WorldWideScience

Sample records for high-frequency mode conversion

  1. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...

  2. Current barriers to confine high frequency common mode currents

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.

  3. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  4. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... band gap semiconductors and integrated power supplies. Afterwards a wide range of topologies suited for operation at very high frequencies is investigated and the most promising ones are tested experimentally. Through a comparison of these topologies the class DE inverter is found to be superior...... to the other alternatives, at least for converters with hundreds of volts as input and a few tens of watts output power. A class DE inverter does however require a high side gate drive, which have never been presented before for these frequencies and voltages. This thesis presents the worlds first high side...

  5. Effect of magnetic bending on the EBT high-frequency modes

    Energy Technology Data Exchange (ETDEWEB)

    El-Nadi, A.M.; Hiroe, S.; Whitson, J.C.; Hassen, H.F.; Kirolous, H.A.

    1986-02-01

    The high-frequency stability of the ELMO Bumpy Torus (EBT) device is studied when the wave vector has a finite component along the magnetic field lines. Unstable modes exist for any finite hot electron density. 9 refs., 1 fig.

  6. Power conversion distribution system using a resonant high-frequency AC link

    Science.gov (United States)

    Sood, P. K.; Lipo, T. A.

    1986-01-01

    Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.

  7. A study and classification of non-linear high frequency ionospheric instabilities by coupled mode theory.

    Science.gov (United States)

    Harker, K. J.

    1972-01-01

    Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.

  8. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  9. Investigation of polyvinylidene fluoride (PVDF) films in identifying high-frequency vibration modes of flexible plates.

    Science.gov (United States)

    Chuang, Kuo-Chih; Liou, Hong-Cin; Ma, Chien-Ching

    2014-06-01

    Compared with piezoelectric ceramics such as lead zirconate titanate (PZT) ceramics, the low density and high compliance of the PVDF films make them a more suitable choice in modal testing, especially for detecting high-frequency modes in flexible or inflatable structures. In this work, dynamic sensing performances of PVDF films for flexible structures in modal testing are examined, with considerations including the repeatability of the impact source, the accuracy of the sensing responses, and the influences of the nodal lines on the frequency spectra of the transient responses. Two flexible plates with different boundary conditions and thickness are considered. Experimental results, compared with FEM computations or theoretical predictions, demonstrate the excellent dynamic sensing performance of the PVDF film in modal testing applications, especially for identification of high-frequency modes on flexible structures.

  10. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  11. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-10-15

    Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  12. Quasi-B-mode generated by high-frequency gravitational waves and corresponding perturbative photon fluxes

    Directory of Open Access Journals (Sweden)

    F.Y. Fangyu Li

    2016-10-01

    Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.

  13. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  14. Simulation study of high-frequency energetic particle driven geodesic acoustic mode

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)

    2015-09-15

    High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.

  15. AIR ATMOSPHERIC-PRESSURE DISCHARGERS FOR OPERATION IN HIGH-FREQUENCY SWITCHING MODE.

    Directory of Open Access Journals (Sweden)

    L.S. Yevdoshenko

    2013-10-01

    Full Text Available Operation of two designs of compact multigap dischargers has been investigated in a high-frequency switching mode. It is experimentally revealed that the rational length of single discharge gaps in the designs is 0.3 mm, and the maximum switching frequency is 27000 discharges per second under long-term stable operation of the dischargers. It is shown that in pulsed corona discharge reactors, the pulse front sharpening results in increasing the operating electric field strength by 1.3 – 1.8 times.

  16. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    Directory of Open Access Journals (Sweden)

    Brian B Monson

    2014-10-01

    Full Text Available Humans routinely create acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward HD voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from The Star-Spangled Banner with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners.

  17. High-frequency Born synthetic seismograms based on coupled normal modes

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  18. Avoidance High-Frequency Chattering Second-Order Sliding Mode Controller Design: Buck Converter in Wind Power System

    Directory of Open Access Journals (Sweden)

    Yigeng Huangfu

    2012-01-01

    Full Text Available This paper mainly discussed a method of high-frequency second-order sliding mode control for Buck converter in wind power systems. Because the wind energy of nature is always unpredictable and intermittent, the robust control such as sliding mode control is adopted in past literatures. In order to remove the high frequency chattering problem when the traditional sliding mode achieves convergence, the second order sliding mode algorithm is reviewed firstly. Meanwhile, the Buck converter taken as a step-down converter is usually adopted in wind power system, because of its simple structure and good linearity. Under those conditions, the second order sliding mode controller is designed based on Buck converter, especially in high-power wind generation system. The experimental results illustrate that the theory of second order sliding mode can be used in high-power Buck converter. It provides one novel avoidance high frequency chattering method for the technology development of new energy generation system.

  19. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...... has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  20. Bifurcation and chaos in high-frequency peak current mode Buck converter

    Science.gov (United States)

    Chang-Yuan, Chang; Xin, Zhao; Fan, Yang; Cheng-En, Wu

    2016-07-01

    Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i L-v C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current I ref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding I ref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller. Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX15_0092).

  1. A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution-mode superposition approach

    Science.gov (United States)

    Seçgin, Abdullah; Saide Sarıgül, A.

    2009-03-01

    This study introduces a novel scheme for the discrete high-frequency forced vibration analysis based on discrete singular convolution (DSC) and mode superposition (MS) approaches. The accuracy of the DSC-MS is validated for thin beams and plates by comparing with available analytical solutions. The performance of the DSC-MS is evaluated by predicting spatial distribution and discrete frequency spectra of the vibration response of thin plates with two different boundary conditions. The frequency spectra of the time-harmonic excitation forces are in the form of ideal and band-limited white noise so that the natural modes in the frequency band are provoked. The solution exposes high-frequency response behaviour definitely. Therefore, it is hoped with this paper to contribute the studies on the treatment of uncertainties in the high-frequency design applications.

  2. Study of high frequency MHD modes from ECE radiometer in Tore Supra

    Directory of Open Access Journals (Sweden)

    Dubuit N.

    2012-09-01

    Full Text Available Tore Supra ECE diagnostic has been recently upgraded to study MHD modes driven by energetic particles up to 400 kHz. To improve the measurement sensitivity, the ECE signals of the 32 channels radiometer were amplified just below the saturation limit and sources of noise were investigated in order to keep it as low as possible. With such an improvement, fast particle driven modes with frequencies up to 200 kHz were detected. A 4-channel correlation ECE system using YIG filters with tuneable frequency was also installed. It allows fine radial scans of MHD modes and correlation length measurements. For the two kinds of YIG filter in use, the minimum frequency separation between two ECE channels that could be achieved was established measuring the correlation coefficient between the respective radiation noises. Finally, by modelling the ECE radiometer taking into account the antenna radiation pattern and the vertical position of the ECE beam relative to the plasma centre we improved the data analysis tools, thus giving a better determination of the phase radial structure of ECE oscillations. The poloidal structure of MHD modes can then be identified from ECE data and, for off axis ECE lines of sight, the direction of the plasma rotation can also be determined. This method allows identifying the occurrence of an inverse cascade of electron fishbone modes ranging from m/n=4/4 to 1/1 (m and n are the poloidal and toroidal mode numbers, respectively which appears in lower hybrid current drive plasmas.

  3. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  4. Mode conversion in magneto photonic crystal fibre

    Science.gov (United States)

    otmani, Hamza; Bouchemat, Mohamed; Hocini, Abdesselam; Boumaza, Touraya; benmerkhi, ahlem

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE-TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres.

  5. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    of using enhancement mode gallium nitride switches to form a 50V quasi-square-wave zero-voltage-switching buck converter running at 2-6 MHz under full load. The designed converter achieved 83% efficiency converting 50V input voltage to 12.2V at 9W load.......An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  6. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study of us...... of using enhancement mode gallium nitride switches to form a 50V quasi-square-wave zero-voltage-switching buck converter running at 2-6 MHz under full load. The designed converter achieved 83% efficiency converting 50V input voltage to 12.2V at 9W load....

  7. High frequency local reflections and conversions from upper mantle discontinuities in the Fiji-Tonga subduction zone

    Science.gov (United States)

    Tibi, R.; Wiens, D. A.

    2003-12-01

    Recordings of deep Fiji-Tonga earthquakes from an array of 15 broadband seismographs in Fiji are stacked and searched for reflections and conversions from upper mantle discontinuities near the Fiji-Tonga slab. The Fiji array operated as part of the SAFT (Seismic Arrays in Fiji and Tonga) experiment from July 2001 to August 2002. In comparison with the commonly used teleseismic approaches, the short path lengths for the local data provide smaller Fresnel zones and high frequency content for precise mapping of discontinuity topography and sharpness. This is particularly important for a subduction zone, where variations in temperature and water content may be expected which should cause changes in the elevation and sharpness of the discontinuities. We study the phases s410p, P660p and S660p where they arrive at least 10 seconds after the direct P wave and prior to the S wave accross the array. To anhance low-amplitude reflections/conversions, deconvolved seismograms from each event are aligned on the maximum amplitude of the direct P wave and slant stacked. Preliminary results indicate that for the northern part of the Fiji-Tonga subduction zone, the 660-km discontinuity varies between 660 and 670 km in depth. In the central part we observe converted phases consistent with a ``410'' depth of 380 km, indicating the effect of the cold subducting plate. The reflections/conversions show only a slight frequency shift relative to the direct P waveforms, suggesting the discontinuities are relatively sharp. The thickness for the 660-km discontinuity is estimated as between 2 and 6 km.

  8. Simulation of high-frequency modes and their effect on insulator breakdown in the pulse line ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ling, C.Y. [Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)], E-mail: antelopeling@gmail.com; Yu, S.S. [Chinese University of Hong Kong, Shatin, N.T. (Hong Kong); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Henestroza, E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2009-07-11

    The pulse line ion accelerator (PLIA) produces a traveling electromagnetic (EM) wave by applying a voltage pulse to one end of a helix that accelerates and axially confines a heavy-ion beam pulse. An anomalous flashover phenomenon has been observed on the vacuum-insulator surface that limits the amplitude of the accelerating field. It has been suspected that a small component of high-frequency modes in the input pulse may be the cause of the breakdown. Simulation using MAFIA (MAxwell's equations by Finite Integration Algorithm) was conducted to investigate the fields on the insulator surface. A scaling law was proposed to reduce substantially the computational time in simulation. It is based on the hypothesis that the pattern of EM field for a given wavelength is independent of the wire spacing as long as the wavelength is much longer than the inter-wire spacing and the termination resistors are adjusted to maintain impedance matching. On the basis of these numerical simulations, we conclude that high-frequency modes, even at very low amplitudes, may indeed lead to the observed insulator flashover.

  9. Mode conversion in magneto photonic crystal fibre

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, Hamza, E-mail: otmanih@yahoo.fr [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Bouchemat, Mohamed [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Hocini, Abdesselam [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria); Département d' Electronique, Faculté de Technologie, Université de M’sila, BP 166, Route Ichebilia, M’sila 28000 (Algeria); Boumaza, Touraya; Benmerkhi, Ahlem [Laboratoire Micro-systèmes et Instrumentation (LMI), Université de Constantine 1, Constantine (Algeria)

    2017-01-01

    The first concept of an integrated isolator was based on nonreciprocal TE–TM mode conversion, the nonreciprocal coupling between these modes is caused by the Faraday rotation if the magnetization is aligned along the z–axis, parallel to mode propagation. We propose to study this magneto-optical phenomenon, by the simulation of magneto photonic crystal fibre (MPCF), it consists of a periodic triangular lattice of air-holes filled with magnetic fluid which consists of magnetic nanoparticles into a BIG (Bismuth Iron Garnet) fibre. We simulated the influence of gyrotropy and the wavelength, and calculated Faraday rotation and modal birefringence. In this fibre the light is guided by internal total reflection, like classical fibres. However it was shown that they could function on a mode conversion much stronger than conventional fibres. - Highlights: • We propose to study mode conversion TE–TM, by the simulation of magneto photonic crystal fibre (MPCF). • We simulated the influence of gyrotropy. • We simulated the wavelength. • We calculated Faraday rotation. • We calculated modal birefringence.

  10. Pipe leak diagnostic using high frequency piezoelectric pressure sensor and automatic selection of intrinsic mode function

    Science.gov (United States)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; Remli, M. A. Pi; Kamarulzaman, M. H.

    2017-10-01

    In a recent study, the analysis of pressure transient signals could be seen as an accurate and low-cost method for leak and feature detection in water distribution systems. Transient phenomena occurs due to sudden changes in the fluid’s propagation in pipelines system caused by rapid pressure and flow fluctuation due to events such as closing and opening valves rapidly or through pump failure. In this paper, the feasibility of the Hilbert-Huang transform (HHT) method/technique in analysing the pressure transient signals in presented and discussed. HHT is a way to decompose a signal into intrinsic mode functions (IMF). However, the advantage of HHT is its difficulty in selecting the suitable IMF for the next data postprocessing method which is Hilbert Transform (HT). This paper reveals that utilizing the application of an integrated kurtosis-based algorithm for a z-filter technique (I-Kaz) to kurtosis ratio (I-Kaz-Kurtosis) allows/contributes to/leads to automatic selection of the IMF that should be used. This technique is demonstrated on a 57.90-meter medium high-density polyethylene (MDPE) pipe installed with a single artificial leak. The analysis results using the I-Kaz-kurtosis ratio revealed/confirmed that the method can be used as an automatic selection of the IMF although the noise level ratio of the signal is low. Therefore, the I-Kaz-kurtosis ratio method is recommended as a means to implement an automatic selection technique of the IMF for HHT analysis.

  11. Development of Mode Conversion Waveguides at KIT

    Directory of Open Access Journals (Sweden)

    Jin Jianbo

    2015-01-01

    Full Text Available The development of mode conversion waveguides (launchers for high power gyrotrons has gone through three stages at KIT. Formerly, harmonically deformed launchers have been used in the series gyrotrons developed for the stellarator W7-X. In 2009, a numerical method for the analysis and synthesis of mirror-line launchers was developed at KIT. Such a launcher with adapted mode-converting mirrors for a 2 MW TE34,19-mode, 170GHz coaxial-cavity gyrotron has been designed and tested, and also a mirror-line launcher for the 1MW EU ITER gyrotron has been designed. Recently, based on the Helmholtz-Kirchhoff integral theorem, a novel numerical method for the synthesis of hybrid-type gyrotron launchers has been developed. As an example, TE32,9 mode launchers operating at 170GHz that have been designed using the three different methods are being compared.

  12. Mode control and mode conversion in nonlinear aluminum nitride waveguides.

    Science.gov (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P

    2013-11-04

    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  13. Defect induced guided waves mode conversion

    Science.gov (United States)

    Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw

    2016-04-01

    This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.

  14. Experimental observation of multi-scale interactions among kink /tearing modes and high-frequency fluctuations in the HL-2A core NBI plasmas

    Science.gov (United States)

    Chen, W.; Jiang, M.; Xu, Y.; Shi, P. W.; Yu, L. M.; Ding, X. T.; Shi, Z. B.; Ji, X. Q.; Yu, D. L.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Li, J. Q.; Dong, J. Q.; Yang, Q. W.; Liu, Yi.; Yan, L. W.; Xu, M.; Duan, X. R.

    2017-11-01

    Multi-scale interactions have been observed recently in the HL-2A core NBI plasmas, including the synchronous coupling between m/n=1/1 kink mode and m/n=2/1 tearing mode, nonlinear couplings of TAE/BAE and m/n=2/1 TM near q=2 surface, AITG/KBM/BAE and m/n=1/1 kink mode near q=1 surface, and between m/n=1/1 kink mode and high-frequency turbulence. Experimental results suggest that several couplings can exist simultaneously, Alfvenic fluctuations have an important contribution to the high-frequency turbulence spectra, and the couplings reveal the electromagnetic character. Multi-scale interactions via the nonlinear modulation process maybe enhance plasma transport and trigger sawtooth-crash onset.

  15. Fiber-guided modes conversion using superposed helical gratings

    Science.gov (United States)

    Ma, Yancheng; Fang, Liang; Wu, Guoan

    2017-03-01

    Optical fibers can support various modal forms, including vector modes, linear polarization (LP) modes, and orbital angular momentum (OAM) modes, etc. The modal correlation among these modes is investigated via Jones matrix, associated with polarization and helical phase corresponding to spin angular momentum (SAM) and OAM of light, respectively. We can generate different modal forms by adopting superposed helical gratings (SHGs) with opposite helix orientations. Detailed analysis and discussion on mode conversion is given as for mode coupling in optical fibers with both low and high contrast index, respectively. Our study may deepen the understanding for various fiber-guided modes and mode conversion among them via fiber gratings.

  16. Mode conversion in rectangular-core optical fibers.

    Science.gov (United States)

    Bullington, Amber L; Pax, Paul H; Sridharan, Arun K; Heebner, John E; Messerly, Michael J; Dawson, Jay W

    2012-01-01

    Mode conversion from the fundamental to a higher-order mode in a rectangular-core optical fiber is accomplished by applying pressure with the edge of a flat plate. Modal analysis of the near and far field images of the fiber's transmitted beam determines the purity of the converted mode. Mode conversion reaching 75% of the targeted higher-order mode is achieved using this technique. Conversion from a higher-order mode back to the fundamental mode is also demonstrated with comparable efficiency. Propagation of a higher-order mode in a rectangular-core fiber allows for better thermal management and bend-loss immunity than conventional circular-core fibers, extending the power-handling capabilities of optical fibers. © 2012 Optical Society of America

  17. A two-microphone method for the determination of the mode amplitude distribution in high-frequency ducted broadband sound fields.

    Science.gov (United States)

    Joseph, P F

    2017-10-01

    This paper describes a measurement technique that allows the modal amplitude distribution to be determined in ducts with mean flow and reflections. The method is based only on measurements of the acoustic pressure two-point coherence at the duct wall. The technique is primarily applicable to broadband sound fields in the high frequency limit and whose mode amplitudes are mutually incoherent. The central assumption underlying the technique is that the relative mode amplitude distribution is independent of frequency. The two-microphone method proposed in this paper is also used to determine the transmitted sound power and far field pressure directivity.

  18. Surface plasmon polaritons mode conversion via a coupled plasmonic system

    Science.gov (United States)

    Yang, Fan; Tian, Hao

    2016-05-01

    A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric-metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results.

  19. Mode conversion enables optical pulling force in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhu, Tongtong; Novitsky, Andrey; Cao, Yongyin

    2017-01-01

    We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode...... to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband...

  20. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  1. Rabi oscillations and stimulated mode conversion on the subwavelength scale.

    Science.gov (United States)

    Zhang, Xiao; Ye, Fangwei; Kartashov, Yaroslav V; Chen, Xianfeng

    2015-03-09

    We study stimulated mode conversion and dynamics of Rabi-like oscillations of weights of guided modes in deeply subwavelength guiding structures, whose dielectric permittivity changes periodically in the direction of light propagation. We show that despite strong localization of the fields of eigenmodes on the scales below the wavelength of light, even weak longitudinal modulation couples modes of selected parity and causes periodic energy exchange between them, thereby opening the way for controllable transformation of the internal structure of subwavelength beams. The effect is reminiscent of Rabi oscillations in multilevel quantum systems subjected to the action of periodic external fields. By using rigorous numerical solution of the full set of the Maxwell's equations, we show that the effect takes place not only in purely dielectric, but also in metallic-dielectric structures, despite the energy dissipation inherent to the plasmonic waveguides. The stimulated conversion of subwavelength light modes is possible in both linear and nonlinear regimes.

  2. Different Mode of Afferents Determines the Frequency Range of High Frequency Activities in the Human Brain: Direct Electrocorticographic Comparison between Peripheral Nerve and Direct Cortical Stimulation.

    Directory of Open Access Journals (Sweden)

    Katsuya Kobayashi

    Full Text Available Physiological high frequency activities (HFA are related to various brain functions. Factors, however, regulating its frequency have not been well elucidated in humans. To validate the hypothesis that different propagation modes (thalamo-cortical vs. cortico-coritcal projections, or different terminal layers (layer IV vs. layer II/III affect its frequency, we, in the primary somatosensory cortex (SI, compared HFAs induced by median nerve stimulation with those induced by electrical stimulation of the cortex connecting to SI. We employed 6 patients who underwent chronic subdural electrode implantation for presurgical evaluation. We evaluated the HFA power values in reference to the baseline overriding N20 (earliest cortical response and N80 (late response of somatosensory evoked potentials (HFA(SEP(N20 and HFA(SEP(N80 and compared those overriding N1 and N2 (first and second responses of cortico-cortical evoked potentials (HFA(CCEP(N1 and HFA(CCEP(N2. HFA(SEP(N20 showed the power peak in the frequency above 200 Hz, while HFA(CCEP(N1 had its power peak in the frequency below 200 Hz. Different propagation modes and/or different terminal layers seemed to determine HFA frequency. Since HFA(CCEP(N1 and HFA induced during various brain functions share a similar broadband profile of the power spectrum, cortico-coritcal horizontal propagation seems to represent common mode of neural transmission for processing these functions.

  3. Resonant modal conversion in a two-mode waveguide

    OpenAIRE

    Boucher, Yann,; Parini, Alberto; Féron, Patrice

    2017-01-01

    International audience; We characterize a system consisting of a two-mode waveguide coupled to a single-mode microring resonator possibly presenting a nonlinear response of Kerr type. By using the scattering parameter formalism extended to the multimode domain, we show that in the linear regime and for an ideally transparent medium, each resonance of the system can be exploited to perform complete even-to-odd (respectively, odd-to-even) modal conversion. Moreover, when the Kerr nonlinearity i...

  4. Mode conversion enables optical pulling force in photonic crystal waveguides

    Science.gov (United States)

    Zhu, Tongtong; Novitsky, Andrey; Cao, Yongyin; Mahdy, M. R. C.; Wang, Lin; Sun, Fangkui; Jiang, Zehui; Ding, Weiqiang

    2017-08-01

    We propose a robust scheme to achieve optical pulling force using the guiding modes supported in a hollow core double-mode photonic crystal waveguide instead of the structured optical beams in free space investigated earlier. The waveguide under consideration supports both the 0th order mode with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband with naturally occurred lateral equilibriums and has a long manipulation range. Flexibilities of the current configuration make it valuable for the optical force tailoring and optical manipulation operation, especially in microfluidic channel systems.

  5. Multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.

    2010-01-01

    Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 d...

  6. Vector mode conversion based on an asymmetric fiber Bragg grating in few-mode fibers.

    Science.gov (United States)

    Mi, Yuean; Li, Haisu; Ren, Guobin

    2017-09-01

    We propose a vector mode conversion approach based on asymmetric fiber Bragg gratings (AFBGs) written in step-index fiber and vortex fiber, respectively. The mode coupling properties of AFBGs are numerically investigated. Compared to step-index fiber, the large mode separation in the vortex fiber is beneficial to extracting the desired vector mode at specific wavelengths. In addition, the polarization of incident light and the attenuation coefficient of index change distribution of the AFBG play critical roles in the mode coupling process. The proposed AFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for orbital angular momentum multiplexing and fiber lasers with vortex beam output.

  7. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  8. High-order mode based dispersion compensating modules using spatial mode conversion

    Science.gov (United States)

    Tur, M.; Menashe, D.; Japha, Y.; Danziger, Y.

    High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ~1 dB, and typical extinction ratio to other modes less than -20 dB.TheHOMFitself can provide high negative dispersion [typically in the range of 400-600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF R ® fiber, with Insertion loss mode transformers and fiber coupling within the HOMF. MPI values of < -36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.

  9. Mode conversion and coupling in a slanted grating.

    Science.gov (United States)

    Li, Shubin; Zhou, Changhe; Cao, Hongchao; Wu, Jun; Yu, Junjie

    2014-04-01

    We have proposed a novel transmission slanted grating at the central wavelength of 1550 nm, which can be used in optical communication. We have presented an approximate analytical expression that provides an insightful physical description of the simplified modal method for the slanted grating. The odd grating mode, which only exists in the asymmetric structure under normal incidence, plays the positive role of enhancing the -1st order diffraction efficiency. The analytic expressions of mode conversion and coupling can be obtained to explain the asymmetric field distribution, which cannot occur in the rectangular grating region. Numerical results achieved by the rigorous wave analysis verify the validity of the simplified modal method. We expect that the theoretical modal method set forth in this work will be helpful for the tremendous potential application of the slanted grating.

  10. Demonstration of simultaneous mode conversion and demultiplexing for mode and wavelength division multiplexing systems based on tilted few-mode fiber Bragg gratings.

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Sima, Chaotan

    2015-04-20

    We experimentally demonstrate mode conversion by exploiting optical reflection of tilted few-mode fiber Bragg grating (FM-FBG). Mode conversions from LP(01) mode to higher symmetric and asymmetric modes are achieved, and more than 99.5% conversion efficiency from LP(01) to LP(11) mode is obtained using a 1.6°-tilted FM-FBG. Influences of the weakly tilted FM-FBG parameters on the property of mode conversion is analyzed and discussed. A simultaneous mode conversion and demultiplexing scheme for 4-mode × 3-wavelength multiplexing transmission is proposed and the modal crosstalk is analyzed based on the transmission spectra of the tilted FM-FBGs. The proposed approach shows potential applications in mode and wavelength division multiplexing communication systems.

  11. Ultrafast acousto-optic mode conversion in optically birefringent ferroelectrics

    Science.gov (United States)

    Lejman, Mariusz; Vaudel, Gwenaelle; Infante, Ingrid C.; Chaban, Ievgeniia; Pezeril, Thomas; Edely, Mathieu; Nataf, Guillaume F.; Guennou, Mael; Kreisel, Jens; Gusev, Vitalyi E.; Dkhil, Brahim; Ruello, Pascal

    2016-08-01

    The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

  12. Mode conversion in ICRF experiments on Alcator C-Mod

    Science.gov (United States)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiment on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In recent mode conversion flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 are shown to play important roles. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed. Supported by USDoE awards DE-FC02-99ER54512.

  13. Mode-Selective Wavelength Conversion Based on Four-Wave Mixing in a Multimode Silicon Waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2013-01-01

    We report all-optical mode-selective wavelength conversion based on four-wave mixing in a multimode Si waveguide. A two-mode division multiplexing circuit using tapered directional coupler based (de)multiplexers is used for the application. Experimental results show clear eye-diagrams and moderate...... power penalties for the conversion of both modes....

  14. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    to phase mismatch. A two-mode division multiplexing circuit with tapered directional coupler based (de)multiplexers and a multimode waveguide is designed and fabricated for this application. Experimental results show clear eye-diagrams and moderate power penalties for the wavelength conversion of both......We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...... modes....

  15. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Kalaee, Mohammad Javad, E-mail: mjkalaee@ut.ac.ir [Space Physics Group, Institute of Geophysics, University of Tehran (Iran, Islamic Republic of); Katoh, Yuto, E-mail: yuto@stpp.gp.tohoku.ac.jp [Department of Geophysics, Graduate School of Science, Tohoku University (Japan)

    2016-07-15

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  16. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    Science.gov (United States)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  17. Mode conversion in three ion species ICRF heating scenario

    Science.gov (United States)

    Lin, Y.; Edlund, E.; Ennever, P.; Porkolab, M.; Wright, J.; Wukitch, S.

    2016-10-01

    Three-ion species ICRF heating has been studied on Alcator C-Mod and on JET. It has been shown to heat the plasma and generate energetic particles. In a typical three-ion scenario, the plasma consists of 60-70% D, 30-40% H and a trace level (1% or less) of 3He. This species mixture creates two hybrid resonances (D-3He and 3He-H) in the plasma, in the vicinity of the 3He IC resonance (on both sides). The fast wave can undergo mode conversion (MC) to ion Bernstein waves and ion cyclotron waves at the two hybrid resonances. A phase contrast imaging (PCI) system has been used to measure the RF waves in the three-ion heating experiment. The experimentally measured MC locations and the separating distance between the two MC regions help to determine the concentration of the three species. The PCI signal amplitudes for the RF waves are found to be sensitive to RF and plasma parameters, including PRF, Te, ne and also the species mix concentration. The parameter dependences found in the experiment will be compared with ICRF code simulations. Supported by USDoE Awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  18. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  19. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  20. Mode conversion in metal–insulator–metal waveguide with a shifted cavity

    Science.gov (United States)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal–insulator–metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry–Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  1. On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes.

    Science.gov (United States)

    Guo, Xiang; Zou, Chang-Ling; Jung, Hojoong; Tang, Hong X

    2016-09-16

    While the frequency conversion of photons has been realized with various approaches, the realization of strong coupling between optical modes of different colors has never been reported. Here, we present an experimental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical modes on an aluminum nitride photonic chip. The nonreciprocal normal-mode splitting is demonstrated as a result of the coherent interference between photons with different colors. Furthermore, a wideband, bidirectional frequency conversion with 0.14 on-chip conversion efficiency and a bandwidth up to 1.2 GHz is demonstrated.

  2. A simulation study on the mode conversion process from slow Z-mode to LO mode by the tunneling effect and variations of beaming angle

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2014-12-01

    For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.

  3. Phonon Mode Conversion Across Dimensionally Mismatched Interfaces: Carbon Nanotube Graphene Junction (Preprint)

    Science.gov (United States)

    2017-06-12

    i.e., they partially convert different phonon modes into graphene after the transmission. For instance, the longitudinal acoustic (LA) mode incident...Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified Kurt Eyink 19b. TELEPHONE NUMBER (Include Area Code ) (937) 656-5710...packet method. Surprisingly, we have observed phonon mode conversion behavior for all incident phonon modes from CNT, i.e., they partially convert

  4. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators.

    Science.gov (United States)

    Farnesi, D; Barucci, A; Righini, G C; Berneschi, S; Soria, S; Nunzi Conti, G

    2014-03-07

    High quality factor whispering-gallery-mode microresonators are ideally suited for nonlinear optical interactions. We analyze, experimentally and theoretically, a variety of χ((3)) nonlinear interactions in silica microspheres, consisting of third harmonic generation and Raman assisted third order sum-frequency generation in the visible. A tunable, room temperature, cw multicolor emission in silica microspherical whispering-gallery-mode microresonators has been achieved by controlling the cavity mode dispersion and exciting nonequatorial modes for efficient frequency conversion.

  5. Spatial-mode conversion using random diffuser and spatial light modulator for reduction of modal crosstalk

    Science.gov (United States)

    Ishii, Koki; Okamoto, Atsushi; Tsuritani, Takehiro; Wakayama, Yuta; Goto, Yuta; Tomita, Akihisa

    2016-02-01

    The mode-division multiplexing (MDM) technique enables the transmission of multiple signals within a multi-mode fiber (MMF) or a few-mode fiber (FMF). To construct an efficient and flexible MDM network in the same way as a wavelength-division multiplexing network, a mode conversion method with low modal crosstalk is required for switching between arbitrary spatial modes. However, in general, modal crosstalk is strongly dependent on the intensity pattern before mode conversion, and it is increased particularly for higher order modes. In order to reduce modal crosstalk, we propose a method using a random diffuser and a spatial light modulator (SLM). In the proposed method, firstly, the input spatial mode is dispersed uniformly by the random diffuser. Subsequently, the diffused phase distribution is canceled and converted into the desired spatial mode by the SLM, which displays phase difference between desired and diffused modes. Consequently, every spatial mode can be evenly converted into a desired mode. Here, we numerically simulate and confirm that the proposed method can reduce modal crosstalk compared to the conversion method without the random diffuser.

  6. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  7. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.

    2016-01-01

    Roč. 6, Sep (2016), 1-12, č. článku 33802. ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : four-mode Gaussian states * parametric down-conversion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016

  8. Topology Optimized Mode Conversion In a Photonic Crystal Waveguide

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Ding, Yunhong

    2013-01-01

    We experimentally demonstrate an ultra-compact TE0-TE1 mode converter obtained in a photonic crystal waveguide by utilizing topology optimization and show a ~39 nm bandwidth around 1550 nm with an insertion loss lower than ~3 dB....

  9. Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter.

    Science.gov (United States)

    Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun

    2016-02-01

    Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

  10. Generation and conversion of mode beams and their polarization states

    Science.gov (United States)

    Karpeev, S. V.

    2017-04-01

    New polarization converter for transforming the circulary polarized laser modes into cylindrical vector beams (CVB) including beams of higher orders is proposed. The generation of CVB in birefringent crystals is studied analytically and experimentally in paraxial and non-paraxial regimes. At sharp focusing (in the non-paraxial case) two focuses corresponding ordinary and extraordinary beams are formed along the crystal's axis. The results are extended to the generation of higher-order radially and azimuthally polarized mode beams. Using the simulation the possibility of fabricating crystal-based devices suitable for application in fiber optics was shown. The results of the experimental study on the generation of cylindrical vector beams in a crystal of Iceland spar agree with the results of the simulation.

  11. DBD in burst mode: solution for more efficient CO2 conversion?

    CERN Document Server

    Ozkan, A; Silva, T; Britun, N; Snyders, R; Reniers, F; Bogaerts, A

    2016-01-01

    CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the conversion from 16--26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the proc...

  12. Broadband high-order mode pass filter based on mode conversion.

    Science.gov (United States)

    Ahmmed, Kazi Tanvir; Chan, Hau Ping; Li, Binghui

    2017-09-15

    We report a unique concept to implement a high-order mode pass filter using mode converters. Our proposed design method implements a high-order mode pass filter of any order, uses different mode converters available, and applies to a variety of planar lightwave circuit material platforms. We fabricate a broadband fundamental mode filter device using a Mach-Zehnder interferometer and Y-junctions to demonstrate our idea. The performance of the fabricated device is demonstrated experimentally in the wavelength range of 1.530-1.565 μm (C-band). This filter exhibits a simulated extinction ratio of 37 dB with an excess loss of 0.52 dB for the first-order mode transmission.

  13. Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides.

    Science.gov (United States)

    Lin, Tzung-Yi; Hsiao, Fu-Chen; Jhang, Yao-Wun; Hu, Chieh; Tseng, Shuo-Yen

    2012-10-08

    A shortcut to adiabatic mode conversion in multimode waveguides using optical analogy of stimulated Raman adiabatic passage is investigated. The design of mode converters using the shortcut scheme is discussed. Computer-generated planar holograms are used to mimic the shaped pulses used to speed up adiabatic passage in quantum systems based on the transitionless quantum driving algorithm. The mode coupling properties are analyzed using the coupled mode theory and beam propagation simulations. We show reduced device length using the shortcut scheme as compared to the common adiabatic scheme. Modal evolution in the shortened device indeed follows the adiabatic eigenmode exactly amid the violation of adiabatic criterion.

  14. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase effic...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented.......This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...

  15. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch.

    Science.gov (United States)

    Xu, Kailiang; Ta, Dean; Su, Zhongqing; Wang, Weiqi

    2014-01-01

    Mode conversions of Lamb waves can occur upon encountering damage or defect such as a notch, leading to newly-converted modes apart from wave reflection and transmission. In this paper, the transmission of the fundamental Lamb modes symmetrical S0 and anti-symmetrical A0 with anti-symmetrical notches were investigated in steel plates within the relatively short propagation distance. The group velocity and modal energy of the converted modes were analyzed using simulations and experiments. Two-dimensional finite difference time domain (2D-FDTD) method was employed to calculate the scattering field and extract numerical trends for simulation study and experimental confirmation. Both simulations and experiments revealed that the apparent group velocities of the converted modes in the transmitted signals subject to the notch positions. To describe the mode conversion degree and evaluate the notch severity, wave packets of the originally-transmitted modes and newly-converted modes were separated and corresponding mode energy percentages were analyzed at different notch severities. Frequency-sweeping measurements illustrated that the modal energy percentages varied monotonically over the notch-depth increase with a statistically consistency (R=1.00, P<0.0004). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. ICRF heated enhanced performance modes and mode conversion electron heating in alcator C-mod

    Energy Technology Data Exchange (ETDEWEB)

    Takase, Y.; Golovato, S.; Porkolab, M.; Boivin, R.; Bombarda, F.; Bonoli, P.; Fiore, C.; Garnier, D.; Goetz, J.; Graf, M.; Granetz, R.; Greenwald, M.; Horne, S.; Hubbard, A.; Hutchinson, I.; Irby, J.; LaBombard, B.; Lipschultz, B.; Majeski, R.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; OShea, P.; Pinsker, R.; Reardon, J.; Rice, J.; Rost, C.; Snipes, J.; Terry, J.; Watterson, R.; Welch, B.; Wolfe, S. [MIT Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States)

    1996-02-01

    D(H) minority heating experiments were performed at {ital B}{sub {ital T}}=5.3 T with up to 3.5 MW of RF power. The highest stored energy of 130 kJ was achieved in an ELM-free H-mode plasma. The H-mode power threshold is roughly consistent with the ITER scaling, {ital P}/{ital S}=0.044{bar {ital n}}{sub {ital eB}}{sub {ital T}}, but H-modes have been obtained at power levels as much as a factor of two below this scaling. H-factors of up to 1.5 have been observed in ELM-free H-mode plasmas. The highest fusion reactivity of 9{times}10{sup 13} sec{sup {minus}1} was obtained in a PEP H-mode plasma with lithium pellet injection and on-axis ICRF heating. These discharges are characterized by highly peaked density and ion temperature profiles, with fusion reactivity enhanced by typically an order of magnitude above similar L-mode discharges. Effective localized direct electron heating by mode converted IBW was observed in H-{sup 3}He plasmas (analogous to D-T plasmas) at 6.5 T. {copyright} {ital 1996 American Institute of Physics.}

  17. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  18. Electro-optic guided-to-radiation mode conversion in annealed proton-exchanged PPLN waveguides.

    Science.gov (United States)

    Chang, J W; Chen, Y H; Tseng, Q H; Chang, W K; Deng, S L; Hsieh, C S

    2010-11-22

    We report the design and experimental demonstration of electro-optically active TM-guided to TE-radiation mode converters in annealed proton-exchanged (APE) periodically poled lithium niobate (PPLN) channel waveguides in telecom S-C-L bands (1495-1640 nm). A maximum mode conversion efficiency of >95%/cm was obtained at 1520 nm from a 24-μm-period APE PPLN waveguide under an electro-optic (EO) field of ~6.3 V/μm at 35°C. This efficiency has been enhanced by a factor of >4.6 over a waveguide built in the single-domain (unpoled) LiNbO3; it is also to the best of our knowledge the most efficient guided-to-radiation (GTR) mode converter ever reported based on LiNbO3 on-axis waveguides. A conversion bandwidth of ~250 nm was also observed from this EO GTR mode converter.

  19. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  20. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Dybendahl Maack, Martin

    2010-01-01

    We demonstrate the fabrication of a multi-mode (MM) to 61 port single-mode (SM) splitter or "Photonic Lantern". Low port count Photonic Lanterns were first described by Leon-Saval et al. (2005). These are based on a photonic crystal fiber type design, with air-holes defining the multi-mode fiber...... (MMF) cladding. Our fabricated Photonic Lanterns are solid all-glass versions, with the MMF defined by a low-index tube surrounding the single-mode fibers (SMFs). We show experimentally that these devices can be used to achieve efficient and reversible coupling between a MMF and 61 SMFs, when perfectly...... of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering....

  1. Prospective Evaluation of Acoustic Radiation Force Impulse (ARFI) Elastography and High-Frequency B-Mode Ultrasound in Compensated Patients for the Diagnosis of Liver Fibrosis/Cirrhosis in Comparison to Mini-Laparoscopic Biopsy.

    Science.gov (United States)

    Pfeifer, L; Zopf, S; Siebler, J; Schwitulla, J; Wildner, D; Wachter, D; Neurath, M F; Strobel, D

    2015-12-01

    Ultrasound is a well-established noninvasive test for assessing patients with liver disease. This study aims to prospectively compare ultrasound to the new technique elastography (ARFI) for the assessment of liver fibrosis/cirrhosis. High-frequency B-mode ultrasound (liver surface/vein irregularity, liver homogeneity, spleen size), ARFI quantification, mini-laparoscopic liver evaluation including biopsy were prospectively obtained in compensated patients scheduled for liver biopsy. For the diagnosis of cirrhosis, a combined gold standard (cirrhosis at histology and/or at macroscopic liver evaluation) was used. Out of 157 patients, 35 patients were diagnosed cirrhotic. Ultrasound (combination of liver vein and/or surface irregularity) showed no significant difference compared to ARFI quantification for the diagnosis of significant liver fibrosis (Ishak> = 3) and cirrhosis. Diagnosis of cirrhosis had a sensitivity/specificity/PPV/NPV of 83 %(± 12) / 82 %(± 7) / 57 %(± 14) / 94 %(± 4), respectively, with ultrasound and 86 %(± 12) / 81 %(± 7) / 57 %(± 13) / 95 %(± 4), respectively, with ARFI quantification. The sensitivity/specificity/PPV/NPV for the detection of significant fibrosis were 68 %(± 13) / 86 %(± 7) / 71 %(± 13) / 84 %(± 7), respectively, for ultrasound and 70 %(± 12) / 84 %(± 7) / 69 %(± 12) / 84 %(± 7), respectively, for ARFI quantification. ARFI elastography and high-frequency B-mode ultrasound show similar and good results for the diagnosis of compensated liver cirrhosis and high-grade fibrosis. A key benefit of both methods is the high NPV suggesting them as noninvasive exclusion tests. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    Science.gov (United States)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  3. Frequency conversion through spontaneous degenerate four wave mixing in large mode area hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin

    2014-01-01

    Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramoda...... phasematching within the same transmission band as the one containing the pump laser. Furthermore first and second order Raman scattering is observed. The interplay between the different FWM processes and Raman scattering are investigated....

  4. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material.

    Science.gov (United States)

    Frandsen, Lars H; Elesin, Yuriy; Frellsen, Louise F; Mitrovic, Miranda; Ding, Yunhong; Sigmund, Ole; Yvind, Kresten

    2014-04-07

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ~6.3 μm × ~3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is utilized and both schemes result in designs theoretically showing an extinction ratio larger than 21 dB. The 3D optimized design has an experimentally estimated insertion loss lower than ~2 dB in an ~43 nm bandwidth. The mode conversion is experimentally confirmed in this wavelength range by recording mode profiles using vertical grating couplers and an infrared camera. The experimentally determined extinction ratio is > 12 dB and is believed to be limited by the spatial resolution of our setup.

  5. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.

    2004-01-01

    ). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994...

  6. Surface Wave Mode Conversion due to Lateral Heterogeneity and its Impact on Waveform Inversions

    Science.gov (United States)

    Datta, A.; Priestley, K. F.; Chapman, C. H.; Roecker, S. W.

    2016-12-01

    Surface wave tomography based on great circle ray theory has certain limitations which become increasingly significant with increasing frequency. One such limitation is the assumption of different surface wave modes propagating independently from source to receiver, valid only in case of smoothly varying media. In the real Earth, strong lateral gradients can cause significant interconversion among modes, thus potentially wreaking havoc with ray theory based tomographic inversions that make use of multimode information. The issue of mode coupling (with either normal modes or surface wave modes) for accurate modelling and inversion of body wave data has received significant attention in the seismological literature, but its impact on inversion of surface waveforms themselves remains much less understood.We present an empirical study with synthetic data, to investigate this problem with a two-fold approach. In the first part, 2D forward modelling using a new finite difference method that allows modelling a single mode at a time, is used to build a general picture of energy transfer among modes as a function of size, strength and sharpness of lateral heterogeneities. In the second part, we use the example of a multimode waveform inversion technique based on the Cara and Leveque (1987) approach of secondary observables, to invert our synthetic data and assess how mode conversion can affect the process of imaging the Earth. We pay special attention to ensuring that any biases or artefacts in the resulting inversions can be unambiguously attributed to mode conversion effects. This study helps pave the way towards the next generation of (non-numerical) surface wave tomography techniques geared to exploit higher frequencies and mode numbers than are typically used today.

  7. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations

    Science.gov (United States)

    Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available. PMID:28141861

  8. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

    Directory of Open Access Journals (Sweden)

    Guy Gaziv

    Full Text Available Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

  9. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    This paper investigates the geographies of high frequency trading. Today shares shift hands within micro seconds, giving rise to a form of financial geographies termed algorithmic capitalism. This notion refers to the different spatio-temporalities produced by high frequency trading, under...... the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities....... The paper demonstrates how the intensification of time-space compression produces radical new dynamics in the financial market and develops information rent in HFT as convertible to a time rent and a spatio-temporal rent. The final section discusses whether high frequency trading only responds to crises...

  10. The O-X-B mode conversion scheme for ECRH of a high-density Tokamak plasma

    DEFF Research Database (Denmark)

    Hansen, F. R.; Lynov, Jens-Peter; Michelsen, Poul

    1985-01-01

    A method to apply electron cyclotron resonance heating (ECRH) to a Tokamak plasma with central density higher than the critical density for cut-off of the ordinary mode (O-mode) has been investigated. This method involves two mode conversions, from an O-mode via an extraordinary mode (X-mode) int......-mode) into an electron Bernstein mode (B-mode). Radial profiles for the power deposition and the wave-drive current due to the B-waves are calculated for realistic antenna radiation patterns with parameters corresponding to the Danish DANTE Tokamak and to Princeton's PLT....

  11. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  12. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  13. Systematic Analysis of the Effects of Mode Conversion on Thermal Radiation from Neutron Stars

    Science.gov (United States)

    Yatabe, Akihiro; Yamada, Shoichi

    2017-12-01

    In this paper, we systematically calculate the polarization in soft X-rays emitted from magnetized neutron stars, which are expected to be observed by next-generation X-ray satellites. Magnetars are one of the targets for these observations. This is because thermal radiation is normally observed in the soft X-ray band, and it is thought to be linearly polarized because of different opacities for two polarization modes of photons in the magnetized atmosphere of neutron stars and the dielectric properties of the vacuum in strong magnetic fields. In their study, Taverna et al. illustrated how strong magnetic fields influence the behavior of the polarization observables for radiation propagating in vacuo without addressing a precise, physical emission model. In this paper, we pay attention to the conversion of photon polarization modes that can occur in the presence of an atmospheric layer above the neutron star surface, computing the polarization angle and fraction and systematically changing the magnetic field strength, radii of the emission region, temperature, mass, and radii of the neutron stars. We confirmed that if plasma is present, the effects of mode conversion cannot be neglected when the magnetic field is relatively weak, B∼ {10}13 {{G}}. Our results indicate that strongly magnetized (B≳ {10}14 {{G}}) neutron stars are suitable to detect polarizations, but not-so-strongly magnetized (B∼ {10}13 {{G}}) neutron stars will be the ones to confirm the mode conversion.

  14. Broadband wide-angle absorption enhancement due to mode conversion in cold unmagnetized plasmas with periodic density variations

    CERN Document Server

    Yu, Dae Jung

    2016-01-01

    We study theoretically the mode conversion and the associated resonant absorption of p-polarized electromagnetic waves into longitudinal plasma oscillations in cold, unmagnetized and stratified plasmas with periodic spatial density variations. We consider sinusoidal density configurations for which the frequency band where mode conversion occurs is well included within a transmission band of the one-dimensional plasma photonic crystal. We calculate the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the plasma, and the spatial distribution of the magnetic field intensity for various values of the wave frequency and the incident angle using the invariant imbedding theory of mode conversion. We find that the absorption is greatly enhanced over a wide range of frequency and incident angle due to the interplay between the mode conversion and the photonic band structure. The enhancement occurs because for frequencies within a transmission band, the wave ref...

  15. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  16. Single-photon frequency conversion and multi-mode entanglement via constructive interference on Sagnac loop

    Science.gov (United States)

    Zheng, Anshou; Zhang, Guangyong; Gui, Liangwei; Liu, Jibing

    2015-06-01

    Based on constructive interference in Sagnac waveguide loop, an efficient scheme is proposed for selective frequency conversion and multifrequency modes W entanglement via input-output formalism. We can adjust the probability amplitudes of output photons by choosing parameter values properly. The tunable probability amplitude will lead to the generation of output photon with a selectable frequency and W photonic entanglement of different frequencies modes in a wide range of parameter values. Our calculations show the present scheme is robust to the deviation of parameters and spontaneous decay.

  17. Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas

    Science.gov (United States)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.

    1989-01-01

    The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.

  18. Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.

    Science.gov (United States)

    Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel

    2016-12-14

    We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.

  19. Polarization conversion in plasmonic nanoantennas for metasurfaces using structural asymmetry and mode hybridization

    Science.gov (United States)

    Wiecha, Peter R.; Black, Leo-Jay; Wang, Yudong; Paillard, Vincent; Girard, Christian; Muskens, Otto L.; Arbouet, Arnaud

    2017-01-01

    Polarization control using single plasmonic nanoantennas is of interest for subwavelength optical components in nano-optical circuits and metasurfaces. Here, we investigate the role of two mechanisms for polarization conversion by plasmonic antennas: Structural asymmetry and plasmon hybridization through strong coupling. As a model system we investigate L-shaped antennas consisting of two orthogonal nanorods which lengths and coupling strength can be independently controlled. An analytical model based on field susceptibilities is developed to extract key parameters and to address the influence of antenna morphology and excitation wavelength on polarization conversion efficiency and scattering intensities. Optical spectroscopy experiments performed on individual antennas, further supported by electrodynamical simulations based on the Green Dyadic Method, confirm the trends extracted from the analytical model. Mode hybridization and structural asymmetry allow address-ing different input polarizations and wavelengths, providing additional degrees of freedom for agile polarization conversion in nanophotonic devices.

  20. High-frequency Trader Subjectivity

    DEFF Research Database (Denmark)

    Borch, Christian; Lange, Ann-Christina

    2017-01-01

    In this article, we examine the recent shift in financial markets toward high-frequency trading (HFT). This turn is being legitimized with reference to how algorithms are allegedly more rational and efficient than human traders, and less prone to emotionally motivated decisions. We argue......-techniques of the ideal high-frequency trader. We demonstrate that these traders face the challenge of avoiding emotional interference in their algorithms and that they deploy a set of disciplinary self-techniques to curb the importance of emotional attachment....

  1. Mutual conversion between B-mode image and acoustic impedance image

    Science.gov (United States)

    Chean, Tan Wei; Hozumi, Naohiro; Yoshida, Sachiko; Kobayashi, Kazuto; Ogura, Yuki

    2017-07-01

    To study the acoustic properties of a B-mode image, two ways of analysis methods were proposed in this report. The first method is the conversion of an acoustic impedance image into a B-mode image (Z to B). The time domain reflectometry theory and transmission line model were used as reference in the calculation. The second method is the direct a conversion of B-mode image into an acoustic impedance image (B to Z). The theoretical background of the second method is similar to that of the first method; however, the calculation is in the opposite direction. Significant scatter, refraction, and attenuation were assumed not to take place during the propagation of an ultrasonic wave. Hence, they were ignored in both calculations. In this study, rat cerebellar tissue and human cheek skin were used to determine the feasibility of the first and second methods respectively. Some good results are obtained and hence both methods showed their possible applications in the study of acoustic properties of B-mode images.

  2. Trophic mode conversion and nitrogen deprivation of microalgae for high ammonium removal from synthetic wastewater.

    Science.gov (United States)

    Wang, Jinghan; Zhou, Wenguang; Yang, Haizhen; Wang, Feng; Ruan, Roger

    2015-11-01

    In this study, a well-controlled three-stage process was proposed for high ammonium removal from synthetic wastewater using selected promising microalgal strain UMN266. Three trophic modes (photoautotrophy, heterotrophy, and mixotrophy), two N sufficiency conditions (N sufficient and N deprived), two inoculum modes (photoautotrophic and heterotrophic), and different NH4(+)-N concentrations were compared to investigate the effect of trophic mode conversion and N deprivation on high NH4(+)-N removal by UMN266. Results showed that photoautotrophic inoculum with trophic mode conversion from heterotrophy to photoautotrophy and N deprivation in Stage 2 turned was the optimum plan for NH4(+)-N removal, and average removal rates were 12.4 and 19.1mg/L/d with initial NH4(+)-N of 80 and 160mg/L in Stage 3. Mechanism investigations based on algal biomass carbon (C) and N content, cellular composition, and starch content confirmed the above optimum plan and potential of UMN266 as bioethanol feedstock. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sawtooth period changes with mode conversion current drive on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, A; Wukitch, S J; Bonoli, P; Greenwald, M; Hubbard, A; Lin, Y; Parker, R; Porkolab, M; Ram, A K; Wright, J C [Plasma Science and Fusion Center, MIT, Cambridge, MA 02139 (United States)

    2007-03-15

    Significant changes in the sawtooth period have been observed on the Alcator C-Mod tokamak during phased ion cyclotron range of frequencies (ICRF) operation in the mode conversion regime. As the mode conversion layer was swept outwards through the q = 1 surface in D({sup 3}He) plasmas, the sawtooth period was found to increase and then decrease for counter-current drive phasing. For co-current drive and heating phasings, it was observed to decrease and then increase. With 2 MW ICRF power, the period varied from 3 to 12 ms. The observed evolution is consistent with localized current drive by mode converted waves in the vicinity of the q = 1 surface. Simulations with the full wave code TORIC indicate that the electron heating and current drive are due to mode converted ion cyclotron waves. The observed evolution for symmetric (heating) phasing is difficult to attribute to localized heating, since temperature profile stiffness prohibits large changes in the resistivity gradient at the q = 1 surface. An alternative explanation is found in TORIC simulations, which predict co-current drive for symmetric phasing due to a strong up-down asymmetry in the ICW wave field.

  4. Detection of coatings within liquid-filled tubes and containers by mode conversion of leaky Lamb waves

    Directory of Open Access Journals (Sweden)

    M. Schmitt

    2013-05-01

    Full Text Available In this paper, a new acoustic sensor principle for coating detection within liquid-filled tubes and containers based on mode conversion of leaky Lamb waves is introduced. Leaky Lamb waves are excited and detected by single-phase transducers, which are attached on the outer side of a tube or container. By transmission time and amplitude measurements, coating formation within the liquid-filled tube and container is detected non-invasively. This new sensor principle is subdivided into the separate considerations of Lamb wave excitation, mode conversion and inverse mode conversion. The Lamb wave excitation by a single-phase transducer is visualized by scanning laser Doppler vibrometer imaging. The mode conversion process of leaky Lamb waves is measured by membrane hydrophone measurements and Schlieren visualization; afterwards, the measured emission angles are compared with the theoretical one. The inverse mode conversion process of pressure waves back to leaky Lamb waves is visualized by Schlieren images. By merging the results of Lamb wave excitation, mode conversion and inverse mode conversion, the new sensor concept is explained. Theoretical considerations and measurement results of adhesive tape coating inside a liquid-filled plastic tube and a liquid-filled stainless steel container verify the new acoustic sensor principle. Finally the measuring sensitivity and the technical realization are discussed.

  5. Fuzzy sliding mode control of a doubly fed induction generator for wind energy conversion

    Directory of Open Access Journals (Sweden)

    A. Meroufel

    2013-12-01

    Full Text Available In this paper we present a nonlinear control using fuzzy sliding mode for wind energy conversion system based on a doubly-fed induction generator (DFIG supplied by an AC-AC converter. In the first place, we carried out briefly a study of modeling on the whole system. In order to control the power flowing between the stator of the DFIG and the grid, a proposed control design uses fuzzy logic technique is applied for implementing a fuzzy hitting control law to remove completely the chattering phenomenon on a conventional sliding mode control. The use of this method provides very satisfactory performance for the DFIG control, and the chattering effect is also reduced by the fuzzy mode. The machine is tested in association with a wind turbine. Simulations results are presented and discussed for the whole system.

  6. Nonlinear mode conversion for intermodal four-wave mixing Stokes and anti-Stokes in a multimode fiber

    Science.gov (United States)

    Pourbeyram, Hamed; Mafi, Arash

    2017-02-01

    In this paper we study, both experimentally and by theory, a new nonlinear dynamic in multimode optical fiber where intermodal four-wave mixing (IM-FWM) and Kerr-induced nonlinear mode coupling (NLC) are strongly interacting. We show that presence of phase-matched IM-FWM and strong nonlinear mode coupling results in an unprecedented saturable mode conversion in the FWM anti-Stokes beam. We investigate the evolution of modal conversion as a function of fiber length and show that the result of this novel nonlinear dynamic is a controllable, length independent mode conversion. Our theoretical calculations suggest that the converted anti-Stokes beam can also be amplified via IM-FWM. We observe a mode conversion with an efficiency as high as 90 percent.

  7. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  8. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  9. Mode Conversion of Langmuir to Electromagnetic Waves with Parallel Inhomogeneity in the Solar Wind and the Corona

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-06-09

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B0 for a range of incident Langmuir wavevectors. Our results include: (1) Both o- and x-mode waves are produced for Ω ∝ (ωL)1/3(ωc/ω) somewhat less than 1, contrary to previous ideas. Only o mode is produced for Ω and somewhat greater than 1.5. Here ωc is the (angular) electron cyclotron frequency, ω the angular wave frequency, and L the length scale of the (linear) density gradient. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as Ω increases. (4) As Ω increases the total electromagnetic field changes from linear to circular polarization, with the o- and x- mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as Ω increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The total conversion efficiency for wave energy from the Langmuir/z mode to radiation is typically less than 10%, but the corresponding power efficiencies differ by the ratio of the group speeds for each mode and are of order 50 – 70%. (7) The interference effect and the disappearance of the x mode at Ω somewhat greater than 1 can be accounted for semiquantitatively using a WKB-like analysis. (8) Constraints on density turbulence are developed for the x mode to be generated and be able to propagate from the source. (9) Standard parameters for the corona and the solar wind near 1 AU suggest that linear mode conversion should produce both o- and x- mode radiation for

  10. One dimensional full wave analysis of slow-to-fast mode conversion in lower hybrid frequencies

    Science.gov (United States)

    Jia, Guo-Zhang; Gao, Zhe

    2014-12-01

    The linear conversion from the slow wave to the fast wave in the lower hybrid range of frequencies is analyzed numerically by using the set of field equations describing waves in a cold plane-stratified plasma. The equations are solved as a two-point boundary value problem, where the polarizations of each mode are set consistently in the boundary conditions. The scattering coefficients and the field patterns are obtained for various density profiles. It is shown that, for large density scale length, the results agree well with the traditional cognitions. In contrast, the reflected component and the probable transmitted-converted component from the conversion region, which are neglected in the usual calculations, become significant when the scale length is smaller than the wavelength of the mode. The inclusion of these new components will improve the accuracy of the simulated propagation and deposition for the injected rf power when the conversion process is involved within a sharp-varying density profile. Meanwhile, the accessibility of the incident slow wave for the low frequency case is also affected by the scale length of the density profile.

  11. Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing.

    Science.gov (United States)

    Wahl, Pierre; Tanemura, Takuo; Vermeulen, Nathalie; Van Erps, Jürgen; Miller, David A B; Thienpont, Hugo

    2014-01-13

    We present an iterative design method for the coupling and the mode conversion of arbitrary modes to focused surface plasmons using a large array of aperiodically randomly located slits in a thin metal film. As the distance between the slits is small and the number of slits is large, significant mutual coupling occurs between the slits which makes an accurate computation of the field scattered by the slits difficult. We use an accurate modal source radiator model to efficiently compute the fields in a significantly shorter time compared with three-dimensional (3D) full-field rigorous simulations, so that iterative optimization is efficiently achieved. Since our model accounts for mutual coupling between the slits, the scattering by the slits of both the source wave and the focused surface plasmon can be incorporated in the optimization scheme. We apply this method to the design of various types of couplers for arbitrary fiber modes and a mode demultiplexer that focuses three orthogonal fiber modes to three different foci. Finally, we validate our design results using fully vectorial 3D finite-difference time-domain (FDTD) simulations.

  12. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  13. Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.K.; Bora, D. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2004-07-01

    Extra Ordinary (X) mode conversion to Bernstein wave near Upper Hybrid Resonance (UHR) layer plays an important role in plasma heating through cyclotron resonance. Wave generation at UHR and parametric decay at high power has been observed during Electron Cyclotron Resonance (ECR) heating experiments in toroidal magnetic fusion devices. A small linear system with ECR and UHR layer within the system has been used to conduct experiments on X-B conversion and parametric decay process as a function of system parameters. Direct probing in situ is conducted and plasma heating is evidenced by soft x-ray emission measurement. Experiments are performed with hydrogen plasma produced with 160-800 W microwave power at 2.45 GHz of operating frequency at 10{sup -3} mbar pressure. The axial magnetic field required for ECR is such that the resonant surface (B = 875 G) is situated at the geometrical axis of the plasma system. Experimental results will be presented in the paper. (authors)

  14. Orbital angular momentum spectrum of Bessel-Gaussian modes, as generated by spontaneous parametric down-conversion

    OpenAIRE

    Roux, Filippus S.

    2012-01-01

    The Bessel-Gaussian modal spectrum, generated in spontaneous parametric down-conversion of a Gaussian pump beam, is considered. This is done by first deriving a general expression for the true probability of detecting specific transverse spatial modes for the pairs of photons generated in a spontaneous parametric down-conversion process. These expressions are applied for Bessel-Gaussian modes in type I phase matching with collinear, degenerate down-converted beams. The result shows that a bro...

  15. Proximities between Piaget’s adaptation process and Nonaka & Takeuchi’s knowledge conversion modes

    Directory of Open Access Journals (Sweden)

    Marina Ferreira de Castro Wille

    2012-08-01

    Full Text Available This article relates theoretical concepts from Nonaka e Takeuchi’s theory of organizational knowledge creation with concepts from Piaget’s theory of equilibration. The bibliographical and exploratory research intends to associate both theories in order to enrich the organizational literature with elements from the educational and psychology areas. The discussion points out similarities between the modes of knowledge conversion from Nonaka e Takeuchi and elements involving Piaget’s theory of equilibration, such as assimilation, accommodation, cognitive conflict and adaptation. In conclusion, the article demonstrates how the authors may have the same constructivist and interactionist foundation.

  16. Optical apparatus for conversion of whispering-gallery modes into a free space gaussian like beam

    Science.gov (United States)

    Stallard, Barry W.; Makowski, Michael A.; Byers, Jack A.

    1992-01-01

    An optical converter for efficient conversion of millimeter wavelength whispering-gallery gyrotron output into a linearly polarized, free-space Gaussian-like beam. The converter uses a mode-converting taper and three mirror optics. The first mirror has an azimuthal tilt to eliminate the k.sub..phi. component of the propagation vector of the gyrotron output beam. The second mirror has a twist reflector to linearly polarize the beam. The third mirror has a constant phase surface so the converter output is in phase.

  17. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process......We explore theoretically the feasibility of using frequency conversion by sum- or difference-frequency generation, enabled by three-wave-mixing, for selectively multiplexing orthogonal input waveforms that overlap in time and frequency. Such a process would enable a drop device for use...

  18. Influence of density fluctuations on the O–X mode conversion and on microwave propagation

    Directory of Open Access Journals (Sweden)

    Köhn A.

    2015-01-01

    Full Text Available Full-wave simulations are performed in order to investigate the interaction of plasma density perturbations and microwaves. The perturbations are divided into two cases: A single blob-like structure and a fully turbulent density profile. The resulting scattering of a microwave beam and the effect on the O–X mode conversion are presented for both cases. Quantitative analyses are performed as a function of the average size and position of the perturbations. The usage of spatial coordinates normalized to the vacuum wavelength of the microwave allows to easily adopt the results to a specific problem.

  19. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  20. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine......-structure cues. However, these conclusions rely on the assumptions that combination tones were properly masked and that the ability of listeners to hear out individual partials provides an adequate measure of resolvability. Those assumptions were tested by measuring the audibility of combination tones...... and their effects on pitch matches, the effects of relative component phases and of dichotic presentation, and listeners' ability to hear out individual partials. The results confirmed that combination tones affected pitch, but pitch remained salient when they were masked. The lack of dependence of pitch...

  1. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  2. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  3. Localized bulk electron heating with ICRF mode conversion in the JET tokamak

    DEFF Research Database (Denmark)

    Mantsinen, M.J.; Mayoral, M.-L.; Eester, D. Van

    2004-01-01

    of the He-3 ion cyclotron resonance layer in D and He-4 plasmas and subsequently damped on the bulk electrons. The resulting electron power deposition, measured using ICRF power modulation, is narrow with a typical full-width at half-maximum of approximate to30 cm (i.e. about 30% of the minor radius......) and the total deposited power to electrons comprises at least up to 80% of the applied ICRF power. The ICRF mode conversion power deposition has been kept constant using He-3 bleed throughout the ICRF phase with a typical duration of 4-6 s, i.e. 15-40 energy confinement times. Using waves propagating...

  4. Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas.

    Science.gov (United States)

    Lin, Y; Rice, J E; Wukitch, S J; Greenwald, M J; Hubbard, A E; Ince-Cushman, A; Lin, L; Porkolab, M; Reinke, M L; Tsujii, N

    2008-12-05

    Strong toroidal flow (Vphi) and poloidal flow (Vtheta) have been observed in D-3He plasmas with ion cyclotron range of frequencies (ICRF) mode-conversion (MC) heating on the Alcator C-Mod tokamak. The toroidal flow scales with the rf power Prf (up to 30 km/s per MW), and is significantly larger than that in ICRF minority heated plasmas at the same rf power or stored energy. The central Vphi responds to Prf faster than the outer regions, and the Vphi(r) profile is broadly peaked for r/a or =1.5 MW and increases with power (up to 0.7 km/s per MW). The experimental evidence together with numerical wave modeling suggests a local flow drive source due to the interaction between the MC ion cyclotron wave and 3He ions.

  5. Polarization-Conversion Guided Mode (PCGM) technique for exploring thin anisotropic surface layers.

    Science.gov (United States)

    Yang, Fuzi; Ruan, Lizhen; Sambles, John R

    2007-09-03

    A Polarization-Conversion Guided Mode (PCGM) technique has been developed to quantify optical anisotropy as low as 10-5 for a surface layer only 10 nm thick. The optical geometry consists of an index-fluid matched prism-coupler and an air-gap waveguide comprising the thin sample on a glass plate as the incident surface with a gold reflector forming the other surface of the guide. This allows non-destructive characterization of the optical anisotropy of surface layers. The polarization conversion signal is extraordinarily sensitive. Thus the influence of the polarization purity of the incoming beam, very small twists and/or tilts between the normal to the prism bottom surface and the sample plane, have all been analyzed in detail to allow extraction of the sought for information about the thin layer. Rubbed polyimide thin films and incline-evaporated SiOx layers, both used for liquid crystal alignment, have been examined by this PCGM technique to demonstrate its power.

  6. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  7. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  8. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-12-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  9. Mode conversion electron heating in Alcator C-Mod: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P. T. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Brambilla, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Nelson-Melby, E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Phillips, C. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Porkolab, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Schilling, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Taylor, G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wukitch, S. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boivin, R. L. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boswell, C. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] (and others)

    2000-05-01

    Localized electron heating [full width at half maximum of {delta}(r/a){approx_equal}0.2] by mode converted ion Bernstein waves (IBW) has been observed in the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)]. These experiments were performed in D({sup 3}He) plasmas at high magnetic field (B{sub 0}=7.9 T), high-plasma density (n{sub e0}{>=}1.5x10{sup 20} m{sup -3}), and for 0.05{<=}n{sub He-3}/n{sub e}{<=}0.30. Electron heating profiles of the mode converted IBW were measured using a break in slope analysis of the electron temperature versus time in the presence of rf (radio frequency) modulation. The peak position of electron heating was found to be well-correlated with {sup 3}He concentration, in agreement with the predictions of cold plasma theory. Recently, a toroidal full-wave ion cyclotron range of frequencies (ICRF) code TORIC [M. Brambilla, Nucl. Fusion 38, 1805 (1998)] was modified to include the effects of IBW electron Landau damping at (k{sub (perpendicular} {sub sign)}{rho}{sub i}){sup 2}>>1, This model was used in combination with a 1D (one-dimensional) integral wave equation code METS [D. N. Smithe et al., Radio Frequency Power in Plasmas, AIP Conf. Proc. 403 (1997), p. 367] to analyze these experiments. Model predictions were found to be in qualitative and in some instances quantitative agreement with experimental measurements. A model for mode conversion current drive (MCCD) has also been developed which combines a toroidal full wave code with an adjoint evaluation of the ICRF current drive efficiency. Predictions for off-axis MCCD in C-Mod have been made using this model and will be described. (c) 2000 American Institute of Physics.

  10. Extracting cardiac myofiber orientations from high frequency ultrasound images

    Science.gov (United States)

    Qin, Xulei; Cong, Zhibin; Jiang, Rong; Shen, Ming; Wagner, Mary B.; Kirshbom, Paul; Fei, Baowei

    2013-03-01

    Cardiac myofiber plays an important role in stress mechanism during heart beating periods. The orientation of myofibers decides the effects of the stress distribution and the whole heart deformation. It is important to image and quantitatively extract these orientations for understanding the cardiac physiological and pathological mechanism and for diagnosis of chronic diseases. Ultrasound has been wildly used in cardiac diagnosis because of its ability of performing dynamic and noninvasive imaging and because of its low cost. An extraction method is proposed to automatically detect the cardiac myofiber orientations from high frequency ultrasound images. First, heart walls containing myofibers are imaged by B-mode high frequency (pig hearts.

  11. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  12. Plant Responses to High Frequency Electromagnetic Fields

    Science.gov (United States)

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  13. A comprehensive design approach for a three-phase high-frequency single-switch discontinuous-mode boost power factor corrector based on analytically derived normalized converter component ratings

    Energy Technology Data Exchange (ETDEWEB)

    Kolar, J.W.; Ertl, H.; Zach, F.C. [Technical Univ. Vienna (Austria). Power Electronics Section

    1995-05-01

    In this paper the peak, mean, and rms values of the component currents of a three-phase single-switch discontinuous inductor current mode boost rectifier are calculated analytically. The values are given in rated form in dependency on the output power and on the ratio of output voltage to the amplitude of the mains voltage. Furthermore, the influence of the voltage transfer ratio on the shape of the mains currents and on the power factor of the system is analyzed. The theoretical analysis is verified by digital simulation and a good consistency is achieved. Finally, the approach of the converter dimensioning based on the graphical representation of the calculation results is described and illustrated using a specific example. The correctness of the dimensioning is verified by measurements on a laboratory model.

  14. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is...

  15. Temporal mode sorting using dual-stage quantum frequency conversion by asymmetric Bragg scattering

    DEFF Research Database (Denmark)

    Christensen, Jesper Bjerge; Reddy, Dileep V.; McKinstrie, C. J.

    2015-01-01

    -mode interferometry [D. V. Reddy, Phys. Rev. A 91, 012323 (2015)], has been shown in the case of three-wave mixing to promise near-unity mode-sorting efficiency. Here we demonstrate that it is also possible to achieve high mode-sorting efficiency using four-wave mixing, if one pump pulse is long and the other short...... - a configuration we call asymmetrically-pumped Bragg scattering. (C) 2015 Optical Society of America...

  16. Overview of the Advanced High Frequency Branch

    Science.gov (United States)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  17. On-fiber 3D printing of photonic crystal fiber tapers for mode field diameter conversion

    KAUST Repository

    Bertoncini, Andrea

    2017-11-02

    The large mismatch between the Mode Field Diameter (MFD) of conventional single-mode fibers (SMFs) and the MFD of highly nonlinear Photonic Crystal Fibers (PCFs), that can be down to 1.5 μm, or Large Mode Area PCF, that can be up to 25 μm, would require a substantial fiber mode size rescaling in order to allow an efficient direct coupling between PCFs and SMFs. Over the years different solutions have been proposed, as fiber splicing of SMF to PCF. However these procedures are not straightforward, as they involve developing special splicing recipes, and can affect PCF optical properties at the splice interface [1].

  18. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    Directory of Open Access Journals (Sweden)

    Veridiana Resende NOVAIS

    Full Text Available Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC and one light-cured (Variolink Veneer. The dual-cured resin cements were tested by using the dual activation mode (base and catalyst and light-activation mode (base paste only. For degree of conversion (DC (n=5, a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR. For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05. Scanning electron microscopy (SEM was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  19. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  20. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...... will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration....

  1. Identification of the Parameters of the High-Frequency Equivalent Circuit of PM Synchronous Motor based on Genetic Algorithm

    Science.gov (United States)

    Ito, Kouhei; Sato, Yasuyuki; Zanma, Tadanao; Doki, Shinji; Ishida, Muneaki

    This paper presents an identification technique of parameters of a high frequency equivalent circuit of permanent magnet synchronous motors (PMSM) driven by a PWM inverter. The high frequency oscillatory currents such as leakage current to the motor frame (common-mode current) and high frequency oscillatory line current (normal-mode current), are generated by switching instants of inverter transistors. The parameters of the high frequency equivalent circuit of PMSM which can simulate the oscillating current are identified by means of genetic algorithm. It is shown that the high frequency equivalent circuit with identified parameters can generate the oscillating current by some simulation results.

  2. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  3. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes.

    Science.gov (United States)

    Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José

    2017-01-01

    The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (ptranslucent ceramic restorations of up to or less than 1.0 mm thick.

  4. Comparison of noise redistribution in an SOA in pass-through and wavelength conversion mode

    DEFF Research Database (Denmark)

    Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper

    2004-01-01

    We use numerical simulations to investigate the redistribution of noise in a saturated SOA. A comparison of cross-gain modulation and self-modulation pass-through mode shows fundamental differences relevant to all-optical wavelength converters and regenerators.......We use numerical simulations to investigate the redistribution of noise in a saturated SOA. A comparison of cross-gain modulation and self-modulation pass-through mode shows fundamental differences relevant to all-optical wavelength converters and regenerators....

  5. High-frequency broadband modulation of electroencephalographic spectra

    Directory of Open Access Journals (Sweden)

    Julie A Onton

    2009-12-01

    Full Text Available High-frequency cortical potentials in electroencephalographic (EEG scalp recordings have low amplitudes and may be confounded with scalp muscle activities. EEG data from an eyes-closed emotion imagination task were linearly decomposed using independent component analysis (ICA into maximally independent component (IC processes. Joint decomposition of IC log spectrograms into source- and frequency-independent modulator (IM processes revealed three distinct classes of IMs that separately modulated broadband high-frequency (~15-200 Hz power of brain, scalp muscle, and likely ocular motor IC processes. Multi-dimensional scaling revealed significant but spatially complex relationships between mean broadband brain IM effects and the valence of the imagined emotions. Thus, contrary to prevalent assumption, unitary modes of spectral modulation of frequencies encompassing the beta, gamma, and high gamma frequency ranges can be isolated from scalp-recorded EEG data and may be differentially associated with brain sources and cognitive activities.

  6. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  7. Influence of curing mode with a LED unit on polymerization contraction kinetics and degree of conversion of dental resin-based materials.

    Science.gov (United States)

    Mortier, Eric; Simon, Yorick; Dahoun, Abdelsellam; Gerdolle, David

    2009-01-01

    The purpose of this study was to evaluate the influence of photopolymerization mode with a light emitting diode (LED) lamp on the curing contraction kinetics and degree of conversion of 3 resin-based restorative materials. The curing contraction kinetics of Admira (ADM), Filtek P60 (P60), and Filtek Flow (FLO) were measured by the glass slide method. The materials were exposed to light from a 1,000 mW/cm-(2) power LED lamp (Elipar Freelight 2) in 3 modes: 2 continuous modes of 20 and 40 seconds (C20 and C40), and 1 exponential mode (E20; 5 seconds of exponential power increase followed by 15 seconds of maximum intensity). The degree of conversion (DC) was measured for each of the materials, and each of the modes by Fourier transformed infra-red spectrometry. P60 had the significantly lowest final contraction and FLO the highest among all light exposure modes. The C20 and C40 modes did not produce any difference in contraction or degree of conversion. The E20 mode led to a significant slowing of contraction speed combined with greater final contraction. Use of a LED lamp (1,000 mW/cm2) in continuous mode reduces the exposure time by half for identical curing shrinkage and degree of conversion.

  8. Temporal-Mode Interferometry: A Technique for Highly Selective Quantum Pulse Gating via Cascaded Frequency Conversion in Nonlinear Optical Waveguides

    Science.gov (United States)

    Reddy, Dileep Venkatarama

    A new, and thus far only, method to overcome a selectivity barrier in parametrically pumped quantum pulse gates is proposed and experimentally demonstrated for the first time, using frequency conversion of optical temporal modes in second-order nonlinear waveguides. Temporal modes and quantum pulse gates are defined and their utilities are explored. Pulsed operation of three-field and four-field, parametric, optical processes are modeled and numerically investigated. A maximum limit to achievable selectivity for quantum pulse gating in uniform media is discovered and theoretically explained. An interferometric means of overcoming said limit and asymptotically approaching unit selectivity is proposed. The principle is experimentally verified by double-passing specifically shaped optical pulses derived from an ultrafast Ti:sapphire laser through a periodically-poled lithium niobate waveguide phasematched for sum-frequency generation. Further improvements and future implications for quantum technologies are discussed.

  9. Frequency dependence of lung volume changes during superimposed high-frequency jet ventilation and high-frequency jet ventilation.

    Science.gov (United States)

    Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A

    2014-01-01

    Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).

  10. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency

  11. High frequency pressure oscillator for microcryocoolers

    Science.gov (United States)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  12. Theoretical analysis of mode conversion electron heating experiments in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; OShea, P.J. [MIT PSFC, Cambridge, Massachusetts 02139 (United States); Brambilla, M. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Hubbard, A.; Porkolab, M.; Takase, Y.; Wukitch, S. [MIT PSFC, Cambridge, Massachusetts 02139 (United States)

    1997-04-01

    A computer code is used for analysis of the electron heating and current drive at 80 and 40 MHz via mode converted ion Bernstein waves in the Alcator C-Mod tokamak. The results will be tested experimentally. {copyright} {ital 1997 American Institute of Physics.}

  13. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    OpenAIRE

    S. Arumugam S. Ramareddy M. Sridhar

    2011-01-01

    This paper presents a novel soft-switching pulse width modulation (PWM) utility frequency AC to high frequency (HF) AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which ...

  14. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  15. High frequency pressure oscillator for microcryocoolers

    OpenAIRE

    Vanapalli, Srinivas; ter Brake, Hermanus J.M.; Jansen, Henricus V.; Zhao, Yiping; Holland, Herman J.; Burger, Johannes Faas; Elwenspoek, Michael Curt

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at ...

  16. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  17. Novel high-frequency air transducers

    Science.gov (United States)

    Schiller, S.; Hsieh, C.-K.; Chou, C.-H.; Khuri-Yakub, B. T.

    The properties of ligneous materials have been evaluated in order to improve the insertion loss and bandwidth of air-based ultrasonic transducers. It is found that cork and balsa wood have the appropriate impedance to match with air, though their attenuation coefficients are prohibitive for high-frequency operation. For multiple matching layer devices, ligneous materials could be made useful in the 1-10 MHz frequency range.

  18. High Frequency Guided Wave Virtual Array SAFT

    Science.gov (United States)

    Roberts, R.; Pardini, A.; Diaz, A.

    2003-03-01

    The principles of the synthetic aperture focusing technique (SAFT) are generalized for application to high frequency plate wave signals. It is shown that a flaw signal received in long-range plate wave propagation can be analyzed as if the signals were measured by an infinite array of transducers in an unbounded medium. It is shown that SAFT-based flaw sizing can be performed with as few as three or less actual measurement positions.

  19. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    Landstuhl Regional Medical Center, Germany; and †United States Army Institute of Surgical Research, Fort Sam Houston, Texas. The author does not have...AND ADDRESS(ES) United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 8. PERFORMING ORGANIZATION REPORT NUMBER 9...Engl J Med 1981;305:1375–9. 25. Pillow JJ. High-frequency oscillatory ventilation: mecha- nisms of gas exchange and lung mechanics. Crit Care Med

  20. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  1. High Frequency Components in Bottlenose Dolphin Echolocation Signals

    National Research Council Canada - National Science Library

    Toland, Ronald

    1998-01-01

    .... To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed in which an acoustic filter, used to suppress the high frequencies...

  2. One-shot Design of Radial Mode Piezoelectric Transformer for Magneticless Power Conversion

    DEFF Research Database (Denmark)

    Meyer, Kaspar Sinding; Andersen, Michael A. E.

    2011-01-01

    Piezoelectric Transformer based resonant power converters are an attractive alternative to magnetic power converters in applications requiring a power level currently less than 100W. Among the benefits are a power density up to 40W/cm3, a low profile, reduced radiated EMI and high system efficiency...... due to zero voltage switching commutation. The main criteria to take advantage of these benefits are, despite the fact that a PT is a piezoelectric capacitor, is optimization the transformer to behave inductively as a means to avoid excessive hard switching losses. With this objective, the inverse...... mathematical problem has been solved, that directly links wanted electrical specifications to the mechanical dimensions of a radial mode piezoelectric transformer. The novel outcome of this study is that the soft switching ability is directly linked to the ratio between the active volume of the primary...

  3. High-Frequency Percussive Ventilation: Pneumotachograph Validation and Tidal Volume Analysis

    Science.gov (United States)

    2010-06-01

    percussive ventilation (HFPV) is an increasingly used mode of mechanical ventilation , for which there is no proven real-time means of measuring delivered... mechanical ventilation ; tidal volume; VT; pneumotachography. [Respir Care 2010;55(6):734–740] Introduction Clinical application of high-frequency percussive...conventional mechanical ventilation (Fig. 1). How- ever, neither the low-frequency nor the high-frequency volumes administered by HFPV are measured by the

  4. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.

    Science.gov (United States)

    Lin, Shuyu

    2012-01-01

    The piezoelectric ultrasonic composite transducer, which can be used in either gas or liquid media, is studied in this paper. The composite transducer is composed of a longitudinal sandwich piezoelectric transducer, a mechanical transformer, and a metal circular plate in flexural vibration. Acoustic radiation is produced by the flexural circular plate, which is excited by the longitudinal sandwich transducer and transformer. Based on the classic flexural theory of plates, the equivalent lumped parameters for a plate in axially symmetric flexural vibration with free boundary conditions are obtained. The radiation impedance of the plate is derived and the relationship between the radiation impedance and the frequency is analyzed. The equivalent circuits for the plate in flexural vibration and the composite transducer are given. The vibrational modes and the harmonic response of the composite piezoelectric transducer are simulated by the numerical method. Based on the theoretical and numerical analysis, two composite piezoelectric ultrasonic transducers are designed and manufactured, their admittance-frequency curves are measured, and the resonance frequency is obtained. The flexural vibrational displacement distribution of the transducer is measured with a laser scanning vibrometer. It is shown that the theoretical results are in good agreement with the measured resonance frequency and the displacement distribution. © 2012 IEEE

  5. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  6. Cultures of High-frequency Trading

    DEFF Research Database (Denmark)

    Lange, Ann-Christina; Lenglet, Marc; Seyfert, Robert

    2016-01-01

    As part of ongoing work to lay a foundation for social studies of high-frequency trading (HFT), this paper introduces the culture(s) of HFT as a sociological problem relating to knowledge and practice. HFT is often discussed as a purely technological development, where all that matters is the speed...... of allocating, processing and transmitting data. Indeed, the speed at which trades are executed and data transmitted is accelerating, and it is fair to say that algorithms are now the primary interacting agents operating in the financial markets. However, we contend that HFT is first and foremost a cultural...

  7. Direct observation of electron-Bernstein wave heating by O-X-B-mode conversion at low magnetic field in the WEGA stellarator.

    Science.gov (United States)

    Podoba, Y Y; Laqua, H P; Warr, G B; Schubert, M; Otte, M; Marsen, S; Wagner, F; Holzhauer, E

    2007-06-22

    The ordinary-extraordinary-Bernstein-mode conversion process for overdense plasma heating with electron-Bernstein waves is demonstrated in the WEGA stellarator at low magnetic field (approximately 50 mT) at 2.45 GHz. For the first time the conversion from an O wave to an X wave is clearly demonstrated by probe measurements of amplitude and phase of the wave field in the conversion region and supported by two-dimensional full-wave calculations. The propagation and resonant absorption of the Bernstein wave is measured in fast power modulation experiments.

  8. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    Science.gov (United States)

    Neilson, Jeffrey M.

    2017-07-25

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  9. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  10. High frequency image-based flow detection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, R [National Heart and Lung Institute, Royal Brompton Hospital, London SW3 6NP (United Kingdom); Prager, R W [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Gee, A H [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Treece, G M [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2004-01-01

    Tumour angiogenesis refers to neovascular development on a microvascular scale and is an early indicator of cancer. Prototype high frequency pulsed Doppler systems using 50 MHz transducers have been reported to detect microvascular flow in vessels 0.02 mm to 0.5 mm in diameter at superficial depths of 0.5 mm. Detecting flow in microvasculature at deeper depths requires lower frequency transducers with a resulting tradeoff in spatial resolution. Using a 22 MHz transducer, we demonstrate a speckle decorrelation technique to detect in vitro flow in soft tubing of 0.5 mm diameter at a depth of 2 cm. This image-based decorrelation technique is capable of detecting flow in significantly narrower diameters down to 0.125 mm by decreasing the region of interest.

  11. High-Frequency Quantitative Ultrasound Imaging of Cancerous Lymph Nodes

    Science.gov (United States)

    Mamou, Jonathan; Coron, Alain; Hata, Masaki; Machi, Junji; Yanagihara, Eugene; Laugier, Pascal; Feleppa, Ernest J.

    2009-07-01

    High-frequency ultrasound (HFU) offers a means of investigating biological tissue at the microscopic level. High-frequency, quantitative-ultrasound (QUS) methods were developed to characterize freshly-dissected lymph nodes of cancer patients. Three-dimensional (3D) ultrasound data were acquired from lymph nodes using a 25.6-MHz center-frequency transducer. Each node was inked prior to 3D histological fixation to recover orientation after sectioning. Backscattered echo signals were processed to yield two QUS estimates associated with tissue microstructure: scatterer size and acoustic concentration. The QUS estimates were computed following established methods using a Gaussian scattering model. Four lymph nodes from a patient with stage-3 colon cancer were evaluated as an illustrative case. QUS images were generated for this patient by expressing QUS estimates as color-encoded pixels and overlaying them on conventional gray-scale B-mode images. The single metastatic node had an average scatterer size that was significantly larger than the average scatterer size of the other nodes, and the statistics of both QUS estimates in the metastatic node showed greater variance than the statistics of the other nodes. Results indicate that the methods may provide a useful means of identifying small metastatic foci in dissected lymph nodes that might not be detectable using current standard pathology procedures.

  12. Numerical study on flow fields and aerodynamics of tilt rotor aircraft in conversion mode based on embedded grid and actuator model

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2015-02-01

    Full Text Available A method combining rotor actuator disk model and embedded grid technique is presented in this paper, aimed at predicting the flow fields and aerodynamic characteristics of tilt rotor aircraft in conversion mode more efficiently and effectively. In this method, rotor’s influence is considered in terms of the momentum it impacts to the fluid around it; transformation matrixes among different coordinate systems are deduced to extend actuator method’s utility to conversion mode flow fields’ calculation. Meanwhile, an embedded grid system is designed, in which grids generated around fuselage and actuator disk are regarded as background grid and minor grid respectively, and a new method is presented for ‘donor searching’ and ‘hole cutting’ during grid assembling. Based on the above methods, flow fields of tilt rotor aircraft in conversion mode are simulated, with three-dimensional Navier–Stokes equations discretized by a second-order upwind finite-volume scheme and an implicit lower–upper symmetric Gauss–Seidel (LU-SGS time-stepping scheme. Numerical results demonstrate that the proposed CFD method is very effective in simulating the conversion mode flow fields of tilt rotor aircraft.

  13. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    NARCIS (Netherlands)

    Zweiphenning, W. J E M; van 't Klooster, M. A.; van Diessen, E.; van Klink, N. E C; Huiskamp, G. J M; Gebbink, T. A.; Leijten, F. S S; Gosselaar, P. H.; Otte, W. M.; Stam, C. J.; Braun, K. P J; Zijlmans, G. J M

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas

  14. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy

    Directory of Open Access Journals (Sweden)

    W.J.E.M. Zweiphenning

    2016-01-01

    Significance: ‘Baseline’ high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the ‘architecture’ of epileptogenic networks and help unravel the pathophysiology of HFOs.

  15. Kinetic simulations of X-B and O-X-B mode conversion and its deterioration at high input power

    Science.gov (United States)

    Arefiev, A. V.; Dodin, I. Y.; Köhn, A.; Du Toit, E. J.; Holzhauer, E.; Shevchenko, V. F.; Vann, R. G. L.

    2017-11-01

    Spherical tokamak plasmas are typically overdense and thus inaccessible to externally-injected microwaves in the electron cyclotron range. The electrostatic electron Bernstein wave (EBW), however, provides a method to access the plasma core for heating and diagnostic purposes. Understanding the details of the coupling process to electromagnetic waves is thus important both for the interpretation of microwave diagnostic data and for assessing the feasibility of EBW heating and current drive. While the coupling is reasonably well-understood in the linear regime, nonlinear physics arising from high input power has not been previously quantified. To tackle this problem, we have performed one- and two-dimensional fully kinetic particle-in-cell simulations of the two possible coupling mechanisms, namely X-B and O-X-B mode conversion. We find that the ion dynamics has a profound effect on the field structure in the nonlinear regime, as high amplitude short-scale oscillations of the longitudinal electric field are excited in the region below the high-density cut-off prior to the arrival of the EBW. We identify this effect as the instability of the X wave with respect to resonant scattering into an EBW and a lower-hybrid wave. We calculate the instability rate analytically and find this basic theory to be in reasonable agreement with our simulation results.

  16. ICRF mode conversion flow drive study with enhanced wave detection by phase contrast imaging on Alcator C-Mod

    Science.gov (United States)

    Lin, Y.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J. E.; Wukitch, S. J.

    2015-11-01

    Applying ICRF power in D(He3) plasmas has been found to drive plasma rotation in the mode conversion (MC) regime at a moderate He3 level. With the help of ICRF wave simulation, MC induced symmetry-breaking in momentum distribution is thought to be the likely cause of the observed flow drive effect. However, the detailed mechanism of how the waves generate rotation is unclear due to the involvement of three waves in the MC region: the MC ion Bernstein wave, MC ion cyclotron wave, and fast wave. Recently, the phase contrast imaging system on Alcator C-Mod has been upgraded, and it has been shown to have much higher sensitivity in detecting RF waves. Further MC flow drive experiments at 8 T will be carried out in the 2015 campaign. We will study the dependence of the rotation vs. the measured wave amplitude, k spectrum, location, and relative amplitude among the three waves. This study will shed lights on the flow drive mechanism and help assess the roles played by the different waves in the process. Supported by USDoE awards DE-FC02-99ER54512 and DE-FG02-94-ER54235.

  17. Asynchronous BCI control using high-frequency SSVEP

    National Research Council Canada - National Science Library

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-01-01

    ...) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range...

  18. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy.

    Science.gov (United States)

    Zweiphenning, W J E M; van 't Klooster, M A; van Diessen, E; van Klink, N E C; Huiskamp, G J M; Gebbink, T A; Leijten, F S S; Gosselaar, P H; Otte, W M; Stam, C J; Braun, K P J; Zijlmans, G J M

    2016-01-01

    High frequency oscillations (HFOs; > 80 Hz), especially fast ripples (FRs, 250-500 Hz), are novel biomarkers for epileptogenic tissue. The pathophysiology suggests enhanced functional connectivity within FR generating tissue. Our aim was to determine the relation between brain areas showing FRs and 'baseline' functional connectivity within EEG networks, especially in the high frequency bands. We marked FRs, ripples (80-250 Hz) and spikes in the electrocorticogram of 14 patients with refractory temporal lobe epilepsy. We assessed 'baseline' functional connectivity in epochs free of epileptiform events within these recordings, using the phase lag index. We computed the Eigenvector Centrality (EC) per channel in the FR and gamma band network. We compared EC between channels that did or did not show events at other moments in time. FR-band EC was higher in channels with than without spikes. Gamma-band EC was lower in channels with ripples and FRs. We confirmed previous findings of functional isolation in the gamma-band and found a first proof of functional integration in the FR-band network of channels covering presumed epileptogenic tissue. 'Baseline' high-frequency network parameters might help intra-operative recognition of epileptogenic tissue without the need for waiting for events. These findings can increase our understanding of the 'architecture' of epileptogenic networks and help unravel the pathophysiology of HFOs.

  19. Effect of different curing modes on the degree of conversion and the microhardness of different composite restorations

    Directory of Open Access Journals (Sweden)

    Reem Ali Ajaj

    2015-01-01

    Full Text Available Introduction: This study aims to evaluate the effects of different curing units and modes on the degree of conversion (DC and microhardness (MH of two different resin composites [ESTELITE ∑ QUICK (EQ, and Z350 XT (Z3]. Materials and Methods: One hundred (100 discs of each tested material were made and divided into two subgroups (n = 50 according to the discs′ dimensions: 5 mm diameter × 2 mm thickness, and 2 mm diameter × 2 mm thickness. Each subgroup was further subdivided into the following five classes (n = 10: I cured with halogen light curing-unit; II cured with light-emitting diode (LED unit; III cured with argon laser; IV cured with halogen light-curing unit for 5 s, 10 s rest followed by 20 s curing; and V cured with halogen light-curing unit for 10 s, then 10 s rest, followed by 10 s curing. The first subgroup was tested for MH using the Vickers Microhardness tester and the second subgroup was tested for DC using Fourier transform infrared spectroscopy (FTIR. Data were statistically analyzed using two-way analysis of variance (ANOVA and Tukey′s post hoc test P < 0.05. Results: Specimens in class IV showed the highest mean DC and MH, followed by class III, then class II. Class I showed significantly lower mean values for both DC and MH. On the other hand, Z3 showed statistically significantly higher mean DC and MH than EQ. Conclusion: Although the two tested composites did not perform similarly under the test conditions, curing with halogen unit for 5 s, then 10 s rest, followed by 10 s curing improved the DC and the MH of both the tested materials.

  20. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  1. Tidally-modulated high frequency internal waves in Gautami-Godavari estuary, East coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, B.; Murty, T.V.R.; Sadhuram, Y.; Sarma, V.V.S.S.; Murty, V.S.N.; Prasad, K.V.S.R.

    of Internal waves (IWs) and to infer their generation mechanism Based on the stability criteria, two High Frequency (HF) significant modes in the Internal Wave (IW) field at frequencies 96.67 cph (10 m depth) and 71.15 cph (14 m depth) have been identified...

  2. Quantum frequency conversion and strong coupling of photonic modes using four-wave mixing in integrated microresonators

    CERN Document Server

    Vernon, Z; Sipe, J E

    2016-01-01

    Single photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide frequency ranges at sub-watt pump powers. Using a quantum-mechanical Hamiltonian formalism, we present a detailed theoretical analysis of the conversion dynamics in these systems, and show that they are capable of converting single- and multi-photon quantum states. Analytic formulas for the conversion efficiency, spectral conversion probability density, and pump power requirements are derived which are in good agreement with previous theoretical and experimental results. We show that with only modest improvement to the state of the art, efficiencies exceeding 95% are achievable using less than 100 mW of pump power. At the critical driving strength that yields maximum conversion efficiency, the spectral conversion probability density is shown to exhibit a flat-toppe...

  3. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    -core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...... power converters for very high frequencies. The magnetic coupling factor of both transformers is approx. 60 % and the mutual coupling inductance is dominant up to a frequency of 50 MHz.......The quest for higher power density has led to research of very high frequency (30-300 MHz) power converters. Magnetic components based on ferrite cores have limited application within this frequency range due to increased core loss. Air-core magnetics is a viable alternative as they do not exhibit...

  4. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  5. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meneghini, Orso [General Atomics, San Diego, California 92121 (United States); Volpe, Francesco A., E-mail: fvolpe@columbia.edu [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2016-11-15

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  6. Multifunctional Magnetodielectric Composites for Antenna and High Frequency Applications

    National Research Council Canada - National Science Library

    Zhang, Xiaokai; Golt, Michael C; Ekiert, Jr., Thomas F; Yarlagadda, Shridhar; Unruh, Karl M; Xaio, John Q

    2006-01-01

    Miniaturization of high frequency antennas while maintaining desirable bandwidth, impedance, and loss characteristics has recently attracted great attention in part due to the development of metamaterials...

  7. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  8. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    Science.gov (United States)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  9. High Frequency AC Inductor Analysis and Design for Dual Active Bridge (DAB) Converters

    DEFF Research Database (Denmark)

    Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    The dual active bridge (DAB) converter is an isolated bidirectional dc-dc topology which is the most critical part for the power conversion systems such as solid-state transformers (SST). This paper focuses on analysis and design of high frequency ac inductors which are the power interfacing...... the core loss and the winding loss are almost equal is selected as the optimal one. The experimental results are presented to verify the validity of the analysis and design....

  10. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakage...

  11. High frequency plant regeneration from desiccated calli of indica rice

    African Journals Online (AJOL)

    An efficient and reproducible protocol is required to achieve high frequency transformation from transformed calli. We report here high frequency plant regeneration from mature seed derived embryogenic calli of two recalcitrant indica rice cultivars HKR-46 and HKR-126 after partial desiccation treatment. Embryogenic and ...

  12. Energy conservation and high-frequency damping in numerical time integration

    DEFF Research Database (Denmark)

    Krenk, Steen

    2008-01-01

    additional variables to represent damping. In the present paper it is demonstrated, how damping equivalent to the α-damping of the Newmark algorithm can be introduced directly via displacement and velocity dependent terms. It is furthermore shown, how this damping can be improved by introduction of a new set...... this often leads to a fairly large number of high-frequency modes, that are not represented well – and occasionally directly erroneously – by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms – notably various forms of the Newmark algorithm – where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  13. Energy conservation and high-frequency damping in numerical time-integration

    DEFF Research Database (Denmark)

    Krenk, Steen

    2007-01-01

    by introduction of a new set of variables related to the displacement and velocity vectors by a suitable first order filter with scalar coefficients. By this device an algorithmic damping can be obtained that is of third order in the low-frequency regime. It is an important feature of both algorithms...... this often leads to a fairly large number of high-frequency modes, that are not represented well - and occasionally directly erroneously - by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms - notably various forms of the Newmark algorithm where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  14. Extended high frequency audiometry in users of personal listening devices.

    Science.gov (United States)

    Kumar, Poornima; Upadhyay, Prabhakar; Kumar, Ashok; Kumar, Sunil; Singh, Gautam Bir

    Noise exposure leads to high frequency hearing loss. Use of Personal Listening Devices may lead to decline in high frequency hearing sensitivity because of prolonged exposure to these devices at high volume. This study explores the changes in hearing thresholds by Extended High Frequency audiometry in users of personal listening devices. A descriptive, hospital based observational study was performed with total 100 subjects in age group of 15-30years. Subjects were divided in two groups consisting of 30 subjects (Group A) with no history of Personal Listening Devices use and (Group B) having 70 subjects with history of use of Personal Listening Devices. Conventional pure tone audiometry with extended high frequency audiometry was performed in all the subjects. Significant differences in hearing thresholds of Personal Listening Device users were seen at high frequencies (3kHz, 4kHz and 6kHz) and extended high frequencies (9kHz, 10kHz, 11kHz, 13kHz, 14kHz, 15kHz and 16kHz) with p value 5years usage at high volume. Thus, it can be reasonably concluded that extended high frequencies can be used for early detection of NIHL in PLD users. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity

    Science.gov (United States)

    Ferrie, Ann M.; Wu, Qi; Deichmann, Oberon D.; Fang, Ye

    2014-05-01

    We report a high-frequency resonant waveguide grating imager for assessing compound-induced cardiotoxicity. The imager sweeps the wavelength range from 823 nm to 838 nm every 3 s to identify and monitor compound-induced shifts in resonance wavelength and then switch to the intensity-imaging mode to detect the beating rhythm and proarrhythmic effects of compounds on induced pluripotent stem cell-derived cardiomyocytes. This opens possibility to study cardiovascular biology and compound-induced cardiotoxicity.

  16. Ion cyclotron range of frequencies mode conversion electron heating in deuterium-hydrogen plasmas in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wukitch, S J [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bonoli, P T [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Marmar, E [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Mossessian, D [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Nelson-Melby, E [Centre de Recherches en Physique des Plasmas, Association EURATOM - Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Phillips, P [Fusion Research Center, University of Texas, Austin, Texas 78712 (United States); Porkolab, M [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Schilling, G [Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Wolfe, S [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wright, J [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2003-06-01

    Localized direct electron heating (EH) by mode-converted (MC) ion cyclotron range of frequencies (ICRF) waves in D(H) tokamak plasmas has been clearly observed for the first time in Alcator C-Mod. Both on- and off-axis (high field side) mode conversion EH (MCEH) have been observed. The MCEH profile was obtained from a break-in-slope analysis of electron temperature signals in the presence of radio frequency shut-off. The temperature was measured by a 32-channel high spatial resolution ({<=}7 mm) 2nd harmonic heterodyne electron cyclotron emission system. The experimental profiles were compared with the predictions from a toroidal full-wave ICRF code TORIC. Using the hydrogen concentration measured by a high-resolution optical spectrometer, TORIC predictions were shown qualitatively in agreement with the experimental results for both on- and off-axis MC cases. From the simulations, the EH from MC ion cyclotron wave and ion Bernstein wave is examined.

  17. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  18. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    Science.gov (United States)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  19. An inkjet vision measurement technique for high-frequency jetting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong [Department of Mechanical Engineering, Soonchunhyang University 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of); Ko, Hyun-Seok [Department of Electrical and Robot Engineering, Soonchunhyang University, 22, Soonchunhyang-Ro, Shinchang, Asan Chungnam 336-745 (Korea, Republic of)

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation of high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.

  20. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  1. Music students: conventional hearing thresholds and at high frequencies

    National Research Council Canada - National Science Library

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    .... To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful...

  2. BIOLOGICAL EFFECTS OF HIGH-FREQUENCY ELECTROMAGNETIC WAVES

    Science.gov (United States)

    In this report the author discusses the influence of high-frequency electromagnetic waves on living matter, especially in the field of microwaves. He...of electromagnetic waves . Symptoms of damage are listed and methods of protection discussed.

  3. High-frequency matrix converter with square wave input

    Science.gov (United States)

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  4. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  5. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  6. Multiple reflected beam synthesis of fields excited by a high-frequency oblique beam input in an elastic plate.

    Science.gov (United States)

    Zeroug, S; Felsen, L B

    1992-04-01

    Transducer-excited beams provide important diagnostic tools for ultrasonic nondestructive evaluation (NDE) of elastic materials. For bonded multilayer elastic plates, an obliquely injected high-frequency compressional (P) beam creates interior dynamic fields that are sensitive to weak debonding between the layers. In an effort to clarify the wave phenomena that are operative under these conditions of excitation, a highly idealized model has been chosen wherein a lossless plate in vacuum is insonified by an internal oblique P-beam source. This problem was analyzed in a previous investigation [Lu, Felsen, and Klosner, J. Acoust. Soc. Am. 87, 42-53 (1990)] by expressing the total field in terms of a sum of P-S (vertically polarized or in-plane) coupled normal modes. While the resulting field assumed oscillatory modal patterns at interior cross sections far from the source region, the modally synthesized field near the source clearly outlined profiles interpretable as incident and singly or multiply reflected P-S coupled beams. The problem is therefore studied here directly by Gaussian beam tracing as implemented via our previously employed complex ray field algorithm. The results clarify the observed phenomena by revealing the successive buildup from initially well-resolved beams into oscillatory mode patterns synthesized by overlapping multiples. For the same idealized model, the beam algorithm has been applied elsewhere to the detection and identification of weak debonding in a layered plate [Felsen and Zeroug, J. Acoust. Soc. Am. 90, 1527-1538 (1991)]. With an understanding of the physical mechanisms that arise in the beam-to-mode conversion, one may now explore how their utility is affected under realistic NDE conditions.

  7. Music students: conventional hearing thresholds and at high frequencies

    OpenAIRE

    Lüders,Débora; Gonçalves, Cláudia Giglio de Oliveira; de Moreira Lacerda, Adriana Bender; Ribas,Ângela; Conto,Juliana de

    2014-01-01

    INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audio...

  8. Efficacy of Conventional and High-Frequency Ventilation at Altitude

    Science.gov (United States)

    1988-12-01

    evacuation; Mechanical ventilation ;--andL If.’jJI t’ 06 I 12 i ~High-Frequency ventilation ’& ~.~.- 19 ABSTRACT (Continue on reverse If neesry and identify by...The inspired gas and the subsequent rate of appearance of these gases in arterial blood were monitored. With conventional mechanical ventilation (CMV...AND HIGH-FREQUENCY VENTILATION AT ALTITUDE INTRODUCTION The logistics of aeromedical evacuation of patients requiring mechanical ventilation is

  9. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    Directory of Open Access Journals (Sweden)

    Lin Y.

    2017-01-01

    Full Text Available In recent three-ion species (majority D and H plus a trace level of 3He ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC flow drive experiment in D(3He plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  10. ICRF mode conversion in three-ion species heating experiment and in flow drive experiment on the Alcator C-Mod tokamak

    Science.gov (United States)

    Lin, Y.; Wukitch, S. J.; Edlund, E.; Ennever, P.; Hubbard, A. E.; Porkolab, M.; Rice, J.; Wright, J.

    2017-10-01

    In recent three-ion species (majority D and H plus a trace level of 3He) ICRF heating experiments on Alcator C-Mod, double mode conversion on both sides of the 3He cyclotron resonance has been observed using the phase contrast imaging (PCI) system. The MC locations are used to estimate the species concentrations in the plasma. Simulation using TORIC shows that with the 3He level <1%, most RF power is absorbed by the 3He ions and the process can generate energetic 3He ions. In mode conversion (MC) flow drive experiment in D(3He) plasma at 8 T, MC waves were also monitored by PCI. The MC ion cyclotron wave (ICW) amplitude and wavenumber kR have been found to correlate with the flow drive force. The MC efficiency, wave-number k of the MC ICW and their dependence on plasma parameters like Te0 have been studied. Based on the experimental observation and numerical study of the dispersion solutions, a hypothesis of the flow drive mechanism has been proposed.

  11. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  13. Comparison of Sliding Mode Control and Fuzzy Logic control applied to Variable Speed Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Souhila Rached Zine

    2015-08-01

    Full Text Available wind energy features prominently as a supplementary energy booster. It does not pollute and is inexhaustible. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In This case, the MPPT control becomes important. To realize this control, strategy conventional Proportional and Integral (PI controller is usually used. However, this strategy cannot achieve better performance. This paper proposes other control methods of a turbine which optimizes its production such as fuzzy logic, sliding mode control. These methods improve the quality and energy efficiency. The proposed Sliding Mode Control (SMC strategy and the fuzzy controllers have presented attractive features such as robustness to parametric uncertainties of the turbine, simplicity of its design and good performances. The simulation result under Matlab\\Simulink has validated the performance of the proposed MPPT strategies.

  14. 1550 nm mode-locked semiconductor lasers for all-optical analog-to-digital conversion

    Science.gov (United States)

    Kolodeznyi, Evgenii S.; Novikov, Innokenty I.; Babichev, Andrey V.; Kurochkin, Alexander S.; Gladyshev, Andrey G.; Karachinsky, Leonid Ya.; Gadzhiev, Idris M.; Buyalo, Mikhail S.; Usikova, Anna A.; Egorov, Anton Yu.; Bougrov, Vladislav E.

    2017-09-01

    We have fabricated passive mode-locked laser diode based on strained InGaAlAs/InGaAs/InP heterostructure with emission wavelength 1550 nm. The laser have demonstrated following characteristics i.e. threshold current was 0.36 A, optical emission power was 12 mW, optical pulse repetition rate was 9.84 GHz with ˜ 8 ps pulse duration time at half-height.

  15. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  16. Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    Science.gov (United States)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2015-08-01

    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-3He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.

  17. Validation of full-wave simulations for mode conversion of waves in the ion cyclotron range of frequencies with phase contrast imaging in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Tsujii, N., E-mail: tsujii@k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Porkolab, M.; Bonoli, P. T.; Edlund, E. M.; Ennever, P. C.; Lin, Y.; Wright, J. C.; Wukitch, S. J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Jaeger, E. F. [XCEL Engineering, Inc., Oak Ridge, Tennessee 37830 (United States); Green, D. L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Harvey, R. W. [CompX, Del Mar, California 92014 (United States)

    2015-08-15

    Mode conversion of fast waves in the ion cyclotron range of frequencies (ICRF) is known to result in current drive and flow drive under optimised conditions, which may be utilized to control plasma profiles and improve fusion plasma performance. To describe these processes accurately in a realistic toroidal geometry, numerical simulations are essential. Quantitative comparison of these simulations and the actual experimental measurements is important to validate their predictions and to evaluate their limitations. The phase contrast imaging (PCI) diagnostic has been used to directly detect the ICRF waves in the Alcator C-Mod tokamak. The measurements have been compared with full-wave simulations through a synthetic diagnostic technique. Recently, the frequency response of the PCI detector array on Alcator C-Mod was recalibrated, which greatly improved the comparison between the measurements and the simulations. In this study, mode converted waves for D-{sup 3}He and D-H plasmas with various ion species compositions were re-analyzed with the new calibration. For the minority heating cases, self-consistent electric fields and a minority ion distribution function were simulated by iterating a full-wave code and a Fokker-Planck code. The simulated mode converted wave intensity was in quite reasonable agreement with the measurements close to the antenna, but discrepancies remain for comparison at larger distances.

  18. Unbalanced heat isolation in high-frequency electrothermics of polymers

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Traditionally, the technological scheme with one insulator made of cardboard is used to implement the HF heating processes for welding of polymers without analyzing their insulating properties. For welding of polymer parts with various thickness it is interesting to consider the scheme with two heat insulators in the form of five-layer plate, including electrodes, insulators, and processed material. As a result of the conducted research activities the article presents a mathematical model in the form of a system of differential equations of unsteady heat conductivity taking into account internal sources of heat with appropriate boundary conditions, and software to implement it.The software that implements a mathematical model enables to study the mutual influence between the geometrical and electro-physical parameters of technological system of HF heating of the thermoplastics. From the calculations presented in numerical and graphic form the following areas of heating polymer are identified: uniform heating, regional zones of thermal influence of insulators.The article presents the research results of influence of heat insulators with different thickness on the distribution of thermoplastics temperature field. It is determined that the zone of maximum value of heating polymer can be displaced by modifying the parameters of insulating layers, thereby improving the welding quality of polymeric items.According to research results, we can conclude that there is a

  19. [The treatment of glottic carcinoma with high-frequency electrotome].

    Science.gov (United States)

    Mao, Huadong; Xie, Hongwu; Wang, Yakang; Liang, Suqing

    2014-02-01

    To investigate the surgery management of glottic carcinoma with high-frequency electrotome. Twenty cases of patients with glottic carcinoma were treated by cordectomy under micro-laryngoscopy with high-frequency electrotome. The 20 patients were followed up from 5 months to 6 years, retained good laryngeal function and structure: 1 case had local recurrences after 6 months, underwent total laryngectomy, and now no recurrence had been found: 19 cases (mild adhesions of vocal cords formed in 2 cases) had no local recurrence nor lymph node metastasis. It is unnecessary to invest in expensive equipment in the cordectomy under micro-laryngoscopy with high frequency electrotome under general anesthesia and the result is satisfactory.

  20. Carbon coated nickel nanoparticles produced in high-frequency arc plasma at ambient pressure

    Science.gov (United States)

    Vnukova, Natalia; Dudnik, Alexander; Komogortsev, Sergey; Velikanov, Dmitry; Nemtsev, Ivan; Volochaev, Michael; Osipova, Irina; Churilov, Grigory

    2017-10-01

    The nickel particles with the mean size about 10-20 nm coated with carbon were extracted by the treatment of the carbon condensate with nitric and hydrochloric acids. The initial carbon condensate containing nickel nanoparticles with a graphite conversion was synthesized in the high-frequency carbon-helium arc plasma at ambient pressure with the nickel nanoparticles as a catalyst. The nickel content in the nanoparticles was 84.6 wt%. Magnetic properties of the nanoparticles are characterized by the high hysteresis and thermal stability. The sample of compacted nanoparticles is characterized by electrical resistance much higher than it in of compacted initial condensate.

  1. Comparative study between PI, RST and sliding mode controllers of a DFIG supplied by an AC-AC converter for wind energy conversion system

    Directory of Open Access Journals (Sweden)

    Ahmed Bourouina

    2015-12-01

    Full Text Available This paper deals with a variable speed device to produce electrical energy on a power network, based on a doubly-fed induction generator (DFIG supplied by a direct matrix converter used in wind energy conversion systems. In the first place, we carried out briefly a study of modelling on the whole system. In order to control the power flowing between the stator of the DFIG and the power network, a control law is synthesized using three types of controllers: PI, RST and sliding mode controllers. Their respective performances are compared in terms of power reference tracking, response to sudden speed variations, sensitivity to perturbations and robustness against machine parameters variations.

  2. Condenser Microphone Protective Grid Correction for High Frequency Measurements

    Science.gov (United States)

    Lee, Erik; Bennett, Reginald

    2010-01-01

    Use of a protective grid on small diameter microphones can prolong the lifetime of the unit, but the high frequency effects can complicate data interpretation. Analytical methods have been developed to correct for the grid effect at high frequencies. Specifically, the analysis pertains to quantifying the microphone protective grid response characteristics in the acoustic near field of a rocket plume noise source. A frequency response function computation using two microphones will be explained. Experimental and instrumentation setup details will be provided. The resulting frequency response function for a B&K 4944 condenser microphone protective grid will be presented, along with associated uncertainties

  3. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  4. Testing the efficiency of high-frequency foreign exchange market

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2004-01-01

    Full Text Available This paper deals with the efficiency of the high-frequency foreign exchange market. The objective of this paper is to investigate whether standard statistical tests give the same results for time series resampled at intervals of 15.30 and 60 min. The data used for the purpose of this paper contain major currency pairs such as EUR/USD, GBP/USD and JPY/USD. The results of statistical tests indicate that the high frequency intervals (15-minute are not random and should not be considered independent. On the other hand, tests with lower frequency rates (30 and 60 min indicate rising randomness of the market.

  5. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  6. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  7. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  8. Fact or friction: jumps at ultra high frequency

    NARCIS (Netherlands)

    Christensen, K.; Oomen, R.; Podolskij, M.

    2011-01-01

    In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate

  9. High frequency plant regeneration from shoot tip explants of ...

    African Journals Online (AJOL)

    A high frequency and rapid regeneration protocol was developed from shoot tip explants of Citrullus colocynthis on Murashige and Skoog (MS) medium supplemented with N6-benzylamino-purine (BAP, 0.5 mg/l) and α-naphthalene acetic acid (NAA, 0.5 mg/l). Highest number of shoots (23.0 ± 0.567) was obtained on MS ...

  10. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  11. Music students: conventional hearing thresholds and at high frequencies

    Directory of Open Access Journals (Sweden)

    Débora Lüders

    2014-07-01

    Full Text Available INTRODUCTION: Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. AIM: To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. METHODS: Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry. RESULTS: Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. CONCLUSION: The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians.

  12. Factors Affecting the Benefits of High-Frequency Amplification

    Science.gov (United States)

    Horwitz, Amy R.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2008-01-01

    Purpose: This study was designed to determine the extent to which high-frequency amplification helped or hindered speech recognition as a function of hearing loss, gain-frequency response, and background noise. Method: Speech recognition was measured monaurally under headphones for nonsense syllables low-pass filtered in one-third-octave steps…

  13. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  14. Development and Testing of Adaptive HF (High Frequency) Radio Techniques

    Science.gov (United States)

    1984-10-01

    December 1980). 2. HFDM : AN/USQ-83(XH-1)(V), The High Frequency Digital Modem, Opera- tion and Maintenance Manual, Sylvania Systems Group, Needham Heights...the HF digital modem ( HFDM ) 2 that per- mits implementing of different modulaticn formats simply by changing the program code. The sounding signal can

  15. Music students: conventional hearing thresholds and at high frequencies.

    Science.gov (United States)

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Extended high frequency audiometry in polycystic ovary syndrome.

    Science.gov (United States)

    Kucur, Cuneyt; Kucur, Suna Kabil; Gozukara, Ilay; Seven, Ali; Yuksel, Kadriye Beril; Keskin, Nadi; Oghan, Fatih

    2013-01-01

    Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting 5-10% of women in reproductive age. Insulin resistance, dyslipidemia, glucose intolerance, hypertension, and obesity are metabolic disorders accompanying the syndrome. PCOS is a chronic proinflammatory state and the disease is associated with endothelial dysfunction. In diseases with endothelial damage, hearing in high frequencies are mostly effected in early stages. We evaluated extended high frequency hearing loss in PCOS patients. Forty women diagnosed as PCOS and 25 healthy controls were included in this study. Age and BMI of PCOS and control groups were comparable. Each subject was tested with low (250-2000 Hz), high (4000-8000 Hz), and extended high frequency audiometry (8000-20000). Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000-14000 Hz in PCOS group compared to control group. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  17. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997...

  18. High frequency in vitro shoot regeneration of Momordica balsamina ...

    African Journals Online (AJOL)

    A protocol was developed for in vitro propagation by multiple shoot induction of Momordica balsamina (Cucurbitaceae), a climber with high medicinal and nutritional values. High frequencies of multiple shoot regeneration were achieved from auxillary bud of nodal explants. The bud explants were cultured on MS media ...

  19. Automated Screening for High-Frequency Hearing Loss

    NARCIS (Netherlands)

    Vlaming, M.S.M.G.; MacKinnon, R.C.; Jansen, M.; Moore, D.R.

    2014-01-01

    OBJECTIVE: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies

  20. Practical techniques for enhancing the high-frequency MASW method

    Science.gov (United States)

    For soil exploration in the vadose zone, a high-frequency multi-channel analysis of surface waves (HF-MASW) method has been developed. In the study, several practical techniques were applied to enhance the overtone image of the HF-MASW method. They included (1) the self-adaptive MASW method using a ...

  1. High frequency ultrasound imaging of a single-species biofilm

    NARCIS (Netherlands)

    Shemesh, H.; Goertz, D. E.; van der Sluis, L. W. M.; de Jong, N.; Wu, M. K.; Wesselink, P. R.

    Objective: This study evaluated the feasibility of a high frequency ultrasound scan to examine the 3D morphology of Streptococcus mutans biofilms grown in vitro. Methods: Six 2-day S. mutans biofilms and six 7-day biofilms were grown on tissue culture membranes and on bovine dentine discs. A sterile

  2. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545...

  3. High-frequency Trading, Algorithmic Finance, and the Flash Crash

    DEFF Research Database (Denmark)

    Borch, Christian

    2016-01-01

    The Flash Crash of 6 May 2010 has an interesting status in discussions of high-frequency trading, i.e. fully automated, superfast computerized trading: it is invoked both as an important illustration of how this field of algorithmic trading operates and, more often, as an example of how fully aut...

  4. Observation of ion cyclotron range of frequencies mode conversion plasma flow drive on Alcator C-Moda)

    Science.gov (United States)

    Lin, Y.; Rice, J. E.; Wukitch, S. J.; Greenwald, M. J.; Hubbard, A. E.; Ince-Cushman, A.; Lin, L.; Marmar, E. S.; Porkolab, M.; Reinke, M. L.; Tsujii, N.; Wright, J. C.; Alcator C-Mod Team

    2009-05-01

    At modest H3e levels (n3He/ne˜8%-12%), in relatively low density D(H3e) plasmas, n¯e≤1.3×1020 m-3, heated with 50 MHz rf power at Bt0˜5.1 T, strong (up to 90 km/s) toroidal rotation (Vϕ) in the cocurrent direction has been observed by high-resolution x-ray spectroscopy on Alcator C-Mod. The change in central Vϕ scales with the applied rf power (≤30 km s-1 MW-1), and is generally at least a factor of 2 higher than the empirically determined intrinsic plasma rotation scaling. The rotation in the inner plasma (r /a≤0.3) responds to the rf power more quickly than that of the outer region (r /a≥0.7), and the rotation profile is broadly peaked for r /a≤0.5. Localized poloidal rotation (0.3≤r/a≤0.6) in the ion diamagnetic drift direction (˜2 km/s at 3 MW) is also observed, and similarly increases with rf power. Changing the toroidal phase of the antenna does not affect the rotation direction, and it only weakly affects the rotation magnitude. The mode converted ion cyclotron wave (MC ICW) has been detected by a phase contrast imaging system and the MC process is confirmed by two-dimensional full wave TORIC simulations. The simulations also show that the MC ICW is strongly damped on H3e ions in the vicinity of the MC layer, approximately on the same flux surfaces where the rf driven flow is observed. The flow shear in our experiment is marginally sufficient for plasma confinement enhancement based on the comparison of the E ×B shearing rate and gyrokinetic linear stability analysis.

  5. Occupational exposure to anaesthetic gases and high-frequency audiometry.

    Science.gov (United States)

    Giorgianni, Concetto; Gangemi, Silvia; Tanzariello, Maria Giuseppina; Barresi, Gaetano; Miceli, Ludovica; D'Arrigo, Graziella; Spatari, Giovanna

    2015-09-01

    Occupational exposure to anaestethic gases has been suggested to induce auditory damages. The aim of this study is to investigate high-frequency audiometric responses in subjects exposed to anaesthetic gases, in order to highlight the possible effects on auditory system. The study was performed on a sample of 30 medical specialists of Messina University Anaesthesia and Intensive care. We have used tonal audiometry as well as high-frequency one. We have compared the responses with those obtained in a similar control group not exposed to anaesthetic gases. Results were compared statistically. Results show a strong correlation (p = 0.000) between left and right ear responses to all the audiometric tests. The exposed and the control group run though the standard audiometry analysis plays different audiometric responses up only to higher frequencies (2000 HZ p = 0.009 and 4000 Hz p = 0.04); in high-frequency audiometry, as all other frequencies, the attention is drew to the fact that the sample groups distinguish themselves in a significantly statistic way (10,000 Hz p = 0.025, 12,000 Hz p = 0.008, 14,000 Hz p = 0.026, 16,000 Hz p = 0.08). The highest values are the ones related to exposed subjects both in standard (2000 Hz p = 0.01, 4000 Hz p = 0.02) and in high-frequency audiometry (10,000 Hz p = 0.011, 12,000 Hz p = 0.004, 14,000 Hz p = 0.012, 16,000 Hz p = 0.004). Results, even if preliminary and referred to a low-range sample, show an involvement of the anatomic structure responsible for the perception of high-frequency audiometric responses in subjects exposed to anaesthetic gases. © The Author(s) 2012.

  6. Small arteries can be accurately studied in vivo, using high frequency ultrasound

    DEFF Research Database (Denmark)

    Nielsen, T H; Iversen, Helle Klingenberg; Tfelt-Hansen, P

    1993-01-01

    We have validated measurements of diameters of the superficial temporal artery and other small arteries in man with a newly developed 20 MHz ultrasound scanner with A, B and M-mode imaging. The diameter of a reference object was 1.202 mm vs. 1.205 mm as measured by stereomicroscopy (nonsignifican......-gauge plethysmography (nonsignificant). Pulsations were 4.6% in the radial artery. We conclude that high frequency ultrasound provides an accurate and reproducible measure of the diameter of small and medium sized human arteries in vivo....

  7. Prediction of high frequency combustion instability in liquid propellant rocket engines

    Science.gov (United States)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  8. Field oriented control of an induction machine in a high frequency link power system

    Science.gov (United States)

    Sul, Seung K.; Lipo, Thomas A.

    1988-01-01

    A field-oriented controlled induction machine drive operating with a high-frequency single-phase sinusoidal voltage link is presented. System performance is investigated by computer simulation and is verified by a test on a prototype system. A novel control loop to minimize the link voltage fluctuation is proposed. The capability of rapid demagnetization of the induction machine by current regulation is investigated. A current-modulation technique termed mode control is proposed, and its performance is compared with that of the conventional delta-modulation technique.

  9. Automated screening for high-frequency hearing loss.

    Science.gov (United States)

    Vlaming, Marcel S M G; MacKinnon, Robert C; Jansen, Marije; Moore, David R

    2014-01-01

    Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise masker. The digit triplet test uses the digits 0 to 9 (excluding the disyllabic 7), grouped in quasi-random triplets. The CVC test uses simple words (e.g., "cat") selected for the high-frequency spectral content of the consonants. During testing, triplets or CVC words were identified in an adaptive procedure to obtain the speech reception threshold (SRT) in noise. For these new, high-frequency (HF) tests, the noise was low-pass filtered to produce greater masking of the low-frequency speech components, increasing the sensitivity of the test for HF hearing loss. Individual test tokens (digits, CVCs) were first homogenized using a group of 10 normal-hearing (NH) listeners by equalizing intelligibility across tokens at several speech-in-noise levels. Both tests were then validated and standardized using groups of 24 NH listeners and 50 listeners with hearing impairment. Performance on the new high frequency digit triplet (HF-triplet) and CVC (HF-CVC) tests was compared with audiometric hearing loss, and with that on the unfiltered, broadband digit triplet test (BB-triplet) test, and the ASL (Adaptive Sentence Lists) speech-in-noise test. The HF-triplet and HF-CVC test results (SRT) both correlated positively and highly with high-frequency audiometric hearing loss and with the ASL test. SRT for both tests as a function of high-frequency hearing loss increased at nearly three times the rate as that of the BB-triplet test. The intraindividual variability (SD) on the tests was about 2.1 (HF-triplet) and 1

  10. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    Science.gov (United States)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  11. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus.

    Directory of Open Access Journals (Sweden)

    Roland Frey

    Full Text Available Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0 and a high (g0 fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0. Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female captive dholes (Cuon alpinus and for 2 (1 male, 1 female wild red fox (Vulpes vulpes. In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.

  12. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures.

    Science.gov (United States)

    Masserey, Bernard; Raemy, Christian; Fromme, Paul

    2014-09-01

    Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Potential Sources of High Frequency and Biphonic Vocalization in the Dhole (Cuon alpinus).

    Science.gov (United States)

    Frey, Roland; Volodin, Ilya A; Fritsch, Guido; Volodina, Elena V

    2016-01-01

    Biphonation, i.e. two independent fundamental frequencies in a call spectrum, is a prominent feature of vocal activity in dog-like canids. Dog-like canids can produce a low (f0) and a high (g0) fundamental frequency simultaneously. In contrast, fox-like canids are only capable of producing the low fundamental frequency (f0). Using a comparative anatomical approach for revealing macroscopic structures potentially responsible for canid biphonation, we investigated the vocal anatomy for 4 (1 male, 3 female) captive dholes (Cuon alpinus) and for 2 (1 male, 1 female) wild red fox (Vulpes vulpes). In addition, we analyzed the acoustic structure of vocalizations in the same dholes that served postmortem as specimens for the anatomical investigation. All study dholes produced both high-frequency and biphonic calls. The anatomical reconstructions revealed that the vocal morphologies of the dhole are very similar to those of the red fox. These results suggest that the high-frequency and biphonic calls in dog-like canids can be produced without specific anatomical adaptations of the sound-producing structures. We discuss possible production modes for the high-frequency and biphonic calls involving laryngeal and nasal structures.

  14. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  15. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  16. High-frequency Oscillations in Eyewalls of Tropical Cyclones

    Science.gov (United States)

    Li, Weibiao; Chen, Shumin

    2017-04-01

    High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones (TCs). Analysis of a model simulation of Typhoon Hagupit (2008) shows that the oscillations also occur in the intensity of TC, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order. In a typical cycle, the drop of density in the planetary boundary layer (PBL) is followed by an increase in the inward radial wind; this enhanced frictional convergence causes increase in density, followed by a decrease in the inward radial wind. The increase in convergence in the PBL causes increase of updraft at the top of the PBL, followed by high vertical velocity at high altitude of 8-10 km, then the increase of the maximum wind speed, and vice versa. Key words: tropical cyclone, high-frequency oscillations, eyewall, intensity

  17. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    Science.gov (United States)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  18. Self-integrating inductive loop for measuring high frequency pulses.

    Science.gov (United States)

    Rojas-Moreno, Mónica V; Robles, Guillermo; Martínez-Tarifa, Juan M; Sanz-Feito, Javier

    2011-08-01

    High frequency pulses can be measured by means of inductive sensors. The main advantage of these sensors consists of non-contact measurements that isolate and protect measuring equipment. The objective of this paper is to present the implementation of an inductive sensor for measuring rapidly varying currents. It consists of a rectangular loop with a resistor at its terminals. The inductive loop gives the derivative of the current according to Faraday's law and the resistor connected to the loop modifies the sensor's frequency response to obtain an output proportional to the current pulse. The self-integrating inductive sensor was validated with two sensors, a non-inductive resistor and a commercial high frequency current transformer. The results were compared to determine the advantages and drawbacks of the probe as an adequate inductive transducer.

  19. Unusual Solar Decameter Radio Bursts with High Frequency Cut off

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. M.; Frantsuzenko, A. V.; Rucker, H. O.; Panchenko, M.

    2015-03-01

    Solar bursts with high frequency cut off were observed by the URAN-2 radio telescope (Poltava, Ukraine) on 18 August, 2012 in the frequency range 8-32 MHz. Durations of these bursts changed from 30 to 70 s. It is much longer than that for standard type III bursts. Drift rates are much smaller than those of type III bursts are, though much larger than those for decameter type II bursts. In some cases, the drift rate sign changes from the negative to positive one. Some of these bursts have fine structures. Stripes of the fine structures have small drift rates of 20-40 kHz/s. Polarizations of these bursts made about 10 % that apparently indicates that they are generated at the second harmonic of the local plasma frequency. The connection of bursts with the high frequency cut off with compact ejections from the behind-limb active regions is confirmed.

  20. Design of 1 MHz Solid State High Frequency Power Supply

    Science.gov (United States)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  1. High frequency plant regeneration from mature seedderived callus ...

    African Journals Online (AJOL)

    In the present study, we have developed a high-frequency plant regeneration system for Italian ryegrass via callus culture using mature seeds as explants. Optimal embryogenic callus induction was found to occur in MS medium containing 5 mg l-1 2,4-D, 0.5 mg l-1 BA, 500 mg l-1 L-proline, 1 g l-1 casein hydrolysate, 30 g ...

  2. High frequency plant regeneration from mature seed- derived callus ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... In the present study, we have developed a high-frequency plant regeneration system for Italian ryegrass via callus culture using mature seeds as explants. Optimal embryogenic callus induction was found to occur in MS medium containing 5 mg l-1 2,4-D, 0.5 mg l-1 BA, 500 mg l-1 L-proline, 1 g l-1 casein.

  3. DISTRIBUTION OF HIGH-FREQUENCY VOLTAGE IN DISTRIBUTION NETWORK

    Directory of Open Access Journals (Sweden)

    M. I. Polujanov

    2005-01-01

    Full Text Available The paper reveals a method for remote determination of a location of single-phase short circuit on the ground in distribution networks with isolated neutral point. The method is based on measurement of high-frequency (a tone  range inter-phase voltage at all transformer substations and it creates preconditions for automation of searching process.  

  4. Unbalanced heat isolation in high-frequency electrothermics of polymers

    OpenAIRE

    A. V. Livshits

    2014-01-01

    The polymeric materials are widely applied in many industries because they have a number of advantages, which allow their use instead of traditional materials. Nevertheless, the issues of manufacturing products from polymeric materials and their applications are insufficiently studied. The same can be said about high-frequency (HF) electrothermics of polymers. Therefore, mathematical simulation of electrothermic processes is of interest both in terms of science and in terms of applications.Tr...

  5. Automated composite ellipsoid modelling for high frequency GTD analysis

    Science.gov (United States)

    Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.

    1991-01-01

    The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.

  6. A novel high-frequency encoding algorithm for image compression

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  7. Airway Humidification During High-Frequency Percussive Ventilation

    Science.gov (United States)

    2009-03-01

    Association for Respi- ratory Care (AARC) recommendations for the minimum acceptable heating and humidification during mechanical ventilation ( 30°C...Care. AARC clinical practice guideline: humidification during mechanical ventilation . Respir Care 1992;37(8):887-890. 3. Branson RD. The effects of...Airway Humidification During High-Frequency Percussive Ventilation Patrick F Allan MD, Michael J Hollingsworth CRT, Gordon C Maniere CRT, Anthony K

  8. High-Frequency-Trading: Zwischen Nutzeffekten und Risiken

    OpenAIRE

    Gomber, Peter

    2011-01-01

    Die Mehrheit der auf High Frequency Trading basierenden Strategien trägt zur Marktliquidität (Market-Making-Strategien) oder zur Preisfindung und Markteffizienz (Arbitrage-Strategien) bei. Eine ungeeignete Regulierung dieser Strategien oder eine Beeinträchtigung der zugrunde liegenden Geschäftsmodelle durch übermäßige Belastungen kann kontraproduktiv sein und unvorhergesehene Auswirkungen auf die Marktqualität haben. Allerdings muss jede missbräuchliche Strategie effektiv durch die Aufsichtsb...

  9. Probing High Frequency Noise with Macroscopic Resonant Tunneling

    OpenAIRE

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R; Johansson, J; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-01-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~ 4 GHz. We have also derived an expression for the MRT lineshape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid m...

  10. Asynchronous BCI control using high-frequency SSVEP

    Directory of Open Access Journals (Sweden)

    Laciar Leber Eric

    2011-07-01

    Full Text Available Abstract Background Steady-State Visual Evoked Potential (SSVEP is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz, medium (12-30 and high frequency (> 30 Hz. SSVEP-based Brain-Computer Interfaces (BCI are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. Methods This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult. The signal processing method is based on Fourier transform and three EEG measurement channels. Results The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Conclusions Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  11. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  12. Sustainable limitation of high-frequency oscillations of elevator cabin

    Science.gov (United States)

    Kaytukov, Batraz

    2017-10-01

    In this paper, a problem of sustainable limitation of vertical high-frequency oscillations of elevator cabin in buildings with various number of storeys is considered. To solve this problem, dynamic model of the elevator movement was developed. In the course of analytical and experimental studies, the main cause for emergence of undesirable high-frequency oscillations of a cabin was defined. The amplification factor which is the function of λ and length of cable was determined. The λ parameter is variable, and length of the cable changes depending on length passed by the cabin and is an amplification factor argument. For sustainable limitation of oscillations, use of dynamic dumper of lever type is proposed. Adjustment of the dumper natural vibration frequency in such a way that it is equal to the excitation frequency allows limiting of oscillations of the cabin and the elevator machine to reasonable value irrespective to position of a moving cabin in the shaft. Using dependences and plots which were obtained in the course of scientific analysis and experimental studies, reasonability of dumper application for sustainable limitation of high-frequency influence of the elevator machine on the base and obtaining of solutions of inertial forces equilibration problem was proved.

  13. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    Science.gov (United States)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  14. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  15. Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies

    Science.gov (United States)

    García-Jerez, Antonio; Luzón, Francisco; Sánchez-Sesma, Francisco J.; Lunedei, Enrico; Albarello, Dario; Santoyo, Miguel A.; Almendros, Javier

    2013-10-01

    reliability of usual assumptions regarding the wavefield composition in applications of the Diffuse Field Approach (DFA) to passive seismic prospecting is investigated. Starting from the more general formulation of the DFA for full wavefield (FW), the contribution of each wave to the horizontal- and vertical-component power spectra at surface are analyzed for a simple elastic waveguide representing the continental crust-upper mantle interface. Special attention is paid to their compositions at low and high frequencies, and the relative powers of each surface wave (SW) type are identified by means of a semianalytical analysis. If body waves are removed from the analysis, the high-frequency horizontal asymptote of the H/V spectral ratio decreases slightly (from 1.33 for FW to around 1.14 for SW) and shows dependence on both the Poisson's ratio of the crust and the S wave velocity contrast (while FW-H/V asymptote depends on the former only). Experimental tests in a local broadband network provide H/V curves compatible with any of these values in the band 0.2-1 Hz, approximately, supporting the applicability of the DFA approximation. Coexistence of multiple SW modes produces distortion in the amplitudes of vertical and radial component Aki's coherences, in comparison with the usual predictions based on fundamental modes. At high frequencies, this effect consists of a decrement by a constant scaling factor, being very remarkable in the radial case. Effects on the tangential coherence are severe, including a - π/4 phase shift, slower decay rate of amplitude versus frequency, and contribution of several velocities for large enough distances.

  16. Searches for high frequency variations in the 8-B neutrino flux at the Sudbury neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Rielage, Keith [Los Alamos National Laboratory; Seibert, Stanley R [Los Alamos National Laboratory; Hime, Andrew [Los Alamos National Laboratory; Elliott, Steven R [Los Alamos National Laboratory; Stonehill, L C [Los Alamos National Laboratory; Wouters, J M [Los Alamos National Laboratory; Aharmim, B [LAURENTIAN UNIV; Ahmed, S N [QUEEN' S UNIV; Anthony, A E [UNIV OF TEXAS; Barros, N [PORTUGAL; Beier, E W [UNIV OF PA; Bellerive, A [CARLETON UNIV; Belttran, B [UNIV OF ALBERTA; Bergevin, M [LBNL; Biller, S D [UNIV OF OXFORD; Boudjemline, K [CARLETON UNIV; Burritt, T H [UNIV OF WASHINGTON; Cai, B [QUEEN' S UNIV; Chan, Y D [LBNL; Chauhan, D [LAURENTIAN UNIV; Chen, M [QUEEN' S UNIV; Cleveland, B T [UNIV OF OXFORD; Cox - Mobrand, G A [UNIV OF WASHINGTON; Dai, X [QUEEN' S UNIV; Deng, H [UNIV OF PA; Detwiler, J [LBNL; Dimarco, M [QUEEN' S UNIV; Doe, P J [UNIV OF WASHINGTON; Drouin, P - L [CARLTON UNIV; Duba, C A [UNIV OF WASHINGTON; Duncan, F A [SNOLAB, SUDBURY; Dunford, M [UNIV OF PA; Earle, E D [QUEEN' S UNIV; Evans, H C [QUEEN' S UNIV; Ewan, G T [QUEEN' S UNIV; Farine, J [LAURENTTIAN UNIV; Fergani, H [UNIV OF OXFORD; Fleurot, F [LAURENTIAN UNIV; Ford, R J [SNOLAB, SUDBURY; Formaggilo, J A [MASSACHUSETTS INST. OF TECH.; Gagnon, N [UNIV OF WASHINGTON; Goon, J Tm [LOUISIANA STATE UNIV; Guillian, E [QUEEN' S UNIV; Habib, S [UNIV OF ALBERTA; Hahn, R L [BNL; Hallin, A L [UNIV OF ALBERTA; Hallman, E D [LAURENTIAN UNIV; Harvey, P J [QUEEN' S UNIV; Hazama, R [UNIV OF WASHINGTON; Heintzelman, W J [UNIV OF PA; Heise, J [SNOLAB, SUDBURY; Helmer, R L [TRIUMF; Howard, C [UNIV OF ALBERTA; Howe, M A [UNIV OF WASHINGTON; Huang, M [UNIV OF TEXAS; Jamieson, B [UNIV OF BRITISH COLUMBIA; Jelley, N A [UNIV OF OXFORD; Keeter, K J [SNOLAB, SUDBURY; Klein, J R [UNIV OF TEXAS; Kos, M [QUEEN' S UNIV; Kraus, C [QUEEN' S UNIV; Krauss, C B [UNIV OF ALBERTA; Kutter, T [LOUISIANA STATE UNIV; Kyba, C C M [UNIV OF PA; Law, J [UNIV OF GUELPH; Lawson, I T [SNOLAB, SUDBURY; Lesko, K T [LBNL; Leslie, J R [QUEEN' S UNIV; Loach, J C [UNIV OF OXFORD; Maclellan, R [QUEEN' S UNIV; Majerus, S [UNIV OF OXFORD; Mak, H B [QUEEN' S UNIV; Maneira, J [PORTUGAL; Martin, R [QUEEN' S UNIV; Mccauley, N [UNIV OF PA; Mc Donald, A B [QUEEN' S UNIV; Mcgee, S [UNIV OF WASHINGTON; Miffin, C [CARLETON UNIV; Miller, M L [MASSACHUSETTS INST. OF TECH.; Monreal, B [MASSACHUSETTS INST. OF TECH.; Monroe, J [MASSACHUSETTS INST. OF TECH; Morissette, B [SNOLAB, SUDBURY; Nickel, B G [UNIV OF GUELPH; Noble, A J [QUEEN' S UNIV; O' Keeffe, H M [UNIV OF OXFORD; Oblath, N S [UNIV OF WASHINGTON; Orebi Gann, G D [UNIV OF OXFORD; Oser, S M [UNIV OF BRITISH COLUMBIA; Ott, R A [MASSACHUSETTS INST. OF TECH.; Peeters, S J M [UNIV OF OXFORD; Poon, A W P [LBNL; Prior, G [LBNL; Reitzner, S D [UNIV OF GUELPH; Robertson, B C [QUEEN' S UNIV; Robertson, R G H [UNIV OF WASHINGTON; Rollin, E [CARLETON UNIV; Schwendener, M H [LAURENTIAN UNIV; Secrest, J A [UNIV OF PA; Seibert, S R [UNIV OF TEXAS; Simard, O [CARLETON UNIV; Sinclair, D [CARLETON UNIV; Sinclair, L [CARLETON UNIV; Skensved, P [QUEEN' S UNIV; Sonley, T J [MASSACHUSETTS INST. OF TECH.; Tesic, G [CARLETON UNIV; Tolich, N [UNIV OF WASHINGTON; Tsui, T [UNIV OF BRITISH COLUMBIA; Tunnell, C D [UNIV OF TEXAS; Van Berg, R [UNIV OF PA; Van Devender, B A [UNIV OF WASHINGTON; Virtue, C J [LAURENTIAN UNIV; Wall, B L [UNIV OF WASHINGTON; Waller, D [CARLETON UNIV; Wan Chan Tseung, H [UNIV OF OXFORD; West, N [UNIV OF OXFORD; Wilkerson, J F [UNIV OF WASHINGTON; Wilson, J R [UNIV OF OXFORD; Wright, A [QUEEN' S UNIV; Yeh, M [BNL; Zhang, F [CARLETON UNIV; Zuber, K [UNIV OF OXFORD

    2009-01-01

    We have peformed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar {sup 8}B neutrinos. The first search looked for any significant peak in the frequency range l/day to 144/day, with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the SoHO satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.

  17. Developing high-frequency ultrasound tomography for testicular tumor imaging in rats: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chih-Chung, E-mail: cchuang@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Wei-Tsen [Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China)

    2014-01-15

    Purpose: This paper describes a feasibility study for developing a 35-MHz high-frequency ultrasound computed-tomography (HFUCT) system for imaging rat testicles. Methods: The performances of two kinds of HFUCT-attenuation and sound-speed UCT-based on transmission and pulse-echo modes were investigated in this study. Experiments were carried out using phantoms and actual rat testiclesin vitro. HFUCT images were reconstructed using a filtered backprojection algorithm. Results: The phantom experimental results indicated that all types of HFUCT can determine the dimensions of a plastic cylinder with a diameter of 500μm. Compared to sound-speed HFUCT, attenuation HFUCT exhibited a better performance in recognizing a tiny sclerosed region in a gelatin phantom. Therefore, the in vitro testicular experiments were performed using attenuation HFUCT based on transmission and pulse-echo modes. The experimentally measured attenuation coefficient and sound speed for healthy rat testicles were 2.92 ± 0.25 dB/mm and 1537 ± 25 m/s, respectively. Conclusions: A homogeneous texture was evident for healthy testicles using both modes. An artificial sclerosed tumor could also be clearly observed using two- and three-dimensional attenuation HFUCT in both modes. However, an object artifact was apparent in pulse-echo mode because of ultrasound beam refraction. All of the obtained experimental results indicate the potential of using HFUCT as a novel tool for monitoring the preclinical responses of testicular tumors in small animals.

  18. Characterization of the high-frequency squeal on a laboratory brake setup

    Science.gov (United States)

    Giannini, Oliviero; Massi, Francesco

    2008-02-01

    This paper presents an experimental investigation on high-frequency brake squeal noise conducted on an appropriately designed experimental rig, called laboratory brake. Brake squeal is one of the major issues in the design process of an automotive brake and the development of a robust procedure for a "squeal-free" design is still under investigation. The high-frequency squeal is the most frequent noise generated by automotive brakes and is characterized by a wavelength of the "squealing mode" comparable to the length of the brake pad. The proposed "laboratory brake" is a good compromise between simple test rigs, such as the beam-on-disc, and the experimental setups that use real brakes. The beam-on-disc setup is a useful tool to understand the mechanism leading to the instability, but it does not simulate appropriately a real brake. On the other hand, real brakes are too complex for fundamental investigation and for efficient modeling. The experimental analysis shows a strong correlation between the length of the pad, the dynamic behavior of the system, and the squealing deformed shape. Moreover, depending on the length of the pad compared with the wavelength of the disc mode, three different kind of squeal instability may occur during experiments: the sine mode squeal, the cosine mode squeal and the rotating squeal. The latter is characterized by nodal diameters rotating during a squeal cycle. A linear reduced model, able to reproduce the dynamic behavior of the experimental setup, is used to predict the squeal occurrence. However, such linear model is not able to predict the rotating squeal characteristic that seems to be caused by nonlinear interactions due to the contact between the disc and the caliper.

  19. One-dimensional full wave treatment of mode conversion process at the ion-ion hybrid resonance in a bounded tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Monakhov, I.; Becoulet, A.; Fraboulet, D.; NGuyen, F

    1998-09-01

    A consistent picture of the mode conversion (MC) process at the ion-ion hybrid resonance in a bounded plasma of a tokamak is discussed, which clarifies the role of the global fast wave interference and cavity effects in the determination of the MC efficiency. This picture is supported by simulations with one-dimensional full wave kinetic code `VICE`. The concept of the `global resonator`, formed by the R = n{sup 2}{sub ||} boundary cutoffs [B. Saoutic et al., Phys. Rev. Lett. 76, 1647 (1996)], is justified, as well as the importance of a proper tunneling factor choice {eta}{sub cr} = 0.22 [A. K. Ram et al., Phys. Plasmas 3, 1976 (1996)]. The MC scheme behavior appears to be very sensitive to the MC layer position relative to the global wave field pattern, i.e. to the local value of `poloidal` electric field at the resonance. Optimal MC regimes are found to be attainable without requirement of a particular parallel wavenumber choice. (author) 40 refs.

  20. Computation of High-Frequency Waves with Random Uncertainty

    KAUST Repository

    Malenova, Gabriela

    2016-01-06

    We consider the forward propagation of uncertainty in high-frequency waves, described by the second order wave equation with highly oscillatory initial data. The main sources of uncertainty are the wave speed and/or the initial phase and amplitude, described by a finite number of random variables with known joint probability distribution. We propose a stochastic spectral asymptotic method [1] for computing the statistics of uncertain output quantities of interest (QoIs), which are often linear or nonlinear functionals of the wave solution and its spatial/temporal derivatives. The numerical scheme combines two techniques: a high-frequency method based on Gaussian beams [2, 3], a sparse stochastic collocation method [4]. The fast spectral convergence of the proposed method depends crucially on the presence of high stochastic regularity of the QoI independent of the wave frequency. In general, the high-frequency wave solutions to parametric hyperbolic equations are highly oscillatory and non-smooth in both physical and stochastic spaces. Consequently, the stochastic regularity of the QoI, which is a functional of the wave solution, may in principle below and depend on frequency. In the present work, we provide theoretical arguments and numerical evidence that physically motivated QoIs based on local averages of |uE|2 are smooth, with derivatives in the stochastic space uniformly bounded in E, where uE and E denote the highly oscillatory wave solution and the short wavelength, respectively. This observable related regularity makes the proposed approach more efficient than current asymptotic approaches based on Monte Carlo sampling techniques.

  1. Study of switching transients in high frequency converters

    Science.gov (United States)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  2. Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers.

    Science.gov (United States)

    Choi, Hojong; Shung, K Kirk

    2014-06-12

    The ultrasonic transducer is one of the core components of ultrasound systems, and the transducer's sensitivity is significantly related the loss of electronic components such as the transmitter, receiver, and protection circuit. In an ultrasonic device, protection circuits are commonly used to isolate the electrical noise between an ultrasound transmitter and transducer and to minimize unwanted discharged pulses in order to protect the ultrasound receiver. However, the performance of the protection circuit and transceiver obviously degrade as the operating frequency or voltage increases. We therefore developed a crossed SMPS (Switching Mode Power Supply) MOSFET-based protection circuit in order to maximize the sensitivity of high frequency transducers in ultrasound systems.The high frequency pulse signals need to trigger the transducer, and high frequency pulse signals must be received by the transducer. We therefore selected the SMPS MOSFET, which is the main component of the protection circuit, to minimize the loss in high frequency operation. The crossed configuration of the protection circuit can drive balanced bipolar high voltage signals from the pulser and transfer the balanced low voltage echo signals from the transducer. The equivalent circuit models of the SMPS MOSFET-based protection circuit are shown in order to select the proper device components. The schematic diagram and operation mechanism of the protection circuit is provided to show how the protection circuit is constructed. The P-Spice circuit simulation was also performed in order to estimate the performance of the crossed MOSFET-based protection circuit. We compared the performance of our crossed SMPS MOSFET-based protection circuit with a commercial diode-based protection circuit. At 60 MHz, our expander and limiter circuits have lower insertion loss than the commercial diode-based circuits. The pulse-echo test is typical method to evaluate the sensitivity of ultrasonic transducers

  3. Automated Screening for High-Frequency Hearing Loss

    OpenAIRE

    Vlaming, Marcel S M G; Mackinnon, Robert C.; Jansen, Marije; Moore, David R.

    2014-01-01

    OBJECTIVE: Hearing loss at high frequencies produces perceptual difficulties and is often an early sign of a more general hearing loss. This study reports the development and validation of two new speech-based hearing screening tests in English that focus on detecting hearing loss at frequencies above 2000 Hz. DESIGN: The Internet-delivered, speech-in noise tests used closed target-word sets of digit triplets or consonant-vowel-consonant (CVC) words presented against a speech-shaped noise mas...

  4. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...... components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED...

  5. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  6. Probing high-frequency noise with macroscopic resonant tunneling

    Science.gov (United States)

    Lanting, T.; Amin, M. H. S.; Johnson, M. W.; Altomare, F.; Berkley, A. J.; Gildert, S.; Harris, R.; Johansson, J.; Bunyk, P.; Ladizinsky, E.; Tolkacheva, E.; Averin, D. V.

    2011-05-01

    We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies ~4 GHz. We have also derived an expression for the MRT line shape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.

  7. High frequency microphone measurements for transition detection on airfoils

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...

  8. Planck 2013 results. VI. High Frequency Instrument data processing

    OpenAIRE

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.́7 to 4.́6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (10...

  9. Very High Frequency Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper describes analysis and design procedure of an interleaved, self-oscillating resonant SEPIC converter, suitable for operation at very high frequencies (VHF) ranging from 30 MHz to 300 MHz. The presented circuit consists of two resonant SEPIC DC-DC converters, and a capacitive...... interconnection network between the switches which provides self-oscillating and interleaved operation. A design approach to ensure zero voltage switching (ZVS) condition of the MOSFET devices is provided. To verify the proposed method, an 11 W, 50 MHz prototype was built using low-cost VDMOS devices...

  10. Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

    Science.gov (United States)

    Deng, Zhao; Waltz, R. E.; Wang, Xiaogang

    2016-10-01

    with stable ion cyclotron modes. The gyrokinetic approximation is found to break down when the density perturbation exceeds 20%, or when the ratio of nonlinear E× B frequency over ion cyclotron frequency exceeds 20%. This result indicates that the density perturbation of the Tokamak L-mode near-edge is not sufficiently large for breaking the gyro-phase averaging. For cyclokinetic simulations with sufficiently unstable ion cyclotron (IC) modes and sufficiently low Ω* ˜10, the high-frequency component of the cyclokinetic transport can exceed that of the gyrokinetic transport. However, the low-frequency component of the cyclokinetic transport does not exceed that of the gyrokinetic transport. For higher and more physically relevant Ω* ⩾50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport remains smaller than that of the gyrokinetic transport. In conclusion, the "L-mode near-edge short-fall" phenomenon, observed in some low-frequency gyrokinetic turbulence transport simulations, does not arise owing to the nonlinear coupling of high-frequency ion cyclotron motion to low-frequency drift motion.

  11. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hangin...... is shown to affect the nonlinear behavior of the system, e.g. bifurcation types can change from supercritical to subcritical, creating several coexisting stable solutions and also anti-symmetrical flutter may appear.......Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  12. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  13. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    Science.gov (United States)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  14. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  15. Normocapnic high frequency oscillatory hyperventilation increases oxygenation in pigs.

    Science.gov (United States)

    Roubík, K; Pachl, J; Zábrodský, V

    2011-01-01

    High frequency oscillatory ventilation (HFOV), contrary to conventional ventilation, enables a safe increase in tidal volume (V(T)) without endangering alveoli by volutrauma or barotrauma. The aim of the study is to introduce the concept of normocapnic high frequency oscillatory hyperventilation and to assess its effect upon oxygen gain under experimental conditions. Laboratory pigs (n = 9) were investigated under total intravenous anesthesia in three phases. Phase 1: Initial volume controlled HFOV period. Phase 2: Hyperventilation--V(T) was increased by (46 +/- 12) % when compared to normocapnic V(T) during phase 1. All other ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.75 +/- 0.52 kPa, p hyperventilation was achieved by an iterative increase in the CO(2) fraction in the inspiratory gas by a CO(2) admixture. All ventilatory parameters were unchanged. A significant increase in PaO(2) (by 3.79 +/- 0.73 kPa, p hyperventilation offers a lung protective strategy that significantly improves oxygenation whilst preserving normocapnia.

  16. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  17. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  18. Microturbine Power Conversion Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-07-21

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to

  19. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Science.gov (United States)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  20. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)

    2010-01-13

    The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  1. Very High Frequency Switch-Mode Power Supplies.:Miniaturization of Power Electronics.

    OpenAIRE

    Madsen, Mickey Pierre; Andersen, Michael A. E.; Knott, Arnold

    2015-01-01

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop ve...

  2. High-frequency fatigue after alpine slalom skiing.

    Science.gov (United States)

    Tomazin, Katja; Dolenec, Ales; Strojnik, Vojko

    2008-05-01

    The aim of the study was to examine the presence of high-frequency fatigue (HFF) after simulated alpine slalom skiing race. Eight male alpine skiers (18.4+/-1.2 y.a., 182.3+/-3.5 cm, 80.5+/-3.4 kg) completed the study. Their average FIS points in slalom were 30.1+/-5.4. After the special skiing warm up, the following initial tests were performed: blood lactate concentration, twitch response of the relaxed VL muscle, knee torque during low- (20 Hz) and high-frequency (100 Hz) electrical stimulation of vastus lateralis muscle, and maximum, voluntary isometric knee extension torque. Then, subjects performed slalom with 45 gates, whose duration was approximately 45 s. The same test sequence, except blood lactate test was used after slalom and the measurements started exactly 60 and 180 s after slalom. Blood lactate concentration measurement started exactly 3 and 5 min after slalom. A 1x3 repeated measures; time-series design was used with one within factor of time (before 60 s, and 180 s after skiing). The average blood lactate level increased from 1.6 (0.6) pre-slalom to 7.1(1.6) mmol(-l) 15 min post-slalom (F2,14=70.1; P<0.001). Sixty seconds after slalom, twitch contraction time shortened from 78.2 (5.7) pre-slalom to 66.0 (7.2) ms post-slalom (F1.19,8.3=9.9; P<0.05). Peak twitch torque was potentiated from 21.6 (3.8) to 26.4 (5.3) Nm (F2,14=16.7; P<0.05). Slalom reduced high-frequency torque from 64.4 (35) to 58.2 (34.2) Nm 60 s post-slalom (F2,14=3.8; P<0.05), while low-frequency torque stayed virtually the same. Slalom induced HFF, which is typical of SSC exercises of maximum intensity and short duration.

  3. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  4. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    them are introduced first in terms of simple physical examples, and then in generalized form for mathematical models covering broad classes of discrete and continuous mechanical systems. Several application examples are summarized. Three mathematical tools for analyzing HFE effects are described......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...

  5. Structural Health Monitoring Using High-Frequency Electromechanical Impedance Signatures

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2010-01-01

    Full Text Available An overview of recent advances in electromechanical impedance- (EMI- based structural health monitoring is presented in this paper. The basic principle of the EMI method is to use high-frequency excitation to sense the local area of a structure. Changes in impedance indicate changes in the structure, which in turn indicate that damages appear. An accurate EMI model based on the method of reverberation-ray matrix is introduced to correlate changes in the signatures to physical parameters of structures for damage detection. Comparison with other numerical results and experimental data validates the present model. A brief remark of the feasibility of implementing the EMI method is considered and the effects of some physical parameters on EMI technique are also discussed.

  6. High frequency microphone measurements for transition detection on airfoils

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2008-05-15

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by 'LM Glasfiber', Denmark. The present report describes the dataanalysis, with special attention given to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risoe B1-18, Risoe C2-18 and NACA0015 profiles were tested and the measured transition points are reported. (au)

  7. Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.

    Science.gov (United States)

    Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M

    2016-08-10

    Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.

  8. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... be estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  9. High frequency ultrasound evaluation of traumatic peripheral nerve injuries.

    Science.gov (United States)

    Hollister, Anne M; Simoncini, Alberto; Sciuk, Adam; Jordan, Jenee'

    2012-01-01

    Accurate diagnosis and localization of peripheral nerve traumatic injury remains difficult. Early diagnosis and repair of nerve discontinuity lesions lead to better outcome than delayed repair. We used new high frequency ultrasound to evaluate 24 patients with 29 traumatic nerve injuries. There were a variety of causes including gunshot wounds, blunt injuries, burns, stabbings, and motor vehicle accidents. The patients were then either treated surgically with nerve status directly observed or followed clinically for recovery of nerve function. The ultrasound findings correspond with the clinical outcome of 28 of the 29 nerves. While this is a study limited by a small patient number, ultrasound evaluation should be considered in the evaluation of nerve injury and can lead to early diagnosis and treatment of surgical nerve injuries.

  10. Dynamical structures of high-frequency financial data

    Science.gov (United States)

    Kim, Kyungsik; Yoon, Seong-Min; Kim, SooYong; Chang, Ki-Ho; Kim, Yup; Hoon Kang, Sang

    2007-03-01

    We study the dynamical behavior of high-frequency data from the Korean Stock Price Index (KOSPI) using the movement of returns in Korean financial markets. The dynamical behavior of a binarized series of our models is not completely random. In addition, the conditional probability is numerically estimated from a return series of KOSPI tick data. Non-trivial probability structures can be constituted from binary time series of autoregressive (AR), logit, and probit models, for which the Akaike Information Criterion shows a minimum value at the 15th order. From our results, we find that the value of the correct match ratio for the AR model is slightly larger than that derived by other models.

  11. Optimized tissue heating by adopting high frequency electrotherapy

    Directory of Open Access Journals (Sweden)

    Jae-cheol Lee

    2015-11-01

    Full Text Available We have developed an electronics circuit that generates a high voltage with a frequency of 0.3–2 MHz to build an electro therapy system that can optimize tissue heating characteristics. These characteristics are used in medical applications. This paper is focused on the analysis of high frequency electro-therapy system to optimize tissue heating with the help of a high voltage pulse signal, which peak voltage is almost 2 kV. This optimized tissue heating between the inner tissue and the thermal distributions has examined in terms of frequency and voltage. The target tissue heating is composed of a single electrode in an experiment that has especially conducted to find the tissue heating characteristics. In the end, a new method for electro-therapy is developed, which is applicable to a specific tissue depth.

  12. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  13. High frequency modulation circuits based on photoconductive wide bandgap switches

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  14. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Colley, J.-M.; Bartlett, J.G.; Bucher, M.

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545...... by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears...... to be of high quality and we expect that with further refinements of the data processing we should be able to achieve, or exceed, the science goals of the Planck project. © ESO, 2011....

  15. Material control and surveillance for high frequency access vaults project

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V. L. (Victoria L.); Stevens, R. S. (Rebecca S.); Martinez, B. J. (Benny J.); Butler, G. W. (Gilbert W.); Huang, J. Y. (John Y.); Pickett, C. (Chris); Younkin, J. (James); Dunnigan, Janelle; Gaby, Jane; Lawson, R. (Roger)

    2004-01-01

    The 'Material Control and Surveillance for High Frequency Access Vaults' project sponsored by United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) focuses on enhancing nuclear materials control and surveillance in vaults that are frequently accessed. The focus of this effort is to improve materials control and accountability (MC&A) while decreasing the operational impact of these activities. Los Alamos and Y-12 have developed a testbed at the Los Alamos National Laboratory for evaluating and demonstrating integrated technologies for use in enhancing materials control and accountability in active nuclear material storage vaults. An update will be provided on the new systems demonstrated in the test-bed including a 'confirmatory cart' for expediting the performance of inventory and radio-frequency actuated video that demonstrates the concept of automated data entry for materials moving between MBA's. The United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) has sponsored a project where nuclear material inventory, control and surveillance systems are evaluated, developed, and demonstrated in an effort to provide technologies that reduce risk, increase material assurance, and provide cost-efficient alternatives to manpower-intensive physical inventory and surveillance approaches for working (high-frequency-access) vaults. This Fiscal Year has been largely focused on evaluating and developing components of two sub-systems that could be used either separately in nuclear material vaults or as part of a larger integrated system for nuclear materials accountability, control and surveillance.

  16. Electrokinetic particle-electrode interactions at high frequencies

    Science.gov (United States)

    Yariv, Ehud; Schnitzer, Ory

    2013-01-01

    We provide a macroscale description of electrokinetic particle-electrode interactions at high frequencies, where chemical reactions at the electrodes are negligible. Using a thin-double-layer approximation, our starting point is the set of macroscale equations governing the “bounded” configuration comprising of a particle suspended between two electrodes, wherein the electrodes are governed by a capacitive charging condition and the imposed voltage is expressed as an integral constraint. In the large-cell limit the bounded model is transformed into an effectively equivalent “unbounded” model describing the interaction between the particle and a single electrode, where the imposed-voltage condition is manifested in a uniform field at infinity together with a Robin-type condition applying at the electrode. This condition, together with the standard no-flux condition applying at the particle surface, leads to a linear problem governing the electric potential in the fluid domain in which the dimensionless frequency ω of the applied voltage appears as a governing parameter. In the high-frequency limit ω≫1 the flow is dominated by electro-osmotic slip at the particle surface, the contribution of electrode electro-osmosis being O(ω-2) small. That simplification allows for a convenient analytical investigation of the prevailing case where the clearance between the particle and the adjacent electrode is small. Use of tangent-sphere coordinates allows to calculate the electric and flows fields as integral Hankel transforms. At large distances from the particle, along the electrode, both fields decay with the fourth power of distance.

  17. High-frequency underwater plasma discharge application in antibacterial activity

    Science.gov (United States)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  18. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  19. High-frequency torsional Alfvén waves as an energy source for coronal heating

    Science.gov (United States)

    Srivastava, Abhishek Kumar; Shetye, Juie; Murawski, Krzysztof; Doyle, John Gerard; Stangalini, Marco; Scullion, Eamon; Ray, Tom; Wójcik, Dariusz Patryk; Dwivedi, Bhola N.

    2017-03-01

    The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12-42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m-2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m-2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

  20. High efficiency off-axis current drive by high frequency fast waves

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-01

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves ("helicons" or "whistlers"). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n∥, a result that can be understood from examination of the evolution of n∥ as the waves propagate in the plasma. Because of this insensitivity, relatively large values (˜3) of n∥ can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n∥ spectrum, which also helps avoid mode conversion.

  1. Time resolved measurements of cathode fall in high frequency fluorescent lamps

    Science.gov (United States)

    Hadrath, S.; Garner, R. C.; Lieder, G. H.; Ehlbeck, J.

    2007-11-01

    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight.

  2. Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities

    Directory of Open Access Journals (Sweden)

    Mathieu Zellhuber

    2014-03-01

    Full Text Available Flame dynamics related to high-frequency instabilities in gas turbine combustors are investigated using experimental observations and numerical simulations. Two different combustor types are studied, a premix swirl combustor (experiment and a generic reheat combustor (simulation. In both cases, a very similar dynamic behaviour of the reaction zone is observed, with the appearance of transverse displacement and coherent flame wrinkling. From these observations, a model for the thermoacoustic feedback linked to transverse modes is proposed. The model splits heat release rate fluctuations into distinct contributions that are related to flame displacement and variations of the mass burning rate. The decomposition procedure is applied on the numerical data and successfully verified by comparing a reconstructed Rayleigh index with the directly computed value. It thus allows to quantify the relative importance of various feedback mechanisms for a given setup.

  3. Prolonged high-frequency oscillatory ventilation in tubercular multifocal cystic lung disease.

    Science.gov (United States)

    Mohari, Nivedita; Raj, Dinesh; Lodha, Rakesh; Kabra, Sushil K

    2012-12-01

    Multifocal cystic lung disease in infants is most commonly congenital, and is managed surgically with perioperative mechanical ventilation. Multifocal cystic lung disease in infants may be due to tuberculosis. We report a young infant with tubercular multifocal cystic lung disease and respiratory failure. The initial chest imaging revealed diffuse nodular infiltrates. Soon after admission he required conventional mechanical ventilation for respiratory failure. The bronchoalveolar lavage fluid grew Mycobacterium tuberculosis in culture. Subsequent chest imaging showed progression to multifocal cystic lung disease. The ventilation mode was changed to high-frequency oscillatory ventilation (HFOV) due to persistent CO(2) retention in the presence of cystic lung disease. The cystic lung disease reversed with antitubercular treatment and prolonged HFOV with slow wean.

  4. Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

    Science.gov (United States)

    Huang, Liang; Ni, Xuan; Ditto, William L.; Spano, Mark; Carney, Paul R.; Lai, Ying-Cheng

    2017-01-01

    We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

  5. Time resolved measurements of cathode fall in high frequency fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S [Institute of Low-Temperature Plasma Physics, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Garner, R C [Central Research and Services Laboratory, OSRAM Sylvania, 71 Cherry Hill Dr, Beverly, MA 01915 (United States); Lieder, G H [Research Light Sources, Osram GmbH, Hellabrunner Str. 1, D-81536 Munich (Germany); Ehlbeck, J [Institute of Low-Temperature Plasma Physics, Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2007-11-21

    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight.

  6. Three Dimensional Endoscopic Image of a Blood Vessel Using High Frequency Ultrasound

    Science.gov (United States)

    Oshiro, Osamu; Kamada, Kumi; Chihara, Kunihiro; Secomski, Wojciech; Nowicki, Andrzej

    2000-05-01

    This paper describes a high frequency ultrasound (US) imaging system for observation of small tissues and a virtual endoscopic image of a blood vessel. This system consists of a US probe with a central frequency of 32 MHz, a microscope table designed to collect some slices of US brightness mode (B-mode) images, a transmitter containing control logic and a receiver circuit and a personal computer (PC) with an analog to digital (AD) converter. First, US B-mode images with high spatial resolution were obtained by shifting a measurement plane at a constant step of 0.075 mm. Second, three-dimensional (3-D) image reconstruction was performed with linear interpolation and a volume rendering technique. Finally, the point of view of the 3-D image was set in the human body and a virtual endoscopic image was presented. The experimental results present a blood vessel as if an ultrasound probe were inserted in it and reveal the anatomical structure under skin.

  7. Zero-group-velocity acoustic waveguides for high-frequency resonators

    Science.gov (United States)

    Caliendo, C.; Hamidullah, M.

    2017-11-01

    The propagation of the Lamb-like modes along a silicon-on-insulator (SOI)/AlN thin supported structure was simulated in order to exploit the intrinsic zero group velocity (ZGV) features to design electroacoustic resonators that do not require metal strip gratings or suspended edges to confine the acoustic energy. The ZGV resonant conditions in the SOI/AlN composite plate, i.e. the frequencies where the mode group velocity vanishes while the phase velocity remains finite, were investigated in the frequency range from few hundreds of MHz up to 1900 MHz. Some ZGV points were found that show up mostly in low-order modes. The thermal behaviour of these points was studied in the  ‑30 to 220 °C temperature range and the temperature coefficients of the ZGV resonant frequencies (TCF) were estimated. The behaviour of the ZGV resonators operating as gas sensors was studied under the hypothesis that the surface of the device is covered with a thin polyisobutylene (PIB) film able to selectively adsorb dichloromethane (CH2Cl2), trichloromethane (CHCl3), carbontetrachloride (CCl4), tetrachloroethylene (C2Cl4), and trichloroethylene (C2HCl3), at atmospheric pressure and room temperature. The sensor sensitivity to gas concentration in air was simulated for the first four ZGV points of the inhomogeneous plate. The feasibility of high-frequency, low TCF electroacoustic micro-resonator based on SOI and piezoelectric thin film technology was demonstrated by the present simulation study.

  8. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  9. High-frequency guided ultrasonic waves for the detection of hidden defects in multi-layer aerospace structures

    Science.gov (United States)

    Masserey, B.; Raemy, C.; Fromme, P.

    2012-04-01

    High-frequency guided ultrasonic waves allow for the non-destructive testing of aerospace structures. This type of structure often contains multi-layer components subjected to cyclic loading conditions, where fatigue cracks and localized disbonds can develop. Using standard ultrasonic transducers, high frequency guided wave modes were generated in a model structure consisting of two adhesively bonded aluminum plates. This type of waves propagates along the structure and penetrates through the complete thickness. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with 2D finite element simulations was found. Two types of hidden defects were considered: localized lacks of sealant and small defects in the aluminum layer facing the sealant. The interaction of the high frequency guided waves with the hidden defects was investigated. Standard pulseecho measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulation results. The high frequency guided waves have the potential for fatigue crack growth monitoring at critical and difficult to access fastener locations in aerospace structures from a stand-off distance.

  10. Resent developments in high-frequency surface-wave techniques

    Science.gov (United States)

    Xia, J.; Pan, Y.; Zeng, C.

    2012-12-01

    High-frequency Rayleigh-wave methods, such as Multi-channel Analysis of Surface Waves (MASW), are getting increasingly attention in the near-surface geophysics and geotechnique community in the last 20 years because of their non-invasive, non-destructive, efficient, and low-cost advantages and their success in environmental and engineering applications. They are viewed by near-surface geophysics community as the one of most promise techniques in the future. However, they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions, for example, highway, foundation, dam, levee, jetty, etc., which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration. We present solutions to the problems associated with near-surface materials that possess velocity inverse and high Poisson's ratio. Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer). Two velocity models are most common in near-surface applications. One is a low-velocity half space model and the other a high-velocity topmost layer. The former model results in a complex matrix that no roots can be found in the real number domain, which implies that no phase velocities can be calculated in certain frequency ranges based on current exist algorithms. A solution is to use the real part of the root of the complex number. It is well-known that phase velocities approach about 91% of the shear (S)-wave velocity of the topmost layer when wavelengths are much shorter than the thickness of the topmost layer. The later model, however, results in that phase velocities in a high-frequency range calculated using the current algorithms approach a velocity associated with the S-wave velocity of the second layer NOT the topmost layer. A solution to this problem is to use a two-layer model to

  11. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  12. High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti.

    Directory of Open Access Journals (Sweden)

    Mustafizur Rahman

    Full Text Available In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R phenotype, 80 (46.5% of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010 were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R differed from that of a typical El Tor rugose strain (N16961R by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.

  13. Cobalt Nanoparticle Inks for Printed High Frequency Applications on Polycarbonate

    Science.gov (United States)

    Nelo, Mikko; Myllymäki, Sami; Juuti, Jari; Uusimäki, Antti; Jantunen, Heli

    2015-12-01

    In this work the high frequency properties of low curing temperature cobalt nanoparticle inks printed on polycarbonate substrates were investigated. The inks consisted of 30-70 vol.% metallic cobalt nanoparticles and poly (methylene methacrylate) polymer, having excellent adhesion on polycarbonate and a curing temperature of 110°C. The influence of binder material content on the electromagnetic properties of the ink was investigated using the shorted microstrip transmission-line perturbation method. Changes in mechanical properties were evaluated with adhesion tests using the pull-out strength test and the ASTM D 3359-B cross-hatch tape peel test. The microstructure of the printed patterns was investigated with field emission scanning electron microscopy (FESEM). The inks remained mechanically durable with metal contents up to 60 vol.%, achieving pull-off strength of up to 5.2 MPa and the highest marks in adhesion of the tape peel test. The inks obtained a relative permeability of 1.5-3 in the 45 MHz-10 GHz band with a magnetic loss tangent of 0.01-0.06. The developed inks can be utilized in various printed electronics applications such as antenna miniaturization, antenna substrates and magnetic sensors or sensing.

  14. Network Analyses for Space-Time High Frequency Wind Data

    Science.gov (United States)

    Laib, Mohamed; Kanevski, Mikhail

    2017-04-01

    Recently, network science has shown an important contribution to the analysis, modelling and visualization of complex time series. Numerous existing methods have been proposed for constructing networks. This work studies spatio-temporal wind data by using networks based on the Granger causality test. Furthermore, a visual comparison is carried out with several frequencies of data and different size of moving window. The main attention is paid to the temporal evolution of connectivity intensity. The Hurst exponent is applied on the provided time series in order to explore if there is a long connectivity memory. The results explore the space time structure of wind data and can be applied to other environmental data. The used dataset presents a challenging case study. It consists of high frequency (10 minutes) wind data from 120 measuring stations in Switzerland, for a time period of 2012-2013. The distribution of stations covers different geomorphological zones and elevation levels. The results are compared with the Person correlation network as well.

  15. Very High Frequency Galvanic Isolated Offline Power Supply

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf

    inverters with a single combined rectifier. The converter designed to deliver 9 W to a 60 V LED load and is achieving an efficiency of 89.4% and a power density of 2.14 W3 . The development of this converter proof that offline VHF converter can be implemented with high efficiencies even for low power applications...... converters. During this Ph.D. thesis, different areas of an offline VHF converters are described, dur-ing the project different areas have been investigated such as, gate drive, synchronous rectifiers, PCB transformers, control of a resonant converter, galvanic isolation, EMC performance, power factor......During the last decades many researchers have turned their attention to raising the operation frequency of power converters to the very high frequency (VHF) range going from 30 MHz to 300 MHz. Increasing the operating frequency of a power converter leads to smaller energy storing components...

  16. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  17. Fantoni’s Tracheostomy using Catheter High Frequency Jet Ventilation

    Directory of Open Access Journals (Sweden)

    P. Török

    2012-01-01

    Full Text Available Background: It has been shown previously that conventional ventilation delivered through a long cuffed endotracheal tube is associated with a high flow-resistance and frequent perioperative complications. Aim: We attempted to supersede the conventional ventilation by high-frequency jet ventilation through a catheter (HFJV-C and assess safety of the procedure. Material and methods: Using a translaryngeal tracheostomy kit, we performed a translaryngeal (Fantoni tracheostomy (TLT. Subsequently, we introduced a special 2-way prototype ventilatory catheter into the trachea via the TLT under bronchoscopic control. Satisfactory HFJV-C ventilation through the catheter was achieved in 218 patients. Results: There were no significant adverse effects on vital signs observed in the cohort during the study. The pH, SpO2, PaO2, and PaCO2 did not change significantly following the HFJV-C. The intrinsic PEEPi measured in trachea did not exceed 4—5 cm H2O during its application, which was significantly less than during the classical ventilation via the endotracheal tube fluctuating between 12 and 17 cm H2O. No serious medical complications occurred. Conclusion: The HFJV during Fantoni’s tracheostomy using the catheter HFJV-C proved to be a safe and effective method of lung ventilation at the intensive care unit. Key words: Translaryngeal tracheostomy, HFJV via catheter.

  18. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  19. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  20. Algorithmic and high-frequency trading in Borsa Istanbul

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2016-12-01

    Full Text Available This paper investigates the levels of algorithmic trading (AT and high-frequency trading (HFT in an emerging market, Borsa Istanbul (BIST, utilizing a dataset of 354 trading days between January 2013 and May 2014. We find an upward trend in AT by using common proxies: number of messages per minute and algo_trad of Hendershott et al. (2011. Mean algo_trad for BIST 100 index constituents varies between −18 and −13 which is parallel to 2003–2005 levels of NASDAQ large cap stocks. Initially, we measure HFT involvement by detecting linked messages as in the way proposed in Hasbrouck and Saar (2013. Next, we propose an extended HFT measure which captures various HFT strategies. This measure attributes approximately 6% of the orders to HFT. HFT involvement is higher in large orders (11.96%, in orders submitted by portfolio/fund management firms (10.40%, after improvement of BIST's order submission platform and tick size reduction for certain stocks.

  1. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  2. Breast tissue characterization with high-frequency scanning acoustic microscopy

    Science.gov (United States)

    Kumon, R. E.; Bruno, I.; Heartwell, B.; Maeva, E.

    2004-05-01

    We have performed imaging of breast tissue using scanning acoustic microscopy (SAM) in the range of 25-50 MHz with the goal of accurately and rapidly determining the structure and composition throughout the volume of the samples. In contrast to traditional histological slides, SAM images can be obtained without special preparation, sometimes even without sectioning, but with sufficiently high spatial resolution to give information comparable to surface optical images. As a result, the use of high-frequency SAM at the time of breast lumpectomy to identify disease-free margins has the potential to reduce reoperative rates, patient anxiety, and local recurrence. However, only limited work has been performed to characterize breast tissue in the frequency range above clinical ultrasound devices. The samples are 4-cm2-thick sections (2-3 mm) taken from mastectomies and preserved in formalin. They are placed between two plates and immersed in water during imaging. Attenuation images are acquired by focusing the acoustic beam at the top and bottom of the samples, although better results were obtained for bottom focusing. For purposes of comparison and identification of histological features, acoustical images will be presented along with optical images obtained from the same samples. [Work supported by CIHR.

  3. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  4. High-frequency instability of the sheath-plasma resonance

    Science.gov (United States)

    Stenzel, R. L.

    1989-01-01

    Coherent high frequency oscillations near the electron plasma frequency (omega approx. less than omega sub p) are generated by electrodes with positive dc bias immersed in a uniform Maxwellian afterglow plasma. The instability occurs at the sheath-plasma resonance and is driven by a negative RF sheath resistance associated with the electron inertia in the diode-like electron-rich sheath. With increasing dc bias, i.e., electron transit time, the instability exhibits a hard threshold, downward frequency pulling, line broadening and copious harmonics. The fundamental instability is a bounded oscillation due to wave evanescence, but the harmonics are radiated as electromagnetic waves from the electrodes acting like antennas. Wavelength and polarization measurements confirm the emission process. Electromagnetic waves are excited by electrodes of various geometries (planes, cylinders, spheres) which excludes other radiation mechanisms such as orbitrons or beam-plasma instabilities. The line broadening mechanism was identified as a frequency modulation via the electron transit time by dynamic ions. Ion oscillations at the sheath edge give rise to burst-like RF emissions. These laboratory observations of a new instability are important for antennas in space plasmas, generation of coherent beams with diodes, and plasma diagnostics.

  5. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  6. Refractivity variations and propagation at Ultra High Frequency

    Science.gov (United States)

    Alam, I.; Najam-Ul-Islam, M.; Mujahid, U.; Shah, S. A. A.; Ul Haq, Rizwan

    Present framework is established to deal with the refractivity variations normally affected the radio waves propagation at different frequencies, ranges and different environments. To deal such kind of effects, many researchers proposed several methodologies. One method is to use the parameters from meteorology to investigate these effects of variations in refractivity on propagation. These variations are region specific and we have selected a region of one kilometer height over the English Channel. We have constructed different modified refractivity profiles based on the local meteorological data. We have recorded more than 48 million received signal strength from a communication links of 50 km operating at 2015 MHz in the Ultra High Frequency band giving path loss between transmitting and receiving stations of the experimental setup. We have used parabolic wave equation method to simulate an hourly value of signal strength and compared the obtained simulated loss to the experimental loss. The analysis is made to compute refractivity distribution of standard (STD) and ITU (International Telecommunication Union) refractivity profiles for various evaporation ducts. It is found that a standard refractivity profile is better than the ITU refractivity profiles for the region at 2015 MHz. Further, it is inferred from the analysis of results that 10 m evaporation duct height is the dominant among all evaporation duct heights considered in the research.

  7. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  8. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  9. Bottomside Ionospheric Electron Density Specification using Passive High Frequency Signals

    Science.gov (United States)

    Kaeppler, S. R.; Cosgrove, R. B.; Mackay, C.; Varney, R. H.; Kendall, E. A.; Nicolls, M. J.

    2016-12-01

    The vertical bottomside electron density profile is influenced by a variety of natural sources, most especially traveling ionospheric disturbances (TIDs). These disturbances cause plasma to be moved up or down along the local geomagnetic field and can strongly impact the propagation of high frequency radio waves. While the basic physics of these perturbations has been well studied, practical bottomside models are not well developed. We present initial results from an assimilative bottomside ionosphere model. This model uses empirical orthogonal functions based on the International Reference Ionosphere (IRI) to develop a vertical electron density profile, and features a builtin HF ray tracing function. This parameterized model is then perturbed to model electron density perturbations associated with TIDs or ionospheric gradients. Using the ray tracing feature, the model assimilates angle of arrival measurements from passive HF transmitters. We demonstrate the effectiveness of the model using angle of arrival data. Modeling results of bottomside electron density specification are compared against suitable ancillary observations to quantify accuracy of our model.

  10. Non-invasive high-frequency vascular ultrasound elastography

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Roch L [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Daronat, Michel [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Ohayon, Jacques [Laboratory TIMC-IMAG, UMR CNRS 5525, Institut A. Bonniot, 38706 La Tronche (France); Stoyanova, Ekatherina [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Foster, F Stuart [Department of Medical Biophysics, Sunnybrook and Women' s College Health Sciences Centre, University of Toronto, Ontario (Canada); Cloutier, Guy [Laboratory of Biorheology and Medical Ultrasonics, Research Center, University of Montreal Hospital, Quebec (Canada); Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Quebec (Canada)

    2005-04-07

    Non-invasive vascular elastography (NIVE) was recently introduced to characterize mechanical properties of superficial arteries. In this paper, the feasibility of NIVE and its applicability in the context of high-frequency ultrasound imaging is investigated. First, experiments were performed in vitro on vessel-mimicking phantoms. Polyvinyl alcohol cryogel was used to create two double-layer vessels with different mechanical properties. In both cases, the stiffness of the inner layer was made softer. Radial stress was applied within the lumen of the phantoms by applying incremental static pressure steps with a column of a flowing mixture of water-glycerol. The vessel phantoms were insonified at 32 MHz with an ultrasound biomicroscope to provide cross-section sequences of radio-frequency (RF) ultrasound data. The Lagrangian speckle model estimator (LSME) was used to assess the two-dimensional-strain tensors, and the composite Von Mises elastograms were computed. A new implementation of the LSME based on the optical flow equations was introduced. Deformation parameters were estimated using an inversion algorithm. For each in vitro experiment, both layers of approximately 1 mm were distinguished. Second, the use of the method for the purpose of studying small vessels (MicroNIVE) in genetically engineered rodents was introduced. Longitudinal scans of the carotid artery were performed at 40 MHz. The in vivo results give confidence in the feasibility of MicroNIVE as a potential tool to non-invasively study the impact of targeted genes on vascular remodelling in rodents.

  11. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...

  12. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  13. Lead extraction experience with high frequency excimer laser.

    Science.gov (United States)

    Tanawuttiwat, Tanyanan; Gallego, Daniel; Carrillo, Roger G

    2014-09-01

    A higher frequency Excimer laser sheath using an 80-Hz pulse repetitive rate was approved by the Food and Drug Administration in April 2012. We reported our initial clinical experience with a high-frequency Excimer laser sheath and compared it with lower-frequency laser sheaths which have been previously used. In this single center, retrospective cohort study, we evaluated patients who underwent lead extraction from December 2008 to May 2013. Those who underwent lead removal without using a laser sheath or with approaches other than subclavian were excluded. Primary endpoints included total laser time, number of pulses, and complications. Data on clinical characteristics, lead type, indications, and outcomes were prospectively collected and analyzed. A total of 427 patients were included in the study (72.6% male; age 67.9 ± 15.23 years). Lower frequency and higher frequency laser sheaths were used in 315 and 112 patients, respectively. A total of 821 leads were removed with 765 leads (93.2%) extracted using the Excimer laser sheath. Lead age was 5.71 ± 4.96 years. Complete extraction was seen in all patients. A higher-frequency laser sheath was associated with a lower laser time and a lower total number of laser pulses even after adjustments for the number of leads, type of leads, and lead age. In the higher frequency group, mortality rate was 0.9% and minor complication rate was 3.6%. When compared with the lower-frequency laser sheath, the higher-frequency laser sheath requires less laser times and more efficient amount of pulses for lead extraction with comparable success rate. Due to the rarity of major and minor complications, no statistical significance was found between the two groups. ©2014 Wiley Periodicals, Inc.

  14. Achieving High-Frequency Optical Control of Synaptic Transmission

    Science.gov (United States)

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  15. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  16. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  17. Robust Optimization Design Algorithm for High-Frequency TWTs

    Science.gov (United States)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  18. High-frequency oscillations (HFOs) in clinical epilepsy

    Science.gov (United States)

    Jacobs, J.; Staba, R.; Asano, E.; Otsubo, H.; Wu, J.Y.; Zijlmans, M.; Mohamed, I.; Kahane, P.; Dubeau, F.; Navarro, V.; Gotman, J.

    2013-01-01

    Epilepsy is one of the most frequent neurological diseases. In focal medically refractory epilepsies, successful surgical treatment largely depends on the identification of epileptogenic zone. High-frequency oscillations (HFOs) between 80 and 500 Hz, which can be recorded with EEG, may be novel markers of the epileptogenic zone. This review discusses the clinical importance of HFOs as markers of epileptogenicity and their application in different types of epilepsies. HFOs are clearly linked to the seizure onset zone, and the surgical removal of regions generating them correlates with a seizure free post-surgical outcome. Moreover, HFOs reflect the seizure-generating capability of the underlying tissue, since they are more frequent after the reduction of antiepileptic drugs. They can be successfully used in pediatric epilepsies such as epileptic spasms and help to understand the generation of this specific type of seizures. While mostly recorded on intracranial EEGs, new studies suggest that identification of HFOs on scalp EEG or magnetoencephalography (MEG) is possible as well. Thus not only patients with refractory epilepsies and invasive recordings but all patients might profit from the analysis of HFOs. Despite these promising results, the analysis of HFOs is not a routine clinical procedure; most results are derived from relatively small cohorts of patients and many aspects are not yet fully understood. Thus the review concludes that even if HFOs are promising biomarkers of epileptic tissue, there are still uncertainties about mechanisms of generation, methods of analysis, and clinical applicability. Large multicenter prospective studies are needed prior to widespread clinical application. PMID:22480752

  19. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  20. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    Science.gov (United States)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research

  1. Exposure to high-frequency transient electromagnetic fields.

    Science.gov (United States)

    Skotte, J H

    1996-02-01

    The purpose of this study was to assess exposure to high-frequency transient (HFT) electromagnetic fields in occupational and residential environments. Exposure to HFT electromagnetic fields was measured with personal dosimeters for 301 volunteers (396 measurements) in periods of 24 h in both occupational and residential environments. The study included electrical utility workers (generation, transmission, distribution, substation), office and industrial workers, and people living near high-power transmission lines. The measure of exposure to HFT fields was specified as the proportion of time (parts per million) in which the electric field exceeds a nominal threshold level of 200 V.m-1 at 5-20 MHz. Recently the specification of the HFT channel of the dosimeter has been found to be incomplete; therefore a testing of the threshold level and the sensitivity to electromagnetic fields from radio-telephones was carried out. The percentage of measurements with a mean workday exposure above 0.1 ppm was 6.5-9.4% for the utility groups and 0.9% for all the nonwork measurements. It is likely that the use of radio-telephones has contributed significantly to the number of HFT events in some of the measurements, especially for the generation workers. The nominal threshold level of the dosimeter was found to vary considerably depending on the polarization of the field (20-400 V.m-1 at 13.56 MHz for one instrument). Generally speaking, HFT fields appeared infrequently. The workday exposure to HFT fields and 50 Hz magnetic fields ranked the groups differently. There is a need for developing instrumentation for HFT field measurements further.

  2. Achieving high-frequency optical control of synaptic transmission.

    Science.gov (United States)

    Jackman, Skyler L; Beneduce, Brandon M; Drew, Iain R; Regehr, Wade G

    2014-05-28

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. Copyright © 2014 the authors 0270-6474/14/347704-11$15.00/0.

  3. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik; Day, Jacqueline; Poda, Gennadiy I.; Hall, Molly K.; Michener, Marshall L.; Reitz, Beverly A.; Mathis, Karl J.; Pierce, Betsy S.; Parikh, Mihir D.; Mischke, Deborah A.; Long, Scott A.; Parlow, John J.; Anderson, David R.; Thorarensen, Atli (Pfizer)

    2010-08-11

    The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.

  4. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode.

    Science.gov (United States)

    Meyers, Marvin J; Pelc, Matthew; Kamtekar, Satwik; Day, Jacqueline; Poda, Gennadiy I; Hall, Molly K; Michener, Marshall L; Reitz, Beverly A; Mathis, Karl J; Pierce, Betsy S; Parikh, Mihir D; Mischke, Deborah A; Long, Scott A; Parlow, John J; Anderson, David R; Thorarensen, Atli

    2010-03-01

    The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE

    Science.gov (United States)

    Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.

    2017-04-01

    Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.

  6. Statistical Analysis of Thomson Scattering Measurements for High-Frequency Temperature Fluctuations

    Science.gov (United States)

    Morton, Lucas; den Hartog, Daniel; Parke, Eli; Duff, James; Lin, Liang

    2014-10-01

    The MST Thomson Scattering (TS) Diagnostic is used to study electron temperature (Te) fluctuations at frequencies (lasers can fire 4-5 pulses at repetition rate of 12.5 kHz. Adjusting the time delay between the lasers (as low as 1 μs) allows probing of high-frequency (up to 1 MHz) fluctuations by autocorrelating the resulting Te measurements. This technique's effectiveness is demonstrated by comparing its results to those of tearing-mode-correlation studies. In 400 kA standard MST discharges, the dominant tearing modes have associated Te fluctuations of up to 25 +/- 5eV in the core. The TS autocorrelation measures total fluctuations of 42 +/- 5eV, indicating that tearing comprises much of the core Te fluctuations. With improved laser alignment, we investigate 400 kA improved confinement (PPCD) plasmas where global tearing activity is reduced and electrostatic turbulence may dominate electron thermal transport and fluctuation power. We also find no significant Te fluctuation (<5eV) correlated with edge-localized density fluctuations seen by the FIR interferometer in 200kA PPCD plasmas. This work supported by the US DOE and NSF.

  7. Interest of the attenuation coefficient in multiparametric high frequency ultrasound investigation of whole blood coagulation process.

    Science.gov (United States)

    Callé, Rachel; Plag, Camille; Patat, Frédéric; Ossant, Frédéric

    2009-01-01

    Previous studies [R. Libgot, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Proc.-IEEE Utrason. Symp. 4, 2259-2262 (2005); R. Libgot-Calle, F. Ossant, Y. Gruel, P. Lermusiaux, and F. Patat, Ultrasound Med. Biol. 34, 252-264 (2008); F. Ossant, R. Libgot, P. Coupe, P. Lermusiaux, and F. Patat, Proc.-IEEE Ultrason. Symp. 2, 846-849 (2004)] showed the potential of an in vitro high frequency ultrasound (beyond 20 MHz) device to describe the blood clotting process. The parameters were simultaneously estimated in double transmission (DT) with the calculation of the velocity of longitudinal waves and in backscattering (BS) modes with the estimation of the integrated BS coefficient and the effective scatterer size. The aim of the present study was to show how the integrated attenuation coefficient (IAC) assessed in DT mode could provide additional information on this process, especially regarding the fibrin polymerization which is an important part of the coagulation process. A characteristic time t(a) of the variations in IAC that could be linked to fibrin formation was identified.

  8. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine

    Science.gov (United States)

    Richecoeur, F.; Ducruix, S.; Scouflaire, P.; Candel, S.

    2008-01-01

    High-frequency instabilities in liquid propellant rocket engines are experimentally investigated in a model scale research facility. Liquid oxygen and gaseous methane are injected in the combustion chamber at 0.9 MPa through three coaxial injectors vertically aligned. High-amplitude transverse pressure fluctuations are generated in the chamber at frequencies above 1 kHz by a rotating toothed wheel actuator which periodically blocks an auxiliary lateral nozzle. The chamber eigenmodes are identified in a first stage by examining the response of the system to a linear frequency sweep. In a second stage the chamber is excited at the frequency corresponding to the first transverse (1T) mode. The effect of the pressure mode on combustion is observed with intensified and high-speed cameras. Photo-multipliers and pressure sensors are also used to characterize the system behavior and examine phase relations between the corresponding signals. Flame structure modifications observed for specific injection conditions correspond to a strong coupling between acoustics and combustion which notably modifies the flow dynamics, augments the flame expansion rate and enhances heat transfer to the wall.

  9. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications

    Science.gov (United States)

    Praveena, K.; Chen, Hsiao-Wen; Liu, Hsiang-Lin; Sadhana, K.; Murthy, S. R.

    2016-12-01

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn2+ substituted MnFe2O4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn2+, Zn2+ and Fe2+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The real and imaginary part of permeability (μ‧ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (Ms), remnant magnetization (Mr) and magneton number (μB) decreased gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn2+ concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (Pt) changed from 358 mW/cm3 for x=0-165 mW/cm3

  10. The possible role of high-frequency waves in heating solar coronal loops

    Science.gov (United States)

    Porter, Lisa J.; Klimchuk, James A.; Sturrock, Peter A.

    1994-01-01

    We investigate the role of high-frequency waves in the heating of solar active region coronal loops. We assume a uniform background magnetic field, and we introduce a density stratification in a direction perpendicular to this field. We focus on ion compressive viscosity as the damping mechanism of the waves. We incorporate viscosity self-consistently into the equations, and we derive a dispersion relation by adopting a slab model, where the density inside the slab is greater than that outside. Such a configuration supports two types of modes: surface waves and trapped body waves. In order to determine under what conditions these waves may contribute to the heating of active regions, we solve our dispersion relation for a range of densities, temperatures, magnetic field strengths, density ratios, wavevector magnitudes, wavevector ratios, and slab widths. We find that surface waves exhibit very small damping, but body waves can potentially damp at rates needed to balance radiative losses. However, the required frequencies of these body waves are very high. For example, the wave frequency must be at least 5.0/s for a slab density of 10(exp 9,5)/cc, a slab temperature of 10(exp 6,5) K, a field strength of 100 G, and a density ratio of 5. For a slab density of 10(exp 10)/cc, this frequency increases to 8.8/s. Although these frequencies are very high, there in no observational evidence to rule out their existence, and they may be generated both below the corona and at magnetic reconnection sites in the corona. However, we do find that, for slab densities of 10(exp 10)/cc or less, the dissipation of high-frequency waves will be insufficient to balance the radiative losses if the magnetic field strength exceeds roughly 200 G. Because the magnetic field is known to exceed 200 G in many active region loops, particularly low-lying loops and loops emanating from sunspots, it is unlikely that high-frequency waves can provide sufficient heating in these regions.

  11. High frequency acoustic propagation under variable sea surfaces

    Science.gov (United States)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are

  12. Benefits and Drawbacks of A High Frequency Gan Zvzcps Converter

    Directory of Open Access Journals (Sweden)

    Blanes J. M.

    2017-01-01

    Full Text Available This paper presents the benefits and drawbacks of replacing the traditional Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching (ZVZCPS converter. This type of converters is usually used as Electronic Power Converters (EPC for telecommunication satellites travelling-wave tube amplifiers (TWTAs. In this study, firstly the converter is theoretically analysed, obtaining its operation, losses and efficiency equations. From these equations, optimizations maps based on the main system parameters are obtained. These optimization maps are the key to quantify the potential benefits of GaN transistors in this type of converters. Theoretical results show that using GaN transistors, the frequency of the converter can be pushed from 125kHz to 830kHz without sacrificing the converter efficiency. This frequency increase is directly related to reduction on the EPC size and weight.

  13. Development and evaluation of a novel low power, high frequency piezoelectric-based ultrasonic reactor for intensifying the transesterification reaction

    Directory of Open Access Journals (Sweden)

    Mortaza Aghbashlo

    2016-12-01

    Full Text Available In this study, a novel low power, high frequency piezoelectric-based ultrasonic reactor was developed and evaluated for intensifying the transesterification process. The reactor was equipped with an automatic temperature control system, a heating element, a precise temperature sensor, and a piezoelectric-based ultrasonic module. The conversion efficiency and specific energy consumption of the reactor were examined under different operational conditions, i.e., reactor temperature (40‒60 °C, ultrasonication time (6‒10 min, and alcohol/oil molar ratio (4:1‒8:1. Transesterification of waste cooking oil (WCO was performed in the presence of a base-catalyst (potassium hydroxide using methanol. According to the obtained results, alcohol/oil molar ratio of 6:1, ultrasonication time of 10 min, and reactor temperature of 60 °C were found as the best operational conditions. Under these conditions, the reactor converted WCO to biodiesel with a conversion efficiency of 97.12%, meeting the ASTM standard satisfactorily, while the lowest specific energy consumption of 378 kJ/kg was also recorded. It should be noted that the highest conversion efficiency of 99.3 %, achieved at reactor temperature of 60 °C, ultrasonication time of 10 min, and alcohol/oil molar ratio of 8:1, was not favorable as the associated specific energy consumption was higher at 395 kJ/kg. Overall, the low power, high frequency piezoelectric-based ultrasonic module could be regarded as an efficient and reliable technology for intensifying the transesterification process in terms of energy consumption, conversion efficiency, and processing time, in comparison with high power, low frequency ultrasonic system reported previously. Finally, this technology could also be considered for designing, developing, and retrofitting chemical reactors being employed for non-biofuel applications as well.

  14. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    Science.gov (United States)

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  15. High-frequency plant regeneration through cyclic secondary somatic embryogenesis in black pepper (Piper nigrum L.).

    Science.gov (United States)

    Nair, R Ramakrishnan; Dutta Gupta, S

    2006-01-01

    A high-frequency plantlet regeneration protocol was developed for black pepper (Piper nigrum L.) through cyclic secondary somatic embryogenesis. Secondary embryos formed from the radicular end of the primary somatic embryos which were originally derived from micropylar tissues of germinating seeds on growth regulator-free SH medium in the absence of light. The process of secondary embryogenesis continued in a cyclic manner from the root pole of newly formed embryos resulting in clumps of somatic embryos. Strength of the medium and sucrose concentration influenced the process of secondary embryogenesis and fresh weight of somatic embryo clumps. Full-strength SH medium supplemented with 1.5% sucrose produced significantly higher fresh weight and numbers of secondary somatic embryos while 3.0 and 4.5% sucrose in the medium favored further development of proliferated embryos into plantlets. Ontogeny of secondary embryos was established by histological analysis. Secondary embryogenic potential was influenced by the developmental stage of the explanted somatic embryo and stages up to "torpedo" were more suitable. A single-flask system was standardized for proliferation, maturation, germination and conversion of secondary somatic embryos in suspension cultures. The system of cyclic secondary somatic embryogenesis in black pepper described here represents a permanent source of embryogenic material that can be used for genetic manipulations of this crop species.

  16. High frequency signal acquisition and control system based on DSP+FPGA

    Science.gov (United States)

    Liu, Xiao-qi; Zhang, Da-zhi; Yin, Ya-dong

    2017-10-01

    This paper introduces a design and implementation of high frequency signal acquisition and control system based on DSP + FPGA. The system supports internal/external clock and internal/external trigger sampling. It has a maximum sampling rate of 400MBPS and has a 1.4GHz input bandwidth for the ADC. Data can be collected continuously or periodically in systems and they are stored in DDR2. At the same time, the system also supports real-time acquisition, the collected data after digital frequency conversion and Cascaded Integrator-Comb (CIC) filtering, which then be sent to the CPCI bus through the high-speed DSP, can be assigned to the fiber board for subsequent processing. The system integrates signal acquisition and pre-processing functions, which uses high-speed A/D, high-speed DSP and FPGA mixed technology and has a wide range of uses in data acquisition and recording. In the signal processing, the system can be seamlessly connected to the dedicated processor board. The system has the advantages of multi-selectivity, good scalability and so on, which satisfies the different requirements of different signals in different projects.

  17. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    Science.gov (United States)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly

  18. The Communication of Culturally Dominant Modes of Attention from Parents to Children: A Comparison of Canadian and Japanese Parent-Child Conversations during a Joint Scene Description Task

    Science.gov (United States)

    Takada, Akira; Okada, Hiroyuki

    2016-01-01

    Previous findings have indicated that, when presented with visual information, North American undergraduate students selectively attend to focal objects, whereas East Asian undergraduate students are more sensitive to background information. However, little is known about how these differences are driven by culture and socialization processes. In this study, two experiments investigated how young children and their parents used culturally unique modes of attention (selective vs. context sensitive attention). We expected that children would slowly learn culturally unique modes of attention, and the experience of communicating with their parents would aid the development of such modes of attention. Study 1 tested children’s solitary performance by examining Canadian and Japanese children’s (4–6 vs. 7–9 years old) modes of attention during a scene description task, whereby children watched short animations by themselves and then described their observations. The results confirmed that children did not demonstrate significant cross-cultural differences in attention during the scene description task while working independently, although results did show rudimentary signs of culturally unique modes of attention in this task scenario by age 9. Study 2 examined parent–child (4–6 and 7–9 years old) dyads using the same task. The results indicated that parents communicated to their children differently across cultures, replicating attentional differences among undergraduate students in previous cross-cultural studies. Study 2 also demonstrated that children’s culturally unique description styles increased significantly with age. The descriptions made by the older group (7–9 years old) showed significant cross-cultural variances in attention, while descriptions among the younger group (4–6 years old) did not. The significance of parental roles in the development of culturally unique modes of attention is discussed in addition to other possible facilitators

  19. The Communication of Culturally Dominant Modes of Attention from Parents to Children: A Comparison of Canadian and Japanese Parent-Child Conversations during a Joint Scene Description Task.

    Directory of Open Access Journals (Sweden)

    Sawa Senzaki

    Full Text Available Previous findings have indicated that, when presented with visual information, North American undergraduate students selectively attend to focal objects, whereas East Asian undergraduate students are more sensitive to background information. However, little is known about how these differences are driven by culture and socialization processes. In this study, two experiments investigated how young children and their parents used culturally unique modes of attention (selective vs. context sensitive attention. We expected that children would slowly learn culturally unique modes of attention, and the experience of communicating with their parents would aid the development of such modes of attention. Study 1 tested children's solitary performance by examining Canadian and Japanese children's (4-6 vs. 7-9 years old modes of attention during a scene description task, whereby children watched short animations by themselves and then described their observations. The results confirmed that children did not demonstrate significant cross-cultural differences in attention during the scene description task while working independently, although results did show rudimentary signs of culturally unique modes of attention in this task scenario by age 9. Study 2 examined parent-child (4-6 and 7-9 years old dyads using the same task. The results indicated that parents communicated to their children differently across cultures, replicating attentional differences among undergraduate students in previous cross-cultural studies. Study 2 also demonstrated that children's culturally unique description styles increased significantly with age. The descriptions made by the older group (7-9 years old showed significant cross-cultural variances in attention, while descriptions among the younger group (4-6 years old did not. The significance of parental roles in the development of culturally unique modes of attention is discussed in addition to other possible facilitators of

  20. The Communication of Culturally Dominant Modes of Attention from Parents to Children: A Comparison of Canadian and Japanese Parent-Child Conversations during a Joint Scene Description Task.

    Science.gov (United States)

    Senzaki, Sawa; Masuda, Takahiko; Takada, Akira; Okada, Hiroyuki

    2016-01-01

    Previous findings have indicated that, when presented with visual information, North American undergraduate students selectively attend to focal objects, whereas East Asian undergraduate students are more sensitive to background information. However, little is known about how these differences are driven by culture and socialization processes. In this study, two experiments investigated how young children and their parents used culturally unique modes of attention (selective vs. context sensitive attention). We expected that children would slowly learn culturally unique modes of attention, and the experience of communicating with their parents would aid the development of such modes of attention. Study 1 tested children's solitary performance by examining Canadian and Japanese children's (4-6 vs. 7-9 years old) modes of attention during a scene description task, whereby children watched short animations by themselves and then described their observations. The results confirmed that children did not demonstrate significant cross-cultural differences in attention during the scene description task while working independently, although results did show rudimentary signs of culturally unique modes of attention in this task scenario by age 9. Study 2 examined parent-child (4-6 and 7-9 years old) dyads using the same task. The results indicated that parents communicated to their children differently across cultures, replicating attentional differences among undergraduate students in previous cross-cultural studies. Study 2 also demonstrated that children's culturally unique description styles increased significantly with age. The descriptions made by the older group (7-9 years old) showed significant cross-cultural variances in attention, while descriptions among the younger group (4-6 years old) did not. The significance of parental roles in the development of culturally unique modes of attention is discussed in addition to other possible facilitators of this

  1. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  2. Instantaneous pair theory for high-frequency vibrational energy relaxation in fluids

    Science.gov (United States)

    Larsen, Ross E.; Stratt, Richard M.

    1999-01-01

    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motion in liquids, typically spanning no more than a few hundred cm-1. Landau-Teller-type theories explain rather easily how a solvent can absorb any vibrational energy within this "band," but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? In this paper we develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate — and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high-frequency relaxation. This highly reduced version of the dynamics has implications for some of the previous theoretical formulations of this problem. Previous instantaneous-normal-mode theories allowed us to understand the origin of a band of liquid frequencies, and even had some success in predicting relaxation within this band, but lacking a sensible picture of the effects of liquid anharmonicity on dynamics, were completely unable to treat higher frequency relaxation. When instantaneous-normal-mode dynamics is used to evaluate the instantaneous pair theory, though, we end up with a multiphonon picture of the relaxation which is in excellent agreement with the exact high-frequency dynamics — suggesting that the critical anharmonicity

  3. High efficiency off-axis current drive by high frequency fast waves

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  4. Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland

    Science.gov (United States)

    Manninen, Jyrki; Turunen, Tauno; Kleimenova, Natalia; Rycroft, Michael; Gromova, Liudmila; Sirviö, Iina

    2016-12-01

    Geomagnetic field variations and electromagnetic waves of different frequencies are ever present in the Earth’s environment in which the Earth’s fauna and flora have evolved and live. These waves are a very useful tool for studying and exploring the physics of plasma processes occurring in the magnetosphere and ionosphere. Here we present ground-based observations of natural electromagnetic emissions of magnetospheric origin at very low frequency (VLF, 3-30 kHz), which are neither heard nor seen in their spectrograms because they are hidden by strong impulsive signals (sferics) originating in lightning discharges. After filtering out the sferics, peculiar emissions are revealed in these digital recordings, made in Northern Finland, at unusually high frequencies in the VLF band. These recently revealed emissions, which are observed for several hours almost every day in winter, contain short (˜1-3 min) burst-like structures at frequencies above 4-6 kHz, even up to 15 kHz; fine structure on the 1 s time scale is also prevalent. It seems that these whistler mode emissions are generated deep inside the magnetosphere, but the detailed nature, generation region and propagation behaviour of these newly discovered high latitude VLF emissions remain unknown; however, further research on them may shed new light on wave-particle interactions occurring in the Earth’s radiation belts.

  5. Measuring myofiber orientations from high-frequency ultrasound images using multiscale decompositions

    Science.gov (United States)

    Qin, Xulei; Fei, Baowei

    2014-07-01

    High-frequency ultrasound (HFU) has the ability to image both skeletal and cardiac muscles. The quantitative assessment of these myofiber orientations has a number of applications in both research and clinical examinations; however, difficulties arise due to the severe speckle noise contained in the HFU images. Thus, for the purpose of automatically measuring myofiber orientations from two-dimensional HFU images, we propose a two-step multiscale image decomposition method. It combines a nonlinear anisotropic diffusion filter and a coherence enhancing diffusion filter to extract myofibers. This method has been verified by ultrasound data from simulated phantoms, excised fiber phantoms, specimens of porcine hearts, and human skeletal muscles in vivo. The quantitative evaluations of both phantoms indicated that the myofiber measurements of our proposed method were more accurate than other methods. The myofiber orientations extracted from different layers of the porcine hearts matched the prediction of an established cardiac mode and demonstrated the feasibility of extracting cardiac myofiber orientations from HFU images ex vivo. Moreover, HFU also demonstrated the ability to measure myofiber orientations in vivo.

  6. Visualization of the microcirculatory network in skin by high frequency optoacoustic mesoscopy

    Science.gov (United States)

    Schwarz, Mathias; Aguirre, Juan; Buehler, Andreas; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Optoacoustic (photoacoustic) imaging has a high potential for imaging melanin-rich structures in skin and the microvasculature of the dermis due to the natural chromophores (de)oxyhemoglobin, and melanin. The vascular network in human dermis comprises a large network of arterioles, capillaries, and venules, ranging from 5 μm to more than 100 μm in diameter. The frequency spectrum of the microcirculatory network in human skin is intrinsically broadband, due to the large variety in size of absorbers. In our group we have developed raster-scan optoacoustic mesoscopy (RSOM) that applies a 100 MHz transducer with ultra-wide bandwidth in raster-scan mode achieving lateral resolution of 18 μm. In this study, we applied high frequency RSOM to imaging human skin in a healthy volunteer. We analyzed the frequency spectrum of anatomical structures with respect to depth and show that frequencies >60 MHz contain valuable information of structures in the epidermis and the microvasculature of the papillary dermis. We illustrate that RSOM is capable of visualizing the fine vascular network at and beneath the epidermal-dermal junction, revealing the vascular fingerprint of glabrous skin, as well as the larger venules deeper inside the dermis. We evaluate the ability of the RSOM system in measuring epidermal thickness in both hairy and glabrous skin. Finally, we showcase the capability of RSOM in visualizing benign nevi that will potentially help in imaging the penetration depth of melanoma.

  7. Full-wave analysis of the high frequency characteristics of the sine waveguide slow-wave structure

    Science.gov (United States)

    Lei, Xia; Wei, Yanyu; Wang, Yuanyuan; Zhou, Qing; Wu, Gangxiong; Ding, Chong; Li, Qian; Zhang, Luqi; Jiang, Xuebing; Gong, Yubin; Wang, Wenxiang

    2017-08-01

    A theoretical model for calculation of the high frequency characteristics of the sine waveguide slow-wave structure (SWS) is proposed. The formulas of dispersion and interaction impedances of the hybrid modes are obtained by combining the Helmholtz equation with the appropriate boundary conditions. Using the full wave analysis method, it is proved that the periodic structures with a half-period shift followed leads to a pairwise closing of passbands characteristic of adjacent mode. The sine waveguide SWS for 0.22THz traveling wave tube (TWT) is chosen as an illustrative example to verify the validity of the theoretical model, and the calculation results of the dispersion curve and interaction impedance curve are consistent with the HFSS simulation results. In addition, the influences of dimensions of sine waveguide on the high frequency characteristics of +1st spatial harmonic wave are investigated by numerical calculation. The study indicates that the appropriate SWS parameters are helpful for improving the bandwidth and increasing output power of TWT.

  8. Full-wave analysis of the high frequency characteristics of the sine waveguide slow-wave structure

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2017-08-01

    Full Text Available A theoretical model for calculation of the high frequency characteristics of the sine waveguide slow-wave structure (SWS is proposed. The formulas of dispersion and interaction impedances of the hybrid modes are obtained by combining the Helmholtz equation with the appropriate boundary conditions. Using the full wave analysis method, it is proved that the periodic structures with a half-period shift followed leads to a pairwise closing of passbands characteristic of adjacent mode. The sine waveguide SWS for 0.22THz traveling wave tube (TWT is chosen as an illustrative example to verify the validity of the theoretical model, and the calculation results of the dispersion curve and interaction impedance curve are consistent with the HFSS simulation results. In addition, the influences of dimensions of sine waveguide on the high frequency characteristics of +1st spatial harmonic wave are investigated by numerical calculation. The study indicates that the appropriate SWS parameters are helpful for improving the bandwidth and increasing output power of TWT.

  9. Attenuation Characteristics of High Frequency Seismic Waves in Southern India

    Science.gov (United States)

    Sivaram, K.; Utpal, Saikia; Kanna, Nagaraju; Kumar, Dinesh

    2017-07-01

    We present a systematic study of seismic attenuation and its related Q structure derived from the spectral analysis of P-, S-waves in the southern India. The study region is separated into parts of EDC (Eastern Dharwar Craton), Western Dharwar Craton (WDC) and Southern Granulite Terrain (SGT). The study is carried out in the frequency range 1-20 Hz, using a single-station spectral ratio technique. We make use of about 45 earthquakes, recorded in a network of about 32 broadband 3-component seismograph-stations, having magnitudes ( M L) varying from 1.6 to 4.5, to estimate the average seismic body wave attenuation quality factors; Q P and Q S. Their estimated average values are observed to be fitting to the power law form of Q = Q 0 f n . The averaged power law relations for Southern Indian region (as a whole) are obtained as Q P = (95 ± 1.12) f (1.32±0.01); Q S = (128 ± 1.84) f (1.49±0.01). Based on the stations and recorded local earthquakes, for parts of EDC, WDC and SGT, the average power law estimates are obtained as: Q P = (97 ± 5) f (1.40±0.03), Q S = (116 ± 1.5) f (1.48±0.01) for EDC region; Q P = (130 ± 7) f (1.20±0.03), Q S = (103 ± 3) f (1.49±0.02) for WDC region; Q P = (68 ± 2) f (1.4±0.02), Q S = (152 ± 6) f (1.48±0.02) for SGT region. These estimates are weighed against coda Q ( Q C) estimates, using the coda decay technique, which is based on a weak backscattering of S-waves. A major observation in the study of body wave analysis is the low body wave Q ( Q 0 0.5) and Q S/ Q P ≫ 1, suggesting lateral stretches of dominant scattering mode of seismic wave propagation. This primarily could be attributed to possible thermal anomalies and spread of partially fluid-saturated rock-masses in the crust and upper mantle of the southern Indian region, which, however, needs further laboratory studies. Such physical conditions might partly be correlated to the active seismicity and intraplate tectonism, especially in SGT and EDC regions, as per the

  10. Bioelectrochemical conversion of CO2 to chemicals: CO2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes.

    Science.gov (United States)

    Bajracharya, Suman; Vanbroekhoven, Karolien; Buisman, Cees J N; Strik, David P B T B; Pant, Deepak

    2017-09-21

    The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L(-1) d(-1) was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L(-1) d(-1). In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required

  11. Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility

    NARCIS (Netherlands)

    Bos, Charles S.

    2008-01-01

    When analysing the volatility related to high frequency financial data, mostly non-parametric approaches based on realised or bipower variation are applied. This article instead starts from a continuous time diffusion model and derives a parametric analog at high frequency for it, allowing

  12. Outphasing control of gallium nitride based very high frequency resonant converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...

  13. Conversational Dominance.

    Science.gov (United States)

    Esau, Helmut; Poth, Annette

    Details of conversational behavior can often not be interpreted until the social interaction, including the rights and obligations of the participants, their intent, the topic, etc., has been defined. This paper presents a model of conversation in which the conversational image a person presents in a given conversational situation is a function of…

  14. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    Science.gov (United States)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  15. The Laminated Marca Shale: High-Frequency Climate Cycles From the Latest Cretaceous

    Science.gov (United States)

    Davies, A.; Kemp, A. E.; Weedon, G.; Barron, J. A.

    2005-12-01

    The Latest Cretaceous (Maastrichtian) Marca Shale Member, California, displays a well-preserved record of alternating terrigenous and diatomaceous laminae couplets, remarkably similar in lithology to recent laminated sediments from the Gulf of California and Santa Barbara Basin. This similarity, together with the recognition of intra- and inter-annual variability in the diatom flora, implies an annual origin for these couplets. High-resolution backscattered electron imagery has identified two sublaminae types within the varved succession; near monospecific lamina of Chaetoceros-type resting spore and of large Azpeitiopsis morenoensis. The composition and occurrence of these laminae is similar to ENSO forced intra-annual variability of diatom flora along the modern Californian margin. Relative thickness variations in terrigenous and biogenic laminae (proxies for precipitation and productivity respectively) also exhibit similar characteristics to variability in Quaternary varves from the Santa Barbara Basin, shown to be imparted by ENSO forcing. In order to track changes in the levels of bottom water oxygenation within the basin, a bioturbation index was established. Periods when bioturbation was minimal (enhanced benthic anoxia) coincide with times of greatest diatomaceous export flux and also lowest flux of detrital material. Conversely, periods of enhanced bioturbation correspond with reduced diatomaceous export flux and an increased flux of detrital material, comparable with ENSO forced variations in diatomaceous and terrigenous export flux and associated benthic oxygenation levels in Pleistocene varves off the Californian margin. Power spectra obtained from time-series analysis of the bioturbation index and laminae thickness variations exhibit strong signals within the ENSO band. This research implies that high-frequency climate perturbations are inherent components of the climate system and that ENSO-type variability was not confined to the dynamic climate

  16. High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures

    Science.gov (United States)

    Chan, Henry; Masserey, Bernard; Fromme, Paul

    2015-02-01

    Especially for ageing aircraft the development of fatigue cracks at fastener holes due to stress concentration and varying loading conditions constitutes a significant maintenance problem. High frequency guided waves offer a potential compromise between the capabilities of local bulk ultrasonic measurements with proven defect detection sensitivity and the large area coverage of lower frequency guided ultrasonic waves. High frequency guided waves have energy distributed through all layers of the specimen thickness, allowing in principle hidden (2nd layer) fatigue damage monitoring. For the integration into structural health monitoring systems the sensitivity for the detection of hidden fatigue damage in inaccessible locations of the multi-layered components from a stand-off distance has to be ascertained. The multi-layered model structure investigated consists of two aluminium plate-strips with an epoxy sealant layer. During cyclic loading fatigue crack growth at a fastener hole was monitored. Specific guided wave modes (combination of fundamental A0 and S0 Lamb modes) were selectively excited above the cut-off frequencies of higher modes using a standard ultrasonic wedge transducer. Non-contact laser measurements close to the defect were performed to qualify the influence of a fatigue crack in one aluminium layer on the guided wave scattering. Fatigue crack growth monitoring using laser interferometry showed good sensitivity and repeatability for the reliable detection of small, quarter-elliptical cracks. Standard ultrasonic pulse-echo equipment was employed to monitor hidden fatigue damage from a stand-off distance without access to the damaged specimen layer. Sufficient sensitivity for the detection of fatigue cracks located in the inaccessible aluminium layer was verified, allowing in principle practical in situ ultrasonic monitoring of fatigue crack growth.

  17. High frequency oscillatory ventilation versus conventional mechanical ventilation in pediatric acute respiratory distress syndrome: A randomized controlled study.

    Science.gov (United States)

    El-Nawawy, Ahmed; Moustafa, Azza; Heshmat, Hassan; Abouahmed, Ahmed

    2017-01-01

    El-Nawawy A, Moustafa A, Heshmat H, Abouahmed A. High frequency oscillatory ventilation versus conventional mechanical ventilation in pediatric acute respiratory distress syndrome: A randomized controlled study. Turk J Pediatr 2017; 59: 130-143. The aim of this prospective randomized study is to compare the outcomes of the early use of either high frequency oscillation (HFO) or conventional mechanical ventilation (CMV) in patients with pediatric acute respiratory distress syndrome (PARDS). We allocated two hundred PARDS patients over 5 years in 1:1 ratio to either mode. The HFO group showed a significantly higher median partial arterial oxygen pressure to fraction of inspired oxygen (PaO2/FiO2) values after 24 hours of enrollment (p=0.011), higher oxygenation index (OI) decrease percent (p=0.004) and lower cross-over rates (p ventilation days (p=0.77, p=0.28, p=0.65 respectively). The second day values (after 24 hours) of both OI and PaO 2 /FiO 2 were found to be more significant discriminators for mortality when compared to the baseline values (cutoff values > 8.5, ≤139 respectively). PARDS patients with baseline OI > 16 had a better chance of survival if initially ventilated with the HFO (p=0.004). Although the HFO mode appeared to be a safe mode with a significant better oxygenation improvement (after the first 24 hours) and fewer cross-over rates, it failed to show differences as regards mortality or LOS when compared to the CMV adopting protective lung strategy. In PARDS, HFO had a superior advantage in improving oxygenation, yet with no significant mortality improvement, as multi-organ dysfunction syndrome (MODS) was the most common cause of death in our study and not refractory hypoxemia which is the main problem in PARDS; highlighting that mortality in PARDS is multi-factorial and may not depend only on how fast oxygenation improves.

  18. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    Science.gov (United States)

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  19. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Science.gov (United States)

    Li, Xin; Wang, Li-Li; Li, Jin

    2017-09-01

    The black hole could have a primordial origin if its mass is less than 1M_⊙. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108-10^{10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10^{-7}. Also, the upper limit of the amplitude ranges from 10^{-31.5} to 10^{-29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108-10^{10} Hz is derived, which ranges from 1 to 10^2 s^{-1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108-10^{10} Hz. Our results indicate that the SGWB in the high frequency band 108-10^{10} Hz is more likely to be detected by the high frequency gravitational-wave detector.

  20. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Robertson, P. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fossati, L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Balona, L. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Kurtz, D. W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bohlender, D. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Lenz, P. [N. Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warszawa (Poland); Mueller, I.; Lueftinger, Th. [Institut fuer Astronphysik der Universitaet Wien, Tuerkenschanzstr. 17, A-1180 Wien (Austria); Clarke, Bruce D. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Hall, Jennifer R.; Ibrahim, Khadeejah A. [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.

  1. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    Science.gov (United States)

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  2. Biophysical control of intertidal benthic macroalgae revealed by high-frequency multispectral camera images

    Science.gov (United States)

    van der Wal, Daphne; van Dalen, Jeroen; Wielemaker-van den Dool, Annette; Dijkstra, Jasper T.; Ysebaert, Tom

    2014-07-01

    Intertidal benthic macroalgae are a biological quality indicator in estuaries and coasts. While remote sensing has been applied to quantify the spatial distribution of such macroalgae, it is generally not used for their monitoring. We examined the day-to-day and seasonal dynamics of macroalgal cover on a sandy intertidal flat using visible and near-infrared images from a time-lapse camera mounted on a tower. Benthic algae were identified using supervised, semi-supervised and unsupervised classification techniques, validated with monthly ground-truthing over one year. A supervised classification (based on maximum likelihood, using training areas identified in the field) performed best in discriminating between sediment, benthic diatom films and macroalgae, with highest spectral separability between macroalgae and diatoms in spring/summer. An automated unsupervised classification (based on the Normalised Differential Vegetation Index NDVI) allowed detection of daily changes in macroalgal coverage without the need for calibration. This method showed a bloom of macroalgae (filamentous green algae, Ulva sp.) in summer with > 60% cover, but with pronounced superimposed day-to-day variation in cover. Waves were a major factor in regulating macroalgal cover, but regrowth of the thalli after a summer storm was fast (2 weeks). Images and in situ data demonstrated that the protruding tubes of the polychaete Lanice conchilega facilitated both settlement (anchorage) and survival (resistance to waves) of the macroalgae. Thus, high-frequency, high resolution images revealed the mechanisms for regulating the dynamics in cover of the macroalgae and for their spatial structuring. Ramifications for the mode, timing, frequency and evaluation of monitoring macroalgae by field and remote sensing surveys are discussed.

  3. Superspinning Quark Stars Limited by Twin High-Frequency Quasiperiodic Oscillations

    Science.gov (United States)

    Stuchlìk, A.; Schee, J.; Šràmkovà, E.; Török, G.

    2017-06-01

    We study properties of Keplerian disks and their high-frequency quasi-periodic oscillations (HF QPOs) in the field of quark stars with dimensionless spin a breaking the black-hole spin limit of a=1 up to a≍1.3. Using the external geometry of the superspinning quark stars approximated by the Kerr geometry, we show that the Keplerian disks have to touch the surface of such quark stars and their accretion efficiency η≍18% significantly exceeds the efficiency related to the Schwarzschild black holes. Using the geodesic oscillation models, we test possible existence of the superspinning quark stars in atoll sources demonstrating the twin HF QPOs with resonant frequency ratios 3:2, 4:3, 5:4. For explanation of the twin HF QPOs we consider the standard relativistic precession model and its modifications, the tidal distortion model, the resonance epicyclic and the warped disk model. In a given model, we assume occurrence of the twin oscillatory modes at a common resonant dimensionless radius x=r/M determined by the frequency ratio and the quark star spin a. The theoretical limit R>3M on the quark star surface radius puts strong restrictions on the relations between the resonant radii x and the quark star spin a. These restrictions imply that all the considered geodesic oscillation models can be excluded, except for one variant of the relativistic precession model, or alternatively the tidal distortion and warped disk models, that allow for appearance of the twin HF QPOs with frequency ratio 3:2 at radii slightly above the theoretical limit on the radius of the quark star surface, but exclude the smaller frequency ratios (4:3, 5:4).

  4. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  5. Killer whale (Orcinus orca) whistles from the western South Atlantic Ocean include high frequency signals.

    Science.gov (United States)

    Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano

    2015-09-01

    Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.

  6. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  7. Nasal high-frequency oscillation for lung carbon dioxide clearance in the newborn.

    Science.gov (United States)

    Mukerji, Amit; Finelli, Michael; Belik, Jaques

    2013-01-01

    Noninvasive ventilation has been used increasingly in recent years to minimize the duration of endotracheal mechanical ventilation in neonates due to its association with lung injury. Nasal high-frequency oscillation (nHFO) is a relatively new noninvasive modality but evidence for its use is limited. The goal of this study was to compare the CO2 clearance efficacy of nHFO and noninvasive positive pressure ventilation (NIPPV) in a neonatal lung model. A newborn mannequin with dimensions and anatomy similar to a term infant was utilized. It was connected to a commercially available neonatal mechanical ventilator using a manufacturer-provided nasal adaptor. Various modes of noninvasive ventilation were compared as CO2 clearance was measured at the oropharynx by an end-tidal CO2 analyzer following the addition of a known amount of CO2 into the lung. Measurements were obtained at two different lung compliances using nHFO and compared with nCMV and nasal continuous positive airway pressure (nCPAP) as a control. Pressures near the nasal adaptor and the larynx were simultaneously measured with in-line pressure transducers. Whereas no CO2 elimination was observed under nCPAP, its clearance with nHFO was 3-fold greater as compared to NIPPV. On nHFO, CO2 clearance was inversely proportional to frequency and maximal at 6 and 8 Hz. At a lower lung compliance, CO2 clearance was significantly higher at 6 Hz as compared to 10 Hz. During nHFO set to deliver a MAP of 10.0, we documented pressures of 7.2 ± 0.3 at the nasal adaptor and only 2.3 ± 0.3 cm H2O at the larynx. Nasal HFO is effective and superior to NIPPV at lung CO2 elimination in a newborn mannequin model. The use of nHFO as the preferred mode of noninvasive ventilation warrants further clinical studies. Copyright © 2012 S. Karger AG, Basel.

  8. High Frequency Jet Ventilation during Initial Management, Stabilization, and Transport of Newborn Infants with Congenital Diaphragmatic Hernia: A Case Series

    Directory of Open Access Journals (Sweden)

    Qianshen Zhang

    2013-01-01

    Full Text Available Objective. To review experience of the transport and stabilization of infants with CDH who were treated with high frequency jet ventilation (HFJV. Study Design. Retrospective chart review was performed of infants with antenatal diagnosis of CDH born between 2004 and 2009, at Mount Sinai Hospital Toronto, Ontario, Canada. Detailed information was abstracted from the charts of all infants who received HFJV. Results. Of the 55 infants, 25 were managed with HFJV at some point during resuscitation and stabilization prior to transport. HFJV was the initial ventilation mode in six cases and nineteen infants were placed on HFJV as rescue therapy. Blood gases procured from the umbilical artery before and/or after the initiation of HFJV. There was a significant difference detected for both PaCO2 (P=0.0002 and pH (P<0.0001. The pre- and posttransport vital signs remained stable and no transport related deaths or significant complications occurred. Conclusion. HFJV appears to be safe and effective providing high frequency rescue therapy for infants with CDH failing conventional mechanical ventilation. This paper supports the decision to utilize HFJV as it likely contributed to safe transport of many infants that would not otherwise have tolerated transport to a surgical centre.

  9. A Novel Type of Series Load Resonant High Frequency Soft Switching Inverter with Phase Shift Control Scheme

    Science.gov (United States)

    Kifune, Hiroyasu; Yamaguchi, Takumi; Hatanaka, Yoshihiro; Nakaoka, Mutsuo

    The voltage source full bridge series load resonant high frequency soft switching inverter using pulse phaseshift modulation (PSM) strategy is proposed, which can operate ZVS in the left hand side bridge leg and ZCS in the right side bridge leg. This inverter using IGBTs employs two passive components and does not need any additional auxiliary circuit for the active power switch to achieve soft switching commutation, and it has wide soft switching operation region from full power to 3% light power. Furthermore, constant frequency power regulation that is required for induction-heating power applications is introduced on the basis of PSM. In this paper, steady state switching modes of the inverter treated here and its power regulation scheme by PSM are described under a soft switching scheme. Because the proposed inverter can operate at series resonant frequency of series resonant circuit under soft switching condition, it is easy to design the value of series resonant capacitor. The design methods of loss-less snubbing circuit components for soft switching are described to reduce switching losses effectively. The feasible experiment of the proposed inverter is implemented to demonstrate the power regulation performance of proposed high frequency inverter, high efficiency 97.6% at full power condition is obtained.

  10. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    Science.gov (United States)

    Lipo, Thomas A.; Alan, Irfan

    1991-01-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  11. System and component design and test of a 10 hp, 18,000 rpm AC dynamometer utilizing a high frequency AC voltage link, part 1

    Science.gov (United States)

    Lipo, Thomas A.; Alan, Irfan

    1991-06-01

    Hard and soft switching test results conducted with one of the samples of first generation MOS-controlled thyristor (MCTs) and similar test results with several different samples of second generation MCT's are reported. A simple chopper circuit is used to investigate the basic switching characteristics of MCT under hard switching and various types of resonant circuits are used to determine soft switching characteristics of MCT under both zero voltage and zero current switching. Next, operation principles of a pulse density modulated converter (PDMC) for three phase (3F) to 3F two-step power conversion via parallel resonant high frequency (HF) AC link are reviewed. The details for the selection of power switches and other power components required for the construction of the power circuit for the second generation 3F to 3F converter system are discussed. The problems encountered in the first generation system are considered. Design and performance of the first generation 3F to 3F power converter system and field oriented induction moter drive based upon a 3 kVA, 20 kHz parallel resonant HF AC link are described. Low harmonic current at the input and output, unity power factor operation of input, and bidirectional flow capability of the system are shown via both computer and experimental results. The work completed on the construction and testing of the second generation converter and field oriented induction motor drive based upon specifications for a 10 hp squirrel cage dynamometer and a 20 kHz parallel resonant HF AC link is discussed. The induction machine is designed to deliver 10 hp or 7.46 kW when operated as an AC-dynamo with power fed back to the source through the converter. Results presented reveal that the proposed power level requires additional energy storage elements to overcome difficulties with a peak link voltage variation problem that limits reaching to the desired power level. The power level test of the second generation converter after the

  12. High-frequency side-scan sonar fish reconnaissance by autonomous underwater vehicles

    National Research Council Canada - National Science Library

    Lynch, James F; Vogel, Kaela S; Grothues, Thomas M; Newhall, Arthur E; Gawarkiewicz, Glen G

    .... Moving high-frequency sources to depth using autonomous underwater vehicles (AUVs) mitigates this and also co-locates transducers with other AUV-mounted short-range sensors to allow a holistic approach to ecological surveys...

  13. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    de Weerd, N.; van Langevelde, F.; van Oeveren, H.; Nolet, Bart A.; Kölzsch, Andrea; Prins, H.H.T.; De Boer, W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  14. High-Frequency Binaural Beats Increase Cognitive Flexibility: Evidence from Dual-Task Crosstalk

    National Research Council Canada - National Science Library

    Hommel, Bernhard; Sellaro, Roberta; Fischer, Rico; Borg, Saskia; Colzato, Lorenza S

    2016-01-01

    ...) or flexibility (by dampening competition and biasing). We investigated whether high-frequency binaural beats, an auditory illusion suspected to act as a cognitive enhancer, have an impact on cognitive-control configuration...

  15. High-Frequency Electrocardiography: Optimizing the Diagnosis of the Acute Myocardial Infarct with ST-Elevation

    Science.gov (United States)

    Naydenov, S.; Donova, T.; Matveev, M.; Gegova, A.; Popdimitrova, N.; Zlateva, G.; Vladimirova, D.

    2007-04-01

    The analysis of the received digital signal by computer microprocessor in high-frequency electrocardiography, used in our research, makes possible synthesis of vectorcardiographic images and loops, allowing improved qualitative and quantitative diagnosing of the myocardial injury.

  16. High frequency study of nutrient fluxes variability in a small river

    Science.gov (United States)

    Zongo, S. B.; Schmitt, F. G.

    2012-04-01

    We consider here high frequency nutrient fluxes recorded during two one month duration campaigns in 2010 and 2011 in the Wimereux river (North of France). During these campaigns, the river flow is recorded every 10 minutes, simultaneously with NO3, NH4, PO4 and COT data. High frequency fluxes are computed. We first compare these high frequency estimations with low frequency (1 measurement every month) estimations in order to quantify the error in the latter. We also consider the pdf of the ratio of high frequency fluxes ("true" values) to low frequency estimation. We finally consider the scaling properties of the fluctuations of the nutrient data, flow data, and of the fluxes. This study was supported by a grant from Agence de l'Eau Artois Picardie.

  17. An algorithm for on-line detection of high frequency oscillations related to epilepsy.

    Science.gov (United States)

    López-Cuevas, Armando; Castillo-Toledo, Bernardino; Medina-Ceja, Laura; Ventura-Mejía, Consuelo; Pardo-Peña, Kenia

    2013-06-01

    Recent studies suggest that the appearance of signals with high frequency oscillations components in specific regions of the brain is related to the incidence of epilepsy. These oscillations are in general small in amplitude and short in duration, making them difficult to identify. The analysis of these oscillations are particularly important in epilepsy and their study could lead to the development of better medical treatments. Therefore, the development of algorithms for detection of these high frequency oscillations is of great importance. In this work, a new algorithm for automatic detection of high frequency oscillations is presented. This algorithm uses approximate entropy and artificial neural networks to extract features in order to detect and classify high frequency components in electrophysiological signals. In contrast to the existing algorithms, the one proposed here is fast and accurate, and can be implemented on-line, thus reducing the time employed to analyze the experimental electrophysiological signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Efficient Estimation for Diffusions Sampled at High Frequency Over a Fixed Time Interval

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt; Sørensen, Michael

    Parametric estimation for diffusion processes is considered for high frequency observations over a fixed time interval. The processes solve stochastic differential equations with an unknown parameter in the diffusion coefficient. We find easily verified conditions on approximate martingale...

  19. Low and High-Frequency Field Potentials of Cortical Networks Exhibit Distinct Responses to Chemicals

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between differ...

  20. High Frequency Radar Locations in the United States as of February 2016.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset show the point locations of High Frequency (HF) radar systems across the US. HF radars measure the speed and direction of ocean surface currents in near...

  1. The Impact of Very High Frequency Surface Reverberation on Coherent Acoustic Propagation and Modeling

    Science.gov (United States)

    2015-09-30

    The third primary objective is to characterize high frequency wave noise in environmental simulators , the surf zone and the open ocean. 2 In...conducted in a wind-wave simulator at Scripps Institution of Oceanography, and will transition next year to the littoral zone off La Jolla Shores Beach...and work in this initial phase has focused on laboratory measurements of high frequency surface scattering, simulations of the scattered signal and

  2. Influence of high frequency electric field on the dispersion of ion-acoustic waves in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turky, A.; Cercek, M.; Tavzes, R.

    1981-01-01

    The modification of the ion-acoustic wave dispersion under the action of a high frequency electric field was studied experimentally, the wave propagating along and against the plasma stream. The frequency of the field amounted to approximately half the electron plasma frequency. It was found that the phase velocity of the ion wave and the plasma drift velocity decrease as the effective high frequency field power increases.

  3. Conventional Audiometry, Extended High-Frequency Audiometry, and DPOAE for Early Diagnosis of NIHL

    OpenAIRE

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Davari, Mohammad Hossein; Mostaghaci, Mehrdad; Mollasadeghi, Abolfazl; Bahaloo, Maryam; Hashemi, Seyyed Hesam

    2014-01-01

    Background: Noise most frequently affects hearing system, as it may typically cause a bilateral, progressive sensorineural hearing loss at high frequencies. Objectives: This study was designed to compare three different methods to evaluate noise-induced hearing loss (conventional audiometry, high-frequency audiometry, and distortion product otoacoustic emission). Material and Methods: This was a cross-sectional study. Data was analyzed by SPSS (ver. 19) using chi square, T test and repeated m...

  4. Optimization of the High-Frequency Radar Sites in the Bering Strait Region

    Science.gov (United States)

    2015-02-01

    Optimization of the High-Frequency Radar Sites in the Bering Strait Region GLEB PANTELEEV International Arctic Research Center, University of Alaska...climatological data in the Bering Strait (BS) region are synthesized with dynamical constraints of a numerical model. The optimal HFR placement...00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Optimization of the High-Frequency Radar Sites in the Bering Strait Region 5a. CONTRACT NUMBER 5b

  5. Price duration versus trading volume in high-frequency data for selected DAX companies

    OpenAIRE

    Christoph Mitterer; Henryk Gurgul; Robert Syrek

    2016-01-01

    The properties of the time series of durations between consecutive trades of a particular stock have been studied by many contributors in the literature of financial econometrics. Among them are highly prominent scientists like Engle (2000) and Gourieroux and Jasiak (2001). The importance of this topic, accompanied by the growing availability of (ultra-)high-frequency data, has prompted an increase of contributions in recent years. Intensive research based on high-frequency data has several ...

  6. Advanced High-Frequency Electronic Ballasting Techniques for Gas Discharge Lamps

    OpenAIRE

    Tao, Fengfeng

    2001-01-01

    Small size, light weight, high efficacy, longer lifetime and controllable output are the main advantages of high-frequency electronic ballasts for gas discharge lamps. However, power line quality and electromagnetic interference (EMI) issues arise when a simple peak rectifying circuit is used. To suppress harmonic currents and improve power factor, input-current-shaping (ICS) or power-factor-correction (PFC) techniques are necessary. This dissertation addresses advanced high-frequency elec...

  7. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    OpenAIRE

    Yong-Nong, C.; K. Chih-Ming

    2013-01-01

    In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The power supply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to the indispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer need considering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, but also parasitic capacitance resulted fr...

  8. Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies

    Science.gov (United States)

    Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.

    2006-08-01

    It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.

  9. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Directory of Open Access Journals (Sweden)

    Tingting Gang

    2016-12-01

    Full Text Available A micro-fiber-optic Fabry-Perot interferometer (FPI is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF. The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs, especially to the high-frequency (up to 10 MHz UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  10. An analog mobile fronthaul based on low and high frequency hybrid network for next generation mobile system

    Science.gov (United States)

    Zhang, Zicui; Ma, Jianxin; Zhang, Qi; Huang, Shanguo

    2017-11-01

    We have proposed an analog mobile fronthaul (MFH) architecture for next generation mobile networks, which can simultaneously transmit 2.4 GHz, 28 GHz and 60 GHz RF signals with data rates at 100 Mbps, 1 Gbps and 10 Gbps, respectively. Low-frequency (LF) and high-frequency (HF) hybrid networking is achieved for supporting the conventional seamless telecommunication networks and emerging small cellular networks. The millimeter wave (MMW) signal at 60 GHz can be extracted by filtering and then transmitted to multiple further remote radio units (RRUs) to implement the future plug and play flexible networking in the hotspot areas. After analyzing the principle of our proposed MFH link theoretically in detail, the simulation is conducted to demonstrate the proposed MFH link. The simulation results show that the three RF signals can maintain good performance after transmitting over a 20 km standard single mode fiber (SSMF).

  11. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  12. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models

    Science.gov (United States)

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-01-01

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction. PMID:27983639

  13. Assessing Initial Response to High-Frequency Jet Ventilation in Premature Infants With Hypercapnic Respiratory Failure.

    Science.gov (United States)

    Wheeler, Craig R; Smallwood, Craig D; O'Donnell, Iris; Gagner, Daniel; Sola-Visner, Martha C

    2017-07-01

    High-frequency jet ventilation (HFJV) has been used in conjunction with conventional ventilation for infants with respiratory failure. We sought to identify parameters that were associated with successful application of HFJV in patients with hypercapnic respiratory failure. A single-center, retrospective review of infants who received HFJV was conducted. Subjects were enrolled if birthweight was ≤2,000 g and capillary PCO2 was ≥55 mm Hg. Ventilator parameters and physiologic data were recorded at 1 h before HFJV initiation and at hours 1, 4, and 6 following conversion. Subjects were classified as responders if capillary PCO2 was reduced by ≥10% after 1 h of HFJV. Data included peak inspiratory pressure, PEEP, capillary PCO2 , and oxygen saturation index (equal to mean airway pressure × FIO2 × 100/SpO2 ). Because the data were not normally distributed, they are reported as median (interquartile range), and the Mann-Whitney test was used to assess differences in continuous data between groups. Categorical data were analyzed using a chi-square and Fisher exact test. Thirty-four premature infants (n = 24 male) were studied. Twenty-five subjects were classified as responders and demonstrated a significant reduction of capillary PCO2 and FIO2 and increased pH within the first hour. The non-responders demonstrated a higher conventional ventilation peak inspiratory pressure (25 cm H2O vs 19 cm H2O, P = .005) and had a greater postmenstrual age (30 weeks vs 26.5 weeks, P = .01). This group had a higher oxygen saturation index (7.25 vs 3.36, P = .03) and FIO2 requirements (0.6 vs 0.35, P = .038) at 4 h. We identified that lower postmenstrual age, improvements in capillary PCO2 and pH at 1 h, and a reduction of FIO2 were associated with good response to HFJV. These data may help to identify patients who are likely to benefit from HFJV in the neonatal intensive care unit. Copyright © 2017 by Daedalus Enterprises.

  14. Study of the generator/motor operation of induction machines in a high frequency link space power system

    Science.gov (United States)

    Lipo, Thomas A.; Sood, Pradeep K.

    1987-01-01

    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment.

  15. Test the mergers of the primordial black holes by high frequency gravitational-wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Wang, Li-Li; Li, Jin [Chongqing University, Department of Physics, Chongqing (China)

    2017-09-15

    The black hole could have a primordial origin if its mass is less than 1M {sub CircleDot}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 10{sup 8}-10{sup 10} Hz. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10{sup -7}. Also, the upper limit of the amplitude ranges from 10{sup -31.5} to 10{sup -29.5}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is derived, which ranges from 1 to 10{sup 2} s{sup -1}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz. Our results indicate that the SGWB in the high frequency band 10{sup 8}-10{sup 10} Hz is more likely to be detected by the high frequency gravitational-wave detector. (orig.)

  16. The Complex Behaviour of High-Frequency Currents in Simple Circuits

    Science.gov (United States)

    Bauwens, P.

    1947-01-01

    . It is interesting to note that these exist both at the periphery and at the centre. (c) When the whole cable is wound around the vessel, the concentration of the electrolyte becomes the factor determining the way in which the energy will be dissipated: (1) with tap-water, it is found that no eddy currents can be demonstrated whereas coaxial currents exist; (2) with strong saline solutions the converse holds good; (3) with electrolytes of intermediate concentration both types of currents can be shown to coexist at the periphery while at the centre only coaxial currents can be demonstrated. The fact that eddy currents and coaxial currents could be detected simultaneously and did not, as might be expected, give rise to a resultant, could only be explained by assuming that although eddy currents and coaxial currents coexisted as far as their effects on the pilot lamp were concerned, these two phenomena were not coincident as regards their phase relations. On examining the system more closely it became clear that the coaxial currents must be approximately 90 degrees out of phase with the eddy currents. By means of another type of probe (fig. 5c) for surface work, consisting of two metallic buttons mounted on an insulating strip and bridged by a small lamp, P3, similar to the one used throughout the investigations, it was possible to show that the same conditions existed in the body. It could be demonstrated that both coaxial and eddy currents occurred and that the predominance of one or the other type was dictated by conditions related to impedance. In the thigh just above the knee-joint, in most cases both currents could be demonstrated. It could also be shown that when half the cable was wound clockwise and the other half anticlockwise, so as to cancel the magnetic field between the two halves, no eddy currents existed. C. Present therapeutic applications of high-frequency currents involve the continuous dissipation of electrical energy in the load under treatment

  17. The Complex Behaviour of High-Frequency Currents in Simple Circuits.

    Science.gov (United States)

    Bauwens, P

    1947-10-01

    interesting to note that these exist both at the periphery and at the centre.(c) When the whole cable is wound around the vessel, the concentration of the electrolyte becomes the factor determining the way in which the energy will be dissipated: (1) with tap-water, it is found that no eddy currents can be demonstrated whereas coaxial currents exist; (2) with strong saline solutions the converse holds good; (3) with electrolytes of intermediate concentration both types of currents can be shown to coexist at the periphery while at the centre only coaxial currents can be demonstrated.The fact that eddy currents and coaxial currents could be detected simultaneously and did not, as might be expected, give rise to a resultant, could only be explained by assuming that although eddy currents and coaxial currents coexisted as far as their effects on the pilot lamp were concerned, these two phenomena were not coincident as regards their phase relations. On examining the system more closely it became clear that the coaxial currents must be approximately 90 degrees out of phase with the eddy currents.By means of another type of probe (fig. 5c) for surface work, consisting of two metallic buttons mounted on an insulating strip and bridged by a small lamp, P(3), similar to the one used throughout the investigations, it was possible to show that the same conditions existed in the body. It could be demonstrated that both coaxial and eddy currents occurred and that the predominance of one or the other type was dictated by conditions related to impedance. In the thigh just above the knee-joint, in most cases both currents could be demonstrated. It could also be shown that when half the cable was wound clockwise and the other half anticlockwise, so as to cancel the magnetic field between the two halves, no eddy currents existed.C. Present therapeutic applications of high-frequency currents involve the continuous dissipation of electrical energy in the load under treatment. Under these

  18. Effect of near-surface topography on high-frequency Rayleigh-wave propagation

    Science.gov (United States)

    Wang, Limin; Xu, Yixian; Xia, Jianghai; Luo, Yinhe

    2015-05-01

    Rayleigh waves, which are formed due to interference of P- and Sv-waves near the free surface, propagate along the free surface and vanish exponentially in the vertical direction. Their propagation is strongly influenced by surface topography. Due to the high resolution and precision requirements of near-surface investigations, the high-frequency Rayleigh waves are usually used for near-surface structural detecting. Although there are some numerical studies on high-frequency Rayleigh-wave propagation on topographic free surface, detailed analysis of characters of high-frequency Rayleigh-wave propagation on topographic free surface remains untouched. Hence, research of propagation of Rayleigh waves on complex topographic surface becomes critical for Rayleigh-wave methods in near-surface applications. To study the propagation of high-frequency Rayleigh waves on topographic free surface, two main topographic models are designed in this study. One of the models contains a depressed topographic surface, and another contains an uplifted topographic surface. We numerically simulate the propagation of high-frequency Rayleigh waves on these two topographic surfaces by finite-difference method. Soon afterwards, we analyze the propagation character of high-frequency Rayleigh waves on such topographic models, and compare the variations on its energy and frequency before and after passing the topographic region. At last, we discuss the relationship between the variations and topographical steepness of each model. Our numerical results indicate that influence of depressed topography for high-frequency Rayleigh waves is more distinct than influence of uplifted topography. Rayleigh waves produce new scattering body waves during passing the depressed topography with reduction of amplitude and loss of high-frequency components. Moreover, the steeper the depressed topography is, the more energy of Rayleigh waves is lost. The uplifted topography with gentle slope produces similar

  19. High-frequency profile in adolescents and its relationship with the use of personal stereo devices.

    Science.gov (United States)

    Silvestre, Renata Almeida Araújo; Ribas, Ângela; Hammerschmidt, Rogério; de Lacerda, Adriana Bender Moreira

    2016-01-01

    To analyze and correlate the audiometric findings of high frequencies (9-16 kHz) in adolescents with their hearing habits and attitudes, in order to prevent noise-induced hearing loss. This was a descriptive cross-sectional study, which included 125 adolescents in a sample of normal-hearing students, at a state school. The subjects performed high-frequency audiometry testing and answered a self-administered questionnaire addressing information on sound habits concerning the use of personal stereo devices. The sample was divided according to the exposure characteristics (time, duration, intensity, etc.) and the results were compared with the observed thresholds, through the difference in proportions test, chi-squared, Student's t-test, and ANOVA, all at a significance level of 0.05. Average high-frequency thresholds were registered below 15 dB HL and no significant correlation was found between high frequency audiometric findings and the degree of exposure. The prevalence of harmful sound habits due to the use of personal stereo devices is high in the adolescent population, but there was no correlation between exposure to high sound pressure levels through personal stereos and the high-frequency thresholds in this population. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  20. High-frequency audiometry in normal hearing military firemen exposed to noise.

    Science.gov (United States)

    Rocha, Rita Leniza Oliveira da; Atherino, Ciríaco Cristóvão Tavares; Frota, Silvana Maria Monte Coelho

    2010-01-01

    The study of high frequencies has proven its importance for detecting inner ear damage. In some cases, conventional frequencies are not sensitive enough to pick up early changes to the inner ear. To analyze the results of threshold high frequency analysis of individuals exposed to noise with normal conventional audiometry. This was a retrospective cross-sectional cohort study, in which we studied 47 firefighters of the Fire Department of Rio de Janeiro, based on Santos Dumont airport and 33 military men without noise exposure. They were broken down into two age groups: 30-39years and 40-49years. The high frequencies were studied immediately after conventional audiometry. The results were most significant in the 40 to 49 years of age range, where the experimental group showed significantly higher threshold values than the control group 14000Hz (p = 0.008) and 16,000Hz (p = 0.0001). We concluded that noise interfered with high frequency thresholds, where all the mean values found in the experimental group were higher than those in the control group. We suggest that these data reinforce the importance of studying high frequencies, even with normal conventional audiometry in the early detection of noise-induced hearing loss.

  1. Conventional Audiometry, Extended High-Frequency Audiometry, and DPOAE for Early Diagnosis of NIHL.

    Science.gov (United States)

    Mehrparvar, Amir Houshang; Mirmohammadi, Seyyed Jalil; Davari, Mohammad Hossein; Mostaghaci, Mehrdad; Mollasadeghi, Abolfazl; Bahaloo, Maryam; Hashemi, Seyyed Hesam

    2014-01-01

    Noise most frequently affects hearing system, as it may typically cause a bilateral, progressive sensorineural hearing loss at high frequencies. This study was designed to compare three different methods to evaluate noise-induced hearing loss (conventional audiometry, high-frequency audiometry, and distortion product otoacoustic emission). This was a cross-sectional study. Data was analyzed by SPSS (ver. 19) using chi square, T test and repeated measures analysis. Study samples were workers from tile and ceramic industry. We found that conventional audiometry, extended high-frequency audiometry, low-tone distortion product otoacoustic emission and high-tone distortion product otoacoustic emission had abnormal findings in 29 %, 69 %, 22 %, and 52 % of participants. Most frequently affected frequencies were 4000 and 6000Hz in conventional audiometry, and 14000 and 16000 in extended high-frequency audiometry. Extended high-frequency audiometry was the most sensitive test for detection of hearing loss in workers exposed to hazardous noise compared with conventional audiometry and distortion product otoacoustic.

  2. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  3. Occupational Noise Exposure, Bilateral High-Frequency Hearing Loss, and Blood Pressure.

    Science.gov (United States)

    Gan, Wen Qi; Mannino, David M

    2017-11-13

    The aim of this study was to investigate the relationships between occupational noise exposure and blood pressure using self-reported occupational exposure and bilateral high-frequency hearing loss. This study included 4548 participants aged 20 to 69 years from the National Health and Nutrition Examination Survey 1999 to 2004. On the basis of self-reported exposure status, participants were divided into the current, former, or never exposed groups. Bilateral high-frequency hearing loss was defined as the average high-frequency hearing threshold at least 25 dB in both ears. The currently exposed participants had slightly increased diastolic blood pressure compared with those never exposed. Among previously exposed participants, those with bilateral high-frequency hearing loss had increased systolic blood pressure, heart rate, and the prevalence of hypertension compared with those with normal high-frequency hearing. Although there were some significant results, the evidence was not consistent to support the associations between occupational noise exposure and blood pressure.

  4. Differential evolution algorithm for nonlinear inversion of high-frequency Rayleigh wave dispersion curves

    Science.gov (United States)

    Song, Xianhai; Li, Lei; Zhang, Xueqiang; Huang, Jianquan; Shi, Xinchun; Jin, Si; Bai, Yiming

    2014-10-01

    to nonlinear inversion of high-frequency surface wave data should be considered good not only in terms of the accuracy but also in terms of the convergence speed.

  5. High Frequency Radio Observations of the Reactivated Magnetar PSR J1622-4950

    Science.gov (United States)

    Pearlman, Aaron B.; Majid, Walid A.; Prince, Thomas A.; Horiuchi, Shinji; Kocz, Jonathon; Lazio, T. J. W.; Naudet, Charles J.

    2017-07-01

    Radio emission from the magnetar PSR J1622-4950 was recently reported to have resumed (Camilo et al., ATel #10346). We have carried out Target of Opportunity (ToO) radio observations of PSR J1622-4950 at S-band (2.3 GHz) and X-band (8.4 GHz) using the 70-m diameter Deep Space Network (DSN) radio dish (DSS-43) in Canberra, Australia. We report on our single polarization mode observations of PSR J1622-4950 spanning 5 hours on 23 May 2017 starting at 16:03:32 UTC. Pulsations were detected at a period of 4.327308(1) s. We measure a mean flux density of 3.8(8)/0.41(8) mJy at S/X-band, from which we derive a spectral index of -1.7(2). We note that PSR J1622-4950's spectral behavior is now consistent with the majority of pulsars, which have a mean spectral index of -1.8(2) (Maron et al. (2000)). The result by Maron et al. (2000) is used here because they included more high frequency pulsar spectra than other studies to characterize the underlying spectral index distribution over a wide frequency range. The mean flux density at S-band has now increased by an order of magnitude compared to previous flux density measurements by Scholz et al. (2017) during the magnetar's quiescent state. Furthermore, the spectral index has steepened compared to a nearly flat spectral index from flux density measurements between 1.4 and 24 GHz prior to the disappearance of the radio emission (Levin et al. (2010); Keith et al. (2011); Levin et al. (2012); Anderson et al. (2012); Scholz et al. (2017)). We are continuing to monitor changes in PSR J1622-4950's radio spectrum at both S-band and X-band. We thank the DSN (Deep Space Network) and Canberra Deep Space Communication Complex (CDSCC) teams for scheduling these observations.

  6. Efficient quantum microwave-to-optical conversion using electro-optic nanophotonic coupled resonators

    Science.gov (United States)

    Soltani, Mohammad; Zhang, Mian; Ryan, Colm; Ribeill, Guilhem J.; Wang, Cheng; Loncar, Marko

    2017-10-01

    We propose a low-noise, triply resonant, electro-optic (EO) scheme for quantum microwave-to-optical conversion based on coupled nanophotonics resonators integrated with a superconducting qubit. Our optical system features a split resonance—a doublet—with a tunable frequency splitting that matches the microwave resonance frequency of the superconducting qubit. This is in contrast to conventional approaches, where large optical resonators with free-spectral range comparable to the qubit microwave frequency are used. In our system, EO mixing between the optical pump coupled into the low-frequency doublet mode and a resonance microwave photon results in an up-converted optical photon on resonance with high-frequency doublet mode. Importantly, the down-conversion process, which is the source of noise, is suppressed in our scheme as the coupled-resonator system does not support modes at that frequency. Our device has at least an order of magnitude smaller footprint than conventional devices, resulting in large overlap between optical and microwave fields and a large photon conversion rate (g /2 π ) in the range of ˜5 -15 kHz. Owing to a large g factor and doubly resonant nature of our device, microwave-to-optical frequency conversion can be achieved with optical pump powers in the range of tens of microwatts, even with moderate values for optical Q (˜106 ) and microwave Q (˜104 ). The performance metrics of our device, with substantial improvement over the previous EO-based approaches, promise a scalable quantum microwave-to-optical conversion and networking of superconducting processors via optical fiber communication.

  7. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  8. High-frequency phosphorus and nitrate measurements for improved statutory water quality monitoring and management

    Science.gov (United States)

    Bieroza, Magdalena

    2017-04-01

    High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.

  9. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  10. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    Science.gov (United States)

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  11. Control of drug release from capsules using high frequency energy transmission systems.

    Science.gov (United States)

    Gröning, R; Bensmann, H; Müller, R S

    2008-11-19

    In the present investigations new drug delivery systems have been developed, which are controlled by a computer and a high frequency energy transmission system. The capsules consist of a drug reservoir, a high frequency receiver, a gas generating section and a piston to pump a drug solution or drug suspension out of the reservoir. Mechanical energy is generated inside the capsule through electrolysis, if a 27 MHz high frequency field is in resonance with the receiver inside the capsule. Two different miniaturised oscillatory circuits were constructed, which act as the receivers in the capsules. Tramadol was used in release experiments as a model drug. Delayed and pulsed release profiles were obtained. A computer-controlled system was constructed, in which the programmed release profiles are compared with the actual release of the drug.

  12. Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data

    Science.gov (United States)

    2015-01-01

    The recent availability of high frequency data has permitted more efficient ways of computing volatility. However, estimation of volatility from asset price observations is challenging because observed high frequency data are generally affected by noise-microstructure effects. We address this issue by using the Fourier estimator of instantaneous volatility introduced in Malliavin and Mancino 2002. We prove a central limit theorem for this estimator with optimal rate and asymptotic variance. An extensive simulation study shows the accuracy of the spot volatility estimates obtained using the Fourier estimator and its robustness even in the presence of different microstructure noise specifications. An empirical analysis on high frequency data (U.S. S&P500 and FIB 30 indices) illustrates how the Fourier spot volatility estimates can be successfully used to study intraday variations of volatility and to predict intraday Value at Risk. PMID:26421617

  13. High-frequency radar observations of PMSE modulation by radio heating

    Science.gov (United States)

    Senior, Andrew; Rietveld, Michael; Mahmoudian, Alireza; La Hoz, Cesar; Kosch, Michael; Scales, Wayne; Pinedo, Henry

    The first observations using high-frequency (8 MHz) radar of modulation of polar mesospheric summer echoes (PMSE) by radio heating of the ionosphere are presented. The experiment was performed at the EISCAT facility near Tromsø, Norway. The observations are compared with simultaneous radar measurements at 224 MHz and with a model of the dusty plasma response to electron heating. Agreement between the model and observations is good considering technical limitations on the 8 MHz radar measurements. Predictions made about the response of high-frequency PMSE to heating where dust charging dominates over diffusion, opposite to the situation at very high-frequencies are confirmed. Suggestions are made about improving the 8 MHz observations to overcome the current limitations.

  14. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  15. High frequency mass transfer responses with polyaniline modified electrodes by using new ac-electrogravimetry device

    Energy Technology Data Exchange (ETDEWEB)

    Torres, R. [Escuela de Ingenieria de Antioquia Calle 25 Sur No. 42-73, Envigado (Colombia); Jimenez, Y.; Arnau, A. [Departamento Ingenieria Electronica, ETSI de Telecomunicacion, Universidad Politecnica de Valencia, Camino de Vera s/n, C.P. 46022, Valencia (Spain); Gabrielli, C.; Joiret, S. [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France); Perrot, H., E-mail: hubert.perrot@upmc.f [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France); To, T.K.L.; Wang, X. [CNRS, UPR 15 du CNRS, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)] [UPMC, Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques-LISE, 4, place Jussieu, 75005 Paris (France)

    2010-08-30

    For many years, polyaniline films have appeared to be one of the most studied conducting polymers. At the same time, ac-electrogravimetry has been used as a powerful technique for different polymer films but in general for slow perturbation rates. Two reasons for that: on the one hand, high frequency mass transfer responses are not expected and on the other hand, the electronic interfaces dedicated for ac-electrogravimetry are not prepared to follow, without distortion, high rate frequency shifts, faster than a few hertz. This paper shows that high ionic transfer responses can be detected by using a new ac-electrogravimetry concept. The experiments conducted with PANI tried to verify whether high frequency responses in conducting polymers are possible or not. The main interest of the new device is to reach the high frequency values directly and to demonstrate an ionic transfer contribution at 1 kHz which was not predicted with old systems.

  16. High frequency hearing thresholds and product distortion otoacoustic emissions in cystic fibrosis patients,

    Directory of Open Access Journals (Sweden)

    Lucia Bencke Geyer

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: The treatment of patients with cystic fibrosis involves the use of ototoxic drugs, mainly aminoglycoside antibiotics. Due to the use of these drugs, fibrocystic patients are at risk of developing hearing loss. OBJECTIVE: To evaluate the hearing of patients with cystic fibrosis by High Frequency Audiometry and Distortion Product Otoacoustic Emissions. METHODS: Cross-sectional study. The study group consisted of 39 patients (7-20 years of age with cystic fibrosis and a control group of 36 individuals in the same age group without otologic complaints, with normal audiometric thresholds and type A tympanometric curves. High Frequency Audiometry and Distortion Product Otoacoustic Emissions tests were conducted. RESULTS: The study group had significantly higher thresholds at 250, 1000, 8000, 9000, 10,000, 12,500, and 16,000 Hz (p = 0.004 as well as higher prevalence of otoacoustic emission alterations at 1000 and 6000 Hz (p = 0.001, with significantly lower amplitudes at 1000, 1400, and 6000 Hz. There was a significant association between alterations in hearing thresholds in High Frequency Audiometry with the number of courses of aminoglycosides administered (p = 0.005. Eighty-three percent of patients who completed more than ten courses of aminoglycosides had hearing loss in High Frequency Audiometry. CONCLUSION: A significant number of patients with cystic fibrosis who received repeated courses of aminoglycosides showed alterations in High Frequency Audiometry and Distortion Product Otoacoustic Emissions. The implementation of ten or more aminoglycoside cycles was associated with alterations in High Frequency Audiometry.

  17. Hearing thresholds at high frequency in patients with cystic fibrosis: a systematic review.

    Science.gov (United States)

    Caumo, Debora T M; Geyer, Lúcia B; Teixeira, Adriane R; Barreto, Sérgio S M

    High-frequency audiometry may contribute to the early detection of hearing loss caused by ototoxic medications. Many ototoxic drugs are widely used in the treatment of patients with cystic fibrosis. Early detection of hearing loss should allow known harmful drugs to be identified before the damage affects speech frequencies. The damage caused by ototoxicity is irreversible, resulting in important social and psychological consequences. In children, hearing loss, even when restricted to high frequencies, can affect the development of language. To investigate the efficacy and effectiveness of hearing monitoring through high-frequency audiometry in pediatric patients with cystic fibrosis. Electronic databases PubMed, MedLine, Web of Science and LILACS were searched, from January to November 2015. The selected studies included those in which high-frequency audiometry was performed in patients with cystic fibrosis, undergoing treatment with ototoxic drugs and published in Portuguese, English and Spanish. The GRADE system was chosen for the evaluation of the methodological quality of the articles. During the search process carried out from January 2015 to November 2015, 512 publications were identified, of which 250 were found in PubMed, 118 in MedLine, 142 in Web of Science and 2 in LILACS. Of these, nine articles were selected. The incidence of hearing loss was identified at high frequencies in cystic fibrosis patients without hearing complaints. It is assumed that high-frequency audiometry can be an early diagnostic method to be recommended for hearing investigation of patients at risk of ototoxicity. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. High frequency hearing thresholds and product distortion otoacoustic emissions in cystic fibrosis patients.

    Science.gov (United States)

    Geyer, Lucia Bencke; Menna Barreto, Sergio Saldanha; Weigert, Liese Loureiro; Teixeira, Adriane Ribeiro

    2015-01-01

    The treatment of patients with cystic fibrosis involves the use of ototoxic drugs, mainly aminoglycoside antibiotics. Due to the use of these drugs, fibrocystic patients are at risk of developing hearing loss. To evaluate the hearing of patients with cystic fibrosis by High Frequency Audiometry and Distortion Product Otoacoustic Emissions. Cross-sectional study. The study group consisted of 39 patients (7-20 years of age) with cystic fibrosis and a control group of 36 individuals in the same age group without otologic complaints, with normal audiometric thresholds and type A tympanometric curves. High Frequency Audiometry and Distortion Product Otoacoustic Emissions tests were conducted. The study group had significantly higher thresholds at 250, 1000, 8000, 9000, 10,000, 12,500, and 16,000Hz (p=0.004) as well as higher prevalence of otoacoustic emission alterations at 1000 and 6000Hz (p=0.001), with significantly lower amplitudes at 1000, 1400, and 6000Hz. There was a significant association between alterations in hearing thresholds in High Frequency Audiometry with the number of courses of aminoglycosides administered (p=0.005). Eighty-three percent of patients who completed more than ten courses of aminoglycosides had hearing loss in High Frequency Audiometry. A significant number of patients with cystic fibrosis who received repeated courses of aminoglycosides showed alterations in High Frequency Audiometry and Distortion Product Otoacoustic Emissions. The implementation of ten or more aminoglycoside cycles was associated with alterations in High Frequency Audiometry. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Accumulated Source Imaging of Brain Activity with Both Low and High-Frequency Neuromagnetic Signals

    Directory of Open Access Journals (Sweden)

    Jing eXiang

    2014-05-01

    Full Text Available Recent studies have revealed the importance of high-frequency brain signals (>70 Hz. One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB, which is beyond the upper limits of a typical computer workstation’s memory (<196 GB. The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (1~70 Hz and high-frequency (70~200 Hz ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 hours by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.

  20. Hearing thresholds at high frequency in patients with cystic fibrosis: a systematic review

    Directory of Open Access Journals (Sweden)

    Debora T.M. Caumo

    Full Text Available Abstract Introduction: High-frequency audiometry may contribute to the early detection of hearing loss caused by ototoxic medications. Many ototoxic drugs are widely used in the treatment of patients with cystic fibrosis. Early detection of hearing loss should allow known harmful drugs to be identified before the damage affects speech frequencies. The damage caused by ototoxicity is irreversible, resulting in important social and psychological consequences. In children, hearing loss, even when restricted to high frequencies, can affect the development of language. Objective: To investigate the efficacy and effectiveness of hearing monitoring through high-frequency audiometry in pediatric patients with cystic fibrosis. Methods: Electronic databases PubMed, MedLine, Web of Science and LILACS were searched, from January to November 2015. The selected studies included those in which high-frequency audiometry was performed in patients with cystic fibrosis, undergoing treatment with ototoxic drugs and published in Portuguese, English and Spanish. The GRADE system was chosen for the evaluation of the methodological quality of the articles. Results: During the search process carried out from January 2015 to November 2015, 512 publications were identified, of which 250 were found in PubMed, 118 in MedLine, 142 in Web of Science and 2 in LILACS. Of these, nine articles were selected. Conclusion: The incidence of hearing loss was identified at high frequencies in cystic fibrosis patients without hearing complaints. It is assumed that high-frequency audiometry can be an early diagnostic method to be recommended for hearing investigation of patients at risk of ototoxicity.

  1. Low Power Very High Frequency Switch-Mode Power Supply with 50 V Input and 5 V Output

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequencyrange (30-300 MHz), a large step down ratio (10 times) and low output power (1 W). Several different invertersand rectifiers are analyzed and compared. The class E inverter and rectifier...

  2. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  3. Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2002-01-01

    that can be modeled by a finite number of second order ordinary differential equations, generally nonlinear, with periodically oscillating excitation terms of high frequency and small amplitude. The results should be useful for understanding the effects in question in a broader perspective than is possible......Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which...

  4. Theta-associated high-frequency oscillations (110–160 Hz) in the hippocampus and neocortex

    OpenAIRE

    Tort, Adriano B. L.; Scheffer-Teixeira, Robson; Souza, Bryan C.; Draguhn, Andreas; Brankacˇk, Jurij

    2013-01-01

    TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013. We review recent evidence for a novel type of fast cortical oscillatory activity that occurs circumscribed between 110 and 160 Hz, which we refer to as high-frequency oscillations (HFOs). HFOs characteristically occur modulated by theta phase in the hippocampus a...

  5. High-frequency programmable acoustic wave device realized through ferroelectric domain engineering

    Science.gov (United States)

    Ivry, Yachin; Wang, Nan; Durkan, Colm

    2014-03-01

    Surface acoustic wave devices are extensively used in contemporary wireless communication devices. We used atomic force microscopy to form periodic macroscopic ferroelectric domains in sol-gel deposited lead zirconate titanate, where each ferroelectric domain is composed of many crystallites, each of which contains many microscopic ferroelastic domains. We examined the electro-acoustic characteristics of the apparatus and found a resonator behavior similar to that of an equivalent surface or bulk acoustic wave device. We show that the operational frequency of the device can be tailored by altering the periodicity of the engineered domains and demonstrate high-frequency filter behavior (>8 GHz), allowing low-cost programmable high-frequency resonators.

  6. Determining of the electric field strength using high frequency broadband measurements

    OpenAIRE

    Vulević, Branislav D.

    2017-01-01

    Exposure of humans to electromagnetic fields of high frequency (above 100 kHz), i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  7. An induction motor model for high-frequency torsional vibration analysis

    Science.gov (United States)

    Widdle, R. D.; Krousgrill, C. M.; Sudhoff, S. D.

    2006-03-01

    High-frequency torsional oscillations of a 50 horsepower (hp) induction motor are investigated up to approximately 30 kHz. It is experimentally determined that torsional oscillations, due to the switching harmonics of the motor drive, contribute significantly to the torsional oscillation of the output shaft. Two torsional vibration models are developed. One model assumes the rotor to be rigid, while the other has a compliant rotor. The compliant model allows for greater transmission of high-frequency oscillations, and a better prediction of the measured output shaft vibration.

  8. Effective market influence. An effect chain analysis of NUTEK`s high-frequency lighting campaign

    Energy Technology Data Exchange (ETDEWEB)

    Goeransson, C.; Faugert, S. [SIPU Utvaerdering, Stockholm (Sweden); Baeckman, B.; Arndt, J. [B2B AB, Stockholm (Sweden)

    1994-12-31

    This report is an evaluation of NUTEK`s `Better lighting and more energy-efficient high-frequency fluorescent tube luminaries` campaign. It is concerned with the ways in which NUTEK can influence the spread and use of high-frequency (HF) lighting devices. It also shows that NUTEK actually has affected (contributed to) development in the area. The report analyses and quantifies (as far as possible) how much NUTEK has influenced the various parties concerned in the sector, their attitudes and their actions. 14 figs, 5 tabs

  9. A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show that the opti......We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show...

  10. High-frequency impedance of small-angle tapers and collimators

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2010-10-01

    Full Text Available Collimators and transitions in accelerator vacuum chambers often include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya’s formula (for axisymmetric geometry, much less is known about the behavior of the impedance in the high-frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

  11. A Pitch Extraction Method with High Frequency Resolution for Singing Evaluation

    Science.gov (United States)

    Takeuchi, Hideyo; Hoguro, Masahiro; Umezaki, Taizo

    This paper proposes a pitch estimation method suitable for singing evaluation incorporable in KARAOKE machines. Professional singers and musicians have sharp hearing for music and singing voice. They recognize that singer's voice pitch is “a little off key” or “be in tune”. In the same way, the pitch estimation method that has high frequency resolution is necessary in order to evaluate singing. This paper proposes a pitch estimation method with high frequency resolution utilizing harmonic characteristic of autocorrelation function. The proposed method can estimate a fundamental frequency in the range 50 ∼ 1700[Hz] with resolution less than 3.6 cents in light processing.

  12. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  13. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods.

    Science.gov (United States)

    Burlaka, Anatoly; Selyuk, Marina; Gafurov, Marat; Lukin, Sergei; Potaskalova, Viktoria; Sidorik, Evgeny

    2014-05-01

    To study the effects of electromagnetic radiation (EMR) of ultra high frequency (UHF) in the doses equivalent to the maximal permitted energy load for the staffs of the radar stations on the biochemical processes that occur in the cell organelles. Liver, cardiac and aorta tissues from the male rats exposed to non-thermal UHF EMR in pulsed and continuous modes were studied during 28 days after the irradiation by the electron paramagnetic resonance (EPR) methods including a spin trapping of superoxide radicals. The qualitative and quantitative disturbances in electron transport chain (ETC) of mitochondria are registered. A formation of the iron-nitrosyl complexes of nitric oxide (NO) radicals with the iron-sulphide (FeS) proteins, the decreased activity of FeS-protein N2 of NADH-ubiquinone oxidoreductase complex and flavo-ubisemiquinone growth combined with the increased rates of superoxide production are obtained. (i) Abnormalities in the mitochondrial ETC of liver and aorta cells are more pronounced for animals radiated in a pulsed mode; (ii) the alterations in the functioning of the mitochondrial ETC cause increase of superoxide radicals generation rate in all samples, formation of cellular hypoxia, and intensification of the oxide-initiated metabolic changes; and (iii) electron paramagnetic resonance methods could be used to track the qualitative and quantitative changes in the mitochondrial ETC caused by the UHF EMR.

  14. Action of AlGaInP laser and high frequency generator in cutaneous wound healing. A comparative study.

    Science.gov (United States)

    Sousa, Rayssilane Cardoso de; Maia Filho, Antônio Luiz Martins; Nicolau, Renata Amadei; Mendes, Lianna Martha Soares; Barros, Talvany Luis de; Neves, Silvana Maria Véras

    2015-12-01

    To evaluate in a macroscopic, histological and histomorphometric manner the healing process of cutaneous wounds in mice. The sample consisted of 40 male mice and was divided in four groups: 1st group (control, n=10), 2nd group (High Frequency Generator - HF, the maximum amplitude range, 120s, n=10), 3rd group (AlGaInP Laser 660 nm, 30mW power, 5 J/cm2, applying scan mode, 120s, n=10) and 4thgroup (AlGaInP Laser 660 nm, 30 mW power, 8 J/cm2, applying scan mode, n=10). The surgical incision was made with an 8 mm diameter punch perpendicularly to the back of the animal. The statistical analysis was achieved by the statistical test One Way Anova post hoc Tukey Test and significance at phealing, and both lasers were effective in the remodeling phase. The AlGaInP lasers from 5 J/cm2 to 8 J/cm2 showed better biomodulatory results in the acute and remodeling phases respectively, however, the HF was less effective than the laser, providing significant benefits only in the acute phase of tissue repair.

  15. Analysis and design of single-phase power factor-corrected AC-DC Cuk converter with high-frequency isolation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bim; Agrawal, Mahima [Indian Inst. of Technology, Dept. of Electrical Engineering, New Delhi (India)

    2006-07-01

    In this paper, an analysis and design of a high-frequency transformer isolated single-phase buck-boost AC-DC Cuk converter is presented for both discontinuous and continuous conduction modes (DCM and CCM) of operation. Both modes of operation are considered for the design of 2.6-kW rating with high-level steady-state and dynamic performance. A comparative analysis of Cuk converter is also presented in both modes of operation of DCM and CCM from point of view of steady-state and dynamic behaviour, power quality, simplicity, control technique, device rating and converter size. It is observed that CCM is most suitable for higher power applications in which it requires a little complex control and sensing the additional variables. (Author)

  16. Assessment of the utility of ultrasonography with high-frequency transducers in the diagnosis of posttraumatic neuropathies

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2015-03-01

    Full Text Available The primary aim of this paper was to assess the relevance of high-frequency ultrasound examination in qualifying patients for either surgical or conservative treatment of posttraumatic peripheral neuropathies. The study was conducted in a group of 47 patients aged 16–65 (mean age 33 who in 2009–2011 were referred to ultrasound examinations due to a clinical suspicion of posttraumatic peripheral neuropathies. The group included 30 females and 17 males. The patients examined presented with neuropathies of the following peripheral nerves: median, ulnar, common peroneal, digital, cutaneous in the deltoid area, mental, PIN and RSNR. In 21 patients, nerve injuries were partial, and in 24 – complete. In 2 cases, the nerve was entrapped between bony fragments. 17 of 21 patients with partial nerve injuries (80.95% underwent an EMG examination. No functional tests were conducted in the cases of complete injuries when ultrasound imaging had confi rmed the result of the clinical examination. All patients underwent the interview, physical examination and ultrasound examination. Ultrasound examinations were performed with Esaote MyLab 50 and MyLab 60 systems using high-frequency broadband linear transducers: 6–18 MHz. The nerves were evaluated in the gray-scale and in the power Doppler mode in longitudinal and transverse sections for localization, morphology and the grade of injury as well as for possible anatomic variants of the nerve trunk and pathologies of the adjacent tissues. Moreover, a dynamic examination was performed, and it was attempted to induce pain or paresthesia by palpation at the site of the visualized pathology. Additionally, the motor and sensory–motor nerves were assessed indirectly based on the images of the skeletal muscles innervated by these nerves. The analyses of the collected material were performed by means of descriptive statistics. The results of clinical and surgical verifi cation were consistent with ultrasound

  17. Using very high frequencies with very low lung volumes during high-frequency oscillatory ventilation to protect the immature lung. A pilot study.

    Science.gov (United States)

    González-Pacheco, N; Sánchez-Luna, M; Ramos-Navarro, C; Navarro-Patiño, N; de la Blanca, A R-S

    2016-04-01

    High-frequency oscillatory ventilation (HFOV) has been described as a rescue therapy in severe respiratory distress syndrome (RDS) with a potential protective effect in immature lungs. In recent times, HFOV combined with the use of volume guarantee (VG) strategy has demonstrated an independent effect of the frequency on tidal volume to increase carbon-dioxide (CO2) elimination. The aim of this study was to demonstrate the feasibility of using the lowest tidal volume on HFOV+VG to prevent lung damage, maintaining a constant CO2 elimination by increasing the frequency. Newborn infants with RDS on HFOV were prospectively included. After adequate and stable ventilation using a standard HFOV strategy, the tidal volume was fixed using VG and decreased while the frequency was increased to the highest possible to maintain a constant CO2 elimination. Pre- and post-PCO2, delta pressure and tidal volume obtained in each situation were compared. Twenty-three newborn infants were included. It was possible to increase the frequency while decreasing the tidal volume in all patients, maintaining a similar CO2 elimination, with a tendency to a lower mean PCO2 after reaching the highest frequency. High-frequency tidal volume was significantly lower, 2.20 ml kg(-1) before vs 1.59 ml kg(-1) at the highest frequency. It is possible to use lower delivered tidal volumes during HFOV combined with VG and higher frequencies with adequate ventilation to allow minimizing lung injury.

  18. High frequency oscillations after median nerve stimulations in healthy children and adolescents.

    Science.gov (United States)

    Zanini, Sergio; Del Piero, Ivana; Martucci, Lucia; Restuccia, Domenico

    2017-10-01

    The aim of the present research was to address somatosensory high frequency oscillations (400-800Hz) in healthy children and adolescents in comparison with healthy adults. We recorded somatosensory evoked potentials following median nerve stimulation in nineteen resting healthy children/adolescents and in nineteen resting healthy adults with eyes closed. We administered six consecutive stimulation blocks (500 sweeps each). The presynaptic component of high frequency oscillations amplitudes was smaller in healthy children/adolescents than in healthy adults (no difference between groups was found as far as the postsynaptic component was concerned). Healthy children/adolescents had smaller presynaptic component than the postsynaptic one (the postsynaptic component amplitude was 145% of the presynaptic one), while healthy adults showed the opposite (reduction of the postsynaptic component to 80% of the presynaptic one). No habituation phenomena concerning high frequency oscillation amplitudes were registered in neither healthy children/adolescents nor healthy adults. These findings suggest that healthy children/adolescents present with significantly different pattern of somatosensory high frequency oscillations compared with healthy adults' ones. This different pattern is reasonably expression of higher cortical excitability of the developing brain cortex. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. Spot Variance Path Estimation and its Application to High Frequency Jump Testing

    NARCIS (Netherlands)

    Bos, C.S.; Janus, P.; Koopman, S.J.

    2012-01-01

    This paper considers spot variance path estimation from datasets of intraday high-frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects, and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used to

  20. Online BCI implementation of high-frequency phase modulated visual stimuli

    NARCIS (Netherlands)

    Garcia Molina, G.; Danhua, Z.; Aarts, R.M.; Mihajlovic, V.

    2011-01-01

    Brain computer interfaces (BCI) that use the steady-state-visual-evoked-potential (SSVEP) as neural source, offer two main advantages over other types of BCIs: shorter calibration times and higher information transfer rates. SSVEPs elicited by high frequency (larger than30 Hz) repetitive visual

  1. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  2. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    NARCIS (Netherlands)

    Weerd, de N.; Langevelde, van F.; Oeveren, van H.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; Boer, de W.F.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data.We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable

  3. High Frequency Synchrony in the Cerebellar Cortex during Goal Directed Movements

    Directory of Open Access Journals (Sweden)

    Jonathan David Groth

    2015-07-01

    Full Text Available The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (µ-ECoG electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker’s lab (Shambes, 1978. Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex.

  4. Planck 2015 results: VII. High Frequency Instrument data processing: Time-ordered information and beams

    DEFF Research Database (Denmark)

    Adam, R.; Ade, P. A R; Aghanim, N.

    2016-01-01

    The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the d...

  5. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  6. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  7. Mitigation of high-frequency pulsations, using Multi Bore Restriction Orifices

    NARCIS (Netherlands)

    Lier, L.J. van; Korst, H.J.C.

    2007-01-01

    In reciprocating fluid displacement systems, a trend toward high-speed machinery and application of stepless reverse-flow capacity control system is observed. Badly designed compression systems may cause excessive high-frequency noise and vibration levels, which are a risk from a structural

  8. EMC Investigation of a Very High Frequency Self-oscillating Resonant Power Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Knott, Arnold; Andersen, Michael A. E.

    2016-01-01

    This paper focuses on the electromagnetic compatibility (EMC) performance of a Very High Frequency (VHF) converter and how to lower the emissions. To test the EMC performance a VHF converter is implemented with a Class-E inverter and a Class-DE rectifier. The converter is designed to deliver 3 W...

  9. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants

    NARCIS (Netherlands)

    Miedema, Martijn; de Jongh, Frans H.; Frerichs, Inez; van Veenendaal, Mariëtte B.; van Kaam, Anton H.

    2012-01-01

    To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant

  10. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  11. High-frequency EPR and ENDOR spectroscopy on semiconductor quantum dots

    NARCIS (Netherlands)

    Baranov, P.G.; Orlinskii, S.B.; de Mello Donega, C.|info:eu-repo/dai/nl/125593899; Schmidt, J.

    2010-01-01

    It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast

  12. High-frequency field-deployable isotope analyzer for hydrological applications

    Science.gov (United States)

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  13. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  14. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Science.gov (United States)

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  15. High frequency stimulation of the subthalamic nucleus is efficacious in Parkin disease

    NARCIS (Netherlands)

    Romito, Luigi M. A.; Contarino, Maria F.; Ghezzi, Daniele; Franzini, Angelo; Garavaglia, Barbara; Albanese, Alberto

    2005-01-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is an efficacious symptomatic treatment for Parkinson's disease. We have analysed the genetic status of a series of consecutive parkinsonian patients implanted for STN HFS and compared the outcome of five carrying mutations in the

  16. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  17. The role of high-frequency audiometry in early detection of ototoxicity

    NARCIS (Netherlands)

    Dreschler, W. A.; vd Hulst, R. J.; Tange, R. A.; Urbanus, N. A.

    1985-01-01

    Ototoxicity is one of the unwanted side-effects of a number of medical drugs. As ototoxicity appears to be most pronounced in the higher frequencies, it can be assessed at an earlier stage by using high-frequency audiometry from 8 to 20 kHz. We have investigated the precision of these measurements.

  18. Role of high-frequency audiometry in the early detection of ototoxicity. II. Clinical Aspects

    NARCIS (Netherlands)

    Dreschler, W. A.; van der Hulst, R. J.; Tange, R. A.; Urbanus, N. A.

    1989-01-01

    As a supplement to a previous paper [Dreschler et al.: Audiology 1985; 24:387-395] high-frequency (HF) audiometry was applied to compare the ototoxic effects of two different drug administration protocols for cis-platinum (CDDP). In both subgroups, HF audiometry considerably enhanced the early

  19. High frequency audiometry in prospective clinical research of ototoxicity due to platinum derivatives

    NARCIS (Netherlands)

    van der Hulst, R. J.; Dreschler, W. A.; Urbanus, N. A.

    1988-01-01

    The results of clinical use of routine high frequency audiometry in monitoring the ototoxic side effects of platinum and its derivatives are described in this prospective study. After demonstrating the reproducibility of the technique, we discuss the first results of an analysis of ototoxic side

  20. Pre- and postoperative high-frequency audiometry in otosclerosis. A study of 53 cases

    NARCIS (Netherlands)

    Tange, R. A.; Dreschler, W. A.

    1990-01-01

    A study was carried out to evaluate the results of stapes surgery in 53 cases of otosclerosis. The hearing function was measured pre- and postoperatively by means of conventional and high-frequency audiometry (Demlar 20K). The operative findings of the gradation of otosclerosis were compared with