A large safety factor in the core q 0 >2.5 in deeply shear reversed configurations and a relatively large bulk ion Larmor radius in a low magnetic field can trigger global drift-kinetic Alfven eigenmodes that are unstable in high performance JET, NSTX and ITER plasmas. (author)

  4. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  5. Excitation of contained modes by high energy nuclei and correlated cyclotron emission

    International Nuclear Information System (INIS)

    Coppi, B.; Penn, G.; Riconda, C.

    1997-01-01

    In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete

  6. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  7. Effect of surface parameter of interband surface mode frequencies of finite diatomic chain

    International Nuclear Information System (INIS)

    Puszkarski, H.

    1982-07-01

    The surface modes of a finite diatomic chain of alternating atoms (M 1 not= M 2 ) are investigated. The surface force constants are assumed to differ from the bulk ones, with the resulting surface parameter a-tilde identical on both ends of the chain. Criteria, governing the existence of interband surface (IBS) modes with frequencies lying in the forbidden gap between acoustical and optical bulk bands for natural (a = 1) as well as non-natural (a not= 1) surface defect, are analysed by the difference equation method. It is found that the IBS modes localize, depending on the value of the surface parameter a, either at the surface of lighter atoms (if a-tilde is positive), or at that of heavier atoms (if a-tilde is negative). Two, one of no IBS modes are found to exist in the chain depending on the relation between the mass ratio and surface parameter - quantities on which the surface localization increment t-tilde depends. If two modes are present (one acoustical and the other optical), their frequencies are disposed symmetrically with respect to the middle of the forbidden gap, provided the surface defect is natural, or asymmetrically - if it is other than natural. If the localization of the IBS mode exceeds a well defined critical value tsub(c), the mode frequency becomes complex, indicating that the mode undergoes a damping. A comparison of the present results and those obtained by Wallis for the diatomic chain with natural surface defect is also given. (author)

  8. The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Farid, T.; Mamun, A.A.; Shukla, P.K.

    2000-01-01

    An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed

  9. Non linear evolution of plasma waves excited to mode conversion at the vicinity of plasma resonance. Application to experiments of ionosphere modification

    International Nuclear Information System (INIS)

    Cros, Brigitte

    1989-01-01

    This research thesis reports the study of the non linear evolution of plasma waves excited by mode conversion in a non homogeneous, non collisional, and free-of-external-magnetic-field plasma. Experiments performed in the microwave domain in a plasma created by means of a multi-polar device show that the evolution of plasma waves displays a transition between a non linear quasi-steady regime and a stochastic regime when the power of incident electromagnetic waves or plasma gradient length is increased. These regimes are characterized through a numerical resolution of Zakharov equations which describe the coupled evolution of plasma wave envelope and low frequency density perturbations [fr

  10. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  11. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  12. High-frequency gyrotrons and their application to tokamak plasma heating

    International Nuclear Information System (INIS)

    Kreischer, K.E.

    1981-01-01

    A comprehensive analysis of high frequency (100 to 200 GHz) and high power (> 100 kW) gyrotrons has been conducted. It is shown that high frequencies will be required in order for electron cyclotron radiation to propagate to the center of a compact tokamak power reactor. High power levels will be needed in order to ignite the plasma with a reasonable number of gyrotron units. In the first part of this research, a set of analytic expressions, valid for all TE cavity modes and all harmonics, is derived for the starting current and frequency detuning using the Vlasov-Maxwell equations in the weakly relativistic limit. The use of an optical cavity is also investigated

  13. Sensitivity analysis of the stiffness between the frame structure and the frequency and vibration mode

    Science.gov (United States)

    Chen, Wenyuan

    2018-03-01

    The modal parameters such as natural frequency and vibration mode of the frame structure of the layer stiffness sensitivity is inconsistent. This article focuses on the theoretical derivation of the frequency and mode of the frame structure layer stiffness of the first-order sensitivity. The numerical examples show that the frame structure of layer stiffness higher than with the first order sensitivity vibration frequency.

  14. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  15. WKB theory for high-n modes in axisymmetric toroidal plasmas

    International Nuclear Information System (INIS)

    Dewar, R.L.; Chance, M.S.; Glasser, A.H.; Greene, J.M.; Frieman, E.A.

    1979-09-01

    It is demonstrated that the low-frequency, k/sub parallel//k/sub perpendicular/ approx. = 0 normal modes of an axisymmetric plasma, at large but finite toroidal mode number n, can be obtained by solving a novel WKB problem involving an infinite number of branches. Formulae for the frequencies of periodic normal modes are derived. The analysis is performed in the context of an ideal MHD model, and comparison is made with numerical ballooning mode results

  16. General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging.

    Science.gov (United States)

    Nakata, Toshihiko; Ninomiya, Takanori

    2006-10-10

    A general solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging is presented. Phase-modulated heterodyne interference light generated by a linear region of periodic displacement is captured by a charge-coupled device image sensor, in which the interference light is sampled at a sampling rate lower than the Nyquist frequency. The frequencies of the components of the light, such as the sideband and carrier (which include photodisplacement and topography information, respectively), are downconverted and sampled simultaneously based on the integration and sampling effects of the sensor. A general solution of frequency and amplitude in this downconversion is derived by Fourier analysis of the sampling procedure. The optimal frequency condition for the heterodyne beat signal, modulation signal, and sensor gate pulse is derived such that undesirable components are eliminated and each information component is converted into an orthogonal function, allowing each to be discretely reproduced from the Fourier coefficients. The optimal frequency parameters that maximize the sideband-to-carrier amplitude ratio are determined, theoretically demonstrating its high selectivity over 80 dB. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a speed corresponding to an acquisition time of only 0.26 s per 256 x 256 pixel area.

  17. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    OpenAIRE

    Jain, Bhavna; Singh, Sameer; Jain, Shailendra; Nema, R. K.

    2015-01-01

    Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL) and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding...

  18. High-frequency dynamics in a molten binary alloy

    International Nuclear Information System (INIS)

    Alvarez, M.; Bermejo, F.J.; Verkerk, P.; Roessli, B.

    1999-01-01

    The nature of the finite wavelength collective excitations in liquid binary mixtures composed of atoms of very different masses has been of interest for more than a decade. The most prominent fact is the high frequencies at which they appear, well above those expected for a continuation to large wave vector of hydrodynamic sound. To better understand the microscopic dynamics of such systems, an inelastic neutron scattering experiment was performed on the molten alloy Li 4 Pb. We present the high-frequency excitations of molten Li 4 Pb which indeed show features substantially deviating from those expected for the propagation of an acoustic mode. (authors)

  19. The effect of frequency and mode of sports activity on the psychological status in tetraplegics and paraplegics.

    Science.gov (United States)

    Muraki, S; Tsunawake, N; Hiramatsu, S; Yamasaki, M

    2000-05-01

    To examine whether the psychological benefits of sports activity differ between tetraplegics and paraplegics with spinal cord injury, and investigate the effect of frequency and modes of sports activity on the psychological benefits. The Self-rating Depression Scale (SDS), State-Trait Anxiety Inventory (STAI) and Profiles of Mood States (POMS) were administered to 169 male individuals with spinal cord injury (mean age=42.7 years) including 53 tetraplegics and 116 paraplegics. The subjects were divided into four groups according to their frequencies of sports activity; High-active (more than three times a week; n=32), Middle-active (once or twice a week, n=41), Low-active (once to three times a month, n=32), and Inactive (no sports participation, n=64). Analysis of variance revealed significant differences in depression for SDS, trait anxiety for STAI and depression and vigor for POMS among the groups. High-active group showed the lowest scores of depression and trait anxiety and the highest score of vigor among the four groups. In contrast, no significant difference was found for any psychological measurements between tetraplegics and paraplegics. In addition, there was no significant difference for any psychological measurements among modes (wheelchair basketball, wheelchair racing, wheelchair tennis and minor modes). These findings demonstrated that sports activity can improve the psychological status, irrespective of tetraplegics and paraplegics, and that the psychological benefits are emphasized by sports activity at high frequency.

  20. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

    International Nuclear Information System (INIS)

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-01-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)

  1. Piezoelectric Nanotube Array for Broadband High-Frequency Ultrasonic Transducer.

    Science.gov (United States)

    Liew, Weng Heng; Yao, Kui; Chen, Shuting; Tay, Francis Eng Hock

    2018-03-01

    Piezoelectric materials are vital in determining ultrasonic transducer and imaging performance as they offer the function for conversion between mechanical and electrical energy. Ultrasonic transducers with high-frequency operation suffer from performance degradation and fabrication difficulty of the demanded piezoelectric materials. Hence, we propose 1-D polymeric piezoelectric nanostructure with controlled nanoscale features to overcome the technical limitations of high-frequency ultrasonic transducers. For the first time, we demonstrate the integration of a well-aligned piezoelectric nanotube array to produce a high-frequency ultrasonic transducer with outstanding performance. We find that nanoconfinement-induced polarization orientation and unique nanotube structure lead to significantly improved piezoelectric and ultrasonic transducing performance over the conventional piezoelectric thin film. A large bandwidth, 126% (-6 dB), is achieved at high center frequency, 108 MHz. Transmission sensitivity of nanotube array is found to be 46% higher than that of the monolithic thin film transducer attributed to the improved electromechanical coupling effectiveness and impedance match. We further demonstrate high-resolution scanning, ultrasonic imaging, and photoacoustic imaging using the obtained nanotube array transducers, which is valuable for biomedical imaging applications in the future.

  2. Simple method of generating and distributing frequency-entangled qudits

    Science.gov (United States)

    Jin, Rui-Bo; Shimizu, Ryosuke; Fujiwara, Mikio; Takeoka, Masahiro; Wakabayashi, Ryota; Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Gerrits, Thomas; Sasaki, Masahide

    2016-11-01

    High-dimensional, frequency-entangled photonic quantum bits (qudits for d-dimension) are promising resources for quantum information processing in an optical fiber network and can also be used to improve channel capacity and security for quantum communication. However, up to now, it is still challenging to prepare high-dimensional frequency-entangled qudits in experiments, due to technical limitations. Here we propose and experimentally implement a novel method for a simple generation of frequency-entangled qudts with d\\gt 10 without the use of any spectral filters or cavities. The generated state is distributed over 15 km in total length. This scheme combines the technique of spectral engineering of biphotons generated by spontaneous parametric down-conversion and the technique of spectrally resolved Hong-Ou-Mandel interference. Our frequency-entangled qudits will enable quantum cryptographic experiments with enhanced performances. This distribution of distinct entangled frequency modes may also be useful for improved metrology, quantum remote synchronization, as well as for fundamental test of stronger violation of local realism.

  3. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  4. New generation neonatal high frequency ventilators: effect of oscillatory frequency and working principles on performance.

    Science.gov (United States)

    Grazioli, Serge; Karam, Oliver; Rimensberger, Peter C

    2015-03-01

    Several new generation neonatal ventilators that incorporate conventional as well as high frequency ventilation (HFOV) have appeared on the market. Most of them offer the possibility to use HFOV in a volume-targeted mode, despite absence of any preclinical data. With a bench test, we evaluated the performances of 4 new neonatal HFOV devices and compared them to the SensorMedics HFOV device. Expiratory tidal volumes (V(T)) were measured for various ventilator settings and lung characteristics (ie, modifications of compliance and resistance of the system), to mimic several clinical conditions of pre-term and term infants. Increasing the frequency proportionally decreased the V(T) for all the ventilators, although the magnitude of the decrease was highly variable between ventilators. At 15 Hz and a pressure amplitude of 60 cm H2O, the delivered V(T) ranged from 3.5 to 5.9 mL between devices while simulating pre-term infant conditions and from 2.6 to 6.3 mL while simulating term infant conditions. Activating the volume-targeted mode in the 3 machines that offer this mode allowed the V(T) to remain constant over the range of frequencies and with changes of lung mechanical properties, for pre-term infant settings only while targeting a V(T) of 1 mL. These new generation neonatal ventilators were able to deliver adequate V(T) under pre-term infant, but not term infant respiratory system conditions. The clinical relevance of these findings will need to be determined by further studies. Copyright © 2015 by Daedalus Enterprises.

  5. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  6. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  7. Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator

    International Nuclear Information System (INIS)

    Schietinger, Stefan; Benson, Oliver

    2009-01-01

    In this paper, we report the controlled coupling of fluorescence from a single NV-centre in a single nanodiamond to the high-Q modes of a preselected microsphere. Microspheres from an ensemble with a finite size distribution can be characterized precisely via white light Mie-scattering. The mode spectrum of individual spheres can be determined with high precision. A sphere with an appropriate spectrum can be selected, and a nanodiamond containing a single NV-centre can be coupled to it. The spectral position of the calculated lowest order whispering gallery modes are found to be in very good agreement with the experimentally observed resonances of the coupled fluorescence from the single NV-re.

  8. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    Science.gov (United States)

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  9. High frequency modes of YBa2Cu3O6+x and their variation with the oxygen content x

    International Nuclear Information System (INIS)

    Ruan Jinghui; Niu Shiwen; Cheng Zhixu; Cheng Yufen; Zeng Xiangxin; Gou Cheng; Wang Jun; Guo Liping; Lin Jun; Yu Ansun; Shen Zhigong; Zhang Panlin; Chai Zhang

    1994-01-01

    Neutron inelastic scattering spectra of YBa 2 Cu 3 O 6+x samples with various oxygen contents x have been measured in the range from 10 to 150 meV with a new type of Be-filter detector spectrometer at the CIAE, Beijing. In semiconducting samples with x=0 and x=0.2, some strong high frequency modes (HFMs) are observed in the range from 60 to 150 meV. However, HFMs are not present in superconducting samples with x=0.78 and 0.97. An anomalous inelastic scattering intensity of the sample with x ≤ 0.2 is about two to three times stronger than that obtained with x=0.78 and 0.97 in the measured energy range from 10 to 150 meV. (orig.)

  10. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  11. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Darius Žižys

    2017-04-01

    Full Text Available Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  12. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu (China); Jia, Nan; Duan, Yaoyong [The Chinese People' s Armed Police Force Academy, Hebei (China); Li, Zheng-Hong [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, CAEP, Mianyang (China); Cheng, Hui [Microwave Department, Sichuan Jiuzhou Electric Appliance Group Co., Ltd., Mianyang (China); Yang, Xiao-Chuan [Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang (China)

    2016-07-15

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.

  13. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  14. Design and measurement of a TE{sub 13} input converter for high order mode gyrotron travelling wave amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Liu, Guo, E-mail: liuguo@uestc.edu.cn; Shu, Guoxiang; Yan, Ran; Wang, Li; Agurgo Balfour, E.; Fu, Hao; Luo, Yong [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wang, Shafei, E-mail: rockingsandstorm@163.com [North Electronic Device Research Institution, Box 947, Beijing 100141 (China)

    2016-03-15

    A technique to launch a circular TE{sub 13} mode to interact with the helical electron beam of a gyrotron travelling wave amplifier is proposed and verified by simulation and cold test in this paper. The high order (HOM) TE{sub 13} mode is excited by a broadband Y-type power divider with the aid of a cylindrical waveguide system. Using grooves and convex strips loaded at the lateral planes of the output cylindrical waveguide, the electric fields of the potential competing TE{sub 32} and TE{sub 71} modes are suppressed to allow the transmission of the dominant TE{sub 13} mode. The converter performance for different structural dimensions of grooves and convex strips is studied in detail and excellent results have been achieved. Simulation predicts that the average transmission is ∼−1.8 dB with a 3 dB bandwidth of 7.2 GHz (91.5–98.7 GHz) and port reflection is less than −15 dB. The conversion efficiency to the TE{sub 32} and TE{sub 71} modes are, respectively, under −15 dB and −24 dB in the operating frequency band. Such an HOM converter operating at W-band has been fabricated and cold tested with the radiation boundary. Measurement from the vector network analyzer cold test and microwave simulations show a good reflection performance for the converter.

  15. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Xu Jian; Ma Shi-Wei

    2015-01-01

    We present a theoretical investigation of the scattering of high frequency S0 Lamb mode from a circular blind hole defect in a plate based on the 3D theory. The S0 wave is incident at the frequency above the A1 mode cut-off frequency, in which the popular approximate plate theories are inapplicable. Due to the non-symmetric blind hole defect, the scattered fields will contain higher order converted modes in addition to the fundamental S0 and A0 modes. The far-field scattering amplitudes of various propagating Lamb modes for different hole sizes are inspected. The results are compared with those of lower frequencies and some different phenomena are found. Two-dimensional Fourier transform (2DFT) results of transient scattered Lamb and SH wave signals agree well with the analytical dispersion curves, which check the validity of the solutions from another point of view. (paper)

  16. Refractive-index-sensing radio-frequency comb with intracavity multi-mode interference fibre sensor

    OpenAIRE

    Oe, Roy; Taue, Shuji; Minamikawa, Takeo; Nagai, Kosuke; Mizutani, Yasuhiro; Iwata, Tetsuo; Yamamoto, Hirotsugu; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-01-01

    Optical frequency combs have attracted attention as optical frequency rulers due to their tooth-like discrete spectra together with their inherent mode-locking nature and phase-locking control to a frequency standard. Based on this concept, their applications until now have been demonstrated in the fields of optical frequency metrology and optical distance metrology. However, if the utility of optical combs can be further expanded beyond their optical-frequency-ruler-based application by expl...

  17. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer

    Science.gov (United States)

    Li, Fei; Choudhari, Meelan; Paredes, Pedro; Duan, Lian

    2016-09-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7° half-angle circular cone in a Mach 6 free stream. The analysis is based on both quasiparallel stability theory in the form of a partial-differential-equation-based eigenvalue analysis and plane marching parabolized stability equations that account for the effects of the nonparallel basic state on the growth of secondary disturbances. Depending on the local amplitude of the stationary crossflow mode, the most unstable high-frequency disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of the dominant secondary disturbances of either type are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany. Including transverse surface curvature within the quasiparallel predictions does not alter the topology of the unstable modes; however, the resulting changes in both mode shape and disturbance growth rate are rather significant and curvature can be either stabilizing or destabilizing depending on the disturbance frequency and mode type. Nonparallel effects are shown to be strongly destabilizing for secondary instabilities originating from

  18. Peculiarities of glow modes of argon atmospheric pressure radio-frequency capacitive discharge with isolated electrodes

    International Nuclear Information System (INIS)

    Bazhenov, V.Yu.; Tsiolko, V.V.; Piun, V.M.; Chaplinskiy, R.Yu.; Kuzmichev, A.I.

    2013-01-01

    Glow characteristics of capacitive radio frequency discharge with isolated electrodes in low-current α and highcurrent gamma modes are determined experimentally. It is shown that transition from α mode to gamma mode occurs through a phase of coexistence of both modes in different parts of the discharge gap.

  19. Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.

    Science.gov (United States)

    Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark

    2011-11-21

    Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America

  20. High frequency way of helium ash removal from stellarator-reactor

    International Nuclear Information System (INIS)

    Grekov, D.L.

    2005-01-01

    The paper deals with the problem of helium ash removal from stellarator-reactor. The lower hybrid heating of ash ions is proposed to solve this problem. The theory of ion stochastic heating, developed earlier by Karney, is generalized on the case of heating in stellarators. The features of the lower hybrid waves propagation and the ions motion in the stellarator confining field are taken into account. With proper choice of wave parameters (such as frequency, antenna position and initial spectrum of longitudinal refractive index) the slow mode of LH waves penetrates from the launching system to plasma core (and back) without conversion to kinetic plasma mode or to fast mode. With all these going on, the LH wave is absorbed by alpha particles only. The electron Landau damping is negligibly small, and there is no bulk ions stochastic heating. The motion of high energy (>100 keV) ions in the LHD heliotron with inwardly shifted magnetic axis, as an example of stellarator type device, is calculated numerically using the single particle simulation code which couples modified Karney's ion stochastic heating theory. The effect of collisions was taken into account through the Monte Carlo equivalent of the Lorentz collision operator. It is shown, that due to interaction with lower hybrid wave, initially well-confined alpha particles are expelled from the plasma during the time period less then collision time. At the same time, the low hybrid heating does not remove the ions with energy higher than 500 keV. Therefore, it is possible to use this method of RF heating for helium ash removal in stellarator-reactor. The required LH power is estimated to be of the order of 10 MW. (author)

  1. SEARCH FOR GLOBAL f-MODES AND p-MODES IN THE {sup 8}B NEUTRINO FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora, Colégio Luis António Verney, 7002-554 Évora (Portugal)

    2013-11-01

    The impact of global acoustic modes on the {sup 8}B neutrino flux time series is computed for the first time. It is shown that the time fluctuations of the {sup 8}B neutrino flux depend on the amplitude of acoustic eigenfunctions in the region where the {sup 8}B neutrino flux is produced: modes with low n (or order) that have eigenfunctions with a relatively large amplitude in the Sun's core strongly affect the neutrino flux; conversely, modes with high n that have eigenfunctions with a minimal amplitude in the Sun's core have a very small impact on the neutrino flux. It was found that the global modes with a larger impact on the {sup 8}B neutrino flux have a frequency of oscillation in the interval 250 μHz to 500 μHz (or a period in the interval 30 minutes to 70 minutes), such as the f-modes (n = 0) for the low degrees, radial modes of order n ≤ 3, and the dipole mode of order n = 1. Their corresponding neutrino eigenfunctions are very sensitive to the solar inner core and are unaffected by the variability of the external layers of the solar surface. If time variability of neutrinos is observed for these modes, it will lead to new ways of improving the sound speed profile inversion in the central region of the Sun.

  2. Production of high-power CW UV by resonant frequency quadrupling of a Nd:YLF laser

    International Nuclear Information System (INIS)

    Kuczewski, A.J.; Thorn, C.E.

    1999-01-01

    The authors have constructed a single ring to resonantly double an 18 watt Nd:YLF mode-locked laser and re-double the stored green to produce over 4 watts of power in the ultra-violet (UV). This laser is used to produce a beam of 470 MeV gamma-rays by Compton backscattering the laser beam from 2.8 GeV electrons stored in a synchrotron. Achieving high luminosity of the colliding beams requires very good mode quality and beam stability at the intersection point 22 meters from the laser. The ring consists of six mirrors, with two 25 cm radius of curvature mirrors enclosing each nonlinear crystal. The drive laser is a lamp-pumped Nd:YLF with a 50 ps bunch length at 76 MHz. A pointing stabilizer servo has been constructed as part of the infrared (IR) mode matching telescope. The IR to green conversion is accomplished in a 15 mm long non-critically phased matched LBO crystal located at a 40 micron waist, with an IR conversion efficiency of 70%. A stable, nearly diffraction limited UV beam of up to 4.2 watts is generated in a BBO crystal in the green storage ring. The output power is relatively independent of the efficiency of the LBO and BBO crystals. This fact makes it possible to reduce the amount of non-TEM 00 modes created by walk-off of the UV by using relatively thin BBO crystals. At present, however, the lower bound on the BBO thickness is limited by the loss of conversion efficiency at high power

  3. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  4. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  5. Frequency shift and hysteresis suppression in contact-mode AFM using contact stiffness modulation

    Directory of Open Access Journals (Sweden)

    Belhaq M.

    2012-07-01

    Full Text Available In this paper the frequency response shift and hysteresis suppression of contact-mode atomic force microscopy is investigated using parametric modulation of the contact stiffness. Based on the Hertzian contact theory, a lumped single degree of freedom oscillator is considered for modeling the cantilever dynamics contact-mode atomic force microscopy. We use the technique of direct partition of motion and the method of multiple scales to obtain, respectively, the slow dynamic and the corresponding slow flow of the system. As results, this study shows that the amplitude of the contact stiffness modulation has a significant effect on the frequency response. Specifically, increasing the amplitude of the stiffness modulation suppresses hysteresis, decreases the peak amplitude and produces shifts towards higher and lower frequencies.

  6. Observation of negative-frequency waves in a water tank: a classical analogue to the Hawking effect?

    Energy Technology Data Exchange (ETDEWEB)

    Rousseaux, Germain [ACRI, Laboratoire Genimar, 260 route du Pin Montard, BP 234, 06904 Sophia-Antipolis Cedex (France); Mathis, Christian; Maissa, Philippe [Universite de Nice-Sophia Antipolis, Laboratoire J-A Dieudonne, UMR CNRS-UNSA 6621, Parc Valrose, 06108 Nice Cedex 02 (France); Philbin, Thomas G; Leonhardt, Ulf [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland (United Kingdom)], E-mail: ulf@st-andrews.ac.uk

    2008-05-15

    The conversion of positive-frequency waves into negative-frequency waves at the event horizon is the mechanism at the heart of the Hawking radiation of black holes. In black-hole analogues, horizons are formed for waves propagating in a medium against the current when and where the flow exceeds the wave velocity. We report on the first direct observation of negative-frequency waves converted from positive-frequency waves in a moving medium. The measured degree of mode conversion is significantly higher than that expected from the theory.

  7. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    Science.gov (United States)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  8. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  9. Power Scaling of Nonlinear Frequency Converted Tapered Diode Lasers for Biophotonics

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, A.

    2014-01-01

    Diode lasers have proven to be versatile light sources for a wide range of applications. Nonlinear frequency conversion of high brightness diode lasers has recently resulted in visible light power levels in the watts range enabling an increasing number of applications within biophotonics. This re...... and efficiency are included. Application examples within pumping of mode-locked Ti:sapphire lasers and implementation of such lasers in optical coherence tomography are presented showing the application potential of these lasers....

  10. 200-W single frequency laser based on short active double clad tapered fiber

    Science.gov (United States)

    Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril

    2018-02-01

    High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.

  11. Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.

    Science.gov (United States)

    Kuzmin, Dmitry A; Bychkov, Igor V; Shavrov, Vladimir G; Temnov, Vasily V

    2016-07-13

    Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.

  12. Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Ashida, Yuki; Himori, Koichi; Tatebayashi, Daisuke; Yamada, Ryotaro; Ogasawara, Riki; Yamada, Takashi

    2018-02-01

    We compared the skeletal muscle hypertrophy resulting from isometric (Iso) or eccentric (Ecc) electrical stimulation (ES) training with different stimulation frequencies. Male Wistar rats were assigned to the Iso and Ecc groups. These were divided into three further subgroups that were stimulated at 10 Hz (Iso-10 and Ecc-10), 30 Hz (Iso-30 and Ecc-30), or 100 Hz (Iso-100 and Ecc-100). In experiment 1, the left plantarflexor muscles were stimulated every other day for 3 wk. In experiment 2, mammalian target of rapamycin complex 1 (mTORC1) signaling was investigated 6 h after one bout of ES. The contralateral right muscle served as a control (non-ES). Ecc contractions comprised forced dorsiflexion combined with ES. The peak torque and torque-time integral during ES were higher in the Ecc group than that in the Iso group in all stimulation frequencies examined. The gastrocnemius muscle weight normalized to body weight in ES side was increased compared with the non-ES side by 6, 7, and 17% in the Ecc-30, Iso-100, and Ecc-100 groups, respectively, with a greater gain in Ecc-100 than the Ecc-30 and Iso-100 groups. The p70S6K (Thr389) phosphorylation level was higher in the Ecc-30 and -100 than in the Iso-30 and -100 groups, respectively. The peak torque and torque-time integral were highly correlated with the magnitude of increase in muscle mass and the phosphorylation of p70S6K. These data suggest that ES-induced muscle hypertrophy and mTORC1 activity are determined by loading intensity and volume during muscle contraction independent of the contraction mode. NEW & NOTEWORTHY Eccentric contraction and high-frequency stimulation (HFS) are regarded as an effective way to increase muscle mass by electrical stimulation (ES) training. However, little is known about whether muscle hypertrophy is affected by contraction mode and stimulation frequency in ES training. Here, we provide the evidence that muscle hypertrophy and mammalian target of rapamycin complex 1 activity are

  13. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  14. Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges

    International Nuclear Information System (INIS)

    Paulussen, Sabine; Verheyde, Bert; Tu Xin; Sels, Bert; De Bie, Christophe; Martens, Tom; Petrovic, Dragana; Bogaerts, Annemie

    2010-01-01

    The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO 2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O 2 . The discharge obtained in CO 2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO 2 -conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO 2 conversion of 30% is achieved at a flow rate of 0.05 L min -1 , a power density of 14.75 W cm -3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min -1 , a power density of 11 W cm -3 and a discharge frequency of 30 kHz.

  15. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  16. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  17. High-Q, in-plane modes of nanomechanical resonators operated in air

    Science.gov (United States)

    Waggoner, Philip S.; Tan, Christine P.; Bellan, Leon; Craighead, Harold G.

    2009-05-01

    Nanomechanical resonators have traditionally been limited to use in vacuum due to low quality factors that come as a result of viscous damping effects in air or liquid. We have fabricated arrays of 90 nm thick trampoline-shaped resonators, studied their resonant frequency spectrum as a function of pressure, and found that some high frequency modes exhibit quality factors over 2000 at atmospheric pressure. We have excited the in-plane resonances of these devices, verified their identities both experimentally and with finite element modeling, and demonstrated their advantageous characteristics for ambient sensing. Even after deposition of a relatively thick polymer layer, the in-plane resonant modes still boast quality factors on the order of 2000. These results show promise for the use of nanomechanical resonant sensors in real-time atmospheric sensing applications.

  18. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    Energy Technology Data Exchange (ETDEWEB)

    Dal Forno, Massimo [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, at the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.

  19. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.

    OpenAIRE

    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  20. One-way mode transmission in one-dimensional phononic crystal plates

    Science.gov (United States)

    Zhu, Xuefeng; Zou, Xinye; Liang, Bin; Cheng, Jianchun

    2010-12-01

    We investigate theoretically the band structures of one-dimensional phononic crystal (PC) plates with both antisymmetric and symmetric structures, and show how unidirectional transmission behavior can be obtained for either antisymmetric waves (A modes) or symmetric waves (S modes) by exploiting mode conversion and selection in the linear plate systems. The theoretical approach is illustrated for one PC plate example where unidirectional transmission behavior is obtained in certain frequency bands. Employing harmonic frequency analysis, we numerically demonstrate the one-way mode transmission for the PC plate with finite superlattice by calculating the steady-state displacement fields under A modes source (or S modes source) in forward and backward direction, respectively. The results show that the incident waves from A modes source (or S modes source) are transformed into S modes waves (or A modes waves) after passing through the superlattice in the forward direction and the Lamb wave rejections in the backward direction are striking with a power extinction ratio of more than 1000. The present structure can be easily extended to two-dimensional PC plate and efficiently encourage practical studies of experimental realization which is believed to have much significance for one-way Lamb wave mode transmission.

  1. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  2. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Franke, D.; Kreissl, J.; Künzel, H. [Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin (Germany)

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  3. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    International Nuclear Information System (INIS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-01

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning

  4. High efficiency single frequency 355 nm all-solid-state UV laser

    International Nuclear Information System (INIS)

    Xie, Xiaobing; Wei, Daikang; Ma, Xiuhua; Li, Shiguang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2016-01-01

    A novel conductively cooled high energy single-frequency 355 nm all-solid-state UV laser is presented based on sum-frequency mixing technique. In this system, a pulsed seeder laser at 1064 nm wavelength, modulated by an AOM, is directly amplified by the cascaded multi-stage hybrid laser amplifiers, and two LBO crystals are used for the SHG and SFG, finally a maximum UV pulse energy of 226 mJ at 355 nm wavelength is achieved with frequency-tripled conversion efficiency as high as 55%, the pulse width is around 12.2 ns at the repetition frequency of 30 Hz. The beam quality factor M 2 of the output UV laser is measured to be 2.54 and 2.98 respectively in two orthogonal directions. (paper)

  5. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Maroldt, Stephan

    2012-07-01

    Highly-efficient switch-mode power amplifiers form key elements in future fully-digital base stations for mobile communication. This novel digital base station concept reduces system energy consumption, complexity, size and costs, while the flexibility in terms of multi-band operation and signal modulation improves. In this work, innovative core circuits for digital high-efficiency class-D and class-S power amplifiers based on gallium nitride (GaN) technology were developed for the application in digital base stations. A combination of optimized GaN devices and improvements in circuit design allow a highly-efficient switch-mode operation at mobile communication frequencies between 0.45 GHz and 2 GHz. Transistor device modeling for switch-mode operation, the simulation environment, and a broadband measurement system were established for the design and evaluation of digital switchmode power amplifiers. The design of broadband core circuits for switch-mode amplifier concepts was analyzed for dual-stage amplifier circuits, using an initial GaN technology with a gate length of 0.25 {mu}m. A speed-enhanced driver stage improved the circuit switching speed sufficiently above 1 GHz. Speed and efficiency of the amplifier core circuits were studied related to transistor parameters like cut-off frequency or gate capacitance. A reduced gate length was found to improve the switching speed, while a lower on-resistance allows the reduction of the inherent static losses of the GaN-based switches. Apart from this, the restriction of a 50 Ohm environment was found to be a major output power and switching speed limitation, due to a poor switching drive capability of the input capacitance of the GaN circuit. Finally, the optimized transistor and circuit design with an output gate width of 1.2 mm were effectively implemented in the given environment for an operation up to 2 GHz with a high drain efficiency of >65% and a digital output power of 5 W. A maximum output power of 9.7 W and a

  6. Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide

    Science.gov (United States)

    Stephen, Mark A. (Inventor)

    2018-01-01

    An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.

  7. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  8. Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams

    International Nuclear Information System (INIS)

    Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel

    2002-01-01

    A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies

  9. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    Directory of Open Access Journals (Sweden)

    Kim Sun Ho

    2017-01-01

    Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  10. Intracavity quasi-phase-matched self-frequency conversion in a periodically poled Nd:Mg:LiNbO3 crystal

    International Nuclear Information System (INIS)

    Laptev, G D; Novikov, Aleksei A

    2001-01-01

    The theory of intracavity quasi-phase-matched self-frequency conversion in an active nonlinear periodically poled structure is developed. The processes of quasi-phase-matched self-frequency doubling, self-halving and mixing using the pump wave in a periodically poled Nd:Mg:LiNbO 3 crystal are studied. The dependences of the efficiency of nonlinear optical conversion in these processes on the reflection coefficient of the output mirror and on linear losses in the medium are investigated. (nonlinear optical phenomena)

  11. High order mode damping in a pill box cavity

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.; Rimmer, R.

    1991-04-01

    We have substantially damped the higher order modes (HOM's) in a pill box cavity with attached beam pipe, while reducing the Q of the principal mode by less that 10%. This was accomplished by cutting slots in the cavity end wall at a radius at which the magnetic field of the lowest frequency HOM's is large. The slots couple energy from the cavity into waveguides which are below cut off for the principal mode, but which propagate energy at the HOM frequencies. Three slots 120 degrees apart couple HOM energy to three waveguides. We are concerned primarily with accelerating and deflecting modes: i.e. the TM mnp modes of order m=0 and m=1. For the strongest damping, only three m=0 and m=1 modes were detectable. These were the principal TM 010 mode, the TM 011 longitudinal mode, and the TM 110 deflecting mode. In addition the HOM Q's and the reduction of Q for the principal mode were determined by computer calculation. The principal mode Q for an actual rf cavity could not be measured because the bolted joints used in the construction of the cavity were not sufficiently good to support Q's above 6000. The measured Q of the first longitudinal mode was 31 and of the first transverse mode 37. Our maximum damping was limited by how well we could terminated the waveguides, and indeed, the computer calculations for the TM 011 and TM 110 modes give values in the range we measured. 2 refs., 2 figs

  12. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  13. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  14. A 1.4-V 48-μW current-mode front-end circuit for analog hearing aids with frequency compensation

    International Nuclear Information System (INIS)

    Wang Xiaoyu; Yang Haigang; Li Fanyang; Yin Tao; Liu Fei

    2012-01-01

    A current-mode front-end circuit with low voltage and low power for analog hearing aids is presented. The circuit consists of a current-mode AGC (automatic gain control) and a current-mode adaptive filter. Compared with its conventional voltage-mode counterparts, the proposed front-end circuit has the identified features of frequency compensation based on the state space theory and continuous gain with an exponential characteristic. The frequency compensation which appears only in the DSP unit of the digital hearing aid can upgrade the performance of the analog hearing aid in the field of low-frequency hearing loss. The continuous gain should meet the requirement of any input amplitude level, while its exponential characteristic leads to a large input dynamic range in accordance with the dB SPL (sound pressure level). Furthermore, the front-end circuit also provides a discrete knee point and discrete compression ratio to allow for high calibration flexibility. These features can accommodate users whose ears have different pain thresholds. Taking advantage of the current-mode technique, the MOS transistors work in the subthreshold region so that the quiescent current is small. Moreover, the input current can be compressed to a low voltage signal for processing according to the compression principle from the current-domain to the voltage-domain. Therefore, the objective of low voltage and low power (48 μW at 1.4 V) can be easily achieved in a high threshold-voltage CMOS process of 0.35 μm (V TON + |V TOP |≈ 1.35 V). The THD is below −45 dB. The fabricated chip only occupies the area of 1 × 0.5 mm 2 and 1 × 1 mm 2 .

  15. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN δ SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    International Nuclear Information System (INIS)

    Breger, M.; Robertson, P.; Fossati, L.; Balona, L.; Kurtz, D. W.; Bohlender, D.; Lenz, P.; Müller, I.; Lüftinger, Th.; Clarke, Bruce D.; Hall, Jennifer R.; Ibrahim, Khadeejah A.

    2012-01-01

    Two years of Kepler data of KIC 8054146 (δ Sct/γ Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day –1 (6.3 μHz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day –1 (32-35 μHz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the δ Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator (υ sin i = 300 ± 20 km s –1 ) with an effective temperature of 7600 ± 200 K and a surface gravity log g of 3.9 ± 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.

  16. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  17. Group velocity effects in broadband frequency conversion on OMEGA. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetic. Student research reports

    International Nuclear Information System (INIS)

    Grossman, P.

    1999-03-01

    The powerful lasers needed for ICF can only produce light in the infrared wavelengths. However, the one micron wavelength produced by the neodymium glass that powers OMEGA and other lasers used for fusion research does not efficiently compress the fuel pellet. This happens because the infrared light is not well absorbed by the target, and because of the creation of suprathermal electrons. These suprathermal electrons preheat the fuel, adding extra resistance to compression. To eliminate these problems associated with longer wavelengths of light, the process of frequency converting the laser beam was invented. This process efficiently converts the initial beam to a beam which has three times the frequency and one third the wavelength. The third-harmonic beam, in the UV range, has a better absorption rate. The PV-WAVE computer program that the author has written has shown that increasing the frequency of SSD (Smoothing by Spectral Dispersion) on OMEGA to approximately 10 GHz as planned will not hurt the third harmonic generation conversion efficiency significantly. The increased bandwidth and increased frequency of SSD will make the laser beams that strike the target on OMEGA much smoother and more uniform than ever before. Therefore it is both safe and advisable to add a second tripler crystal to the OMEGA system and decrease the SSD time cycle to around 100 picoseconds. Since the conversion efficiency remains high up to approximately 30 GHz, more experiments on OMEGA may be carried out with even higher modulation frequencies. These modifications to the existing OMEGA laser should make target irradiation more uniform, leading to more uniform compression and hopefully, a higher energy yield

  18. Conversion of Dielectric Data from the Time Domain to the Frequency Domain

    Directory of Open Access Journals (Sweden)

    Vladimir Durman

    2005-01-01

    Full Text Available Polarisation and conduction processes in dielectric systems can be identified by the time domain or the frequency domain measurements. If the systems is a linear one, the results of the time domain measurements can be transformed into the frequency domain, and vice versa. Commonly, the time domain data of the absorption conductivity are transformed into the frequency domain data of the dielectric susceptibility. In practice, the relaxation are mainly evaluated by the frequency domain data. In the time domain, the absorption current measurement were prefered up to now. Recent methods are based on the recovery voltage measurements. In this paper a new method of the recovery data conversion from the time the frequency domain is proposed. The method is based on the analysis of the recovery voltage transient based on the Maxwell equation for the current density in a dielectric. Unlike the previous published solutions, the Laplace fransform was used to derive a formula suitable for practical purposes. the proposed procedure allows also calculating of the insulation resistance and separating the polarisation and conduction losses.

  19. Advanced power conversion based on the Aerocapacitor{trademark}. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Roark, D.

    1997-03-05

    This report summarizes work performed under contract No. DE-FC07-94ID13283, {open_quotes}Advanced Power Conversion Based on the Aerocapacitors{trademark}.{close_quotes} Under this contract high power density, high energy density, organic electrolyte Aerocapacitors{trademark} were developed and characterized for power conversion applications. Pilot facilities for manufacturing prototype AA-size Aerocapacitors{trademark} were put in place. The low ESR and good frequency response of these devices show that they are ideal components for high discharge rate and low to moderate frequency (< 10 kHz) applications such as power conversion.

  20. Effect of magnetic configuration on frequency of NBI-driven Alfvén modes in TJ-II

    Science.gov (United States)

    Melnikov, A. V.; Ochando, M.; Ascasibar, E.; Castejon, F.; Cappa, A.; Eliseev, L. G.; Hidalgo, C.; Krupnik, L. I.; Lopez-Fraguas, A.; Liniers, M.; Lysenko, S. E.; de Pablos, J. L.; Perfilov, S. V.; Sharapov, S. E.; Spong, D. A.; Jimenez, J. A.; Ufimtsev, M. V.; Breizman, B. N.; HIBP Group; the TJ-II Team

    2014-12-01

    Excitation of modes in the Alfvénic frequency range, 30 kHz values, 1.51advantage of the unique TJ-II capabilities, a dynamic magnetic configuration experiment with \\unicode{7548} (ρ , t) variation during discharges has shown strong effects on the mode frequency via both vacuum \\unicode{7548} changes and induced net plasma current. A drastic frequency increase from ˜50 to ˜250 kHz was observed for some modes when plasma current as low as ±2 kA was induced by small (10%) changes in the vertical field. A comprehensive set of diagnostics including a heavy ion beam probe, magnetic probes and a multi-chord bolometer made it possible to identify the spatial spread of the modes and deduce the internal amplitudes of their plasma density and magnetic field perturbations. A simple analytical model for fAE, based on the local Alfvén eigenmode (AE) dispersion relation, was proposed to characterize the observation. It was shown that all the observations, including vacuum iota and plasma current variations, may be fitted by the model, so the linear mode frequency dependence on \\unicode{7548} (plasma current) and one over square root density dependence present the major features of the NBI-induced AEs in TJ-II, and provide the framework for further experiment-to-theory comparison.

  1. Frequency tuning of single photons from a whispering-gallery mode resonator to MHz-wide transitions

    DEFF Research Database (Denmark)

    Schunk, G.; Vogl, U.; Sedlmeir, F.

    2016-01-01

    photons, which is based on parametric down-conversion in a triply resonant whispering-gallery mode resonator, with alkaline transitions [Schunk et al., Optica 2015, 2, 773]. In this paper, we analyse our source in terms of phase matching, available wavelength-tuning mechanisms and applications...

  2. Development of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Yamashita, Jun-ichi; Mochida, Takaaki; Uchikawa, Sadao.

    1988-01-01

    It is expected that the period of LWRs being the main source of electric power supply becomes long, therefore, the development of next generation LWRs placing emphasis on the effective utilization of uranium resources and the improvement of economical efficiency is necessary. In this paper, as the next generation BWRs subsequent to ABWRs, the concept of the core of high conversion type BWRs is reported, in which emphasis is placed on the saving of natural uranium resources by raising the rate of conversion to plutonium. This core is that of realizing the high rate of conversion by utilizing the void in the core, which is the feature of BWRs, and the case of making the change of the core structure relatively small by using cross type control rods and the case of changing the core structure for further heightening the rate of conversion and making control rods into cluster type are described. In order to meet the demand like this, Hitachi Ltd. has engaged in the development of the concept of the core of next generation LWRs. In the high conversion type BWRs, there is not large change in the reactor system and turbine system from the current BWRs. The features and the concept of the core of high conversion type BWRs are described. (Kako, I.)

  3. A modulation model for mode splitting of magnetic perturbations in the Mega Ampere Spherical Tokamak

    International Nuclear Information System (INIS)

    Hole, M J; Appel, L C

    2009-01-01

    Recent observations of magnetic fluctuation activity in the Mega Ampere Spherical Tokamak (MAST) reveal the presence of plasmas with bands of both low and high frequency magnetic fluctuations. Such plasmas exhibit a spectrum of low frequency modes with adjacent toroidal mode numbers, for which the measured frequency is near the Doppler shifted rotation frequency of the plasma. These are thought to be tearing modes. Also present are a spectrum of high frequency modes (e.g. Alfven, fishbone and/or ICE). The frequency and mode number of the tearing mode and its harmonics is identical to the frequency and mode number splitting of the high frequency MHD activity, strongly suggesting that the high frequency splitting is produced by modulation of the high and low frequency modes. We describe a strong modulation model, in which the nonlinear terms are fitted to produce the amplitude envelope profile of the tearing mode. A bispectral analysis proves that the low frequency modes are indeed in phase with the fundamental, while Fourier-SVD mode analysis confirms the mode numbers are toroidal harmonics. Employing this model, the sideband amplitude profile of the high frequency modes is predicted, and found to be in good agreement with experimental observations. Also, toroidal mode number splitting of the high frequency activity matches the mode number of the tearing mode. Weak evidence is found to indicate the Alfvenic sidebands are in phase with the Alfven eigenmode fundamental. The findings support predictions of a strong modulation model, and suggest a need to further develop nonlinear MHD theory to predict the amplitude of coupled sidebands, and so corroborate the observed nonlinear plasma response.

  4. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  5. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-04-15

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  6. Low-frequency oscillations in default mode subnetworks are associated with episodic memory impairments in Alzheimer's disease.

    Science.gov (United States)

    Veldsman, Michele; Egorova, Natalia; Singh, Baljeet; Mungas, Dan; DeCarli, Charles; Brodtmann, Amy

    2017-11-01

    Disruptions to functional connectivity in subsystems of the default mode network are evident in Alzheimer's disease (AD). Functional connectivity estimates correlations in the time course of low-frequency activity. Much less is known about other potential perturbations to this activity, such as changes in the amplitude of oscillations and how this relates to cognition. We examined the amplitude of low-frequency fluctuations in 44 AD patients and 128 cognitively normal participants and related this to episodic memory, the core deficit in AD. We show higher amplitudes of low-frequency oscillations in AD patients. Rather than being compensatory, this appears to be maladaptive, with greater amplitude in the ventral default mode subnetwork associated with poorer episodic memory. Perturbations to default mode subnetworks in AD are evident in the amplitude of low-frequency oscillations in the resting brain. These disruptions are associated with episodic memory demonstrating their behavioral and clinical relevance in AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials.

    Science.gov (United States)

    Liang, Liangbo; Zhang, Jun; Sumpter, Bobby G; Tan, Qing-Hai; Tan, Ping-Heng; Meunier, Vincent

    2017-12-26

    Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have been extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs' unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with

  8. Contained modes in mirrors with sheared rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  9. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  10. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  11. Oblique propagation of electron thermal modes below the electron plasma frequency without boundary effects

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Sanuki, H.

    1981-08-01

    Propagation characteristics and refractive effects of an oblique electron thermal mode without boundary effects below the electron plasma frequency are studied experimentally and theoretically in an inhomogeneous magnetized plasma. The behavior of this mode observed experimentally was confirmed by the theoretical analysis based on a new type of ray theory. (author)

  12. Analog-to-digital conversion of spectrometric data in information-control systems of activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mamonov, E I

    1972-01-01

    Analog-digital conversion (ADC) techniques in nuclear radiation spectrometer channels is a most important link of information control systems in activation analysis. For the development of the ADC of spectrometer channels logico-structural methods of increasing the capacity, procedures for boosting frequency modes and improving the accuracy are promising. Procedures are suggested for increasing the ADC capacity. Insufficient stability and noticeable non-linearity of the spectrometer channel can be corrected at the information processing stage if their regularities are known. Capacity limitations make the development of ADC featuring high stability, capacity and linearity quite urgent.

  13. Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization

    DEFF Research Database (Denmark)

    Shibahara, K.; Mizuno, T.; Takara, H.

    We demonstrate 12-core × 3-mode dense SDM transmission over 527 km graded-index multi-core few-mode fiber without mode-dispersion management. Employing low baud rate multi-carrier signal and frequency-domain equalization enables 33.2-ns DMD compensation with low computational complexity. © 2015 OSA...

  14. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  15. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  16. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  17. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  18. Identifying modes of large whispering-gallery mode resonators from the spectrum and emission pattern

    DEFF Research Database (Denmark)

    Schunk, Gerhard; Fuerst, Josef U.; Förtsch, Michael

    2014-01-01

    Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMR...

  19. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  20. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  1. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  2. 60 GHz Antenna Diagnostics from Planar Near Field Antenna Measurement Without External Frequency Conversion

    DEFF Research Database (Denmark)

    Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav

    2015-01-01

    ,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...

  3. Contained Modes In Mirrors With Sheared Rotation

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  4. Contained Modes In Mirrors With Sheared Rotation

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  5. Coaxial higher-order mode damper employing a high-pass filter

    International Nuclear Information System (INIS)

    Kang, Y.W.; Jiang, X.

    1997-01-01

    Two different types of coaxial higher-order mode (HOM) dampers have been investigated for the Advanced Photon Source (APS) storage ring cavities: e-probe dampers and h-loop dampers. Realization of the h-loop dampers has been difficult because the loop antenna couples not only to the HOMs but also to the accelerating mode and results in loss of Q at the fundamental frequency. Previously, a first-order fundamental rejection filter was tested with unsatisfactory rejection characteristics. This problem can be overcome by using a higher-order high-pass filter between the loop and the matched load. Prototype dampers have been fabricated and tested in a storage ring single-cell cavity and the damping characteristic was analyzed

  6. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  7. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Science.gov (United States)

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  8. Use of Time-Frequency Analysis and Neural Networks for Mode Identification in a Wireless Software-Defined Radio Approach

    Directory of Open Access Journals (Sweden)

    Matteo Gandetto

    2004-09-01

    Full Text Available The use of time-frequency distributions is proposed as a nonlinear signal processing technique that is combined with a pattern recognition approach to identify superimposed transmission modes in a reconfigurable wireless terminal based on software-defined radio techniques. In particular, a software-defined radio receiver is described aiming at the identification of two coexistent communication modes: frequency hopping code division multiple access and direct sequence code division multiple access. As a case study, two standards, based on the previous modes and operating in the same band (industrial, scientific, and medical, are considered: IEEE WLAN 802.11b (direct sequence and Bluetooth (frequency hopping. Neural classifiers are used to obtain identification results. A comparison between two different neural classifiers is made in terms of relative error frequency.

  9. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    Energy Technology Data Exchange (ETDEWEB)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki (Japan); Kubo, S. [National Institute for Fusion Science, Toki, Japan and Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Ogasawara, S.; Makino, R. [Department of Energy Engineering and Science, Nagoya Univ., Nagoya (Japan); Idei, H. [Research Institute for Applied Mechanics, Kyusyu Univ., Kasuga (Japan); Nagasaki, K. [Institute of Advanced Energy, Kyoto Univ., Uji (Japan)

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  10. High n ballooning modes in highly elongated tokamaks

    International Nuclear Information System (INIS)

    An, C.H.; Bateman, G.

    1980-02-01

    An analytic study of stability against high n ballooning modes in highly elongated axisymmetric plasmas is presented and compared with computational results. From the equation for the marginal pressure gradient, it is found that the local shear plays an important role on the stability of elongated and shifted plasma, and that high elongation deteriorates the stability by decreasing the stabilizing effects of field line bending and local shear. The net contribution of the local shear to stability decreases with elongation and shift for strongly ballooning modes (eigenfunctions strongly localized near the outer edge of the toroidal flux surfaces) but increases for interchange modes (eigenfunctions more uniform along the flux surfaces). The computational study of high n ballooning modes in a highly elongated plasma reveals that lowering the aspect ratio and broadening the pressure profile enhance the marginal beta for β/sub p/ less than unity but severely reduce the marginal beta for β/sub p/ larger than unity

  11. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  12. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    Science.gov (United States)

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  13. Experiments on FW-IBW mode conversion heating combined with LHCD on Tore Supra

    International Nuclear Information System (INIS)

    Basiuk, V.; Becoulet, A.; Imbeaux, F.; Nguyen, F.; Peysson, Y.; Monakhov, I.; Petrov, Y.; Petrov, Y.

    1999-01-01

    Recent RF heating and current drive investigations revealed a growing interest in a scheme based on mode conversion (MC) of externally excited fast waves (FW) to ion Bernstein waves (IBW). Suitability of MC scheme for on/off axis electron heating has already been reported on Tore Supra. New results, which were obtained during MC experiments combined with Low Hybrid Current Drive (LHCD) are presented in this paper. Application of new experimental tools and numerical techniques provided better insight into the problem of MC power deposition. an outcome of active search for synergistic LHCD-IBW current drive effects is also reported

  14. New harmonic materials: index engineering. Thin-thick quadrature frequency conversion

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    The quadrature conversion scheme is a method of generating the second harmonic. The scheme, which uses two crystals in series, has several advantages over single-crystal or other two crystal schemes. The most important is that it is capable of high conversion efficiency over a large dynamic range of drive intensity and detuning angle. Consider a pair of KDP crystals cut for type-II phase matching. In the quadrature scheme, the optic axes of the crystals are arranged so that the plans containing the direction of the laser beam and their optic axes (the kz planes) are mutually perpendicular. This arrangement has two important properties. First, in type-II phase matching, the incident wave is polarized at 45 deg to the kz plane of the crystal. This, in the quadrature scheme, if the incident wave is correctly polarized for efficient conversion in the first crystal, it is also correctly polarized for efficient conversion in the second crystal. Both crystals can therefore convert efficiently

  15. Coherent Motion Reveals Non‐Ergodic Nature of Internal Conversion between Excited States

    DEFF Research Database (Denmark)

    Kuhlman, Thomas Scheby; Sølling, Theis I.; Møller, Klaus Braagaard

    2012-01-01

    for smaller molecules. Specifically, we focus on the S2→S1 internal conversion in cyclobutanone, cyclopentanone, and cyclohexanone. By means of time‐resolved mass spectrometry and photoelectron spectroscopy the relative rate of this transition is determined to be 13:2:1. Remarkably, we observe coherent......We found that specific nuclear motion along low‐frequency modes is effective in coupling electronic states and that this motion prevail in some small molecules. Thus, in direct contradiction to what is expected based on the standard models, the internal conversion process can proceed faster...

  16. Rapid Frequency Chirps of TAE mode due to Finite Orbit Energetic Particles

    Science.gov (United States)

    Berk, Herb; Wang, Ge

    2013-10-01

    The tip model for the TAE mode in the large aspect ratio limit, conceived by Rosenbluth et al. in the frequency domain, together with an interaction term in the frequency domain based on a map model, has been extended into the time domain. We present the formal basis for the model, starting with the Lagrangian for the particle wave interaction. We shall discuss the formal nonlinear time domain problem and the procedure that needs to obtain solutions in the adiabatic limit.

  17. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  18. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  19. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  20. Enhanced magnetic domain relaxation frequency and low power losses in Zn{sup 2+} substituted manganese ferrites potential for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Praveena, K., E-mail: praveenaou@gmail.com [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Chen, Hsiao-Wen [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Liu, Hsiang-Lin, E-mail: hliu@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan (China); Sadhana, K., E-mail: sadhana@osmania.ac.in [Department of Physics, Osmania University, Saifabad, Hyderabad, 500004 (India); Murthy, S.R. [Department of Physics, Osmania University, Hyderabad, 500007 (India)

    2016-12-15

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese–Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn{sup 2+} substituted MnFe{sub 2}O{sub 4} were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn{sup 2+}, Zn{sup 2+} and Fe{sup 2+} cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (f{sub r}) was increased with the increase in grain size. The real and imaginary part of permeability (μ′ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (M{sub s}), remnant magnetization (M{sub r}) and magneton number (µ{sub B}) decreased gradually with increasing Zn{sup 2+} concentration. The decrease in the saturation magnetization was discussed with Yafet–Kittel (Y–K) model. The Zn{sup 2+} concentration increases the relative number of ferric ions on the A sites, reduces the A–B interactions. The frequency dependent total power losses decreased as the zinc concentration increased

  1. Slide-away distributions and relevant collective modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.; Pozzoli, R.; Rewoldt, G.

    1976-01-01

    The evolution of the electron distribution function, when an electric field that is not too small in comparison with the critical electron runaway field is applied along the confining magnetic field of a high temperature plasma, is analysed. In the regimes considered, a finite fraction of the electron population has magnetically trapped orbits, and is not appreciably affected by the applied electric field, while the distribution of circulating electrons tends to ''slide away'' as a whole. Then the Spitzer-Haerm model for the current-carrying electron distribution is inadequate, and the role that collective modes, in particular current-driven microinstabilities, and collisions can play in producing a stationary electron distribution is analysed. Modes at the ion plasma frequency, ωsub(pi), that are driven by the positive slope of the current-carrying electron distribution, can be excited, when the average electron drift velocity is a finite fraction of the electron thermal velocity, and transfer transverse energy to the main body of the electron distribution. These features are consistent with the experimental observations performed on the Alcator device. Modes at the ''reduced'' electron plasma frequency (ksub(parallel)/k)ωsub(pe) can also be excited both in connection with the modes at wsub(pi) and independently. Modes at the electron gyrofrequency Ωsub(e) associated with the loss-cone feature that the electron distribution tends to develop are considered, among others, as a factor for the strongly enhanced electron cyclotron emission experimentally observed in regimes where non-thermal electron distributions have been realized. (author)

  2. Investigations of equatorial ionosphere nighttime mode conversion at VLF

    Science.gov (United States)

    Hildebrand, Verne

    1993-05-01

    VLF Radiowave propagation provides one of the few viable tools for exploring the properties of the lower D-region ionosphere. Conversely, VLF communications coverage analysis and prediction is directly dependent on the quality of models for the D-region ionosphere. The VLF Omega navigation signals are an excellent and under-utilized resource for conducting D-region research in direct support of VLF communications. Stations are well placed for investigating polar, mid latitude, and equatorial phenomena. Much can be learned by fully utilizing the very stable signals radiated at five frequencies, available from each of the eight transmitters, and taking full advantage of modal structure. While the Omega signals, 10.2 to 13.6 kHz, are well below the VLF communications band, we contend that much of the knowledge gained on D-region characteristics can be directly applied at the higher frequencies. The opportunity offered by Omega needs to be exploited. With the Global Positioning System (GPS) coming onboard as the prime means for global navigation, pressure is mounting to phase out Omega. In this paper we describe how we are using Omega along with computer codes of full wave VLF propagation, provided to us by the U.S. Naval Ocean Systems Center (NOSC), for ionosphere research and by example illustrate the potential for other investigations.

  3. Transition from L mode to high ion temperature mode in CHS heliotron/torsatron plasmas

    International Nuclear Information System (INIS)

    Ida, K.; Osakabe, M.; Tanaka, K.

    2001-01-01

    A high ion temperature mode (high T i mode) is observed for neutral beam heated plasmas in the Compact Helical System (CHS) Heliotron/torsatron. The high T i mode plasma is characterized by a high central ion temperature, T i (0), and is associated with a peaked electron density profile produced by neutral beam fueling with low wall recycling. Transition from L mode to high T i mode has been studied in CHS. The central ion temperature in the high T i mode discharges reaches to 1 keV which is 2.5 times higher than that in the L mode discharges. The ion thermal diffusivity is significantly reduced by a factor of more than 2-3 in the high T i mode plasma. The ion loss cone is observed in neutral particle flux in the energy range of 1-6 keV with a narrow range of pitch angle (90±10 degree) in the high T i mode. However, the degradation of ion energy confinement due to this loss cone is negligible. (author)

  4. Infrared, diode laser spectroscopy of the Ar--N2O complex: Observation of the intermolecular bending mode in combination with the highest frequency intramolecular stretching mode

    International Nuclear Information System (INIS)

    Hu, T.A.; Chappell, E.L.; Sharpe, S.W.

    1993-01-01

    Rotationally resolved vibrational spectra consisting of a-type transitions have been observed for the low-frequency, intermolecular bending mode in combination with the highest frequency, intramolecular stretching mode of Ar--N 2 O. Analysis of the spectral data places the origin of the combination band at 2256.1 cm -1 while the origin of the intramolecular stretching fundamental is at 2223.9 cm -1 . The difference between these two origins is approximately 32.2 cm -1 and agrees well with our calculated frequency of 31.5 cm -1 for the intermolecular bending mode, which was obtained by analysis of the centrifugal distortion constants. In addition, argon--nitrous oxide exhibits an anomalously large inertial defect of 10.96 amu A 2 in the combination state. This indicates a breakdown in the assumption of separation between vibration and rotation. While much of the inertial defect in the ground state can be accounted for by including Coriolis interactions, that occurring in the combination state is only partially accounted for by a similar analysis. Small, but significant changes, are observed in both the radial and angular parameters for Ar--N 2 O when going from the ground to the combination state, indicating large amplitude motion. The combination band is approximately 200 times less intense than the high-frequency, stretching fundamental of Ar--N 2 O. In addition, over 400 new rovibrational transitions are assigned to the previously observed 1 0 1 intramolecular stretching fundamental of the complex, and the subsequent rotational analysis is found to be in close agreement with earlier studies. Data were taken on a newly built, rapid-scan, diode laser spectrometer that incorporates a 12 cmx200 μm pulsed slit-expansion nozzle

  5. Tacoma mode

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  6. Low-sensitivity, low-bounce, high-linearity current-controlled oscillator suitable for single-supply mixed-mode instrumentation system.

    Science.gov (United States)

    Hwang, Yuh-Shyan; Kung, Che-Min; Lin, Ho-Cheng; Chen, Jiann-Jong

    2009-02-01

    A low-sensitivity, low-bounce, high-linearity current-controlled oscillator (CCO) suitable for a single-supply mixed-mode instrumentation system is designed and proposed in this paper. The designed CCO can be operated at low voltage (2 V). The power bounce and ground bounce generated by this CCO is less than 7 mVpp when the power-line parasitic inductance is increased to 100 nH to demonstrate the effect of power bounce and ground bounce. The power supply noise caused by the proposed CCO is less than 0.35% in reference to the 2 V supply voltage. The average conversion ratio KCCO is equal to 123.5 GHz/A. The linearity of conversion ratio is high and its tolerance is within +/-1.2%. The sensitivity of the proposed CCO is nearly independent of the power supply voltage, which is less than a conventional current-starved oscillator. The performance of the proposed CCO has been compared with the current-starved oscillator. It is shown that the proposed CCO is suitable for single-supply mixed-mode instrumentation systems.

  7. IMITATION MODEL OF A HIGH-SPEED INDUCTION MOTOR WITH FREQUENCY CONTROL

    Directory of Open Access Journals (Sweden)

    V. E. Pliugin

    2017-12-01

    Full Text Available Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model and in Ansys Simplorer (transient circuit model with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones.

  8. Effect of dipole-quadrupole Robinson mode coupling upon the beam response to radio-frequency phase noise

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2006-09-01

    Full Text Available In an electron storage ring, coupling between dipole and quadrupole Robinson oscillations modifies the spectrum of longitudinal beam oscillations driven by radio-frequency (rf generator phase noise. In addition to the main peak at the resonant frequency of the coupled dipole Robinson mode, another peak occurs at the resonant frequency of the coupled quadrupole mode. To describe these peaks analytically for a quadratic synchrotron potential, we include the dipole and quadrupole modes when calculating the beam response to generator noise. We thereby obtain the transfer function from generator-noise phase modulation to beam phase modulation with and without phase feedback. For Robinson-stable bunches confined in a synchrotron potential with a single minimum, the calculated transfer function agrees with measurements at the Aladdin 800-MeV electron storage ring. The transfer function is useful in evaluating phase feedback that suppresses Robinson oscillations in order to obtain quiet operation of an infrared beam line.

  9. Mode-converted electron Bernstein wave emission research on CDX-U and NSTX

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C; Jones, B.; Munsat, T.; Hosea, J.C; Kaita, R.; Majeski, R.; Spaleta, J.; Wilson, J.R.; Wilgen, J.B.; Bell, G.L.; Rasmussen, D.A.; Ram, A.K.; Bers, A.; Harvey, R.W.; Smirnov, A.P.

    2003-01-01

    Electron Bernstein waves (EBWs) may enable electron temperature profile measurements and local electron heating and current drive in high β overdense (ω pe /ω ce >>1) plasmas. Significant results are presented from the measurement of X-mode radiation, converted from EBWs observed normal to the magnetic field on the mid-plane of overdense plasmas in CDX-U and NSTX. A radially scannable, in-vessel, quad-ridged antenna and Langmuir probe array on CDX-U studied EBW to X-mode conversion. A local limiter optimized the conversion efficiency by modifying the density scale length at the mode conversion layer. The fundamental EBW conversion efficiency increased, by an order of magnitude, to ∼100% when the local limiter and antenna were inserted near the conversion layer. This technique can be extended to large, high temperature devices. Another significant observation was that the EBW emission source was localized near the electron cyclotron resonance. As a result, mode-converted EBW radiometry has measured radial transport in CDX-U. In addition, a threefold increase in conversion efficiency was observed at the L to H transition in NSTX. Measured conversion efficiency agreed well with theoretical predictions. EBW ray tracing and bounce-averaged Fokker-Planck codes are being used to model EBW heating and current drive scenarios for NSTX equilibria with β up to 40%. So far, results show that it is possible to drive localized currents on the high field side of the magnetic axis in NSTX at β ∼ 12% with current drive efficiency which compares favorably with ECCD. (authors)

  10. An auto-biased 0.5 um CMOS transconductor for very high frequency applications

    OpenAIRE

    Garrido, Nuno; Franca, José E.

    1998-01-01

    This paper describes a CMOS transconductance cell for the implementation of very high frequency current-mode gm-C filters. It features simple pseudo-differential circuitry employing small device size transistors and yielding a power dissipation of less than 1 mW/pole at nominal 3.0 V supply voltage. Self-biased common-mode voltage designed to minimize mismatch errors, improves noise and stability behavior. Short channel effects are analyzed and simulation results are presented.

  11. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  12. Electron-cyclotron heating in net using the ordinary mode at down-shifted frequency

    International Nuclear Information System (INIS)

    Fidone, I.; Giruzzi, G.

    1990-01-01

    A scenario for central heating in NET device is discussed using wave sources and wave launching from the most accessible side of the torus. The method presents two advantages: low wave frequency and side launch of the 0- mode. The maximum wave attenuation occurs for θ different to zero. It is a difficulty which is minimized by the fact that no special polarization is required for the reflected wave, since both modes are absorbed by the plasma core

  13. High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode

    Science.gov (United States)

    Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.

    2018-03-01

    This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.

  14. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  15. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  16. Investigation on Locking and Pulling Modes in Analog Frequency Dividers

    Directory of Open Access Journals (Sweden)

    Antonio Buonomo

    2013-01-01

    Full Text Available We compare the main analytical results available to estimate the locking range, which is the key figure-of-merit of LC frequency dividers based on the injection locking phenomenon. Starting from the classical result by Adler concerning injection-locked oscillators, we elucidate the merits and the shortcomings of the different approaches to study injection-locked frequency dividers, with particular emphasis on divider-by-2. In particular, we show the potential of a perturbation approach which enables a more complete analysis of frequency dividers, making it possible to calculate not only the amplitude and the phase of the locked oscillation, but also the region where it exists and is stable, which defines the locking region. Finally, we analyze the dynamical behaviour of the dividers in the vicinity of the boundary of the locking region, showing that there exists a border region where the occurrence of the locking or the pulling operation mode is possible, depending on the initial conditions of the system.

  17. Parametric study for high conversion pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Ruetten, H. J.

    1975-06-15

    Tables are presented of fuel cycle costs, conversion ratios and accompanying variations in fuel element designs for a 3,00 MWth high conversion pebble bed reactor with initial high enriched uranium/thorium cycle and subsequent recycling of U-233, Pu-239 and Pu-241.

  18. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  19. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    Science.gov (United States)

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  20. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    Science.gov (United States)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  1. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  3. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  4. High-frequency strontium vapor laser for biomedical applications

    Science.gov (United States)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  5. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  6. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.

    Science.gov (United States)

    Kwon, Osung; Park, Kwang-Kyoon; Ra, Young-Sik; Kim, Yong-Su; Kim, Yoon-Ho

    2013-10-21

    Generation of time-bin entangled photon pairs requires the use of the Franson interferometer which consists of two spatially separated unbalanced Mach-Zehnder interferometers through which the signal and idler photons from spontaneous parametric down-conversion (SPDC) are made to transmit individually. There have been two SPDC pumping regimes where the scheme works: the narrowband regime and the double-pulse regime. In the narrowband regime, the SPDC process is pumped by a narrowband cw laser with the coherence length much longer than the path length difference of the Franson interferometer. In the double-pulse regime, the longitudinal separation between the pulse pair is made equal to the path length difference of the Franson interferometer. In this paper, we propose another regime by which the generation of time-bin entanglement is possible and demonstrate the scheme experimentally. In our scheme, differently from the previous approaches, the SPDC process is pumped by a cw multi-mode (i.e., short coherence length) laser and makes use of the coherence revival property of such a laser. The high-visibility two-photon Franson interference demonstrates clearly that high-quality time-bin entanglement source can be developed using inexpensive cw multi-mode diode lasers for various quantum communication applications.

  7. Frequency stabilized HeNe gas laser with 3.5 mW from a single mode

    NARCIS (Netherlands)

    Ellis, J.D.; Voigt, D.; Spronck, J.W.; Verlaan, A.L.; Munnig Schmidt, R.H.

    2012-01-01

    This paper describes an optical frequency stabilization technique using a three-mode Helium Neon laser at 632.8 nm. Using this configuration, a maximum frequency stability relative to an iodine stabilized laser of 6×10 -12 (71 s integration time) was achieved. Two long term measurements of 62 h and

  8. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.

    Science.gov (United States)

    Ghosh, Antina; Chikkadi, Vijayakumar; Schall, Peter; Bonn, Daniel

    2011-10-28

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales.

  9. Thermoelastic expansion vs. piezoelectricity for high-frequency, 2-D arrays.

    Science.gov (United States)

    Buma, Takashi; Spisar, Monica; O'Donnell, Matthew

    2003-08-01

    Optical generation using the thermoelastic effect has traditionally suffered from low conversion efficiency. We previously demonstrated increased efficiency of nearly 20 dB with an optical absorbing layer consisting of a mixture of polydimethylsiloxane (PDMS) and carbon black spin coated onto a glass microscope slide. In this paper we show that the radiated power from a black PDMS film is comparable to a 20 MHz piezoelectric two-dimensional (2-D) array element. Furthermore, we predict that a thermoelastic array element can produce similar acoustic power levels compared to ideal piezoelectric 2-D array elements at frequencies in the 100 MHz regime. We believe these results show that thermoelastic generation of ultrasound is a promising alternative to piezoelectricity for high-frequency, 2-D arrays.

  10. Direct measurements of damping rates and stability limits for low frequency MHD modes and Alfven Eigenmodes in the JET tokamak

    International Nuclear Information System (INIS)

    Fasoli, A.F.; Testa, D.; Jaun, A.; Sharapov, S.; Gormezano, C.

    2001-01-01

    The linear stability properties of global modes that can be driven by resonant energetic particles or by the bulk plasma are studied using an external excitation method based on the JET saddle coil antennas. Low toroidal mode number, stable plasma modes are driven by the saddle coils and detected by magnetic probes to measure their structure, frequency and damping rate, both in the Alfven Eigenmode (AE) frequency range and in the low frequency Magneto-Hydro-Dynamic (MHD) range. For AEs, the dominant damping mechanisms are identified for different plasma conditions of relevance for reactors. Spectra and damping rates of low frequency MHD modes that are localized at the foot of the internal transport barrier and can affect the plasma performance in advanced tokamak scenarios have been directly measured for the first time. This gives the possibility of monitoring in real time the approach to the instability boundary. (author)

  11. Numerical modelisation of RF waves in the ion cyclotron range of frequency for Tokamak plasmas

    International Nuclear Information System (INIS)

    Edery, D.; Picq, H.; Samain, A.; Gambier, D.J.

    1987-12-01

    The purpose of this paper is to present the numerical code ALCYON developed to compute the RF field structure in the ion cyclotron range of frequencies. The code handles fundamental and second harmonic heating while the mode conversion onto modes of decreasing wavelength is simulated by a selective power absorption on slow waves when their wavelength reaches the mesh size

  12. High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2018-06-01

    We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.

  13. Solar g-modes? Comparison of detected asymptotic g-mode frequencies with solar model predictions

    Science.gov (United States)

    Wood, Suzannah Rebecca; Guzik, Joyce Ann; Mussack, Katie; Bradley, Paul A.

    2018-06-01

    After many years of searching for solar gravity modes, Fossat et al. (2017) reported detection of the nearly equally spaced high-order g-modes periods using a 15-year time series of GOLF data from the SOHO spacecraft. Here we report progress towards and challenges associated with calculating and comparing g-mode period predictions for several previously published standard solar models using various abundance mixtures and opacities, as well as the predictions for some non-standard models incorporating early mass loss, and compare with the periods reported by Fossat et al (2017). Additionally, we have a side-by-side comparison of results of different stellar pulsation codes for calculating g-mode predictions. These comparisons will allow for testing of nonstandard physics input that affect the core, including an early more massive Sun and dynamic electron screening.

  14. Ion-cyclotron modes in weakly relatavistic plasmas

    International Nuclear Information System (INIS)

    Venugopal, C.; Kurian, P.J.; Renuka, G.

    1994-01-01

    We derive a dispersion relation for the perpendicular propagation of ion-cyclotron waves around the ion gyrofrequency Ω + in a weakly relativistic, anisotropic Maxwellian plasma. Using an ordering parameter ε, we separated out two dispersion relations, one of which is independent of the relativistic terms, while the other depends sensitively on them. The solutions of the former dispersion relation yield two modes: a low-frequency (LF) mode with a frequency ω + and a high-frequency (HF) mode with ω > Ω + . The plasma is stable to the propagation of these modes. The latter dispersion relation yields a new LF mode in addition to the modes supported by the non-relativistic dispersion relation. The two LF modes can coalesce to make the plasma unstable. These results are also verified numerically using a standard root solver. (author)

  15. LD-pumped Nd:YVO sub 4 frequency-doubled by CPM LBO laser at 671 nm

    CERN Document Server

    Zheng Quan; Qian Long Sheng; Zhao Ling

    2001-01-01

    A design of LD-pumped high efficient Nd:YVO sub 4 /LBO red laser is reported. Using critical phase-matching LBO for the first time, 671 nm red laser is obtained by 1.342 mu m intracavity frequency doubling. With 800 mW incident pump laser, 52 mW and 97 mW TEM00 mode red laser output are obtained by II-typed and I-typed LBO. The optical-to-optical conversions are up to 6.5% and 12.1% respectively

  16. Studies on the Effect of Radio Frequency Field in a Cusp-Type Charge Separation Device for Direct Energy Conversion

    OpenAIRE

    HAMABE, Masaki; IZAWA, Hiroaki; TAKENO, Hiromasa; NAKAMOTO, Satoshi; ICHIMURA, Kazuya; NAKASHIMA, Yousuke

    2016-01-01

    In D-3He fusion power generation, an application of direct energy conversion is expected in which separation of charged particles is necessary. A cusp-type direct energy converter (CuspDEC) was proposed as a charge separation device, but its performance was degraded for a high density plasma. The goal of the present study is to establish an additional method to assist charge separation by using a nonlinear effect of a radio frequency (rf) electric field. Following to the previous study, we ex...

  17. Explanation of the JET n=0 chirping mode

    International Nuclear Information System (INIS)

    Berk, H.L.; Boswell, C.J.; Borba, D.; Figueiredo, A.C.A.; Nave, M.F.F.; Johnson, T.; Pinches, S.D.; Sharapov, S.E.

    2006-01-01

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) are observed in the JET tokomak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a mode related to the geodesic acoustic mode (GAM). The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit bounce resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma. (author)

  18. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    Science.gov (United States)

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  19. Impurity toroidal rotation and transport in Alcator C-Mod ohmic high confinement mode plasmas

    International Nuclear Information System (INIS)

    Rice, J. E.; Goetz, J. A.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E. S.; Mossessian, D.; Pedersen, T. Sunn; Snipes, J. A.

    2000-01-01

    Central toroidal rotation and impurity transport coefficients have been determined in Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] Ohmic high confinement mode (H-mode) plasmas from observations of x-ray emission following impurity injection. Rotation velocities up to 3x10 4 m/sec in the co-current direction have been observed in the center of the best Ohmic H-mode plasmas. Purely ohmic H-mode plasmas display many characteristics similar to ion cyclotron range of frequencies (ICRF) heated H-mode plasmas, including the scaling of the rotation velocity with plasma parameters and the formation of edge pedestals in the electron density and temperature profiles. Very long impurity confinement times (∼1 sec) are seen in edge localized mode-free (ELM-free) Ohmic H-modes and the inward impurity convection velocity profile has been determined to be close to the calculated neoclassical profile. (c) 2000 American Institute of Physics

  20. A devil in the detail: parameter cross-talk from the solar cycle and estimation of solar p-mode frequencies

    Science.gov (United States)

    Chaplin, W. J.; Jiménez-Reyes, S. J.; Eff-Darwich, A.; Elsworth, Y.; New, R.

    2008-04-01

    Frequencies, powers and damping rates of the solar p modes are all observed to vary over the 11-yr solar activity cycle. Here, we show that simultaneous variations in these parameters give rise to a subtle cross-talk effect, which we call the `devil in the detail', that biases p-mode frequencies estimated from analysis of long power frequency spectra. We also show that the resonant peaks observed in the power frequency spectra show small distortions due to the effect. Most of our paper is devoted to a study of the effect for Sun-as-a-star observations of the low-l p modes. We show that for these data the significance of the effect is marginal. We also touch briefly on the likely l dependence of the effect, and discuss the implications of these results for solar structure inversions.

  1. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs.

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-22

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10(-7) in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  2. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs

    Science.gov (United States)

    Hsieh, Yi-Da; Iyonaga, Yuki; Sakaguchi, Yoshiyuki; Yokoyama, Shuko; Inaba, Hajime; Minoshima, Kaoru; Hindle, Francis; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  3. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Science.gov (United States)

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  4. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  5. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  6. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    Science.gov (United States)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  7. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  8. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  9. Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields

    International Nuclear Information System (INIS)

    Maslovsky, D.; Levitt, B.; Mauel, M. E.

    2003-01-01

    Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)

  10. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  11. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus.

    Directory of Open Access Journals (Sweden)

    Roland Frey

    Full Text Available Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0 and a high (g0 fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0. Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female captive dholes (Cuon alpinus and for 2 (1 male, 1 female wild red fox (Vulpes vulpes. In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.

  12. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  13. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  14. Predictive simulations of radio frequency heated plasmas of Tore Supra using the Multi-Mode model

    International Nuclear Information System (INIS)

    Voitsekhovitch, Irina; Bateman, Glenn; Kritz, Arnold H.; Pankin, Alexei

    2002-01-01

    Multichannel integrated predictive simulations using the Multi-Mode transport model are carried out for radio frequency heated Tore Supra tokamak discharges in which helium is the primary ion component. Lower hybrid heated discharges in which the total current is driven noninductively [X. Litaudon et al., Plasma Phys. Controlled Fusion 43, 677 (2001)] and a discharge with ion cyclotron radio frequency heating of the hydrogen minority ions [G. T. Hoang et al., Nucl. Fusion 38, 117 (1998)] are simulated. The simulations of these discharges represent the first test of the Multi-Mode model in helium plasmas with dominant electron heating. Also for the first time, the particle transport in Tore Supra discharges is computed and the density profiles are predicted self-consistently with other transport channels. It is found in these simulations that the anomalous transport driven by trapped electron mode turbulence is dominant compared to the transport driven by the ion temperature gradient turbulence. The feature of the Multi-Mode model to calculate the impurity transport self-consistently with other transport channels is used in this study to predict the influence of carbon impurity influx on the discharge evolution

  15. Signal Processing using Nonlinear Optical Eects in Single- and Few-Mode Fibers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk

    noise, loss, and pump depletion on the noise properties of parametric frequency conversion and phase-insensitive and phase-sensitive parametric amplification. An important part of realizing space-division multiplexing is the ability of optical signal processing so the second part of this thesis......-wave mixing in two-mode fibers acvi counting for six simultaneous processes is derived, and the conversion efficiency from signal to idler in the four-wave mixing processes of phase conjugation and Bragg scattering in two two-mode fibers with different phase matching properties are experimentally investigated......The stagnating increase in data transmission capacity in optical communication systems combined with the ever growing demand of transmission bandwidth is leading to an impending capacity crunch, referring to the point in time after which the available bandwidth of the individual user starts...

  16. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  17. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  18. CMOS integrated avalanche photodiodes and frequency-mixing optical sensor front end for portable NIR spectroscopy instruments.

    Science.gov (United States)

    Yun, Ruida; Sthalekar, Chirag; Joyner, Valencia M

    2011-01-01

    This paper presents the design and measurement results of two avalanche photodiode structures (APDs) and a novel frequency-mixing transimpedance amplifier (TIA), which are key building blocks towards a monolithically integrated optical sensor front end for near-infrared (NIR) spectroscopy applications. Two different APD structures are fabricated in an unmodified 0.18 \\im CMOS process, one with a shallow trench isolation (STI) guard ring and the other with a P-well guard ring. The APDs are characterized in linear mode. The STI bounded APD demonstrates better performance and exhibits 3.78 A/W responsivity at a wavelength of 690 nm and bias voltage of 10.55 V. The frequency-mixing TIA (FM-TIA) employs a T-feedback network incorporating gate-controlled transistors for resistance modulation, enabling the simultaneous down-conversion and amplification of the high frequency modulated photodiode (PD) current. The TIA achieves 92 dS Ω conversion gain with 0.5 V modulating voltage. The measured IIP(3) is 10.6/M. The amplifier together with the 50 Ω output buffer draws 23 mA from a1.8 V power supply.

  19. The application of low frequency longitudinal guided wave mode for the inspection of multi-hole steel floral pipes

    International Nuclear Information System (INIS)

    Liu, Z H; Xie, X D; Wu, B; Li, Y H; He, C F

    2012-01-01

    Shed-pipe grouting technology, an effective advanced supporting method, is often used in the excavation of soft strata. Steel floral pipes are one of the key load-carrying components of shed-pipe grouting supporting structures. Guided waves are a very attractive methodology to inspect multi-hole steel floral pipes as they offer long range inspection capability, mode and frequency tuning, and cost effectiveness. In this contribution, preliminary experiments are described for the inspection of steel floral pipes using a low frequency longitudinal guided wave mode, L(0,2). The relation between the number of grouting holes and the peak-to-peak amplitude of the first end-reflected signal was obtained. The effect of the grouting holes in steel floral pipes on the propagation velocity of the L(0,2) mode at 30 kHz was analyzed. Experimental results indicate that the typical grouting holes in steel floral pipe have no significant effect on the propagation of this mode. As a result, low frequency longitudinal guided wave modes have potential for the non-destructive long range inspection of multi-hole steel floral pipes. Furthermore, the propagation velocity of the investigated L(0,2) mode at 30 kHz decreases linearly with the increase of the number of grouting holes in a steel floral pipe. It is also noticeable that the effect of the grouting holes cumulates along with the increase in the number of grouting holes and subsequent increase in reflection times of longitudinal guided waves in the steel floral pipe. The application potential of the low frequency longitudinal guided wave technique for the inspection of embedded steel floral pipes is discussed.

  20. Low-frequency fluctuation regime in a multimode semiconductor laser subject to a mode-selective optical feedback

    International Nuclear Information System (INIS)

    Rogister, F.; Sciamanna, M.; Deparis, O.; Megret, P.; Blondel, M.

    2002-01-01

    We study numerically the dynamics of a multimode laser diode subject to a mode-selective optical feedback by using a generalization of the Lang-Kobayashi equations. In this configuration, only one longitudinal mode of the laser is reinjected into the laser cavity; the other modes are free. When the laser operates in the low-frequency fluctuation regime, our model predicts intensity bursts in the free modes simultaneously with dropouts in the selected mode, in good agreement with recent experiments. In the frame of our model, intensity bursts and dropouts are associated with collisions of the system trajectory in phase space with saddle-type antimodes

  1. A design of a mode converter for electron cyclotron heating by the method of normal mode expansion

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Kawashima, Hisato; Hata, Kenichiro; Yamamoto, Takumi

    1983-09-01

    Mode conversion of electromagnetic wave propagating in the over-size circular waveguide is attained by giving a periodical perturbation in the guide wall. Mode coupling equation is expressed by ''generalized telegraphist's equations'' which are derived from the Maxwell's equations using a normal mode expansion. A computer code to solve the coupling equations is developed and mode amplitude, conversion efficiency, etc. of a particular type of mode converter for the 60 GHz electron cyclotron heating are obtained. (author)

  2. NOLM-based all-optical 40 Gbit/s format conversion through sum-frequency generation (SFG) in a PPLN waveguide

    Science.gov (United States)

    Wang, Jian; Sun, Junqiang

    2005-11-01

    A novel all-optical format conversion scheme from NRZ to RZ based on sum-frequency generation (SFG) in a periodically poled LiNbO 3 (PPLN) waveguide is proposed, using a nonlinear optical loop mirror (NOLM). The conversion mechanism relies on the combination of attenuation and nonlinear phase shift induced on the clockwise signal field during the SFG process. The SFG between pump, and co- and counter- propagating signals in the PPLN waveguide are numerically studied, showing that counter-propagating SFG can be ignored when quasi-phase matching (QPM) for SFG during co-propagating interaction. The nonlinear phase shift induced on the clockwise signal field is analyzed in detail, showing that it is more effective to yield large values for nonlinear phase shift when appropriately phase mismatched for the SFG process. Two tuning schemes are proposed depend on whether the sum-frequency wavelength is variable or fixed. It is found that the latter has a rather wide 3dB signal conversion bandwidth approximately 154nm. Finally, the influence of reversible process of SFG is discussed and the optimum arrangement of pump and signal peak powers is theoretically demonstrated. The result shows that proper power arrangement, pump width, and waveguide length are necessary for achieving a good conversion effect.

  3. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  4. High-Power Characteristics of Thickness Shear Mode for Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Ogawa, Hirozumi; Kawada, Shinichiro; Kimura, Masahiko; Higuchi, Yukio; Takagi, Hiroshi

    2009-09-01

    The high-power piezoelectric characteristics of the thickness shear mode for oriented ceramics of bismuth layer structured ferroelectrics (BLSF), SrBi2Nb2O9 (SBN), were studied by the constant current driving method. These textured ceramics were fabricated by the templated grain growth (TGG) method, and the Lotgering factor was 95%. The vibration of the thickness shear mode in the textured SBN ceramics was stable at the vibration velocity of 2.0 m/s. The resonant frequency was almost constant with increasing vibration velocity in the textured SBN ceramics, however, it decreased with increasing vibration velocity in the randomly oriented SBN ceramics. In the case of Pb(Mn,Nb)O3-Pb(Zr,Ti)O3 ceramics, the vibration velocity of the thickness shear mode was saturated at more than 0.3 m/s, and the resonant frequency decreased at lower vibration velocity than in the case of SBN ceramics. The dissipation power density of the textured SBN ceramics was the lowest among those of the randomly oriented SBN and Pb(Mn,Nb)O3-PZT ceramics. The thickness shear mode of textured SBN ceramics is a good candidate for high-power piezoelectric applications.

  5. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  6. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  7. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  8. Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the Q-factor of high frequency nanoresonators

    International Nuclear Information System (INIS)

    Chávez-Ángel, E; Gomis-Bresco, J; Alzina, F; Sotomayor Torres, C M; Zarate, R A

    2014-01-01

    We present and validate a reformulated Akhieser model that takes into account the reduction of thermal conductivity due to the impact of boundary scattering on the thermal phonons’ lifetime. We consider silicon nanomembranes with mechanical mode frequencies in the GHz range as textbook examples of nanoresonators. The model successfully accounts for the measured shortening of the mechanical mode lifetime. Moreover, the thermal conductivity is extracted from the measured lifetime of the mechanical modes in the high-frequency regime, thereby demonstrating that the Q-factor can be used as an indication of the thermal conductivity and/or diffusivity of a mechanical resonator. (invited article)

  9. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    Science.gov (United States)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  10. Generation of high order modes

    CSIR Research Space (South Africa)

    Ngcobo, S

    2012-07-01

    Full Text Available with the location of the Laguerre polynomial zeros. The Diffractive optical element is used to shape the TEM00 Gassian beam and force the laser to operate on a higher order TEMp0 Laguerre-Gaussian modes or high order superposition of Laguerre-Gaussian modes...

  11. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    Science.gov (United States)

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Features of the repetition frequency of edge localized modes in EAST

    DEFF Research Database (Denmark)

    Jiang, M.; Xiao, C.; Xu, G.S.

    2012-01-01

    This paper presents the features of the edge localized modes (ELMs) observed in the 2010 experimental campaign on the Experimental Advanced Superconducting Tokamak (EAST). The first high-confinement mode (H-mode) at an H-factor of HIPB98(y, 2)~1 has been obtained with about 1 MW lower hybrid wave...

  13. Measurement and correlation of high frequency behaviors of a very flexible beam undergoing large deformation

    International Nuclear Information System (INIS)

    Lee, Jae Wook; Kim, Hyun Woo; Ku, Hi Chun; Yoo, Wan Suk

    2009-01-01

    A correlation method of high frequency behaviors of a very flexible beam undergoing large displacement is presented. The suggested method based on the experimental modal analysis leads to more accurate correlation results because it directly uses the modal parameters of each mode achieved from experiment. First, the modal testing and the parameter identification method are suggested for flexible multibody dynamics. Due to the flexibility of a very thin beam, traditional testing methods such as impact hammer or contact type accelerometer are not working well. The suggested measurement with high speed camera, even though the test beam is very flexible, is working well. Using measurements with a high speed camera, modal properties until the 5th mode are measured. And After measuring each damping ratio until the 5th mode, a generic damping model is constructed using inverse modal transformation technique. It's very interesting that the modal transformation technique can be also applied even in the ANCF simulation which uses the global displacement and finite slope as the nodal coordinates. The results of experiment and simulation are compared until the 5th mode frequency, respectively, by using ANCF forced vibration analysis. Through comparison between numerical simulation and experiment, this study showed that the proposed generic damping matrix, modal testing and parameter identification method is very proper in flexible multibody dynamic problems undergoing large deformation

  14. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    Science.gov (United States)

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  15. Low Noise Quantum Frequency Conversion from Rb Wavelengths to Telecom O-band

    Science.gov (United States)

    Li, Xiao; Solmeyer, Neal; Stack, Daniel; Quraishi, Qudsia

    2015-05-01

    Ideal quantum repeaters would be composed of long-lived quantum memories entangled with flying qubits. They are becoming essential elements to achieve quantum communication over long distances in a quantum network. However, quantum memories based on neutral atoms operate at wavelengths in the near infrared, unsuitable for long distance communication. The ability to coherently convert photons entangled with quantum memories into telecom wavelengths reduces the transmission loss in optical fibers and therefore dramatically improves the range of a quantum repeater. Furthermore, quantum frequency conversion (QFC) can enable entanglement and communication between different types of quantum memories, thus creating a versatile hybrid quantum network. A recent experiment has shown the conversion of heralded photons from Rb-based memories to the telecom C-band. We implement a setup using a nonlinear PPLN waveguide for the QFC into a wavelength region where the noise-floor would be limited by dark counts rather than pump photons. Our approach uses a pump laser at a much longer wavelength. It has the advantage that the strong pump itself and the broad background in the PPLN can be nearly completely filtered from the converted signal. Such low background level allows for the conversion to be done on the heralding photon, which enables the generated entanglement to be used in a scalable way to multiple nodes remotely situated and to subsequent protocols.

  16. Bendable, low-loss Topas fibers for the terahertz frequency range

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Adam, Aurèle J.L.

    2009-01-01

    structure proves that the fiber is single-moded over a wide frequency range, and we see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber. Transmission spectroscopy demonstrates low-loss propagation (

  17. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    Science.gov (United States)

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  18. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  19. A dual-mode 6-9 GHz transmitter for OFDM-UWB

    International Nuclear Information System (INIS)

    Chen Yunfeng; Gao Ting; Li Wei; Li Ning; Ren Junyan

    2011-01-01

    This paper presents a fully integrated dual-mode 6 to 9 GHz transmitter for both WiMedia and China MB-OFDM UWB applications. The proposed transmitter consists of a dual-mode I/QLPF, an up-conversion mixer, a two-stage power driver amplifier and a broadband high-speed frequency divider with LO buffers for I/Q LO carrier generation. The measurement results show that the gain ripple of the transmitter is within ±1.5/±2.8 dB from 6 to 8.7/9 GHz. The output IP3 is about +13.2 dBm, the output 1dBCP is around +2.8 dBm, and the LO leakage/sideband rejection ratio is about -35/-38 dBc. The ESD protected chip is fabricated with a TSMC 0.13 μm RFCMOS process with a die size of 1.6 x 1.3 mm 2 and the core circuit consumes only 46 mA under a 1.2 V supply. (semiconductor integrated circuits)

  20. A dual-mode 6-9 GHz transmitter for OFDM-UWB

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yunfeng; Gao Ting; Li Wei; Li Ning; Ren Junyan, E-mail: jyren@fudan.edu.cn, E-mail: w-li@fudan.edu.cn [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2011-05-15

    This paper presents a fully integrated dual-mode 6 to 9 GHz transmitter for both WiMedia and China MB-OFDM UWB applications. The proposed transmitter consists of a dual-mode I/QLPF, an up-conversion mixer, a two-stage power driver amplifier and a broadband high-speed frequency divider with LO buffers for I/Q LO carrier generation. The measurement results show that the gain ripple of the transmitter is within {+-}1.5/{+-}2.8 dB from 6 to 8.7/9 GHz. The output IP3 is about +13.2 dBm, the output 1dBCP is around +2.8 dBm, and the LO leakage/sideband rejection ratio is about -35/-38 dBc. The ESD protected chip is fabricated with a TSMC 0.13 {mu}m RFCMOS process with a die size of 1.6 x 1.3 mm{sup 2} and the core circuit consumes only 46 mA under a 1.2 V supply. (semiconductor integrated circuits)