WorldWideScience

Sample records for high-field ionization rates

  1. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields

    International Nuclear Information System (INIS)

    Brenning, N; Huo, C; Raadu, M A; Lundin, D; Helmersson, U; Vitelaru, C; Stancu, G D; Minea, T

    2012-01-01

    The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a ‘sweet spot’ in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Π Townsend is proposed. A parametric analysis of Π Townsend shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength. (paper)

  2. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  3. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  4. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  5. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  6. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  7. Femtosecond Coherent Spectroscopy at 800nm: MI-FROG Measures High-Field Ionization Rates in Gases

    International Nuclear Information System (INIS)

    Siders, C.W.; Siders, J.L.W.; Taylor, A.J.

    1999-01-01

    The authors report the first quantitative phase-sensitive measurement of ultrafast ionization rates in gases using Multi-phase Interferometric Frequency-Resolved Optical Gating. Ultrafast probe depletion via frequency mixing in the ionization front is observed

  8. THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS

    International Nuclear Information System (INIS)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2009-01-01

    Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.

  9. Connecting field ionization to photoionization via 17- and 36-GHz microwave fields

    International Nuclear Information System (INIS)

    Gurian, J. H.; Overstreet, K. R.; Gallagher, T. F.; Maeda, H.

    2010-01-01

    Here we present experimental results connecting field ionization to photoionization in Li Rydberg atoms obtained with 17- and 36-GHz microwave fields. At a low principal quantum number n, where the microwave frequency ω is much lower than the classical, or Kepler frequency, ω K =1/n 3 , microwave ionization occurs by field ionization, at E=1/9n 4 . When the microwave frequency exceeds the Kepler frequency, ω>1/n 3 , the field required for ionization is independent of n and given by E=2.4ω 5/3 , in agreement with dynamic localization models, which cross over to a Fermi's Golden Rule approach at the photoionization limit. A surprising aspect of our results is that when ω≅1/2n 2 , the one- and multiphoton ionization rates are similar, and even at the lowest microwave powers, all are 10 times lower than the perturbation theory rate calculated for single-photon ionization. Further, we show that when the Rydberg atoms are excited in the presence of the microwave field, the probability of an atom's being bound at the end of the microwave pulse passes smoothly across the limit. This microwave stimulated recombination to bound Rydberg states can be well described by a simple classical model. More generally, these results suggest that the problem of a Rydberg atom coupled to a high-frequency microwave field is similar to the problem of interchannel internal coupling in multilimit atoms, a problem well described by quantum defect theory.

  10. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  11. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  12. Characteristics of Noble Gas-filled Ionization Chambers for a Low Dose Rate Monitoring

    International Nuclear Information System (INIS)

    Kim, Han Soo; Park, Se Hwan; Ha, Jan Ho; Lee, Jae Hyung; Lee, Nam Ho; Kim, Jung Bok; Kim, Yong Kyun; Kim, Do Hyun; Cho, Seung Yeon

    2007-01-01

    An ionization chamber is still widely used in fields such as an environmental radiation monitoring, a Radiation Monitoring System (RMS) in nuclear facilities, and an industrial application due to its operational stability for a long period and its designs for its applications. Ionization chambers for RMS and an environmental radiation monitoring are requested to detect a low dose rate at as low as 10-2 mR/h and several 3R/h, respectively. Filling gas and its pressure are two of the important factors for an ionization chamber development to use it in these fields, because these can increase the sensitivity of an ionization chamber. We developed cylindrical and spherical ionization chambers for a low dose rate monitoring. Response of a cylindrical ionization chamber, which has a 1 L active volume, was compared when it was filled with Air, Ar, and Xe gas respectively. Response of a spherical ionization chamber was also compared in the case of 9 atm and 25 atm filling-pressures. An inter-comparison with a commercially available high pressure Ar ionization chamber and a fabricated ionization chamber was also performed. A High Pressure Xenon (HPXe) ionization chamber, which was configured with a shielding mesh to eliminate an induced charge of positive ions, was fabricated both for the measurement of an environmental dose rate and for the measurement of an energy spectrum

  13. Coupled-cluster treatment of molecular strong-field ionization

    Science.gov (United States)

    Jagau, Thomas-C.

    2018-05-01

    Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.

  14. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  15. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Science.gov (United States)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  16. Structure factors for tunneling ionization rates of molecules

    DEFF Research Database (Denmark)

    Madsen, L.B.; Jensen, F.; Tolstikhin, O.I.

    2013-01-01

    Within the weak-field asymptotic theory, the dependence of the tunneling ionization rate of a molecule in a static electric field on its orientation with respect to the field is determined by the structure factor for the highest occupied molecular orbital (HOMO). An accurate determination...

  17. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  18. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  19. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  20. Determination of dose components in mixed gamma neutron fields by use of high pressure ionization chambers

    International Nuclear Information System (INIS)

    Golnik, N.; Pliszczynski, T.; Wysocka, A.; Zielczynski, M.

    1985-01-01

    The two ionization chamber method for determination of dose components in mixed γ-neutron field has been improved by increasing gas pressure in the chambers up to some milions pascals. Advantages of high pressure gas filling are the followings: 1) significant reduction of the ratio of neutron-to gamma sensitivity for the hydrogen-free chamber, 2) possibility of sensitivity correction for both chambers by application of appropriate voltage, 3) high sensitivity for small detectors. High-pressure, pen-like ionization chambers have been examined in fields of different neutron sources: a TE-chamber, filled with 0.2 MPa of quasi-TE-gas and a conductive PTFE chamber, filled with 3.1 MPa of CO 2 . The ratio of neutron-to-gamma sensitivity for the PTFE chamber, operated at electrical field strength below 100 V/cm, has not exceeded 0.01 for neutrons with energy below 8 MeV. Formula is presented for calculation of this ratio for any high-pressure, CO 2 -filled ionization chamber. Contribution of gamma component to total tissue dose in the field of typical neutron sources has been found to be 3 to 70%

  1. Impact of local electrostatic field rearrangement on field ionization

    Science.gov (United States)

    Katnagallu, Shyam; Dagan, Michal; Parviainen, Stefan; Nematollahi, Ali; Grabowski, Blazej; Bagot, Paul A. J.; Rolland, Nicolas; Neugebauer, Jörg; Raabe, Dierk; Vurpillot, François; Moody, Michael P.; Gault, Baptiste

    2018-03-01

    Field ion microscopy allows for direct imaging of surfaces with true atomic resolution. The high charge density distribution on the surface generates an intense electric field that can induce ionization of gas atoms. We investigate the dynamic nature of the charge and the consequent electrostatic field redistribution following the departure of atoms initially constituting the surface in the form of an ion, a process known as field evaporation. We report on a new algorithm for image processing and tracking of individual atoms on the specimen surface enabling quantitative assessment of shifts in the imaged atomic positions. By combining experimental investigations with molecular dynamics simulations, which include the full electric charge, we confirm that change is directly associated with the rearrangement of the electrostatic field that modifies the imaging gas ionization zone. We derive important considerations for future developments of data reconstruction in 3D field ion microscopy, in particular for precise quantification of lattice strains and characterization of crystalline defects at the atomic scale.

  2. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  3. Spherical ionization chamber of 14 liter for precise measurement of environmental radiation dose rate

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Saito, Kimiaki; Moriuchi, Shigeru

    1991-05-01

    A spherical ionization chamber of 14 liter filled with 1 atm. nitrogen gas was arranged aiming at precise measurement of dose rate due to environmental gamma rays and cosmic rays. Ionization current-dose rate conversion factor for this ionization chamber was derived from careful consideration taking into account the attenuation by chamber wall, ionization current due to alpha particles and so on. Experiments at calibrated gamma ray fields and intercomparison with NaI(Tl) scintillation detector were also performed, which confirmed this ionization chamber using the conversion factor can measure the dose rate with an error of only a few percent. This ionization chamber will be used for measurement of environmental gamma ray and cosmic ray dose rate. (author)

  4. General theory of the ionization of an atom by an electrostatic field

    International Nuclear Information System (INIS)

    Fonda, L.

    1981-05-01

    The ionization of an atom by an external electrostatic field is reconsidered by taking into account the interactions of the system with the measuring apparatus. The experimental ionization rate is drastically different from the expression obtained when no measurements are present. A dependence on the mean frequency of measurements is found. This fact can be used to determine this quantity once the ionization rate is determined experimentally. (author)

  5. Hydrodynamic optical-field-ionized plasma channels

    Science.gov (United States)

    Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.

    2018-05-01

    We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

  6. A compact neutron generator using a field ionization source.

    Science.gov (United States)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  7. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    International Nuclear Information System (INIS)

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  8. Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    International Nuclear Information System (INIS)

    Blashenkov, Nikolai M; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied. (instruments and methods of investigation)

  9. Impact ionization by electric fields in intrinsic indium-antimonide

    International Nuclear Information System (INIS)

    Bruhns, H.; Huebner, K.

    1977-01-01

    The impact-ionization rate in InSb at 300 K between 200 and 500 V/cm is found to be g(E) = 2 x 10 9 exp(-10 3 /E)s -1 with E being the electric field (V/cm). We use current-voltage characteristics measured by A.C. Prior in 1957. In evaluating the impact-ionization rate we take into account Auger and linear recombination, surface generation, z-pinch compression, and doping of the sample. We also discuss the effects of ohmic heating and change in electron temperature. The rates evaluated from four independent measurements done by Prior agree reasonably well. (orig.) [de

  10. High ionization radiation field remote visualization device - shielding requirements

    International Nuclear Information System (INIS)

    Fernandez, Antonio P. Rodrigues; Omi, Nelson M.; Silveira, Carlos Gaia da; Calvo, Wilson A. Pajero

    2011-01-01

    The high activity sources manipulation hot-cells use special and very thick leaded glass windows. This window provides a single sight of what is being manipulated inside the hot-cell. The use of surveillance cameras would replace the leaded glass window, provide other sights and show more details of the manipulated pieces, using the zoom capacity. Online distant manipulation may be implemented, too. The limitation is their low ionizing radiation resistance. This low resistance also limited the useful time of robots made to explore or even fix problematic nuclear reactor core, industrial gamma irradiators and high radioactive leaks. This work is a part of the development of a high gamma field remote visualization device using commercial surveillance cameras. These cameras are cheap enough to be discarded after the use for some hours of use in an emergency application, some days or some months in routine applications. A radiation shield can be used but it cannot block the camera sight which is the shield weakness. Estimates of the camera and its electronics resistance may be made knowing each component behavior. This knowledge is also used to determine the optical sensor type and the lens material, too. A better approach will be obtained with the commercial cameras working inside a high gamma field, like the one inside of the IPEN Multipurpose Irradiator. The goal of this work is to establish the radiation shielding needed to extend the camera's useful time to hours, days or months, depending on the application needs. (author)

  11. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  12. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  13. Weak-field asymptotic theory of tunneling ionization: benchmark analytical results for two-electron atoms

    International Nuclear Information System (INIS)

    Trinh, Vinh H; Morishita, Toru; Tolstikhin, Oleg I

    2015-01-01

    The recently developed many-electron weak-field asymptotic theory of tunneling ionization of atoms and molecules in an external static electric field (Tolstikhin et al 2014, Phys. Rev. A 89, 013421) is extended to the first-order terms in the asymptotic expansion in field. To highlight the results, here we present a simple analytical formula giving the rate of tunneling ionization of two-electron atoms H − and He. Comparison with fully-correlated ab initio calculations available for these systems shows that the first-order theory works quantitatively in a wide range of fields up to the onset of over-the-barrier ionization and hence is expected to find numerous applications in strong-field physics. (fast track communication)

  14. Determination of Optical-Field Ionization Dynamics in Plasmas through the Direct Measurement of the Optical Phase Change

    International Nuclear Information System (INIS)

    Taylor, A.J.; Omenetto, G.; Rodriguez, G.; Siders, C.W.; Siders, J.L.W.; Downer, C.

    1999-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) Project at Los Alamos National Laboratory (LANL). The detailed dynamics of an atom in a strong laser field is rich in both interesting physics and potential applications. The goal of this project was to develop a technique for characterizing high-field laser-plasma interactions with femtosecond resolution based on the direct measurement of the phase change of an optical pulse. The authors developed the technique of Multi-pulse Interferometric Frequency Resolved Optical Gating (MI-FROG), which recovers (to all orders) the phase difference between pumped and unpumped probe pulses, enabling the determination of sub-pulsewidth time-resolved phase and frequency shifts impressed by a pump pulse on a weak probe pulse. Using MI-FROG, the authors obtained the first quantitative measurements of high-field ionization rates in noble gases and diatomic molecules. They obtained agreement between the measured ionization rates an d those calculated for the noble gases and diatomic nitrogen and hydrogen using a one-dimensional fluid model and rates derived from tunneling theory. However, much higher rates are measured for diatomic oxygen than predicted by tunneling theory calculations

  15. Convergence of high-intensity expansions for atomic ionization

    International Nuclear Information System (INIS)

    Antunes Neto, H.S.; Davidovich, L.

    1984-01-01

    It is shown that a frequently used nonperturbative approximation for atomic ionization rates is cancelled out when corrections are taken into account. This explains the strong gauge dependence of previous results. A convergent and gauge invariant expansion is obtained. Numerical results show that its first term, which may be calculated analytically in many cases, describes very well the time-dependent behaviour of the ionization probability, for very strong fields. (Author) [pt

  16. Correlated Keldysh-Faisal-Reiss theory of above-threshold double ionization of He in intense laser fields

    International Nuclear Information System (INIS)

    Becker, A.; Faisal, F.H.M.

    1994-01-01

    We have developed a correlated Keldysh-Faisal-Reiss theory of laser-induced double ionization of a two-electron atom. The basic N-photon T matrix and the expression for N-photon triple-differential rates or cross sections (TDCS's) are derived. The theory is applied to investigate the TDCS's for very-high-order multiphoton double ionization of He with lasers of wavelength λ=248 nm and λ=617 nm. Comparison with the uncorrelated results reveals a dramatic influence of the final-state e-e correlation on the above-threshold TDCS's to be measured in coincidence experiments in intense laser fields. The limiting case of the TDCS's for weak-field double ionization of He by a synchrotron photon is also investigated; the results confirm the earlier theoretical findings and recent experimental results in that case

  17. Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    International Nuclear Information System (INIS)

    Soifer, H; Bruner, B D; Dudovich, N; Negro, M; Devetta, M; Vozzi, C; Faccialà, D; Silvestri, S de; Stagira, S

    2014-01-01

    High-harmonic generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonic generation. Recently, we have demonstrated the ability to resolve the first stage of the process—field induced tunnel ionization—by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study—modifying the fundamental wavelength, intensity and atomic system—we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems. (paper)

  18. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [College of Engineering and Technology, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  19. Portable meter study of ionizing radiation Teletector in high rates of air kerma

    International Nuclear Information System (INIS)

    Damatto, Willian Behling; Potiens, Maria da Penha A.; Vivolo, Vitor

    2015-01-01

    A set of portable meters of ionizing radiation high rates of air kerma (teletectors) commonly used in emergencies in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analyst is parameters for the detectors behavior were established. Applied tests were: energy dependence and primarily overload with the new irradiation system. Thus it was possible to determine the most common characteristic found in these equipment (quality control programs) and new calibration criteria were established following international recommendations. (author)

  20. Measurement of air kerma rate for Cs-137 using different ionization chambers

    International Nuclear Information System (INIS)

    Mohammed, K. T. A.

    2013-07-01

    Due to the importance of radiation doses in medical field quality assurance should be established in order to maintain a reasonable balance between the purpose of application and exposure. This study had been carried out to achieve quality control for protection based on air kerma rate. Measurements were performed by using Cs-137 for the comparison of two working ionization chambers in secondary standard dosimetry laboratory of Sudan. Spherical ionization chamber L S-01 1000 cc S/N 912 and Farmer ionization chamber 2675 A 600 cc S/N 0511, respectively. The results obtained from this study have been represented as mean and their standard deviations shown in most cases remains at 5% uncertainly. Comparison between kinetic energy released per unit mass in air rate (air kerma rate) were obtained by using spherical ionization chamber L S-01 1000 cc S/N 912 and results have been determined using inverse square law. The differences have been represented as means and standard deviations with significant P-value less than 0.05. Spherical ionization chamber gives accurate, reproducible results with acceptable uncertainty which is more suitable for calibration of radiation detectors.(Author)

  1. Collisional ionization of Na by HBr in weak to strong electric fields

    International Nuclear Information System (INIS)

    Safinya, K.A.; Gallagher, T.F.; Sandner, W.; Gounand, F.

    1985-01-01

    We report the effect of static electric fields on the collisional ionization of highly excited sodium atoms by HBr. The binding energy dependence of the collisional ionization cross section is measured at zero field and in static electric fields up to that point at which the atom field ionizes. The applied electric field lowers the ionization threshold of the atom from its zero field value. Therefore an atom near the ionization threshold in an electric field is of smaller size than a free field atom with the same binding energy. Thus measuring the binding energy dependence of the cross section at different values of the electric field allows us to study the effects of the physical size of the atom on the cross section. The effect of the electric field was to lower the measured ionization cross section. However, the binding energy dependence of the cross section remains unchanged at the level of our measurement accuracy. The measured cross sections are larger for larger atoms, exhibit a drop with increasing binding energy characteristic of rotational to electronic excitation transfer, and are of order 10 -12 --10 -11 cm 2 . A simple calculation based on dipole (J→ J-1) excitation transfer from the molecule to the atom predicts, with good agreement, the binding energy dependence of the cross section. The electric field dependence of the data however, is not shown in the theory

  2. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    Science.gov (United States)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  3. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  4. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A wide variety of portable survey instruments employing GM, ionization chamber and scintillation detectors exist for the measurement of gamma exposure rates. Often these same survey instruments are used for monitoring beta fields. This is done by making measurements with and without a removable shield which is intended to shield out the non-penetrating component (beta) of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. In many instances correction factors have been derived, that if properly applied, can reduce these errors substantially. However, this requires some knowledge of the beta spectra, calibration techniques and source geometry. This paper discusses some aspects of the proper use of instruments for beta measurements including the application of appropriate correction factors. Ionization type instruments are commonly used to measure beta dose rates. Through design and calibration these instruments will give an accurate reading only for uniform irradiation of the detection volume. Often in the field it is not feasible to meet these conditions. Large area uniform distributions of activity are not generally encountered and it is not possible to use large source-to-detector distances due to beta particle absorption in air. An example of correction factors required for various point sources is presented when a cutie pie ionization chamber is employed. The instrument reading is multiplied by the appropriate correction factor to obtain the dose rate at the window. When a different detector is used or for other geometries, a different set of correction factors must be used

  5. Highly ionized plasma plume generation by long-pulse CO2 laser irradiation of solid targets in strong axial magnetic fields

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Crawford, E.A.

    1982-01-01

    The present work utilizes high f number optics and is directed primarily at controlling the conditions in the magnetically confined plume. Typically, fully ionized carbon plasmas have been produced with 10 18 cm -3 electron densities and 100 to 150 eV electron temperatures. These carbon plasmas have been doped with high Z atoms in order to study ionization and emission rates at the above conditions

  6. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J.

    2012-01-01

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10 5 cm –3 for magnetic models and 10 6 cm –3 in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of –0.6 and a normalization which depends on the cosmic-ray ionization rate ζ and the temperature T as (ζT) 1/2 . The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H + 3 ion. This significantly lower value implies that ambipolar diffusion operates faster.

  7. Impact ionization dynamics in silicon by MV/cm THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Hirori, Hideki; Tanaka, Koichiro

    2017-01-01

    We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high-intensity terah......We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high......-intensity terahertz pulses to show that IMI is significantly more efficient at lower than at higher initial carrier densities. Specifically, in the case of silicon with an intrinsic carrier concentration (∼1010 cm−3), the carrier multiplication process can generate more than 108 electrons from just a single free...

  8. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  9. Medicine and ionizing rays: a help sheet in analysing risks in high rate curietherapy

    International Nuclear Information System (INIS)

    Gauron, C.

    2009-01-01

    This document proposes a synthesis of useful knowledge for radioprotection in the case of high rate curietherapy. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment

  10. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  11. Automatic system for evaluation of ionizing field

    International Nuclear Information System (INIS)

    Pimenta, N.L.; Calil, S.J.

    1992-01-01

    A three-dimensional cartesian manipulator for evaluating the ionizing field and able to position a ionization chamber in any point of the space is developed. The control system is made using a IBM microcomputer. The system aimed the study of isodose curves from ionizing sources, verifying the performance of radiotherapeutic equipment. (C.G.C.)

  12. Effects of uniform dc electric fields on multiphoton ionization of cesium atoms

    International Nuclear Information System (INIS)

    Klots, C.E.; Compton, R.N.

    1985-01-01

    Multiphoton ionization of cesium atoms shows pronounced two-photon resonances at the nd states and, to a much smaller extent, at the ns states. A dc electric field augments the ns resonances and, for a complementary reason, induces resonances at the np and nf levels. A scaling law for field-induced signals, as a function of principal quantum number, is reported. Field ionization of high Rydberg states is also conveniently studied and quantified with our technique

  13. Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source LISOL

    International Nuclear Information System (INIS)

    Ferrer, R.; Sonnenschein, V.T.; Bastin, B.; Franchoo, S.; Huyse, M.; Kudryavtsev, Yu.; Kron, T.; Lecesne, N.; Moore, I.D.; Osmond, B.; Pauwels, D.; Radulov, D.; Raeder, S.; Rens, L.

    2012-01-01

    The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63 Cu. A final run under on-line conditions in which the radioactive isotope 59 Cu (T 1/2 = 81.5 s) was produced, showed a comparable yield of the two laser systems for in-gas-cell ionization. However, a significantly improved time overlap by using the high-repetition rate laser system for in-gas-jet ionization was demonstrated by an increase of the overall duty cycle, and at the same time, pointed to the need for a better shaped atomic jet to reach higher ionization efficiencies.

  14. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    Energy Technology Data Exchange (ETDEWEB)

    Robben, F

    1968-03-15

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty.

  15. The Electron Temperature of a Partially Ionized Gas in an Electric Field

    International Nuclear Information System (INIS)

    Robben, F.

    1968-03-01

    The electron temperature of a partially ionized gas in an electric field can be determined by the collision rate for momentum transfer and the collision rate for energy transfer. Mean values of these rates are defined such that a simple expression for the electron temperature is obtained, and which depends, among other things, on the ratio of these mean rates. This ratio is calculated in the Lorentz approximation for power law cross sections, and also as a function of the degree of ionization for a helium plasma. It is pointed out that the complete results of refined transport theory can be used in calculating electron mobility and electron temperature in a multicomponent plasma without undue difficulty

  16. High resolution structuring of emitter tips for the gaseous field ionization source

    International Nuclear Information System (INIS)

    Kubby, J.A.; Siegel, B.M.

    1986-01-01

    Extraction of a stable, high brightness ion beam from an apertured field ion emitter surface requires microfabrication procedures to sculpture the surface topography on both microscopic (100 --1000 nm) and near atomic (10 --100 nm) length scales. Structuring on a near atomic scale is required to confine and stabilize the ion beam by local enhancement of the surface electrostatic field and to orient that emission on the optical axis. Control of the emitter contour on a microscopic scale is required for manipulating the supply of neutral molecules to the ionization site and also affects beam stability. We have developed a method using ion milling for configuring surface contour on microscopic and near atomic length scales which utilizes the morphological changes occurring at ion bombarded surfaces as a result of erosion by sputtering. A SEM study of the microscopic emitter topographical development is compared to computer simulations of the kinematical wave equation which depicts the erosion process. In this way, prediction of configuration on a length scale large compared to the ion penetration depth has been established. TEM observations show the surface development on the length scale of ion penetration depth. Preliminary results using this microfabricated emitter in a gaseous field ion source to produce a hydrogen ion beam with high angular beam confinement are given. Requirements for surface topography that are essential to obtain stable high brightness ion beams are discussed

  17. Compact deuterium-tritium neutron generator using a novel field ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S.; Sanchez, J.; Tang, V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Wang, H. [Department of Computer Science, Stanford University, Stanford, California 94305 (United States)

    2014-11-21

    Active interrogation using neutrons is an effective method for detecting shielded nuclear material. A lightweight, lunch-box-sized, battery-operated neutron source would enable new concepts of operation in the field. We have developed at-scale components for a highly portable, completely self-contained, pulsed Deuterium-Tritium (DT) neutron source producing 14 MeV neutrons with average yields of 10{sup 7} n/s. A gated, field ionization ion source using etched electrodes has been developed that produces pulsed ion currents up to 500 nA. A compact Cockcroft-Walton high voltage source is used to accelerate deuterons into a metal hydride target for neutron production. The results of full scale DT tests using the field ionization source are presented.

  18. Spin currents from Helium in intense-field photo-ionization

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Mukherjee, Mahua; Chakrabarti, J; Faisal, F H M

    2007-01-01

    Spin dynamics is studied by computing spin-dependent ionization current of He in intense laser field in relativistic field theoretic method. Spin-flip and spin-asymmetry in current generation is obtained with circularly polarized light. The spin-flip is a dynamical effect of intense laser field on an ionized spinning electron. Transformation properties of the up and down spin ionization amplitudes show that the sign of spin can be controlled by a change of helicity of the laser photons from outside

  19. Measurements of the Townsend first ionization coefficient in pure isobutane under uniform electric fields

    International Nuclear Information System (INIS)

    Petri, Anna Raquel

    2013-01-01

    In this work are presented data of Townsend first ionization coefficient, α, in pure isobutane, obtained with a parallel plate chamber of resistive anode, for the reduced electric field range of 140 Td up to 230 Td. The adopted method is based on a new version of the Pulsed Townsend Technique, where the primary ionization is produced by the incidence of nitrogen pulsed laser beam in an aluminum electrode (cathode). The glass anode of high resistivity (ρ = 2 x 10 12 Ω.cm) protects the detector against sparks. To validate the method, the α values were determined by comparing the ionization and avalanche electric currents in nitrogen, gas widely studied with well-established data in literature. This technique was successfully extended to obtain α parameters in pure isobutane. The presence of effects related to spatial charge, recombination and ohmic drop across the resistive anode was investigated by varying laser pulse repetition rate, its intensity and applied electric field. Of these secondary processes, only the ohmic drop was relevant and the reduced electric field values were corrected for it. The first Townsend coefficients obtained are compatible, within the experimental errors, with those determined with Magboltz 2 program versions 7.1 e 8.6. (author)

  20. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  1. Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects

    DEFF Research Database (Denmark)

    Tolstikhin, Oleg I.; Morishita, Toru; Madsen, Lars Bojer

    2011-01-01

    The formulation of the parabolic adiabatic expansion approach to the problem of ionization of atomic systems in a static electric field, originally developed for the axially symmetric case [ Phys. Rev. A 82 023416 (2010)], is generalized to arbitrary potentials. This approach is used to rederive...... the asymptotic theory of tunneling ionization in the weak-field limit. In the atomic case, the resulting formulas for the ionization rate coincide with previously known results. In addition, the present theory accounts for the possible existence of a permanent dipole moment of the unperturbed system and, hence......, applies to polar molecules. Accounting for dipole effects constitutes an important difference of the present theory from the so-called molecular Ammosov-Delone-Krainov theory. The theory is illustrated by comparing exact and asymptotic results for a set of model polar molecules and a realistic molecular...

  2. Effects of ionizing radiation and steady magnetic field on erythrocytes

    International Nuclear Information System (INIS)

    Ivanov, S. P.; Galutzov, B. P.; Kuzmanova, M. A.; Markov, M. S.

    1996-01-01

    A complex biophysical test for studying the effects of ionizing and non-ionizing radiation has been developed. The following cell and membrane parameters have been investigated: cell size, cell shape, cell distribution by size, electrophoretic mobility, extent of hemolysis, membrane transport and membrane impedance. Gamma ray doses of 2.2 Gy and 3.3 Gy were used as ionizing radiation and steady (DC) magnetic field of 5-90 mT representing the non-ionizing radiation. Erythrocytes from humans and rats were exposed in vitro to both ionizing and non-ionizing radiation. In some experiments ionizing radiation was applied in vivo as well. Each of the simultaneously studied parameters have been found to change as a function of applied radiation. The proposed test allows an estimation of the changes in the elastic, rheological and electrical parameters of cells and biological membranes. Results indicate that ionizing radiation is significantly more effective in an in vivo application, while magnetic fields are more effective when applied in vitro. Surprisingly, steady magnetic fields were found to act as protector against some harmful effects of ionizing radiation. (authors)

  3. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  4. Multiphoton ionization in superintense, high-frequency laser fields. I. General developments

    International Nuclear Information System (INIS)

    Pont, M.

    1991-01-01

    This is the first of two papers studying multiphoton ionization (MPI) in superintense, high-frequency laser fields. They are based on a general iteration scheme in increasing powers of the inverse frequency. To lowest order in the frequency, i.e., the high-frequency limit, the atom was shown to be stable against decay by MPI, though distorted. To next order in the iteration, an expression for the MPI amplitude was obtained. In the present paper, we present general developments from this expression, valid for arbitrary polarization, binding potential, intensity, and initial state. First we analyze the symmetry of the angular distributions of photoelectrons determined by this expression for the MPI amplitude. This expression can explain the asymmetries in the angular distributions of photoelectrons occurring in the case of elliptic polarization that were recently reported in experiments. In the radiation regime where our theory applies these asymmetries are, however, weak. In certain instances our theory yields asymmetries in cases where lowest-order perturbation theory (LOPT) fails to predict them. We prove that at low intensities our expression for the MPI amplitude yields results in agreement with LOPT evaluated at high frequencies. An important part of this paper consists, however, of the derivation of an alternative form for the MPI amplitude of atomic hydrogen, which is substantially simpler, though somewhat less accurate. We study the consequences of this simplified expression for the case of linearly polarized fields in the following paper [Phys. Rev. A 44, xxxx (1991)

  5. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  6. Application of the weak-field asymptotic theory to the analysis of tunneling ionization of linear molecules

    DEFF Research Database (Denmark)

    Madsen, Lars Bojer; Tolstikhin, Oleg I.; Morishita, Toru

    2012-01-01

    The recently developed weak-field asymptotic theory [ Phys. Rev. A 84 053423 (2011)] is applied to the analysis of tunneling ionization of a molecular ion (H2+), several homonuclear (H2, N2, O2) and heteronuclear (CO, HF) diatomic molecules, and a linear triatomic molecule (CO2) in a static...... electric field. The dependence of the ionization rate on the angle between the molecular axis and the field is determined by a structure factor for the highest occupied molecular orbital. This factor is calculated using a virtually exact discrete variable representation wave function for H2+, very accurate...... Hartree-Fock wave functions for the diatomics, and a Hartree-Fock quantum chemistry wave function for CO2. The structure factors are expanded in terms of standard functions and the associated structure coefficients, allowing the determination of the ionization rate for any orientation of the molecule...

  7. Adaptive finite-element ballooning analysis of bipolar ionized fields

    International Nuclear Information System (INIS)

    Al-Hamouz, Z.M.

    1995-01-01

    This paper presents an adaptive finite-element iterative method for the analysis of the ionized field around high-voltage bipolar direct-current (HVDC) transmission line conductors without resort to Deutsch's assumption. A new iterative finite-element ballooning technique is proposed to solve Poisson's equation wherein the commonly used artificial boundary around the transmission line conductors is simulated at infinity. Unlike all attempts reported in the literature for the solution of ionized field, the constancy of the conductors' surface field at the corona onset value is directly implemented in the finite-element formulation. In order to investigate the effectiveness of the proposed method, a laboratory model was built. It has been found that the calculated V-I characteristics and the ground-plane current density agreed well with those measured experimentally. The simplicity in computer programming in addition to the low number of iterations required to achieve convergence characterize this method of analysis

  8. Studies of synthetic single crystal diamonds as reliable dosimeters for electromagnetic ionizing radiation fields

    International Nuclear Information System (INIS)

    Pillon, Mario; Angelone, Maurizio; Almaviva, Salvatore; Marinelli, Marco; Milani, Enrico; Prestopino, Giuseppe; Tucciarone, Aldo; Verona, Claudio; Verona-Rinati, Gianluca; Baccaro, Stefania

    2008-01-01

    Full text: Spatial high resolution dosimetry is very important in all areas of radiation therapy and, in particular, whenever narrow photon beams are required for Stereotactic Radiotherapy (SRT) and small field segments are used for Intensity Modulated Radiotherapy (IMRT). The available detectors are often too large with respect to the beam size considered, which is characterized by high dose gradients and lack of charged particle equilibrium. An ideal solution is represented by single crystal diamond detectors, which are small solid state devices, radiation hard, tissue equivalent and capable of real time response. In the present work, synthetic CVD single crystal diamond dosimeters (SCD), fabricated at Rome 'Tor Vergata' University Laboratories, have been characterized. The devices consist of a p-type/intrinsic/metal layered structure. They have been analyzed in terms of reproducibility, linearity, depth dose distributions, energy, dose rate and field size dependence by using 6 and 10 MV Bremsstrahlung x-ray beams, produced by a CLINAC DHX Varian accelerator and the gamma irradiation facility CALLIOPE. The gamma Calliope plant is a pool-type irradiation facility equipped with the 60 Co γ-source in a high-volume (7 x 6 x 3.9m 3 ). Maximum dose rate is 9400 Gy/h. The measurements have been compared with a calibrated ionization chamber and a Fricke dosimeter. The SCD's response is shown to be linearly correlated with the ionization chamber output over the whole dose range explored. Reproducibility, energy and dose rate dependency lower than 1% were observed. A depth dose distribution and irradiation field dependence in agreement with those obtained by reference dosimeters within 2% of accuracy were demonstrated as well. The results of this study are very encouraging about the suitability of SCD for clinical dosimetry with photon beams. (author)

  9. Graphene Field Effect Transistor-Based Detectors for Detection of Ionizing Radiation

    International Nuclear Information System (INIS)

    Jovanovic, Igor; Cazalas, Edward; Childres, I.; Patil, A.; Koybasi, O.; Chen, Y-P.

    2013-06-01

    We present the results of our recent efforts to develop novel ionizing radiation sensors based on the nano-material graphene. Graphene used in the field effect transistor architecture could be employed to detect the radiation-induced charge carriers produced in undoped semiconductor absorber substrates, even without the need for charge collection. The detection principle is based on the high sensitivity of graphene to ionization-induced local electric field perturbations in the electrically biased substrate. We experimentally demonstrated promising performance of graphene field effect transistors for detection of visible light, X-rays, gamma-rays, and alpha particles. We propose improved detector architectures which could result in a significant improvement of speed necessary for pulsed mode operation. (authors)

  10. Ionization waves caused by the effects of a magnetic field

    International Nuclear Information System (INIS)

    Miura, Kosuke; Imazu, Shingo

    1980-01-01

    The self-excited ionization waves was observed in the Ne positive column. The experiments were made for Ne gas from 0.07 to 1.0 Torr, with the magnetic field from 0 to 3.33 kG. The discharge current were 10 to 300 mA. The longitudinal magnetic field was made by an air-core solenoid coil. The axial electric field was measured by two wall probes. The frequency, wave length and amplitude of waves were measured with a photo multiplier. It was found that the longitudinal magnetic field caused new self-excited ionization waves. The frequency of these waves decreased monotonously with increasing field. The behaviors of the wave length and amplitude were complicate, and the cause of these phenomena is related to the ionization waves due to the spatial resonance of electron gas, namely s-waves, p-waves and fluid γ-waves. The threshold of the magnetic field to cause the ionization waves increased with increasing gas pressure, and with decreasing discharge current in the range 0.07 to 0.44 Torr. The frequency of the self-excited ionization waves occurred at zero field was almost constant in the field-frequency relation. A simple dispersion equation was derived, and the Novak constant can be introduced. (J.P.N.)

  11. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  12. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  13. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A large number of portable survey instruments employing G.M., ionization chamber, and scintillation detectors used for gamma measurements are also used for monitoring in beta fields by using removable shields to separate the beta and gamma components of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. Appropriate calibrations and correction factors can be used to reduce the errors in beta measurements to a tolerable level

  14. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    Science.gov (United States)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  15. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  16. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  17. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  18. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  19. Classical trajectory perspective of atomic ionization in strong laser fields. Semiclassical modeling

    International Nuclear Information System (INIS)

    Liu, Jie

    2014-01-01

    Dealing with timely and interesting issues in strong laser physics. Illustrates complex strong field atomic ionization with the simple semiclassical model of classical trajectory perspective for the first time. Provides a theoretical model that can be used to account for recent experiments. The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.

  20. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  1. Multiple ionization dynamics of molecules in intense laser fields

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2005-01-01

    A classical field-ionization model is developed for sequential multiple ionization of diatomic and linear triatomic molecules exposed to intense (∼ 10 15 W/cm 2 ) laser fields. The distance R ion of Coulomb explosion is calculated for a combination of fragment charges, by considering nonadiabatic excitation followed by field ionization associated with the inner and outer saddle points. For diatomic molecules (N 2 , NO, and I 2 ), the model explains behaviors observed in experiments, as R ion (21→31) ion (21→22) between competing charge-asymmetric and symmetric channels, and even-odd fluctuation along a principal pathway. For a triatomic molecule CO 2 , a comparison of the model with an experiment suggests that charge-symmetric (or nearly symmetric) channels are dominantly populated. (author)

  2. Controllable surfaces of path interference in the multiphoton ionization of atoms by a weak trichromatic field

    International Nuclear Information System (INIS)

    Mercouris, Theodoros; Nicolaides, Cleanthes A

    2005-01-01

    Multiphoton detachment rates for the H - 1 S ground state irradiated by a weak trichromatic ac field consisting of the fundamental frequency ω 0.272 eV and its second, third or fourth higher harmonics were computed from first principles. The weak intensities are in the range of 10 7 -10 8 W cm -2 . The calculations incorporated systematically electronic structure and electron correlation effects. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Δ, and the imaginary part is the multiphoton ionization rate, Γ. Through analysis, plausible arguments and computation, we show that when the intensities are weak the dependence of Γ on phase differences is simple. Specifically, Γs are depicted in the form of plane surfaces, with minor ripples due to higher order ionization paths, in terms of trigonometric functions of the phase differences. This dependence is likely to be applicable to other atomic systems as well, and to provide a definition of the weak field regime in the trichromatic case. When the field intensities are such that higher order ionization paths become important, these dependences break down and we reach the strong field regime

  3. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    Science.gov (United States)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  4. A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests

    International Nuclear Information System (INIS)

    Brualla-González, Luis; Vicedo, Aurora; Roselló, Joan V; Gómez, Faustino; González-Castaño, Diego M; Gago-Arias, Araceli; Pazos, Antonio; Zapata, Martín; Pardo-Montero, Juan

    2012-01-01

    In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can impact the verification of full treatments with different incidences. In such a case, an anisotropy correction factor can be applied. Output factors of small square fields measured with the device show a small systematic over-response, less than 1%, when compared to unshielded diode measurements. An IMRT radiosurgery treatment has been acquired with the liquid-filled ionization chamber device and compared with film dosimetry by using the gamma method, showing good agreement: over 99% passing rates for 1.2% and 1.2 mm for an incidence-per-incidence analysis; 100% passing rates for tolerances 1.8% and 1.8 mm when the whole treatment is analysed and the anisotropy correction factor is applied. The point dose verification for each incidence of the treatment performed with the liquid-filled ionization chamber agrees within 1% with a CC01 ionization chamber. This prototype has shown the utility of this kind of technology for the verification of small fields/treatments. Currently, a larger device covering a 5 cm × 5 cm area is under development. (paper)

  5. The high intensity approximation applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1980-08-01

    It is shown that the most commonly used high intensity approximations as applied to ionization by strong electromagnetic fields are related. The applicability of the steepest descent method in these approximations, and the relation between them and first-order perturbation theory, are also discussed. (Author) [pt

  6. Three-dimensional spatial imaging in multiphoton ionization rate measurements

    International Nuclear Information System (INIS)

    Bredy, Richard; Camp, Howard A.; Nguyen, Hai; Awata, Takaaki; Shan Bing; Chang Zhenghu; DePaola, B.D.

    2004-01-01

    An experiment is described in which an apparatus is used to demonstrate the feasibility of measuring multiphoton photoionization rates in the interaction of short pulsed lasers with atoms or molecules. With this methodology, the ionization rate is measured as a function of the spatial position in the beam-waist region of the laser through the direct three-dimensional spatial imaging of the ionization events. Thus, if the spatial dependence of the laser beam intensity were known, a series of experiments could yield the intensity dependence of multiphoton ionization without the assumptions or errors that are generally inherent in the integration over one or more dimensions in the laser focal volume

  7. Six categories of ionizing radiation quantities practical in various fields

    International Nuclear Information System (INIS)

    Zheng Junzheng; Zhuo Weihai

    2011-01-01

    This paper is the part of review on the evolvement of the systems for ionizing radiation quantities and units. In the paper, for better understanding and correct use of the relevant quantities of ionizing radiation, the major ionizing radiation quantities in various fields are divided into six categories. (authors)

  8. Notes on photon assisted field ionization

    International Nuclear Information System (INIS)

    Niu, B.H.C.; Bryant, P.J.

    1979-01-01

    A response to comments by Viswanathan et al (2) on a previous publication(1) by the authors is given. It is contended that the original hypothesis of photon assisted field ionization at metal surfaces correctly explains the results reported in Ref. 1

  9. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  10. Probing background ionization: positive streamers with varying pulse repetition rate and with a radioactive admixture

    International Nuclear Information System (INIS)

    Nijdam, S; Van Veldhuizen, E M; Ebert, U; Wormeester, G

    2011-01-01

    Positive streamers need a source of free electrons ahead of them to propagate. A streamer can supply these electrons by itself through photo-ionization, or the electrons can be present due to external background ionization. Here we investigate the effects of background ionization on streamer propagation and morphology by changing the gas composition and the repetition rate of the voltage pulses, and by adding a small amount of radioactive 85 Kr. We find that the general morphology of a positive streamer discharge in high-purity nitrogen depends on background ionization: at lower background ionization levels the streamers branch more and have a more feather-like appearance. This is observed both when varying the repetition rate and when adding 85 Kr, though side branches are longer with the radioactive admixture. But velocities and minimal diameters of streamers are virtually independent of the background ionization level. In air, the inception cloud breaks up into streamers at a smaller radius when the repetition rate and therefore the background ionization level is higher. When measuring the effects of the pulse repetition rate and of the radioactive admixture on the discharge morphology, we found that our estimates of background ionization levels are consistent with these observations; this gives confidence in the estimates. Streamer channels generally do not follow the paths of previous discharge channels for repetition rates of up to 10 Hz. We estimate the effect of recombination and diffusion of ions and free electrons from the previous discharge and conclude that the old trail has largely disappeared at the moment of the next voltage pulse; therefore the next streamers indeed cannot follow the old trail.

  11. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  12. Comparison of Atmospheric Pressure Chemical Ionization and Field Ionization Mass Spectrometry for the Analysis of Large Saturated Hydrocarbons.

    Science.gov (United States)

    Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I

    2016-11-01

    Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.

  13. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Levko, Dmitry; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  14. Relativistic electron acceleration in focused laser fields after above-threshold ionization

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2003-01-01

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently by Hu and Starace [Phys. Rev. Lett. 88, 245003 (2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization event. Analytical expressions for electron energy gain are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by numerical computations

  15. Long- and short-lived electrons with anomalously high collision rates in laser-ionized gases

    International Nuclear Information System (INIS)

    Kampfrath, Tobias; Perfetti, Luca; Tegeder, Petra; Wolf, Martin; Frischkorn, Christian; Gericke, Dirk O.

    2007-01-01

    Ultrashort broadband terahertz pulses are applied to probe the electron dynamics of gaseous Ar and O 2 following ionization by an intense femtosecond laser pulse. The conductivity in the plasma center is extracted by a modified Wentzel-Kramers-Brillouin approach. It exhibits a nearly perfect Drude-like spectral shape and yields the temporal evolution of the free-electron density and collision rate. While the electron density in the Ar plasma remains nearly constant during the first 200 ps after generation, it decays much faster in O 2 due to dissociative recombination which is only possible in molecular plasmas. Adding a small amount of the electron scavenger SF 6 to Ar reduces the electron lifetime in the plasma dramatically and allows us to determine the electron temperature to about 20 000 K. Furthermore, anomalously high, metal-like electron collision rates of up to 25 THz are found. Kinetic plasma theory substantially underestimates these rates pointing towards additional and more complex processes randomizing the total electronic momentum. Our results are relevant to both lightning control and generation of terahertz radiation by intense laser pulses in gases

  16. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    Science.gov (United States)

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  17. Clinical applications of a high speed matrix ionization chamber portal imaging system

    International Nuclear Information System (INIS)

    Herk, M. van; Gilhuijs, K.; Dalen, A. van; Ven, P. van de; Fencl, W.

    1995-01-01

    A main disadvantage of the present matrix ionization chamber system for electronic portal imaging is its relatively slow image acquisition of 6 s at full resolution. We have solved this problem by modifying the read-out electronics in two ways: First, faster high voltage switches are applied which work with a higher voltage; Second, faster read-out amplifiers are applied which have reduced cross-talk. With these improvements circuit noise is no longer dominant at typical radiotherapy dose rates. Because the quantum noise level in the matrix ionization chamber system is purely determined by signal integration in the liquid medium, the image scan can now be reduced to as short as 0.55 s with little loss of image quality. However, there is some loss of resolution at readout speed faster than 1.5 s due to speed limitations of the read-out amplifiers. One of the applications of the new device is double exposures for larynx fields. At a reduced dose rate of 125 MU/min, only about 5 MUs are required for a single frame on a 4 MV ABB Dynaray accelerator. Other applications which benefit from the reduced image scan time are time lapse movies. Typically 15 frames per field are made during one fraction. The movies offer both information on patient motion and improved image quality by averaging the frames. Finally, on-line analysis of the images can be performed more easily and has been included in the software package. In can be concluded that the higher speed of the new matrix ionization chamber system is an important improvement for several clinical applications

  18. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    International Nuclear Information System (INIS)

    Álvarez, V; Cárcel, S; Cervera, A; Díaz, J; Ferrario, P; Gil, A; Gómez-Cadenas, J J; Borges, F I G; Conde, C A N; Fernandes, L M P; Freitas, E D C; Cebrián, S; Dafni, T; Gómez, H; Egorov, M; Gehman, V M; Goldschmidt, A; Esteve, R; Evtoukhovitch, P; Ferreira, A L

    2013-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.

  19. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  20. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  1. Saturation of ionization signal in TMP and TMS at different angles and electric fields

    International Nuclear Information System (INIS)

    Aubert, B.; Colas, J.; Ghez, Ph.; Lacotte, J.C.; Mansoulie, B.; Teiger, J.

    1989-09-01

    The saturation of ionization signal is measured for various electric fields and incidence angles in a double gap TMP chamber and a single gap TMS chamber with ionizing particles in the range 1.5 - 12 MeV/cm. Birks' constant Kb in TMP is found to be high (greater than 0.1 cm/MeV) for normal incidence for electric fields in the range 4.8 to 12 kV/cm but decreases by almost a factor 3 at 50 0 . The same behaviour (large Kb and variation with incidence angle) is observed in TMS which exhibits also a Kb decrease of about a factor 2 when the electric field is increased from 10 to 40 kV/cm

  2. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    Science.gov (United States)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  3. Parameterization of ionization rate by auroral electron precipitation in Jupiter

    Directory of Open Access Journals (Sweden)

    Y. Hiraki

    2008-02-01

    Full Text Available We simulate auroral electron precipitation into the Jovian atmosphere in which electron multi-directional scattering and energy degradation processes are treated exactly with a Monte Carlo technique. We make a parameterization of the calculated ionization rate of the neutral gas by electron impact in a similar way as used for the Earth's aurora. Our method allows the altitude distribution of the ionization rate to be obtained as a function of an arbitrary initial energy spectrum in the range of 1–200 keV. It also includes incident angle dependence and an arbitrary density distribution of molecular hydrogen. We show that there is little dependence of the estimated ionospheric conductance on atomic species such as H and He. We compare our results with those of recent studies with different electron transport schemes by adapting our parameterization to their atmospheric conditions. We discuss the intrinsic problem of their simplified assumption. The ionospheric conductance, which is important for Jupiter's magnetosphere-ionosphere coupling system, is estimated to vary by a factor depending on the electron energy spectrum based on recent observation and modeling. We discuss this difference through the relation with field-aligned current and electron spectrum.

  4. Identifying the Tunneling Site in Strong-Field Ionization of H_{2}^{+}.

    Science.gov (United States)

    Liu, Kunlong; Barth, Ingo

    2017-12-15

    The tunneling site of the electron in a molecule exposed to a strong laser field determines the initial position of the ionizing electron and, as a result, has a large impact on the subsequent ultrafast electron dynamics on the polyatomic Coulomb potential. Here, the tunneling site of the electron of H_{2}^{+} ionized by a strong circularly polarized (CP) laser pulse is studied by numerically solving the time-dependent Schrödinger equation. We show that the electron removed from the down-field site is directly driven away by the CP field and the lateral photoelectron momentum distribution (LPMD) exhibits a Gaussian-like distribution, whereas the corresponding LPMD of the electron removed from the up-field site differs from the Gaussian shape due to the Coulomb focusing and scattering by the down-field core. Our current study presents the direct evidence clarifying a long-standing controversy over the tunneling site in H_{2}^{+} and raises the important role of the tunneling site in strong-field molecular ionization.

  5. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  6. Atomic-structure effects in strong-field multiphoton detachment and ionization

    International Nuclear Information System (INIS)

    AAberg, T.; Mu, X.; Ruscheinski, J.; Crasemann, B.

    1994-01-01

    Above-threshold photoelectron detachment and ionization spectra are investigated theoretically in the tunneling and over-barrier regime as a function of wavelength (≥ 1.064 μm) and polarization of the electromagnetic field. It is found that the zeros in the initial-state wave function can drastically affect the shape of the high-energy photoelectron distribution. The phenomenon is not predicted by tunneling and related models and hence can test their validity and reveal whether Keldysh-type theories are in general applicable to strong-field multiphoton dynamics. (orig.)

  7. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  8. Ionizing radiation decreases human cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1997-01-01

    Information from nine studies with exposed nuclear workers and military observers of atmospheric bomb explosions confirms the results from animal studies which showed that low doses of ionizing radiation are beneficial. The usual ''healthy worker effect'' was eliminated by using carefully selected control populations. The results from 13 million person-years show the cancer mortality rate of exposed persons is only 65.6% that of carefully selected unexposed controls. This overwhelming evidence makes it politically untenable and morally wrong to withhold public health benefits of low dose irradiation. Safe supplementation of ionizing radiation should become a public health service. (author)

  9. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-01-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion

  10. High-frequency, high-intensity photoionization

    Science.gov (United States)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  11. Multiphoton atomic ionization in the field of a very short laser pulse

    International Nuclear Information System (INIS)

    Popov, V.S.

    2001-01-01

    Closed analytic expressions are derived for the probability of multiphoton atomic and ionic ionization in a variable electric field E(t), which are applicable for arbitrary Keldysh parameters γ. Dependencies of the ionization probability and photoelectron pulse spectrum on the shape of a very short laser pulse are analyzed. Examples of pulse fields of various forms, including a modulated light pulse with a Gaussian or Lorentz envelope, are considered in detail. The interference effect in the photoelectron energy spectrum during atomic ionization by a periodic field of a general form is examined. The range of applicability of the adiabatic approximation in the multiphoton ionization theory is discussed. The imaginary time method is used in the calculations, which allows the probability of particle tunneling through oscillating barriers to be effectively calculated

  12. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  13. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  14. Ionizing and non-ionizing radiation and the risk of childhood cancer-illustrated with domestic radon and radio frequency electromagnetic field exposure

    OpenAIRE

    Hauri, Dimitri

    2013-01-01

    Background Children are exposed to many different environmental factors, including exposure to low-dose ionizing radiation and to non-ionizing radiation. Low-dose ionizing radiation comprises anthropogenic modified radiation and natural ionizing radiation from cosmic rays from the atmosphere, terrestrial gamma radiation from radionuclides in rocks and soils and radiation from radon. Non-ionizing radiation comprises optical radiation and radiation from electromagnetic fields. The la...

  15. Tunneling ionization and harmonic generation in two-color fields

    International Nuclear Information System (INIS)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.

    1996-01-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America

  16. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Science.gov (United States)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  17. Demonstration of soft x-ray amplification by optical-field-induced ionization

    International Nuclear Information System (INIS)

    Midorikawa, Katsumi; Nagata, Yutaka; Kubodera, Shoichi; Obara, Minoru; Tashiro, Hideo; Toyoda, Koichi

    1995-01-01

    We have demonstrated the amplification of the 13.5-nm Lyman-α transition in hydrogen-like Li + ions, using a novel optical-field-induced ionization. A small-signal gain coefficient of 20 cm -1 was obtained. The use of preformed Li + plasma as an initial laser medium plays important roles for the production of suitable plasma conditions for an optical-field-induced ionization x-ray laser. (author)

  18. Portable radiation meters evaluation in high rates of air kerma

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2015-01-01

    A set of portable meters of ionizing radiation high rates of air kerma (teletectors) commonly used in emergencies in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analyst is parameters for the detectors behavior were established, specifying their sensitivities and operating characteristics. Applied tests were: reading equipment variation with battery voltage, geotropism effect, energy dependence, the angular dependence and overload. Thus it was possible to determine the most common characteristic found in these equipment (quality control programs). The behavior of 17 portable meters was analyzed and in this study, 10 of them have been tested. It was performed to characterize the gamma irradiating system (radiation dosimetry field) that possesses higher activity in teletectors for testing of larger measuring range. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of portable meters of ionizing radiation high rates of air kerma calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  19. Modeling ionization by helicon waves

    International Nuclear Information System (INIS)

    Degeling, A.W.; Boswell, R.W.

    1997-01-01

    The response of the electron distribution function in one dimension to a traveling wave electric field is modeled for parameters relevant to a low-pressure helicon wave plasma source, and the resulting change in the ionization rate calculated. This is done by calculating the trajectories of individual electrons in a given wave field and assuming no collisions to build up the distribution function as the distance from the antenna is increased. The ionization rate is calculated for argon by considering the ionization cross section and electron flux at a specified position and time relative to the left-hand boundary, where the distribution function is assumed to be Maxwellian and the wave travels to the right. The simulation shows pulses in the ionization rate that move away from the antenna at the phase velocity of the wave, demonstrating the effect of resonant electrons trapped in the wave close-quote s frame of reference. It is found that the ionization rate is highest when the phase velocity of the wave is between 2 and 3x10 6 m/s, where the electrons interacting strongly with the wave (i.e., electrons with velocities inside the wave close-quote s open-quotes trapping widthclose quotes) have initial energies just below the ionization threshold. Results from the model are compared with experimental data and show reasonable qualitative agreement. copyright 1997 American Institute of Physics

  20. Ionizing potential waves and high-voltage breakdown streamers.

    Science.gov (United States)

    Albright, N. W.; Tidman, D. A.

    1972-01-01

    The structure of ionizing potential waves driven by a strong electric field in a dense gas is discussed. Negative breakdown waves are found to propagate with a velocity proportional to the electric field normal to the wavefront. This causes a curved ionizing potential wavefront to focus down into a filamentary structure, and may provide the reason why breakdown in dense gases propagates in the form of a narrow leader streamer instead of a broad wavefront.

  1. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Duran, I.; Martinez, L.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Mueller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures are discussed, most relevant devices are reported. (author)

  2. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  3. Effect of electric field in the characterization of pultruded GFRP boron-free composite insulator for the extra high voltage by the ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hissae; Silva Junior, Edmilson Jose; Shinohara, Armando Hideki [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Xavier, Gustavo Jose Vasconcelos [CHESF, Recife, PE (Brazil); Costa, Edson Guedes [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Lott Neto, Henrique Batista Duffles Teixeira; Britto, Paulo Roberto Ranzan; Fontan, Marcio A.B. [Sistema de Transmissao do Nordeste S.A., Recife, PE (Brazil)

    2016-07-01

    Full text: The pultruded boron-free glass fiber reinforced polymer (GFRP) composite has been widely used material for the electrical insulators in the high, extra and ultra high voltage overhead lines worldwide. In terms of design, the composite insulator has a highly complex geometry and large size. Aging of materials begin as soon as the insulators start their operation due to the strong electric field, mechanical load due to the weight of conductor cables, environment, corona discharge, generation of acids, and as a result, GFRP can fail mechanically by the stress corrosion crack (SCC) and electrical breakdown known as flashover. In order to mitigate the mechanical and electrical failures, the insulators in the field are frequently monitored by visual inspection, infrared thermography, UV detection, variation of measurement of distribution of electric field variation. However, new technologies for characterization and inspection of the composite insulator in the field are required for reliable operation. Imaging characterization using ionizing radiation (X-ray or g-ray) is an interesting technique, however, it can reduce drastically breakdown voltage due to the Townsend discharge, which free electrons are accelerated by an electric field, collide with gas molecules of air, and free additional electrons resulting in an avalanche multiplication that allows an electrical conduction through the air. In this study, in order to evaluate the potential application of ionization radiation for characterization of composite insulator under electric field, testing were conducted in high voltage laboratory by applying voltages up to 640 kV and varying radiation area of the composite insulator. As a result, even though there was an occurrence of flame on Imaging Plate (IP) detector case when it was located near the phase, corona discharge, but no breakdown discharge (flashover) occurred and high quality imaging of radiography could be obtained when X-ray source was employed

  4. Modeling strong-field above-threshold ionization

    International Nuclear Information System (INIS)

    Sundaram, B.; Armstrong, L. Jr.

    1990-01-01

    Above-threshold ionization (ATI) by intense, short-pulse lasers is studied numerically, using the stretched hydrogen atom Hamiltonian. Within our model system, we isolate several mechanisms that contribute to the ATI process. These mechanisms, which involve both excited bound states and continuum states, all invoke intermediate, off-energy shell transitions. In particular, the importance of excited bound states and off-energy shell bound-free processes to the ionization mechanism are shown to relate to a simple physical criterion. These processes point to importance differences in the interpretation of ionization characteristics for short pulses from that for longer pulses. Our analysis concludes that although components of ATI admit of simple, few-state modeling, the ultimate synthesis points to a highly complex mechanism

  5. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  7. Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields

    Science.gov (United States)

    McNiven, Andrea L.

    The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the

  8. Ionization chamber for high dose measurements

    International Nuclear Information System (INIS)

    Rodrigues Junior, Ary de Araujo

    2005-01-01

    Industrial gamma irradiators facilities are designed for processing large amounts of products, which are exposed to large doses of gamma radiation. The irradiation, in industrial scale, is usually carried out in a dynamic form, where the products go through a 60 Co gamma source with activity of TBq to P Bq (k Ci to MCi). The dose is estimated as being directly proportional to the time that the products spend to go through the source. However, in some situations, mainly for research purposes or for validation of customer process following the ISO 11137 requirements, it is required to irradiate small samples in a static position with fractional deliver doses. The samples are put inside the irradiation room at a fixed distance from the source and the dose is usually determined using dosimeters. The dose is only known after the irradiation, by reading the dosimeter. Nevertheless, in the industrial irradiators, usually different kinds of products with different densities go through between the source and the static position samples. So, the dose rate varies in function of the product density. A suitable methodology would be to monitor the samples dose in real time, measuring the dose on line with a radiation detector, which would improve the dose accuracy and avoid the overdose. A cylindrical ionization chamber of 0.9 cm 3 has been developed for high-doses real-time monitoring, during the sample irradiation at a static position in a 60 Co gamma industrial plant. Nitrogen and argon gas at pressure of 10 exp 5 Pa (1 bar) was utilized to fill the ionization chamber, for which an appropriate configuration was determined to be used as a detector for high-dose measurements. To transmit the signal generated in the ionization chamber to the associated electronic and processing unit, a 20 m mineral insulated cable was welded to the ionization chamber. The signal to noise ratio produced by the detector was about 100. The dosimeter system was tested at a category I gamma

  9. Extremely-high vacuum pressure measurement by laser ionization

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    Laser ionization method has the very high sensitivity for detecting atoms and molecules. Hurst et al. successfully detected a single Cs atom by means of resonance ionization spectroscopy developed by them. Noting this high sensitivity, the authors have attempted to apply the laser ionization method to measure gas pressure, particularly in the range down to extremely high vacuum. At present, hot cathode ionization gauges are used for measuring gas pressure down to ultrahigh vacuum, however, those have a number of disadvantages. The pressure measurement using lasers does not have such disadvantages. The pressure measurement utilizing the laser ionization method is based on the principle that when laser beam is focused through a lens, the amount of atom or molecule ions generated in the focused space region is proportional to gas pressure. In this paper, the experimental results are presented on the nonresonant multiphoton ionization characteristics of various kinds of gases, the ion detection system with high sensitivity and an extremely high vacuum system prepared for the laser ionization experiment. (K.I.)

  10. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  11. INTERSTELLAR METASTABLE HELIUM ABSORPTION AS A PROBE OF THE COSMIC-RAY IONIZATION RATE

    International Nuclear Information System (INIS)

    Indriolo, Nick; McCall, Benjamin J.; Hobbs, L. M.; Hinkle, K. H.

    2009-01-01

    The ionization rate of interstellar material by cosmic rays has been a major source of controversy, with different estimates varying by three orders of magnitude. Observational constraints of this rate have all depended on analyzing the chemistry of various molecules that are produced following cosmic-ray ionization, and in many cases these analyses contain significant uncertainties. Even in the simplest case (H + 3 ), the derived ionization rate depends on an (uncertain) estimate of the absorption path length. In this paper, we examine the feasibility of inferring the cosmic-ray ionization rate using the 10830 A absorption line of metastable helium. Observations through the diffuse clouds toward HD 183143 are presented, but yield only an upper limit on the metastable helium column density. A thorough investigation of He + chemistry reveals that only a small fraction of He + will recombine into the triplet state and populate the metastable level. In addition, excitation to the triplet manifold of helium by secondary electrons must be accounted for as it is the dominant mechanism which produces He* in some environments. Incorporating these various formation and destruction pathways, we derive new equations for the steady state abundance of metastable helium. Using these equations in concert with our observations, we find ζ He -15 s -1 , an upper limit about 5 times larger than the ionization rate previously inferred for this sight line using H + 3 . While observations of interstellar He* are extremely difficult at present, and the background chemistry is not nearly as simple as previously thought, potential future observations of metastable helium would provide an independent check on the cosmic-ray ionization rate derived from H + 3 in diffuse molecular clouds, and, perhaps more importantly, allow the first direct measurements of the ionization rate in diffuse atomic clouds.

  12. Strong-field non-sequential ionization: The vector momentum distribution of multiply charged Ne ions

    International Nuclear Information System (INIS)

    Rottke, H.; Trump, C.; Wittmann, M.; Korn, G.; Becker, W.; Hoffmann, K.; Sandner, W.; Moshammer, R.; Feuerstein, B.; Dorn, A.; Schroeter, C.D.; Ullrich, J.; Schmitt, W.

    2000-01-01

    COLTRIMS (COLd Target Recoil-Ion Momentum Spectroscopy) was used to measure the vector momentum distribution of Ne n+ (n=1,2,3) ions formed in ultrashort (30 fsec) high-intensity (≅10 15 W/cm 2 ) laser pulses with center wavelength at 795 nm. To a high degree of accuracy the length of the Ne n+ ion momentum vector is equal to the length of the total momentum vector of the n photoelectrons released, with both vectors pointing into opposite directions. At a light intensity where non-sequential ionization of the atom dominates the Ne 2+ and Ne 3+ momentum distributions show distinct maxima at 4.0 a.u. and 7.5 a.u. along the polarization axis of the linearly polarized light beam. First, this is a clear signature of non-sequential multiple ionization. Second, it indicates that instantaneous emission of two (or more) electrons at electric field strength maxima of the light wave can be ruled out as main mechanism of non-sequential strong-field multiple ionization. In contrast, this experimental result is in accordance with the kinematical constraints of the 'rescattering model'

  13. Diffusion and drift regimes of plasma ionization wave propagation in a microwave field

    International Nuclear Information System (INIS)

    Khodataev, K.V.; Gorelik, B.R.

    1997-01-01

    Investigation into diffusion and drift modes of a plasma ionization wave propagation in the microwave field are conducted within the framework of a one-dimensional model with regard to gas ionization by electron shock in an electrical field, adhesion, mobility and diffusion of electrons

  14. Tunnel ionization of atoms and molecules: How accurate are the weak-field asymptotic formulas?

    Science.gov (United States)

    Labeye, Marie; Risoud, François; Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2018-05-01

    Weak-field asymptotic formulas for the tunnel ionization rate of atoms and molecules in strong laser fields are often used for the analysis of strong field recollision experiments. We investigate their accuracy and domain of validity for different model systems by confronting them to exact numerical results, obtained by solving the time dependent Schrödinger equation. We find that corrections that take the dc-Stark shift into account are a simple and efficient way to improve the formula. Furthermore, analyzing the different approximations used, we show that error compensation plays a crucial role in the fair agreement between exact and analytical results.

  15. Motion of ionizing electric-field solitons in a bounded plasma

    International Nuclear Information System (INIS)

    Lagar'kov, A.; Rutkevich, I.

    1981-01-01

    A theory is derived for the motion of fast ionization waves along a plane slab of a weakly ionized plasma. The properties of the ionization wave are shown to be closely related to the motion of a two-dimensional surface-charge wave along the slab boundaries. As a result, the ionization wave is quite different from a one-dimensional wave. A quasi-one-dimensional description is used for the wave motion, in which the initial equations are averaged over the transverse coordinate. The relationship between the normal component of the current density at the plasma boundary and the amplitude of the electric potential from the linear theory for a surface wave is used to close the system of averaged equations. Self-similar solutions are derived for these equations; the solutions describe space-charge solitons and electric-field solitons which ionize the plasma. The theory is used to explain the motion of fast ionization waves in long discharge tubes

  16. Detection systems for high energy particle producing gaseous ionization

    International Nuclear Information System (INIS)

    Martinez, L.; Duran, I.

    1985-01-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs

  17. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  18. Study of combinations of TL/OSL single dosimeters for mixed high/low ionization density radiation fields

    International Nuclear Information System (INIS)

    Oster, L.; Druzhyna, S.; Orion, I.; Horowitz, Y.S.

    2013-01-01

    In this paper we discuss and compare the potential application of combined OSL/TL measurements using 6 LiF:Mg,Ti (TLD-600 is enriched of isotope 6 Li which has a high cross-section for the reaction with slow neutrons) or 7 LiF:Mg,Ti ( TLD-700 is enriched of 7 Li isotope) and TLD-100 (natural isotopic composition) detectors. The OSL/TL duel readout of LiF:Mg,Ti as an ionization density discriminator avoids some of the difficulties inherent to the various types of discrimination mixed-field passive dosimeters, and in addition has several advantages. The preferential excitation of OSL compared to TL following high ionization density (HID) alpha irradiation, naturally explained via the identification of OSL with the “two-hit” F 2 or F 3 center, whereas the major component of composite TL glow peak 5 is believed to arise from a ''one-hit'' complex defect. This evidence allows near-total discrimination between HID radiation and low-ionization density (LID) radiation. Beta and alpha particle irradiations were carried out with 90 Sr/ 90 Y (∼500 keV average energy) and 241 Am sources (4.7 MeV) respectively and neutron irradiations were carried out at the PTB (Germany) (E n = 5 MeV) and RARAF (Columbia University, USA) (E n = 6 MeV) accelerator facilities. The highest values of the FOM obtained was ∼30 for neutron/gamma discrimination and ∼110 for alpha/gamma discrimination using OSL/TL – peak 5 measurements in TLD-700. -- Highlights: ► The increased response of OSL compared to TL following HID irradiation is observed. ► This evidence is explained via the identification of OSL with the ''two-hit'' F2 centers. ► The potential application of combined OSL/TL in discrimination dosimetry is discussed. ► The values of FOM were 110 for alpha/gamma and 30 for neutron/gamma discrimination

  19. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    International Nuclear Information System (INIS)

    Requate, A.

    2007-03-01

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  20. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  1. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates

    International Nuclear Information System (INIS)

    Beucher, J.

    2007-10-01

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO 2 has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10 9 by incident hadron and a spatial resolution of 51 μm have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  2. High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution

    Science.gov (United States)

    2016-10-12

    count rate of Bob’s detectors. In this detector-limited regime , it is advantageous to increase M to encode as much information as possible in each...High- rate field demonstration of large-alphabet quantum key distribution Catherine Lee,1, 2 Darius Bunandar,1 Zheshen Zhang,1 Gregory R. Steinbrecher...October 12, 2016) 2 Quantum key distribution (QKD) enables secure symmetric key exchange for information-theoretically secure com- munication via one-time

  3. Photoelectron angular distributions from strong-field ionization of oriented molecules

    DEFF Research Database (Denmark)

    Holmegaard, Lotte; Hansen, Jonas Lerche; Kalhøj, Line

    2010-01-01

    The combination of ultrafast light sources with detection of molecular-frame photoelectron angular distributions (MFPADs) is setting new standards for detailed interrogation of molecular dynamics. However, until recently measurement of MFPADs relied on determining the molecular orientation after...... ionization, which is limited to species and processes where ionization leads to fragmentation. An alternative is to fix the molecular frame before ionization. The only demonstrations of such spatial orientation involved aligned small linear nonpolar molecules. Here we extend these techniques to the general...... class of polar molecules. Carbonylsulphide and benzonitrile molecules, fixed in space by combined laser and electrostatic fields, are ionized with intense, circularly polarized 30-fs laser pulses. For carbonylsulphide and benzonitrile oriented in one dimension, the MFPADs exhibit pronounced anisotropies...

  4. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    Science.gov (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  5. Dark Matter Detection Using Helium Evaporation and Field Ionization

    Science.gov (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  6. Binary and Recoil Collisions in Strong Field Double Ionization of Helium

    International Nuclear Information System (INIS)

    Staudte, A.; Villeneuve, D. M.; Corkum, P. B.; Ruiz, C.; Becker, A.; Schoeffler, M.; Schoessler, S.; Meckel, M.; Doerner, R.; Zeidler, D.; Weber, Th.

    2007-01-01

    We have investigated the correlated momentum distribution of both electrons from nonsequential double ionization of helium in a 800 nm, 4.5x10 14 W/cm 2 laser field. Using very high resolution coincidence techniques, we find a so-far unobserved fingerlike structure in the correlated electron momentum distribution. The structure can be interpreted as a signature of the microscopic dynamics in the recollision process. We identify features corresponding to the binary and recoil lobe in field-free (e,2e) collisions. This interpretation is supported by analyzing ab initio solutions of a fully correlated three-dimensional helium model

  7. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  9. Properties of multiple field ion emitters of tungsten and a simple method for improving their ionization efficiency

    International Nuclear Information System (INIS)

    Okuyama, F.; Beckey, H.D.

    1978-01-01

    The ion emission properties of the multiple tungsten emitters developed recently for field ionization mass spectrometry were investigated with the aid of a sector type mass spectrometer at emitter-cathode voltages of 10-15 kV using acetone, n-heptane and benzene as test substances. The emitters, which comprised a 10-μm tungsten filament bearing thickly arrayed microneedles of tungsten, produced very weak and unstable signals at voltages of about 10 kV, but increasing the voltage to 14 kV led to intensifying ion currents high enough to yield mass spectra of satisfactory quality. During the course of the experiments, it was observed that nucleating tungsten carbide particles on the emitter surface by means of a high-field chemical reaction with benzene vapours can significanlty promote the field ionization of gas molecules, presumably as a result of the field enhancement resulting from roughening of the surface. (Auth.)

  10. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  11. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  12. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  13. Impact of Increased Football Field Width on Player High-Speed Collision Rate.

    Science.gov (United States)

    Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul

    2017-07-01

    High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    Science.gov (United States)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  15. Double ionization of nitrogen molecules in orthogonal two-color femtosecond laser fields

    Science.gov (United States)

    Song, Qiying; Li, Hui; Wang, Junping; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-04-01

    Double ionization of nitrogen molecules in orthogonally polarized two-color femtosecond laser fields is investigated by varying the relative intensity between the fundamental wave (FW) and its second harmonic (SH) components. The yield ratios of the double ionization channels, i.e., the non-dissociative {{{{N}}}2}2+ and Coulomb exploded (N+, N+), to the singly charged N2 + channel exhibit distinct dependences on the relative strength between the FW and SH fields. As the intensity ratio of SH to FW increases, the yield ratio of (N+, N+)/N2 + gradually increases, while the ratio of {{{{N}}}2}2+/N2 + first descends and then increases constituting a valley shape which is similar to the behavior of Ar2+/Ar+ observed in the same experimental condition. Based on the classical trajectory simulations, we found that the different characteristics of the two doubly ionized channels stem from two mechanisms, i.e., the {{{{N}}}2}2+ is mostly accessed by the (e, 2e) impact ionization while the recollision-induced excitation with subsequent ionization plays an important role in producing the (N+, N+) channel.

  16. To the probe theory in a highly-ionized high-pressure plasma

    International Nuclear Information System (INIS)

    Baksht, F.G.; Rybakov, A.B.

    1997-01-01

    The probe theory in highly-ionized high-pressure plasma is presented. The situation typical for high-pressure plasma, when the plasma in the main part of the near-probe layer is in the state of local ionization equilibrium with general temperature for electrons and heavy particles. Possibility is discussed for determining the parameters of non-perturbed plasma through analysis of the probe characteristic at place of ion saturation, transition area and by the probe floating potential. The experiments were carried out by example of highly-ionized xenon plasma under atmospheric pressure

  17. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  18. The coupling of supercritical fluid chromatography and field ionization time-of-flight high-resolution mass spectrometry for rapid and quantitative analysis of petroleum middle distillates.

    Science.gov (United States)

    Qian, Kuangnan; Diehl, John W; Dechert, Gary J; DiSanzo, Frank P

    2004-01-01

    We report the first coupling of supercritical fluid chromatography (SFC) with field ionization time-of-flight high-resolution mass spectrometry (FI-ToF HRMS), in parallel with ultraviolet (UV) detection and flame ionization detection (FID), for rapid and quantitative analysis of petroleum middle distillates. SFC separates petroleum middle distillates into saturates and 1- to 3-ring aromatics. FI generates molecular ions for hydrocarbon species eluted from the SFC. The high resolution and exact mass measurements by ToF mass spectrometry provide elemental compositions of the molecules in the petroleum product. The amounts of saturates and aromatic ring types were quantified using the parallel SFC-FID assisted by SFC-UV. With a proper carbon-number calibration, the detailed composition of the petroleum middle distillate was rapidly determined.

  19. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.

    2010-01-01

    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  20. Field ionization mass spectrometry (FIMS) applied to tracer studies and isotope dilution analysis

    International Nuclear Information System (INIS)

    Anbar, M.; Heck, H.d'A.; McReynolds, J.H.; St John, G.A.

    1975-01-01

    The nonfragmenting nature of field ionization mass spectrometry makes it a preferred technique for the isotopic analysis of multilabeled organic compounds. The possibility of field ionization of nonvolatile thermolabile materials significantly extends the potential uses of this technique beyond those of conventional ionization methods. Multilabeled tracers may be studied in biological systems with a sensitivity comparable to that of radioactive tracers. Isotope dilution analysis may be performed reliably by this technique down to picogram levels. These techniques will be illustrated by a number of current studies using multilabeled metabolites and drugs. The scope and limitations of the methodology are discussed

  1. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  2. Summary of ionizing and displacive irradiation fields in various facilities

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Greenwood, L.R.

    1993-01-01

    Calculations have been performed to estimate the ionizing and displacive irradiation fields that will occur in ceramics during irradiation in accelerators and fission and fusion reactors. A useful measure of the relative strength of ionizing vs. displasive radiation is the ratio of the absorbed ionizing dose to the displacement damage dose, which in the case of ion irradiation is equal to the ratio of the electronic stopping power to the nuclear stopping power. In ceramics such as Al 2 O 3 , this ratio is about 20 at a fusion reactor first wall, and has a typical value of about 100 in a fusion reactor blanket region and in mixed spectrum reactors such as HFIR. Particle accelerator sources typically have much higher ionizing to displacive radiation ratios, ranging from about 2000 for 1 MeV protons to >10,000 for 1 MeV electrons

  3. Ionization of a two-electron atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Ovodova, O.V.; Popov, A.M.; Tikhonova, O.V.

    1997-01-01

    A one-dimensional model of a helium atom in an intense field of a femtosecond electromagnetic pulse has been constructed using the Hartree technique. 'Exact' calculations have been compared to the approximations of 'frozen' and 'passive' electrons. A nonmonotonic dependence of the single-electron ionization probability on the radiation intensity has been detected. Minima in the ionization probability are due to multiphoton resonances between different atomic states due to the dynamic Stark effect. We suggest that the ionization suppression is due to the interference stabilization in this case

  4. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio

    2009-07-01

    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  5. Letter Report on 500 nA Pulsed Current from Field Ionization Source

    International Nuclear Information System (INIS)

    Ellsworth, Jennifer L.

    2013-01-01

    We recently produced a milestone 500 nA of pulsed current using 40 Ir field ionizer electrodes in our ion source. In conclusion, we have produced the milestone pulsed current of 500 nA using 40 electrochemically etched iridium tips in a field ionization source. The pulsed current output is repeatable and scales as expected with gas fill pressure and bias voltage. We expect these current will be sufficient to produce neutral yields of 1 · 10 7 DT n/s.

  6. Multiphoton ionization of H+2 at critical internuclear separations: non-Hermitian Floquet analysis

    International Nuclear Information System (INIS)

    Likhatov, P V; Telnov, D A

    2009-01-01

    We present ab initio time-dependent non-Hermitian Floquet calculations of multiphoton ionization (MPI) rates of hydrogen molecular ions subject to an intense linearly polarized monochromatic laser field with a wavelength of 800 nm. The orientation of the molecular axis is parallel to the polarization vector of the laser field. The MPI rates are computed for a wide range of internuclear separations R with high resolution in R and reproduce resonance and near-threshold structures. We show that enhancement of ionization at critical internuclear separations is related to resonance series with higher electronic states. The effect of two-centre interference on the MPI signal is discussed.

  7. Dynamics of dissociation versus ionization in strong laser fields

    International Nuclear Information System (INIS)

    DiMauro, L.F.; Yang, B.

    1993-01-01

    In this paper, experimental results are presented which clearly demonstrate the effectiveness that an external field has in altering the dissociation dynamics. The experiment examines the strong-field dissociation dynamics of molecular hydrogen ions and its deuterated isotopes. These studies involve multiphoton excitation in the intensity regime of 10 11-14 W/cm 2 with the fundamental and second harmonic of a ND:YAG or ND:YLF laser system. Measurements include energy resolved electron and mass spectroscopy which provide useful probes in elucidating the interaction dynamics predicted by existing models. The example this in this paper, examines the strong-field dissociation of H 2 + , HD + , and D 2 + at green (0.5 μm) and (1μm) frequencies. The diatomic ions are formed via multiphonon ionization of the neutral precursor which is physically separable from the dissociation process. This study provides the first observation of the dynamics associated with the above threshold dissociation (ATD) process and analogies will be made with the more familiar above threshold ionization (ATI) phenomenon

  8. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  9. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in

  10. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    Science.gov (United States)

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  11. Comparison study for multiple ionization of carbonyl sulfide by linearly and circularly polarized intense femtosecond laser fields using Coulomb explosion imaging

    Science.gov (United States)

    Ma, Pan; Wang, Chuncheng; Luo, Sizuo; Yu, Xitao; Li, Xiaokai; Wang, Zhenzhen; Hu, Wenhui; Yu, Jiaqi; Yang, Yizhang; Tian, Xu; Cui, Zhonghua; Ding, Dajun

    2018-05-01

    We studied the relative yields and dissociation dynamics for two- and three-body Coulomb explosion (CE) channels from highly charged carbonyl sulfide molecules in intense laser fields using the CE imaging technique. The electron recollision contributions are evaluated by comparing the relative yields for the multiple ionization process in linearly polarized and circularly polarized (LP and CP) laser fields. The nonsequential multiple ionization is only confirmed for the charge states of 2 to 4 because the energy for further ionization from the inner orbital is much larger than the maximum recollision energy, 3.2U p . The novel deviations of kinetic energy releases distributions between LP and CP pulses are observed for the charge states higher than 4. It can be attributed to the stronger molecular bending in highly charged states before three-body CE with CP light, in which the bending wave packet is initialed by the triple or quartic ionization and spread along their potential curves. Compared to LP light, CP light ionizes a larger fraction of bending molecules in the polarization plane.

  12. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  13. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  14. Absorbed dose measurement by using tissue equivalent ionization chamber (pair ionization chamber) in the Yayoi reactor

    International Nuclear Information System (INIS)

    Sasuga, N.; Okamura, K.; Terakado, T.; Mabuchi, Y.; Nakagawa, T.; Sukegawa, Toshio; Aizawa, C.; Saito, I.; Oka, Yoshiaki

    1998-01-01

    Each dose rate of neutron and gamma ray in the thermal column of the Yayoi reactor, in which an epithermal neutron field will be used for the boron neutron capture therapy, was measured by using a tissue equivalent ionization chamber and a graphite chamber. The tissue equivalent ionization chamber has some response to both neutron and gamma ray, but the graphite chamber has a few response to the neutron, so called pair ionization chamber method. The epithermal neutron fluxes of the thermal column were calculated by ANISN (one dimensional neutron-gamma transport code). A measured value for gamma dose rate by the pair ionization chamber agrees relevantly with a calculated result. For neutron dose rate, however, the measured value was too much small in comparison with the calculated result. The discrepancy between the measured value and the calculated result for neutron dose rate is discussed in detail in the report. (M. Suetake)

  15. Fast Atom Ionization in Strong Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2018-05-01

    The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.

  16. Keldysh theory of strong field ionization: history, applications, difficulties and perspectives

    International Nuclear Information System (INIS)

    V Popruzhenko, S

    2014-01-01

    The history and current status of the Keldysh theory of strong field ionization are reviewed. The focus is on the fundamentals of the theory, its most important applications and those aspects which still raise difficulties and remain under discussion. The Keldysh theory is compared with other nonperturbative analytic methods of strong field atomic physics and its important generalizations are discussed. Among the difficulties, the gauge invariance problem, the tunneling time concept, the conditions of applicability and the application of the theory to ionization of systems more complex than atoms, including molecules and dielectrics, are considered. Possible prospects for the future development of the theory are also discussed. (review article)

  17. Theoretical investigation of the secondary ionization in krypton and xenon

    International Nuclear Information System (INIS)

    Saffo, M.E.

    1986-01-01

    A theoretical investigation of the secondary ionization processes that responsible for the pre-breakdown ionization current growth in a uniform electric field was studied in krypton and xenon gases, especially at low values of E/P 0 which is corresponding to high values of pressure, since there are a number of possible secondary ionization processes. It is interesting to carry out a quantitative analysis for the generalized secondary ionization coefficient obtained previously by many workers in terms of the production of excited states and their diffusion to the cathode and their destruction rate in the gas body. From energy balance equation for the electrons in the discharge, the fractional percentage energy losses of ionization, excitation, and elastic collisions to the total energy gained by the electron from the field has been calculated for krypton and xenon, as a result of such calculations; the conclusion drawn is that at low values of E/P 0 the main energy loss of electrons are in excited collision. Therefore, we are adopting a theoretical calculation for W/α under the assumption that the photo-electron emission at the cathode is the predominated secondary ionization process. 14 tabs.; 12 figs.; 64 refs

  18. Ionization and Coulomb explosion of small uranium oxide clusters

    International Nuclear Information System (INIS)

    Ross, Matt W; Castleman, A W Jr

    2012-01-01

    Femtosecond pulses are used to study the strong-field ionization and subsequent Coulomb explosion of small uranium oxide clusters. The resulting high atomic charge states are explored as a function of laser intensity and compared to ionization rates calculated using semi-classical tunneling theory with sequential ionization potential values. The gap in laser intensity between saturation intensity values for the 7s, 6d, and 5f orbitals are identified and quantified. Extreme charge states of oxygen up to O 4+ are observed indicating multiple ionization enhancement processes occurring within the clusters. The peak splittings of the atomic charge states are explored and compared to previous results on transition metal oxide species. Participation of the 5f orbitals in bonding is clearly identified based on the saturation intensity dependence of oxygen to uranium metal.

  19. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  20. Ionization balance for Ti and Cr ions: effects of uncertainty in dielectronic recombination rate

    International Nuclear Information System (INIS)

    Seon, Kwang-Il; Nam, Uk-Won; Park, Il H

    2003-01-01

    The available electron-impact ionization cross sections for Ti and Cr ions are reviewed, and calculations of the ionization balance for the ions under coronal equilibrium are presented. The calculated ionic abundance fractions are compared with those of previous works. The effects of modelling uncertainty in dielectronic recombination on isoelectronic line ratios, which are formed using the same spectral line from two elements of slightly different atomic numbers, are discussed concentrating on high temperature ranges. Also discussed are the effects of modelling uncertainty on inter-ionization stage line ratios formed from adjacent ionization stages. It is demonstrated that the modelling uncertainty in dielectronic recombination tends to cancel out only when the isoelectronic line ratio of He-like ions is considered, and that the sensitivity of the isoelectronic line ratios to the modelling uncertainty tends to increase for less ionized stages. It is also found that the interstage line ratios are less sensitive to the typical ∼20% uncertainties of dielectronic rates than the isoelectronic line ratios, and that the interstage line ratio of He-to Li-like ions in Ti and Cr plasmas is a better choice for a temperature diagnostic in the temperature ranges from ∼0.6 to ∼1.5 keV in which Li-like ions have maximum ionic abundances

  1. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  2. Multiphoton ionization of the hydrogen atom by a circularly polarized electromagnetic field

    International Nuclear Information System (INIS)

    Prepelitsa, O.B.

    1999-01-01

    This paper examines the multiphoton ionization of the ground state of the hydrogen atom in the field of a circularly polarized intense electromagnetic wave. To describe the states of photoelectrons, quasiclassical wave functions are introduced that partially allow for the effect of an intense electromagnetic wave and that of the Coulomb potential. Expressions are derived for the angular and energy distributions of photoelectrons with energies much lower than the ionization potential of an unperturbed atom. It is found that, due to allowance for the Coulomb potential in the wave function of the final electron states, the transition probability near the ionization threshold tends to a finite value. In addition, the well-known selection rules for multiphoton transitions in a circularly polarized electromagnetic field are derived in a natural way. Finally, the results are compared with those obtained in the Keldysh-Faisal-Reiss approximation

  3. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  4. The effect of the pulse repetition rate on the fast ionization wave discharge

    Science.gov (United States)

    Huang, Bang-Dou; Carbone, Emile; Takashima, Keisuke; Zhu, Xi-Ming; Czarnetzki, Uwe; Pu, Yi-Kang

    2018-06-01

    The effect of the pulse repetition rate (PRR) on the generation of high energy electrons in a fast ionization wave (FIW) discharge is investigated by both experiment and modelling. The FIW discharge is driven by nanosecond high voltage pulses and is generated in helium with a pressure of 30 mbar. The axial electric field (E z ), as the driven force of high energy electron generation, is strongly influenced by PRR. Both the measurement and the model show that, during the breakdown, the peak value of E z decreases with the PRR, while after the breakdown, the value of E z increases with the PRR. The electron energy distribution function (EEDF) is calculated with a model similar to Boeuf and Pitchford (1995 Phys. Rev. E 51 1376). It is found that, with a low value of PRR, the EEDF during the breakdown is strongly non-Maxwellian with an elevated high energy tail, while the EEDF after the breakdown is also non-Maxwellian but with a much depleted population of high energy electrons. However, with a high value of PRR, the EEDF is Maxwellian-like without much temporal variation both during and after the breakdown. With the calculated EEDF, the temporal evolution of the population of helium excited species given by the model is in good agreement with the measured optical emission, which also depends critically on the shape of the EEDF.

  5. Theoretical studies of highly ionized species. Progress report, March 1, 1979-February 28, 1980

    International Nuclear Information System (INIS)

    Dalgarno, A.; Victor, G.A.

    1979-11-01

    Applications were continued of the relativistic random phase approximation and of the model potential method and the properties of highly stripped ionic systems were calculated. Charge transfer recombination and ionization were identified as important processes in plasmas and calculations were performed of rate coefficients for several systems at thermal energies. A theory was constructed of collision-induced fine-structure transitions involving protons and the interaction potentials for O 3+ - H + were calculated. A study was made of some of the processes that occur when lithium and sodium are subject to laser radiation. Some progress was made towards the development of methods for calculating the effects on atomic systems of intense electric and magnetic fields

  6. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  7. Effects of a longitudinal magnetic field on current pulses and fast ionization-wave structure

    International Nuclear Information System (INIS)

    Asinovskii, E.I.; Lagar'kov, A.N.; Markovets, V.V.; Rutkevich, I.M.; Ul'yanov, A.M.; Filyugin, I.V.

    1988-01-01

    A longitudinal magnetic field affects the fast ionization-wave structure in a discharge tube surrounded by a metal screen. The field does not alter the wave speed, but the current amplitude is increased. This is explained from a theory for fast-wave propagation in a cylindrical guide containing an axial field. Numerical solutions have been obtained for the stationary nonlinear waves, which are compared with measurements. A theoretical study has been made on the ionization-wave features for large values of the Hall parameter

  8. Study of the ionization of H+2 ions in strong laser fields

    International Nuclear Information System (INIS)

    Odenweller, Matthias

    2010-01-01

    In the framework of this thesis it has been succeeded to develop a worldwide unique measurement apparatur, by which hydrogen-molecule ions can be ionized by means of short laser pulses and the reaction product kinematically completely measured. For this a detection method following the Coltrims technique, in which both protons and electrons can be detected over the complete spatial angle. The H + 2 ions origin from a high-frequency ion source and are accelerated to 400 keV. This ion beam is overlapped with a 780-nm laser pulse othe pulse length 40 fs. After the reaction the molecule ions fragments either via the dissociation channel H + 2 +nhν→H+H + or via an ionization followed by a Coulomb explosion: H + 2 +nhν→H + +H + +e - . The projectiles are detected after a drift path of about 3 m on an ion detector. For the detection of the electrons a special spectrometer was concipated. In the reaction it comes by the comparatively long pulse length already at low intensities to dissociation processes. The dissociating molecule reaches still during the increasing side of the laser pulse in this way distances, in which the charge-resonance-enhanced-ionization (CREI) can take place. Also the angular distribution of the measured protons lying in a very small angular range around the polarization direction of the laser suggests that CREI is the dominant ionization process. At circular polarization however a netto-acceleration of the electrons perpendicularly to the direction of the electric field at the ionization time takes place, so that the measurement of the electron momenta represents a suited measurement quantity for the study of the ionization process. By this way angular distributions of the electrons relatively to the internuclear axis within the polarization plane could be measured.

  9. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  10. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    International Nuclear Information System (INIS)

    Jin, Facheng; Wang, Bingbing; Chen, Jing; Yang, Yujun; Yan, Zong-Chao

    2016-01-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process. (paper)

  11. High-intensity ionization approximations: test of convergence in a one-dimensional model

    International Nuclear Information System (INIS)

    Antunes Neto, H.S.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro); Davidovich, L.; Marchesin, D.

    1983-06-01

    By solving numerically a one-dimensional model, the range of validity of some non-perturbative treatments proposed for the problem of atomic ionization by strong laser fields is examined. Some scalling properties of the ionization probability are stablished and a new approximation, which converges to the exact results in the limit of very strong fields is proposed. (Author) [pt

  12. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  13. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  14. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  15. Robust enhancement of high harmonic generation via attosecond control of ionization.

    Science.gov (United States)

    Bruner, Barry D; Krüger, Michael; Pedatzur, Oren; Orenstein, Gal; Azoury, Doron; Dudovich, Nirit

    2018-04-02

    High-harmonic generation (HHG) is a powerful tool to generate coherent attosecond light pulses in the extreme ultraviolet. However, the low conversion efficiency of HHG at the single atom level poses a significant practical limitation for many applications. Enhancing the efficiency of the process defines one of the primary challenges in the application of HHG as an advanced XUV source. In this work, we demonstrate a new mechanism, which in contrast to current methods, enhances the HHG conversion efficiency purely on a single particle level. We show that using a bichromatic driving field, sub-optical-cycle control and enhancement of the tunnelling ionization rate can be achieved, leading to enhancements in HHG efficiency by up to two orders of magnitude. Our method advances the perspectives of HHG spectroscopy, where isolating the single particle response is an essential component, and offers a simple route toward scalable, robust XUV sources.

  16. Measurements of crossed-field demagnetisation rate of trapped field magnets at high frequencies and below 77 K

    Science.gov (United States)

    Baskys, A.; Patel, A.; Glowacki, B. A.

    2018-06-01

    Design requirements of the next generation of electric aircraft place stringent requirements on the power density required from electric motors. A future prototype planned in the scope of the European project ‘Advanced Superconducting Motor Experimental Demonstrator’ (ASuMED) considers a permanent magnet synchronous motor, where the conventional ferromagnets are replaced with superconducting trapped field magnets, which promise higher flux densities and thus higher output power without adding weight. Previous work has indicated that stacks of tape show lower cross-field demagnetisation rates to bulk (RE)BCO whilst retaining similar performance for their size, however the crossed-field demagnetisation rate has not been studied in the temperature, the magnetic field and frequency range that are relevant for the operational prototype motor. This work investigates crossed-field demagnetisation in 2G high temperature superconducting stacks at temperatures below 77 K and a frequency range above 10 Hz. This information is crucial in developing designs and determining operational time before re-magnetisation could be required.

  17. The effect of changing the magnetic field strength on HiPIMS deposition rates

    International Nuclear Information System (INIS)

    Bradley, J W; Mishra, A; Kelly, P J

    2015-01-01

    The marked difference in behaviour between HiPIMS and conventional dc or pulsed-dc magnetron sputtering discharges with changing magnetic field strengths is demonstrated through measurements of deposition rate. To provide a comparison between techniques the same circular magnetron was operated in the three excitation modes at a fixed average power of 680 W and a pressure of 0.54 Pa in the non-reactive sputtering of titanium. The total magnetic field strength B at the cathode surface in the middle of the racetrack was varied from 195 to 380 G. DC and pulsed-dc discharges show the expected behaviour that deposition rates fall with decreasing B (here by ∼25–40%), however the opposite trend is observed in HiPIMS with deposition rates rising by a factor of 2 over the same decrease in B.These observations are understood from the stand point of the different composition and transport processes of the depositing metal flux between the techniques. In HiPIMS, this flux is largely ionic and slow post-ionized sputtered particles are subject to strong back attraction to the target by a retarding plasma potential structure ahead of them. The height of this potential barrier is known to increase with increasing B.From a simple phenomenological model of the sputtered particles fluxes, and using the measured deposition rates from the different techniques as inputs, the combined probabilities of ionization, α, and back attraction, β, of the metal species in HiPIMS has been calculated. There is a clear fall in αβ (from ∼0.9 to ∼0.7) with decreasing B-field strengths, we argue primarily due to a weakening of electrostatic ion back attraction, so leading to higher deposition rates. The results indicate that careful design of magnetron field strengths should be considered to optimise HiPIMS deposition rates. (paper)

  18. On the correctness of the thermoluminescent high-temperature ratio (HTR) method for estimating ionization density effects in mixed radiation fields

    International Nuclear Information System (INIS)

    Bilski, Pawel

    2010-01-01

    The high-temperature ratio (HTR) method which exploits changes in the LiF:Mg,Ti glow-curve due to high-LET radiation, has been used for several years to estimate LET in an unknown radiation field. As TL efficiency is known to decrease after doses of densely ionizing radiation, a LET estimate is used to correct the TLD-measured values of dose. The HTR method is purely empirical and its general correctness is questionable. The validity of the HTR method was investigated by theoretical simulation of various mixed radiation fields. The LET eff values estimated with the HTR method for mixed radiation fields were found in general to be incorrect, in some cases underestimating the true values of dose-averaged LET by an order of magnitude. The method produced correct estimates of average LET only in cases of almost mono-energetic fields (i.e. in non-mixed radiation conditions). The value of LET eff found by the HTR method may therefore be treated as a qualitative indicator of increased LET, but not as a quantitative estimator of average LET. However, HTR-based correction of the TLD-measured dose value (HTR-B method) was found to be quite reliable. In all cases studied, application of this technique improved the result. Most of the measured doses fell within 10% of the true values. A further empirical improvement to the method is proposed. One may therefore recommend the HTR-B method to correct for decreased TL efficiency in mixed high-LET fields.

  19. Scintillation and ionization yields produced by α-particles in high-density gaseous xenon

    International Nuclear Information System (INIS)

    Kusano, H.; Ishikawa, T.; Lopes, J.A.M.; Miyajima, M.; Shibamura, E.; Hasebe, N.

    2012-01-01

    The average numbers of scintillation photons and liberated electrons produced by 5.49-MeV α-particles were measured in high-density gaseous xenon. The density range is 0.12–1.32 g/cm 3 for scintillation measurements at zero electric field, and 0.12–1.03 g/cm 3 for the scintillation and ionization measurements under various electric fields. The density dependence of scintillation yield at zero electric field was observed. The W s -value, which is defined as the average energy expended per photon, increases with density and becomes almost constant in the density range above 1.0 g/cm 3 . Anti-correlations between average numbers of scintillation photons and liberated electrons were found to vary with density. It was also found that the total number of scintillation photons and liberated electrons decreases with increasing density. Several possible reasons for the variation in scintillation and ionization yields with density are discussed.

  20. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  1. An initial study on atmospheric pressure ion transport by laser ionization and electrostatic fields.

    OpenAIRE

    Peralta Conde, Álvaro; Romero, Carolina; Boyero, Juan; Apiñaniz Aginako, Jon Imanol; Raposo Funcia, Cesar; Roso Franco, Luis; Padilla Moreno, Carlos Manuel

    2014-01-01

    Laser ionization of mixtures of gases at atmospheric pressure and the subsequent transport through electrostatic field is studied. A prototype is designed to perform the transport and detection of the ions. Relevance of the composition of the mixture of gases and ionization parameters is shown

  2. Production of highly ionized recoil ions in heavy ion impact

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.

    1985-01-01

    The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)

  3. Two-colour ionization of hydrogen

    International Nuclear Information System (INIS)

    Fifirig, M.; Cionga, A.; Florescu, V.

    1995-01-01

    The studies of different radiative processes in hydrogen continue to be of interest, as they provide a comparison basis for calculations done on many electron atoms. We consider the case of the hydrogen atom interacting simultaneously with two electromagnetic fields of incommensurable frequencies. Our attention is focused on three-photon transitions between the ground state and a final state in the continuum. The existence of compact forms for the first and second-order corrections to the wave functions of a Coulomb-field electron due to the electromagnetic field leads to compact results for the matrix element of the transitions. Numerical results are presented for the total ionization rate and the angular distribution of ejected electrons in a regime in which none of the fields is able to ionize alone the atom. (author)

  4. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    Science.gov (United States)

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  5. Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations

    Science.gov (United States)

    Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.

    2018-04-01

    Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.

  6. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  7. A longitudinal field multiple sampling ionization chamber for RIBLL2

    International Nuclear Information System (INIS)

    Tang Shuwen; Ma Peng; Lu Chengui; Duan Limin; Sun Zhiyu; Yang Herun; Zhang Jinxia; Hu Zhengguo; Xu Shanhu

    2012-01-01

    A longitudinal field MUltiple Sampling Ionization Chamber (MUSIC), which makes multiple measurements of energy loss for very high energy heavy ions at RIBLL2, has been constructed and tested with 3 constituent α source ( 239 Pu : 3.435 MeV, 241 Am : 3.913 MeV, 244 Cm : 4.356 MeV). The voltage plateau curve has been plotted and-500 V is determined as a proper work voltage. The energy resolution is 271.4 keV FWHM for the sampling unit when 3.435 MeV energy deposited. A Geant4 Monte Carlo simulation is made and it indicates the detector can provide unique particle identification for ions Z≥4. (authors)

  8. Angular intensity of a gas-phase field ionization source

    International Nuclear Information System (INIS)

    Orloff, J.; Swanson, L.W.

    1979-01-01

    Angular intensities of 1 μA sr -1 have been measured for a gas-phase field ionization source in an optical column under practical operating conditions. The source, which was differentially pumped and cooled to 77 K, utilized a -oriented iridium emitter and precooled hydrogen gas at 10 -2 Torr. The ion beam was collimated with an electrostatic lens and detected below an aperture subtending 0.164 msr. A transmitted current of approx.10 -10 A was measured at voltages corresponding to a field of approx. =2.2 V/A at the emitter

  9. Tunnel ionization of H2 in a low-frequency laser field: A wave-packet approach

    International Nuclear Information System (INIS)

    Nguyen-Dang, T.; Chateauneuf, F.; Manoli, S.; Atabek, O.; Keller, A.

    1997-01-01

    The dynamics of multielectron dissociative ionization (MEDI) of H 2 in an intense IR laser pulse are investigated using a wave-packet propagation scheme. The electron tunneling processes corresponding to the successive ionizations of H 2 are expressed in terms of field-free Born-Oppenheimer (BO) potential energy surfaces (PES) by transforming the tunnel shape resonance picture into a Feshbach resonance problem. This transformation is achieved by defining a new, time-dependent electronic basis in which the bound electrons are still described by field-free BO electronic states while the ionized ones are described by Airy functions. In the adiabatic, quasistatic approximation, these functions describe free electrons under the influence of the instantaneous electric field of the laser and such an ionized electron can have a negative total energy. As a consequence, when dressed by the continuous ejected electron energy, the BO PES of an ionic channel can be brought into resonance with states of the parent species. This construction gives a picture in which wave packets are to be propagated on a continuum of coupled electronic manifolds. A reduction of the wave-packet propagation scheme to an effective five-channel problem has been obtained for the description of the first dissociative ionization process in H 2 by using Fano's formalism [U. Fano, Phys. Rev. 124, 1866 (1961)] to analytically diagonalize the infinite, continuous interaction potential matrix and by using the properties of Fano's solutions. With this algorithm, the effect that continuous ionization of H 2 has on the dissociation dynamics of the H 2 + ion has been investigated. In comparison with results that would be obtained if the first ionization of H 2 was impulsive, the wave-packet dynamics of the H 2 + ion prepared continuously by tunnel ionization are markedly nonadiabatic. (Abstract Truncated)

  10. Microwave ionization of hydrogen atoms below the classical chaos border

    Energy Technology Data Exchange (ETDEWEB)

    Bluemel, R; Smilansky, U

    1987-01-01

    We present and discuss theoretical predictions for the occurrence of radiation induced ionization of hydrogen atoms in fields which are well below the classical ionization threshold. Strong ionization occurs due to enhanced population of a band of high n states which ionize easily. This enhancement happens only at rather narrowly defined field values, and is explained in terms of avoided crossings of Floquet levels.

  11. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  12. X-ray laser studies using plasmas created by optical field ionization

    International Nuclear Information System (INIS)

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-α line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation

  13. Interplay between Coulomb-focusing and non-dipole effects in strong-field ionization with elliptical polarization

    Science.gov (United States)

    Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.

    2018-06-01

    We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.

  14. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  15. Multiphoton ionization processes in strong laser

    International Nuclear Information System (INIS)

    Krstic, P.

    1982-01-01

    Multiphoton ionization of hydrogen in ultrastrong laser fields is studied. The previous calculations of this process yield differing result for the transition rate. We show the relations between them and difficulties with each of them. One difficulty is that the finite spatial and time extent of the laser field has been omitted. It is also found that a laser field, which is sufficiently intense to be labeled ultrastrong, makes the electron move relativistically so that it becomes necessary to use Volkov states to describe the electron in the laser field. The transition rate is obtained, using a CO laser as an example, and it is found that the transition rate rises as the laser intensity rises. This is a consequence of the use of relativistic kinematics and is not true nonrelativistically. We also discuss the multiple peaks observed in the energy spectrum of electrons resulting from multiphoton ionization of atoms by lasers. When the laser intensity is large enough for the ponderomotive force to result in appreciable broading of the peaks we show the shape of the broadened peaks contains useful information. We show that the multiphoton ionization probability as a function of laser intensity can be obtained but that the free-free cross sections, which are in principle also obtainable, are probably not obtainable in practice. Finally, we describe the theory of the absorption of more than minimum numbers of photons needed to ionize an atom by an intense laser. The basic approximation used is that the atom is adiabatically deformed by the laser and an impulsive interaction then results in multiphoton absorption. In our first calculation we allow only one resonant excited state to be included in the adiabatic deformation. In our second we also allow the lowest energy continuum to be included. The two results are then compared

  16. Development of a gas-phase field ionization ion source

    International Nuclear Information System (INIS)

    Allan, G.L.; Legge, G.J.F.

    1983-01-01

    A field ionization ion source has been developed to investigate the suitability of using such a source with the Melbourne Proton Microprobe. Operating parameters have been measured, and the source has been found to be brighter than the radiofrequency ion source presently used in the Melbourne 5U Pelletron Accelerator. Improvements to the source geometry to increase the current output are planned

  17. Hot tungsten plate based ionizer for cesium plasma in a multi-cusp field experiment

    International Nuclear Information System (INIS)

    Patel, Amitkumar D.; Sharma, Meenakshee; Ramasubramanian, Narayanan; Chattopadhyay, Prabal K.

    2015-01-01

    In a newly proposed basic experiment, contact-ionized cesium ions will be confined by a multi cups magnetic field configuration. The cesium ion will be produced by impinging collimated neutral atoms on an ionizer consisting of the hot tungsten plate. The temperature of the tungsten plate will also be made high enough (∼2700 K) such that it will contribute electrons also to the plasma. It is expected that at this configuration the cesium plasma would be really quiescent and would be free from even the normal drift waves observed in the classical Q-machines. For the ionizer a design based on F. F. Chen's design was made. This ionizer is very fine machining and exotic material like Tungsten plate, Molybdenum screws, rings, and Boron Nitride ceramics etc. The fine and careful machining of these materials was very hard. In this paper, the experience about to join the tungsten wire to molybdenum plate and alloy of tantalum and molybdenum ring is described. In addition experimental investigations have been made to measure 2D temperature distribution profile of the Tungsten hot plate using infrared camera and the uniformity of temperature distribution over the hot plate surface is discussed. (author)

  18. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    Science.gov (United States)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  19. Ionizing wave via high-power HF acceleration

    OpenAIRE

    Mishin, Evgeny; Pedersen, Todd

    2010-01-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60 km. This paper presents a physical model of an ionizing wavefront created by suprathermal electrons accelerated by the HF-excited plasma turbulence.

  20. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    International Nuclear Information System (INIS)

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-01-01

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered

  1. Dosimetric parameters for small field sizes using Fricke xylenol gel, thermoluminescent and film dosimeters, and an ionization chamber

    International Nuclear Information System (INIS)

    Guzman Calcina, Carmen S; Oliveira, Lucas N de; Almeida, Carlos E de; Almeida, Adelaide de

    2007-01-01

    Dosimetric measurements in small therapeutic x-ray beam field sizes, such as those used in radiosurgery, that have dimensions comparable to or smaller than the build-up depth, require special care to avoid incorrect interpretation of measurements in regions of high gradients and electronic disequilibrium. These regions occur at the edges of any collimated field, and can extend to the centre of small fields. An inappropriate dosimeter can result in an underestimation, which would lead to an overdose to the patient. We have performed a study of square and circular small field sizes of 6 MV photons using a thermoluminescent dosimeter (TLD), Fricke xylenol gel (FXG) and film dosimeters. PMMA phantoms were employed to measure lateral beam profiles (1 x 1, 3 x 3 and 5 x 5 cm 2 for square fields and 1, 2 and 4 cm diameter circular fields), the percentage depth dose, the tissue maximum ratio and the output factor. An ionization chamber (IC) was used for calibration and comparison. Our results demonstrate that high resolution FXG, TLD and film dosimeters agree with each other, and that an ionization chamber, with low lateral resolution, underestimates the absorbed dose. Our results show that, when planning small field radiotherapy, dosimeters with adequate lateral spatial resolution and tissue equivalence are required to provide an accurate basic beam data set to correctly calculate the absorbed dose in regions of electronic disequilibrium

  2. Tunneling Time and Weak Measurement in Strong Field Ionization.

    Science.gov (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  3. Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front

    International Nuclear Information System (INIS)

    Kostin, V A; Vvedenskii, N V

    2015-01-01

    We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned. (paper)

  4. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  5. Reduction of momentum transfer rates by parallel electric fields: A two-fluid demonstration

    International Nuclear Information System (INIS)

    Delamere, P.A.; Stenbaek-Nielsen, H.C.; Otto, A.

    2002-01-01

    Momentum transfer between an ionized gas cloud moving relative to an ambient magnetized plasma is a general problem in space plasma physics. Obvious examples include the Io-Jupiter interaction, comets, and coronal mass ejections. Active plasma experiments have demonstrated that momentum transfer rates associated with Alfven wave propagation are poorly understood. Barium injection experiments from the Combined Release and Radiation Effects Satellite (CRRES) have shown that dense ionized clouds are capable of ExB drifting over large distances perpendicular to the magnetic field. The CRRES 'skidding' distances were much larger than predicted by magnetohydrodynamic theory and it has been proposed that parallel electric fields were a key component in the skidding phenomenon. A two-fluid code was used to demonstrate the role of parallel electric fields in reducing momentum transfer between two distinct plasma populations. In this study, a dense plasma was initialized moving relative to an ambient plasma and perpendicular to B. Parallel electric fields were introduced via a friction term in the electron momentum equation and the collision frequency was scaled in proportion to the field-aligned current density. The simulation results showed that parallel electric fields decreased the decelerating magnetic tension force on the plasma cloud through a magnetic diffusion/reconnection process

  6. Energy dependence of an ionization chamber with parallel plates in standard gamma and x-radiation fields

    International Nuclear Information System (INIS)

    Batistella, M.A.; Caldas, L.V.E.

    1988-09-01

    The characteristics of low energy X-radiation standard fields were determined and the energy dependence of a ionization chamber of the superficial type, with parallel plates and fixed volume, normally utilized in the dosimetry at the Radiotherapy level was studied. The possibility of adaptation of this chamber type for use in gamma radiation dosimetry was verified. Different thickness Lucite build-up caps, from 2.0 up to 5.5 mm, were produced and tested in 60 Co and 137 Cs gamma radiation fields. This type of detector, with the adequate build-up cap, presented a performance comparable to that of the thimble type ionization chamber. It was concluded that it is not necessary to use different kinds of chambers for each high and mean energy interval. The superficial chamber, specially produced to detect low energy X-radiation, may be adapted to detect gamma radiation. (author) [pt

  7. High pressure pulsed avalanche discharges: Scaling of required preionization rate for homogeneity

    International Nuclear Information System (INIS)

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1994-01-01

    Homogeneous high-pressure discharges can be formed by pulsed avalanche breakdown, provided that the individual avalanche heads have diffused to a large enough radius to overlap before streamer breakdown occurs. The overlap condition can be met by using an external mechanism to preionize the neutral gas, e.g., x-rays or uv radiation. There are several scenarios, (1) to preionize the gas, and then trigger the discharge by the sudden application of an electric field, (2) to apply an overvoltage over the discharge and trigger the discharge by external ionization, or (3) to have a continuous rate of external ionization and let the E field rise, with a comparatively long time constant τ, across the breakdown value (E/n) 0 . The authors here study the last of these scenarios, which gives a very efficient use of the preionization source because the avalanche startpoint can accumulate during the pre-avalanche phase. The authors have found that the required avalanche startpoint density N st.p , defined as the density of individual single, or clusters of, electrons at the time when the electric field crosses the breakdown value, scales with pressure and rise time as N st.p ∝ p 21/4 τ -3/4 . This pressure scaling disagrees with the p 3/2 scaling found by Levatter and Lin (J. Appl. Phys. 51(1), 210), while the rise time scaling agrees satisfactorily with their results. For an E field which rises slowly across the breakdown value, the pre-avalanche accumulation of electrons must be taken into account, as well as the fact that the density n e of free electrons becomes larger than the density N st.p of independent avalanche heads: when electron impact ionization closely balances attachment, individual electrons are replaced by clusters of electrons which are too close to form individual avalanche heads

  8. DC field response of one-dimensional flames using an ionized layer model

    KAUST Repository

    Xiong, Yuan

    2015-11-18

    We develop a simplified model to better explain electric current response when direct current (DC) is applied to a flame. In particular, different current responses have been observed by changing the polarity of the DC in a sub-saturated current regime that results from the presence of ions and electrons in the flame zone. A flame zone was modeled as a thin, ionized layer located in one-dimensional DC electric fields. We derived simplified model-governing equations from species equations by implementing mobility differences dependent on the type of charged particle, particularly between ions and electrons; we performed experiments to substantiate the model. Results showed that the sub-saturated current and local field intensity were significantly influenced by the polarity of the DC because of the combined effect of unequal mobility of charged particles and the position of the ionized layer in the gap relative to two electrodes. When an energized electrode is close to the ionized layer, applying a negative DC causes a more rapid increase in current than by applying a positive DC to the same electrode. Results from our experimental measurement of current using counterflow diffusion flames agreed qualitatively well with the model predictions. A sensitivity analysis using dimensional and non-dimensional parameters also supported the importance of the mobility difference and the relative location of the ionized layer on the electric current response.

  9. Double-electron ionization driven by inhomogeneous fields

    Czech Academy of Sciences Publication Activity Database

    Chacon, A.; Ortmann, L.; Cucchietti, F.; Suarez, N.; Perez-Hernandez, J.A.; Ciappina, Marcelo F.; Landsman, A.S.; Lewenstein, M.

    2017-01-01

    Roč. 123, č. 4 (2017), 1-11, č. článku 116. ISSN 0946-2171 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : nonsequential double-ionization * harmonic-generation * laser fields * helium * model * emission * single * atom * ion * He Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.696, year: 2016

  10. Studies of the wavelength dependence of non-sequential double ionization of xenon in strong fields

    International Nuclear Information System (INIS)

    Kaminski, P.; Wiehle, R.; Kamke, W.; Helm, H.; Witzele, B.

    2005-01-01

    Full text: The non-sequential double ionization of noble gases in strong fields is still a process which is not completely understood. The most challenging question is: what is the dominant physical process behind the knee structure in the yield of doubly charged ions which are produced in the focus of an ultrashort laser pulse in dependence of the intensity? Numerous studies can be explained with the so-called rescattering model, where an electron is freed by the strong laser field and then driven back to its parent ion due to the oscillation of the field. Through this backscattering process it is possible to kick out a second electron. However in the low intensity or multiphoton (MPI) region this model predicts that the first electron can not gain enough energy in the oscillating electric field to further ionize or excite the ion. We present experimental results for xenon in the MPI region which show a significant contribution of doubly charged ions. A Ti:sapphire laser system (800 nm, 100 fs) is used to ionize the atoms. The coincident detection of the momentum distribution of the photoelectrons with an imaging spectrometer and the time of flight spectrum of the ions allows a detailed view into the ionization process. For the first time we also show a systematic study of the wavelength dependence (780-830 nm and 1180-1550 nm) on the non-sequential double ionization. The ratio Xe 2+ /Xe + shows a surprising oscillatory behavior with varying wavelength. Ref. 1 (author)

  11. Measurement of intensity-dependent rates of above-threshold ionization (ATI) of atomic hydrogen at 248 nm

    International Nuclear Information System (INIS)

    Nichols, T.D.

    1991-04-01

    Measured rates of multiphoton ionization (MPI) from the ground state of atomic hydrogen by a linearly polarized, subpicosecond KrF laser pulse at 248 nm wavelength are compared to predictions of lowest-order perturbation theory, Floquet theory, and Keldysh-Faisal-Reiss (KFR) theory with and without Coulomb correction for peak irradiance of 3 x 10 12 W/cm 2 to 2 x 10 14 W/cm 2 . The Coulomb-corrected Keldysh model falls closest to the measured rates, the others being much higher or much lower. At 5 x 10 13 W/cm 2 , the number of ATI electrons decreased by a factor of approximately 40 with each additional photon absorbed. ATI of the molecular hydrogen background and of atoms from photodissociation of the molecules were also observed. The experiment employed a crossed-beam technique at ultrahigh vacuum with an rf-discharge atomic hydrogen source and a magnetic-bottle type electron time-of-flight spectrometer to count the electrons in the different ATI channels separately. The apparatus was calibrated to allow comparison of absolute as well as relative ionization rates to the theoretical predictions. This calibration involved measuring the distribution of irradiance in a focal volume that moved randomly and changed its size from time to time. A data collection system under computer control divided the time-of-flight spectra into bins according to the energy of each laser pulse. This is the first measurement of absolute rates of ATI in atomic hydrogen, and the first measurement of absolute test of MPI in atomic hydrogen without a large factor to account for multiple modes in the laser field. As such, the results of this work are important to the development of ATI theories, which presently differ by orders of magnitude in their prediction of the ionization rates. They are also important to recent calculations of temperatures in laser-heated plasmas, many of which incorporate KFR theory

  12. Use of non-ionizing electromagnetic fields for the treatment of cancer.

    Science.gov (United States)

    Jimenez, Hugo; Blackman, Carl; Lesser, Glenn; Debinski, Waldemar; Chan, Michael; Sharma, Sambad; Watabe, Kounosuke; Lo, Hui-Wen; Thomas, Alexandra; Godwin, Dwayne; Blackstock, William; Mudry, Albert; Posey, James; O'Connor, Rodney; Brezovich, Ivan; Bonin, Keith; Kim-Shapiro, Daniel; Barbault, Alexandre; Pasche, Boris

    2018-01-01

    Cancer treatment and treatment options are quite limited in circumstances such as when the tumor is inoperable, in brain cancers when the drugs cannot penetrate the blood-brain-barrier, or when there is no tumor-specific target for generation of effective therapeutic antibodies. Despite the fact that electromagnetic fields (EMF) in medicine have been used for therapeutic or diagnostic purposes, the use of non-ionizing EMF for cancer treatment is a new emerging concept. Here we summarize the history of EMF from the 1890's to the novel and new innovative methods that target and treat cancer by non-ionizing radiation.

  13. Ionizing radiation and non-ionizing radiation in educational environment

    International Nuclear Information System (INIS)

    Matsuzawa, Takao; Otsubo, Tomonobu; Ikke, Satoshi; Taguchi, Noriko; Takeda, Rie

    2005-01-01

    By chance, we measured gamma dose rates in our school, and around the JCO Tokai Plant during the criticality on September 30 in 1999, with our GM survey meter. At that time, we made sure to estimate the position of criticality reaction (source point), and the source intensity of criticality reaction, with our own data, measured along the public roads, route 6 and local road 62. The intensity of gamma dose rates along the road was analyzed as Lorentz functions. At the time, there were no environmental radiation data about the criticality accident, or all the data, especially radioactivity and dose rates around the JCO Tokai Plant, was closed to the public. Recently, we are interested in the intensity of non-ionizing radiation, especially extremely low frequency (ELF) magnetic field, and electric field, in our environment. We adopted the same method to analyze the source position and source intensity of an ELF magnetic field and electric behind a wall. (author)

  14. Systemic response of Korean dark-striped field mice, Apodenmus agrarius coreae after high-dose- rate γ-irradiation: Organ weights, hemato-chemistry, apoptosis of splenocytes and sperm

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kwang Hee; Choi, Hoon; Joo, Hyun Jin; Kim, Hee Sun [Radiation Health Research Institute, KHNP, Gyeongju (Korea, Republic of); Keum, Dong Kwon [Nuclear Environment Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-11-15

    Since the territory of the radio-contaminated area is in homeogenous in radiation level and spectrum, investigation of the genetical mutation process in the natural animal populations inhabiting the radioontaminated areas will be provide a realistic picture of genetic effects for radiation exposure. However, little is known about the basic data such as systemic responses after ionizing radiation exposures in wild small rodents. Taking into account different radio-sensitivity of dark-striped field mice (A. a. coreae, THOMAS), the objective of the study is focus on investigate the level of systemic responses, included organ weights, hemato-chemistry and apoptosis in splenocytes and sperm of caudal epididymis after high-dose-rate irradiation especially as a potential biological dosimeter in radio-ecology. Figure 1 summarizes the results of the apoptotic events in spleen (data not shown at here) and in sperm of caudal epididymis at 24hrs after a single high-dose-rate γ-irradiation. The results of apoptosis in spleen and sperm caused by exposure to different doses of γ-irradiation are displayed. The data show that the field striped mice after irradiated with more than high dose of 0.5 Gy induces an significantly increased apoptosis. Results also shown that for exposure to 0.5 Gy, the apoptosis of both organs ware decreased compared to those of other γ-irradiated mice.

  15. Theory of strong-field ionization of aligned CO2

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2009-01-01

    resonance states, and the alignment-dependent ionization yields do not follow the electron density of the initial states. The theory explains the breakdown of semianalytical theories, such as the molecular tunneling theory and strong-field approximation, where excited electronic structure is neglected....

  16. Electron impact ionization of highly charged lithiumlike ions

    International Nuclear Information System (INIS)

    Wong, K.L.

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti 19+ ) and Z=26 (iron, Fe 23+ ) and to Z=56 (barium, Ba 53+ ). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented

  17. Stochastic substitute for coupled rate equations in the modeling of highly ionized transient plasmas

    International Nuclear Information System (INIS)

    Eliezer, S.; Falquina, R.; Minguez, E.

    1994-01-01

    Plasmas produced by intense laser pulses incident on solid targets often do not satisfy the conditions for local thermodynamic equilibrium, and so cannot be modeled by transport equations relying on equations of state. A proper description involves an excessively large number of coupled rate equations connecting many quantum states of numerous species having different degrees of ionization. Here we pursue a recent suggestion to model the plasma by a few dominant states perturbed by a stochastic driving force. The driving force is taken to be a Poisson impulse process, giving a Langevin equation which is equivalent to a Fokker-Planck equation for the probability density governing the distribution of electron density. An approximate solution to the Langevin equation permits calculation of the characteristic relaxation rate. An exact stationary solution to the Fokker-Planck equation is given as a function of the strength of the stochastic driving force. This stationary solution is used, along with a Laplace transform, to convert the Fokker-Planck equation to one of Schroedinger type. We consider using the classical Hamiltonian formalism and the WKB method to obtain the time-dependent solution

  18. Study on ionizing radiation to the workers' lymphocyte micronucleus rate and chromosome aberrations

    International Nuclear Information System (INIS)

    Li Jianhua; Wang Linchao; He Wei

    2007-01-01

    Objective: To study lymphocyte genetic material of an iron and steel enterprise workers exposed to the ionizing radiation, find out measures to protect their health and reduce ionizing radiation occupation harm. Methods: 342 workers were choseh as the exposed group who worked in an iron and steel enterprise in the beam installment operation, to examine their circumference blood lymphocyte micronucleus rate and the chromosome aberrations, simultaneously select 280 chefs as the control group, The irradiation dosage was determined and statistical analysis was carded out wich the consideration of their length of work and differences in work post. Results: Exposed group: the micronucleus rate masculine gender (MNR), 4 people, the masculine gender pick out rate is 12.87%. The chromosome aberration factor masculine gender (CAF), 12 people, the masculine rate is 3.51%. Control group: MNR 3 people, the asculine gender pick out rate is 1.07%; CAF 2 people, masculine gender rate is 0.72%. Comparing the two groups, every item has the significant difference. Workers in is the exposed group workers have the average exposure dose of 6.73mSv/a, MNR,CAF are illuminated to the dosage have a positive line correlation. They become increased as the job lenght prolongs. The nucleon name, the material calculation and the medical X-radial are responsible for the highest ratio. Conclusion: In iron and steel enterprises, long-time ionizing radiation can cause the workers' circumference blood lymphocyte micronucleus rate and the chromosome aberrations obvious to rise. The beam protection measures strengthened so as to reduce the harms to workers. (authors)

  19. Method for measuring and evaluation dose equivalent rate from fast neutrons in mixed gamma-neutron fields around particles accelerators

    International Nuclear Information System (INIS)

    Cruceru, I.; Sandu, M.; Cruceru, M.

    1994-01-01

    A method for measuring and evaluation of doses and dose equivalent rate in mixed gamma- neutron fields is discussed in this paper. The method is basedon a double detector system consist of an ionization chamber with components made from a plastic scintillator, coupled to on photomultiplier. Generally the radiation fields around accelerators are complex, often consisting of many different ionizing radiations extending over a broad range of energies. This method solve two major difficulties: determination of response functions of radiation detectors; interpretation of measurement and determination of accuracy. The discrimination gamma-fast neutrons is assured directly without a pulse shape discrimination circuit. The method is applied to mixed fields in which particle energies are situated in the energy range under 20 MeV and an izotropic emision (Φ=10 4 -10 11 n.s -1 ). The dose equivalent rates explored is 0.01mSV--0.1SV

  20. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  1. Characterization of collisionally pumped optical-field-ionization soft X-ray lasers

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; Sebban, S.; Bettaibi, I.; Upcraft, L. M.; Balcou, P.; Breger, P.; Zeitoun, P.; Le Pape, S.; Ros, D.; Klisnick, A.; Carillon, A.; Jamelot, G.; Rus, Bedřich; Wyart, J. F.

    2004-01-01

    Roč. 78, - (2004), s. 939-944 ISSN 0946-2171 Grant - others:HPRI(XE) 199900086 Institutional research plan: CEZ:AV0Z1010921 Keywords : X-ray lasers * optical-field-ionization * collisional excitation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.215, year: 2004

  2. High-order above-threshold ionization beyond the electric dipole approximation

    Science.gov (United States)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  3. Optimization of electret ionization chambers for dosimetry in mixed neutron-gamma fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1984-01-01

    The properties of combination dosemeters consisting of two air-filled electret ionization chambers in mixed neutron-gamma fields have been investigated. The first chamber, polyethylene-walled, is sensitive to neutrons and gamma rays, the second, having walls of teflon, is sensitive to gamma rays only. The properties of the dosemeters are determined by the resulting errors and the measuring range. As both properties depend on the dimensions of the electret ionization chambers they have been taken into account in optimizing the dimensions. The results show that with the use of the dosemeters the effective dose equivalent in mixed neutron-gamma fields can be determined nearly independently of the spectra. The lower detection limit is less than 1 mSv and the maximum uncertainty of dose measurements about 12%. (author)

  4. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  5. Study of HTS Wires at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Turrioni, D.; Barzi, E.; Lamm, M.J.; Yamada, R.; Zlobin, A.V.; Kikuchi, A.; /Fermilab

    2009-01-01

    Fermilab is working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting (HTS) materials is being considered for these magnets using Helium refrigeration. Critical current (I{sub c}) measurements of HTS conductors were performed at FNAL and at NIMS up to 28 T under magnetic fields at zero to 90 degree with respect to the sample face. A description of the test setups and results on a BSCCO-2223 tape and second generation (2G) coated conductors are presented.

  6. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  7. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  8. Ionization beam scanner

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Inner structure of an ionization beam scanner, a rather intricate piece of apparatus which permits one to measure the density distribution of the proton beam passing through it. On the outside of the tank wall there is the coil for the longitudinal magnetic field, on the inside, one can see the arrangement of electrodes creating a highly homogeneous transverse electric field.

  9. Electrical conductivity of a fully ionized plasma in a magnetic field

    International Nuclear Information System (INIS)

    Vaucher, B.; Vaclavik, J.; Schneider, H.

    1975-01-01

    In this experimental work the authors have investigated the electrical conductivity of a homogeneous fully ionized plasma in a homogeneous magnetic field. In particular, the conductivity perpendicular to the magnetic field was studied by means of the magnetoacoustic resonance for different values of the parameter ωsub(c)/γsub(ei) where ωsub(c) is the electron cyclotron frequency and γsub(ei) is the collision frequency between electrons and ions. (Auth.)

  10. Multiorbital effects in strong-field ionization and dissociation of aligned polar molecules CH3I and CH3Br

    Science.gov (United States)

    Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun

    2017-12-01

    Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.

  11. Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry

    International Nuclear Information System (INIS)

    Takashima, Keisuke; Adamovich, Igor V.; Xiong Zhongmin; Kushner, Mark J.; Starikovskaia, Svetlana; Czarnetzki, Uwe; Luggenhoelscher, Dirk

    2011-01-01

    Fast ionization wave (FIW), nanosecond pulse discharge propagation in nitrogen and helium in a rectangular geometry channel/waveguide is studied experimentally using calibrated capacitive probe measurements. The repetitive nanosecond pulse discharge in the channel was generated using a custom designed pulsed plasma generator (peak voltage 10-40 kV, pulse duration 30-100 ns, and voltage rise time ∼1 kV/ns), generating a sequence of alternating polarity high-voltage pulses at a pulse repetition rate of 20 Hz. Both negative polarity and positive polarity ionization waves have been studied. Ionization wave speed, as well as time-resolved potential distributions and axial electric field distributions in the propagating discharge are inferred from the capacitive probe data. ICCD images show that at the present conditions the FIW discharge in helium is diffuse and volume-filling, while in nitrogen the discharge propagates along the walls of the channel. FIW discharge propagation has been analyzed numerically using quasi-one-dimensional and two-dimensional kinetic models in a hydrodynamic (drift-diffusion), local ionization approximation. The wave speed and the electric field distribution in the wave front predicted by the model are in good agreement with the experimental results. A self-similar analytic solution of the fast ionization wave propagation equations has also been obtained. The analytic model of the FIW discharge predicts key ionization wave parameters, such as wave speed, peak electric field in the front, potential difference across the wave, and electron density as functions of the waveform on the high voltage electrode, in good agreement with the numerical calculations and the experimental results.

  12. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    International Nuclear Information System (INIS)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N.; Yu, He

    2014-01-01

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n e ) and temperature (T e ) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n e peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n e increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n e and T e data, and ion extraction efficiency based on the measured plasma potential (V p ) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T e and inefficient ion extraction in a larger pre-sheath potential.

  13. Determination of high level absorbed dose in a 60Co gamma ray field with ionization chambers

    International Nuclear Information System (INIS)

    Zhongying Li; Benjiang Mao; Lu Zhang

    1995-01-01

    This paper relates to the principles and methods for determining the absorbed dose of high energy photons radiation with ionization chambers, and its shows the doserate results of high level 60 Co γ-rays in water measured with Farmer chambers. The results with two kinds of chambers at a same point are consistent within 0.3%, and the total uncertainty is less than ± 4%. In the domestic intercomparison on determining high level absorbed dose in which 12 laboratories participated, the deviation of our result from the mean result of the intercomparison is -0.04% [Chen Yundong (1992). Summing up report on a high level absorbed dose intercomparison (in Chinese)]. (author)

  14. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    International Nuclear Information System (INIS)

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-01-01

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  15. Ionization of atoms by bare ion projectiles

    International Nuclear Information System (INIS)

    Tribedi, L.C.

    1997-01-01

    The double differential cross sections (DDCS) for low energy electron emission can provide stringent tests to the theoretical models for ionization in ion-atom collision. The two-center effects and the post collision interactions play a major role in ionization by highly charged, high Z projectiles. We close-quote ll review the recent developments in this field and describe our efforts to study the energy and angular distributions of the low energy electrons emitted in ion-atom ionization. copyright 1997 American Institute of Physics

  16. Low-frequency-high-intensity limit of the Keldysh-Faisal-Reiss theory

    International Nuclear Information System (INIS)

    Bauer, Jaroslaw

    2006-01-01

    When a frequency of the circularly polarized laser field approaches zero the above threshold ionization rate should approach the well-known static-field limit of tunneling ionization. In the high-intensity limit of the laser field the Keldysh-Faisal-Reiss (KFR) theory is expected to be valid. For the ground state of a hydrogen atom we study various forms of the KFR theory when both conditions: ω<<1 a.u. and γ<<1 (ω is the frequency and γ the Keldysh parameter) are satisfied. For the circularly polarized laser field ionization rate in the Keldysh theory [which utilizes the length gauge (d(vector sign)·E(vector sign)) form of the matrix element] is calculated analytically. We show numerically that if the WKB Coulomb correction in the final state of the ionized electron is included, the Keldysh theory gives the correct result in the tunneling domain. In the barrier-suppression regime the Keldysh theory without this correction gives ionization rates close to the exact static-field results. The Reiss theory [which utilizes the velocity gauge (p(vector sign)·A(vector sign)) form of the matrix element] leads to too small ionization rates in the limit ω→0, γ→0

  17. Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities

    International Nuclear Information System (INIS)

    Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; Norem, J.; Li, D.; Zisman, M.; Torun, Y.; Rimmer, R.; Errede, D.

    2005-01-01

    There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity

  18. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  19. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  20. On the ionization and burnout processes of a magnetically confined plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-10-01

    The particle and heat balance during plasma start-up are investigates, to specify the conditions for reaching various ion density ranges and high plasma temperatures in cases of a limited heating power. Particular attention is paid to the permeable-impermeable transition regime of plasmas being subject to Ohmic heating and confined in closed or open bottles with a main poloidal field. The ionization and burnout conditions are found to depend critically on the confinement and the filling density. They become optimal in closed bottles under symmetric and stable conditions, where the transition into a fully ionized state should be reached even at moderately large ionization rates, burnout powers and currents. Start-up methods based on constant as well as on variable filling densities are discussed as means of ion density control.(author)

  1. Ionization of atoms by high energy photons

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  2. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  3. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  4. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  5. Field-induced narrowing of auto-ionization atomic states as a way of creating inverse population

    International Nuclear Information System (INIS)

    Kotochigova, S.A.

    1990-10-01

    We discuss the possibility of narrowing the atomic auto-ionization states via their resonance mixing in a field. The results of Ref.1 show that, in contrast to the mixing of isolated states, with mixing of multiplets one may expect substantial narrowing of auto-ionization states owing to their intersection with bound electron states. (author). 5 refs, 5 figs, 1 tab

  6. Investigations of multiphoton excitation and ionization in a short range potential

    International Nuclear Information System (INIS)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a δ-function potential. 9 refs., 3 figs

  7. Investigations of multiphoton excitation and ionization in a short range potential

    Energy Technology Data Exchange (ETDEWEB)

    Susskind, S.M.; Cowley, S.C.; Valeo, E.J.

    1989-02-01

    We introduce an approach to the study of excitation and ionization for a system with a short range potential. In particular, analytical and numerical results are presented for the multiphoton ionization rate, under strong field conditions, of an electron confined by a delta-function potential. 9 refs., 3 figs.

  8. New ionization fractions for the lithium- and helium-like ionization stages of calcium and iron

    International Nuclear Information System (INIS)

    Doyle, J.G.; Raymond, J.C.

    1981-01-01

    The high resolution X-ray spectra of Ca XIX and Fe XXV observed during a solar flare on 1979 March 25 have been re-interpreted using new ionization fractions for Ca XVIII, Ca XIX, Fe XXIV and Fe XXV. These new calculations substantially change the interpretation of the spectra, implying the flare to be ionizing during the rise phase and recombining during the decay phase. The results favour the ECIP ionization rates over those of Lotz, though other interpretations are possible. (author)

  9. Characteristics of the self-excited ionization waves in a magnetized positive column

    International Nuclear Information System (INIS)

    Maruyama, Takeo; Yamamura, Yasuhiro; Takano, Saburo; Miura, Kosuke; Imazu, Shingo.

    1979-01-01

    In the past, metastable atoms were not considered in the investigations of ionization waves generated in a positive column weakly ionized. However, metastable atoms seem to be important for the generation of ionization waves, and there are many unknown factors. In this paper, the fundamental equations and dispersion relation are explained under the assumption of axi-symmetrical positive column plasma placed in a uniform magnetic field, and the direct ionization frequency and excitation frequency, cumulative ionization coefficient, electron density and metastable atom density, the energy loss factor for electrons, the dependence of plasma quantities on magnetic field and dispersion characteristics are calculated. Experiments have been conducted using Ne gas in a discharge tube of 80 cm long and 1 cm radius with heated oxide cathode. Magnetic field was obtained with a solenoid coil of 75 cm long, 9 cm I.D. and 27 cm O.D. The axially uniform magnetic field was in the range of 35 to 40 cm. As the results, the following points have become clear. (1) The number of waves, angular frequency and phase velocity of ionization waves decrease with the increase of magnetic field. (2) By the consideration of the presence of metastable atoms, the theoretical values were improved pretty well and agreed with the experimental values qualitatively and quantitatively. (3) Longitudinal magnetic field has the effect of suppressing the growth of ionization waves because of the reduction of time and spatial growth rates with the increase of magnetic field. (Wakatsuki, Y.)

  10. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    OpenAIRE

    Rukhadze, A. A.; Sadykova, S.; Samkharadze, T.

    2015-01-01

    Here, we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders above ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal collisionless plasma Te≫Ti , only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave, the charge separation occurs: electrons and ions form the d...

  11. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  12. Electron equilibrium for parallel plate ionization chambers in gamma radiation fields

    International Nuclear Information System (INIS)

    Caldas, L.; Albuquerque, M. da P.P.

    1989-08-01

    Parallel plate ionization chambers, designed and constructed for use in low energy X-radiation fields, were tested in gamma radiation beams ( 6 Co and 137 Cs) of two different Calibration Laboratories, in order to study the electron equilibrium occurrence and to verify the possibility of their use for the detection of the kind of radiation too. (author) [pt

  13. Features of working in fields with high values of exposure dose rate

    International Nuclear Information System (INIS)

    Samojlenko, Yu.N.

    1989-01-01

    Features of working in fields with the exposure dose rate (EDR) ∼ 1000-7000 R/h are described. Data on the performed operations concerning initial decontamination of the Chernobyl-3 reactor roof during 10.07.86-03.10.86 are presented. It is marked that the methodical recommendations on working in fields with high values of EDR are absent in our country and abroad and it is necessary to develop them on the basis of obtained experience. Moreover, there are no protective means (protective clotting). Main principles of its creation are the protection of critical organ groups and comfort in working. Personnel should be specially trained and get phychologically ready. 2 figs., 1 tab

  14. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  15. D. C. electric field behavior of high lying states in atomic uranium

    International Nuclear Information System (INIS)

    Paisner, J.A.; Carlson, L.R.; Worden, E.F.; Johnson, S.A.; May, C.A.; Solarz, R.W.

    1976-01-01

    The effects of D. C. electric fields on high lying Rydberg and valence states in atomic uranium have been studied. Results of measurements of Stark shifts, lifetime lengthening via l-mixing, critical fields for ionization, barrier tunneling, and the appearance of zero-field parity forbidden transitions are presented for atomic uranium along with the observation of field induced autoionization of valence states. 3 figs

  16. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Science.gov (United States)

    Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.

    2017-06-01

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  17. Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsiao-Wen; Zahedy, Fakhri S. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Johnson, Sean D. [Department of Astrophysics, Princeton University, Princeton, NJ (United States); Rauch, Michael; Mulchaey, John S., E-mail: hchen@oddjob.uchicago.edu [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2017-06-20

    Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.

  18. Bound electron nonlinearity beyond the ionization threshold

    OpenAIRE

    Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.

    2018-01-01

    Although high field laser-induced ionization is a fundamental process underlying many applications, there have been no absolute measurements of the nonlinear polarizability of atoms and molecules in the presence of ionization. Such information is crucial, for example, for understanding the propagation of high intensity ultrashort pulses in matter. Here, we present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, ni...

  19. Saha's ionization equation for high Z elements

    International Nuclear Information System (INIS)

    Godwal, B.K.; Sikka, S.K.

    1977-01-01

    Saha's ionization equation has been solved for high Z elements with the aim of providing input for opacity calculations. Results are presented for two elements, tungsten and uranium. The ionization potentials have been evaluated using the simple Bhor's formula with suitable effective charges for ions. The reliability of the free electron density, ion concentrations, etc., obtained from the Saha's equation solutions has been checked by comparing the P and E computed from them with those given by the Thomas-Fermi-Dirac equation of state. The agreement between the two is good from temperatures above 0.2 keV. (author)

  20. THE NONLINEAR OHM'S LAW: PLASMA HEATING BY STRONG ELECTRIC FIELDS AND ITS EFFECTS ON THE IONIZATION BALANCE IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2015-02-10

    The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.

  1. Study of the ionization rate of the released deuterium in vacuum arc discharges with metal deuteride cathodes

    Science.gov (United States)

    Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei

    2018-02-01

    The ionization rate of the released deuterium from a metal deuteride cathode in vacuum arc discharges is investigated by both experiments and modeling analysis. Experimental results show that the deuterium ionization rate increases from 2% to 30% with the increasing arc current in the range of 2-100 A. Thus the full ionization assumption, as is widely used in arc plasma simulations, is not satisfied for the released deuterium at low discharge current. According to the modeling results, the neutral-to-ion conversion efficiency for the deuterium traveling across the cathodic spot region can be significantly less than one, due to the fast plasma expansion and rarefaction in the vacuum. In addition, the model also reveals that, unlike the metal atoms which are mainly ionized in the sheath region and flow back to the cathode, the deuterium ionization primarily occurs in the quasi-neutral region and moves towards the anode. Consequently, the cathodic sheath layer acts like a filter that increases the deuterium fraction beyond the sheath region.

  2. Ionization chamber

    International Nuclear Information System (INIS)

    1977-01-01

    An improved ionization chamber type X-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is placed next to the anode and is maintained at a voltage intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting towards the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  3. Nonlinear shaping of a two-dimensional ultrashort ionizing pulse

    International Nuclear Information System (INIS)

    Sergeev, A.; Vanin, E.; Stenflo, L.; Anderson, D.; Lisak, M.; Quiroga-Teixeiro, M.L.

    1992-01-01

    A theoretical description of ultrashort ionizing wave pulses is presented by means of two different models where the ionization rate increases or decreases, respectively, as a function of the electric field amplitude. We show that the pulse evolves either into a horse-shoe or a horn-type structure in the time-space domain. In some parameter regions the intensity of the pulse can also increase. (au)

  4. Ionizing radiation sensitivity and the rate of gross chromosomal rearrangement in yeast

    International Nuclear Information System (INIS)

    Brown, J.A.; Brown, M.

    2003-01-01

    Full text: Many of the genes conferring resistance to DNA damage in the yeast Saccharomyces cerevisiae have been identified. The systematic deletion of every open reading frame presents the opportunity to make great strides in determining the physiological role of many genes whose function has remained elusive. The ability to discriminate among all of the strains carrying unique non-essential gene deletions in a pool has allowed us to screen for novel genes required for survival to ionizing radiation. Many of these genes have not yet been characterized. A possible role for these genes could be in the initial sensing of the double strand break introduced by ionizing radiation, the cell cycle arrest permitting the cell time for the repair process, or directly in the repair. A consequence of a failure of any of these functions could result in an increase in mutation rate as well the more detrimental gross chromosomal rearrangement (GCR). We tested the hypothesis that any gene which when deleted caused an increase in ionizing radiation sensitivity would also demonstrate an increase in mutation rate and GCR. This turned out not to be the case with many having no significant increase and one in particular which caused a significant decrease in GCR. Data on several of the more intriguing genes will be presented

  5. Terahertz field-induced ionization and perturbed free induction decay of excitons in bulk GaAs

    Science.gov (United States)

    Murotani, Yuta; Takayama, Masayuki; Sekiguchi, Fumiya; Kim, Changsu; Akiyama, Hidefumi; Shimano, Ryo

    2018-03-01

    We investigated the interaction between an intense terahertz (THz) pulse and excitons in bulk GaAs by using THz pump near-infrared (NIR) optical probe spectroscopy. We observed a clear spectral oscillation in the NIR transient absorption spectra at low temperature, which is interpreted as the THz pump-induced perturbed free induction decay (PFID) of the excitonic interband polarization. We performed a numerical simulation based on a microscopic theory and identified that the observed PFID signal originates from the THz field-induced ionization of excitons. Using a real-space representation of the excitonic wave function, we visualized how the ionization of an exciton proceeds under the intense single-cycle THz electric field. We also calculated the nonlinear susceptibility with the lowest-order perturbation theory assuming a weak THz pump, which showed a similar spectral feature with that obtained by the full treatment to field-induced ionization process. This coincidence is attributed to the fact that 1s-excitonic interband polarization is modified predominantly through interactions with the p-wave component of the excitonic wave function. A simple phenomenological expression of the PFID signal is presented to discuss effects of the THz pump pulse duration on the spectral oscillation.

  6. Recent attoclock measurements of strong field ionization

    International Nuclear Information System (INIS)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula

    2013-01-01

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation

  7. Recent attoclock measurements of strong field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Adrian N., E-mail: apfeiff@phys.ethz.ch [Physics Department, ETH Zurich, 8093 Zurich (Switzerland); Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula [Physics Department, ETH Zurich, 8093 Zurich (Switzerland)

    2013-03-12

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation.

  8. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense laser fields.

    Science.gov (United States)

    Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R

    2017-06-30

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

  9. Development of High Resolution Resonance Ionization Mass Spectrometry for Neutron Dosimetry Technique with93Nb(n,n'93mNb Reaction

    Directory of Open Access Journals (Sweden)

    Tomita Hideki

    2016-01-01

    Full Text Available We have proposed an advanced technique to measure the 93mNb yield precisely by Resonance Ionization Mass Spectrometry, instead of conventional characteristic X-ray spectroscopy. 93mNb-selective resonance ionization is achievable by distinguishing the hyperfine splitting of the atomic energy levels between 93Nb and 93mNb at high resolution. In advance of 93mNb detection, we could successfully demonstrate high resolution resonant ionization spectroscopy of stable 93Nb using an all solid-state, narrow-band and tunable Ti:Sapphire laser system operated at 1 kHz repetition rate.

  10. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  11. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  12. The high-sensitive magnetic levitated electrode ionization chamber of the noncontacting type

    International Nuclear Information System (INIS)

    Kawaguchi, Toshiro; Yoshimura, Atsushi

    1999-01-01

    There are two types of ionization chamber using magnetically levitated electrode: one is that by Tanaka et al. and the other, by authors'. The latter lacks the sensitivity relative to the former and thereby to solve the problem, authors made an improvement so that the electrode charge could be readout by noncontact after the leviated electrode was electrified by noncontact for an interval. This new type ionization chamber made it possible to measure the quite low dose radiation with stability and high sensitivity. Actually, the electrode was suspended by the teflon thread fixed on the steel cup levitated magnetically in the ionization chamber of which wall was covered by Al and equipped with an electrostatic charger for the electrode by noncontact. After measurement, the electrode was moved in the Faraday cage placed under the chamber to readout the voltage. For operation conditions of the apparatus, observation was done on the relationship between ionization current by 137 Cs and the applied voltage. For actual measurement, ionizations by low dose γ ray derived from KCl which containing 40 K in a small amount and by Rn at the fine and rainy days were measured. The exposure rate by KCl (500 g bottle) was found to be 12.7 x 10 -10 C/kg·h with the background value of 9.8 x 10 -10 . Rn concentrations in the air were 112.3 and 18.34 Bq/m 3 for 1 hr in the rainy and fine day, respectively, in Fukuoka City. (K.H.)

  13. Spin and Angular Momentum in Strong-Field Ionization

    Science.gov (United States)

    Trabert, D.; Hartung, A.; Eckart, S.; Trinter, F.; Kalinin, A.; Schöffler, M.; Schmidt, L. Ph. H.; Jahnke, T.; Kunitski, M.; Dörner, R.

    2018-01-01

    The spin polarization of electrons from multiphoton ionization of Xe by 395 nm circularly polarized laser pulses at 6 ×1013 W /cm2 has been measured. At this photon energy of 3.14 eV the above-threshold ionization peaks connected to Xe+ ions in the ground state (J =3 /2 , ionization potential Ip=12.1 eV ) and the first excited state (J =1 /2 , Ip=13.4 eV ) are clearly separated in the electron energy distribution. These two combs of above-threshold ionization peaks show opposite spin polarizations. The magnitude of the spin polarization is a factor of 2 higher for the J =1 /2 than for the J =3 /2 final ionic state. In turn, the data show that the ionization probability is strongly dependent on the sign of the magnetic quantum number.

  14. Ionization rates and profiles of electron concentration in Martian atmosphere

    International Nuclear Information System (INIS)

    Komitov, B.; Spasov, S.; Gogoshev, M.

    1981-01-01

    The ionization and vertical profiles of electron concentration in the Martian atmosphere are calculated as functions of the solar zenith angles varying from O deg to 90 deg. A neutral atmospheric model based on direct mass-spectometric measurements from the Viking-1 landing modul is employed in the calculation. The Earth data of the ionization solar flux at the same level of the solar activity and for the month of the Viking-1 measurements reduced for the Mars orbit are used. The numerical result for the photoionization rates and quasi-equilibrium electron-concentration profiles in the upper Martian atmosphere at different solar zenith angles from 0 deg to 100 deg are presented. It is shown that the maxima of both quantities decrease and move towards the upper atmosphere regions. The calculated electron density at the zenith solar angle of 40 deg are compared to Viking-1 experimental data and a good agreement is achieved

  15. Measurements of the Townsend first ionization coefficient in pure isobutane under uniform electric fields; Medidas do primeiro coeficiente de Townsend de ionização no isobutano puro submetido a campos eletricos uniformes

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Anna Raquel

    2013-07-01

    In this work are presented data of Townsend first ionization coefficient, α, in pure isobutane, obtained with a parallel plate chamber of resistive anode, for the reduced electric field range of 140 Td up to 230 Td. The adopted method is based on a new version of the Pulsed Townsend Technique, where the primary ionization is produced by the incidence of nitrogen pulsed laser beam in an aluminum electrode (cathode). The glass anode of high resistivity (ρ = 2 x 10{sup 12} Ω.cm) protects the detector against sparks. To validate the method, the α values were determined by comparing the ionization and avalanche electric currents in nitrogen, gas widely studied with well-established data in literature. This technique was successfully extended to obtain α parameters in pure isobutane. The presence of effects related to spatial charge, recombination and ohmic drop across the resistive anode was investigated by varying laser pulse repetition rate, its intensity and applied electric field. Of these secondary processes, only the ohmic drop was relevant and the reduced electric field values were corrected for it. The first Townsend coefficients obtained are compatible, within the experimental errors, with those determined with Magboltz 2 program versions 7.1 e 8.6. (author)

  16. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  17. Occupational exposure to ionizing radiation and electromagnetic fields in relation to the risk of thyroid cancer in Sweden.

    Science.gov (United States)

    Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina

    2006-08-01

    This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.

  18. One- and two-photon single ionization of 1D helium: resolving the role of individual decay channels and resonance states

    Energy Technology Data Exchange (ETDEWEB)

    Neimanns, Vera; Zimmermann, Klaus; Joerder, Felix; Buchleitner, Andreas [Albert-Ludwigs-Univ., Freiburg im Breisgau (Germany). Quantum Optics and Statistics; Lugan, Pierre [Laboratory of Theoretical Physics of Nanosystems, Institute of Theoretical Physics, EPF Lausanne (Switzerland)

    2012-07-01

    We combine the method of complex rotation and Floquet theory to analyze the multiphoton ionization of helium atoms in strong laser fields. We focus on 1D Z{sup 2+}e{sup -}e{sup -} helium to highlight the methods that allow us to extract the partial decay rates associated with various decay channels. In the regime of one-photon single ionization, we study the dependence of the partial rates associated with the singly ionized He{sup +}(N) states on the field frequency. We show that the electron-electron interaction provides couplings to higher single-ionization continua. Finally, we examine two-photon single-ionization processes, and analyze the role of the internal electronic structure of the atom, specifically the signature of resonant coupling to intermediate bound states on the decay rates.

  19. Strong-field ionization with twisted laser pulses

    Science.gov (United States)

    Paufler, Willi; Böning, Birger; Fritzsche, Stephan

    2018-04-01

    We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.

  20. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    Energy Technology Data Exchange (ETDEWEB)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki [Department of Physics, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397 (Japan)

    2017-10-01

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference, we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.

  1. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  2. The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods

    International Nuclear Information System (INIS)

    Min Jiahua; Liang Xiaoyan; Wang Bin; Wang Linjun; Zhao Yue; Shi Weimin; Xia Yiben

    2011-01-01

    Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.

  3. Which Molecular Features Affect the Intrinsic Hepatic Clearance Rate of Ionizable Organic Chemicals in Fish?

    NARCIS (Netherlands)

    Chen, Yi; Hermens, Joop L M; Jonker, Michiel T O; Arnot, Jon A; Armitage, James M; Brown, Trevor; Nichols, John W; Fay, Kellie A; Droge, Steven T J

    2016-01-01

    Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study, we measured in vitro hepatic clearance rates for 50 IOCs using a pooled batch of

  4. Virtual detector theory for strong-field atomic ionization

    Science.gov (United States)

    Wang, Xu; Tian, Justin; Eberly, J. H.

    2018-04-01

    A virtual detector (VD) is an imaginary device located at a fixed position in space that extracts information from the wave packet passing through it. By recording the particle momentum and the corresponding probability current at each time, the VDs can accumulate and build the differential momentum distribution of the particle, in a way that resembles real experiments. A mathematical proof is given for the equivalence of the differential momentum distribution obtained by the VD method and by Fourier transforming the wave function. In addition to being a tool for reducing the computational load, VDs have also been found useful in interpreting the ultrafast strong-field ionization process, especially the controversial quantum tunneling process.

  5. On the kinetic theory of QPEMIC instabilities in weakly ionized plasmas placed in non-parallel fields

    International Nuclear Information System (INIS)

    Milic, B.S.; Gajic, D.Z.

    1994-01-01

    Quasi-perpendicular electromagnetic ion-cyclotron (QPEMIC) modes and instabilities are studied, on the ground of linear theory of perturbations and kinetic equations with BGK collision integrals, in weakly ionized, low-β and moderately non-isothermal plasmas placed in non-parallel electric and magnetic fields. The magnetization is assumed to be sufficiently high to cut off the perpendicular steady-state current. Special attention is given to evaluation of magnitudes of the threshold drifts required for the onset of instabilities. It is found that these drifts are smaller than those for the corresponding quasi-perpendicular electrostatic ion-cyclotron (QPESIC) instabilities studied previously for the same type of plasmas. Both QPEMIC and QPESIC threshold drifts exhibit the same behavioural pattern if the order of harmonic, magnetization, non-isothermality or the angle between the fields are varied. An increase of the angle between the fields lowers the threshold drifts, which means that the presence of u perpendicular to (or E perpendicular to ) facilitates the excitation of both QPEMIC and QPESIC instabilities. The QPEMIC threshold drifts are found to depend on the overall gas pressure, and to decrease as the pressure is lowered, which is a feature not found in the QPESIC case. The discrepancies between the QPEMIC and QPESIC threshold drifts increase if the pressure decreases, or if magnetization, degree of ionization or ion charge number increase. (orig.)

  6. Experiments with Highly-Ionized Atoms in Unitary Penning Traps

    Directory of Open Access Journals (Sweden)

    Shannon Fogwell Hoogerheide

    2015-08-01

    Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.

  7. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    DEFF Research Database (Denmark)

    Tomicic, Maja; Bødker Enghoff, Martin; Svensmark, Henrik

    2018-01-01

    One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4) was studied as a function of ionization and H2SO4 concentration. Other species that could...... have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017). Our parameter space is thus [H2SO4]  = 4×106 − 3×107 cm−3, [NH3+ org]  =  2.2 ppb, T = 295 K, RH......  =  38 %, and ion concentrations of 1700–19 000 cm−3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10) at a size close to critical cluster size...

  8. L-shell radiative transition rates by selective synchrotron ionization

    International Nuclear Information System (INIS)

    Bonetto, R D; Carreras, A C; Trincavelli, J; Castellano, G

    2004-01-01

    Relative L-shell radiative transition rates were obtained for a number of decays in Gd, Dy, Er, Yb, Hf, Ta and Re by means of a method for refining atomic and experimental parameters involved in the spectral analysis of x-ray irradiated samples. For this purpose, pure samples were bombarded with monochromatic synchrotron radiation tuning the incident x-ray energy in order to allow selective ionization of the different atomic shells. The results presented are compared to experimental and theoretical values published by other authors. A good general agreement was found and some particular discrepancies are discussed

  9. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    Science.gov (United States)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  10. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  11. Experimental study of H2SO4 aerosol nucleation at high ionization levels

    Directory of Open Access Journals (Sweden)

    M. Tomicic

    2018-04-01

    Full Text Available One hundred and ten direct measurements of aerosol nucleation rate at high ionization levels were performed in an 8 m3 reaction chamber. Neutral and ion-induced particle formation from sulfuric acid (H2SO4 was studied as a function of ionization and H2SO4 concentration. Other species that could have participated in the nucleation, such as NH3 or organic compounds, were not measured but assumed constant, and the concentration was estimated based on the parameterization by Gordon et al. (2017. Our parameter space is thus [H2SO4]  = 4×106 − 3×107 cm−3, [NH3+ org]  =  2.2 ppb, T = 295 K, RH  =  38 %, and ion concentrations of 1700–19 000 cm−3. The ion concentrations, which correspond to levels caused by a nearby supernova, were achieved with gamma ray sources. Nucleation rates were directly measured with a particle size magnifier (PSM Airmodus A10 at a size close to critical cluster size (mobility diameter of  ∼  1.4 nm and formation rates at a mobility diameter of  ∼  4 nm were measured with a CPC (TSI model 3775. The measurements show that nucleation increases by around an order of magnitude when the ionization increases from background to supernova levels under fixed gas conditions. The results expand the parameterization presented in Dunne et al. (2016 and Gordon et al. (2017 (for [NH3 + org]  =  2.2 ppb and T = 295 K to lower sulfuric acid concentrations and higher ion concentrations. The results make it possible to expand the parameterization presented in Dunne et al. (2016 and Gordon et al. (2017 to higher ionization levels.

  12. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  13. Development of residual gas ionization profile monitor for high intensity proton beams

    CERN Document Server

    Sato, Y; Hirose, E; Ieiri, M; Igarashi, Y; Inaba, S; Katoh, Y; Minakawa, M; Noumi, H; Saitó, M; Suzuki, Y; Takahashi, H; Takasaki, M; Tanaka, K; Toyoda, A; Yamada, Y; Yamanoi, Y; Watanabe, H

    2006-01-01

    Nondestructive beam profile monitor utilizing ionizations of residual gas has been developed for continuous monitoring of 3?0(J-PARC). Knock-on electrons produced in the ionizations of residual gas vacuumed to 1 Pa are collected with a uniform electric field applied between electrodes. Applying a uniform electric field parallel to the electric field is essential to reduce diffusion of electrons crossing over magnetic flux. A prototype monitor has been constructed and installed in EP2-C beam line at KEK 12 GeV proton synchrotron (12 Ge V-PS). The profiles measured with the present monitor agree with the ones measured with the existing destructive profile monitor. The present monitor shows sufficient performances as a candidate of the profile monitor at J-PARC. In the present article, the working principle of the present monitor, the results of test experiments, and further developments are described in detail.

  14. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    Science.gov (United States)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-12-01

    We report the nanofabrication of a sulfur dioxide (SO2) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO2, CO, H2, SO2 and O2. Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature.

  15. Ionization of Interstellar Hydrogen

    Science.gov (United States)

    Whang, Y. C.

    1996-09-01

    Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.

  16. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  17. Dose rate effects of low-LET ionizing radiation on fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Nguyen T.K. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); Seymour, Colin B.; Mothersill, Carmel E. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); McMaster University, Department of Biology, Hamilton, ON (Canada)

    2017-11-15

    Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D{sub o}, and D{sub q} values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. (orig.)

  18. Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals.

    Science.gov (United States)

    Mietzner, S; Schwille, R C; Farley, A; Wald, E R; Ge, J H; States, S J; Libert, T; Wadowsky, R M; Miuetzner, S

    1997-12-01

    Thermal treatment and copper-silver ionization are often used for controlling Legionella pneumophila in high-volume hospital plumbing systems, although the comparative efficacies of these measures in high-volume systems are unknown. Thermal treatment of a hot water circuit was accomplished by flushing hot water (> 60 degrees C) through distal fixtures for 10 minutes. Copper-silver ionization was conducted in three circuits by installing units into return lines immediately upstream from hot water tanks. Recovery rates of L. pneumophila were monitored by culturing swab samples from faucets. Concentrations of copper and silver in water samples were determined by atomic absorption spectrophotometry. Four heat-flush treatments failed to provide long-term control of L. pneumophila. In contrast, ionization treatment reduced the rate of recovery of L. pneumophila from 108 faucets from 72% to 2% within 1 month and maintained effective control for at least 22 months. Only three samples (1.9%) of hot water from faucets exceeded Environmental Protection Agency standards for silver, and none exceeded the standards for copper. Of 24 samples obtained from hot water tanks, 42% and 50% exceeded the silver and copper standards, respectively. Copper-silver ionization effectively controls L. pneumophila in high-volume plumbing systems and is superior to thermal treatment; however, high concentrations of copper and silver can accumulate at the bottom of hot water tanks.

  19. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  20. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  1. Influence of ionization on ultrafast gas-based nonlinear fiber optics.

    Science.gov (United States)

    Chang, W; Nazarkin, A; Travers, J C; Nold, J; Hölzer, P; Joly, N Y; Russell, P St J

    2011-10-10

    We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

  2. First-order correction terms in the weak-field asymptotic theory of tunneling ionization

    DEFF Research Database (Denmark)

    Trinh, Vinh H.; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2013-01-01

    of the WFAT at the quantitative level toward stronger fields, practically up to the boundary between tunneling and over-the-barrier regimes of ionization. The results apply to any atom or molecule treated in the single-active-electron and frozen-nuclei approximations. The theory is illustrated by calculations...

  3. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  4. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    Science.gov (United States)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  5. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    Energy Technology Data Exchange (ETDEWEB)

    Gotz, M; Karsch, L [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Pawelke, J [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2016-06-15

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  6. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2016-01-01

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  7. Ghost peaks observed after atmospheric pressure matrix-assisted laser desorption/ionization experiments may disclose new ionization mechanism of matrix-assisted hypersonic velocity impact ionization.

    Science.gov (United States)

    Moskovets, Eugene

    2015-08-30

    Understanding the mechanisms of matrix-assisted laser desorption/ionization (MALDI) promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample had been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laser-less matrix-assisted ionization. An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser had been turned off and the MALDI sample removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly and doubly charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. The observations were partially consistent

  8. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  9. Gridded ionization chamber

    International Nuclear Information System (INIS)

    Houston, J.M.

    1977-01-01

    An improved ionization chamber type x-ray detector comprises a heavy gas at high pressure disposed between an anode and a cathode. An open grid structure is disposed adjacent the anode and is maintained at a voltsge intermediate between the cathode and anode potentials. The electric field which is produced by positive ions drifting toward the cathode is thus shielded from the anode. Current measuring circuits connected to the anode are, therefore, responsive only to electron current flow within the chamber and the recovery time of the chamber is shortened. The grid structure also serves to shield the anode from electrical currents which might otherwise be induced by mechanical vibrations in the ionization chamber structure

  10. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  11. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  12. Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution

    International Nuclear Information System (INIS)

    Glab, W.L.; Qin, K.

    1993-01-01

    We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states

  13. A new method for measuring the response time of the high pressure ionization chamber

    International Nuclear Information System (INIS)

    Wang, Zhentao; Shen, Yixiong; An, Jigang

    2012-01-01

    Time response is an important performance characteristic for gas-pressurized ionization chambers. To study the time response, it is especially crucial to measure the ion drift time in high pressure ionization chambers. In this paper, a new approach is proposed to study the ion drift time in high pressure ionization chambers. It is carried out with a short-pulsed X-ray source and a high-speed digitizer. The ion drift time in the chamber is then determined from the digitized data. By measuring the ion drift time of a 15 atm xenon testing chamber, the method has been proven to be effective in the time response studies of ionization chambers. - Highlights: ► A method for measuring response time of high pressure ionization chamber is proposed. ► A pulsed X-ray producer and a digital oscilloscope are used in the method. ► The response time of a 15 atm Xenon testing ionization chamber has been measured. ► The method has been proved to be simple, feasible and effective.

  14. Pressing problems of measurement of ionizing radiations

    International Nuclear Information System (INIS)

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  15. The Formation and Physical Origin of Highly Ionized Cooling Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Wagner, Alexander Y. [University of Tsukuba, Center for Computational Sciences, Tennodai 1-1-1, Tsukuba, Ibaraki (Japan); Heckman, Timothy M.; Norman, Colin A., E-mail: bordoloi@mit.edu, E-mail: bordoloi@mit.edu [Department of Physics and Astronomy, John Hopkins University, 21218, Baltimore, MD (United States)

    2017-10-20

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  16. Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge

    International Nuclear Information System (INIS)

    Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.

    1999-01-01

    The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission

  17. Ionization from short-range potential under action of electromagnetic field of complex configuration

    CERN Document Server

    Rodionov, V N; Kravtsova, G A

    2002-01-01

    The transcendental equation for the complex energy is obtained on the basis of the exactly solvable 3D model of the short-acting potential and the Green time function in the intensive electromagnetic field, constituting the combination of the constant magnetic field and the circular-polarization wave field. The electron quasistationary states parameters in the delta-potential with an account of the action of the intensive external field of complex configuration are calculated. The problem on the possibility of stabilizing the bound states decay of the spinor and scalar particles through the intensive magnetic field is clarified. It is established that the obtained results regime the reexamination of the accepted notion on the stabilizing role of the strong magnetic field by the atoms ionization

  18. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review.

    Science.gov (United States)

    Henning, Anke

    2018-03-01

    Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei ( 1 H, 31 P, 13 C). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Possible ionization ''ignition'' in laser-driven clusters

    International Nuclear Information System (INIS)

    Rose-Petruck, C.; Schafer, K.J.; Barty, C.P.J.

    1995-01-01

    The authors use Classical Trajectory Monte Carlo (CTMC) simulations to study the ionization of small rare gas clusters in short pulse, high intensity laser fields. They calculate, for a cluster of 25 neon atoms, the ionization stage reached and the average kinetic energy of the ionized electrons as functions of time and peak laser intensity. The CTMC calculations mimic the results of the much simpler barrier suppression model in the limit of isolated atoms. At solid density the results give much more ionization in the cluster than that predicted by the barrier suppression model. They find that when the laser intensity reaches a threshold value such that on average one electron is ionized from each atom, the cluster atoms rapidly move to higher ionization stages, approaching Ne +8 in a few femtoseconds. This ignition process creates an ultrafast pulse of energetic electrons in the cluster at quite modest laser intensities

  20. Response dependence of a ring ionization chamber response on the size of the X radiation field

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Caldas, Linda V.E.

    2009-01-01

    A ring monitor ionization chamber was developed at the IPEN-Sao Paulo, Brazil, fixed on a system of collimators which determine the dimension of the radiation field size. This work verified that the ring chamber response depends on the exponential form with the size of de radiation field

  1. Study of a pressure measurement method using laser ionization for extremely-high vacuum

    International Nuclear Information System (INIS)

    Kokubun, Kiyohide

    1991-01-01

    A method of measuring pressures in the range of extremely-high vacuum (XHV) using the laser ionization has been studied. For this purpose, nonresonant multiphoton ionization of various kinds of gases has been studied, and highly-sensitive ion-detection systems and an extremely-high vacuum equipment were fabricated. These results are presented in detail. Two ion-detection systems were fabricated and tested: the one is based on the pulse-counting method, and the other utilizes the image-processing technique. The former is superior in detecting a few ions or less. The latter was processing technique. The former is superior in detecting a few ions or less. The latter was verified to able to count accurately the number of ions in the range of a few to several hundreds. To obtain the information on residual gases and test our pressure measurement system, an extremely-high vacuum system was fabricated in our own fashion, attained a pressure lower than 1 x 10 -10 Pa, measured with an extractor gauge. The outgassing rate of this vacuum vessel was measured to be 7.8 x 10 -11 Pa·m 3 /s·m 2 . The surface structures and the surface compositions of the raw material, the machined material, and the machined-and-outgased material were studied by SEM and AES. Besides, the pumping characteristics and the residual gases of the XHV system were investigated in detail at each pumping stage. On the course of these studies, the method of pressure measurement using the laser-ionization has been verified to be very effective for measuring pressures in XHV. (J.P.N.)

  2. Subcycle interference upon tunnel ionization by counter-rotating two-color fields

    Science.gov (United States)

    Eckart, S.; Kunitski, M.; Ivanov, I.; Richter, M.; Fehre, K.; Hartung, A.; Rist, J.; Henrichs, K.; Trabert, D.; Schlott, N.; Schmidt, L. Ph. H.; Jahnke, T.; Schöffler, M. S.; Kheifets, A.; Dörner, R.

    2018-04-01

    We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counter-rotating circularly polarized fields (390 and 780 nm). A pronounced 3D low-energy structure and subcycle interferences are observed experimentally and reproduced numerically using a trajectory-based semiclassical simulation. The orientation of the low-energy structure in the polarization plane is verified by numerical simulations solving the time-dependent Schrödinger equation.

  3. Growth and Yield Responses of Green Pepper (Capsicum annum L. to Manure Rates under Field and High Tunnel Conditions

    Directory of Open Access Journals (Sweden)

    Ima-obong I. DOMINIC

    2017-03-01

    Full Text Available The present study was conducted to determine growth and yield responses of green pepper to varying manure rates under field and high tunnel conditions. Experiment 1 was a pot experiment to evaluate three rates (0.5 and 10 t/ha of poultry manure (PM on green pepper production under high tunnel and open field conditions. Experiment 2 was to determine the performance of green pepper as influenced by different manure rates (0, 5 and 10 t/ha of PM, 300 kg/ha of NPK, 5 t/ha of PM + 200 kg of NPK and 10 t/ha of PM + 100 kg of NPK on the field. High tunnel produced about 3.1 fruits/plant that weighted 102.8 g, which was significantly higher than open field experiment in which 1.7 fruits/plant, with a medium weight of 32.3 g were noted. High tunnel enhanced successful production of green pepper during rainy season, whereas the open field production during the same season was near failure. Application of 10 t/ha of PM produced significantly larger fruits in the pot experiment. Good fertilizer effects on growth and yield components were recorded for the field study. Plant height, number of leaves and branches, number and weight of harvested fruit followed similar trend in 5 and 10 t/ha of PM which gave statistically similar results, and provided the best performance during the experiment. Application of 5 t/ha of PM produced the highest total fruits yield.

  4. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  5. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  6. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

    International Nuclear Information System (INIS)

    Cai, Shengbing; Zhang, Yong; Duan, Zhemin

    2012-01-01

    We report the nanofabrication of a sulfur dioxide (SO 2 ) sensor with a tripolar on-chip microelectrode utilizing a film of single-walled carbon nanotubes (SWCNTs) as the field ionization cathode, where the ion flow current and the partial discharge current generated by the field ionization process of gaseous molecules can be gauged to gas species and concentration. The variation of the sensitivity is less than 4% for all of the tested devices, and the sensor has selectivity against gases such as He, NO 2 , CO, H 2 , SO 2 and O 2 . Further, the sensor response presents well-defined and reproducible linear behavior with regard to concentration in the range investigated and a detection limitation of <∼0.5 ppm for SO 2 . More importantly, a tripolar on-chip microelectrode with SWCNTs as a cathode exhibits an impressive performance with respect to stability and anti-oxidation behavior, which are significantly better than had been possible before in the traditional bipolar sensor under explicit circumstances at room temperature. (paper)

  7. High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?

    Science.gov (United States)

    Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula

    2017-03-01

    Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  9. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    International Nuclear Information System (INIS)

    Andersson, Jonas; Toelli, Heikki

    2011-01-01

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min -1 . The liquids used as sensitive media in the chambers were isooctane (C 8 H 18 ) and tetramethylsilane (Si(CH 3 ) 4 ). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  10. Quantum entanglement in strong-field ionization

    Science.gov (United States)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  11. Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas

    International Nuclear Information System (INIS)

    Rosmej, F.B.; Hoffmann, D.H.H.; Faenov, A. Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu.; Auguste, T.; D'Oliveira, P.; Hulin, S.; Monot, P.

    2000-01-01

    Double electron charge exchange is proposed for the formation of hollow He-like ions when laser field ionized nuclei penetrate into the residual gas. Using transitions from different configurations in hollow ions a method for the determination of the electron temperature in the long lasting recombination phase is developed

  12. Limitations of the strong field approximation in ionization of the hydrogen atom by ultrashort pulses

    International Nuclear Information System (INIS)

    Arbo, D.G.; Toekesi, K.; Miraglia, J.E.; FCEN, University of Buenos Aires

    2008-01-01

    Complete text of publication follows. We presented a theoretical study of the ionization of hydrogen atoms as a result of the interaction with an ultrashort external electric field. Doubly-differential momentum distributions and angular momentum distributions of ejected electrons calculated in the framework of the Coulomb-Volkov and strong field approximations, as well as classical calculations are compared with the exact solution of the time dependent Schroedinger equation. We have shown that the Coulomb-Volkov approximation (CVA) describes the quantum atomic ionization probabilities exactly when the external field is described by a sudden momentum transfer [1]. The velocity distribution of emitted electrons right after ionization by a sudden momentum transfer is given through the strong field approximation (SFA) within both the CVA and CTMC methods. In this case, the classical and quantum time dependent evolutions of an atom subject to a sudden momentum transfer are identical. The difference between the classical and quantum final momentum distributions resides in the time evolution of the escaping electron under the subsequent action of the Coulomb field. Furthermore, classical mechanics is incapable of reproducing the quantum angular momentum distribution due to the improper initial radial distribution used in the CTMC calculations, i.e., the microcanonical ensemble. We find that in the limit of high momentum transfer, based on the SFA, there is a direct relation between the cylindrical radial distribution dP/dρ and the final angular momentum distribution dP/dL. This leads to a close analytical expression for the partial wave populations (dP/dL) SFA-Q given by dP SFA-Q / dL = 4Z 3 L 2 / (Δp) 3 K 1 (2ZL/Δp) which, together with the prescription L = l + 1/2, reproduces quite accurately the quantum (CVA) results. Considering the inverse problem, knowing the final angular momentum distribution can lead to the inference of the initial probability distribution

  13. Ionizing radiation promotes protozoan reproduction

    International Nuclear Information System (INIS)

    Luckey, T.D.

    1986-01-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism

  14. [Saccharomyces cerevisiae as a model organism for studying the carcinogenicity of non-ionizing electromagnetic fields and radiation].

    Science.gov (United States)

    Voĭchuk, S I

    2014-01-01

    Medical and biological aspects of the effects of non-ionizing electromagnetic (EM) fields and radiation on human health are the important issues that have arisen as a result of anthropogenic impact on the biosphere. Safe use of man-made sources of non-ionizing electromagnetic fields and radiation in a broad range of frequencies--static, radio-frequency and microwave--is a subject of discussions and speculations. The main problem is the lack of understanding of the mechanism(s) of reception of EMFs by living organisms. In this review we have analyzed the existing literature data regarding the effects of the electromagnetic radiation on the model eukaryotic organism--yeast Saccharomyces cerevisiae. An attempt was made to estimate the probability of induction of carcinogenesis in humans under the influence of magnetic fields and electromagnetic radiation of extremely low frequency, radio frequency and microwave ranges.

  15. Measures of association of some air pollutants. Natural ionizing radiation and cigarette smoking with mortality rates

    Energy Technology Data Exchange (ETDEWEB)

    Schwing, R C; McDonald, G C

    1976-03-01

    Two methods are employed to estimate the association of hydrocarbons, sulfur compounds, nitrogen compounds, natural ionizing radiation, and cigarette smoking with some age stratified and disease specific United States mortality rates for white males. The first method is based on a ridge regression technique and the second on a sign constrained least squares analysis. It is concluded that increased concentration of sulfur compounds and increased consumption of cigarettes are associated with increases in the total white male mortality rate. Associations for nitrogen compounds, the hydrogen index, and ionizing radiation are dependent on methodology and data stratification. The estimated elasticities are not directly comparable to those from other studies. Most estimates are fairly close except for the associations of heart disease with sulfur compounds. (JTE)

  16. Microparticle charging in dry air plasma created by an external ionization source

    International Nuclear Information System (INIS)

    Derbenev, I N; Filippov, A V

    2015-01-01

    In the present paper the dust particle charging is studied in a dry air plasma created by an external ionization source. The ionization rate is changed in the range 10 1 -10 20 cm -3 s -1 . It is found that the main positive ion of the plasma is O + 4 and the main negative ones are O − 2 and O − 4 . The point sink model based on the diffusion-drift approach shows that the screening potential distribution around a dust particle is a superposition of four Debye-like exponentials with four different spatial scales. The first scale almost coincides with the Debye radius. The second one is the distance, passed by positive and negative plasma components due to ambipolar diffusion in their recombination time. The third one is defined by the negative ion conversion and diffusion. The fourth scale is described by the electron attachment, recombination and diffusion at low gas ionization rates and by the recombination and diffusion of negative diatomic ions at high ionization rates. It is also shown that the electron flux defines the microparticle charge at high ionization rates, whereas the electron number density is much less than the ion one. (paper)

  17. Holding molecular dications together in strong laser fields

    International Nuclear Information System (INIS)

    Guo Chunlei

    2006-01-01

    Metastable channel of doubly ionized carbon monoxide, CO 2+ , was scantly seen in previous strong-field experiments at the visible wavelength region, but was commonly observed using single high-energy photon or electron excitation. For the first time with near-IR ultrashort-pulse radiation, we observe an abundance of CO 2+ . We show that CO 2+ results from nonsequential double ionization, while its dissociation counterpart, C + +O + , results from sequential processes, and CO 2+ can be obtained through either single high-energy photon or electron excitation or multiphoton ionization with ultrashort pulses before a critical internuclear distance is reached. Our study demonstrates the experimental conditions to converge the outcomes from two vastly different regimes, namely, multiphoton excitation and ionization in strong fields and single high-energy photon or electron excitation and ionization in weak fields

  18. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?

    International Nuclear Information System (INIS)

    Wattjes, Mike P.; Barkhof, Frederik

    2009-01-01

    Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)

  19. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  20. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.

    1994-01-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  1. Free radical production by high energy shock waves--comparison with ionizing irradiation.

    Science.gov (United States)

    Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R

    1988-01-01

    Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.

  2. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  3. High-Rate Strong-Signal Quantum Cryptography

    Science.gov (United States)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  4. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex 05 (France); Geballe, T. R. [Gemini Observatory, Hilo, HI 96720 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Menten, K. M. [MPI fuer Radioastronomie, D-53121 Bonn (Germany); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), E-28850 Madrid (Spain)

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior of the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.

  5. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  6. Effect of ionization of impurity centres by electric field on the conductivity of superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Clement, A.

    1994-11-01

    The study of the effect of ionization of impurity centres by electric field E 0 on the conductivity of superlattice (SL) has been studied theoretically. It is observed that as the field E 0 increases the current rises reaches a maximum then falls off i.e. show a negative differential conductivity (NDC). Further increase in E 0 leads to an exponential rise of the current. This occur around E 0 = 3 x 10 4 V cm -1 . Hence the current density field shows a ''N'' shape characteristics as against the ''n'' shape characteristics in the absence of impurity. (author). 23 refs, 3 figs

  7. Highly ionized physical vapor deposition plasma source working at very low pressure

    Science.gov (United States)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  8. Highly ionized physical vapor deposition plasma source working at very low pressure

    International Nuclear Information System (INIS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-01-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti + and Ti ++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density n e ∼ 10 18 m -3 , measured during the HiPIMS pulse.

  9. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    Marshall, J.H. III; Harrington, T.M.

    1976-01-01

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  10. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  11. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    International Nuclear Information System (INIS)

    Petrovic, Vladimir S.; Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-01-01

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals

  12. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  13. Ultrafast outflows disappear in high-radiation fields

    Science.gov (United States)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  14. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  15. Ionization of xenon Rydberg atoms at Si(1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, H.R. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstra. 15, D-12489, Berlin (Germany); Lancaster, J.C. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States); Dunning, F.B. [Department of Physics and Astronomy, Rice University MS-61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu

    2007-03-15

    The ionization of xenon Rydberg atoms excited to the lowest states in the n = 17 and n = 20 Stark manifolds at Si(1 0 0) surfaces is investigated. It is shown that, under appropriate conditions, a sizable fraction of the incident atoms can be detected as ions. Although the onset in the ion signal is perturbed by stray fields present at the surface, the data are consistent with ionization rates similar to those measured earlier at metal surfaces.

  16. Calibration of ionization chamber survey meter

    International Nuclear Information System (INIS)

    Kadhim, A.K.; Kadni, T.B.

    2016-01-01

    Radiation measuring devices need to process calibration which lose their sensitivity and the extent of the response and the amount of stability under a changing conditions from time to time and this period depends on the nature and use of field in which used devices. A comparison study was done toa (45 I P) ( ionization chamber survey meter) and this showed the variation factor in five different years. This study also displayed the concept of radiation instrument calibration and necessity of every year calibration of them.In this project we used the five years calibration data for ionization chamber survey meter model Inspector (1/C F). the value deviation (∆ %) of Cfs for four years of calibration in comparison of C F for the year 2007 are very high and the device under research is not good to use in field and reliable because the ionization chamber is very sensitive to humidity and must calibrate a year or less, or due ing every two years and must maintain carefully to reduce the discarded effects the measurements.

  17. Bio-effects of non-ionizing electromagnetic fields in context of cancer therapy.

    Science.gov (United States)

    Saliev, Timur; Tachibana, Katsuro; Bulanin, Denis; Mikhalovsky, Sergey; Whitby, Ray D L

    2014-01-01

    Bio-effects mediated by non-ionizing electromagnetic fields (EMF) have become a hot topic of research in the last decades. This interest has been triggered by a growing public concern about the rapid expansion of telecommunication devices and possible consequences of their use on human health. Despite a feasibility study of potential negative impacts, the therapeutic advantages of EMF could be effectively harnessed for the treatment of cancer and other diseases. This review aims to examine recent findings relating to the mechanisms of action underlying the bio-effects induced by non-ionizing EMF. The potential of non-thermal and thermal effects is discussed in the context of possible applications for the induction of apoptosis, formation of reactive oxygen species, and increase of membrane permeability in malignant cells. A special emphasis has been put on the combination of EMF with magnetic nano-particles and ultrasound for cancer treatment. The review encompasses both human and animal studies.

  18. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  19. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  20. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  1. Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities

    CERN Document Server

    Moretti, A; Geer, S; Qian, Z

    2004-01-01

    The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievab...

  2. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  3. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  4. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.

    2010-01-01

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  5. A radiation-electric-field combination principle for SO2-oxidation in Ar-mixtures

    International Nuclear Information System (INIS)

    Leonhardt, J.; Krueger, H.; Popp, P.; Boes, J.

    1981-01-01

    A simple model for a radiation-induced SO 2 -oxidation in Ar using SO 2 /O 2 /Ar-mixtures has been described by Leonhardt a.o. It is possible to improve the efficiency of the radiation-induced SO 2 -oxidation in such mixtures if the electrons produced by the ionizing radiation are accelerated by means of an electric field. The energy of the field-accelerated electrons must be high enough to form reactive SO 2 radicals but not high enough to ionize the gas mixture. Such an arrangement is described. The connection between the rate of SO 3 -formation and the electric field and the connection between SO 3 -formation and decreasing of the O 2 -concentration in the reaction chaimber were experimentally determined. Further the G-values attained by means of the radiation-electric-field combination are discussed. (author)

  6. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  7. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  8. Finite element modelling of ionized field quantities around a monopolar HVDC transmission line

    International Nuclear Information System (INIS)

    Jaiswal, Vinay; Thomas, M Joy

    2003-01-01

    In this paper, the Poisson's equation describing the ionized field around an HVDC line is solved using an improved finite element based technique. First order isoparametric quadrilateral elements, together with a modified updating criterion for the space charge distribution, are implemented in the iterative procedure. A novel technique is presented for mesh generation in the presence of space charges. Electric field lines and equipotential lines have been computed using the proposed technique. Total corona current at different applied voltages above corona onset voltage, electric field at the ground plane with and without the presence of space charges and current density at the ground plane have also been computed. The results are in agreement with the experimental values available in the published literature

  9. Contact ionization ion source

    International Nuclear Information System (INIS)

    Hashmi, N.; Van Der Houven Van Oordt, A.J.

    1975-01-01

    An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)

  10. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1992-01-01

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  11. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  12. 乙烯分子在激光场中的多光子电离及高次谐波的产生%High-order harmonic generation and multi-photon ionization of ethylene in laser fields

    Institute of Scientific and Technical Information of China (English)

    王志萍; 张丰收; 王菁

    2012-01-01

    Applying the time dependent local density approximation(TDLDA),the high-order harmonic generation(HHG)spectra and the ionization probabilities of ethylene subject to the one-colour and two-colour laser field are explored.It is found that HHG spectra of ethylent exhibits the plateau obviously from the fifth order to the ninth order harmonic and the odd harmonics are strengthed in the one-colour laser field.Furthermore,the ionization of ethylene is enhanced in the two-colour laser field resulting the appearance of the high charge state and the even harmonics.%本文运用含时密度泛函理论和局域密度近似方法,分别研究了乙烯分子在单色激光场、双色激光场中电离和高次谐波的产生。计算结果表明,在单色激光场中,乙烯分子的高次谐波谱呈现出明显的平台区和奇次谐波加强的特征:在双色激光场中,乙烯分子的电离增强而出现高电荷态几率,并伴有偶次谐波的出现。

  13. Do dielectric nanostructures turn metallic in high-electric dc fields?

    Science.gov (United States)

    Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A

    2014-11-12

    Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.

  14. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  15. Experimental study of the counting loss in an ionization chamber in pulsed radiation fields

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Yanagihara, L.S.; Veissid, V.L.C.P.; Herdade, S.B.; Teixeira, A.N.

    1983-01-01

    The behavior of an ionization chamber gamma ray monitor in a pulsed radiation field at a linear electron accelerator facility was studied experiementally. A loss of sensitivity was observed as expected due to the pulsed nature of the radiation. By fitting the experiemental data to semi-empirical expressions, parameters for the correction of the counting efficiency were obtained. (Author) [pt

  16. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  17. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-01-01

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s –1 . Their high speeds allow them to travel ∼0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f esc , from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f esc as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f esc by factors of ≈1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  18. Selective-field-ionization dynamics of a lithium m=2 Rydberg state: Landau-Zener model versus quantal approach

    International Nuclear Information System (INIS)

    Foerre, M.; Hansen, J.P.

    2003-01-01

    The selective-field-ionization (SFI) dynamics of a Rydberg state of lithium with magnetic quantum number m=2 is studied in detail based on two different theoretical models: (1) a close coupling integration of the Schroedinger equation and (2) the multichannel (incoherent) Landau-Zener (MLZ) model. The m=2 states are particularly interesting, since they define a border zone between fully adiabatic (m=0,1) and fully diabatic (m>2) ionization dynamics. Both sets of calculations are performed up to, and above, the classical ionization limit. It is found that the MLZ model is excellent in the description of the fully diabatic dynamics while certain discrepancies between the time dependent quantal amplitudes appear when the dynamics become involved. Thus, in this region, the analysis of experimental SFI spectra should be performed with care

  19. Double ionization of molecule H2 in intense ultrashort laser fields

    International Nuclear Information System (INIS)

    Le, Thu-Thuy; Nguyen, Ngoc-Ty

    2015-01-01

    By solving numerically the time-dependent Schrödinger equation (TDSE), we have calculated the double ionization probability when a vibrating hydrogen molecule interacts with intense ultrashort laser pulses. The results show that in the case of vibrating nuclei the double ionization probability is higher than that of the fixed nuclei. Additionally, the double ionization probability is larger if the molecule is vibrating in a higher level. This is due to the decreasing of ionization potential when the inter-nuclei separation increases. (paper)

  20. Optical observations on the CRIT-II Critical Ionization Velocity Experiment

    International Nuclear Information System (INIS)

    Stenbaek-Nielsen, H.C.; Wescott, E.M.; Haerendel, G.; Valenzuela, A.

    1990-01-01

    A rocket borne Critical Ionization Velocity (CIV) experiment was carried out from Wallops Island at dusk on May 4, 1989. Two barium shaped charges were released below the solar terminator (to prevent photoionization) at altitudes near 400 km. The ambient ionospheric electron density was 5x10 5 cm -3 . The neutral barium jet was directed upwards and at an angle of nominally 45 degrees to B which gives approximately 3x10 23 neutrals with super critical velocity. Ions created by a CIV process in the region of the neutral jet would travel up along B into sunlight where they can be detected optically. Well defined ion clouds (max. brightness 750 R) were observed in both releases. An ionization rate of 0.8%s -1 (125s ionization time constant) can account for the observed ion cloud near the release field line, but the ionization rate falls off with increasing distance from the release. It is concluded that a CIV process was present in the neutral jet out to about 50 km from the release, which is significantly further than allowed by current theories

  1. Study on time response character for high pressure gas ionization chamber of krypton and xenon

    International Nuclear Information System (INIS)

    Tan Chunming; Wu Haifeng; Qing Shangyu; Wang Liqiang

    2006-01-01

    The time response character for Kr and Xe high pressure gas ionization chamber is analyzed and deduced. Compared with the measure data of pulse rising time for three gas-filled ionization chambers, the calculated and experimental results are equal to each other. The rising time less than 10 ms for this kind of ionization chamber can be achieved, so this ionization chamber is able to meet the requirement for imaging detection. (authors)

  2. Verification of the plan dosimetry for high dose rate brachytherapy using metal-oxide-semiconductor field effect transistor detectors

    International Nuclear Information System (INIS)

    Qi Zhenyu; Deng Xiaowu; Huang Shaomin; Lu Jie; Lerch, Michael; Cutajar, Dean; Rosenfeld, Anatoly

    2007-01-01

    The feasibility of a recently designed metal-oxide-semiconductor field effect transistor (MOSFET) dosimetry system for dose verification of high dose rate (HDR) brachytherapy treatment planning was investigated. MOSFET detectors were calibrated with a 0.6 cm 3 NE-2571 Farmer-type ionization chamber in water. Key characteristics of the MOSFET detectors, such as the energy dependence, that will affect phantom measurements with HDR 192 Ir sources were measured. The MOSFET detector was then applied to verify the dosimetric accuracy of HDR brachytherapy treatments in a custom-made water phantom. Three MOSFET detectors were calibrated independently, with the calibration factors ranging from 0.187 to 0.215 cGy/mV. A distance dependent energy response was observed, significant within 2 cm from the source. The new MOSFET detector has a good reproducibility ( 2 =1). It was observed that the MOSFET detectors had a linear response to dose until the threshold voltage reached approximately 24 V for 192 Ir source measurements. Further comparison of phantom measurements using MOSFET detectors with dose calculations by a commercial treatment planning system for computed tomography-based brachytherapy treatment plans showed that the mean relative deviation was 2.2±0.2% for dose points 1 cm away from the source and 2.0±0.1% for dose points located 2 cm away. The percentage deviations between the measured doses and the planned doses were below 5% for all the measurements. The MOSFET detector, with its advantages of small physical size and ease of use, is a reliable tool for quality assurance of HDR brachytherapy. The phantom verification method described here is universal and can be applied to other HDR brachytherapy treatments

  3. High-dose Extended-Field Irradiation and High-Dose-Rate Brachytherapy With Concurrent Chemotherapy for Cervical Cancer With Positive Para-Aortic Lymph Nodes

    International Nuclear Information System (INIS)

    Kim, Young Seok; Kim, Jong Hoon; Ahn, Seung Do; Lee, Sang-wook; Shin, Seong Soo; Nam, Joo-Hyun; Kim, Young-Tak; Kim, Yong-Man; Kim, Jong-Hyeok; Choi, Eun Kyung

    2009-01-01

    Purpose: To determine the efficacy and toxicity of extended-field radiotherapy (RT) with concurrent platinum-based chemotherapy in patients with uterine cervical carcinoma and positive para-aortic nodes. Methods and Materials: We retrospectively reviewed the results for 33 women with Stage IB-IVB cervical cancer. Each patient had received 59.4 Gy, including a three-dimensional conformal boost to the para-aortic lymph nodes and 41.4-50.4 Gy of external beam radiotherapy to the pelvis. Each patient also underwent six or seven applications of high-dose-rate brachytherapy (median, 5 Gy to point A at each session). Results: The median follow-up period of surviving patients was 39 months. The most common acute toxicity was hematologic, observed in 23 women. Severe acute and late gastrointestinal toxicity was observed in 3 and 4 patients, respectively. More than three-quarters of patients showed a complete response, encompassing the primary mass, metastatic pelvic, and para-aortic lymph nodes. Of the 33 women, 15 had no evidence of disease, 6 had persistent disease, 4 developed in-field failures, and 6 developed distant failures. The 5-year overall and disease-free survival rate was 47% and 42%, respectively. Conclusion: Concurrent chemoradiotherapy with extended-field radiotherapy is feasible in women with uterine cervical carcinoma and positive para-aortic lymph nodes, with acceptable late morbidity and a high survival rate, although it was accompanied by substantial acute toxicity.

  4. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  5. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    Science.gov (United States)

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  6. Strong-field ionization of xenon dimers: The effect of two-equivalent-center interference and of driving ionic transitions

    Science.gov (United States)

    Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.

    2018-02-01

    Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.

  7. Characteristics of a Dry Fog Ionizer

    International Nuclear Information System (INIS)

    Murata, Y; Kudo, Y; Yonezawa, M

    2008-01-01

    The newly developed 'Dry Fog Ionizer' generates charged dry fog. The dry fog consists of very fine water droplets 8μm in mean diameter. This system consists of a dry fog nozzle (H.Ikeuchi and Co., LTD.), a ring electrode for induction charging (50mm outside diameter, and 10mm thick) in front of the nozzle, and a fan for dissipating charged dry fog. The ring electrode is DC or AC-biased and fine droplets ejected from the nozzle are electrified by induction charging. The particle size of the charged water droplets are reduced through evaporation during the transporting process by air flow, and completely evaporate approximately 2m from the nozzle under normal atmospheric conditions (25 deg. C, 60%R.H.) leaving high density ions. Using this system, high density ionic space charge can be realized in a remote spot from the ionizer. By this principle, the Dry Fog Ionizer shows strong charge-eliminating ability in the region away from the ionizer. When a dc bias of 5kV was applied to a ring electrode with the rate of water flow from the nozzle being 21/h, an ionic space-charge density of 1200nC /m 3 was able to be obtained at a distance 2m away from the ionizer, which was 10 2 times the value produced by an ordinary corona-type ionizer with an air blower.

  8. Toward a 'all high rate' brachytherapy: organisation, biology and perspectives after treatment of 192 patients

    International Nuclear Information System (INIS)

    Hannoun-Levi, J.M.; Ferre, M.; Gautier, M.; Marcie, S.

    2007-01-01

    As a result of radiation protection regulations aimed at reducing the exposure to ionizing radiation from care-givers, low dose rate brachytherapy is usually replaced by a pulsed rate brachytherapy. The center Antoine Lacassagne has directed the outset to the use of a high-dose rate brachytherapy. The implications in terms of organization, biology and the prospects for such a change are the principal questions studied. (N.C.)

  9. Double electron ionization in Compton scattering of high energy photons by helium atoms

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Mikhailov, A.I.

    1995-01-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of open-quotes double-to-singleclose quotes ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification

  10. Double electron ionization in Compton scattering of high energy photons by helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Mikhailov, A.I. [St. Petersburg Nuclear Physics Institute, Gatchina (Russian Federation)

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  11. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1982-01-01

    A neutron accelerator tube is described having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least one cathode member located in the tube adjacent to th replenisher section may have a protuberant portion extending axially into the ionization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  12. Air filled ionization chambers and their response to high LET radiation

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Background Air filled ionization chambers (ICs) are widely used for absolute dosimetry, not only in photon beams but also in beams of heavy charged particles. Within the IC, electron hole pairs are generated by the energy deposition originating from incoming radiation. High-LET particles create......-plate ionization chamber exposed to heavy ions Phys. Med. Biol. 43 3549–58, 1998. ELSAESSER, T. et al.: Impact of track structure on biological treatment planning ion ion radiotherapy. New Journal pf Physics 10. 075005, 2008...

  13. Characteristics of voltage regulators with serial NPN transistor in the fields of medium and high energy photons

    International Nuclear Information System (INIS)

    Vukic, V.; Osmokrovic, P.

    2007-01-01

    Variation of collector - emitter dropout voltage on serial transistors of voltage regulators LM2990T-5 and LT1086CT5 were used as the parameter for detection of examined devices' radiation hardness in X and ? radiation fields. Biased voltage regulators with serial super-β transistor in the medium dose rate X radiation field had significantly different response from devices with conventional serial NPN transistor. Although unbiased components suffered greater damage in most cases, complete device failure happened only among the biased components with serial super-β transistor in Bremsstrahlung field. Mechanisms of transistors degradation in ionizing radiation fields were analysed [sr

  14. Polarization effects in two-colour ionization of atomic hydrogen with incommensurable frequencies

    International Nuclear Information System (INIS)

    Cionga, A.

    1993-01-01

    The angular distribution of ejected electrons for two-colour ionization of atomic hydrogen are studied using an approach which takes into account the radiative corrections to both bound and the continuum states. One considers the ionization process in which one high-frequency photon has enough energy to ionize the atom, meanwhile, one extra-photon is exchanged between atomic system and the low-frequency field. We focus our attention to the case of two incommensurable frequencies. (Author)

  15. Atoms in strong laser fields

    International Nuclear Information System (INIS)

    L'Huillier, A.

    2002-01-01

    When a high-power laser focuses into a gas of atoms, the electromagnetic field becomes of the same magnitude as the Coulomb field which binds a 1s electron in a hydrogen atom. 3 highly non-linear phenomena can happen: 1) ATI (above threshold ionization): electrons initially in the ground state absorb a large number of photons, many more than the minimum number required for ionization; 2) multiple ionization: many electrons can be emitted one at a time, in a sequential process, or simultaneously in a mechanism called direct or non-sequential; and 3) high order harmonic generation (HHG): efficient photon emission in the extreme ultraviolet range, in the form of high-order harmonics of the fundamental laser field can occur. The theoretical problem consists in solving the time dependent Schroedinger equation (TDSE) that describes the interaction of a many-electron atom with a laser field. A number of methods have been proposed to solve this problem in the case of a hydrogen atom or a single-active electron atom in a strong laser field. A large effort is presently being devoted to go beyond the single-active approximation. The understanding of the physics of the interaction between atoms and strong laser fields has been provided by a very simple model called ''simple man's theory''. A unified view of HHG, ATI, and non-sequential ionization, originating from the simple man's model and the strong field approximation, expressed in terms of electrons trajectories or quantum paths is slowly emerging. (A.C.)

  16. ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS

    International Nuclear Information System (INIS)

    Murphy, Nicholas A.; Lukin, Vyacheslav S.

    2015-01-01

    Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection, the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase

  17. Detection systems for high energy particle producing gaseous ionization; Sistemas de deteccion de particulas de alta energia mediante ionizacion gaseosa

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Duran, I

    1985-07-01

    This report contains a review on the most used detectors based on the collection of the ionization produced by high energy particles: proportional counters, multiwire proportional chambers, Geiger-Muller counters and drift chambers. In six sections, the fundamental principles, the field configuration and useful gas mixtures, are discussed, most relevant devices are reported along 90 pages with 98 references. (Author) 98 refs.

  18. Multi-photon resonant effects in strong-field ionization: origin of the dip in experimental longitudinal momentum distributions

    International Nuclear Information System (INIS)

    Alnaser, A S; Maharjan, C M; Wang, P; Litvinyuk, I V

    2006-01-01

    We studied ionization of neon and argon by intense linearly polarized femtosecond laser pulses of different wavelengths (400 nm and 800 nm) and peak intensities, and by measuring momentum distributions of singly charged positive ions in the direction parallel to laser polarization. For Ne the momentum distributions exhibited a characteristic dip at zero momentum at 800 nm and a complex multipeak structure at 400 nm. Similarly, for Ar the momentum distributions evolved from a complex multipeak structure with a pronounced dip in the centre at 400 nm, to a smooth distribution characteristic of pure tunneling ionization (800 nm, high intensities). In the intermediate regime (800 nm, medium to low intensities), for both atoms we observed recoil ion momentum distributions modulated by quasi-periodic structures usually seen in the photoelectron energy spectra in a multi-photon regime (ATI spectra). Ne did show a characteristic 'dip' at low momentum, while the longitudinal momentum distribution for Ar exhibited a spike at zero momentum instead. The spectra did dramatically change at 400 nm, where both ions show the pronounced dip near zero momentum. Based on our results, we conclude that the structures observed in Ne and Ar momentum distributions reflect the specifics of atomic structure of the two targets and should not be attributed to effects of electron recollision, as was suggested earlier. Instead, as our results indicate, they are due to the effects of multi-photon resonant enhancement of strong-field ionization. (letter to the editor)

  19. Study on the plasma reaction process of hydroxyl generation by strong electric field ionization discharge

    International Nuclear Information System (INIS)

    Bai Mindi; Deng Shufang; Bai Xiyao; Zhang Zhitao

    2004-01-01

    Considering the change in the structure of reaction room, dielectric materials and process technology, authors have specifically studied the plasma reaction process of creating hydroxyl radical OH * and e aq - from ionization of O 2 and H 2 O through a strong electric field discharge. The production volume of hydroxyl radical OH * is up to the project application level, and process technology meets the 12 laws of green chemistry, free from environmental pollution from the source. The authors have emphatically researched on the green method of flue gas desulfurization, which will ionize SO 2 , H 2 O and O 2 in the flue gas to synthesis H 2 SO 4 in molecular level within 0.8 s without absorbent and catalyst. (author)

  20. Magnetic diffusion and ionization fractions in dense molecular clouds: The role of charged grains

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1979-01-01

    The ionization fraction is determined for dense molecular clouds by considering charge exchange, dissociative recombination, radiative recombination, and collisions between grains and charged species. The inclusion of grains tends to lower the ionization fraction for a given cosmic-ray ionization rate zeta and metal depletion delta. The observed values of the ionization fractions in dense cloud cores (i.e., -8 ) are obtained for reasonable values of zeta=10 -17 s -1 and delta=0.1.For temperatures less than 30 K, each grain alternates in charge between -e and 0. The resulting motion of the grains in a self-graviting cloud that contains a magnetic field will be periodic; their response to electromagnetic forces will depend on their instantaneous charge. This complex motion is calculated in order to determine the average viscous force between the grains and the neutral molecules in the cloud. The grain-neutral viscous force combines with the ion-neutral viscous force to regulate the motion of the neutral molecules relative to the magnetic field. The resultant The result neutral drift leads to a diffusion of the magnetic field out of the cloud. The time scale for this diffusion is calculated. Grain-related viscous forces dominate ion-related forces for ionization fractions less than 5 x 10 -8 . The magnetic diffusion time in a self-gravitating cloud that is supported by an internal magnetic field is shown to be at least 10 times larger thanthe free-fall time even when the ionization fraction is much less than 10 -8

  1. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  2. H TO Zn IONIZATION EQUILIBRIUM FOR THE NON-MAXWELLIAN ELECTRON κ-DISTRIBUTIONS: UPDATED CALCULATIONS

    International Nuclear Information System (INIS)

    Dzifčáková, E.; Dudík, J.

    2013-01-01

    New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.

  3. Non-Ionizing Radiation - sources, exposure and health effects

    International Nuclear Information System (INIS)

    Hietanen, M.

    2003-01-01

    Non-ionizing radiation contains the electromagnetic wavelengths from ultraviolet (UV) radiation to static electric and magnetic fields. Optical radiation consists of UV, visible and infrared (IR) radiation while EM fields include static, extremely low (ELF), low frequency (LF) and radiofrequency (RF) fields. The principal scientific organization on non-ionizing radiation is the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The main activity of ICNIRP is to provide guidance on safe exposure and protection of workers and members of the public by issuing statements and recommendations. (orig.)

  4. Saha and temperature relaxation approximations for the study of ionization instability in partially ionized plasma

    International Nuclear Information System (INIS)

    Numano, M.

    1976-01-01

    The growth rates for the ionization instability obtained using the Saha and temperature relaxation approximations are compared with those obtained from an exact treatment, and the requirements for validity of these two approximations are obtained analytically. For the range of plasma parameters pertinent to MHD power generation it is found that the Saha approximation is valid for relatively high electron temperature, which it becomes inapplicable as the electron temperature is decreased. On the other hand, the temperature relaxation approximation is accurate over a wide range of electron temperature. It is found also that the marginal condition for the ionization instability is correctly obtained from both approximations. (author)

  5. Ionization of H2O molecules through second order collisions in an argon-filled flow ionization chamber

    International Nuclear Information System (INIS)

    Leonhardt, J.

    1976-01-01

    In an argon-filled ionization chamber with a constant radionuclide radiation source, the ionization of H 2 O through second order collisions with 3sub(p) 2 states of argon excited by field-accelerated electrons is considered within the range of discharge caused by external potentials under atmospheric pressure. It is found that the logarithm of the change of ionization current is proportional to power 3/2 of the electric field strength. Possible formation mechanisms are discussed. Most probable is the ionization of H 2 O through collision with Ar 2 argon dimers originating from excited metastable atoms as a result of triple collision. The production cross section for H 2 O + has been estimated to be sigmasub(H 2 O) approximately 5x10 -15 . (author)

  6. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  7. Technical sheets of ionizing radiations. 2. Non-ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The biological effects of different non-ionizing radiations are studied: ultra-violet radiation, visible radiation, infrared radiation, micrometric waves, ultrasonics. In spite of their apparent diversity these radiations are similar in their physico-chemical effects, but in view of their widely varying production methods and types of application each type is considered separately. It is pointed out that no organization resembling the CIPR exists in the field of non-ionizing radiations, the result being a great disparity amongst the different legislations in force [fr

  8. Achieving high mobility ZnO : Al at very high growth rates by dc filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Mendelsberg, R J; Lim, S H N; Wallig, J; Anders, A; Zhu, Y K; Milliron, D J

    2011-01-01

    Achieving a high growth rate is paramount for making large-area transparent conducting oxide coatings at a low cost. Unfortunately, the quality of thin films grown by most techniques degrades as the growth rate increases. Filtered dc cathodic arc is a lesser known technique which produces a stream of highly ionized plasma, in stark contrast to the neutral atoms produced by standard sputter sources. Ions bring a large amount of potential energy to the growing surface which is in the form of heat, not momentum. By minimizing the distance from cathode to substrate, the high ion flux gives a very high effective growth temperature near the film surface without causing damage from bombardment. The high surface temperature is a direct consequence of the high growth rate and allows for high-quality crystal growth. Using this technique, 500-1300 nm thick and highly transparent ZnO : Al films were grown on glass at rates exceeding 250 nm min -1 while maintaining resistivity below 5 x 10 -4 Ω cm with electron mobility as high as 60 cm 2 V -1 s -1 . (fast track communication)

  9. Non-ionizing electromagnetic fields on offshore installations

    International Nuclear Information System (INIS)

    Stark, G.M.; Heaton, B.

    1996-01-01

    The concern over the effects of occupational exposure to non-ionizing electromagnetic fields (EMF) has greatly increased in recent years. A great deal of knowledge is known about the thermal effects of radiofrequency EMF's and at the moment, many epidemiological and laboratory studies are being performed on extremely low frequency (ELF) and very low frequency (VLF) EMF's. Some studies have reported an increased risk of leukaemia and other cancers in children living close to overhead power cables and power industry electrical workers. Wertheimer and Leeper reported cancer links in children residing near overhead power cables as early as 1979 and many subsequent studies have continued to make similar associations. These studies suggest that prolonged exposure to higher than normal magnetic fields increases the occurrence of certain cancers in both children and adults. The most common associations are between EMF's and leukaemia, other haematopoetic cancers, brain cancers, central nervous system cancers or melanomas. Studies of adults living near overhead lines by Youngson et al. and working in the electricity industry by Armstrong et al. and Savitz and Loomis have also shown associations with certain cancers. The epidemiological studies are incomplete in several areas and many have been openly criticized. As yet, there is no conclusive laboratory evidence but studies are ongoing. The Hendee and Boteler study suggested that 'EMF's might be cancer promoters but are unlikely to be cancer initiators'. In addition to ELF studies, there have been many reports investigating exposure to EMF's from visual display units with equivocal results. Laboratory studies have reported conflicting results and as yet the hazard, if any, is still uncertain. Reports have also recorded exposure levels of operators in broadcast radio stations showing a variety of levels dependent on the occupation. In December 1992, the Commission of the European Communities proposed a council Directive on

  10. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    Energy Technology Data Exchange (ETDEWEB)

    Mauritsson, J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Johnsson, P [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Lopez-Martens, R [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Varju, K [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); L' Huillier, A [Department of Physics, Lund Institute of Technology, PO Box 118, SE-22100 Lund (Sweden); Gaarde, M B [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Schafer, K J [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)

    2005-07-14

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization.

  11. Probing temporal aspects of high-order harmonic pulses via multi-colour, multi-photon ionization processes

    International Nuclear Information System (INIS)

    Mauritsson, J; Johnsson, P; Lopez-Martens, R; Varju, K; L'Huillier, A; Gaarde, M B; Schafer, K J

    2005-01-01

    High-order harmonics generated through the interaction of atoms and strong laser fields are a versatile, laboratory-scale source of extreme ultraviolet (XUV) radiation on a femtosecond or even attosecond time-scale. In order to be a useful experimental tool, however, this radiation has to be well characterized, both temporally and spectrally. In this paper we discuss how multi-photon, multi-colour ionization processes can be used to completely characterize either individual harmonics or attosecond pulse trains. In particular, we discuss the influence of the intensity and duration of the probe laser, and how these parameters effect the accuracy of the XUV characterization

  12. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  13. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Calvente, I.; Fernandez, M.F. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Villalba, J. [Department of Radiology, University of Granada, Granada (Spain); Olea, N. [Laboratory of Medical Investigations, San Cecilio University Hospital, CIBER de Epidemiologia y Salud Publica (CIBERESP) (Spain); Department of Radiology, University of Granada, Granada (Spain); Nunez, M.I., E-mail: isabeln@ugr.es [Department of Radiology, University of Granada, Granada (Spain)

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and 'window' of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  14. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    Science.gov (United States)

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  15. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review

    International Nuclear Information System (INIS)

    Calvente, I.; Fernandez, M.F.; Villalba, J.; Olea, N.; Nunez, M.I.

    2010-01-01

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and 'window' of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  16. Microwave ionization and excitation of Ba Rydberg atoms

    International Nuclear Information System (INIS)

    Eichmann, U.; Dexter, J.L.; Xu, E.Y.; Gallagher, T.F.

    1989-01-01

    We have investigated ionization and excitation of the Ba 6sn s 1 S 0 and 6snd 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28 n -5 , and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpret the data. In particular multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values. (orig.)

  17. ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO{sup +}-to-DCO{sup +} ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo; Herbst, Eric [Department of Chemistry, University of Virginia, Charlottesville, VA 22904 (United States); Bergner, Jennifer B. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 (United States); Öberg, Karin I., E-mail: shingledecker@virginia.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-20

    The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.

  18. The ramp rate dependence of the sextupole field in superconducting dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1993-01-01

    Sextupole components are induced in the magnetic field of superconducting dipoles when the current is changed. The magnitude of this effect depends on the rate of change of field, the strand-to-strand resistance in the superconducting cable, and the twist pitch of the wire. Ramp rate measurements have been made on a number of SSC dipoles wound from conductors with different interstrand resistances. The technique employed uses an array of Hall probes sensitive to the sextupole field and can measure the difference for field increasing or decreasing as a function of axial position. Magnets with very low interstrand resistance exhibit a large axial oscillation in the sextupole field between up and down ramps which is rate dependent When the strand resistance is high the amplitude of this oscillation is almost independent of ramp rate

  19. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  20. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  1. Impact Ionization in Monoclinic $\\beta-Ga_2O_3$

    OpenAIRE

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-01-01

    We report a theoretical investigation of extremely high field transport in an emerging widebandgap material $\\beta-Ga_2O_3$ from first principles. The signature high-field effect explored here is impact ionization. Interaction between a ground-state electron and an excited electron is computed from the matrix elements of a screened Coulomb operator. Maximally localized Wannier functions (MLWF) are utilized in computing the electron-electron self-energy. A full-band Monte Carlo (FBMC) simulati...

  2. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    Hunter, S.R.

    1987-06-01

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  3. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  4. Neutron accelerator tube having improved ionization section

    International Nuclear Information System (INIS)

    Givens, W.W.

    1981-01-01

    A neutron accelerator tube having a target section, an ionization section, and a replenisher section for supplying accelerator gas to the ionization section. The ionization section is located between the target and the replenisher section and includes an ionization chamber adapted to receive accelerator gas from the replenisher section. The ionization section further includes spaced cathodes having opposed active surfaces exposed to the interior of the ionization chamber. An anode is located intermediate the cathodes whereby in response to an applied positive voltage, electrons created by field emmission are transmitted between the opposed active surfaces of the cathodes and produce the emission of secondary electrons. The active surface of at least one of the cathodes is formulated of a material having a secondary electron emission factor of at least 2. One cathode member located in the tube adjacent to the replenisher section may have a protuberant portion extending axially into the ioization chamber. The other cathode spaced from the first cathode member in the direction of the target has an aperture therein along the axis of the protuberant portion. An annular magnet extends around the exterior of the ionization chamber and envelops the anode member. Means are provided to establish a high permeability magnetic flux path extending outwardly from the opposed poles from the magnet to the active surfaces of the cathode members

  5. [Investigation of non-ionizing radiation hazards from physiotherapy equipment in 16 medical institutions].

    Science.gov (United States)

    He, Jia-xi; Zhou, Wei; Qiu, Hai-li; Yang, Guang-tao

    2013-12-01

    To investigate the non-ionizing radiation hazards from physiotherapy equipment in medical institutions and to explore feasible control measures for occupational diseases. On-site measurement and assessment of ultra-high-frequency radiation, high-frequency electromagnetic field, microwave radiation, and laser radiation were carried out in 16 medical institutions using the methods in the Measurement of Physical Agents in Workplace (GBZ/T189-2007). All the investigated medical institutions failed to take effective protective measures against non-ionizing radiation. Of the 17 ultra-short wave therapy apparatus, 70.6%, 47.1%, and 17.64% had a safe intensity of ultra-high-frequency radiation on the head, chest, and abdomen, respectively. Of the 4 external high-frequency thermotherapy apparatus, 100%, 75%, and 75%had a safe intensity of high-frequency electromagnetic field on the head, chest, and abdomen, respectively. In addition, the intensities of microwave radiation and laser radiation produced by the 18 microwave therapy apparatus and 12 laser therapeutic apparatus met national health standards. There are non-ionizing radiation hazards from physiotherapy equipment in medical institutions, and effective prevention and control measures are necessary.

  6. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, JN [Univ. of California, Irvine, CA (United States)

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition to determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.

  7. Evaluation of quality characteristics and functional properties of mechanically deboned chicken meats treated with different dose rates of ionizing radiation and use of antioxidants

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula

    2012-01-01

    The Mechanically Deboned chicken meat (MDCM) is used in traditional meat products, in greater proportion in those emulsified, replacing meat raw materials more expensive. The raw material can have high MDCM the microbial load, as a result of contamination during processing or failure during the evisceration. The irradiation process is accepted as one of the most effective technologies when compared to conventional techniques of preservation, to reduce contamination of pathogens and spoilage. However, little information is available about the use and effects of different dose rates of ionizing radiation processing. Irradiation causes chemical changes in food, a major cause of deterioration of quality of raw or cooked meat products during refrigerated storage, frozen. The objective of this study was to evaluate the effects of different dose rates of ionizing radiation on the production of Thiobarbituric Acid Reactive Substances (TBARS), color, microbiological and sensory characteristics of mechanically deboned chicken added or without added antioxidants, during the cold storage and evaluation of functional properties. The results showed that among the tested dose rates using cobalt-60 source, dose rate of 4.04 kGy.h-1 was the best for processing MDCM. Furthermore, the use of the combination of rosemary antioxidant and α-tocopherol were able to reduce lipid oxidation generated by irradiation of the samples, showed a synergistic effect to the processing with ionizing radiation in reduction of psychrotrophic bacteria count and contributed to a better sensory quality. The use of radiation in the processing FDMI did not adversely affect the functional properties studied. (author)

  8. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  9. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening.

    Science.gov (United States)

    Lawton, Zachary E; Traub, Angelica; Fatigante, William L; Mancias, Jose; O'Leary, Adam E; Hall, Seth E; Wieland, Jamie R; Oberacher, Herbert; Gizzi, Michael C; Mulligan, Christopher C

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. Graphical Abstract ᅟ.

  10. Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening

    Science.gov (United States)

    Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.

    2017-06-01

    Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.

  11. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  12. Adaptive Response in Animals Exposed to Non-Ionizing Radiofrequency Fields: Some Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Yi Cao

    2014-04-01

    Full Text Available During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.

  13. Ghost peaks observed after AP-MALDI experiment may disclose new ionization mechanism of matrix assisted hypersonic velocity impact ionization

    Science.gov (United States)

    Moskovets, Eugene

    2015-01-01

    RATIONALE Understanding the mechanisms of MALDI promises improvements in the sensitivity and specificity of many established applications in the field of mass spectrometry. This paper reports a serendipitous observation of a significant ion yield in a post-ionization experiment conducted after the sample has been removed from a standard atmospheric pressure (AP)-MALDI source. This post-ionization is interpreted in terms of collisions of microparticles moving with a hypersonic velocity into a solid surface. Calculations show that the thermal energy released during such collisions is close to that absorbed by the top matrix layer in traditional MALDI. The microparticles, containing both the matrix and analytes, could be detached from a film produced inside the inlet capillary during the sample ablation and accelerated by the flow rushing through the capillary. These observations contribute some new perspective to ion formation in both laser and laserless matrix-assisted ionization. METHODS An AP-MALDI ion source hyphenated with a three-stage high-pressure ion funnel system was utilized for peptide mass analysis. After the laser was turned off and MALDI sample was removed, ions were detected during a gradual reduction of the background pressure in the first funnel. The constant-rate pressure reduction led to the reproducible appearance of different singly- and doubly-charged peptide peaks in mass spectra taken a few seconds after the end of the MALDI analysis of a dried-droplet spot. RESULTS The ion yield as well as the mass range of ions observed with a significant delay after a completion of the primary MALDI analysis depended primarily on the background pressure inside the first funnel. The production of ions in this post-ionization step was exclusively observed during the pressure drop. A lower matrix background and significant increase in relative yield of double-protonated ions are reported. CONCLUSIONS The observations were partially consistent with a model of

  14. Profile distortion by beam space-charge in Ionization Profile Monitors

    CERN Document Server

    Vilsmeier, D; Wettig, T

    Measuring the transverse beam size in the Large Hadron Collider by using Ionization Profile Monitors is a difficult task for energies above injection during the energy ramp from 450 GeV to 6.5TeV. The beam size decreases from around 1mm to 200um and the brightness of the beam is high enough to destroy the structure of any form of interacting matter. While the electron trajectories are confined by an external electro-magnetic field which forces the electrons accordingly on helix paths with certain gyroradii, this gyration is heavily increased under the influence of the electric field of the beam. Smaller beam sizes, which go hand in hand with increased bunch electric fields, lead to larger gyroradii of the ionized electrons, which results in strongly distorted profiles. In addition, this distortion becomes more visible for smaller beam sizes as the extent of gyration grows compared to the actual beam size. Depending on the initial momentum distribution of the electrons, emerging from the ionization process wit...

  15. Forbidden lines of highly ionized ions for localized plasma diagnostics

    International Nuclear Information System (INIS)

    Hinnov, E.; Fonck, R.; Suckewer, S.

    1980-06-01

    Numerous optically forbidden lines resulting from magnetic dipole transitions in low-lying electron configurations of highly ionized Fe, Ti and Cr atoms have been identified in PLT and PDX tokamak discharges, and applied for localized diagnostics in the high-temperature (0.5 to 3.0 keV) interior of these plasmas. The measurements include determination of local ion densities and their variation in time, and of ion motions (ion temperature, plasma rotations) through Doppler effect of the lines. These forbidden lines are particularly appropriate for such measurements because under typical tokamak conditions their emissivities are quite high (10 11 to 10 14 photons/cm 3 -sec), and their relatively long wavelengths allow the use of intricate optical techniques and instrumentation. The spatial location of the emissivity is directly measurable, and tends to occur near radii where the ionization potential of the ion in question is equal to the local electron temperature. In future larger and presumably higher-temperature tokamaks analogous measurements with somewhat heavier atoms, particularly krypton, and perhaps zirconium appear both feasible and desirable

  16. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula

    2013-01-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  17. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  18. Ion chemistry of some organic molecules studied by field ionization and field desorption mass spectrometry

    International Nuclear Information System (INIS)

    Greef, J. van der.

    1980-01-01

    The chemistry of isolated ions in the gas phase is strongly dependent on the internal energy which they have required upon formation. Since also the average lifetime of an ion depends on its internal energy, ion lifetime studies have been employed for many years to obtain a better insight in the relation between the chemistry and internal energy of gas phase ions. A very powerful tool for such studies is the field ionization kinetic (FIK) method, because it can provide a time-resolved picture of decompositions of ions with lifetimes varying from 10 -11 to 10 -5 s. The FIK method has been used in combination with 2 H, 13 C and 15 N labelling for mechanistic studies on the fragmentation of some selected ionised organic molecules. (Auth.)

  19. Ionized-cluster source based on high-pressure corona discharge

    International Nuclear Information System (INIS)

    Lokuliyanage, K.; Huber, D.; Zappa, F.; Scheier, P.

    2006-01-01

    Full text: It has been demonstrated that energetic beams of large clusters, with thousands of atoms, can be a powerful tool for surface modification. Normally ionized cluster beams are obtained by electron impact on neutral beams produced in a supersonic expansion. At the University of Innsbruck we are pursuing the realization of a high current cluster ion source based on the corona discharge.The idea in the present case is that the ionization should occur prior to the supersonic expansion, thus supersede the need of subsequent electron impact. In this contribution we present the project of our source in its initial stage. The intensity distribution of cluster sizes as a function of the source parameters, such as input pressure, temperature and gap voltage, are investigated with the aid of a custom-built time of flight mass spectrometer. (author)

  20. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  1. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  2. Microwave Ionization of an Atomic Electron Wave Packet

    International Nuclear Information System (INIS)

    Noel, Michael W.; Ko, Lung; Gallagher, T. F.

    2001-01-01

    A short microwave pulse is used to ionize a lithium Rydberg wave packet launched from the core at a well-defined phase of the field. We observe a strong dependence on the relative phase between the motion of the wave packet and the oscillations of the field. This phase dependent ionization is also studied as a function of the relative frequency. Our experimental observations are in good qualitative agreement with a one-dimensional classical model of wave packet ionization

  3. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    Science.gov (United States)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  4. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  5. Impact ionization coefficients for electrons and holes in In0.14Ga0.86As

    International Nuclear Information System (INIS)

    Pearsall, T.P.; Nahory, R.E.; Pollack, M.A.

    1975-01-01

    We report the measurement of impact ionization rates for electrons and holes in the direct band-gap semiconductor alloy In 0 . 14 Ga 0 . 86 As. Our results show clearly that the ionization rate for holes is greater than that for electrons. The measurments were made for electric fields between 2.6times10 5 and 3.4times10 5 V cm -1 . In this range, the ionization coefficients can be expressed as α=α/sub infinity/ exp(-A/E) for electrons and β=β/sub infinity/ exp(-B/E) for holes with α/sub infinity/=1.0times10 9 cm -1 , A=3.6times10 6 V cm -1 , and β/sub infinity/=1.3times10 8 cm -1 , B=2.7times10 6 V cm -1

  6. Updated Collisional Ionization Equilibrium Calculated for Optically Thin Plasmas

    Science.gov (United States)

    Savin, Daniel Wolf; Bryans, P.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.; Mitthumsiri, W.

    2010-03-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn as well as for Al-like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Dere (2007), we present improved collisional ionization equilibrium calculations (Bryans et al. 2006, 2009). We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni. This work is supported in part by the NASA APRA and SHP SR&T programs.

  7. Study of the performance of ATLAS muon drift-tube chambers in magntic fields and at high irradiation rates

    Energy Technology Data Exchange (ETDEWEB)

    Valderanis, Chrysostomos

    2012-07-26

    The performance of ATLAS muon drift-tube (MDT) chambers has been studied in detail using high-energy muon beams. The measurements of the drift tube properties in magnetic fields showed that inelastic collisions of the drifting electrons with the CO{sub 2} molecules in the Ar:CO{sub 2} (93:7) gas mixture of the MDT chambers have to be taken into account in the simulation of the drift properties. Such inelastic collisions are now correctly treated by the Garfield simulation programme from version 9 providing an accurate description of the behaviour of the ATLAS muon drift tubes, in particular in the magnetic field. Measurements at the Gamma Irradiation Facility at CERN were performed to study the performance of the MDT chambers in the presence of high {gamma} ray background fluences. The chambers have a spatial resolution better than 40 {mu}m at the nominal background rates expected at the Large Hadron Collider design luminosity of 10{sup 34} cm{sup -2}s{sup -1} and a resolution better than 50 {mu}m for up to five times higher background rates. Efficient muon detection up to background counting rates of 500 kHz per tube corresponding to 35% occupancy was demonstrated.

  8. Electron-transport, ionization, attachment, and dissociation coefficients in SF6 and its mixtures

    International Nuclear Information System (INIS)

    Phelps, A.V.; Van Brunt, R.J.

    1988-01-01

    An improved set of electron-collision cross sections is derived for SF 6 and used to calculate transport, ionization, attachment, and dissociation coefficients for pure SF 6 and mixtures of SF 6 with N 2 , O 2 , and Ne. The SF 6 cross sections differ from previously published sets primarily at very low and high electron energies. At energies below 0.03 eV the attachment cross section is adjusted to fit recent electron swarm experiments, while the elastic momentum transfer cross section is increased to the theoretical limit. At high energies an allowance is made for the excitation of highly excited levels as observed in electron beam experiments. The cross-section sets used for the admixed gases have previously been published. Electron kinetic energy distributions computed from numerical solutions of the electron-transport (Boltzmann) equation using the two-term, spherical harmonic expansion approximation were used to obtain electron-transport and reaction coefficients as functions of E/N and the fractional concentration of SF 6 . Here E is the electric field strength and N is the gas number density. Attachment rate data for low concentrations of SF 6 in N 2 are used to test the attachment cross sections. Particular attention is given to the calculation of transport and reaction coefficients at the critical E/N = (E/N)/sub c/ at which the ionization and attachment rates are equal

  9. Effect of negative ions on current growth and ionizing wave propagation in air

    International Nuclear Information System (INIS)

    Kline, L.E.

    1975-01-01

    The spatiotemporal development of electron and ion densities, electric fields, and luminosity are calculated for electron pulse experiments in overvolted parallel-plane gaps by numerically solving continuity equations together with Poisson's equation. Experimental coefficients for primary ionization, cathode photoemission, photoionization, and luminosity are used. Unambiguous determination of the coefficients for attachment, detachment, and charge transfer is not possible from available experimental results. Therefore, the calculations are repeated for three sets of coefficients for these processes, corresponding to the following assumptions: unstable negative ions, stable negative ions, and no negative ions. The results of the calculations show, in each case, that the electron pulse initiates an avalanche which grows exponentially until the onset of space-charge effects. The calculated growth rate is strongly affected by the assumed attachment, detachment, and charge-transfer coefficients. When the total number of electrons in the avalanche reaches approx.10 8 , anode- and cathode-directed ionizing waves, or streamers, develop from the avalanche and produce a weakly ionized filamentary plasma. The calculated ionizing wave velocities are strongly increasing functions of the space-charge--enhanced electric field within the waves and are insensitive to the assumed attachment, detachment, and charge-transfer coefficients. The numerically calculated ionizing wave velocities are in approximate agreement with a simple analytical theory

  10. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  11. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhao, Yuan Yuan; Liu, Xin; Boyd, Jessica M; Qin, Feng; Li, Jianjun; Li, Xing-Fang

    2009-01-01

    We report a nanoelectrospray ionization (nESI) with high-field asymmetric waveform ion mobility spectrometry (FAIMS) and tandem mass spectrometry (MS-MS) method for determination of small molecules of m/z 50 to 200 and its potential application in environmental analysis. Integration of nESI with FAIMS and MS-MS combines the advantages of these three techniques into one method. The nESI provides efficient sample introduction and ionization and allows for collection of multiple data from only microliters of samples. The FAIMS provides rapid separation, reduces or eliminates background interference, and improves the signal-to-noise ratio as much as 10-fold over nESI-MS-MS. The tandem quadrupole time-of-flight MS detection provides accurate mass and mass spectral measurements for structural identification. Characteristics of FAIMS compensation voltage (CV) spectra of seven nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA), N-nitrosopiperidine (NPip), and N-nitrosopyrrolidine (NPyr), were analyzed. The optimal CV of the nitrosamines (at DV -4000 V) were: -1.6 V, NDBA; 2.6 V, NDPA; 6.6 V, NPip; 8.8 V, NDEA; 13.2 V, NPyr; 14.4 V, NMEA; and 19.4 V, NDMA. Fragmentation patterns of the seven nitrosamines in the nESI-FAIMS-MS-MS were also obtained. The specific CV and MS-MS spectra resulted in positive identification of NPyr and NPip in a treated water sample, demonstrating the potential application of this technique in environmental analysis.

  12. Experiments on Coulomb ionization by charged particles

    International Nuclear Information System (INIS)

    Andersen, J.U.; Laegsgaard, E.; Lund, M.

    1978-01-01

    Inner-shell ionization by light projectiles, i.e., in very asymmetric collisions, is often denoted 'Coulomb ionization' because it is caused by the Coulomb interaction between the electron and the projectile. Although with little justification, the term is also used to distinquish such processes, in which the projectile Coulomb field is a small perturbation, from ionization in more violent, nearly symmetric ion-atom collisions. A discussion of Coulomb ionization of atomic K shells is given, with emphasis on experimental methods and results. The discussion is not intended as a review of the field but rather as a progress report on the anthor's work on the subject. A more detailed account was recently presented at the ICPEAC meeting in Paris. (Auth.)

  13. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Aksenov, Alexander A; Kapron, James T

    2010-05-30

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.

  14. Foundations of ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Denisenko, O.N.; Pereslegin, I.A.

    1985-01-01

    Foundations of dosimetry in application to radiotherapy are presented. General characteristics of ionizing radiations and main characteristics of ionizing radiation sources, mostly used in radiotherapy, are given. Values and units for measuring ionizing radiation (activity of a radioactive substance, absorbed dose, exposure dose, integral dose and dose equivalent are considered. Different methods and instruments for ionizing radiation dosimetry are discussed. The attention is paid to the foundations of clinical dosimetry (representation of anatomo-topographic information, choice of radiation conditions, realization of radiation methods, corrections for a configuration and inhomogeneity of a patient's body, account of biological factors of radiation effects, instruments of dose field formation, control of irradiation procedure chosen)

  15. Evaluation of a liquid ionization chamber for relative dosimetry in small and large fields of radiotherapy photon beams

    International Nuclear Information System (INIS)

    Benítez, E.M.; Casado, F.J.; García-Pareja, S.; Martín-Viera, J.A.; Moreno, C.; Parra, V.

    2013-01-01

    Commissioning and quality assurance of radiotherapy linear accelerators require measurement of the absorbed dose to water, and a wide range of detectors are available for absolute and relative dosimetry in megavoltage beams. In this paper, the PTW microLion isooctane-filled ionization chamber has been tested to perform relative measurements in a 6 MV photon beam from a linear accelerator. Output factors, percent depth dose and dose profiles have been obtained for small and large fields. These quantities have been compared with those from usual detectors in the routine practice. In order to carry out a more realistic comparison, an uncertainty analysis has been developed, taking type A and B uncertainties into account. The results present microLion as a good option when high spatial resolution is needed, thanks to its reduced sensitive volume. The liquid filling also provides a high signal compared to other detectors, like that based on air filling. Furthermore, the relative response of microLion when field size is varied suggests that this detector has energy dependence, since it is appreciated an over-response for small fields and an under-response for the large ones. This effect is more obvious for field sizes wider than 20 × 20 cm 2 , where the differences in percent depth dose at great depths exceed the uncertainties estimated in this study. - Highlights: • When high spatial resolution is required the results confirm the suitability of the liquid chamber. • Some energy dependence of the liquid detector can be appreciated in OFs and PDDs for small and large fields. • For field sizes >20 × 20 cm 2 , the differences in PDDs at great depths exceed the uncertainties estimated. • Some drawbacks should be considered: the time to reach stability, the high voltage supply required and the acquiring cost

  16. Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy

    Science.gov (United States)

    Shubitidze, Fridon; Kekalo, Katsiaryna; Stigliano, Robert; Baker, Ian

    2015-03-01

    Magnetic nanoparticles (MNPs), referred to as the Dartmouth MNPs, which exhibit high specific absorption rate at low applied field strength have been developed for hyperthermia therapy applications. The MNPs consist of small (2-5 nm) single crystals of gamma-Fe2O3 with saccharide chains implanted in their crystalline structure, forming 20-40 nm flower-like aggregates with a hydrodynamic diameter of 110-120 nm. The MNPs form stable (>12 months) colloidal solutions in water and exhibit no hysteresis under an applied quasistatic magnetic field, and produce a significant amount of heat at field strengths as low as 100 Oe at 99-164 kHz. The MNP heating mechanisms under an alternating magnetic field (AMF) are discussed and analyzed quantitatively based on (a) the calculated multi-scale MNP interactions obtained using a three dimensional numerical model called the method of auxiliary sources, (b) measured MNP frequency spectra, and (c) quantified MNP friction losses based on magneto-viscous theory. The frequency responses and hysteresis curves of the Dartmouth MNPs are measured and compared to the modeled data. The specific absorption rate of the particles is measured at various AMF strengths and frequencies, and compared to commercially available MNPs. The comparisons demonstrate the superior heating properties of the Dartmouth MNPs at low field strengths (therapy to deeper tumors that were previously non-viable targets, potentially enabling the treatment of some of the most difficult cancers, such as pancreatic and rectal cancers, without damaging normal tissue.

  17. An historical overview of the activities in the field of exposure and risk assessment of non-ionizing radiation in Bulgaria.

    Science.gov (United States)

    Israel, Michel

    2015-09-01

    The exposure and risk evaluation process in Bulgaria concerning non-ionizing radiation health and safety started in the early 1970s. Then, the first research laboratory "Electromagnetic fields in the working environment" was founded in the framework of the Centre of Hygiene, belonging to the Medical Academy, Sofia. The main activities were connected with developing legislation, new equipment for measurement of electromagnetic fields, new methods for measurement and exposure assessment, in vivo and human studies for developing methods, studying the effect of non-ionizing radiation on human body, developing exposure limits. Most of the occupations as metal industry, plastic welding, energetics, physiotherapy, broadcasting, telephone stations, computer industry, etc., have been covered by epidemiological investigations and risk evaluation. In 1986, the ANSI standard for safe use of lasers has been implemented as national legislation that gave the start for studies in the field of risk assessment concerning the use of lasers in industry and medicine. The environmental exposure studies started in 1991 following the very fast implementation of the telecommunication technologies. Now, funds for research are very insignificant, and studies in the field of risk assessment are very few. Nevertheless, Bulgaria has been an active member of the WHO International EMF Project, since 1997, and that gives good opportunity for collaboration with other Member states, and for implementation of new approach in the EMF policy for workers and people's protection against non-ionizing radiation exposure.

  18. Medicine and ionizing rays: a help sheet in analysing risks in pulsed rate curietherapy

    International Nuclear Information System (INIS)

    Gauron, C.

    2009-01-01

    This document proposes a synthesis of useful knowledge for radioprotection in the case of pulsed rate curietherapy. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment

  19. Collection of ions in a plasma by magnetic field acceleration with selective polarization

    International Nuclear Information System (INIS)

    Forsen, H.K.

    1976-01-01

    Method and apparatus are described for generating and accelerating ions in a vapor by use of relatively polarized laser radiation and a magnetic field. As applied to uranium isotope enrichment, a flowing uranium vapor has particles of the 235 U isotope type selectively ionized by laser radiation and the ionized flow is subjected to a transverse gradient in a magnetic field. The magnetic field gradient induces an acceleration on the ionized particles of 235 U which deflects them from their normal flow path toward a collecting structure. High magnetic field and corresponding high ion accelerations are achieved without loss in ionization selectivity by maintaining a polarization between the applied laser radiation and magnetic field which minimizes Zeeman splitting of the uranium energy states

  20. The influence of electromagnetic interference and ionizing radiation on cardiac pacemakers

    International Nuclear Information System (INIS)

    Salmi, J.; Malmivuo, J.A.V.

    1990-01-01

    Adverse effects of the ionizing and non-ionizing electromagnetic fields on five pacemaker models have been tested. The study consisted of three parts: 1. measurement of magnetic fields in a radiotherapy room (microtron MM14), 2. the application of non-ionizing electromagnetic fields on pacemakers in a test laboratory (1 ... 1000 μT, 10 ... 10 000 Hz), and 3. the application of ionizing radiation of different types of radiotherapy devices on the pacemakers. The magnetic field strength in the microtron treatment room was found to be under 7.5 μT, which is one order of magnitude lower than the tolerance level obtained for the pacemakers in the test laboratory. All the tested pacemakers tolerated the ionizing radiation dose levels (less than 60 Gy) which are used in the radiotherapy. (orig.) [de

  1. Radio frequency energy coupling to high-pressure optically pumped nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Plonjes, Elke; Palm, Peter; Lee, Wonchul; Lempert, Walter R.; Adamovich, Igor V.

    2001-01-01

    This article presents an experimental demonstration of a high-pressure unconditionally stable nonequilibrium molecular plasma sustained by a combination of a continuous wave CO laser and a sub-breakdown radio frequency (rf) electric field. The plasma is sustained in a CO/N 2 mixture containing trace amounts of NO or O 2 at pressures of P=0.4 - 1.2atm. The initial ionization of the gases is produced by an associative ionization mechanism in collisions of two CO molecules excited to high vibrational levels by resonance absorption of the CO laser radiation with subsequent vibration-vibration (V-V) pumping. Further vibrational excitation of both CO and N 2 is produced by free electrons heated by the applied rf field, which in turn produces additional ionization of these species by the associative ionization mechanism. In the present experiments, the reduced electric field, E/N, is sufficiently low to preclude field-induced electron impact ionization. Unconditional stability of the resultant cold molecular plasma is enabled by the negative feedback between gas heating and the associative ionization rate. Trace amounts of nitric oxide or oxygen added to the baseline CO/N 2 gas mixture considerably reduce the electron - ion dissociative recombination rate and thereby significantly increase the initial electron density. This allows triggering of the rf power coupling to the vibrational energy modes of the gas mixture. Vibrational level populations of CO and N 2 are monitored by infrared emission spectroscopy and spontaneous Raman spectroscopy. The experiments demonstrate that the use of a sub-breakdown rf field in addition to the CO laser allows an increase of the plasma volume by about an order of magnitude. Also, CO infrared emission spectra show that with the rf voltage turned on the number of vibrationally excited CO molecules along the line of sight increase by a factor of 3 - 7. Finally, spontaneous Raman spectra of N 2 show that with the rf voltage the vibrational

  2. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Wilke, M; Al-Obaidi, R; Moguilevski, A; Kothe, A; Engel, N; Metje, J; Kiyan, I Yu; Aziz, E F

    2014-01-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll–Watson theory. (paper)

  3. Quantitative Determination of Bioactive Constituents in Noni Juice by High-performance Liquid Chromatography with Electrospray Ionization Triple Quadrupole Mass Spectrometry.

    Science.gov (United States)

    Yan, Yongqiu; Lu, Yu; Jiang, Shiping; Jiang, Yu; Tong, Yingpeng; Zuo, Limin; Yang, Jun; Gong, Feng; Zhang, Ling; Wang, Ping

    2018-01-01

    Noni juice has been extensively used as folk medicine for the treatment of arthritis, infections, analgesic, colds, cancers, and diabetes by Polynesians for many years. Due to the lack of standard scientific evaluation methods, various kinds of commercial Noni juice with different quality and price were available on the market. To establish a sensitive, reliable, and accurate high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-MS/MS) method for separation, identification, and simultaneous quantitative analysis of bioactive constituents in Noni juice. The analytes and eight batches of commercially available samples from different origins were separated and analyzed by the HPLC-ESI-MS/MS method on an Agilent ZORBAX SB-C 18 (150 mm × 4.6 mm i.d., 5 μm) column using a gradient elution of acetonitrile-methanol-0.05% glacial acetic acid in water (v/v) at a constant flow rate of 0.5 mL/min. Seven components were identification and all of the assay parameters were within the required limits. Components were within the correlation coefficient values ( R 2 ≥ 0.9993) at the concentration ranges tested. The precision of the assay method was high-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometryThe presented method was successfully applied to the quality control of eight batches of commercially available samples of Noni juiceThis method is simple, sensitive, reliable, accurate, and efficient method with strong specificity, good precision, and high recovery rate and provides a reliable basis for quality control of Noni juice. Abbreviations used: HPLC-ESI-MS/MS: High-performance liquid chromatography with electrospray ionization triple quadrupole mass spectrometry, LOD: Limit of detection, LOQ: Limit of quantitation, S/N: Signal-to-noise ratio, RSD: Relative standard deviations, DP: Declustering potential, CE: Collision energy, MRM: Multiple reaction monitoring, RT

  4. Annotated bibliography of highly ionized atoms of importance to plasmas

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1975-04-01

    A bibliography is presented of the literature on highly ionized atoms which have relevance to plasmas. The bibliography is annotated with keywords, and indexed by subjects and authors. It should be of greatest use to researchers working on the problems of impurity cooling and diagnostics of CTR plasmas. (U.S.)

  5. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  6. Quasar Black Hole Mass Estimates from High-Ionization Lines: Breaking a Taboo?

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2017-09-01

    Full Text Available Can high ionization lines such as CIV λ 1549 provide useful virial broadening estimators for computing the mass of the supermassive black holes that power the quasar phenomenon? The question has been dismissed by several workers as a rhetorical one because blue-shifted, non-virial emission associated with gas outflows is often prominent in CIV λ 1549 line profiles. In this contribution, we first summarize the evidence suggesting that the FWHM of low-ionization lines like H β and MgII λ 2800 provide reliable virial broadening estimators over a broad range of luminosity. We confirm that the line widths of CIV λ 1549 is not immediately offering a virial broadening estimator equivalent to the width of low-ionization lines. However, capitalizing on the results of Coatman et al. (2016 and Sulentic et al. (2017, we suggest a correction to FWHM CIV λ 1549 for Eddington ratio and luminosity effects that, however, remains cumbersome to apply in practice. Intermediate ionization lines (IP ∼ 20–30 eV; AlIII λ 1860 and SiIII] λ 1892 may provide a better virial broadening estimator for high redshift quasars, but larger samples are needed to assess their reliability. Ultimately, they may be associated with the broad-line region radius estimated from the photoionization method introduced by Negrete et al. (2013 to obtain black hole mass estimates independent from scaling laws.

  7. Effect of the dynamic core-electron polarization of CO molecules on high-order harmonic generation

    Science.gov (United States)

    Le, Cam-Tu; Hoang, Van-Hung; Tran, Lan-Phuong; Le, Van-Hoang

    2018-04-01

    We theoretically investigate the influence of dynamic core-electron polarization (DCeP) of CO molecules on high-order harmonic generation (HHG) by solving the time-dependent Schrödinger equation (TDSE) within the single-active-electron (SAE) approximation. The effect of DCeP is shown to depend strongly on the molecular orientation angle θ . Particularly, compared to the calculations without DCeP, the inclusion of this effect gives rise to an enhancement of harmonic intensity at θ =0° when the electric field aligns along the O-C direction and to a suppression at θ =180° when the field heads in the opposite direction. Meanwhile, when the electric field is perpendicular to the molecular axis, the effect is almost insignificant. The phenomenon is thought to be linked to the ionization process. However, this picture is not completed yet. By solving the TDSE within the SAE approximation and conducting a classical simulation, we are able to obtain the ionization probability as well as the ionization rate and prove that HHG, in fact, receives a major contribution from electrons ionized at only a certain time interval, rather than throughout the whole pulse propagation. Including DCeP, the variation of the ionization rate in this interval highly correlates to that of the HHG intensity. To better demonstrate the origin of this manifestation, we also show the alternation DCeP makes on the effective potential that corresponds to the observed change in the ionization rate and consequently the HHG intensity. Our results confirm previous studies' observations and, more importantly, provide the missing physical explanation. With the role of DCeP now better understood for the entire range of the orientation angle, this effect can be handled more conveniently for calculating the HHG of other targets.

  8. A review of advances in pixel detectors for experiments with high rate and radiation

    Science.gov (United States)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  9. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  10. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  11. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  12. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Magnetic field-aligned plasma expansion in critical ionization velocity space experiments

    International Nuclear Information System (INIS)

    Singh, N.

    1989-01-01

    Motivated by the recent Critical Ionization Velocity (CIV) experiments in space, the temporal evolution of a plasma cloud released in an ambient plasma is studied. Time-dependent Vlasov equations for both electrons and ions, along with the Poisson equation for the self-consistent electric field parallel to the ambient magnetic field, are solved. The initial cloud is assumed to consist of cold, warm, and hot electrons with temperatures T/sub c/ ≅ 0.2 eV, T/sub w/ ≅ 2 eV, and T/sub h/ ≅ 10 eV, respectively. It is found that the minor hot electrons escape the cloud, and their velocity distribution function shows the typical time-of-flight dispersion feature - that is, the larger the distance from the cloud, the larger is the average drift velocity of the escaping electrons. The major warm electrons expand along the magnetic field line with the corresponding ion-acoustic speed. The combined effect of the escaping hot electrons and the expanding warm ones sets up an electric potential structure which accelerates the ambient electrons into the cloud. Thus, the energy loss due to the electron escape is partly replenished. The electric field distribution in the potential structure depends on the stage of the evolution; before the rarefaction waves propagating from the edges of the cloud reach its center, the electric fields point into the cloud. After this stage the cloud divides into two subclouds, with each having their own bipolar electric fields. Effects of collisions on the evolution of plasma clouds are also discussed. The relevance of the results seen from the calculations are discussed in the context of recent space experiments on CIV

  14. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  15. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  16. Effect of magnetic field on selectivity of three-step photoionization

    International Nuclear Information System (INIS)

    Lim, Chang Hwan; Rho, Si Pyo; Ko, Kwang Hoon; Kim, Chul Joong; Izawa, Yasukazu

    2001-01-01

    Effect of magnetic field on selectivity by linearly polarized lasers was analyzed by formulating the density matrix equations. To investigate the effect of magnetic field on the selectivity of AVLIS, we proposed a general Hamiltonian for multilevel atomic system in magnetic field. The population dynamics of magnetic sublevels have been observed by solving the Liouville equation. Mixing between magnetic sublevels was observed in each state during the laser excitations when the magnetic field perpendicular to the quantization axis was applied to the atomic system. The magnetic field dependence on ionization rate of even isotopes was also discussed. In the magnetic field dependence, two ionization peaks were appeared because of the interference between Rabi and Larmor frequency during the ionization process. The permissible intensities of magnetic field were predicted to obtain enough selectivity for the target isotopes of zirconium and gadolinium in the AVLIS process based on the polarization selection rule

  17. Electrospray Ionization Mass Spectrometric Analysis of Highly Reactive Glycosyl Halides

    Directory of Open Access Journals (Sweden)

    Lajos Kovács

    2012-07-01

    Full Text Available Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]+, [2M+Li]+ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.

  18. Microbial cells can cooperate to resist high-level chronic ionizing radiation

    OpenAIRE

    Shuryak, Igor; Matrosova, Vera Y.; Gaidamakova, Elena K.; Tkavc, Rok; Grichenko, Olga; Klimenkova, Polina; Volpe, Robert P.; Daly, Michael J.

    2017-01-01

    Understanding chronic ionizing radiation (CIR) effects is of utmost importance to protecting human health and the environment. Diverse bacteria and fungi inhabiting extremely radioactive waste and disaster sites (e.g. Hanford, Chernobyl, Fukushima) represent new targets of CIR research. We show that many microorganisms can grow under intense gamma-CIR dose rates of 13–126 Gy/h, with fungi identified as a particularly CIR-resistant group of eukaryotes: among 145 phylogenetically diverse strain...

  19. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  20. Summary of informal meeting on ''facilities for atomic physics research with highly ionized atoms''

    International Nuclear Information System (INIS)

    Cocke, C.L.; Jones, K.W.

    1984-01-01

    An informal meeting to discuss ''Facilities for Atomic Physics Research with Highly Ionized Atoms'' was held during the APS DEAP meeting at the University of Connecticut on May 30, 1984. The meeting was motivated by the realization that the status of facilities for studies of highly ionized atoms is unsettled and that it might be desirable to take action to ensure adequate resources for research over the whole range of charge states and energies of interest. It was assumed that the science to be done with these beams has been amply documented in the literature