WorldWideScience

Sample records for high-energy x-ray reflectivity

  1. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  2. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  3. Low energy x-ray spectrometer

    International Nuclear Information System (INIS)

    Woodruff, W.R.

    1981-01-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα 1 2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures

  4. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  5. Total-reflection X-ray fluorescence analysis of Austrian wine

    International Nuclear Information System (INIS)

    Gruber, X.; Kregsamer, P.; Wobrauschek, P.; Streli, C.

    2006-01-01

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 μl of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines

  6. Total-reflection X-ray fluorescence analysis of Austrian wine

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, X. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Kregsamer, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Wobrauschek, P. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria); Streli, C. [Atominstitut der Osterreichischen Universitaeten, 1020 Vienna (Austria)]. E-mail: streli@ati.ac.at

    2006-11-15

    The concentration of major, minor and trace elements in Austrian wine was determined by total-reflection X-ray fluorescence using gallium as internal standard. A multi-elemental analysis was possible by pipetting 6 {mu}l of wine directly on the reflector and drying. Total-reflection X-ray fluorescence analysis was performed with Atomika EXTRA II A (Cameca) X-rays from a Mo tube with a high-energy cut-off at 20 keV in total-reflection geometry. The results showed that it was possible to identify only by the elemental analysis as fingerprint the vineyards and year of vintage among 11 different wines.

  7. Treatment of foods with high-energy X rays

    International Nuclear Information System (INIS)

    Cleland, M.R.; Meissner, J.; Herer, A.S.; Beers, E.W.

    2001-01-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper

  8. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  9. High reflectance Cr/C multilayer at 250 eV for soft X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Mingwu; Jiang, Li; Zhang, Zhong; Huang, Qiushi [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Zhanshan, E-mail: wangzs@tongji.edu.cn [MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); She, Rui; Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing (China); Wang, Hongchang [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-10-01

    X-ray reflection near 45° via multilayer mirrors can be used for astronomical polarization measurements. A Cr/C multilayer mirror (designed for X-ray polarimetry at 250 eV), with a period thickness of 3.86 nm and a bi-layer number of 100, was fabricated using direct current magnetron sputtering. Grazing incidence X-ray reflectometry at 8 keV and transmission electron microscopy were used to investigate the multilayer structure. Different models were introduced to fit the hard X-ray reflectivity curve, which indicates that the layer thickness of two materials slightly drifts from the bottom to the top of the stack. Both the chromium and carbon layers are amorphous with asymmetric interfaces, while the Cr-on-C interface is slightly wider. Based on the good quality of the multilayer structure, a high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV at a grazing incidence angle of 40.7°. The fabricated Cr/C multilayer mirror exhibits high reflectivity and polarization levels in the energy region of 240 eV–260 eV. - Highlights: • We fabricated Cr/C multilayer with 3.8 nm d-spacing. • X-ray reflectometry was used to determine the exact structure of Cr/C multilayer. • A high reflectivity of 21.8% for the s-polarized light was obtained at 250 eV. • Both Cr and C were found to be amorphous with slightly asymmetric interfaces. • A 4-layer model was used to fit and explain the results.

  10. TX 2000: total reflection and 45o energy dispersive x-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Pasti, F.; Torboli, A.; Valdes, M.

    2000-01-01

    This equipment, developed by Ital Structures, combines two kinds of energy dispersive X-ray fluorescence techniques, the first using total reflection geometry and the second conventional 45 o geometry. The equipment is completely controlled by a PC and to reach the condition of total reflection is very easy because it is enough to load the file with the right position for the corresponding energy. In this apparatus we used an x-ray tube with an alloy anode of Mo/W with a long fine focus at 2200 W. To monochromatize the x-ray beam while choosing, for example, the Mo K alpha or W L alpha or a piece of white spectrum of 33 keV, we use a highly reflective multilayer made of Si/W with 2d = 45.5 A o . The detector used in the equipment is a lithium drifted silicon detector (Si(Li)) with an excellent energy resolution of 135 eV at 5.9 keV and 1000 cps. We developed two programs written in Windows 95, 98 and NT for a 32 bit microprocessor. The first one is called TYACQ32 and has the following functions: first, complete control of the hardware, second automatic alignment of the TX 2000 spectrometer and third acquisition of spectra. The second program is EDXRF32. This is a program to accomplish spectrum and quantitative analysis for TXRF and EDXRF 45 o degrees analysis. (author)

  11. ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    García, Javier A.; Steiner, James F.; McClintock, Jeffrey E.; Keck, Mason L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Dauser, Thomas; Wilms, Jörn, E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@head.cfa.harvard.edu, E-mail: keckm@bu.edu, E-mail: thomas.dauser@sternwarte.uni-erlangen.de [Dr. Karl Remeis-Observatory and Erlangen Centre for Astroparticle Physics, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2015-08-01

    The fundamental parameters describing the coronal spectrum of an accreting black hole are the slope Γ of the power-law continuum and the energy E{sub cut} at which it rolls over. Remarkably, this latter parameter can be accurately measured for values as high as 1 MeV by modeling the spectrum of X-rays reflected from a black hole accretion disk at energies below 100 keV. This is possible because the details in the reflection spectrum, rich in fluorescent lines and other atomic features, are very sensitive to the spectral shape of the hardest coronal radiation illuminating the disk. We show that by fitting simultaneous NuSTAR (3–79 keV) and low-energy (e.g., Suzaku) data with the most recent version of our reflection model relxill one can obtain reasonable constraints on E{sub cut} at energies from tens of keV up to 1 MeV, for a source as faint as 1 mCrab in a 100 ks observation.

  12. High-energy x-ray microscopy with multilayer reflectors (invited)

    International Nuclear Information System (INIS)

    Underwood, J.H.

    1986-01-01

    A knowledge of the spatial distribution of the x rays emitted by the hot plasma region is a key element in the study of the physical processes occurring in laser-produced plasmas and complements other diagnostics such as spectroscopy and temporal studies. X-ray microscopy with reflection microscopes offers the most direct means of obtaining this information. Until recently, the two types of microscopes that had been developed for this purpose, the Kirkpatrick--Baez and the Wolter, operated at relatively low energies (about 4--5 keV) and had very little spectral selectivity, relying on filters for coarse spectral resolution. With the development of x-ray reflecting multilayer mirrors, the energy response of such microscopes can be extended to 10 keV or higher, with good spectral selectivity. In addition, it is possible to reduce some of the optical aberrations to obtain improved spatial resolution. This paper describes some of the recent progress in making and evaluating x-ray reflectors, and outlines the optical design considerations for multilayer-coated microscopes. Results from a prototype multilayer K--B microscope are presented

  13. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  14. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  15. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  16. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  17. Non-Deforming, High-Reflectance X-ray Coatings for Lynx and Other Future Missions

    Science.gov (United States)

    Windt, David

    The overarching challenge addressed by this proposal is the development of highreflectance, high-resolution X-ray mirrors, to be used for the construction of lightweight X-ray telescopes for future NASA astronomy missions such as Lynx and others. The proposal's two specific aims are: 1) the development of optimized iridium-based interference coatings for the 0.1–10 keV band; and 2) the development of methods to mitigate coating-stress-induced substrate deformations in thin-shell glass and Si mirror segments. These goals will be achieved by building on established film deposition techniques and metrology infrastructure for X-ray optics that have been developed and advanced by the PI through APRA funding since 1999. Specific Aim #1: Interference Coatings for the 0.1–10 keV Energy Band Telescope effective area can be maximized by using Ir-based reflective coatings that exploit optical interference to provide higher reflectance than Ir alone. However, only preliminary investigations of such coatings have been conducted thus far; more research is required to fully optimize these coatings for maximum performance, to experimentally determine the coating designs that are feasible, and to determine the achievable X-ray reflectance, film stress, surface roughness, and thermal and temporal stability. The first specific aim of this proposal is to reach these very goals through a comprehensive research program. Demonstration of the achievable reflectance, stress, and roughness in stable, optimized coatings will in turn facilitate global telescope design optimization, by identifying the best coating for each mirror shell based on incidence angle, and on telescope effective-area and field-of-view requirements. The research has the potential to greatly increase the effective area of future X-ray telescopes. Specific Aim #2: Mitigation of Coating-Stress-Induced Substrate Deformations High-quality films of Ir and other candidate materials (e.g., B4C) to be investigated for the 0

  18. DCARR: a spectrograph for measuring low-energy x rays

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    DCARR, the Differential Critical Angle Reflection Refraction detector system, is described. This detector was designed to measure low-energy x rays, 500 to 5000 eV, with a high degree of resolution, 250 eV. DCARR was developed because these low-energy measurements are of interest in the diagnostics of x-radiation in nuclear tests and available equipment could not make measurements at this low an energy in field tests. DCARR is a versatile piece of equipment that can also be used as a laboratory tool, such as in measuring the low-energy x rays emitted by lasers and various x-ray machines

  19. X-ray reflectivity and surface roughness

    International Nuclear Information System (INIS)

    Ocko, B.M.

    1988-01-01

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl 4 ), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs

  20. X-Ray diffraction studies of silicon implanted with high energy ions

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    The character of lattice deformation in silicon implanted with high energy alpha-particles and protons was studied using a number of X-ray methods. The experiments included double-crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter distribution proportional to the vacancy-interstitial distribution coming from the Biersack-ziegler theory. The theoretical rocking curves and distribution in back-reflection double-crystal and section topographs well corresponding to the experimental results were calculated using numerical integration of the takagi-taupin equations

  1. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    Science.gov (United States)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  2. Total-reflection x-ray fluorescence with a brillant undulator x-ray source

    International Nuclear Information System (INIS)

    Sakurai, K.; Eba, H.; Numako, C.; Suzuki, M.; Inoue, K.; Yagi, N.

    2000-01-01

    Total-reflection x-ray fluorescence (TXRF) is a highly sensitive technique for analyzing trace elements, because of the very low background from the sample support. Use of third-generation synchrotron x-ray source could further enhance the detection power. However, while such high sensitivity permits the detection of signals from trace elements of interest, it also means that one can observe weak parasitic x-rays as well. If the sample surface becomes even slightly contaminated, owing to air particulates near the beamline, x-ray fluorescence lines of iron, zinc, copper, nickel, chromium, and titanium can be observed even for a blank sample. Another critical problem is the low-energy-side tail of the scattering x-rays, which ultimately restricts the detection capability of the technique using a TXRF spectrometer based on a Si(Li) detector. The present paper describes our experiments with brilliant undulator x-ray beams at BL39XU and BL40XU, at the SPring-8, Harima, Japan. The emphasis is on the development of instruments to analyze a droplet of 0.1 μl containing trace elements of ppb level. Although the beamline is not a clean room, we have employed equipment for preparing a clean sample and also for avoiding contamination during transferring the sample into the spectrometer. We will report on the successful detection of the peak from 0.8 ppb selenium in a droplet (absolute amount 80 fg). We will also present the results of recent experiments obtained from a Johansson spectrometer rather than a Si(Li) detector. (author)

  3. Correlation between X-ray and high energy gamma-ray emission form Cygnus X-3

    International Nuclear Information System (INIS)

    Weekes, T.C.; Danaher, S.; Fegan, D.J.; Porter, N.A.

    1981-01-01

    In May-June 1980, the 4.8 hour modulated X-ray flux from Cygnus X-3 underwent a significant change in the shape of the light curve; this change correlates with the peak in the high-energy (E > 2 x 10 12 eV) gamma ray emission at the same epoch. (orig.)

  4. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  5. The X-ray reflectivity of the AXAF VETA-I optics

    Science.gov (United States)

    Kellogg, E.; Chartas, G.; Graessle, D.; Hughes, J. P.; Van Speybroeck, L.; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; O'Dell, S. L.

    1993-01-01

    The study measures the X-ray reflectivity of the AXAF VETA-I optic and compares it with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. A synchrotron reflectivity measurement with a high-energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample is also reported. Evidence is found for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror, perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 and 10 percent. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff.

  6. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  7. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  8. X ray reflection masks: Manufacturing, characterization and first tests

    Science.gov (United States)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  9. X-ray diffraction studies of silicon implanted with high energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K [Institute of Atomic Energy, Otwock-Swierk, (Poland); Wierzchowski, W [Institute of Electronic Materials Technology, Warsaw, (Poland); Graeff, W [Hasylab at Desy, Hamburg, (Germany)

    1997-12-31

    The character of lattice deformation in silicon in implanted with high energy {alpha} particles and protons was studied with a number of X-ray methods. The experiments included double crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter depth distribution proportional to the vacancy-interstitial distribution coming from the Biersack-Ziegler theory. The theoretical rocking curves and density distribution in back-reflection double-crystal and section topography well corresponding to experimental results were calculated using numerical integration of the Takagi-Taupin equations. 9 figs.

  10. High-resolution imaging of coronary calcifications by intense low-energy fluoroscopic X-ray obtained from synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, S.; Sugishita, Y.; Takeda, T.; Itai, Y.; Tada, J.; Hyodo, K.; Ando, M. [Inst. of Clinical Medicine, Univ. of Tsukuba, Ibaraki (Japan). Dept. of Cardiology

    2000-07-01

    In order to obtain an intense monochromatic low-energy X-ray from synchrotron radiation (SR) and apply it to detect coronary calcifications, the SR beam was reflected with a silicon crystal to be expanded (150 mm in height and 80 mm in width) and to be monochromatized at an energy level of 37 keV. The X-ray was intermittently irradiated to obtain dynamic imaging of 30 images/s. Images were recorded by a digital fluorography system. The low-energy X-ray from SR sharply visualized calcification of coronary arteries, while conventional X-ray could not visualize coronary calcification. The intense monochromatic low-energy X-ray from SR is sensitive, has high-resolution for imaging coronary calcification and may serve as a screening method for coronary artery disease.

  11. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  12. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  13. Laser micromachining of cadmium tungstate scintillator for high energy X-ray imaging

    Science.gov (United States)

    Richards, Sion Andreas

    Pulsed laser ablation has been investigated as a method for the creation of thick segmented scintillator arrays for high-energy X-ray radiography. Thick scintillators are needed to improve the X-ray absorption at high energies, while segmentation is required for spatial resolution. Monte-Carlo simulations predicted that reflections at the inter-segment walls were the greatest source of loss of scintillation photons. As a result of this, fine pitched arrays would be inefficient as the number of reflections would be significantly higher than in large pitch arrays. Nanosecond and femtosecond pulsed laser ablation was investigated as a method to segment cadmium tungstate (CdWO_4). The effect of laser parameters on the ablation mechanisms, laser induced material changes and debris produced were investigated using optical and electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy for both types of lasers. It was determined that nanosecond ablation was unsuitable due to the large amount of cracking and a heat affected zone created during the ablation process. Femtosecond pulsed laser ablation was found to induce less damage. The optimised laser parameters for a 1028 nm laser was found to be a pulse energy of 54 μJ corresponding to a fluence of 5.3 J cm. -2 a pulse duration of 190 fs, a repetition rate of 78.3 kHz and a laser scan speed of 707 mm s. -1 achieving a normalised pulse overlap of 0.8. A serpentine scan pattern was found to minimise damage caused by anisotropic thermal expansion. Femtosecond pulsed ablation was also found to create a layer of tungsten and cadmium sub-oxides on the surface of the crystals. The CdWO_4 could be cleaned by immersing the CdWO_4 in ammonium hydroxide at 45°C for 15 minutes. However, XPS indicated that the ammonium hydroxide formed a thin layer of CdCO_3 and Cd(OH)_2 on the surface. Prototype arrays were shown to be able to resolve features as small as 0.5 mm using keV energy X-rays. The most

  14. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  15. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  16. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  17. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  18. Total reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Michaelis, W.; Prange, A.

    1987-01-01

    In the past few years, total reflection X-ray flourescence analysis (TXRF) has found an increasing number of assignments and applications. Experience of trace element analysis using TXRF and examples of applications are already widespread. Therefore, users of TXRF had the opportunity of an intensive exchange of their experience at the 1st workshop on total reflection X-ray fluorescence analysis which took place on May 27th and 28th 1986 at the GKSS Research Centre at Geesthacht. In a series of lectures and discussions dealing with the analytical principle itself, sample preparation techniques and applications as well as comuter programs for spectrum evaluation, the present state of development and the range of applications were outlined. 3 studies out of a total of 14 were included separately in the INIS and ENERGY databases. With 61 figs., 12 tabs [de

  19. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  20. X-ray microscopy using grazing-incidence reflections optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-01-01

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  1. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  2. X-ray microscopy using grazing-incidence reflection optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1981-01-01

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  3. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    Science.gov (United States)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  4. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  5. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  6. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    International Nuclear Information System (INIS)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5 0 and 10 0 to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm 2 and the integrated energy at destruction was 2.0 J/cm 2 . 82 refs., 66 figs., 10 tabs

  7. High energy x-ray scattering studies of strongly correlated oxides

    International Nuclear Information System (INIS)

    Hatton, Peter D; Wilkins, S B; Spencer, P D; Zimmermann, M v; D'Almeida, T

    2003-01-01

    Many transition metal oxides display strongly correlated charge, spin, or orbital ordering resulting in varied phenomena such as colossal magnetoresistance, high temperature superconductivity, metal-insulator transitions etc. X-ray scattering is one of the principle techniques for probing the structural response to such effects. In this paper, we discuss and review the use of synchrotron radiation high energy x-rays (50-200 keV) for the study of transition metal oxides such as nickelates (La 2-x Sr x NiO 4 ) and manganites (La 2-2x Sr 1+2x Mn 2 O 7 ). High energy x-rays have sufficient penetration to allow us to study large flux-grown single crystals. The huge increase in sample scattering volume means that extremely weak peaks can be observed. This allows us to study very weak charge ordering. Measurements of the intensity, width and position of the charge ordering satellites as a function of temperature provide us with quantitative measures of the charge amplitude, inverse correlation length and wavevector of the charge ordering

  8. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  9. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  10. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  11. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  12. A high resolution reflecting crystal spectrometer to measure 3 keV pionic hydrogen and deuterium X-rays

    International Nuclear Information System (INIS)

    Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Knecht, L.; Leisi, H.J.; Schroeder, H.C.; Sigg, D.; Zhao, Z.G.; Chatellard, D.; Egger, J.P.; Jeannet, E.; Aschenauer, E.C.; Gabathuler, K.; Simons, L.M.; Rusi El Hassani, A.J.

    1993-01-01

    A reflecting crystal spectrometer consisting of three cylindrically bent quartz (110) crystals is described. It was designed to measure the 3 keV K β X-rays from pionic hydrogen and deuterium. Charge coupled devices (CCDs) were used as X-ray detectors. Projecting the reflexes of all three crystals on one common focus, an instrumental energy resolution below 1 eV was obtained at an energy of 2.9 keV. (orig.)

  13. GaAs low-energy X-ray radioluminescence nuclear battery

    Science.gov (United States)

    Zhang, Zheng-Rong; Liu, Yun-Peng; Tang, Xiao-Bin; Xu, Zhi-Heng; Yuan, Zi-Cheng; Liu, Kai; Chen, Wang

    2018-01-01

    The output properties of X-ray radioluminescence (RL) nuclear batteries with different phosphor layers were investigated by using low-energy X-ray. Results indicated that the values of electrical parameters increased as the X-ray energy increased, and the output power of nuclear battery with ZnS:Cu phosphor layer was greater than those of batteries with ZnS:Ag, (Zn,Cd)S:Cu or Y2O3:Eu phosphor layers under the same excitation conditions. To analyze the RL effects of the phosphor layers under X-ray excitation, we measured the RL spectra of the different phosphor layers. Their fluorescence emissions were absorbed by the GaAs device. In addition, considering luminescence utilization in batteries, we introduced an aluminum (Al) film between the X-ray emitter and phosphor layer. Al film is a high performance reflective material and can increase the fluorescence reaching the GaAs photovoltaic device. This approach significantly improved the output power of the battery.

  14. High energy X-ray observations of COS-B gamma-ray sources from OSO-8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Caraveo, P. A.

    1985-01-01

    During the three years between satellite launch in June 1975 and turn-off in October 1978, the high energy X-ray spectrometer on board OSO-8 observed nearly all of the COS-B gamma-ray source positions given in the 2CG catalog (Swanenburg et al., 1981). An X-ray source was detected at energies above 20 keV at the 6-sigma level of significance in the gamma-ray error box containing 2CG342 - 02 and at the 3-sigma level of significance in the error boxes containing 2CG065 + 00, 2CG195 + 04, and 2CG311 - 01. No definite association between the X-ray and gamma-ray sources can be made from these data alone. Upper limits are given for the 2CG sources from which no X-ray flux was detected above 20 keV.

  15. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    Science.gov (United States)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  16. Energy-dispersive X-ray reflectivity and GID for real-time growth studies of pentacene thin films

    International Nuclear Information System (INIS)

    Kowarik, S.; Gerlach, A.; Leitenberger, W.; Hu, J.; Witte, G.; Woell, C.; Pietsch, U.; Schreiber, F.

    2007-01-01

    We use energy-dispersive X-ray reflectivity and grazing incidence diffraction (GID) to follow the growth of the crystalline organic semiconductor pentacene on silicon oxide in-situ and in real-time. The technique allows for monitoring Bragg reflections and measuring X-ray growth oscillations with a time resolution of 1 min in a wide q-range in reciprocal space extending over 0.25-0.80 A -1 , i.e. sampling a large number of Fourier components simultaneously. A quantitative analysis of growth oscillations at several q-points yields the evolution of the surface roughness, showing a marked transition from layer-by-layer growth to strong roughening after four monolayers of pentacene have been deposited

  17. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  18. Physics of reflective optics for the soft gamma-ray photon energy range

    DEFF Research Database (Denmark)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disag...

  19. High-energy X-ray diffraction studies of short- and intermediate-range structure in oxide glasses

    International Nuclear Information System (INIS)

    Suzuya, Kentaro

    2002-01-01

    The feature of high-energy X-ray diffraction method is explained. The oxide glasses studies by using BL04B2, high-energy X-ray diffraction beam line of SPring-8, and the random system materials by high-energy monochromatic X-ray diffraction are introduced. An advantage of third generation synchrotron radiation is summarized. On SPring-8, the high-energy X-ray diffraction experiments of random system are carried out by BL04B2 and BL14B1 beam line. BL04B2 can select Si (111)(E=37.8 keV, λ=0.033 nm) and Si(220)(E=61.7 keV, λ=0.020 nm) as Si monochromator. The intermediate-range structure of (MgO) x (P 2 O 5 ) 1-x glass ,MgP 2 O 6 glass, B 2 O 3 glass, SiO 2 and GeO 2 are explained in detail. The future and application of high-energy X-ray diffraction are stated. (S.Y.)

  20. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J. [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); Ehm, Lars [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhong, Zhong; Ghose, Sanjit [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-27

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  1. Optical and x-ray alignment approaches for off-plane reflection gratings

    Science.gov (United States)

    Allured, Ryan; Donovan, Benjamin D.; DeRoo, Casey T.; Marlowe, Hannah R.; McEntaffer, Randall L.; Tutt, James H.; Cheimets, Peter N.; Hertz, Edward; Smith, Randall K.; Burwitz, Vadim; Hartner, Gisela; Menz, Benedikt

    2015-09-01

    Off-plane reflection gratings offer the potential for high-resolution, high-throughput X-ray spectroscopy on future missions. Typically, the gratings are placed in the path of a converging beam from an X-ray telescope. In the off-plane reflection grating case, these gratings must be co-aligned such that their diffracted spectra overlap at the focal plane. Misalignments degrade spectral resolution and effective area. In-situ X-ray alignment of a pair of off-plane reflection gratings in the path of a silicon pore optics module has been performed at the MPE PANTER beamline in Germany. However, in-situ X-ray alignment may not be feasible when assembling all of the gratings required for a satellite mission. In that event, optical methods must be developed to achieve spectral alignment. We have developed an alignment approach utilizing a Shack-Hartmann wavefront sensor and diffraction of an ultraviolet laser. We are fabricating the necessary hardware, and will be taking a prototype grating module to an X-ray beamline for performance testing following assembly and alignment.

  2. High energy X-ray observation of Cyg X-3

    International Nuclear Information System (INIS)

    Kendziorra, E.; Pietsch, W.; Staubert, R.; Truemper, J.

    1975-01-01

    On Feb. 20, 1975 Cyg X-3 was observed in the energy range of 29-70 keV during a 5 hour observation of the Cyg region. An intensity variation consistent with a 4.8 h sinusoidal modulation has been found, in phase with low energy X-ray observations and with a relative amplitude of 0.37 +- 0.19. (orig.) [de

  3. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  4. The high-energy x-ray diffraction and scattering beamline at the Canadian Light Source

    Science.gov (United States)

    Gomez, A.; Dina, G.; Kycia, S.

    2018-06-01

    The optical design for the high-energy x-ray diffraction and scattering beamline of the Brockhouse sector at the Canadian Light Source is described. The design is based on a single side-bounce silicon focusing monochromator that steers the central part of a high-field permanent magnet wiggler beam into the experimental station. Two different configurations are proposed: a higher energy resolution with vertical focusing and a lower energy resolution with horizontal and vertical focusing. The monochromator will have the possibility of mounting three crystals: one crystal optimized for 35 keV that focuses in the horizontal and vertical directions using reflection (1,1,1) and two other crystals both covering the energies above 40 keV: one with only vertical focusing and another one with horizontal and vertical focusing. The geometry of the last two monochromator crystals was optimized to use reflections (4,2,2) and (5,3,3) to cover the broad energy range from 40 to 95 keV.

  5. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  6. Modulated High-Energy Gamma-Ray Emission from the Micro-quasar Cygnus X-3

    International Nuclear Information System (INIS)

    Abdo, A.A.; Cheung, C.C.; Dermer, C.D.; Grove, J.E.; Johnson, W.N.; Lovellette, M.N.; Makeev, A.; Ray, P.S.; Strickman, M.S.; Wood, K.S.; Abdo, A.A.; Cheung, C.C.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Borgland, A.W.; Cameron, R.A.; Chiang, J.; Claus, R.; Digel, S.W.; Silva, E.D.E.; Drell, P.S.; Dubois, R.; Focke, W.B.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A.S.; Kamae, T.; Kocian, M.L.; Lande, J.; Madejski, G.M.; Michelson, P.F.; Mitthumsiri, W.; Monzani, M.E.; Moskalenko, I.V.; Murgia, S.; Nolan, P.L.; Paneque, D.; Reimer, A.; Reimer, O.; Rochester, L.S.; Romani, R.W.; Tanaka, T.; Thayer, J.B.; Tramacere, A.; Uchiyama, Y.; Usher, T.L.; Waite, A.P.; Wang, P.; Axelsson, M.; Hjalmarsdotter, L.; Axelsson, M.; Conrad, J.; Hjalmarsdotter, L.; Jackson, M.S.; Meurer, C.; Ryde, F.; Ylinen, T.; Baldini, L.; Bellazzini, R.; Brez, A.; Kuss, M.; Latronico, L.; Omodei, N.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Ballet, J.; Casandjian, J.M.; Chaty, S.; Corbel, S.; Grenier, I.A.; Koerding, E.; Rodriguez, J.; Starck, J.L.; Tibaldo, L.

    2009-01-01

    Micro-quasars are accreting black holes or neutron stars in binary systems with associated relativistic jets. Despite their frequent outburst activity, they have never been unambiguously detected emitting high-energy gamma rays. The Fermi Large Area Telescope (LAT) has detected a variable high-energy source coinciding with the position of the x-ray binary and micro-quasar Cygnus X-3. Its identification with Cygnus X-3 is secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. The gamma-ray emission probably originates from within the binary system, opening new areas in which to study the formation of relativistic jets. (authors)

  7. Surface characterization of selected polymer thin films by total-reflection x-ray fluorescence spectroscopy and x-ray reflectivity

    International Nuclear Information System (INIS)

    Innis, Vallerie Ann A.

    2006-01-01

    Development of available x-ray characterizations tools for grazing incidence techniques was done to be able to probe nano-size thin films. Alignment of a Philips x-ray powder diffractometer was improved to let it perform as an x-ray reflectometer. X-ray reflectometry was coupled with total-reflection x-ray fluorescence spectroscopy. Evaluation of the performance of this grazing incidence techniques was done by preparing polymer thin films of carboxymethylcellulose, carrageenan and polyvinylpyrrolidone (PVP). The thickness of the films were varied by varying the process parameters such as concentration, spin speed and spin time. Angle-dispersive total-reflection x-ray fluorescence spectroscopy profiles of three films showed film formation only in carrageenan and PVP. For both carrageenan and PVP, an increase in concentration yielded a corresponding increase in intensity of the fluorescent or scattered peaks. XRR profiles of carrageenan thin films yielded a mean value for the critical angle close to quartz substrate. Thickness measurements of the prepared carrageenan thin films showed that concentration was the main determinant for final film thickness over the other process parameters. Sulfur fluorescent intensity derived from the TXRF measurement showed a linear relationship with the measured thickness by XRR. For PVP, measured critical angle is lower than quartz. Poor adhesion of the polymer onto the substrate yielded a limited number of thickness measurements made from the XRR profiles. (Author)

  8. A planar parabolic refractive nickel lens for high-energy X-rays

    International Nuclear Information System (INIS)

    Andrejczuk, Andrzej; Nagamine, Masaru; Sakurai, Yoshiharu; Itou, Masayoshi

    2013-01-01

    A compound refractive nickel lens focusing 174 keV X-rays to 5 µm with a gain of 4 is presented. A compound refractive lens made of nickel and designed for focusing high-energy synchrotron X-rays is presented. The lens consists of 600 parabolic grooves and focuses X-rays in one plane only (planar lens). The lenses made and investigated by us earlier exhibited low transmission and irregularities in the focused beam profile. Since then, improvements in lens manufacturing technology have been made. The present lens gives an almost Gaussian profile and produces four times higher intensity at its maximum compared with the intensity of primary X-ray beams of 174 keV

  9. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  10. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  11. Reflection of attosecond x-ray free electron laser pulses

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-01

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics

  12. Effect of FEL induced ionization on X-ray reflectivity of multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, Dmitriy; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany)

    2009-07-01

    The VUV-FEL in Hamburg (FLASH) emits short-pulse radiation with wavelengths from 6 to 30 nm and a pulse length of 10-50 fs. The FLASH wavelength allows x-ray diffraction experiments at periodical multilayer's structures acting as 1D crystal. The probe of depth selective interaction of the high-intense x-ray short pulse with these objects can be used to obtain information about possible electronic excitation and various recombination processes inside multilayers. As known from recent experiments at FLASH, the later ones are most likely using highly intense FEL radiation. The ML reflectivity is analyzed for case of that the optical parameters are changing as function of the depth of the penetrating incident pulse into the multilayer. The response is studied for the model system La/B{sub 4}C using two experimental conditions both at fixed incidence angle: 1) the energy of the incident pulses, E, coincides with the energy of the 1st order multilayer Bragg peak, E{sub B}, of the reflection curve, and 2) the energy of incident pulse differs by a small dE from E{sub B}. The ML response to a given sub-pulse differs for both conditions. However, there is a clear fingerprint of ionization for both conditions for the case that E is close to the K-absorption edge of B-atoms. Our results support respective efforts to measure the optical parameters of solids under high-intense FEL radiation.

  13. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  14. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.

    Science.gov (United States)

    Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou

    2018-07-01

    A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Development of a total reflection X-ray fluorescence spectrometer for ...

    Indian Academy of Sciences (India)

    Unknown

    design and use of a peltier cooled solid state detector for energy dispersive detection. Alignment and ... X-ray beam at a glancing angle less than the critical angle at which total ... materials is < 1 so that external total reflection takes place at an ...

  16. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  17. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    We present spectroscopic X-ray data of two candidate ultracompact X-ray binaries (UCXBs): 4U 0614+091 and 4U 1543-624. We confirm the presence of a broad O viii Ly alpha reflection line (at a parts per thousand 18 angstrom) using XMM-Newton and Chandra observations obtained in 2012 and 2013. The ...

  18. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  19. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  20. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  1. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  2. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  3. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  4. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  5. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, Shinji [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Itou, Masayoshi [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Suzuya, Kentaro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Inamura, Yasuhiro [Japan Atomic Energy Agency (J-PARC/JAEA), Tokai, Naka, Ibaraki 319-1195 (Japan); Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Takata, Masaki [Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2007-12-19

    High-energy x-rays from a synchrotron radiation source allow us to obtain high-quality diffraction data for disordered materials from ambient to extreme conditions, which is necessary for revealing the detailed structures of glass, liquid and amorphous materials. We introduced high-energy x-ray diffraction beamlines and a dedicated diffractometer for glass, liquid and amorphous materials at SPring-8 and report the recent developments of ancillary equipment. Furthermore, the structures of liquid and amorphous materials determined from the high-energy x-ray diffraction data obtained at SPring-8 are discussed.

  6. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  7. Advanced ceramic matrix composites for high energy x-ray generation

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2011-01-01

    High energy x-ray targets are the anodes used in high performance tubes, designed to work for long operating times and at high power. Such tubes are used in computed tomography (CT) scan machines. Usually the tubes used in CT scanners have to continuously work at high temperatures and for longer scan durations in order to get maximum information during a single scan. These anodes are composed of a refractory substrate which supports a refractory metallic coating. The present work is a review of the development of a ceramic metal composite based on aluminium nitride (AlN) and molybdenum for potential application as the substrate. This composite is surface engineered by coating with tungsten, the most popular material for high energy x-ray targets. To spray metallic coatings on the surface of ceramic matrix composites dc blown arc plasma is employed. The objective is to increase the performance and the life of an x-ray tube. Aluminium nitride-molybdenum ceramic matrix composites were produced by uniaxial hotpressing mixtures of AlN and Mo powders. These composites were characterized for their mechanical, thermal, electrical and micro-structural properties. An optimized composition was selected which contained 25 vol.% of metallic phase dispersed in the AlN matrix. These composites were produced in the actual size of an anode and coated with tungsten through dc blown arc plasma spraying. The results have shown that sintering of large size anodes is possible through uniaxial pressing, using a modified sintering cycle

  8. Application of energy dispersive x-ray techniques for water analysis

    International Nuclear Information System (INIS)

    Funtua, I. I.

    2000-07-01

    Energy dispersive x-ray fluorescence (EDXRF) is a class of emission spectroscopic techniques that depends upon the emission of characteristic x-rays following excitation of the atomic electron energy levels by tube or isotopic source x-rays. The technique has found wide range of applications that include determination of chemical elements of water and water pollutants. Three EDXRF systems, the isotopic source, secondary target and total reflection (TXRF) are available at the Centre for Energy research and Training. These systems have been applied for the analysis of sediments, suspensions, ground water, river and rainwater. The isotopic source is based on 55 Fe, 109 Cd and 241 Am excitations while the secondary target and the total reflection are utilizing a Mo x-ray tube. Sample preparation requirements for water analysis range from physical and chemical pre-concentration steps to direct analysis and elements from Al to U can be determined with these systems. The EDXRF techniques, TXRF in particular with its multielement capability, low detection limit and possibility of direct analysis for water have competitive edge over the traditional methods of atomic absorption and flame photometry

  9. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  10. Recent progress in energy-filtered high energy X-ray photoemission electron microscopy using a Wien filter type energy analyzer

    International Nuclear Information System (INIS)

    Niimi, H.; Tsutsumi, T.; Matsudaira, H.; Kawasaki, T.; Suzuki, S.; Chun, W.-J.; Kato, M.; Kitajima, Y.; Iwasawa, Y.; Asakura, K.

    2004-01-01

    Energy-filtered X-ray photoemission electron microscopy (EXPEEM) is a microscopy technique which has the potential to provide surface chemical mapping during surface chemical processes on the nanometer scale. We studied the possibilities of EXPEEM using a Wien filter type energy analyzer in the high energy X-ray region above 1000 eV. We have successfully observed the EXPEEM images of Au islands on a Ta sheet using Au 3d 5/2 and Ta 3d 5/2 photoelectron peaks which were excited by 2380 eV X-rays emitted from an undulator (BL2A) at Photon Factory. Our recent efforts to improve the sensitivity of the Wien filter energy analyzer will also be discussed

  11. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  12. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  13. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  14. Hohlraums energy balance and x-ray drive

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature

  15. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, S., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Beye, M., E-mail: sebastian.eckert@helmholtz-berlin.de, E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ochmann, M.; Huse, N. [Institute for Nanostructure and Solid State Physics, University of Hamburg, Jungiusstr. 11, 20355 Hamburg, Germany and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg (Germany); Ross, M.; Khalil, M. [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States); Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Föhlisch, A. [Institute for Methods and Instrumentation in Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam (Germany)

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  16. High-energy gamma-rays from Cyg X-1

    Science.gov (United States)

    Zdziarski, Andrzej A.; Malyshev, Denys; Chernyakova, Maria; Pooley, Guy G.

    2017-11-01

    We have obtained a firm detection of Cyg X-1 during its hard and intermediate spectral states in the energy range of 40 MeV-60 GeV based on observations by the Fermi Large Area Telescope, confirming the independent results at ≥60 MeV of a previous work. The detection significance is ≃8σ in the 0.1-10 GeV range. In the soft state, we have found only upper limits on the emission at energies ≳0.1 MeV. However, we have found emission with a very soft spectrum in the 40-80 MeV range, not detected previously. This is likely to represent the high-energy cut-off of the high-energy power-law tail observed in the soft state. Similarly, we have detected a γ-ray soft excess in the hard state, which appears to be of similar origin. We have also confirmed the presence of an orbital modulation of the detected emission in the hard state, expected if the γ-rays are from Compton upscattering of stellar blackbody photons. However, the observed modulation is significantly weaker than that predicted if the blackbody upscattering were the dominant source of γ-rays. This argues for a significant contribution from γ-rays produced by the synchrotron self-Compton process. We have found that such strong contribution is possible if the jet is strongly clumped. We reproduce the observed hard-state average broad-band spectrum using a self-consistent jet model, taking into account all the relevant emission processes, e± pair absorption and clumping. This model also reproduces the amplitude of the observed orbital modulation.

  17. Calibrating an ellipsometer using x-ray reflectivity

    International Nuclear Information System (INIS)

    Richter, Andrew; Guico, Rodney; Wang, Jin

    2001-01-01

    X-ray reflectivity has been used to find the optical refractive index of polymer thin film in order to calibrate a Stokes ellipsometer for film thickness measurements during the deposition procedure. A thin, spun-cast film of poly(tert-butyl acrylate) (PtBA) was made with a film thickness of ∼500 {angstrom}. An x-ray reflectivity measurement was taken and the data were fit to determine the thickness of the PtBA film and the underlying silicon--oxide layer. This measurement was then used to calculate the optical refractive index for PtBA at the ellipsometer wavelength. Using this value for the refractive index subsequently allowed us to determine the film thickness for a series of PtBA films made by using a number of polymer solution concentrations resulting in film thickness ranging from 100 to 1300 {angstrom}. These film thicknesses were found to be generally the same as those found using x-ray reflectivity. The success of this procedure suggests a useful method for calibrating an ellipsometer for fast in-lab measurements, especially on ultrathin films when simultaneous determination of the film thickness and the refractive index is less reliable

  18. Quasi-kinoform type multilayer zone plate with high diffraction efficiency for high-energy X-rays

    International Nuclear Information System (INIS)

    Tamura, S; Yasumoto, M; Kamijo, N; Uesugi, K; Takeuchi, A; Terada, Y; Suzuki, Y

    2009-01-01

    Fresnel zone plate (FZP) with high diffraction efficiency leads to high performance X-ray microscopy with the reduction of the radiation damage to biological specimens. In order to attain high diffraction efficiency in high energy X-ray region, we have developed multilevel-type (6-step) multilayer FZPs with the diameter of 70 micron. The efficiencies of two FZPs were evaluated at the BL20XU beamline of SPring-8. For one FZP, the peak efficiency for the 1st-order diffraction of 51% has been obtained at 70 keV. The efficiencies higher than 40% have been achieved in the wide energy range of 70-90 keV. That for the 2nd-order diffraction of 46% has been obtained at 37.5 keV.

  19. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  20. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  1. High-energy x-ray CT and its application for digital engineering

    International Nuclear Information System (INIS)

    Kamimura, H.; Sadaoka, N.

    2005-01-01

    A high-energy x-ray computed tomography system and x-ray CT data handling software have been developed for digital engineering; internal dimension measurement, density analysis, actual and designed shape comparison, STL file generation, and support for reverse engineering and rapid prototyping. The system is designed to collect accurate images in short scanning time (10 s per section) using a MeV-energy electron linear accelerator and highly sensitive semiconductor detectors in order to scan large objects made of aluminum and/or iron. An excellent environment in digital engineering is provided by the software products; 'StereoCooker' for 3D bitmap CAD (rendering, feature extraction, dimensional measurement, and shape comparison, etc.), 'FeatureMaker' for translating bitmap CT data to CAD data including feature information, and 'Wingware' for realizing an Windows PC cluster system 'WINGluster' to apply CT data analysis. (author)

  2. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  3. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  4. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  5. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. In situ x-ray reflectivity and grazing incidence x-ray diffraction study of L 1{sub 0} ordering in {sup 57}Fe/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavendra Reddy, V; Gupta, Ajay; Gome, Anil [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452 017 (India); Leitenberger, Wolfram [Institute of Physics, University of Potsdam, 14469 Potsdam (Germany); Pietsch, U [Physics Department, University of Siegen, D-57068 Siegen (Germany)], E-mail: vrreddy@csr.ernet.in, E-mail: varimalla@yahoo.com

    2009-05-06

    In situ high temperature x-ray reflectivity and grazing incidence x-ray diffraction measurements in the energy dispersive mode are used to study the ordered face-centered tetragonal (fct) L 1{sub 0} phase formation in [Fe(19 A)/Pt(25 A)]{sub x 10} multilayers prepared by ion beam sputtering. With the in situ x-ray measurements it is observed that (i) the multilayer structure first transforms to a disordered FePt and subsequently to an ordered fct L 1{sub 0} phase, (ii) the ordered fct L 1{sub 0} FePt peaks start to appear at 320 deg. C annealing, (iii) the activation energy of the interdiffusion is 0.8 eV and (iv) ordered fct FePt grains have preferential out-of-plane texture. The magneto-optical Kerr effect and conversion electron Moessbauer spectroscopies are used to study the magnetic properties of the as-deposited and 400 deg. C annealed multilayers. The magnetic data for the 400 {sup 0}C annealed sample indicate that the magnetization is at an angle of {approx}50 deg. from the plane of the film.

  7. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  8. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  9. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-ray Mission

    Science.gov (United States)

    Harrison, Fiona A.; Craig, Willliam W.; Christensen, Finn E.; Hailey, Charles J.; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Cook, W. Rick; Forster, Karl; Giommi, Paolo; hide

    2013-01-01

    High-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the 10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to thepeak epoch of galaxy assembly in the universe (at z 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element 44Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

  10. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  11. High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.

    Science.gov (United States)

    Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan

    2017-10-10

    V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.

  12. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  13. REX - a program for the analysis of X-ray reflectivity data: user guide and programmer manual

    International Nuclear Information System (INIS)

    Crabb, T.A.; Gibson, P.N.

    1992-12-01

    A FORTRAN program REX, which has been developed to facilitate the interpretation of X-ray reflectivity data, is described. The program allows the simulation of reflectivity profiles as a function of either incident angle or of energy. Factors such as anomalous dispersion, and surface and interface roughness are taken into account in the model. In addition, experimental data of reflectivity as a function of incident angle can be matched to user-supplied theoretical parameters by a least-squares refinement procedure. Experimental reflectivity data recorded at several X-ray wavelengths can be analysed simultaneously, thus eliminating certain experimental errors. (author)

  14. Fundamentals of energy dispersive X-ray analysis

    CERN Document Server

    Russ, John C; Kiessling, R; Charles, J

    1984-01-01

    Fundamentals of Energy Dispersive X-ray Analysis provides an introduction to the fundamental principles of dispersive X-ray analysis. It presents descriptions, equations, and graphs to enable the users of these techniques to develop an intuitive and conceptual image of the physical processes involved in the generation and detection of X-rays. The book begins with a discussion of X-ray detection and measurement, which is accomplished by one of two types of X-ray spectrometer: energy dispersive or wavelength dispersive. The emphasis is on energy dispersive spectrometers, given their rather wid

  15. Laboratory characterization of Woelter x-ray optics

    International Nuclear Information System (INIS)

    Remington, B.A.; Morales, R.I.

    1994-04-01

    We have conducted an extensive series of characterization measurements of a Woe1ter incidence x-ray microscope. The measurements were carried out on 5% sectors of the Woe1ter x-ray optic in a laboratory utilizing a high brightness, ''point'' x-ray source and fall into two categories. (1) Absolute reflectance measurements as a function of x-ray energy were made with Si(Li) detectors to acquire continuum spectra prior to and after reflecting off the Woe1ter optic. (2) Spatial resolution measurements were made using back-illuminated pinholes or grids imaged onto film or an x-ray CCD camera. The depth of field was mapped out by varying the distance between the Woe1ter optic and the backlit grid

  16. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  17. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  18. X-ray reflectivity of cobalt and titanium in the vicinity of the Lsub(2,3) absorption edges

    International Nuclear Information System (INIS)

    Bremer, J.; Kaihola, L.; Keski-Kuha, R.

    1980-01-01

    X-ray reflectivity across cobalt and titanium Lsub(2,3) absorption edges was measured as a function of energy by means of continuous radiation from a tungsten anode in a grating spectrometer. The real and imaginary parts of the refractive index were obtained from the absorption curves and an exact Kramers-Kronig analysis. A measured fine structure in the reflected intensities was interpreted as an effect of white lines in the absorption spectra. The x-ray intensity was calculated as a function of energy by means of the Fresnel formula. (author)

  19. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    Science.gov (United States)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  20. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    Science.gov (United States)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  1. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  2. Evaluation of the soft x-ray reflectivity of micropore optics using anisotropic wet etching of silicon wafers.

    Science.gov (United States)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro

    2010-02-20

    The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K(alpha)0.28 keV and Al K(alpha)1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K(alpha) (approximately 6 nm rms) is significantly larger than approximately 1 nm at Al K(alpha). This can be explained by different coherent lengths at two energies.

  3. Evaluation of the soft x-ray reflectivity of micropore optics using anisotropic wet etching of silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Koshiishi, Masaki; Mita, Makoto; Maeda, Yoshitomo; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Shirata, Takayuki; Hayashi, Takayuki; Takano, Takayuki; Maeda, Ryutaro

    2010-02-20

    The x-ray reflectivity of an ultralightweight and low-cost x-ray optic using anisotropic wet etching of Si (110) wafers is evaluated at two energies, C K{alpha}0.28 keV and Al K{alpha}1.49 keV. The obtained reflectivities at both energies are not represented by a simple planar mirror model considering surface roughness. Hence, an geometrical occultation effect due to step structures upon the etched mirror surface is taken into account. Then, the reflectivities are represented by the theoretical model. The estimated surface roughness at C K{alpha} ({approx}6 nm rms) is significantly larger than {approx}1 nm at Al K{alpha}. This can be explained by different coherent lengths at two energies.

  4. A study on the measurement of effective energy of leakage X-rays

    International Nuclear Information System (INIS)

    Fijimoto, Nobuhisa; Oogama, Noboru; Nishitani, Motohiro; Yamada, Katsuhiko

    1997-01-01

    It is important to correct for the energy response of the X-ray detector in measuring X-ray leakage from the protective barrier of the examination room. However, measurement of effective energy of leakage X-rays is very difficult in the clinical setting. In this paper, we discuss a method for estimating the effective energy of both primary and scattered X-rays. This method is based on the measurement of leakage X-ray spectra using a semiconductor-fitted X-ray detector and analyzing the relationship between X-ray tube voltage and effective energy. In this study. we found that the effective energy of leakage X-rays was not dependent on the thickness of shielding materials like concrete and lead. With the concrete barrier, it was possible to express the relation-ship between X-ray tube voltage and the effective energy of leakage X-rays with a simple approximate equation. With the lead-lined barrier, the absorption of the K-edge of lead needs to be considered in estimating the effective energy of leakage X-rays at relatively high tube voltages. (author)

  5. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-01-01

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D max were found to be 2.8, 3.0, 3.2, and 3.4 mm (±0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm±0.2 mm (Kodak EDR2) and 3.6 mm±0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D max was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams

  6. X-ray specular reflection and fluorescence study of nano-films

    International Nuclear Information System (INIS)

    Zheludeva, S.; Novikova, N.

    2001-01-01

    The techniques that combine the advantages of high-resolution structure sensitive x-ray methods with spectroscopic selectivity of data obtained are shown to be extremely promising for characterization of organic and inorganic nano films and nano structures. Fluorescence yield angular dependences exited by complicated evanescent wave / x-ray standing wave pattern at total reflection and glancing incidence can be used to detect structure position of different ions in organic systems and alien interfacial layers in inorganic multilayers;, to get information about interdiffusion at the interfaces of Langmuir- Blodgett (L-B) films and artificial inorganic - x-ray mirrors; to study ion permeation through L-B nano structures - models of biomembrans; to obtain nano - film thickness and density; to get precisely the parameters of small d-space multilayer mirrors, ets

  7. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  8. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  9. Transmission X-ray mirror

    International Nuclear Information System (INIS)

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  10. Design of scanning motion control system for high-energy X-ray industrial CT

    International Nuclear Information System (INIS)

    Duan Liming

    2008-01-01

    A scanning motion control system was developed for the high-energy X-ray industrial computerized tomography (CT). The system consists of an industrial control computer, a counter card, a control card, servo drivers, servo motors, working platforms, gratings and control software. Based on windows driver model(WDM) mode, the composition of the driver pro- gram for the system was studied. Took the motor control card as an example, the method to develop the driver program was researched, and the intercourse process between the device driver program and the user-program was analyzed. The real-time control of the system was implemented using the WDM driver. The real-time performance and reliability of the system can satisfy the requirement of high-energy X-ray industrial CT. (authors)

  11. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  12. Design studies for ITER x-ray diagnostics

    International Nuclear Information System (INIS)

    Hill, K.W.; Bitter, M.; von Goeler, S.; Hsuan, H.

    1995-01-01

    Concepts for adapting conventional tokamak x-ray diagnostics to the harsh radiation environment of ITER include use of grazing-incidence (GI) x-ray mirrors or man-made Bragg multilayer (ML) elements to remove the x-ray beam from the neutron beam, or use of bundles of glass-capillary x-ray ''light pipes'' embedded in radiation shields to reduce the neutron/gamma-ray fluxes onto the detectors while maintaining usable x-ray throughput. The x-ray optical element with the broadest bandwidth and highest throughput, the GI mirror, can provide adequate lateral deflection (10 cm for a deflected-path length of 8 m) at x-ray energies up to 12, 22, or 30 keV for one, two, or three deflections, respectively. This element can be used with the broad band, high intensity x-ray imaging system (XIS), the pulseheight analysis (PHA) survey spectrometer, or the high resolution Johann x-ray crystal spectrometer (XCS), which is used for ion-temperature measurement. The ML mirrors can isolate the detector from the neutron beam with a single deflection for energies up to 50 keV, but have much narrower bandwidth and lower x-ray power throughput than do the GI mirrors; they are unsuitable for use with the XIS or PHA, but they could be used with the XCS; in particular, these deflectors could be used between ITER and the biological shield to avoid direct plasma neutron streaming through the biological shield. Graded-d ML mirrors have good reflectivity from 20 to 70 keV, but still at grazing angles (<3 mrad). The efficiency at 70 keV for double reflection (10 percent), as required for adequate separation of the x-ray and neutron beams, is high enough for PHA requirements, but not for the XIS. Further optimization may be possible

  13. Energy dispersive X-ray diffraction at high pressure in CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Baublitz, M.A. Jr.

    1981-01-01

    Energy dispersive X-ray techniques were used with a diamond anvil cell in the Cornell High Energy Synchrotron Source (CHESS). It was shown that quantitative relative intensity measurement could be made when the pressure was hydrostatic and the crystals were relatively defect free. The crystal structures of the high pressure polymorphs of Ge, GaAs, GaP, and AlSb were studied. Ge exhibits the β-tetragonal structure as found by Jamieson; however, the transition pressure is 80 +- 5 kbars. GaAs exhibits an orthorhombic structure above 172 +- 7 kbars, GaP the β-Sn structure above 215 +- 8 kbars, and AlSb an orthorhombic structure above 77 +- 5 kbars. (Auth.)

  14. A new device for energy-dispersive x-ray fluorescence

    Science.gov (United States)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  15. Final Report - X-ray Studies of Highly Correlated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Clement [Western Michigan Univ., Kalamazoo MI (United States)

    2017-11-27

    The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wave in high temperature superconducting materials.

  16. 30-lens interferometer for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G. [European Synchrotron Radiation facility (ESRF), CS 40220, 71, av des Martyrs, F-38043, Grenoble (France); Kohn, V. [National Research Centre “Kurchatov Institute”, 123182, Moscow (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka (Russian Federation); Snigirev, A. [Baltic Federal University, 236041, Kaliningrad (Russian Federation)

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  17. Effective Energy Determination Of Radiodiagnostic X-Rays

    International Nuclear Information System (INIS)

    Sumarni; Mart, Terry

    2000-01-01

    X-rays have been used for diagnostic radiology to produce image on film that give anatomy information. Effective energy should be known to get benefit exposure. Half value layer (HVL) as shown as monoenergetic x-rays has similar spectra of energy x-rays. It has been done measurement with x-ray machine Tanka at P3KRBIN-Batan for 40 kVp to 119 kVp of potential found of Aluminium HVL are 0.115 cm to 0.385 cm and energy effective between 23.24 keV to 37.5 keV

  18. Ultra-short-period W/B4C multilayers for x-ray optics-microstructure limits on reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Christopher Charles [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-12-01

    Multilayer thin films are used as Bragg reflectors for soft x-rays in the energy range 50eV < E < 1000eV in many x-ray optics applications such as x-ray microscopes and telescopes, reducing optics for extreme ultraviolet (EUV) lithography, and x-ray polarizers and phase retarders. Applications often depend critically on reflectivity, which has not been systematically characterized for multilayer periods below 20Å. For this study, W/B4C multilayers were fabricated by magnetron sputtering on Si(111), with periods from 48Å to as little as 4.7Å. The x-ray reflectivity measured at λ = 1.54Å and at 45° incidence (289 eV < E < 860 eV) was found to decrease sharply for multilayer periods less than 15-20Å. Examination by high-resolution transmission electron microscopy (HRTEM) showed an expansion of the thickness of the W-rich layers of 30-40% from the nominal values, consistent with intermixture of the two materials during sputter growth, and discontinuous W-rich layers for multilayer periods below about 15Å. The experimental data for the specular reflectivity in the hard and soft x-ray regimes and the diffuse scattering fit well to a model of multilayer roughness. The model is expressed as a power-law dependence of roughness on spatial frequency. Analysis of small-angle scattering in transmission from multilayers grown on freestanding Si3N4 membranes confirms the onset of discontinuity at periods between 14Å and 22Å. Spectroscopy studies by x-ray absorption (NEXAFS) and electron energy loss (EELS) at the boron K-edge (188eV) are consistent with changes in the average boron bonding environment, as the multilayer period decreases and the W-rich layers are increasingly thin and dispersed. A discrete W-rich phase is present for periods at least as small as 6.3Å.

  19. Microstructures for high-energy x-ray and particle-imaging applications

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Stone, G.F.; Hawryluk, A.M.

    1981-05-01

    Coded imaging techniques using thick, micro-Fresnel zone plates as coded apertures have been used to image x-ray emissions (2-20 keV) and 3.5 MeV Alpha particle emissions from laser driven micro-implosions. Image resolution in these experiments was 3-8 μm. Extension of this coded imaging capability to higher energy x-rays (approx. 100 keV) and more penetrating charged particles (e.g. approx. 15 MeV protons) requires the fabrication of very thick (50-200 μm), high aspect ratio (10:1), gold Fresnel zone plates with narrow linewidths (5-25 μm) for use as coded aperatures. A reactive ion etch technique in oxygen has been used to produce thick zone plate patterns in polymer films. The polymer patterns serve as electroplating molds for the subsequent fabrication of the free-standing gold zone plate structures

  20. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    Science.gov (United States)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  1. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  2. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  3. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California, 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  4. A possible very high energy gamma-ray burst from Hercules X-1

    International Nuclear Information System (INIS)

    Vishwanath, P.R.; Bhat, P.N.; Ramanamurthy, P.V.; Sreekantan, B.V.

    1989-01-01

    A large increase is observed in the trigger rate in the direction of Hercules X-1 in the Atmospheric Cerenkov array at Pachmarhi, India. The burst lasted from 2147 UT to 2201 UT on April 11, 1986. The accidental coincidence rate did not show any increase during the burst. Barring any electronic noise or celestial or terrestrial optical phenomenon with time structure similar to that of atmospheric Cerenkov phenomenon, the increase is ascribed to TeV gamma rays from Her X-1. The number of gamma-ray events during the burst amounted to about 54 percent of the cosmic-ray flux, resulting in a 42-sigma effect. This is the largest TeV gamma-ray signal seen from any source till now. The time-averaged flux for the burst period is 1.8 x 10 photons/sq cm per s above a threshold energy of 0.4 TeV, which results in a luminosity of 1.8 x 10 to the 37 ergs/s. The burst took place at the end of the 'high on' state in the 35-day cycle of the Her X-1 binary system indicating accretion disk as the possible production site. 14 refs

  5. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  6. Development of a dual MCP framing camera for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  7. High-energy synchrotron x-ray diffraction studies on disordered materials. From ambient condition to an extreme condition

    International Nuclear Information System (INIS)

    Kohara, Shinji; Ohishi, Yasuo; Suzuya, Kentaro; Takata, Masaki

    2007-01-01

    High-energy x-rays from synchrotron radiation source allow us to measure high-quality diffraction data of the disordered materials from under ambient condition to an extreme condition, which is necessary to reveal the detailed structure of glass, liquid, and amorphous materials. We introduce the high-energy x-ray diffraction beamline and dedicated diffractometer for glass, liquid, and amorphous materials with the recent developments of ancillary equipments. Furthermore our recent studies on the structures of disordered materials reviewed. (author)

  8. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  9. Quantitative determination on heavy metals in different stages of wine production by Total Reflection X-ray Fluorescence and Energy Dispersive X-ray Fluorescence: Comparison on two vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, Sofia [Centro Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Carvalho, Maria Luisa, E-mail: luisa@cii.fc.ul.p [Centro Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Becker, Maria; Bohlen, Alex von [Institute for analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund (Germany)

    2010-06-15

    The purpose of this study is to determine the elemental content, namely heavy metals, of samples of vine-leaves, grapes must and wine. In order to assess the influence of the vineyard age on the elemental content throughout the several stages of wine production, elemental determinations of trace elements were made on products obtained from two vineyards aged 6 and 14 years from Douro region. The elemental content of vine-leaves and grapes was determined by Energy Dispersive X-Ray Fluorescence (EDXRF), while analysis of the must and wine was performed by Total Reflection X-ray Fluorescence (TXRF). Almost all elements present in wine and must samples did not exceed the recommended values found in literature for wine. Bromine was present in the 6 years old wine in a concentration 1 order of magnitude greater than what is usually detected. The Cu content in vine-leaves from the older vineyard was found to be extremely high probably due to excessive use of Cu-based fungicides to control vine downy mildew. Higher Cu content was also detected in grapes although not so pronounced. Concerning the wine a slightly higher level was detected on the older vineyard, even so not exceeding the recommended value.

  10. Quantitative determination on heavy metals in different stages of wine production by Total Reflection X-ray Fluorescence and Energy Dispersive X-ray Fluorescence: Comparison on two vineyards

    International Nuclear Information System (INIS)

    Pessanha, Sofia; Carvalho, Maria Luisa; Becker, Maria; Bohlen, Alex von

    2010-01-01

    The purpose of this study is to determine the elemental content, namely heavy metals, of samples of vine-leaves, grapes must and wine. In order to assess the influence of the vineyard age on the elemental content throughout the several stages of wine production, elemental determinations of trace elements were made on products obtained from two vineyards aged 6 and 14 years from Douro region. The elemental content of vine-leaves and grapes was determined by Energy Dispersive X-Ray Fluorescence (EDXRF), while analysis of the must and wine was performed by Total Reflection X-ray Fluorescence (TXRF). Almost all elements present in wine and must samples did not exceed the recommended values found in literature for wine. Bromine was present in the 6 years old wine in a concentration 1 order of magnitude greater than what is usually detected. The Cu content in vine-leaves from the older vineyard was found to be extremely high probably due to excessive use of Cu-based fungicides to control vine downy mildew. Higher Cu content was also detected in grapes although not so pronounced. Concerning the wine a slightly higher level was detected on the older vineyard, even so not exceeding the recommended value.

  11. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  12. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  13. Adjustment of a low energy, X-rays generator (6 kV - 50 mA). Application to X-rays detectors calibration

    International Nuclear Information System (INIS)

    Legistre, C.

    1995-02-01

    The aim of this memoir is the calibration of an aluminium photocathode X-rays photoelectric detector, in the spectral range 0,5 keV - 1,5 KeV, with a continuous X-ray source. The detectors's calibration consist to measure the detector's sensitivity versus incident energy. In order to produce monochromatic incident beam on the detector, we used a multilayer mirror whose reflectivity was characterized. The measurements are compared to those realized in an other laboratory. (authors). 36 refs., 61 figs., 13 tabs., 2 photos

  14. Low-energy gamma rays from Cygnus X-1

    International Nuclear Information System (INIS)

    Roques, J.P.; Mandrou, P.; Lebrun, F.; Paul, J.

    1985-08-01

    Cyg X-1 was observed by the CESR balloon borne telescope OPALE, in June 1976. The high-energy spectrum of the source, which was in its ''superlow state'', was seen to extend well beyond 1 MeV. In this paper, the observed low-energy γ-ray component of Cyg X-1 is compared with the predictions of recent models involving accretion onto a stellar black hole, and including a possible contribution from the pair-annihilation 511 keV γ-ray line

  15. Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.; MAGIC Collaboration; Bosch-Ramon, V.; Pooley, G. G.; Trushkin, S. A.; Zanin, R.

    2017-12-01

    The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E ≳ 60 MeV) gamma-ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E ≳ 100 GeV) regime during this X-ray state. We analyse ∼97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 × 10-12 photons cm-2 s-1 and 1.0 × 10-11 photons cm-2 s-1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.

  16. On the X-ray reflectivity by poly allyl diglycol carbonate (PADC)

    International Nuclear Information System (INIS)

    Ghazaly, M. El

    2011-01-01

    X-ray reflectivity via the poly allyl diglycol carbonate (CR-39 polymer sheet) was investigated. X-ray reflectivity was measured for a pristine and a chemically etched CR-39 detector in 6.25N NaOH at (70 ± 0.5) .deg. C for different durations. Far from the spectral peak, the reflectivity of the CR-39 polymer sheet has a wide peak at 2θ = 20.1 .deg. , and its intensity is decreased by increasing the etching time. Moreover, the integrated counts under the peaks, C(t e ), vary linearly as a function of the etching time t e . Data are fitted using a linear function C(t e ) = A+Bt e , with fitting parameters A = (3271 ± 170) and B = (- 960 ± 84). The reflectivity deterioration is attributed to the increase of CR-39 surface's roughness due to the chemical etching. The rocking curves of X-ray reflectivity were measured for a pristine and an etched CR-39 polymer sheet. Specular reflections are observed, as well as Yoneda wings, which broaden and move away from the specular reflections due to the increase in the CR-39 surface's roughness.

  17. Characteristics of high-energy X-rays using computed radiography systems

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuhiro; Mori, Yoshinobu

    1993-01-01

    A computed radiography (CR) with storage phosphor technology has advanced remarkably. Its application has been also discussed regarding the field of radiotherapy and studies have been made to shift from the film/screen system to the portal film using the CR system. The authors started to research CR portal imaging with high energy X-ray (10MV) on a regular scale in 1989. This paper deals with characteristics of high energy X-rays using the CR system. The digital characteristic curve corresponded with calculated value for dynamic range (L-value). The monitor unit (MU) counts at pixel (digital) value saturation point were L-value 0.5:28 MU, L-value 1.0:50 MU, L-value 2.0:167 MU, L-value 3.0:450 MU, L-value 4.0:1614 MU. The image contrast with the Mix-Dp phantom was L-value 0.5: about a 300 pixel value and L-value 4.0: about a 30 pixel value by a phantom 10 to 18 cm in thickness. Optimum L-value was 0.5, and tone-scale was the straight type of CR portal imaging using the graphy count mode. Optimum L-value was 4.0, and tone-scale was a rectangular wave type of CR portal imaging using therapeutic doses, and those were also described by the histogram analysis. (author)

  18. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

  19. Energy spectrum analysis between single and dual energy source x-ray imaging for PCB non-destructive test

    International Nuclear Information System (INIS)

    Park, Kyeong Jin; Kim, Myung Soo; Lee, Min Ju; Kang, Dong Uk; Lee, Dae Hee; Kim, Ye Won; Kim, Chan Kyu; Kim, Hyoung Taek; Kim, Gi Yoon; Cho, Gyu Seong

    2015-01-01

    Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB nondestructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency

  20. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    International Nuclear Information System (INIS)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-01-01

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin

  1. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Energy Technology Data Exchange (ETDEWEB)

    Troussel, Ph., E-mail: philippe.troussel@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Dennetiere, D. [Synchrotron Soleil, L’orme des Merisiers, 91190 Saint-Aubin (France); Maroni, R. [CEA, DAM, DIF, F-91297 Arpajon (France); Høghøj, P.; Hedacq, S. [Xenocs SA, 19, rue François Blumet, F-38360 Sassenage (France); Cibik, L.; Krumrey, M. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

    2014-12-11

    The “Commissariat à l’énergie atomique et aux énergies alternatives” (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  2. Multilayer optics for monochromatic high-resolution X-ray imaging diagnostic in a broad photon energy range from 2 keV to 22 keV

    Science.gov (United States)

    Troussel, Ph.; Dennetiere, D.; Maroni, R.; Høghøj, P.; Hedacq, S.; Cibik, L.; Krumrey, M.

    2014-12-01

    The "Commissariat à l'énergie atomique et aux énergies alternatives" (CEA) studies and designs advanced X-ray diagnostics to probe dense plasmas produced at the future Laser MegaJoule (LMJ) facility. Mainly for X-ray imaging with high spatial resolution, different types of multilayer mirrors were developed to provide broadband X-ray reflectance at grazing incidence. These coatings are deposited on two toroidal mirror substrates that are then mounted into a Wolter-type geometry (working at a grazing angle of 0.45°) to realize an X-ray microscope. Non-periodic (depth graded) W/Si multilayer can be used in the broad photon energy range from 2 keV to 22 keV. A third flat mirror can be added for the spectral selection of the microscope. This mirror is coated with a Mo/Si multilayer for which the d-spacing varies in the longitudinal direction to satisfy the Bragg condition within the angular acceptance of the microscope and also to compensate the angular dispersion due to the field of the microscope. We present a study of such a so-called Göbel mirror which was optimized for photon energy of 10.35 keV. The three mirrors were coated using magnetron sputtering technology by Xenocs SA. The reflectance in the entire photon energy range was determined in the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the synchrotron radiation facility BESSY II in Berlin.

  3. High energy x-ray synchrotron radiation analysis of residual stress distribution of shot-peened steels

    International Nuclear Information System (INIS)

    Tanaka, Keisuke; Akiniwa, Yoshiaki; Kimachi, Hirohisa; Suzuki, Kenji; Yanase, Etsuya; Nishio, Kouji; Kusumi, Yukihiro

    2001-01-01

    A high energy X-ray beam from synchrotron radiation source SPring-8 was used to determine the residual stress distribution beneath the shot-peened surface of carbon steel plates. By using the monochromatic X-ray beam with an energy of 72 keV, the relation between 2θ and sin 2 ψ was obtained by the side-inclination method upto sin 2 ψ = 0.9. The distribution of the residual stress was determined from the non-linearity of the relation between 2θ and sin 2 ψ. (author)

  4. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    International Nuclear Information System (INIS)

    Singh, Surendra; Basu, Saibal

    2016-01-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  5. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2016-05-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  6. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 India (India)

    2016-05-23

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  7. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  8. Reflectivity and diffraction of X rays applied to organic thin films

    International Nuclear Information System (INIS)

    Rieutord, Francois

    1987-01-01

    This research thesis reports the study of organic thin films by using X-ray-based technologies, and more particularly X-ray reflectivity. After some recalls on X ray diffraction, and on the fabrication of Langmuir-Blodgett films, the author shows how, by combining three X-ray-based techniques, it is possible to study a volume structure of a thin film. He describes the technique of measurement by X- ray reflexivity, its experimental implementation, and methods for result interpretation. In the next part, the author reports the study of peculiar interference effects which are noticed in reflexivity on Langmuir-Blodgett films, and then describes the nature of these films by correlating results of X ray reflexivity with direct observations performed by electronic microscopy on replica [fr

  9. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  10. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  11. The Effects of High Density on the X-ray Spectrum Reflected from Accretion Discs Around Black Holes

    Science.gov (United States)

    Garcia, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Micahel L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jorn

    2016-01-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter (xi), which is the ratio of the incident flux to the gas density. The density is typically fixed at n(sub e) = 10(exp 15) per cu cm. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(sub e) approximately greater than 10(exp 17) per cu cm that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies 2 approximately less than keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  12. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  13. Total reflection X-ray photoelectron spectroscopy: A review

    International Nuclear Information System (INIS)

    Kawai, Jun

    2010-01-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is reviewed and all the published papers on TRXPS until the end of 2009 are included. Special emphasis is on the historical development. Applications are also described for each report. The background reduction is the most important effect of total reflection, but interference effect, relation to inelastic mean free path, change of probing depth are also discussed.

  14. The high energy X-ray spectrum of 4U 0900-40 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Ellison, D. C.

    1981-01-01

    The X-ray source 4U 0900-40 (= Vela XR-1) was observed with the high-energy X-ray spectrometer on OSO 8 for one week in 1976 and three weeks in 1978. Spectra of the source are presented above 16 keV. No systematic difference exists between the X-ray eclipse centers and the eclipse centers predicted from optical ephermerides. Short period intrinsic variability in the system's X-ray intensity may be related to changes in the Compton scattering optical depth in the system and does not require sporadic mass transfer via Roche lobe overflow. The 282 s modulation in the source's X-ray flux above 21 keV consists of two essentially similar pulses per period, most easily interpreted as arising from the two different magnetic poles of a rotating neutron star. The secondary appears to be a spherically accreting, magnetic neutron star.

  15. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  16. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  17. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  18. Inelastic X-ray scattering activities in Europe

    International Nuclear Information System (INIS)

    Dorner, B.

    1984-01-01

    Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper

  19. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  20. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  1. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    International Nuclear Information System (INIS)

    Fernandez-Ruiz, R.; Garcia-Heras, M.

    2008-01-01

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies

  2. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Servicio Interdepartamental de Investigacion, Facultad de Ciencias, Universidad Autonoma de Madrid, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Grupo de Arqueometria de Vidrios y Materiales Ceramicos, Instituto de Historia, Centro de Ciencias Humanas y Sociales, CSIC, C/ Albasanz, 26-28, 28037 Madrid (Spain)

    2008-09-15

    This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.

  3. Dosimetry of x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Takayoshi; Abe, Nobuyuki; Kawanishi, Masaharu

    1980-01-01

    Study on the dosimetry of ionizing radiations, especially of X-rays, emitted from high-temperature plasms has been made. As to the unpolarized Bremsstrahlung, a brief method to estimate electron temperatures with TLD is described and evaluation of average energy and current of the run-away electrons in the turbulent heating Tokamak is made by observing the half-value layer of the emitted X-rays and the total exposure per one shot of the Tokamak discharge. As to the polarized one, it is shown that the anisotropic electron temperature is related to the degree of polarization of the X-rays. Furthermore, reference is made to the possibility of developing such X-ray generators as can emit nearly monochromatic X-rays (characteristic X-rays) or polarized ones arbitrarily. (author)

  4. Prototyping iridium coated mirrors for x-ray astronomy

    Science.gov (United States)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  5. A low cost multi-purpose experimental arrangement for variants in energy dispersive X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F.; Silva, R.M.C.; Moraes, L.M.B.; Parreira, P.S.; Appoloni, R.C.; Silva, R.M.C.

    2005-01-01

    Based in an X-ray tower with four exits (two line and two point beams) experimental conditions were arranged to carry out variants in energy dispersive X-ray fluorescence analysis: (1) the conventional one (EDXRF), with excitation/detection of thin and thick samples, under vacuum and air atmosphere, (2) the X-ray energy dispersive micro- fluorescence analysis(μ-EDXRF), with 2D mapping, using a quartz capillar, (3) the total reflection X-ray fluorescence (TXRF), under He and air atmosphere, and (4) secondary target/polarized X-ray fluorescence (P-EDXRF). It was possible to use a Cu, Mo or W target on the X-ray tube, with or without filter (V, Fe, Ni and Zr), and Si(Li) or Si-PIN semicondutor detectors coupled to a multichannel analyzer. In addition, it was possible to use the point beam to carry out experiments on (5) X-ray radiography and (6) X-ray absorption, and the line beam on (7) X-ray diffractometry studies.

  6. Self-consistent approach to x-ray reflection from rough surfaces

    International Nuclear Information System (INIS)

    Feranchuk, I. D.; Feranchuk, S. I.; Ulyanenkov, A. P.

    2007-01-01

    A self-consistent analytical approach for specular x-ray reflection from interfaces with transition layers [I. D. Feranchuk et al., Phys. Rev. B 67, 235417 (2003)] based on the distorted-wave Born approximation (DWBA) is used for the description of coherent and incoherent x-ray scattering from rough surfaces and interfaces. This approach takes into account the transformation of the modeling transition layer profile at the interface, which is caused by roughness correlations. The reflection coefficients for each DWBA order are directly calculated without phenomenological assumptions on their exponential decay at large scattering angles. Various regions of scattering angles are discussed, which show qualitatively different dependence of the reflection coefficient on the scattering angle. The experimental data are analyzed using the method developed

  7. High energy x-ray and neutron studies of disordered energy-related materials at extreme conditions

    International Nuclear Information System (INIS)

    Parise, John

    2016-01-01

    The fundamental scientific accomplishments are: (1) advances in a general description of the liquid state by employing structural models constrained by measurements to interpret experimental results and extend them to liquids in general, with special emphasis on (2) The structure of the high-temperature crystal and molten UO_2 and 3) water. Specifically, samples of UO_2 and water were probed using high-energy x-rays at the Advanced Photon Source. The high Z of UO_2, and the 2-3mm diameter droplet shape of the molten sample, means that >100keV X-rays are required to minimize absorption and multiple scattering, which can distort the measured structure factor. A high flux of x-rays is also required to obtain sufficient statistical accuracy in short (a few seconds) measurement times. The scattered x-ray data were analyzed and pair distribution functions, extracted that characterize the local and long-range atomic structure of the material. The measurements of the hot UO_2 solid show a substantial increase in oxygen disorder and, upon melting, the average U-O coordination was found to decrease from 8 to 6.7±0.5. The research incorporated development of diffraction techniques, sample environment optimization and state-of-the-art simulation techniques. The symbiotic nature of the advances in simulation and experiment allowed for a more focused and informed development of future experiments, effective use of expensive beam time and generated new research agendas for the growing number of research groups, within the US and internationally, that focus on the structure of liquids. Molecular dynamics (MD) provided detailed information when combined with high-quality XN data including addressing key issues in liquids; the relationship between cooling path, structure and fictive temperature, and the trade-offs between network over connectedness in liquids containing low-coordination cations.

  8. High energy x-ray and neutron studies of disordered energy-related materials at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Parise, John [Stony Brook Univ., NY (United States)

    2016-05-16

    The fundamental scientific accomplishments are: (1) advances in a general description of the liquid state by employing structural models constrained by measurements to interpret experimental results and extend them to liquids in general, with special emphasis on (2) The structure of the high-temperature crystal and molten UO2 and 3) water. Specifically, samples of UO2 and water were probed using high-energy x-rays at the Advanced Photon Source. The high Z of UO2, and the 2-3mm diameter droplet shape of the molten sample, means that >100keV X-rays are required to minimize absorption and multiple scattering, which can distort the measured structure factor. A high flux of x-rays is also required to obtain sufficient statistical accuracy in short (a few seconds) measurement times. The scattered x-ray data were analyzed and pair distribution functions, extracted that characterize the local and long-range atomic structure of the material. The measurements of the hot UO2 solid show a substantial increase in oxygen disorder and, upon melting, the average U-O coordination was found to decrease from 8 to 6.7±0.5. The research incorporated development of diffraction techniques, sample environment optimization and state-of-the-art simulation techniques. The symbiotic nature of the advances in simulation and experiment allowed for a more focused and informed development of future experiments, effective use of expensive beam time and generated new research agendas for the growing number of research groups, within the US and internationally, that focus on the structure of liquids. Molecular dynamics (MD) provided detailed information when combined with high-quality XN data including addressing key issues in liquids; the relationship between cooling path, structure and fictive temperature, and the trade-offs between network over connectedness in liquids containing low-coordination cations.

  9. Spectral and spatial characteristics of x-ray film/screen combinations up to x-ray energy of 3 MeV

    International Nuclear Information System (INIS)

    Ginzburg, A.; Carmel, Y.; Segal, Y.; Notea, A.

    1986-01-01

    The present study is directed towards quantifying some of the parameters which define the quality of the image obtained on x-ray sensitive films and its usual accompanying intensifying screens. Both industrial (Agfa-Geveart D2,D4,D7) and medical (Kodak XAR-5) films with a variety of screens such as metallic (lead) and fluorescent (calcium tungstate, rare earth) were compared. A variety of sources were employed (radioactive, linear accelerators, flash) in order to cover the average x-ray energy spectrum from 100KeV to 3000KeV. This energy spectrum is of interest for non destructive testing, terminal ballistics and for medical purposes. The results indicate that the sensitivity of industrial x-ray films decreases with energy in the range of 100KeV to 1MeV, levels off and increases again with increasing energy. A 2.75MeV Na 24 radioactive source was used to achieve accurate calibration at the high end of the spectrum. Also, the noise level of x-ray industrial films versus film density was found to peak at a density of D=1.4. The line spread function (LSF) - or resolution - of both industrial and medical film/screen combinations were derived from the optical density of a step wedge response on the film. The noise level of medical films is twice as high compared to industrial films and their LSF is 4 to 8 times larger at x-ray energies of 3MeV. Using Pb screens in contact with common industrial x-ray films yields amplification of 2 (compared to a bare film)

  10. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  11. Final Report on Developing Microstructure-Property Correlation in Reactor Materials using in situ High-Energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meimei [Argonne National Lab. (ANL), Argonne, IL (United States); Almer, Jonathan D. [Argonne National Lab. (ANL), Argonne, IL (United States); Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materials subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were

  12. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  13. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  14. Measurements of internal stresses in bond coating using high energy x-rays from synchrotron radiation source

    CERN Document Server

    Suzuki, K; Akiniwa, Y; Nishio, K; Kawamura, M; Okado, H

    2002-01-01

    Thermal barrier coating (TBC) techniques enable high temperature combustion of turbines made of Ni-base alloy. TBC is made of zirconia top coating on NiCoCrAlY bond coating. The internal stresses in the bond coating play essential role in the delamination or fracture of TBC in service. With the X-rays from laboratory equipments, it is impossible to measure nondestructively the internal stress in the bond coating under the top coating. synchrotron radiations with a high energy and high brightness have a large penetration depth as compared with laboratory X-rays. Using the high energy X-rays from the synchrotron radiation, it is possible to measure the internal stress in the bond coating through the top coating. In this study, the furnace, which can heat a specimen to 1473 K, was developed for the stress measurement of the thermal barrier coatings. The internal stresses in the bond coating were measured at the room temperature, 773 K, 1073 K and 1373 K by using the 311 diffraction from Ni sub 3 Al with about 73...

  15. The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26

    Science.gov (United States)

    Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.; hide

    2017-01-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  16. High efficiency spectro graphs for the EUV and soft x-rays

    International Nuclear Information System (INIS)

    Cash, W.

    1983-01-01

    A basic need of modern UV and x-ray astronomy is the capability to perform high resolution spectroscopy of faint stars. The use of modern grazing incidence optics can be coupled to high blaze angle reflection gratings used in the conical diffraction mount to offer a versatile, efficient approach to the design problem. The authors discuss two designs of interest: an echelle spectrograph for use longward of 100 A, and an Objective Reflection Grating Spectrograph for use in the soft x-rays. General design considerations and measurements of grating efficiencies are also presented

  17. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    2014-01-01

    On September 21-22, 2013, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope, flew as a balloon payload from Ft. Sumner, N.M. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 hour flight. In this paper we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources, applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray-Light (SLF) Facility in Huntsville, AL, and using ray traces.

  18. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    International Nuclear Information System (INIS)

    Dhara, Sangita; Misra, N.L.; Maind, S.D.; Kumar, Sanjukta A.; Chattopadhyay, N.; Aggarwal, S.K.

    2010-01-01

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 μL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO 3 /HClO 4 , mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1σ) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  19. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sangita [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Misra, N.L., E-mail: nlmisra@barc.gov.i [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maind, S.D. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chattopadhyay, N. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Aggarwal, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-02-15

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 muL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO{sub 3}/HClO{sub 4}, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1sigma) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  20. High-energy X-ray observations of extragalactic objects

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Lewin, W.; Kendziorra, E.; Staubert, R.

    1981-01-01

    During a balloon flight from Alice Springs, Australia, six extragalactic sources which are known as potential X-ray sources have been observed in hard X-rays (E > 20 keV). We present X-ray spectra of 3C 273 and Cen-A as well as upper limits on 3C 120, MKN 509, NGC 5506, and MR 2251-178. (orig.)

  1. Total reflection X-ray fluorescence analysis with synchrotron radiation monochromatized by multilayer structures

    International Nuclear Information System (INIS)

    Rieder, R.; Wobrauschek, P.; Ladisich, W.; Streli, C.; Aiginger, H.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.

    1995-01-01

    To achieve lowest detection limits in total reflection X-ray fluorescence analysis (TXRF) synchrotron radiation has been monochromatized by a multilayer structure to obtain a relative broad energy band compared to Bragg single crystals for an efficient excitation. The energy has been set to 14 keV, 17.5 keV, 31 keV and about 55 keV. Detection limits of 20 fg and 150 fg have been achieved for Sr and Cd, respectively. ((orig.))

  2. DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brigida, M.

    2011-01-01

    We present the simultaneous Swift and Fermi observations of the bright GRB 100728A and its afterglow. The early X-ray emission is dominated by a vigorous flaring activity continuing until 1 ks after the burst. In the same time interval, high-energy emission is significantly detected by the Fermi/Large Area Telescope. Marginal evidence of GeV emission is observed up to later times. We discuss the broadband properties of this burst within both the internal and external shock scenarios, with a particular emphasis on the relation between X-ray flares, the GeV emission, and a continued long-duration central engine activity as their power source.

  3. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  4. The 4.8 hour variation of Cygnus X-3 at high X-ray energies

    International Nuclear Information System (INIS)

    Pietsch, W.; Kendziorra, E.; Staubert, R.; Trumper, J.

    1976-01-01

    During a balloon observation of Cygnus X-3 on 1975 February 20, an intensity variation has been found which is in phase with the low-energy X-ray 4.8 hour sinusoidal light curve. The measured relative amplitude in the range 32--64 keV is 0.37 (+0.31, -0.29). Compared with the results at lower energies there is no indication for an energy dependence of the relative amplitude up to 64 keV. The encountered low-intensity source spectrum is compared with previous measurements

  5. Differential effects of x-rays and high-energy 56Fe ions on human mesenchymal stem cells.

    Science.gov (United States)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li, Song; Wang, Daojing

    2009-03-01

    Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) (56)Fe ions on human mesenchymal stem cells (hMSC). A multi-functional comparison was carried out to investigate the differential effects of X-rays and (56)Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. X-rays and (56)Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and (56)Fe ions, with more significant effects from (56)Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy (56)Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. (56)Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation.

  6. Very high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs

  7. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.

    2013-01-01

    Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA......) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class...... reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  8. Hard x-ray to low energy gamma ray spectrum of the Crab Nebula

    International Nuclear Information System (INIS)

    Jung, G.V.

    1986-01-01

    The spectrum of the Crab Nebula has been determined in the energy range 10 keV to 5 MeV from the data of the UCSD/MIT Hard-X-ray and Low Energy Gamma Ray Experiment on the first High Energy Astronomy Observatory, HEAO-1. The x-ray to γ-ray portion of the continuous emission from the Crab is indicative of the electron spectrum, its transport through the nebula, and the physical conditions near the shocked interface between the nebular region and the wind which is the physical link between the nebula and the pulsar, NP0532. The power-law dependence of the spectrum found in the lower-energy decade of this observation (10 to 100 keV) is not continued without modification to higher energies. Evidence for this has been accumulating from previous observations in the γ-ray ranges of 1-10 MeV and above 35 MeV. The observations on which this dissertation is based further characterize the spectral change in the 100 keV to 1 MeV region. These observations provide a crucial connection between the x-ray and γ-ray spectrum of the non-pulsed emission of the Crab Nebula. The continuity of this spectrum suggests that the emission mechanism responsible for the non-pulsed γ-rays observed above 35 MeV is of the same origin as the emission at lower energies, i.e. that of synchrotron radiation in the magnetic field of the nebula

  9. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  10. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  11. Estimation of the effective energy for the diagnostic X-ray

    International Nuclear Information System (INIS)

    Ogama, Noboru; Fujimoto, Nobuhisa; Nishitani, Motohiro; Yamada, Katsuhiko

    2001-01-01

    Because X-ray exposure doses to patients during X-ray diagnoses have been increasing with recent advances in medical technology, it is important that optimum control of the radiation dose be maintained during diagnoses. For an evaluation of an exposure dose, the effective energy of the X-ray must be determined, but this is difficult to accomplish during the diagnosis. Here we propose a new method to estimate the effective energy of an X-ray. The magnitude of energy released from an X-ray generator (2 peaks, 12 peaks, inverter, and constant potential) depends on various parameters, including tube voltage, tube current, tube voltage waveform, and total filtration of the X-ray tube. Therefore the measurement of an X-ray's effective energy was conducted by the half-value layer measurement method, which changes the values of these parameters. The data obtained by this method were analyzed to clarify the relationships between X-ray effective energy and the respective parameters. It was thus demonstrated that these relationships could be expressed by a simple linear approximation formula. For the calculation of X-ray effective energy by use of this approximation formula, errors were found to be within a range of -2.11% to 10.4%. Therefore, this method is considered usable for an accurate estimation of an X-ray's effective energy without the need for its direct determination during diagnosis. (author)

  12. Ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  13. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  14. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  15. Advanced analysis techniques for X-ray reflectivities. Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Klaus Martin

    2005-07-01

    The first part of this thesis adresses the phase problem in X-ray reflectivity. The analytical properties of the reflection coefficient imply that the phase is completely determined by the Hilbert transform of the logarithm of the modulus and the zeros in the upper half complex plane (UHP). To account in addition for interfacial roughness, a new formula for the Hilbert-phase is derived.In the following, the conditions for which the reflection coefficient has zeros in the UHP is discussed and the existing sufficient condition is extended to rough multi-layer systems. Procedures for locating these zeros are developed. The second part of this thesis introduces a new iterative inversion method for X-ray reflectivity. It expands the profile in a set of eigenfunctions, which are discrete approximations of the eigenfunction of the classical reconstruction problem of a compact supported function from its partially known Fourier-transform. In this work, piecewise constant functions, polygons and second-order B-splines are used to expand the density profile. The eigenvalue problems for the calculation of the above mentioned approximations are stated and solved. The formalism for the calculation of the reflection coefficient for these profiles is developed in dynamical and single-scattering theory. In the experimental part of this work iterative inverse schemes are applied to the analysis of X-ray reflectivity. Different sample systems are investigated: For two titanium-carbon samples tiny details at the Ti/C interface such as the formation of a thin TiC layer can be observed.The density profiles obtained from the reflectivities taken from nickel-carbon samples show the formation of SiC inside the Si sub strate. Finally, the new inversion scheme is applied to a series of reflectivities from a 700 AaSiGe film on a substrate.

  16. Advanced analysis techniques for X-ray reflectivities. Theory and application

    International Nuclear Information System (INIS)

    Zimmermann, Klaus Martin

    2005-01-01

    The first part of this thesis adresses the phase problem in X-ray reflectivity. The analytical properties of the reflection coefficient imply that the phase is completely determined by the Hilbert transform of the logarithm of the modulus and the zeros in the upper half complex plane (UHP). To account in addition for interfacial roughness, a new formula for the Hilbert-phase is derived.In the following, the conditions for which the reflection coefficient has zeros in the UHP is discussed and the existing sufficient condition is extended to rough multi-layer systems. Procedures for locating these zeros are developed. The second part of this thesis introduces a new iterative inversion method for X-ray reflectivity. It expands the profile in a set of eigenfunctions, which are discrete approximations of the eigenfunction of the classical reconstruction problem of a compact supported function from its partially known Fourier-transform. In this work, piecewise constant functions, polygons and second-order B-splines are used to expand the density profile. The eigenvalue problems for the calculation of the above mentioned approximations are stated and solved. The formalism for the calculation of the reflection coefficient for these profiles is developed in dynamical and single-scattering theory. In the experimental part of this work iterative inverse schemes are applied to the analysis of X-ray reflectivity. Different sample systems are investigated: For two titanium-carbon samples tiny details at the Ti/C interface such as the formation of a thin TiC layer can be observed.The density profiles obtained from the reflectivities taken from nickel-carbon samples show the formation of SiC inside the Si sub strate. Finally, the new inversion scheme is applied to a series of reflectivities from a 700 AaSiGe film on a substrate.

  17. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  18. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  19. X-Ray Observations of High-Energy Pulsars: PSR B1951+32 and Geminga

    Science.gov (United States)

    Ho, Cheng

    Observations at frequencies across a wide range of electromagnetic spectra are key to the understanding of the origin and mechanisms of high-energy emissions from pulsars. We propose to observe the high-energy pulsars PSR B1951+32 and Geminga with XTE. These two sources emit X-rays at low enough count rate that we can acquire high resolution timing and spectral data, allowing us to perform detailed analysis on the ground. Staring integration of 10 ksec for each source is requested. Data obtained in these observations, together with those from ROSAT, GRO and a planned project for optical counterpart study at Los Alamos, will provide crucial information to advance high-energy pulsar research.

  20. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, J.V.; Craig, W.; Decker, T. [Lawrence Livermore National Lab., CA (United States); Aarts, H.; Boggende, T. den; Brinkman, A.C. [Space Research Organization Netherlands, Utrecht (Netherlands); Burkert, W.; Brauninger, H. [Max-Planck Institute fur Extraterrestische Physik, Testanlage (Germany); Branduardi-Raymont, G. [Univ. College London (United Kingdom); Dubbeldam, L. [Space Research Organization Netherlands, Leiden (Netherlands)] [and others

    1994-07-12

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  1. Differential Effects of X-Rays and High-Energy 56Fe Ions on Human Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li Song; Wang Daojing

    2009-01-01

    Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) 56 Fe ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and 56 Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and 56 Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and 56 Fe ions, with more significant effects from 56 Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy 56 Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: 56 Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation

  2. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  3. On the wide-energy-range tuning of x-ray photoemission electron microscope optics for the observation of the photoelectrons excited by several keV x-rays

    International Nuclear Information System (INIS)

    Yasufuku, H.; Yoshikawa, H.; Kimura, M.; Vlaicu, A.M.; Kato, M.; Kudo, M.; Fujikata, J.; Fukushima, S.

    2006-01-01

    We have newly developed an x-ray photoemission electron microscope (XPEEM) which uses both soft x-rays and hard x-rays at the undulator beam line BL15XU in the synchrotron radiation (SR) facility SPring-8 to observe various practical materials. In combination with an energy analyzer and high brilliant x-ray source, the detection of high kinetic energy inner-shell photoelectrons is essential for revealing the chemical properties of specimen subsurfaces or buried interfaces, owing to long inelastic mean free path of the high kinetic energy photoelectrons. The most significant result in our design is the new combined electric and magnetic field objective lens in which the magnetic field penetrates up to the sample surface. This allows the measurement with high spatial resolution of both low intensity images of inner-shell photoelectrons with high kinetic energy and high intensity images of secondary electrons. By using the sample bias scan method, we can easily change the focus condition of the objective lens in order to allow the energy filtered imaging with photoelectrons having the kinetic energy in a wide range (1-10 000 eV). By the combination of high brilliant SR x-rays, the new objective lens, and sample bias method, our XPEEM can successfully obtain the microarea x-ray photoelectron spectra and energy filtered XPEEM images of inner-shell photoelectrons, such as Si 1s, without any surface cleaning procedure. The energy filtered XPEEM image using photoelectrons from deep inner shells, Si 1s, was obtained for the first time

  4. A low power x-ray tube for use in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Kataria, S.K.; Govil, Rekha; Lal, M.

    1980-01-01

    A low power X-ray tube with thin molybdenum transmission target for use in energy dispersive X-ray fluorescence (ENDXRF) element analysis has been indigenously built, along with its power supply. The X-ray tube has been in operation since August 1979, and it has been operated upto maximum target voltage of 35 KV and tube current upto 200 μA which is more than sufficient for trace element analysis. This X-ray tube has been used alongwith the indigenously built Si(Li) detector X-ray spectrometer with an energy resolution of 200 eV at 5.9 Kev MnKsub(α) X-ray peak for ENDXRF analysis. A simple procedure of calibration has been developed for thin samples based on the cellulose diluted, thin multielement standard pellets. Analytical sensitivities of the order of a few p.p.m. have been obtained with the experimental setup for elements with 20 < = Z < = 38 and 60 < = Z < = 90. A number of X-ray spectra for samples of environmental, biological, agricultural, industrial and metallurgical interest are presented to demonstrate the salient features of the experimental sep up. (auth.)

  5. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  6. Overview of high intensity x-ray and gamma-ray sources

    International Nuclear Information System (INIS)

    Prestwich, K.R.; Lee, J.R.; Ramirez, J.J.; Sanford, T.W.L.; Agee, F.J.; Frazier, G.B.; Miller, A.R.

    1987-01-01

    The requirements for intense x-ray and gamma-ray sources to simulate the radiation effects from nuclear weapons has led to the development of several types of terawatt-pulsed power systems. One example of a major gamma-ray source is Aurora, a 10-MV, 1.6-MA, 120-ns four-module, electron-beam generator. Recent requirements to improve the dose rate has led to the Aurora upgrade program and to the development of the 20-MV, 800-kA, 40-ns Hermes-III electron-beam accelerator. The Aurora program includes improvements to the pulsed power system and research on techniques to improve the pulse shape of the electron beam. Hermes III will feature twenty 1-MV, 800-kA induction accelerator cavities supplying energy to a magnetically insulated transmission line adder. Hermes III will become operational in 1988. Intense x-ray sources consist of pulsed power systems that operate with 1-MV to 2-MV output voltages and up to 25-TW output powers. These high powers are achieved with either low impedance electron-beam generators or multimodular pulsed power systems. The low-impedance generators have high voltage Marx generators that store the energy and then sequentially transfer this energy to pulse-forming transmission lines with lower and lower impedance until the high currents are reached. In the multimode machines, each module produces 0.7-TW to 4-TW output pulses, and all of the modules are connected together to supply energy to a single diode

  7. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  8. Surface and interface strains studied by x-ray diffraction

    International Nuclear Information System (INIS)

    Akimoto, Koichi; Emoto, Takashi; Ichimiya, Ayahiko

    1998-01-01

    The authors have developed a technique of X-ray diffraction in order to measure strain fields near semiconductor surface and interface. The diffraction geometry is using the extremely asymmetric Bragg-case bulk reflection of a small incident angle to the surface and a large angle exiting from the surface. The incident angle of the X-rays is set near critical angle of total reflection by tuning X-ray energy of synchrotron radiation at the Photon Factory, Japan. For thermally grown-silicon oxide/Si(100) interface, the X-ray intensity of the silicon substrate 311 reflection has been measured. From comparison of the full width at half maxima (FWHM) of X-ray rocking curves of various thickness of silicon oxides, it has been revealed that silicon substrate lattice is highly strained in the thin (less than about 5 nm) silicon oxide/silicon system. In order to know the original silicon surface strain, the authors have also performed the same kind of measurements in the ultra-high vacuum chamber. A clean Si(111) 7x7 surface gives sharper X-ray diffraction peak than that of the native oxide/Si(111) system. From these measurements, it is concluded that the thin silicon oxide film itself gives strong strain fields to the silicon substrates, which may be the reason of the existence of the structural transition layer at the silicon oxide/Si interface

  9. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    DEFF Research Database (Denmark)

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  10. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  11. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  12. Development of a high-energy x-ray CT and its application to iron and steel analysis

    International Nuclear Information System (INIS)

    Taguchi, Isamu

    1987-01-01

    X-ray computed tomographic scanners are extensively used in medicine but have rarely been applied to non-medical purposes. Steel specimens pose particularly difficult problems - very poor transmission of X-rays and the need for high resolving capability. There have thus been no effective tomographic methods for examining steel specimens. Due to the growing need for non-destructive, non-contact methods for observing and analyzing the internal conditions of steel and raw materials for steel, however, we have developed a new high-energy computed tomographic scanner for steel (CTS). Its major specifications and functions are as follows. Type : 2nd-generation CT, 8-channel, Scanning method : 6deg revolution, 30-time traversing, Slice width : 0.3 mm, Resolving capability : 0.1 x 0.1 mm X-ray source : 420 kV, 3 mA, X-ray detector : BGO scintillator, Standard sample size : 50 mm dia., 50 mm high, Data collection time : 9.5 or 5 min. The CTS was successfully applied to the observation and the analysis of porosities of stainless steel (SUS 304) bloom, pores of iron ore sinters and metallic phases of the meteirites found in Antarctic Continent. (author)

  13. A high-energy x-ray microscope for inertial confinement fusion

    International Nuclear Information System (INIS)

    Marshall, F.J.; Bennett, G.R.

    1999-01-01

    We have developed a microscope capable of imaging x-ray emission from inertial confinement fusion targets in the range of 7 - 9 keV. Imaging is accomplished with a Kirkpatrick-Baez type, four-image microscope coated with a WB 4 C multilayer having a 2d period of 140 Angstrom. This microscope design (a standard used on the University of Rochester close-quote s OMEGA laser system) is capable of 5 μm resolution over a region large enough to image an imploded target (∼400 μm). This design is capable of being extended to ∼40 keV if state-of-the-art, short-spacing, multilayer coatings are used (∼25 Angstrom), and has been configured to obtain 3 μm resolution with the appropriate choice of mirror size. As such, this type of microscope could serve as a platform for multiframe, hard x-ray imaging on the National Ignition Facility. Characterization of the microscope and laboratory measurements of the energy response made with a cw x-ray source will be shown. copyright 1999 American Institute of Physics

  14. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  15. Cross-sectional imaging of large and dense materials by high energy X-ray CT using linear accelerator

    International Nuclear Information System (INIS)

    Kanamori, Takahiro; Kamata, Shouji; Ito, Shinichi.

    1989-01-01

    A prototype high energy X-ray CT (computed tomography) system has been developed which employs a linear accelerator as the X-ray source (max. photon energy: 12 MeV). One problem encountered in development of this CT system was to reduce the scattered photons from adjacent detectors, i.e. crosstalk, due to high energy X-rays. This crosstalk was reduced to 2% by means of detector shields using tungsten spacers. Spatial resolution was not affected by such small crosstalk as confirmed by numerical simulations. A second problem was to reduce the scattered photons from the test object. This was done using collimators. A third concern was to realize a wide dynamic range data processing which would allow applications to large and dense objects. This problem was solved by using a sample and hold data acquisition method to reduce the dark current of the photo detectors. The dynamic range of this system was experimentally confirmed over 60 dB. It was demonstrated that slits (width: 2 mm) in an iron object (diameter: 25 cm) could be imaged by this prototype CT system. (author)

  16. Digital imaging system in mammography with X-ray of two different energies

    International Nuclear Information System (INIS)

    Swientek, K.; Dabrowski, W.; Grybos, P.; Wiacek, P.; Cabal Rodrigez, A. E.; Sanchez, C.C.; Gambaccini, M.; Gaitan, J.L.; Prino, F.; Ramello, L.

    2005-01-01

    The progress in nuclear medicine stimulates the higher quality of image processing at diminished radiation dose. In the presented apparatus system Si-microstrip detector with two-thresholds multichannel amplitude analyzer have been applied. Data acquisition system evaluates simultaneously images for two X-ray beams of different energies following the Bragg reflection of the primary beam from the mosaic crystal. The contrast cancellation technique has been tested using the simple mammography phantom. An efficacy of this method suitable for medical imaging could be significantly increased using an intensive X-ray source and sensitive detectors

  17. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  18. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  19. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  20. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  1. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  2. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  3. A mirror for lab-based quasi-monochromatic parallel x-rays.

    Science.gov (United States)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  4. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  5. Comparison of conventional and total reflection excitation geometry for fluorescence X-ray absorption spectroscopy on droplet samples

    International Nuclear Information System (INIS)

    Falkenberg, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.

    2003-01-01

    X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45 deg. /45 deg. excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect

  6. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  7. Neutron and X-ray emission studies in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Murtaza, G. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Qamar, S. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Ahmad, I. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Beg, M.M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics

    1996-03-01

    In a low energy Mather-type plasma focus energized by a single 32 {mu}F capacitor, the X-ray and neutron emission is investigated using time-integrated and time-resolved detectors. The X-ray emission profile has a width (FWHM) of 40-50 ns. The neutron emission profile is broader compared to the X-ray emission profile and also delayed by 30-40 ns. To identify different regimes of X-ray emission, an X-ray pin-hole camera along with different absorption filters is employed. While the X-ray emission is high within a narrow pressure range of 2.0-2.5 mbar, the neutron emission is intense for a wider range of 1.0-4.5 mbar. The intense X-ray emission seems to originate from the axially moving shock wave. These results also indicate rather different production mechanisms for X-ray and neutron emission. Also on comparing the X-ray images with Al(2 {mu}m), Al(5 {mu}m), Al(9 {mu}m) filters, we find that the bulk of X-rays from the focus filament have energies less than 2 keV. (orig.).

  8. High-energy X-ray study of short range order and phase transformations in titanium-vanadium

    International Nuclear Information System (INIS)

    Ramsteiner, I.B.

    2005-01-01

    This work presents a study of configurational correlations and phase transformations in the binary alloy Ti-V, using high-energy X-ray diffraction. The experiments have been performed at the European Synchrotron Radiation Facility (ESRF) in Grenoble. The high-energy (60-100 keV) technique developed recently allows in-situ measurements on bulk material in transmission geometry. The first part of the thesis discusses multiple scattering effects which might occur with this method. These effects are experimentally verified and discussed. Special emphasis is put on the questions, whether they affect the results obtained with this method, and how they can be avoided. Understanding alloys on the most fundamental level requires knowledge about the atomic interaction potentials. Competing with entropy, these potentials determine the configurational short range order in a disordered alloy, which generates together with static and dynamic distortions the diffuse scattering. The thesis presents measurements and calculations of the diffuse scattering patterns of Ti-V. The calculations, taking into account configurational correlations, static distortions induced by atomic size mismatch and thermal diffuse scattering, agree with the experimental data. Structural transformations in Ti-V are carefully characterized using high-energy x-ray diffraction in combination with the complementary transmission electron microscopy (TEM). While the first technique allows to study the phenomena in-situ and time-resolved, TEM yields real space images and chemical information about the phases. Ti-V near the equiatomic composition is a beta-Ti-alloy. The body centered cubic beta phase is retained at room temperature by fast quenching. Aging the material below the phase transformation temperature, however, leads to the precipitation of hexagonal alpha titanium. Another transformation process confusing earlier works is identified as TiC formation from carbon impurities in the material. In addition

  9. The high energy X-ray spectrum of 4U 1700-37 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.

    1980-01-01

    The most intense hard X-ray source in the confused region in Scorpius has been identified as 4U 1700-37 (=HD 153919). Observations extending over three binary periods in 1978 September were carried out with the high-energy X-ray spectrometer on OSO 8. The 3.4 day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photonumber spectrum from 20 to 150 keV is well represented by a single power law with a photonumber spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 (+15, -7)keV. The counting rate above 20 keV outside of eclipse shows no evidence for the 96.8 minute X-ray modulation previously reported at lower energies. Despite the difficulties that exist in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with our currently accepted theories of the evolution and physical properties of neutron stars, the observed properties of 4U 1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  10. X-ray Spectroscopy of High-Z Elements on Nike

    Science.gov (United States)

    Aglitskiy, Y.; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2013-10-01

    Survey X-ray spectrometer covering a spectral range from 0.5 to 19.5 angstroms has been added to the spectroscopic suite of Nike diagnostics. That allows simultaneous observation of both M- and N- spectra of W, Ta and Au with high spectral resolution. Low energy test shots confirmed strong presence of 3-4 transitions of Ni-like W, Ta and Au with X-ray energies as high as 3.5 keV when above mentioned elements were used as the targets. In our continuous effort to support DOE-NNSA's inertial fusion program, the future campaign will cover a wide range of plasma conditions that result in relatively energetic X-ray production. Eventually, absolutely calibrated spectrometers of similar geometry will be fielded at NIF in cooperation with NIF diagnostic group. Work supported by US DOE, Defense Programs.

  11. Capabilities of using white x-rays for the reconstruction of surface morphology from coherent reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tushar, E-mail: tushar@physik.uni-siegen.de [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany); Panzner, Tobias [Paul Scherrer Institute (Switzerland); Pietsch, Ullrich [Solid State Physics Group, University of Siegen, 57068 Siegen (Germany)

    2010-10-15

    We present a new method to reconstruct the surface profile of a sample from coherent reflectivity data of a white x-ray beam experiment. As an example the surface profile of a laterally confined silicon wafer has been reconstructed quantitatively from static speckle measurements using white coherent x-rays from a bending magnet in the energy range between 5 < E < 20 keV. As a consequence of using white radiation, speckles appear in addition to the Airy pattern caused by scattering at the entrance pinhole. Nevertheless, the surface profile of a triangularly shaped specimen was reconstructed considering sufficient oversampling between the beam-footprint and the effective sample width. For the profile reconstruction the Error-Reduction phase retrieval algorithm was modified by including the spectral illumination function and a Fresnel propagator term. The simultaneous use of different x-ray energies having different penetration depth provides information on the evolution of the surface profile from the near-surface towards the bulk. The limitations of present experiment can be overcome using white or pink radiation from a source with higher photon flux.

  12. NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Franz E. [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Casilla 306, Santiago 22 (Chile); Arévalo, Patricia [EMBIGGEN Anillo, Concepción (Chile); Walton, Dominic J.; Baloković, Mislav; Brightman, Murray; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, Michael J. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Puccetti, Simonetta [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Alexander, David M.; Moro, Agnese Del [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Boggs, Steve E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, William N.; Luo, Bin [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, Andrea [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hickox, Ryan [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); and others

    2015-10-20

    We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N{sub H}) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N{sub H} of 1.4 × 10{sup 23}, 5.0 × 10{sup 24}, and 10{sup 25} cm{sup −2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N{sub H} component provides the bulk of the flux to the Compton hump, while the lower N{sub H} component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component

  13. A laboratory based x-ray reflectivity system

    International Nuclear Information System (INIS)

    Holt, S.A.; Creagh, D.C.; Jamie, I.M.; Dowling, T.L.; Brown, A.S.

    1996-01-01

    Full text: X-ray Reflectivity (XRR) over the last decade has proved to be a versatile and powerful technique by which the thickness of thin films, surface roughness and interface roughness can be determined. The systems amenable to study range from organic monolayers (liquid or solid substrates) to layered metal or semiconductor systems. Access to XRR has been limited by the requirement for synchrotron radiation sources. The development of XRR systems for the laboratory environment was pioneered by Weiss. An X-ray Reflectometer has been constructed by the Department of Physics (Australian Defence Force Academy) and the Research School of Chemistry (Australian National University). The general principles of the design were similar to those described by Weiss. The reflectometer is currently in the early stages of commissioning, with encouraging results thus far. The diffraction pattern of Mobil Catalytic Material (MCM), consisting primarily of SiO 2 . The poster will describe the reflectometer, its operation and present a summary of the most important results obtained to date

  14. Determination of wafer bonding mechanisms for plasma activated SiN films with x-ray reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Sun, Y [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Hicks, R [Department of Chemical Engineering, University of California, Los Angeles, CA 90095 (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2005-05-21

    Specular and diffuse x-ray reflectivity measurements were employed for wafer bonding studies of surface and interfacial reactions in {approx}800 A thick SiN films deposited on III-V substrates. CuK{sub {alpha}}{sub 1} radiation was employed for these measurements. The as-deposited films show very low surface roughness and uniform, high density SiN. Reflectivity measurements show that an oxygen plasma treatment converts the nitride surface to a somewhat porous SiO{sub x} layer (67 A thick, at 80% of SiO{sub 2} density), with confirmation of the oxide formation from x-ray photoelectron spectroscopy. Reactions at the bonded interface of two oxygen plasma treated SiN layers were examined using a bonded structure from which one of the III-V wafers is removed. Reflectivity measurements of bonded structures annealed at 150 deg. C and 300 deg. C show an increase in the SiO{sub x} layer density and thickness and even a density gradient across this interface. The increase in density is correlated with an increase in bond strength, where after the 300 deg. C anneal, a high interfacial bond strength, exceeding the bulk strength, was achieved.

  15. L X-ray energy shifts and intensity ratios in tantalum with C and N ions

    Indian Academy of Sciences (India)

    charged particles. Study of atomic ... authors [1–10] have observed that the X-ray energy shifts in heavy ion collision process are relative to the ... and observed the L X-ray energy shifts of different L X-ray components in some high Z elements.

  16. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  17. An optimised set-up for total reflection particle induced X-ray emission

    International Nuclear Information System (INIS)

    Kan, J.A. van; Vis, R.D.

    1997-01-01

    MeV proton beams at small angles of incidence (0-35 mrad) are used to analyse trace elements on flat surfaces such as Si wafers or quartz substrates. In these experiments, the particle induced X-ray emission (PIXE) signal is used in a new optimized set-up. This set-up is constructed in such a way that the X-ray detector can reach very large solid angles, larger than 1 sr. Use of these large detector solid angles, combined with the reduction of bremsstrahlung background, affords limits of detection (LOD) of the order of 10 10 at cm -2 using total reflection particle induced X-ray emission (TPIXE). The LODs from earlier TPIXE measurements in a non-optimized set-up are used to estimate LODs in the new TPIXE set-up. Si wafers with low surface concentrations of V, Ni, Cu and Ag are used as standards to calibrate the LODs found with this set-up. The metal concentrations are determined by total reflection X-ray fluorescence (TXRF). The TPIXE measurements are compared with TXRF measurements on the same wafers. (Author)

  18. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  19. High-resolution X-ray diffraction with no sample preparation.

    Science.gov (United States)

    Hansford, G M; Turner, S M R; Degryse, P; Shortland, A J

    2017-07-01

    It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high-quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions.

  20. Quantitative analysis with energy dispersive X-ray fluorescence analyser

    International Nuclear Information System (INIS)

    Kataria, S.K.; Kapoor, S.S.; Lal, M.; Rao, B.V.N.

    1977-01-01

    Quantitative analysis of samples using radioisotope excited energy dispersive x-ray fluorescence system is described. The complete set-up is built around a locally made Si(Li) detector x-ray spectrometer with an energy resolution of 220 eV at 5.94 KeV. The photopeaks observed in the x-ray fluorescence spectra are fitted with a Gaussian function and the intensities of the characteristic x-ray lines are extracted, which in turn are used for calculating the elemental concentrations. The results for a few typical cases are presented. (author)

  1. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    DEFF Research Database (Denmark)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.

    2018-01-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in a...

  2. Sweeping total reflection X-ray fluorescence optimisation to monitor the metallic contamination into IC manufacturing

    International Nuclear Information System (INIS)

    Borde, Yannick; Danel, Adrien; Roche, Agnes; Veillerot, Marc

    2008-01-01

    Among the methods available on the market today to control as metallic contamination in integrated circuit manufacturing, Sweeping Total reflection X-ray Fluorescence mode appears a very good method, providing fast and entire wafer mapping. With the goal of a pertinent use of Sweeping Total reflection X-ray Fluorescence in advanced Integrated Circuit manufacturing this work discusses how acceptable levels of contamination specified by the production (low levels to be detected) can be taken into account. The relation between measurement results (surface coverage, throughput, low limit of detection, limit of quantification, quantification of localized contamination) and Sweeping Total reflection X-ray Fluorescence parameters (number of measurement points and integration time per point) is presented in details. In particular, a model is proposed to explain the mismatch between actual surface contamination in a localized spot on wafer and Total reflection X-ray Fluorescence reading. Both calibration and geometric issues have been taken into account

  3. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  4. Energy dispersion of x-ray continua in the energy range 9kev to 19kev refraction on Si wafers

    International Nuclear Information System (INIS)

    Ebel, H.; Streli, C.; Pepponi, G.; Wobrauschek, P.

    2000-01-01

    Total reflection of x-rays in matter at given grazing incidence angle is characterized by the occurrence of an energy cut-off. Photons with energies greater than the cut-off energy penetrate into matter and are refracted according to a transition from the optically more dense to the optically less dense medium. Since the refractive index depends on photon energy, an energy dispersion of continuous x-radiation is observed. The present investigation is dedicated to the energy dispersion of continuous x-radiation (Mo, 45 kV) by Si wafers. Theory and experimental results are in excellent agreement. (author)

  5. Evaluation of secondary electron filter for removing contaminant electrons from high-energy 6 MV x-ray beam

    International Nuclear Information System (INIS)

    Kumagai, Kozo

    1988-01-01

    When using high energy X-rays, the dose increases at the skin surface and build-up region of beam contamination of secondary electrons coming out from the inner surface of the lineac head. At our radiotherapy department, many cases of external otitis from severe skin reactions, particularly resulting from whole brain irradiation of primary and metastatic brain tumors with a 6 MV X-ray lineac, have been encountered. An investigation was made of the physical aspects of a 6 MV X-ray beam using three electron filters, lead lucite, lead glass and lucite to remove secondary electrons. Transparent materials for filters should be preferable for locating the light field. The following results were obtained: 1) For removing secondary electrons, a lead lucite filter was found best. 2) The lead lucite filter proved most effective for removing secondary electrons from the area of treatment. It reduced the dose of irradiation to the skin surface and build-up region, and furthermore improved the depth dose relative to that without filters. 3) From a clinical standpoint, skin reactions such as external otitis remarkably decreased using a lead lucite filter. 4) It thus appears necessary to use a high energy X-ray with newly designed filters to reduce beam contamination of secondary electrons. (author)

  6. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  7. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  8. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  9. Abstracts of the 8th Conference on total reflection x-ray fluorescence analysis and related methods

    International Nuclear Information System (INIS)

    Wobrauschek, P.

    2000-01-01

    The 8. conference on total reflection x-ray fluorescence analysis and related methods held from 25.9 to 29.9.2000 contains 79 abstracts about x-ray fluorescence analysis (XRFA) as a powerful tool used for industrial production, geological prospecting and for environmental control. Total reflection x-ray fluorescence spectroscopy is also a tool used for chemical analysis in medicine, industry and research. (E.B.)

  10. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    Science.gov (United States)

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-02-01

    The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.

  11. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    Energy Technology Data Exchange (ETDEWEB)

    Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria)]. E-mail: streli@ati.ac.at; Pepponi, G. [ITC-irst, Povo (Italy); Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Jokubonis, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg (Germany); Zaray, G. [Institute of Inorganic and Applied Chemistry, 3 EOTVOS Univ, Budapest (Hungary); Broekaert, J. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Fittschen, U. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Peschel, B. [Institute of Anorganic and Applied Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)

    2006-11-15

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm{sup 2} active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm{sup 2} silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al{sub 2}O{sub 3}. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are

  12. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    International Nuclear Information System (INIS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Zaray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-01-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2 O 3 . No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection

  13. Joint European x-ray monitor (JEM-X): x-ray monitor for ESA's

    DEFF Research Database (Denmark)

    Schnopper, H.W.; Budtz-Joergensen, C.; Westergaard, Niels Jørgen Stenfeldt

    1996-01-01

    JEM-X will extend the energy range of the gamma ray instruments on ESA's INTEGRAL mission (SPI, IBIS) to include the x-ray band. JEM-X will provide images with arcminute angular resolution in the 2 - 60 keV band. The baseline photon detection system consists of two identical, high pressure, imagi...

  14. The SWARF high energy flash X-ray facility

    International Nuclear Information System (INIS)

    Gilbert, J.F.; Dove, E.W.D.

    1976-06-01

    A description is presented of the SWARF flash radiography facility at AWRE Foulness, which is stated to be the most powerful flash x-ray system available, in the U.K. The machine consists essentially of a Marx generator, a coaxial Blumlein system and an x-ray tube. The voltage output from the Marx generator (about 2.5 MV from an 80 kV input) is applied to a large re-entrant Blumlein pulse-forming line. Near maximum voltage, an adjustable oil switch short-circuits one end of the Blumlein generator and so applies a square voltage pulse of 65 ns duration to the x-ray tube. The x-rays are produced from a tantalum target which forms the anode of a vacuum field emission diode. The facility consists of two field machines positioned so that radiographs can be obtained from different angles. The description is given under the following heads: modus operandi; constructional details; oil installation; electrical details; commissioning, calibration and electrical data; flash radiography in explosives research; operational control of facility, film packs; radiographic results; further developments; overall performance. (U.K.)

  15. Soft X-ray reflectivity: from quasi-perfect mirrors to accelerator walls

    CERN Document Server

    Schäfers, F.

    2013-04-22

    Reflection of light from surfaces is a very common, but complex phenomenon not only in science and technology, but in every day life. The underlying basic optical principles have been developed within the last five centuries using visible light available from the sun or other laboratory light sources. X-rays were detected in 1895, and the full potential of soft- and hard-x ray radiation as a probe for the electronic and geometric properties of matter, for material analysis and its characterisation is available only since the advent of synchrotron radiation sources some 50 years ago. On the other hand high-brilliance and high power synchrotron radiation of present-days 3rd and 4th generation light sources is not always beneficial. Highenergy machines and accelerator-based light sources can suffer from a serious performance drop or limitations due to interaction of the synchrotron radiation with the accelerator walls, thus producing clouds of photoelectrons (e-cloud) which in turn interact with the accelerated ...

  16. Energy Feedback from X-ray Binaries in the Early Universe

    Science.gov (United States)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  17. NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A{sup *} flares

    Energy Technology Data Exchange (ETDEWEB)

    Barrière, Nicolas M.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby (Denmark); Dexter, Jason [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian; Harrison, Fiona A.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Hailey, Charles J.; Mori, Kaya; Zhang, Shuo [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W. [X-ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-05-01

    Sagittarius A{sup *} harbors the supermassive black hole that lies at the dynamical center of our Galaxy. Sagittarius A{sup *} spends most of its time in a low luminosity emission state but flares frequently in the infrared and X-ray, increasing up to a few hundred fold in brightness for up to a few hours at a time. The physical processes giving rise to the X-ray flares are uncertain. Here we report the detection with the NuSTAR observatory in Summer and Fall 2012 of four low to medium amplitude X-ray flares to energies up to 79 keV. For the first time, we clearly see that the power-law spectrum of Sagittarius A{sup *} X-ray flares extends to high energy, with no evidence for a cutoff. Although the photon index of the absorbed power-law fits are in agreement with past observations, we find a difference between the photon index of two of the flares (significant at the 95% confidence level). The spectra of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters obtained with synchrotron models are, for the X-ray emission, physically more reasonable than those obtained with inverse Compton models. One flare exhibits large and rapid (<100 s) variability, which, considering the total energy radiated, constrains the location of the flaring region to be within ∼10 Schwarzschild radii of the black hole.

  18. Investigations of the phase transition in V3O5 using energy dispersive X-ray diffraction and synchrotron radiation white beam X-ray topography

    International Nuclear Information System (INIS)

    Asbrink, S.; Gerward, L.; Staun Olsen, J.

    1985-01-01

    The reversible first order phase transition in V 3 O 5 at T t =155 0 C has been studied using a specially constructed oven, where the temperature can be kept constant within a few hundredths of a degree for several hours. Energy dispersive diffraction measurements have beem made in a temperature region around the phase transition with the fixed crystal method and the θ/2θ scanning method. White beam X-ray topographs have been obtained from the same crystal in the same temperature region using synchrotron radiation. The integrated intensities of the strong h 0 0 reflections show anomalies that are correlated with the corresponding X-ray topographs. Thus, an unexpected increase of crystal perfection is observed a few hundredths of a degree below T t . The energy dependence of the intensity maximum at T t for strong reflections has been determined and semi-quantitatively explained on the basis of extinction theory. (orig.)

  19. The high energy x-ray spectrum of the Crab Nebula observed from OSO 8

    International Nuclear Information System (INIS)

    Dolan, J.F.; Crannell, L.J.; Dennis, B.R.; Orwig, L.E.; Maurer, G.S.

    1977-01-01

    The X-ray spectrum of the Crab Nebula was measured with the scintillation spectrometer on board the OSO-8 satellite. The total emission of the X-ray source shows no long term variability. The spectrum itself can be described by a single power law out to energies of at least 500 keV

  20. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  1. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  2. An experimental implementation of the 90 .deg. compton scattering inspection method for identifying explosive materials using dual energy x-ray

    International Nuclear Information System (INIS)

    Park, Ji Sung

    2012-02-01

    In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective

  3. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  4. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.

    Science.gov (United States)

    Wang, Bing; Ninomiya, Yasuharu; Tanaka, Kaoru; Maruyama, Kouichi; Varès, Guillaume; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    2012-12-01

    Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero. © 2012 Wiley Periodicals, Inc.

  5. Two-energy twin image removal in atomic-resolution x-ray holography

    International Nuclear Information System (INIS)

    Nishino, Y.; Ishikawa, T.; Hayashi, K.; Takahashi, Y.; Matsubara, E.

    2002-01-01

    We propose a two-energy twin image removal algorithm for atomic-resolution x-ray holography. The validity of the algorithm is shown in a theoretical simulation and in an experiment of internal detector x-ray holography using a ZnSe single crystal. The algorithm, compared to the widely used multiple-energy algorithm, allows efficient measurement of holograms, and is especially important when the available x-ray energies are fixed. It enables twin image free holography using characteristic x rays from laboratory generators and x-ray pulses of free-electron lasers

  6. Resonant magnetic scattering of polarized soft x rays

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, M. [Centre Universitaire Paris-Sud, Orsay (France); Hague, C.F. [Universite Pierre et Marie Curie, Paris (France); Gullikson, E.M.; Underwood, J. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Magnetic effects on X-ray scattering (Bragg diffraction, specular reflectivity or diffuse scattering) are a well known phenomenon, and they also represent a powerful tool for investigating magnetic materials since it was shown that they are strongly enhanced when the photon energy is tuned across an absorption edge (resonant process). The resonant enhancement of the magnetic scattering has mainly been investigated at high photon energies, in order to match the Bragg law for the typical lattice spacings of crystals. In the soft X-ray range, even larger effects are expected, working for instance at the 2p edges of transition metals of the first row or at the 3d edges of rare earths (300-1500 eV), but the corresponding long wavelengths prevent the use of single crystals. Two approaches have been recently adopted in this energy range: (i) the study of the Bragg diffraction from artificial structures of appropriate 2d spacing; (ii) the analysis of the specular reflectivity, which contains analogous information but has no constraints related to the lattice spacing. Both approaches have their own specific advantages: for instance, working under Bragg conditions provides information about the (magnetic) periodicity in ordered structures, while resonant reflectivity can easily be related to electronic properties and absorption spectra. An important aspect common to all the resonant X-ray scattering techniques is the element selectivity inherent to the fact of working at a specific absorption edge: under these conditions, X-ray scattering becomes in fact a spectroscopy. Results are presented for films of iron and cobalt.

  7. Detection of Reflection Features in the Neutron Star Low-mass X-Ray Binary Serpens X-1 with NICER

    Science.gov (United States)

    Ludlam, R. M.; Miller, J. M.; Arzoumanian, Z.; Bult, P. M.; Cackett, E. M.; Chakrabarty, D.; Enoto, T.; Fabian, A. C.; Gendreau, K. C.; Guillot, S.; Homan, J.; Jaisawal, G. K.; Keek, L.; La Marr, B.; Malacaria, C.; Markwardt, C. B.; Steiner, J. F.; Strohmayer, T. E.

    2018-05-01

    We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of {1.4}-0.1+0.2 R ISCO and Fe K is at {1.03}-0.03+0.13 R ISCO (errors quoted at 90%). This corresponds to a position of {17.3}-1.2+2.5 km and {12.7}-0.4+1.6 km for a canonical NS mass ({M}NS}=1.4 {M}ȯ ) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NSs and determine that these features arise from a dense disk and supersolar Fe abundance.

  8. Device for the collimation of a high-energy beam, in particular a X-ray beam

    International Nuclear Information System (INIS)

    Peyser, L.F.

    1976-01-01

    The design of apertures made of radiation-absorbing material intended for limiting an aperture for a radiation beam of high energy, in particular an X-ray beam is claimed. The apertures are shaped as trapezoids, are held movably, and are adjustable by means of a control device. (UWI) [de

  9. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  10. The single reflection regime of X-rays travelling into a monocapillary

    International Nuclear Information System (INIS)

    Dabagov, S.B.; Marcelli, A.

    1999-01-01

    In this manuscript an analysis of the transmission of x-rays through a single monocapillary under the single reflection regime is presented and discussed. Because ray tracing does not allow to explain the experimental data, a first qualitative interpretation of the observed behavior is given in the framework of the wave theory

  11. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  12. SSD effects on high energy x-ray surface and build up dose

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: Dose in the build up region for high energy x-rays produced by a medical linear accelerator is affected by the x-ray source to patient surface distance (SSD). The use of isocentric treatments whereby the tumour is positions 100cm from the source means that depending of the depth of the tumour and the size of the patient, the SSD can vary from distances of 80cm to 100cm. To achieve larger field sizes, the SSD can also be extended out to 120cm at times. Results have shown that open fields are not significantly affected by SSD changes with deviations in percentage dose being less than 4% of maximum dose for SSD's from 80cm to 120cm SSD. With the introduction of beam modifying devices such as Perspex blocking trays, the effects are significant with a deviation of up to 22% measured at 6MV energy with a 6mm Perspex tray for SSD's from 80cm to 120cm. These variations are largest at the skin surface and reduce with depth. The use of a multi leaf collimator for blocking removes extra skin dose caused by the Perspex block trays with decreasing SSD. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  13. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  14. Design and development of the SIMBOL-X hard x-ray optics

    Science.gov (United States)

    Pareschi, G.; Attinà, P.; Basso, S.; Borghi, G.; Burkert, W.; Buzzi, R.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Cusumano, G.; Dell'Orto, E.; Freyberg, M.; Hartner, G. D.; Gorenstein, P.; Mattaini, E.; Mazzoleni, F.; Parodi, G.; Romaine, S.; Spiga, D.; Tagliaferri, G.; Valtolina, R.; Valsecchi, G.; Vernani, D.

    2008-07-01

    The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.

  15. Albedo of X-ray through the region of rarefaction wave

    International Nuclear Information System (INIS)

    Zhang Jun

    2001-01-01

    In the process of implosion indirectly driven by laser, the high temperature and low density plasma produced by X-ray ablation is in the state of non-local thermodynamic equilibrium. And the propagation of X-ray needs to be treated by transportation method. X-ray energy flow reflected by plasma depends on the density, temperature of radiation and electrons, and their space profiles if the plasma produced by ablation is fully ionized. In addition, the plasma parameters in the region of rarefaction wave is determined by means of a simplified model. The approach to compute X-ray albedo is presented and the analytical formulae of the albedo are given

  16. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  17. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  18. Methods for reducing singly reflected rays on the Wolter-I focusing mirrors of the FOXSI rocket experiment

    Science.gov (United States)

    Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.

    2017-08-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.

  19. Application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2003-01-01

    This paper introduces the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 reader and GR-100 M chips on the measurement of hard X-ray pulse energy spectrum. The idea using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV) is discussed in details. Considering all the factors of the measuring surrounding, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device-high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  20. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions

    Energy Technology Data Exchange (ETDEWEB)

    Ingerle, D., E-mail: dingerle@ati.ac.at [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria); Meirer, F. [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Pepponi, G.; Demenev, E.; Giubertoni, D. [MiNALab, CMM-irst, Fondazione Bruno Kessler, Via Sommarive 18, I-38050 Povo (Italy); Wobrauschek, P.; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, A-1020 Vienna (Austria)

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  1. Dual-energy X-ray micro-CT imaging of hybrid Ni/Al open-cell foam

    International Nuclear Information System (INIS)

    Fíla, T.; Koudelka, P.; Zlámal, P.; Jiroušek, O.; Kumpová, I.; Vavřík, D.; Jung, A.

    2016-01-01

    In this paper, we employ dual-energy X-ray microfocus tomography (DECT) measurement to develop high-resolution finite element (FE) models that can be used for the numerical assessment of the deformation behaviour of hybrid Ni/Al foam subjected to both quasi-static and dynamic compressive loading. Cubic samples of hybrid Ni/Al open-cell foam with an edge length of [15]mm were investigated by the DECT measurement. The material was prepared using AlSi 7 Mg 0.3 aluminium foam with a mean pore size of [0.85]mm, coated with nanocrystalline nickel (crystallite size of approx. [50]nm) to form a surface layer with a theoretical thickness of [0.075]mm. CT imaging was carried out using state-of-the-art DSCT/DECT X-ray scanner developed at Centre of Excellence Telč. The device consists of a modular orthogonal assembly of two tube-detector imaging pairs, with an independent geometry setting and shared rotational stage mounted on a complex 16-axis CNC positioning system to enable unprecedented measurement variability for highly-detailed tomographical measurements. A sample of the metal foam was simultaneously irradiated using an XWT-240-SE reflection type X-ray tube and an XWT-160-TCHR transmission type X-ray tube. An enhanced dual-source sampling strategy was used for data acquisition. X-ray images were taken using XRD1622 large area GOS scintillator flat panel detectors with an active area of [410 × 410]mm and resolution [2048 × 2048]pixels. Tomographic scanning was performed in 1,200 projections with a 0.3 degree angular step to improve the accuracy of the generated models due to the very complex microstructure and high attenuation of the investigated material. Reconstructed data was processed using a dual-energy algorithm, and was used for the development of a 3D model and voxel model of the foam. The selected parameters of the models were compared with nominal parameters of the actual foam and showed good correlation

  2. Development of a dual-energy silicon X-ray diode and its application to gadolinium imaging

    International Nuclear Information System (INIS)

    Sato, Yuichi; Sato, Eiichi; Ehara, Shigeru; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2015-01-01

    To perform dual-energy X-ray imaging, we developed a dual-energy silicon X-ray diode (DE-Si-XD) consisting of two ceramic-substrate silicon X-ray diodes (Si-XD) and a 0.2-mm-thick copper filter. The Si-XD is a high-sensitivity Si photodiode selected for detecting X-rays. In the front Si-XD, X-ray photons from an X-ray tube are directly detected. Because low-energy photons are absorbed by the front Si-XD and the filter, the average photon energy increases when the back Si-XD is used. In the front Si-XD, the photocurrents flowing through the Si-XD are converted into voltages and amplified using current–voltage and voltage–voltage (V–V) amplifiers. The output from the V–V amplifier is input to an analog-digital converter through an integrator for smoothing the voltage. The same amplification method is also used in the back Si-XD. Dual-energy computed tomography (DE–CT) is accomplished by repeated linear scans and rotations of the object, and two projection curves of the object are obtained simultaneously by linear scanning at a tube voltage of 90 kV and a current of 1.0 mA. In the DE–CT, the exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. Using gadolinium-based contrast media, energy subtraction was performed. - Highlights: • Dual-energy X-ray diode consists of two Si diodes and a Cu filter. • Low and high-energy X-rays are detected using front and back diodes. • Two-different-energy tomograms were easily obtained simultaneously. • Gd-K-edge CT was accomplished using the back diode. • Energy subtraction was performed easily to image a target object

  3. Measurement of the energy distribution of parametric X-ray radiation from a double-crystal system

    International Nuclear Information System (INIS)

    Mori, Akira; Hayakawa, Yasushi; Kidokoro, Akio; Sato, Isamu; Tanaka, Toshinari; Hayakawa, Ken; Kobayashi, Kouji; Ohshima, Hisashi

    2006-01-01

    A parametric X-ray radiation (PXR) generator system was developed at the Laboratory for Electron Beam Research and Applications (LEBRA) at Nihon University; this PXR generator system is a tunable wavelength and quasi-monochromatic X-ray source constructed as one of the advanced applications of the LEBRA 125-MeV electron linear accelerator. The PXR beam which has characteristic of energy distribution. The theoretical values of energy distribution obtained at the output port were calculated to be approximately 300 eV and 2 keV at the central X-ray energies of 7 keV and 20 keV, respectively. In order to investigate the energy distribution, several measurements of the X-ray energy were carried out. The X-ray absorption of known materials and that of thin aluminum has been evaluated based on analyses of images taken using an imaging plate. The X-ray energy was deduced base on the identification of the absorption edges, and the energy distribution was estimated based on measurements using aluminum step method. In addition, an X-ray diffraction method using a perfect silicon crystal was employed, and spectra were measured using a solid state detector (SSD). The results of these experiments agreed with the calculated results. In particular, the well-defined absorption edges in the X-ray images and the typical rocking curves obtained by the measurement of the X-ray diffraction indicated that the distribution has a high-energy resolution

  4. High-energy x-ray scattering studies of battery materials

    International Nuclear Information System (INIS)

    Glazer, Matthew P. B.; Okasinski, John S.; Almer, Jonathan D.; Ren, Yang

    2016-01-01

    High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses to highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. Here, by deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.

  5. The X-ray energy response of silicon. Part A. Theory

    International Nuclear Information System (INIS)

    Fraser, G.W.; Abbey, A.F.; Holland, A.; McCarthy, K.; Owens, A.; Wells, A.

    1994-01-01

    In this, the first part of a two-part study of the interaction of soft X-rays with silicon, motivated by the calibration requirements of CCD imaging spectrometers in astronomy, we describe a Monte Carlo model of X-ray energy loss whose products are the energy- and temperature-dependences of (i) W, the average energy required to create an electron-hole pair, and (ii) the Fano factor F. W and F have invariably been treated as material constants in previous analyses of Si X-ray detector performance. We show that in fact, at constant detector temperature T, W is an increasing function of X-ray energy for E -4 K -1 at a typical CCD operating temperature of 170 K. We discuss the practical implications of these results. Finally, we describe our separate calculations of the near-edge variation of CCD quantum detection efficiency arising from silicon K-shell Extended X-ray Absorption Fine Structure (EXAFS). ((orig.))

  6. Energy dispersive x-ray spectrometry by microcalorimetry for the SEM

    CERN Document Server

    Newbury, D; Sae Woo Nam; Hilton, G; Irwin, K; Small, J; Martinis, J

    2002-01-01

    Analytical x-ray spectrometry for electron beam instruments has advanced significantly with the development of the microcalorimeter energy dispersive x-ray spectrometer (mu cal EDS). The mu cal EDS operates by measuring the temperature rise when a single photon is absorbed in a metal target. A cryoelectronic circuit with electrothermal feedback and a superconducting transition edge sensor serves as the thermometer. Spectral resolution approaching 4.5 eV for high energy photons (6000 eV) and 2 eV for low energy photons below 2000 eV has been demonstrated in energy dispersive operation across a photon energy range from 250 eV to 8 keV. Spectra of a variety of materials demonstrate the power of the mu cal EDS to solve practical problems while operating on a scanning electron microscope platform. (author)

  7. Ultra high energy gamma rays and observations with CYGNUS/MILAGRO

    International Nuclear Information System (INIS)

    Weeks, D.D.; Yodh, G.B.

    1992-01-01

    This talk discusses high-energy observations of the Crab pulsar/nebula and the pulsar in the X-ray binary, Hercules X-1, and makes the case for continued observations with ground-based γ-ray detectors. The CYGNUS Air Shower Array has a wide field of view on monitors several astrophysical γ-ray sources at the same time, many of which are prime objects observed by the Compton Gamma Ray Observatory (GRO) and air Cerenkov telescopes. This array and the future MILAGRO Water Cerenkov Detector can perform observations that are simultaneous with similar experiments to provide confirmation of emission, and can measure source spectra at a range of high energies previously unexplored

  8. New trends in space x-ray optics

    Science.gov (United States)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  9. Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Yoshikazu Fujii

    2013-01-01

    Full Text Available X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.

  10. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    International Nuclear Information System (INIS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-01-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%

  11. High temperature GaAs X-ray detectors

    Science.gov (United States)

    Lioliou, G.; Whitaker, M. D. C.; Barnett, A. M.

    2017-12-01

    Two GaAs p+-i-n+ mesa X-ray photodiodes were characterized for their electrical and photon counting X-ray spectroscopic performance over the temperature range of 100 °C to -20 °C. The devices had 10 μm thick i layers with different diameters: 200 μm (D1) and 400 μm (D2). The electrical characterization included dark current and capacitance measurements at internal electric field strengths of up to 50 kV/cm. The determined properties of the two devices were compared with previously reported results that were made with a view to informing the future development of photon counting X-ray spectrometers for harsh environments, e.g., X-ray fluorescence spectroscopy of planetary surfaces in high temperature environments. The best energy resolution obtained (Full Width at Half Maximum at 5.9 keV) decreased from 2.00 keV at 100 °C to 0.66 keV at -20 °C for the spectrometer with D1, and from 2.71 keV at 100 °C to 0.71 keV at -20 °C for the spectrometer with D2. Dielectric noise was found to be the dominant source of noise in the spectra, apart from at high temperatures and long shaping times, where the main source of photopeak broadening was found to be the white parallel noise.

  12. Energy dependence of photon-induced L-shell x-ray intensity ratios in some high-Z elements

    Energy Technology Data Exchange (ETDEWEB)

    Shatendra, K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-12-14

    The L-shell x-ray intensity ratios in Au, Pb, Th and U at various photon energies have been measured and their energy dependence is studied. A comparison of the experimental values is made with those calculated using the x-ray emission rates and subshell photoelectric cross sections, subshell fluorescence yields and Coster-Kronig transition probabilities and fairly good agreement is observed.

  13. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  14. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  15. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  16. X-ray energy selected imaging with Medipix II

    International Nuclear Information System (INIS)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-01-01

    Two different X-ray tube accelerating voltages (60 and 70 kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature. First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively

  17. X-ray energy selected imaging with Medipix II

    Science.gov (United States)

    Ludwig, J.; Zwerger, A.; Benz, K.-W.; Fiederle, M.; Braml, H.; Fauler, A.; Konrath, J.-P.

    2004-09-01

    Two different X-ray tube accelerating voltages (60 and 70kV) are used for diagnosis of front teeth and molars. Different energy ranges are necessary as function of tooth thickness to obtain similar contrast for imaging. This technique drives the costs for the X-ray tube up and allows for just two optimized settings. Energy range selection for the detection of the penetrating X-rays would overcome these severe setbacks. The single photon counting chip MEDIPIX2 http://www.cern.ch/medipix exhibits exactly this feature.First simulations and measurements have been carried out using a dental X-ray source. As a demonstrator a real tooth has been used with different cavities and filling materials. Simulations showed in general larger improvements as compared to measurements regarding SNR and contrast: A beneficial factor of 4% wrt SNR and 25% for contrast, measurements showed factors of 2.5 and up to 10%, respectively.

  18. Hard X-ray mirrors for Nuclear Security

    Energy Technology Data Exchange (ETDEWEB)

    Descalle, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brejnholt, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hill, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alameda, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soufli, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pivovaroff, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-07

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a new type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally

  19. On beam quality and stopping power ratios for high-energy x-rays

    International Nuclear Information System (INIS)

    Johnsson, S.A.; Ceberg, C.P.; Knoeoes, T.; Nilsson, P.

    2000-01-01

    The aim of this work is to quantitatively compare two commonly used beam quality indices, TPR(20/10) and %dd(10) x , with respect to their ability to predict stopping power ratios (water to air), s w,air , for high-energy x-rays. In particular, effects due to a varied amount of filtration of the photon beam will be studied. A new method for characterizing beam quality is also presented, where the information we strive to obtain is the moments of the spectral distribution. We will show how the moments enter into a general description of the transmission curve and that it is possible to correlate the moments to s w,air with a unique and simple relationship. Comparisons with TPR(20/10) and %dd(10) x show that the moments are well suited for beam quality specification in terms of choosing the correct s w,air . (author)

  20. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  1. X-ray fluorescence holography and multiple-energy x-ray holography: A critical comparison of atomic images

    International Nuclear Information System (INIS)

    Len, P.M.; Gog, T.; Fadley, C.S.; Materlik, G.

    1997-01-01

    We compare x-ray fluorescence holography (XFH) and multiple-energy x-ray holography (MEXH), two techniques that have recently been used to obtain experimental three-dimensional atomic images. For single-energy holograms, these methods are equivalent by virtue of the optical reciprocity theorem. However, XFH can only record holographic information at the characteristic fluorescence energies of the emitting species, while MEXH can record holographic information at any energy above the fluorescent edge of the emitter, thus enabling the suppression of real-twin overlaps and other aberrations and artifacts in atomic images. copyright 1997 The American Physical Society

  2. Cr/B{sub 4}C multilayer mirrors: Study of interfaces and X-ray reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Burcklen, C.; Meltchakov, E.; Jérome, A.; Rossi, S. de; Delmotte, F. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Soufli, R. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, BP 48F-91192 Gif sur Yvette Cedex (France); Gullikson, E. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States)

    2016-03-28

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B{sub 4}C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B{sub 4}C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L{sub 2,3} absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  3. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  4. Analysis of hard X-ray emission from selected very high energy γ-ray sources observed with INTEGRAL

    International Nuclear Information System (INIS)

    Hoffmann, Agnes Irene Dorothee

    2009-01-01

    A few years ago, the era of very high energy γ-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper flux

  5. Analysis of hard X-ray emission from selected very high energy {gamma}-ray sources observed with INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Agnes Irene Dorothee

    2009-11-13

    A few years ago, the era of very high energy {gamma}-ray astronomy started, when the latest generation of Imaging Atmospheric Cherenkov Telescopes (IACT) like H.E.S.S. began to operate and to resolve the sources of TeV emission. Identifications via multi-wavelength studies reveal that the detected sources are supernova remnants and active galactic nuclei, but also pulsar wind nebulae and a few binaries. One widely discussed open question is, how these sources are able to accelerate particles to such high energies. The understanding of the underlying particle distribution, the acceleration processes taking place, and the knowledge of the radiation processes which produce the observed emission, is, therefore, of crucial interest. Observations in the hard X-ray domain can be a key to get information on these particle distributions and processes. Important for this thesis are the TeV and the hard X-ray range. The two instruments, H.E.S.S. and INTEGRAL, whose data were used, are, therefore, described in detail. The main part of this thesis is focused on the X-ray binary system LS 5039/RX J1826.2-1450. It was observed in several energy ranges. The nature of the compact object is still not known, and it was proposed either to be a microquasar system or a non-accreting pulsar system. The observed TeV emission is modulated with the orbital cycle. Several explanations for this variability have been discussed in recent years. The observations with INTEGRAL presented in this thesis have provided new information to solve this question. Therefore, a search for a detection in the hard X-ray range and for its orbital dependence was worthwhile. Since LS 5039 is a faint source and the sky region where it is located is crowded, a very careful, non-standard handling of the INTEGRAL data was necessary, and a cross-checking with other analysis methods was essential to provide reliable results. We found that LS 5039 is emitting in the hard X-ray energy range. A flux rate and an upper

  6. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  7. Total reflection x-ray fluorescence - an approach to nanoanalysis

    International Nuclear Information System (INIS)

    Klockenkaemper, R.

    2000-01-01

    X-ray fluorescence analysis (XRFA) is a powerful tool used for industrial production, geological prospecting and for environmental control. However, the method suffers from a lack of sensitivity so that analyses are restricted to microanalytical investigations. That means: the sample amount needed for analysis is above some 10 micrograms, concentrations to be determined have to be on the μg/ml level, and thin layers to be characterized must be of micrometer thickness. In contrast to conventional XRFA, total-reflection X-ray fluorescence (TXRF) is extremely sensitive and even allows nano-analytical investigations. Three different ways can be taken: (i) use of minute sample amounts of only 10 nano-grams, (ii) determination of extreme traces below ng/ml and (iii) surface analysis and depth profiling of shallow layers with nano-meter thickness. In this lecture, the basic physical phenomena of total reflection and standing waves are outlined. The experimental equipment for TXRF is sketched out and commercially available instruments of different manufacturers are compared. Furthermore, examples are given for the three kinds of nano-analytical applications: ultra-micro, analysis, ultra trace analysis and mono- and thin-layer analysis. (author)

  8. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  9. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  10. X-ray microfocusing with off-axis ellipsoidal mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kohmura, Yoshiki; Ishikawa, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-07-27

    High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing properties of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.

  11. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  12. Experiment study on the thick GEM-like multiplier for X-ray photoelectrons energy deposition gaining

    International Nuclear Information System (INIS)

    Zhu Pengfei; Ye Yan; Long Yan; Cao Ningxiang; Jia Xing; Li Jianfeng

    2009-01-01

    The GEM is a novel detector with high gain,high time and location resolution. Imitating the structure of the GEM, a thick GEM-like multiplier which has the similar function with that of the GEM is designed and manufactured. The characteristics of the thick GEM-like multiplier increasing electron energy deposition in absorbing medium has been experimentally studied. The results indicate that the energy deposition gain of x-ray photoelectron in medium is apparent, and the maximum energy deposition can increase by more than 40%. Some suggestions of further increasing the energy deposition are given, and the future application of the way of increasing the x-ray photoelectron energy deposition by the thick GEM-like multiplier in hard x-ray imaging is prospected. (authors)

  13. A study on the measurement of effective energy of scattering X-rays

    International Nuclear Information System (INIS)

    Oogama, Noboru; Fujimoto, Nobuhisa; Nishitani, Motohiro; Yamada, Katsuhiko

    1995-01-01

    Only a few studies have been reported on the measurement and evaluation of the effective energy of scattering X-rays using an ionization chamber. The reason for this is due to the difficulty in accurately measuring attenuation curve in scattering X-rays lacking any directional properties. We could come up with a new method for calculating the effective energy of scattering X-rays by utilizing their spectra data. First, for analysing the accuracy of our calculation method with using primary X-rays, a comparison was made of calculated values of the effective energy obtained by our calculation method with the measurement values obtained using an ionization chamber. The results gave the calculated values agreeing with the measurement values within a maximum error of 2%, and this method was very helpful in measuring the effective energy of the scattering X-rays. Consequently, this method was capable of measuring the effective energy of scattering X-rays in the following parameters: X-ray tube voltage, scattering angle and size of scatterer. In conclusion, it is considered that our method could solve the present difficulty regarding the measurement of effective energy of the scattering X-rays, and provided a useful procedure concerning the study of radiation protection. (author)

  14. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  15. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  16. Interaction between lipid monolayers and poloxamer 188: An X-ray reflectivity and diffraction study

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2005-01-01

    The mechanism by which poloxamer 188 (P188) seals a damaged cell membrane is examined using the lipid monolayer as a model system. X-ray reflectivity and grazing-incidence x-ray diffraction results show that at low nominal lipid density, P188, by physically occupying the available area and phase ...

  17. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  18. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  19. Thermoluminescent dosemeters for determining the energy absorbed during X-ray radiography of the vertebral column

    International Nuclear Information System (INIS)

    Liebl, R.

    1983-01-01

    The dose and absorbed energy during normal diagnostic X-ray of various sections of the vertebral column were determined with LiF-dosemeters in a phantom. The paper describes a method to be used to determine integral doses from the dose measurements. The energy absorbed for one X-ray picture of the vertebral column is between 5 and 30 mJ. Compared to other diagnostical X-rays the quantity of the energy absorbed during X-ray of the vertebral column is rather high and is only reached by X-rays in the pelvic region. The speculations on the rate of incidence of malignent neoplasms on the basis of diagnostical X-ray of the vertebral column reveal a value of 50 per 60 x 10 6 persons. This value is likely to overestimate the risk, seems, however, to be low in comparison to other risks of every day life (traffic accident, mountainering, etc). (orig./HP) [de

  20. Light Collection in the High Energy X-ray Detector with the Pixelated CdWO4 Scintillator using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Moon, Myung-Kook; Lee, Suhyun; Kim, Jongyul; Kim, Jeongho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Won [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-05-15

    The performance of indirect detectors, which use the scintillator as CdWO{sub 4}, BGO, CsI, NaI, etc., are effected by optical properties of scintillator and geometrical condition of scintillator. Some of generated lights by interaction between x-ray photons and scintillator are collected at the photo-sensor and others are absorbed in scintillator or escape out of detector. In order to make the high performance image detector, detector should be able to gather the generated lights as much as possible. To minimize the loss of generated lights, thickness of scintillator is to be chosen appropriately. Therefore, the quality of the image detector using the pixelated scintillator is determined by scintillator size, reflectance of scintillator surface, electric noise, etc. In this study, we carried out a study the correlation between the number of collected light and the change of thickness of scintillator using Monte Carlo method. As shown in results, the optimal thickness of a scintillator should be properly selected depending on the incident x-ray energy. In case of without reflector, the scintillator thickness range for x-ray detection is thinner than other cases (with reflector). In the case of a scintillator with reflector, number of collected light and the optima thickness of a scintillator is higher and thicker than scintillator without reflector.

  1. On the Feasibility of Very-Low-Density Pure Metal Foams as Bright High-Energy X-ray Sources

    Science.gov (United States)

    Colvin, Jeffrey; Felter, Thomas

    2003-10-01

    We have used the Busquet approximation (M. Busquet, Phys. Fluids B 5(11), 4191 (1993)) to explore calculationally what the possible x-ray conversion efficiencies into the K-band would be from irradiating very-low-density pure metal foams with tens of kilojoules of 1/3-micron laser light. We will discuss the advantages of pure metal foams as bright high-energy x-ray sources, and some results of this calculational study. We will also present our ideas for how to fabricate pure metal foams with densities of a few milligrams per cubic centimeter. This work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  2. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  3. The application of thermoluminescence dosimeter on the measurement of hard X-ray pulse energy spectrum

    International Nuclear Information System (INIS)

    Song Zhaohui; Wang Baohui; Wang Kuilu; Hei Dongwei; Sun Fengrong; Li Gang

    2001-01-01

    This paper introduce the application of thermoluminescence dosimeter (TLD) which composed by TLD-3500 Reader and TLD-100M chips on the measurement of hard X-ray pulse energy spectrum. The idea, using Filter Fluorescence Method (FFM) and TLD to measure hard X-ray pulse energy spectrum (from 10 keV to 100 keV), is discussed in details. Considering all the factors of the measuring surroundings, the measurement system of hard X-ray pulse has been devised. The calibration technique of absolute energy response of TLD is established. This method has been applied successfully on the radiation parameters measurement of the huge pulse radiation device -high-power pulser I. Hard X-ray pulse energy spectrum data of the pulser are acquired

  4. Intermediate-range order in mesoporous silicas investigated by a high-energy X-ray diffraction technique

    International Nuclear Information System (INIS)

    Wakihara, Toru; Fan, Wei; Ogura, Masaru; Okubo, Tatsuya; Kohara, Shinji; Sankar, Gopinathan

    2008-01-01

    We perform a high-energy X-ray diffraction study comparing bulk amorphous silica with MCM-41 and SBA-15 that are representative mesoporous silicas prepared in basic and acidic conditions, respectively. It is revealed that mesoporous silicas, especially SBA-15, have less ordered structures and contain larger fractions of three- and four-membered rings than does bulk amorphous silica. (author)

  5. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  6. Dependence of the K x-ray energy on the mode of excitation

    International Nuclear Information System (INIS)

    Wang, K.C.; Boehm, F.; Hahn, A.A.; Vogel, P.

    1977-01-01

    The energy shifts in the Ta K x rays resulting from the K-capture of 181 W, fluorescence of Ta, and β - decay of 181 Hf followed by internal conversion in 181 Ta are reported. Both W metal and WO 3 on one hand, and Ta metal and Ta 2 O 5 on the other hand, were used. Comparison of the K x-ray energies of the K-capture sources 153 Gd (Eu x rays) and 175 Hf (Lu x rays) and the corresponding fluorescence sources was also made. Various effects which may influence the K x-ray energies are discussed. 9 references

  7. X-ray Spectral Survey of WGACAT Quasars, II: Optical and Radio Properties of Quasars with Low Energy X-ray Cut-offs

    OpenAIRE

    Elvis, Martin; Fiore, Fabrizio; Giommi, Paolo; Padovani, Paolo

    1997-01-01

    We have selected quasars with X-ray colors suggestive of a low energy cut-off, from the ROSAT PSPC pointed archive. We examine the radio and optical properties of these 13 quasars. Five out of the seven quasars with good optical spectra show associated optical absorption lines, with two having high delta-v candidate systems. Two other cut-off quasars show reddening associated with the quasar. We conclude that absorption is highly likely to be the cause of the X-ray cut-offs, and that the abso...

  8. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. X-ray Reflectivity Study of Ionic Liquids at Electrified Surfaces

    Science.gov (United States)

    Chu, Miaoqi

    X-ray reflectivity (XRR) versatile technique that characterize the surface structures. However, due to the lack of phase information of X-ray data, the reconstruction of electron density profile (EDP) from XRR data is an ill-posed inverse problem that requires extra attention. In Chapter 1, several key concepts in XRR data analysis are reviewed. The typical XRR data acquisition procedure and methods of modeling electron density are introduced. The widely used logarithm form of merit function is justified with mathematical deduction and numerical experiment. A scheme that generates artificial reflectivity data with theoretical statistical error but not systematical error is proposed. With the methods and schemes described in Chapter 1, simulated reflectivity data of a simple one-slab model is generated and fitted to test the efficient of EDP reconstruction. By isolating the parameters, the effects of slab width, electron density contrast and maximal wave transfer are studied individually. It?s demonstrated that best-fit/global minima, result reported by most XRR studies, don?t necessary reflect the real EDP. By contrast, mapping the merit function in the parametric space can capture much more details. Additionally, the widely accepted concept about the XRR theoretical spatial resolution (pi/q_{max}) as well the using Patterson function are brought to test. In the perspective of XRR data analysis, this chapter puts forward general rules to design and optimize XRR experiments. It also demonstrates how susceptible the fitting result will be if it?s not done carefully. In Chapter 3, the interface between hydrophobic OTS film and several solvents is studied with XRR in a transmission-cell setup. The solvents, from water, acetone, to alcohol (methanol, ethanol, 1-propanol), to alkane (pentane, hexane and heptane), vary significantly in terms of polarity and hydrogen bonding. However, the XRR data from different solvents are subtle. The methods and principles elicited in

  10. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  11. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  12. X-ray amplifier energy deposition scaling with channeled propagation

    International Nuclear Information System (INIS)

    Boyer, K.; Luk, T.S.; McPherson, A.

    1991-01-01

    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  13. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  14. X-ray pencil beam facility for optics characterization

    Science.gov (United States)

    Krumrey, Michael; Cibik, Levent; Müller, Peter; Bavdaz, Marcos; Wille, Eric; Ackermann, Marcelo; Collon, Maximilien J.

    2010-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has used synchrotron radiation for the characterization of optics and detectors for astrophysical X-ray telescopes for more than 20 years. At a dedicated beamline at BESSY II, a monochromatic pencil beam is used by ESA and cosine Research since the end of 2005 for the characterization of novel silicon pore optics, currently under development for the International X-ray Observatory (IXO). At this beamline, a photon energy of 2.8 keV is selected by a Si channel-cut monochromator. Two apertures at distances of 12.2 m and 30.5 m from the dipole source form a pencil beam with a typical diameter of 100 μm and a divergence below 1". The optics to be investigated is placed in a vacuum chamber on a hexapod, the angular positioning is controlled by means of autocollimators to below 1". The reflected beam is registered at 5 m distance from the optics with a CCD-based camera system. This contribution presents design and performance of the upgrade of this beamline to cope with the updated design for IXO. The distance between optics and detector can now be 20 m. For double reflection from an X-ray Optical Unit (XOU) and incidence angles up to 1.4°, this corresponds to a vertical translation of the camera by 2 m. To achieve high reflectance at this angle even with uncoated silicon, a lower photon energy of 1 keV is available from a pair of W/B4C multilayers. For coated optics, a high energy option can provide a pencil beam of 7.6 keV radiation.

  15. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  16. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  17. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-03-01

    The narrow, neutral Fe Kα fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Kα line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Kα line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Kα line and found FWHM values of up to ∼5000 km s‑1. Only in some spectra was the Fe Kα line unresolved by the HETG.

  18. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-Energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-01-01

    The narrow, neutral Fe Ka fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Ka line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Ka line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Ka line and found FWHM values of up to approx. 5000 km/s. Only in some spectra was the Fe Ka line unresolved by the HETG.

  19. Flat-response x-ray-diode-detector development

    International Nuclear Information System (INIS)

    Tirsell, G.

    1982-10-01

    In this report we discuss the design of an improved sub-nanosecond flat response x-ray diode detector needed for ICF diagnostics. This device consists of a high Z cathode and a complex filter tailored to flatten the response so that the total x-ray energy below 1.5 keV can be measured using a single detector. Three major problems have become evident as a result of our work with the original LLNL design including deviation from flatness due to a peak in the response below 200 eV, saturation at relatively low x-ray fluences, and long term gold cathode instability. We are investigating grazing incidence reflection to reduce the response below 200 eV, new high Z cathode materials for long term stability, and a new complex filter for improved flatness. Better saturation performance will require a modified XRD detector under development with reduced anode to cathode spacing and increased anode bias voltage

  20. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    Science.gov (United States)

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  1. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  2. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  3. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  4. New structural studies of liquid crystal by reflectivity and resonant X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandes, P.

    2007-04-01

    This memory presents three structural studies of smectic Liquid Crystals by reflectivity and resonant diffraction of X-rays. It is divided in five chapters. In the first a short introduction to Liquid Crystals is given. In particular, the smectic phases that are the object of this study are presented. The second chapter is consecrated to the X-ray experimental techniques that were used in this work. The three last chapters present the works on which this thesis can be divided. Chapter three demonstrates on free-standing films of MHPOBC (historic liquid crystal that possesses the antiferroelectric sub-phases) the possibility to extend the technique of resonant X-ray diffraction to liquid crystals without resonant element. In the fourth chapter the structure of the B 2 liquid crystal phase of bent-core molecules (or banana molecules) is elucidated by using resonant X-ray diffraction combined with polarization analysis of the diffracted beam. A model of the polarization of the resonant beam diffracted by four different structures proposed for the B 2 phase is developed in this chapter. In the fifth chapter a smectic binary mixture presenting a very original critical point of phase separation is studied by X-ray reflectivity and optical microscopy. A concentration gradient in the direction perpendicular to the plane of the film seems to be induced by the free-standing film geometry. The results of a simplified model of the system are compatible with this interpretation

  5. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  6. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    International Nuclear Information System (INIS)

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm 2 in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs

  7. Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission

    Science.gov (United States)

    Massahi, S.; Ferreira, D. D. M.; Christensen, F. E.; Shortt, B.; Girou, D. A.; Collon, M.; Landgraf, B.; Barriere, N.; Krumrey, M.; Cibik, L.; Schreiber, S.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the Athena optics. A linearly graded Ir/B4C multilayer has been deposited on the mirrors, via the direct current magnetron sputtering technique, at DTU Space. This specific multilayer, has through simulations, been demonstrated to produce the highest reflectivity at 6 keV, which is a goal for the scientific objectives of the mission. A critical aspect of the coating process concerns the use of photolithography techniques upon which we will present the most recent developments in particular related to the cleanliness of the plates. Experiments regarding the lift-off and stacking of the mirrors have been performed and the results obtained will be presented. Furthermore, characterization of the deposited thin-films was performed with X-ray reflectometry at DTU Space and in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II.

  8. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  9. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  10. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  11. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    Science.gov (United States)

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  12. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  13. Backscatter, anisotropy, and polarization of solar hard X-rays

    International Nuclear Information System (INIS)

    Bai, T.; Ramaty, R.

    1978-01-01

    Hard X-rays incident upon the photosphere with energies > or approx. =15 keV have high probabilities of backscatter due to Compton collisions with electrons. This effect has a strong influence on the spectrum, intensity, and polarization of solar hard X-rays - especially for anisotropic models in which the primary X-rays are emitted predominantly toward the photosphere. We have carried out a detailed study of X-ray backscatter, and we have investigated the interrelated problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter in a coherent fashion. The results of this study are compared with observational data. Because of the large contribution from backscatter, for an anisotropic primary X-ray source which is due to bremsstrahlung of accelerated electrons moving predominantly down toward the photosphere, the observed X-ray flux around 30 keV does not depend significantly on the position of flare on the Sun. For such an anisotropic source, the X-ray spectrum observed in the 15-50 keV range becomes steeper with the increasing heliocentric angle of the flare. These results are compatible with the data. The degree of polarization of the sum of the primary and reflected X-rays with energies between about 15 and 30 keV can be very large for anisotropic primary X-ray sources, but it is less than about 4% for isotropic sources. We also discuss the characteristics of the brightness distribution of the X-ray albedo patch created by the Compton backscatter. The height and anisotropy of the primary hard X-ray source might be inferred from the study of the albedo patch

  14. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    Science.gov (United States)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  15. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  16. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  17. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  18. Very High Energy Emission from the Binary System Cyg X-3

    Science.gov (United States)

    Sinitsyna, V. G.; Sinitsyna, V. Yu.

    2018-03-01

    Cyg X-3 is actively studied in the entire range of the electromagnetic spectrum from the radio band to ultrahigh energies. Based on the detection of ultrahigh-energy gamma-ray emission, it has been suggested that Cyg X-3 could be one of the most powerful sources of charged cosmic-ray particles in the Galaxy. We present the results of long-term observations of the Cygnus X-3 region at energies 800 GeV-100 TeV by the SHALON mirror Cherenkov telescope. In 1995 the SHALON observations revealed a new Galactic source of very high energy gamma-ray emission coincident in its coordinates with the microquasar Cyg X-3. To reliably identify the detected source with Cyg X-3, an analysis has been performed and an orbital period of 4.8 h has been found, which is a signature of Cyg X-3. A series of flares in Cyg X-3 at energies >800 GeV and their correlation with the activity in the X-ray and radio bands have been observed. The results obtained in a wide energy range for Cyg X-3, including those during the periods of relativistic jet events, are needed to find the connection and to understand the different components of an accreting binary system.

  19. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  20. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  1. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    Science.gov (United States)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  2. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  3. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  4. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  5. X-ray reflectivity study of thermal capillary waves on liquid surfaces

    International Nuclear Information System (INIS)

    Ocko, B.M.; Wu, X.Z.; Sirota, E.B.; Sinha, S.K.; Deutsch, M.

    1994-01-01

    X-ray reflectivity measurements have been carried out at the liquid/vapor interface of normal alkanes. The reflectivities over a large temperature range of different chain lengths (C20 and C36) provide a critical test of the various capillary wave models. Our data are most consistent with the hybrid model which allows for a molecular size dependent cutoff q max for the capillary waves and an intrinsic interface width σ 0

  6. Development, Beam characterization and chromosomal effectiveness of X-rays of RBC characteristic X-ray generator

    International Nuclear Information System (INIS)

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Takatsuji, Toshihiro; Ejima, Yosuke; Saigusa, Shin; Tachibana, Akira; Sasaki, Masao S.

    2006-01-01

    A characteristic hot-filament type X-ray generator was constructed for irradiation of cultured cells. The source provides copper K, iron K, chromium K, molybdenum L, aluminium K and carbon K shell characteristic X-rays. When cultured mouse m5S cells were irradiated and frequencies of dicentrics were fitted to a linear-quadratic model, Y=αD+βD 2 , the chromosomal effectiveness was not a simple function of photon energy. The α-terms increased with the decrease of the photon energy and then decreased with further decrease of the energy with an inflection point at around 10 keV. The β-terms stayed constant for the photon energy down to 10 keV and then increased with further decrease of energy. Below 10 keV, the relative biological effectiveness (RBE) at low doses was proportional to the photon energy, which contrasted to that for high energy X- or γ-rays where the RBE was inversely related with the photon energy. The reversion of the energy dependency occurred at around 1-2 Gy, where the RBE of soft X-rays was insensitive to X-ray energy. The reversion of energy-RBE relation at a moderate dose may shed light on the controversy on energy dependency of RBE of ultrasoft X-rays in cell survival experiments. (author)

  7. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  8. High energy X-ray observations of CYG X-3 from from OSO-8: Further evidence of a 34.1 day period

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1981-01-01

    The X-ray source Cyg X-3 (=4U2030+40) was observed with the high energy X-ray spectrometer on OSO-8 for two weeks in 1975 and in 1976 and for one week in 1977. No change in spectral shape and intensity above 23 keV was observed from year to year. No correlation is observed between the source's intensity and the phase of the 34.1 day period discovered by Molteni, et al. (1980). The pulsed fraction of the 4.8 hour light curve between 23 and 73 keV varies from week to week, however, and the magnitude of the pulsed fraction appears to be correlated with the 34.1 day phase. No immediate explanation of this behavior is apparent in terms of previously proposed models of the source.

  9. L-shell x-ray yields and production cross-sections of molybdenum induced by low-energy highly charged argon ions

    International Nuclear Information System (INIS)

    Du Juan; Xu Jinzhang; Chen Ximeng; Yang Zhihu; Shao Jianxiong; Cui Ying; Zhang Hongqiang; Gao Zhimin; Liu Yuwen

    2007-01-01

    L-shell x-ray yields of molybdenum bombarded by highly charged Ar q+ ions (q=11-16) are measured. The x-ray production cross-sections are extracted from the yields data. The energy of the incident Ar ions ranges from 200 to 350 keV. After the binding energy correction, experimental data are explained in the framework of binary-encounter-approximation (BEA). The direct ionization is treated in the united atom (UA) limit (Lapicki and Lichten 1985 Phys. Rev. A 31 1354), not in the separate atom (SA) limit. The calculation results of BEA (Gacia and Fortner 1973 Rev. Mod. Phys. 45 111) are much lower than the experimental results, while the results of binding energy modified BEA are basically in agreement with the experimental results

  10. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  11. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  12. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  13. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  14. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  15. Energy-angle correlation correction algorithm for monochromatic computed tomography based on Thomson scattering X-ray source

    Science.gov (United States)

    Chi, Zhijun; Du, Yingchao; Huang, Wenhui; Tang, Chuanxiang

    2017-12-01

    The necessity for compact and relatively low cost x-ray sources with monochromaticity, continuous tunability of x-ray energy, high spatial coherence, straightforward polarization control, and high brightness has led to the rapid development of Thomson scattering x-ray sources. To meet the requirement of in-situ monochromatic computed tomography (CT) for large-scale and/or high-attenuation materials based on this type of x-ray source, there is an increasing demand for effective algorithms to correct the energy-angle correlation. In this paper, we take advantage of the parametrization of the x-ray attenuation coefficient to resolve this problem. The linear attenuation coefficient of a material can be decomposed into a linear combination of the energy-dependent photoelectric and Compton cross-sections in the keV energy regime without K-edge discontinuities, and the line integrals of the decomposition coefficients of the above two parts can be determined by performing two spectrally different measurements. After that, the line integral of the linear attenuation coefficient of an imaging object at a certain interested energy can be derived through the above parametrization formula, and monochromatic CT can be reconstructed at this energy using traditional reconstruction methods, e.g., filtered back projection or algebraic reconstruction technique. Not only can monochromatic CT be realized, but also the distributions of the effective atomic number and electron density of the imaging object can be retrieved at the expense of dual-energy CT scan. Simulation results validate our proposal and will be shown in this paper. Our results will further expand the scope of application for Thomson scattering x-ray sources.

  16. Sample preparation of energy materials for X-ray nanotomography with micromanipulation.

    Science.gov (United States)

    Chen-Wiegart, Yu-chen Karen; Camino, Fernando E; Wang, Jun

    2014-06-06

    X-ray nanotomography presents an unprecedented opportunity to study energy storage/conversion materials at nanometer scales in three dimensions, with both elemental and chemical sensitivity. A critical step in obtaining high-quality X-ray nanotomography data is reliable sample preparation to ensure that the entire sample fits within the field of view of the X-ray microscope. Although focused-ion-beam lift-out has previously been used for large sample (few to tens of microns) preparation, a difficult undercut and lift-out procedure results in a time-consuming sample preparation process. Herein, we propose a much simpler and direct sample preparation method to resolve the issues that block the view of the sample base after milling and during the lift-out process. This method is applied on a solid-oxide fuel cell and a lithium-ion battery electrode, before numerous critical 3D morphological parameters are extracted, which are highly relevant to their electrochemical performance. A broad application of this method for microstructure study with X-ray nanotomography is discussed and presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  18. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, A. [Shenzhen College of International Education, 1st HuangGang Park St., Shenzhen, GuangDong (China); Luo, J. [Department of Biomedical Engineering, University at Buffalo, 332 Bonner Hall, Buffalo, NY 14260-1920 (United States); Wang, A. [Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Broadbent, C. [School of Engineering, Columbia University, 1130 Amsterdam Av., New York, NY 10027 (United States); Zhong, J. [Department of English, Dartmouth College, 6032 Sanborn House, Hanover, NH 03755 (United States); Dilmanian, F.A. [Departments of Radiation Oncology, Neurology, and Radiology, Stony Brook University, Stony Brook, NY 11794 (United States); Zafonte, F.; Zhong, Z. [National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg. 743, Upton, NY 11973 (United States)

    2015-07-11

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  19. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  20. Off-plane x-ray reflection grating fabrication

    Science.gov (United States)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  1. X-ray reflection from cold matter in the nuclei of active galaxies

    International Nuclear Information System (INIS)

    Pounds, K.A.; Nandra, K.; Stewart, G.C.; George, I.M.; Fabian, A.C.

    1990-01-01

    The evidence accumulated over the past few years for strong soft X-ray emission from active galactic nuclei has been interpreted as black body emission from the innermost stable region of an accretion disk feeding the putative black hole at the centre of the active nucleus, a view given strong support by the rapid variability of some soft X-ray components. More recently, new X-ray data from the Exosat and Ginga satellites have revealed a second indicator of optically thick matter in the vicinity of the active nucleus, in the form of an iron K-fluorescence line at ≅ 6.4 keV. We report the discovery of two further common features of continuum absorption and reflection, revealed in a composite spectrum from twelve Ginga observations of Seyfert-type active galactic nuclei. Most of these spectral features are shown to be well modelled by reprocessing of the hard X-ray power-law continuum in a slab (or perhaps a disk) of cold matter. There is also evidence for a substantial line-of-sight column of photoionized material. (author)

  2. [Problems of the effective energy used as a quality expression of diagnostic X-ray].

    Science.gov (United States)

    Kato, Hideki; Hayashi, Naoki; Suzuki, Shoichi; Ando, Sho; Miyamoto, Mami; Wakasugi, Nao; Suzuki, Shizuma

    2011-01-01

    The effective energy has been generally used as a method of handily expressing an X-ray quality by one numerical value. The effective energy is a concept derived from "Half Value Layer (HVL)" that is the expressing parameter of beam quality based on the attenuation of the primary X-ray by a material. When beam quality is expressed by using HVL and / or the effective energy, it is necessary to describe the tube potential, the rectification method, and the homogeneity coefficient, etc. in parallel. However, recently feelings are that the effective energy should be handled like an absolute numerical value to physical characteristics of X-rays. In this paper, it was theoretically clarified that the effective energy had a different value depending on the absorber material used for the HVL measurement. In addition, the errors when physical characteristics of the X-rays were evaluated using the effective energy was also examined. Physical characteristics, such as interactions to the material of mono-energetic X-ray, are not equal to that of X-rays with a wide energy spectrum. It is not an easy comparison to express the quality of the diagnostic X-rays, and to calculate physical characteristics of the X-rays by using the effective energy. It is necessary to design a new method of expressing the quality of X-rays that takes the place of the "effective energy."

  3. Investigation of the structure of human dental tissue at multiple length scales using high energy synchrotron X-ray SAXS/WAXS

    Science.gov (United States)

    Sui, Tan; Landini, Gabriel; Korsunsky, Alexander M.

    2011-10-01

    High energy (>50keV) synchrotron X-ray scattering experiments were carried out on beamline I12 JEEP at the Diamond Light Source (DLS, Oxford, UK). Although a complete human tooth could be studied, in the present study attention was focused on coupons from the region of the Dentin-Enamel Junction (DEJ). Simultaneous high energy SAXS/WAXS measurements were carried out. Quantitative analysis of the results allows multiple length scale characterization of the nano-crystalline structure of dental tissues. SAXS patterns analysis provide insight into the mean thickness and orientation of hydroxyapatite particles, while WAXS (XRD) patterns allow the determination of the crystallographic unit cell parameters of the hydroxyapatite phase. It was found that the average particle thickness determined from SAXS interpretation varies as a function of position in the vicinity of the DEJ. Most mineral particles are randomly orientated within dentin, although preferred orientation emerges and becomes stronger on approach to the enamel. Within the enamel, texture is stronger than anywhere in the dentin, and the determination of lattice parameters can be accomplished by Pawley refinement of the multiple peak diffraction pattern. The results demonstrate the feasibility of using high energy synchrotron X-ray beams for the characterization of human dental tissues. This opens up the opportunity of studying thick samples (e.g., complete teeth) in complex sample environments (e.g., under saline solution). This opens new avenues for the application of high energy synchrotron X-ray scattering to dental research.

  4. Quantum electrodynamics of the internal source x-ray holographies: Bremsstrahlung, fluorescence, and multiple-energy x-ray holography

    International Nuclear Information System (INIS)

    Miller, G.A.; Sorensen, L.B.

    1997-01-01

    Quantum electrodynamics (QED) is used to derive the differential cross sections measured in the three new experimental internal source ensemble x-ray holographies: bremsstrahlung (BXH), fluorescence (XFH), and multiple-energy (MEXH) x-ray holography. The polarization dependence of the BXH cross section is also obtained. For BXH, we study analytically and numerically the possible effects of the virtual photons and electrons which enter QED calculations in summing over the intermediate states. For the low photon and electron energies used in the current experiments, we show that the virtual intermediate states produce only very small effects. This is because the uncertainty principle limits the distance that the virtual particles can propagate to be much shorter than the separation between the regions of high electron density in the adjacent atoms. We also find that using the asymptotic form of the scattering wave function causes about a 5 10% error for near forward scattering. copyright 1997 The American Physical Society

  5. X-ray metrology for ULSI structures

    International Nuclear Information System (INIS)

    Bowen, D. K.; Matney, K. M.; Wormington, M.

    1998-01-01

    Non-destructive X-ray metrological methods are discussed for application to both process development and process control of ULSI structures. X-ray methods can (a) detect the unacceptable levels of internal defects generated by RTA processes in large wafers, (b) accurately measure the thickness and roughness of layers between 1 and 1000 nm thick and (c) can monitor parameters such as crystallographic texture and the roughness of buried interfaces. In this paper we review transmission X-ray topography, thin film texture measurement, grazing-incidence X-ray reflectivity and high-resolution X-ray diffraction. We discuss in particular their suitability as on-line sensors for process control

  6. A Rotational and Axial Motion System Load Frame Insert for In Situ High Energy X-Ray Studies (Postprint)

    Science.gov (United States)

    2015-09-08

    Paul A. Shade, Jay C. Schuren, and Todd J. Turner AFRL/RX Basil Blank PulseRay Peter Kenesei, Kurt Goetze, Ulrich Lienert, and Jonathan Almer...AFRL/RX 2) Basil Blank – PulseRay (continued on page 2) 5d. PROJECT NUMBER 4349 5e. TASK NUMBER 0001 5f...2015) A rotational and axial motion system load frame insert for in situ high energy x-ray studies Paul A. Shade,1,a) Basil Blank,2 Jay C. Schuren,1,b

  7. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  8. Illicit drug detection using energy dispersive x-ray diffraction

    Science.gov (United States)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  9. Analysis of kiwi fruit (Accented deliciosa) by energy dispersive X-ray fluorescence spectra

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia S.; Oliveira, Marcia L. de; Silva, Lucia C.A.S.; Arthur, Valter; Almeida, Eduardo

    2011-01-01

    The search for a healthy life has led consumers to eat fruits and vegetables in place of manufactured products, however, the demand for minimally processed products has evolved rapidly. The kiwi has at least eight nutrients beneficial to health: calcium, magnesium, manganese, phosphorus, iron, potassium, sodium and has also high vitamin C, which has wide acceptance in consumer markets. Energy dispersive spectroscopy X-ray (EDX) is the analytical technique used for elemental analysis or chemical characterization of a sample. It is a variant of fluorescence spectroscopy X-ray based on the sample through an investigation of interactions between electromagnetic radiation and matter, analyzing X-rays emitted by matter in response to being struck by charged particles. The aim of this study were to determine potassium, calcium, iron and bromine (K, Ca, Fe and Br, respectively) present in kiwifruit using the technique of fluorescence X-ray energy dispersive (EDXRF). Kiwifruit were peeled, washed and cut into slices and freeze-dried. After drying the sample was held digestion and subsequent reading of the same equipment in the X-ray fluorescence energy dispersive (EDXRF). The results indicated that the contents of potassium, calcium, iron and bromine are present in kiwifruit as expected when compared to Brazilian Table of Food Composition. (author)

  10. Measurement of rocking curve wings at high x-ray energies

    International Nuclear Information System (INIS)

    Chapman, D.; Hastings, J.; Moulin, H.; Siddons, D.P.; Garrett, R.F.; Nachaliel, E.; Dilmanian, F.A.

    1991-01-01

    Measurements done recently at the NSLS have indicated that the level of intensity found in the wings of diffraction peaks from silicon at higher x-ray energies (>20keV) far exceeds the value which would be predicted based on the dynamical theory. We have measured Si(220) double crystal rocking curves at the 40keV fundamental and harmonics with various crystal scattering geometries: Bragg-Bragg, Laue-Bragg, Laue-Lauel. The comparison of the Bragg and Laue case diffraction geometries was done to determine scattering volume effects. Comparisons with dynamical theory calculations will be discussed. These measurements have been carried out in order to assess the level of harmonic contamination which will be present from a double crystal monochromator being designed for the X17 Superconducting Wiggler Beamline

  11. Total reflection X-ray fluorescence and archaeometry: Application in the Argentinean cultural heritage

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Cristina [Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Laboratorio de Quimica de Sistemas Heterogeneos, Facultad de Ingenieria, Universidad de Buenos Aires, P. Colon 850 (C1063ACU), Buenos Aires (Argentina)], E-mail: Cristina.Vazquez@cnea.gov.ar; Albornoz, Ana [Agencia Rio Negro Cultura, Museo de la Patagonia F.P.Moreno, Centro Civico s/n Bariloche, Rio Negro (Argentina); Hajduk, Adam [CONICET, Museo de la Patagonia F.P.Moreno, Centro Civico s/n Bariloche, Rio Negro (Argentina); Elkin, Dolores [CONICET Instituto Nacional de Antropologia y Pensamiento Latinoamericano, 3 de febrero 1378 (C1426AEL) Buenos Aires (Argentina); Custo, Graciela; Obrustky, Alba [Comision Nacional de Energia Atomica, Av. Gral Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina)

    2008-12-15

    Archaeometry is an interdisciplinary research area involved in the development and use of scientific methods in order to answer questions concerned with the human history. In this way the knowledge of archaeological objects through advanced chemical and physical analyses permits a better preservation and conservation of the cultural heritage and also reveals materials and technologies used in the past. In this sense, analytical techniques play an important role in order to provide chemical information about cultural objects. Considering the non destructive characteristic of this study, analytical techniques must be adequate in order to prevent any alteration or damage and in addition to allow the conservation of their integrity. Taking into account the irreplaceable character of the archaeological and artistic materials considered in this study, analytical techniques must be adequate in order to prevent any alteration or damage and in addition to allow the conservation of their integrity. Total Reflection X-ray Fluorescence Spectrometry as a geometric variant of conventional X-ray fluorescence is a proved microanalytical technique considering the small amount of sample required for the analysis. A few micrograms are enough in order to reveal valuable information about elemental composition and in this context it is highly recommended for artwork studies. In this paper a case study is presented in which Total Reflection X-Ray Fluorescence Spectrometry has been successfully employed in the archaeometry field. Examples from Argentinean cultural heritage sites related with the determination of pigments in paintings on canvas and in rock sites as well as in underwater archaeology research are shown.

  12. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-01

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge

  13. High-energy observations of the state transition of the X-ray nova and black hole candidate XTE J1720-318

    DEFF Research Database (Denmark)

    Bel, M.C.; Rodriguez, J.; Sizun, P.

    2004-01-01

    We report the results of extensive high-energy observations of the X-ray transient and black hole candidate XTE J1720-318 performed with INTEGRAL, XMM-Newton and RXTE. The source, which underwent an X-ray outburst in 2003 January, was observed in February in a spectral state dominated by a soft......, typical of a black-hole binary in the so-called High/Soft State. We then followed the evolution of the source outburst over several months using the INTEGRAL Galactic Centre survey observations. The source became active again at the end of March: it showed a clear transition towards a much harder state...... of the black hole X-ray novae class which populate our galactic bulge and we discuss its properties in the frame of the spectral models used for transient black hole binaries....

  14. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    Stupin, D.M.; Mueller, K.H.; Viskoe, D.A.; Howard, B.; Poland, R.W.; Schneberk, D.; Dolan, K.; Thompson, K.; Stoker, G.

    1995-01-01

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  15. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    International Nuclear Information System (INIS)

    Mihucz, Victor G.; Moricz, Agnes M.; Kroepfl, Krisztina; Szikora, Szilvia; Tatar, Eniko; Parra, Lue Meru Marco; Zaray, Gyula

    2006-01-01

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods

  16. Development of off-line layer chromatographic and total reflection X-ray fluorescence spectrometric methods for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Mihucz, Victor G. [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); Moricz, Agnes M. [L. Eoetvoes University, Department of Chemical Technology and Environmental Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Kroepfl, Krisztina [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Szikora, Szilvia [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary); Tatar, Eniko [Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary); L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary); Parra, Lue Meru Marco [Universidad Centro-occidental Lisandro Alvarado, Decanato de Agronomia, Departamento de Quimica y Suelos Unidad de Analisis Instrumental, Apartado Postal 4076, Cabudare 3023 (Venezuela); Zaray, Gyula [Joint Research Group of Environmental Chemistry of Hungarian Academy of Sciences and L. Eoetvoes University, P. O. Box 32, H-1518 Budapest (Hungary) and Hungarian Satellite Centre of Trace Elements Institute to UNESCO, P. O. Box 32, H-1518 Budapest (Hungary) and L. Eoetvoes University, Department of Inorganic and Analytical Chemistry, P.O. Box 32, H-1518 Budapest (Hungary)]. E-mail: zaray@ludens.elte.hu

    2006-11-15

    Rapid and low cost off-line thin layer chromatography-total reflection X-ray fluorescence spectrometry and overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods have been developed for separation of 25 ng of each As(III), As(V), monomethyl arsonic acid and dimethylarsinic acid applying a PEI cellulose stationary phase on plastic sheets and a mixture of acetone/acetic acid/water = 2:1:1 (v/v/v) as eluent system. The type of eluent systems, the amounts (25-1000 ng) of As species applied to PEI cellulose plates, injection volume, development distance, and flow rate (in case of overpressured thin layer chromatography) were taken into consideration for the development of the chromatographic separation. Moreover, a microdigestion method employing nitric acid for the As spots containing PEI cellulose scratched from the developed plates divided into segments was developed for the subsequent total reflection X-ray fluorescence spectrometry analysis. The method was applied for analysis of root extracts of cucumber plants grown in As(III) containing modified Hoagland nutrient solution. Both As(III) and As(V) were detected by applying the proposed thin layer chromatography/overpressured thin layer chromatography-total reflection X-ray fluorescence spectrometry methods.

  17. Monte Carlo simulations for stereotactic radiotherapy system with various kilo-voltage x-ray energy

    International Nuclear Information System (INIS)

    Deloar, H.M.; Kunieda, E.; Kawase, T.; Kubo, Atsushi; Saitoh, H.; Myojoyama, A.; Ozaki, M.; Fujisaki, T.; Saito, K.

    2005-01-01

    Stereotactic radiotherapy (SRT) of lung tumors with a narrow and precise medium energy x-ray beam where the homogeneous high dose area will be confined within the tumors are desirable. A conventional x-ray CT with medium energy x-ray has been modified to develop a radiotherapy system for lung SRT. A cylindrical collimator (0.3 cm φ) made of tungsten was introduced to collimate the X-ray beam. The system was simulated with BEAMnrc(EGS4) Monte Carlo code and various x-ray energy spectra were generated to investigate the dose distributions with our kilo-voltage SRT system. Experiments were performed to acquire the energy spectra of 100, 120 and 135 kVp (kilo-voltage peak) from CT measurements and those results were compared with the spectra obtained from Monte Carlo simulations. Verifications of percentage of dose depth (PDD) for 120 and 147.5 kVp were investigated in a water phantom with experiments and Monte Carlo simulations. Finally dose distributions of 120, 135, 147.5, 200, 250, 300, 350, 400, 500 kVp spectra were investigated with lung phantom and human lung. The Percentage of Depth Dose (PDD) in the water phantom calculated from the experimental and simulated spectra of 120 and 147.5 kVp show good agreement with each other. The PDD of 147.5 and 120 kVp spectra at 9 cm depth was approximately 10% and 9%, respectively. Dose distributions around the lung tumor in the phantom and human for all x-ray energies were almost uniform but in the case of the human lung absorptions of dose at ribs for the energy lower than 135 kVp was more than 35% and those absorptions for the energy spectra of 147.5 kVp and above was less than 30%. This absorption gradually decreases with increasing x-ray energies. Uniform dose distributions in the lung region of human and thorax phantom demonstrated the possibility of SRT system with medium energy X-ray. A detail performance of this system as a kilo-voltage conformal radiotherapy is under investigations. (author)

  18. The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8

    Science.gov (United States)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.

    1979-01-01

    Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.

  19. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  20. Calibration of the Verification Engineering Test Article-I (VETA-I) for AXAF using the VETA-I X-ray Detection System

    Science.gov (United States)

    Kellogg, E.; Brissenden, R.; Flanagan, K.; Freeman, M.; Hughes, J.; Jones, M.; Ljungberg, M.; Mckinnon, P.; Podgorski, W.; Schwartz, D.

    1992-01-01

    Advanced X-ray Astrophysics Facility (AXAF) X-ray optics testing is conducted by VETA-I, which consists of six nested Wolter type I grazing-incidence mirrors; VETA's X-ray Detection System (VXDS) in turn measures the imaging properties of VETA-I, yielding FWHM and encircled energy of the X-ray image obtained, as well as its effective area. VXDS contains a high resolution microchannel plate imaging X-ray detector and a pinhole scanning system in front of proportional-counter detectors. VETA-I's X-ray optics departs from the AXAF flight configuration in that it uses a temporary holding fixture; its mirror elements are not cut to final length, and are not coated with the metal film used to maximize high-energy reflection.

  1. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  2. Higher order structure analysis of nano-materials by spectral reflectance of laser-plasma soft x-ray

    International Nuclear Information System (INIS)

    Azuma, Hirozumi; Takeichi, Akihiro; Noda, Shoji

    1995-01-01

    We have proposed a new experimental arrangement to measure spectral reflectance of nano-materials for analyzing higher order structure with laser-plasma soft x-rays. Structure modification of annealed Mo/Si multilayers and a nylon-6/clay hybrid with poor periodicity was investigated. The measurement of the spectral reflectance of soft x-rays from laser-produced plasma was found to be a useful method for the structure analysis of nano-materials, especially those of rather poor periodicity

  3. The Athena X-ray Integral Field Unit (X-IFU)

    NARCIS (Netherlands)

    Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw, Gregor; RoŻanska, Agata; Wilms, Joern; Barbera, Marco; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Decourchelle, Anne; den Hartog, Roland; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prêle, Damien; Ravera, Laurent; Renotte, Etienne; Schaye, Joop; Shinozaki, Keisuke; Valenziano, Luca; Vink, Jacco; Webb, Natalie; Yamasaki, Noriko; Delcelier-Douchin, Françoise; Le Du, Michel; Mesnager, Jean-Michel; Pradines, Alice; Branduardi-Raymont, Graziella; Dadina, Mauro; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Miller, Jon; Nazé, Yaël; Nicastro, Fabrizio; Sciortino, Salvatore; Torrejon, Jose Miguel; Geoffray, Hervé; Hernandez, Isabelle; Luno, Laure; Peille, Philippe; André, Jérôme; Daniel, Christophe; Etcheverry, Christophe; Gloaguen, Emilie; Hassin, Jérémie; Hervet, Gilles; Maussang, Irwin; Moueza, Jérôme; Paillet, Alexis; Vella, Bruno; Campos Garrido, Gonzalo; Damery, Jean-Charles; Panem, Chantal; Panh, Johan; Bandler, Simon; Biffi, Jean-Marc; Boyce, Kevin; Clénet, Antoine; DiPirro, Michael; Jamotton, Pierre; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Brand, Thorsten; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Cucchetti, Edoardo

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5

  4. Dispersive x-ray synchrotron studies of Pt-C multilayers

    International Nuclear Information System (INIS)

    Smither, R.K.; Rodricks, B.; Lamelas, F.; Medjahed, D.; Dos Passos, W.; Clarke, R.; Ziegler, E.; Fontaine, A.

    1989-02-01

    We demonstrate the simultaneous acquisition of high-resolution x-ray absorption spectra and scattering data, using a combination of energy-dispersive optics and a two-dimensional CCD detector. Results are presented on the optical constants of Pt and on the reflectivity of a platinum-carbon multilayer at the L/sub III/ absorption edge of Pt. 12 refs., 5 figs

  5. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    Science.gov (United States)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  6. Short-time X-ray diffraction with an efficient-optimized, high repetition-rate laser-plasma X-ray-source

    International Nuclear Information System (INIS)

    Kaehle, Stephan

    2009-01-01

    This thesis deals with the production and application of ultrashort X-ray pulses. In the beginning different possibilities for the production of X-ray pulses with pulse durations of below one picosecond are presented, whereby the main topic lies on the so called laser-plasma X-ray sources with high repetition rate. In this case ultrashort laser pulses are focused on a metal, so that in the focus intensities of above 10 16 W/cm 2 dominate. In the ideal case in such way ultrafast electrons are produced, which are responsible for line radiation. In these experiments titanium K α radiation is produced, thes photons possess an energy of 4.51 keV. For the efficient production of line radiation here the Ti:Sa laser is optimized in view of the laser energy and the pulse shape and the influence of the different parameters on the K α production systematically studied. The influences of laser intensity, system-conditioned pre-pulses and of phase modulation are checked. It turns out that beside the increasement of the K α radiation by a suited laser intensity a reduction of the X-ray background radiation is of deciding importance for the obtaining of clear diffraction images. This background radiation is mainly composed of bremsstrahlung. It can be suppressed by the avoidance of intrinsic pre-pulses and by means of 2nd-order phase modulation. By means of optical excitation and X-ray exploration experiments the production of acoustic waves after ultrashort optical excitation in a 150 nm thick Ge(111) film on Si(111) is studied. These acoustic waves are driven by thermal (in this time scale time-independent) and electronic (time dependent) pressure amounts. As essential results it turns out that the relative amount of the electronic pressure increases with decreasing excitation density [de

  7. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    International Nuclear Information System (INIS)

    Chubar, Oleg; Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Shvyd'ko, Yuri

    2015-08-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm -1 spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm -1 are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10 12 ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  8. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  9. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  10. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  11. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  12. Thermal forming of glass microsheets for x-ray telescope mirror segments

    DEFF Research Database (Denmark)

    Jimenez-Garate, M.A.; Hailey, C.J.; Craig, W.W.

    2003-01-01

    envisioned for future x-ray observatories. The glass microsheets are shaped into mirror segments at high temperature by use of a guiding mandrel, without polishing. We determine the physical properties and mechanisms that elucidate the formation process and that are crucial to improve surface quality. We......We describe a technology to mass-produce ultrathin mirror substrates for x-ray telescopes of near Wolter-I geometry. Thermal glass forming is a low-cost method to produce high-throughput, spaceborne x-ray mirrors for the 0.1-200-keV energy band. These substrates can provide the collecting area...... develop a viscodynamic model for the glass strain as the forming proceeds to find the conditions for repeatability. Thermal forming preserves the x-ray reflectance and scattering properties of the raw glass. The imaging resolution is driven by a large wavelength figure. We discuss the sources of figure...

  13. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  14. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  15. HPHT growth and x-ray characterization of high-quality type IIa diamond.

    Science.gov (United States)

    Burns, R C; Chumakov, A I; Connell, S H; Dube, D; Godfried, H P; Hansen, J O; Härtwig, J; Hoszowska, J; Masiello, F; Mkhonza, L; Rebak, M; Rommevaux, A; Setshedi, R; Van Vaerenbergh, P

    2009-09-09

    The trend in synchrotron radiation (x-rays) is towards higher brilliance. This may lead to a very high power density, of the order of hundreds of watts per square millimetre at the x-ray optical elements. These elements are, typically, windows, polarizers, filters and monochromators. The preferred material for Bragg diffracting optical elements at present is silicon, which can be grown to a very high crystal perfection and workable size as well as rather easily processed to the required surface quality. This allows x-ray optical elements to be built with a sufficient degree of lattice perfection and crystal processing that they may preserve transversal coherence in the x-ray beam. This is important for the new techniques which include phase-sensitive imaging experiments like holo-tomography, x-ray photon correlation spectroscopy, coherent diffraction imaging and nanofocusing. Diamond has a lower absorption coefficient than silicon, a better thermal conductivity and lower thermal expansion coefficient which would make it the preferred material if the crystal perfection (bulk and surface) could be improved. Synthetic HPHT-grown (high pressure, high temperature) type Ib material can readily be produced in the necessary sizes of 4-8 mm square and with a nitrogen content of typically a few hundred parts per million. This material has applications in the less demanding roles such as phase plates: however, in a coherence-preserving beamline, where all elements must be of the same high quality, its quality is far from sufficient. Advances in HPHT synthesis methods have allowed the growth of type IIa diamond crystals of the same size as type Ib, but with substantially lower nitrogen content. Characterization of this high purity type IIa material has been carried out with the result that the crystalline (bulk) perfection of some of the HPHT-grown materials is approaching the quality required for the more demanding applications such as imaging applications and imaging

  16. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    International Nuclear Information System (INIS)

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  17. Direct analysis of biological samples by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Lue M, Marco P.; Hernandez-Caraballo, Edwin A.

    2004-01-01

    The technique of total reflection X-ray fluorescence (TXRF) is well suited for the direct analysis of biological samples due to the low matrix interferences and simultaneous multi-element nature. Nevertheless, biological organic samples are frequently analysed after digestion procedures. The direct determination of analytes requires shorter analysis time, low reactive consumption and simplifies the whole analysis process. On the other hand, the biological/clinical samples are often available in minimal amounts and routine studies require the analysis of large number of samples. To overcome the difficulties associated with the analysis of organic samples, particularly of solid ones, different procedures of sample preparation and calibration to approach the direct analysis have been evaluated: (1) slurry sampling, (2) Compton peak standardization, (3) in situ microwave digestion, (4) in situ chemical modification and (5) direct analysis with internal standardization. Examples of analytical methods developed by our research group are discussed. Some of them have not been previously published, illustrating alternative strategies for coping with various problems that may be encountered in the direct analysis by total reflection X-ray fluorescence spectrometry

  18. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  19. Fricke dosimetry: the difference between G(Fe3+) for 60Co gamma-rays and high-energy x-rays.

    Science.gov (United States)

    Klassen, N V; Shortt, K R; Seuntjens, J; Ross, C K

    1999-07-01

    A calibration of the Fricke dosimeter is a measurement of epsilon G(Fe3+). Although G(Fe3+) is expected to be approximately energy independent for all low-LET radiation, existing data are not adequate to rule out the possibility of changes of a few per cent with beam quality. When a high-precision Fricke dosimeter, which has been calibrated for one particular low-LET beam quality, is used to measure the absorbed dose for another low-LET beam quality, the accuracy of the absorbed dose measurement is limited by the uncertainty in the value of G(Fe3+). The ratio of G(Fe3+) for high-energy x-rays (20 and 30 MV) to G(Fe3+) for 60Co gamma-rays, G(Fe3+)MV(Co), was measured to be 1.007(+/-0.003) (confidence level of 68%) using two different types of water calorimeter, a stirred-water calorimeter (20 MV) and a sealed-water calorimeter (20, 30 MV). This value is consistent with our calculations based on the LET dependence of G(primary products) and, as well, with published measurements and theoretical treatments of G(Fe3+).

  20. Calibration of the Nustar High-Energy Focusing X-Ray Telescope

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.

    2015-01-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles...... and energies, compared to the assumed spectrum, are typically better than +/- 2% up to 40 keV and 5%-10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power...

  1. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    Science.gov (United States)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  2. The DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm

    International Nuclear Information System (INIS)

    Wang Hui; Zoulian; Jiang Qisheng; Li Fengsheng; He Rui; Song Xiujun

    2011-01-01

    Objective: To detect the DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm by single cell gel electrophoresis (SCGE). Evaluation the level of DNA damage of human peripheral blood nucleated cell's and sperm after high doses of X-ray. Methods: Using human peripheral blood with normal blood routine and normal sperm,give the dose of 0 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy, 10 Gy X-ray radiation with energy of 6MU. Detect the percentage of comet-like tail, tail length and content of DNA in tail of whole blood cell's DNA and sperm's DNA by SCGE technique in 1 hour. Results: The peripheral blood nucleated cell's and sperm's comet rate were 1.00±0.10%, 2.1±1.5%, respectively, have an evidently variance in 0 Gy group (υ=18, t=2.31>1.734, P 1.734, P 1.734, P<0.05). The peripheral blood nucleated cell's and sperm's comet rate were all 100%, 100%, have no-statistical significance in 8 Gy, 10 Gy group. Conclusion: The evidence is powerful enough. That the sperm's SCGE is more sensitive than peripheral blood nucleated cell's SCGE in reflect the X-ray damage in a certain extent (2-6 Gy). (authors)

  3. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  4. Optimization and energy spectra of x-ray to be used for imaging

    International Nuclear Information System (INIS)

    Nakamori, Nobuyuki; Kanamori, Hitoshi

    1979-01-01

    The relations of the spectra of X-ray used for diagnosis to the absorbed dose of patients and X-ray information are now being investigated by a number of investigators. Here the problems and the trends of the investigations at present are described. Advent of semiconductor detectors has improved the accuracy of measuring X-ray spectra very rapidly. However, since the semiconductor detectors themselves utilize X-ray photon absorption, calibration curves must be prepared for obtaining the true X-ray spectra. Though there are methods of theoretically determining X-ray spectra, no definite theoretical formula is found. Thus, the derivation of an empirical equation based on measured data would be the most fundamental problem. Interactions in an object and the change of X-ray spectra are described on the case of monochromatic and continuous X-ray irradiation. As mentioned above, beam hardening occurs when X-ray enters a matter deep, because the interactions between X-ray and the matter depend upon the photon energy. There are a few methods for correcting the variation of CT (computed tomography) number due to beam hardening. However, prior to this, there are two methods of representing continuous X-ray with single energy, and the unification of the methods or a new way of defining X-ray quality is needed. It has been and is always desirable that monochromatic X-ray source becomes to be useable, and various methods are proposed. (Wakatsuki, Y.)

  5. THE X-RAY HALO OF CEN X-3

    International Nuclear Information System (INIS)

    Thompson, Thomas W. J.; Rothschild, Richard E.

    2009-01-01

    Using two Chandra observations, we have derived estimates of the dust distribution and distance to the eclipsing high-mass X-ray binary Cen X-3 using the energy-resolved dust-scattered X-ray halo. By comparing the observed X-ray halos in 200 eV bands from 2-5 keV to the halo profiles predicted by the Weingartner and Draine interstellar grain model, we find that the vast majority (∼ 70%) of the dust along the line of sight to the system is located within about 300 pc of the Sun, although the halo measurements are insensitive to dust very close to the source. One of the Chandra observations occurred during an egress from eclipse as the pulsar emerged from behind the mass-donating primary. By comparing model halo light curves during this transition to the halo measurements, a source distance of 5.7 ± 1.5 kpc (68% confidence level) is estimated, although we find this result depends on the distribution of dust on very small scales. Nevertheless, this value is marginally inconsistent with the commonly accepted distance to Cen X-3 of 8 kpc. We also find that the energy scaling of the scattering optical depth predicted by the Weingartner and Draine interstellar grain model does not accurately represent the results determined by X-ray halo studies of Cen X-3. Relative to the model, there appears to be less scattering at low energies or more scattering at high energies in Cen X-3.

  6. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  7. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  8. High-Performance X-ray Detection in a New Analytical Electron Microscope

    Science.gov (United States)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  9. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence

    Science.gov (United States)

    von Bohlen, Alex; Meyer, Friedrich

    1997-07-01

    Total reflection X-ray fluorescence was used to characterize elements (with Z>13) contained in varnishes applied by prominent violin makers during the last five centuries. Direct analyses of small flakes with masses varnish. Higher amounts of Fe, As and Pb were found in old products, Mn, Co, Cu, Zn and Pb were used in more recent varnishes.

  10. Evaluation of high packing density powder X-ray screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, P.; Kandarakis, I.; Cavouras, D.; Kalivas, N.; Delis, H.; Panayiotakis, G.

    2007-01-01

    Phosphor materials are employed in intensifying screens of both digital and conventional X-ray imaging detectors. High packing density powder screens have been developed (e.g. screens in ceramic form) exhibiting high-resolution and light emission properties, and thus contributing to improved image transfer characteristics and higher radiation to light conversion efficiency. For the present study, a custom Monte Carlo simulation program was used in order to examine the performance of ceramic powder screens, under various radiographic conditions. The model was developed using Mie scattering theory for the description of light interactions, based on the physical characteristics (e.g. complex refractive index, light wavelength) of the phosphor material. Monte Carlo simulations were carried out assuming: (a) X-ray photon energy ranging from 18 up to 49 keV, (b) Gd 2 O 2 S:Tb phosphor material with packing density of 70% and grain size of 7 μm and (c) phosphor thickness ranging between 30 and 70 mg/cm 2 . The variation of the Modulation Transfer Function (MTF) and the Luminescence Efficiency (LE) with respect to the X-ray energy and the phosphor thickness was evaluated. Both aforementioned imaging characteristics were shown to take high values at 49 keV X-ray energy and 70 mg/cm 2 phosphor thickness. It was found that high packing density screens may be appropriate for use in medical radiographic systems

  11. X-ray supermirrors for BESSY II

    International Nuclear Information System (INIS)

    Erko, A.; Schaefers, F.; Vidal, B.; Yakshin, A.; Pietsch, U.; Mahler, W.

    1995-01-01

    X-ray multilayer supermirrors for the energy range up to 20 keV have been theoretically studied and experimentally measured with synchrotron radiation. A multilayer mirror with 50 W/Si bilayers with different thicknesses on the Si substrate has a smooth reflectivity of up to 32% in the whole energy range from 5 to 22 keV at a grazing incidence angle of 0.32 degree which is considerably larger than using total external reflection. copyright 1995 American Institute of Physics

  12. X-ray generation by femtosecond laser pulses and its application to soft X-ray imaging microscope

    International Nuclear Information System (INIS)

    Ikeda, Kenichi; Kotaki, Hideyuki; Nakajima, Kazuhisa

    2002-01-01

    We have developed laser-produced plasma X-ray sources using femtosecond laser pulses at 10Hz repetition rate in a table-top size in order to investigate basic mechanism of X-ray emission from laser-matter interactions and its application to a X-ray microscope. In a soft X-ray region over 5 nm wavelength, laser-plasma X-ray emission from a solid target achieved an intense flux of photons of the order of 1011 photons/rad per pulse with duration of a few 100 ps, which is intense enough to make a clear imaging in a short time exposure. As an application of laser-produced plasma X-ray source, we have developed a soft X-ray imaging microscope operating in the wavelength range around 14 nm. The microscope consists of a cylindrically ellipsoidal condenser mirror and a Schwarzshird objective mirror with highly-reflective multilayers. We report preliminary results of performance tests of the soft X-ray imaging microscope with a compact laser-produced plasma X-ray source

  13. Energy Reconstruction for Events Detected in TES X-ray Detectors

    Science.gov (United States)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  14. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  15. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  16. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    Energy Technology Data Exchange (ETDEWEB)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-15

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin $a\\gt 0.9$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  17. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  18. Refractive x-ray lens for high pressure diffraction

    International Nuclear Information System (INIS)

    Ohishi, Yasuo

    2001-01-01

    A stacked compound refractive x-ray lens was designed to produce a efficiently focused (φ 2 and a peak gain of 12, is well matched to these requirements. It is composed of many plastic chips made by molding, which is allowing many identical chips to be made precisely. Other advantages of this lens include high throughput, simple energy tunability and easy installation. (author)

  19. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  20. Performance characteristics of conventional X-ray generator isotope source and high energy accelerator in rocket motor evaluation

    International Nuclear Information System (INIS)

    Viswanathan, K.; Rao, K.V.; Subbalah, C.; Uttam, M.C.

    1985-01-01

    Final qualification of solid rocket motors and other related components in the Indian Space Programme is carried out using radiographic sources of different energies. The necessity to have different sources of varying energies arises from the fact that the components in the space programme vary from small fastners to gigantic solid rocket motors. In order to achieve the best radiographic quality with the optimised exposure time different X-ray sources are used. To have 100% coverage and to reduce the inspection time, a Real Time Radiography for the high energy LINAC is also planned

  1. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  2. Wide field X-ray telescopes: Detecting X-ray transients/afterglows related to gamma ray bursts

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul; Rezek, Tomas

    1999-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited field of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70ies but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster eye type are presented and discussed. Optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  3. Compact alpha-excited sources of low energy x-rays

    International Nuclear Information System (INIS)

    Amlauer, K.; Tuohy, I.

    1976-01-01

    A discussion is given of the use of alpha emitting isotopes, such as 210 Po and 244 Cm, for the production of low energy x-rays (less than 5.9 keV). The design of currently available sources is described, and x-ray fluxes observed from various target materials are presented. Commercial applications of the alpha excitation technique are briefly discussed

  4. Total reflection X-ray Fluorescence determination of interfering elements rubidium and uranium by profile fitting

    Science.gov (United States)

    Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.

    2018-06-01

    Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.

  5. A graded d-spacing multilayer telescope for high-energy x-ray astronomy

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; WESTERGAARD, NJ

    1992-01-01

    A high energy telescope design is presented which combines grazing incidence geometry with Bragg reflection in a graded d-spacing multilayer coating to obtain significant sensitivity up to --6O keV. The concept utilizes total reflection and first order Bragg reflection in a graded d-spacing multi...

  6. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    Science.gov (United States)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  7. Photoemission measurements for low energy x-ray detector applications

    International Nuclear Information System (INIS)

    Day, R.H.

    1981-01-01

    Photoemission has been studied for nearly 100 years as both a means of investigating quantum physics, and as a practical technique for transducing optical/x-ray photons into electrical currents. Numerous x-ray detection schemes, such as streak cameras and x-ray sensitive diodes, exploit this process because of its simplicity, adaptability, and speed. Recent emphasis on diagnostics for low temperature, high density, and short-lived, plasmas for inertial confinement fusion has stimulated interest in x-ray photoemission in the sub-kilovolt regime. In this paper, a review of x-ray photoemission measurements in the 50 eV to 10 keV x-ray region is given and the experimental techniques are reviewed. A semiempirical model of x-ray photoemission is discussed and compared to experimental measurements. Finally, examples of absolutely calibrated instruments are shown

  8. The effect of surface texture on total reflection of neutrons and X-rays from modified interfaces

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Hughes, A.

    2002-01-01

    X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length and the h......X-ray and neutron scattering from macroscopically rough surfaces and interfaces is considered and a new method of analysis based on the variation of the shape of the total reflection edge in the reflectivity profile is proposed. It was shown that in the limit that the correlation length...... and the height of the surface roughness are larger than the wavelength (at least 100 times bigger) of the incoming beam, the total reflection edge in the reflection profile becomes rounded. This technique allows direct analysis of the variation of the reflectivity pro le in terms of the structure of the surface...

  9. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  10. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  11. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  12. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    Energy Technology Data Exchange (ETDEWEB)

    Žitnik, M., E-mail: matjaz.zitnik@ijs.si [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, SI-1000 Ljubljana (Slovenia); Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A. [Jožef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana (Slovenia); Cao, W. [Research Centre for Molecular Materials, University of Oulu, P.O. Box 3000, FIN-90014 Oulu (Finland); Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Piancastelli, M.N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala (Sweden); Simon, M. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-10-15

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  13. Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization

    International Nuclear Information System (INIS)

    Žitnik, M.; Kavčič, M.; Bohinc, R.; Bučar, K.; Mihelič, A.; Cao, W.; Guillemin, R.; Journel, L.; Marchenko, T.; Carniato, S.; Kawerk, E.; Piancastelli, M.N.; Simon, M.

    2015-01-01

    We summarize recent results dealing with high resolution (resonant) X-ray spectroscopy of atomic and molecular targets in the tender X-ray energy region. We comment on advantages, new possibilities and problems related to RIXS spectroscopy with respect to the standard photoabsorption technique, where scanning the probe energy is the only option. In particular, three research areas are covered: X-ray emission mediated by energy dependent photoabsorption to multi-electron excited states, the Cl K core-hole clock studies exemplified by systematic study of chloro(fluoro)-hydrocarbon targets and the polarization dependent X-ray emission studies. Due to its spectral selectivity and simultaneous detection capability, high resolution wavelength dispersive X-ray spectroscopy has the capability to resolve structural and dynamical properties of matter within new instrumentation frontiers.

  14. Ultra high energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  15. Theoretical concepts of X-ray nanoscale analysis theory and applications

    CERN Document Server

    Benediktovitch, Andrei; Ulyanenkov, Alexander

    2013-01-01

    This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data ana

  16. Automated materials discrimination using 3D dual energy X ray images

    International Nuclear Information System (INIS)

    Wang, Ta Wee

    2002-01-01

    The ability of a human observer to identify an explosive device concealed in complex arrangements of objects routinely encountered in the 2D x-ray screening of passenger baggage at airports is often problematic. Standard dual-energy x-ray techniques enable colour encoding of the resultant images in terms of organic, inorganic and metal substances. This transmission imaging technique produces colour information computed from a high-energy x-ray signal and a low energy x-ray signal (80keV eff ≤ 13) to be automatically discriminated from many layers of overlapping substances. This is achieved by applying a basis materials subtraction technique to the data provided by a wavelet image segmentation algorithm. This imaging technique is reliant upon the image data for the masking substances to be discriminated independently of the target material. Further work investigated the extraction of depth data from stereoscopic images to estimate the mass density of the target material. A binocular stereoscopic dual-energy x-ray machine previously developed by the Vision Systems Group at The Nottingham Trent University in collaboration with The Home Office Science and Technology Group provided the image data for the empirical investigation. This machine utilises a novel linear castellated dual-energy x-ray detector recently developed by the Vision Systems Group. This detector array employs half the number of scintillator-photodiode sensors in comparison to a conventional linear dual-energy sensor. The castellated sensor required the development of an image enhancement algorithm to remove the spatial interlace effect in the resultant images prior to the calibration of the system for materials discrimination. To automate the basis materials subtraction technique a wavelet image segmentation and classification algorithm was developed. This enabled overlapping image structures in the x-rayed baggage to be partitioned. A series of experiments was conducted to investigate the

  17. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  18. Monte Carlo simulation of the interaction of X-ray spectrum with human tissue, in the energies range of diagnostic radiology

    International Nuclear Information System (INIS)

    Cayllahua Q, L. F.; Apaza V, G.; Vega R, J. L.

    2015-10-01

    Full text: This paper is an approach to an increasingly complete knowledge about the nature of the processes that occur during a simple examination of radiological diagnosis; know as X-rays are produced and how they will put their energy into the tissue of patients when they are subjected to an examination of radiological diagnosis. First, using the MCNP code an X-rays tube was simulated, where electrons are emitted from a filament (cathode) which travel a certain distance with a certain kinetic energy and then be stopped suddenly in the tungsten target. The X-rays emitted as a result of this interaction, are previously filtered through the inherent filter of Pyrex glass and then by a thin aluminum foil before quantification as an X-rays spectrum. 6 spectra (for 60, 80, 100, 120 and 140 KeV) were obtained. Second, using the Penelope code was simulated the interaction of the X-rays spectrum, obtained in the first part with human tissue, putting as simile of human tissue water phantoms of different thicknesses. As final result: dose of energy deposited (in 2 and 3-dimensional) and reflected, absorbed and transmitted photons spectra. (Author)

  19. Experimental investigations of the dosimetric features of x-ray radiation used in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Prostyakova, M A

    1975-10-01

    For radiation hygiene estimates of the extent of the irradiation of various organs and tissues in roentgenological investigations, the quality and quantity of the primary radiation beam and its behaviour in the irradiated medium are assessed. It is shown that the effective energy of x-rays generated at 50-100 kV and with different radiation field dimensions at different depths in a tissue-equivalent irradiated medium is more or less constant, varying within the range 25 to 32 keV. The constancy of effective x-ray energies in a tissue-equivalent medium enables one to use, for different x-ray tube regimes, constant values of the roentgen-rad conversion factor for soft tissue and bone tissue. The investigations confirm the desirability of using high voltages across the x-ray tube in practical x-ray work.

  20. A high rate, low noise, x-ray silicon strip detector system

    International Nuclear Information System (INIS)

    Ludewigt, B.; Jaklevic, J.; Kipnis, I.; Rossington, C.; Spieler, H.

    1993-11-01

    An x-ray detector system, based on a silicon strip detector wire-bonded to a low noise charge-senstive amplifier integrated circuit, has been developed for synchrotron radiation experiments which require very high count rates and good energy resolution. Noise measurements and x-ray spectra were taken using a 6 mm long, 55 μm pitch strip detector in conjunction with a prototype 16-channel charge-sensitive preamplifier, both fabricated using standard 1.2 μm CMOS technology. The detector system currently achieves an energy resolution of 350 eV FWHM at 5.9 key, 2 μs peaking time, when cooled to -5 degree C

  1. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  2. The reflected amplitude ratio of multilayers and superlattice describe the dynamical diffraction of x-rays

    International Nuclear Information System (INIS)

    Bhatti, Q.A.; Mangi, F.A.

    2006-01-01

    Calculating the rocking curves of complicated layered structures, such as non-ideal super lattices on perfect crystals are clearly exposed with observed diffraction profile. Recursion formulas for calculating reflected amplitude ratio of multilayer and super lattices have been involved from the Takagi-Taupin differential equation, which describes the dynamical diffraction of X-rays in deformed crystal. The Kinematical theory can computing time only in case of ideal superlattice for which geometric series can be used but the reflectivity must be below 10 % so that multiple reflections can be neglected for a perfect crystal of arbitrary thickness the absorption at the centre of the dynamical reflection is found to be proportional to the square root of the reflectivity. Sputter- deposited periodic multilayers of tungsten and carbon can be considered as an artificial crystal, for which dynamical X-rays diffraction calculations give the result very similar to those of macroscopic optical description in terms of the complex index of refraction and Frensnel relation coefficient. (author)

  3. An InGrid based Low Energy X-ray Detector

    CERN Document Server

    Krieger, Christoph; Kaminski, Jochen; Lupberger, Michael; Vafeiadis, Theodoros

    2014-01-01

    An X-ray detector based on the combination of an integrated Micromegas stage with a pixel chip has been built in order to be installed at the CERN Axion Solar Telescope. Due to its high granularity and spatial resolution this detector allows for a topological background suppression along with a detection threshold below $1\\,\\text{keV}$. Tests at the CAST Detector Lab show the detector's ability to detect X-ray photons down to an energy as low as $277\\,\\text{eV}$. The first background data taken after the installation at the CAST experiment underline the detector's performance with an average background rate of $5\\times10^{-5}\\,/\\text{keV}/\\text{cm}^2/\\text{s}$ between 2 and $10\\,\\text{keV}$ when using a lead shielding.

  4. Spectral and dual-energy X-ray imaging for medical applications

    Science.gov (United States)

    Fredenberg, Erik

    2018-01-01

    Spectral imaging is an umbrella term for energy-resolved X-ray imaging in medicine. The technique makes use of the energy dependence of X-ray attenuation to either increase the contrast-to-noise ratio, or to provide quantitative image data and reduce image artefacts by so-called material decomposition. Spectral imaging is not new, but has gained interest in recent years because of rapidly increasing availability of spectral and dual-energy CT and the dawn of energy-resolved photon-counting detectors. This review examines the current technological status of spectral and dual-energy imaging and a number of practical applications of the technology in medicine.

  5. High-resolution X-ray imaging - a powerful nondestructive technique for applications in semiconductor industry

    International Nuclear Information System (INIS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-01-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy). (orig.)

  6. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    Science.gov (United States)

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  7. Novel opportunities for sub-meV inelastic X-ray scattering at high-repetition rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY (United States). National Synchrotron Light Source II; Geloni, Gianluca; Madsen, Anders [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shvyd' ko, Yuri [Argonne National Laboratory, IL (United States). Advanced Photon Source; Sutter, John [Diamond Light Source Ltd., Didcot (United Kingdom)

    2015-08-15

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup -1} spectral and momentum transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup -1} are required to close the gap in energy-momentum space between high and low frequency probes. We show that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a hundred-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than possible with storage-ring based radiation sources. Wave-optics propagation shows that about 7 x 10{sup 12} ph/s in a 90-μeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  8. RASOR: an advanced instrument for soft x-ray reflectivity and diffraction.

    Science.gov (United States)

    Beale, T A W; Hase, T P A; Iida, T; Endo, K; Steadman, P; Marshall, A R; Dhesi, S S; van der Laan, G; Hatton, P D

    2010-07-01

    We report the design and construction of a novel soft x-ray diffractometer installed at Diamond Light Source. The beamline endstation RASOR is constructed for general users and designed primarily for the study of single crystal diffraction and thin film reflectivity. The instrument is comprised of a limited three circle (theta, 2theta, and chi) diffractometer with an additional removable rotation (phi) stage. It is equipped with a liquid helium cryostat, and post-scatter polarization analysis. Motorized motions are provided for the precise positioning of the sample onto the diffractometer center of rotation, and for positioning the center of rotation onto the x-ray beam. The functions of the instrument have been tested at Diamond Light Source, and initial test measurements are provided, demonstrating the potential of the instrument.

  9. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  10. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  11. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  12. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  13. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  14. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Bertram, F.; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E.; Zhang, F.; Pan, J.; Carlà, F.; Nilsson, J.-O.

    2014-01-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  15. Vertebral morphometry by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Boyanov, M.

    2002-01-01

    Vertebral fractures are a key feature of overt osteoporosis. Different X-ray morphometric techniques have been developed for quantification of changes in vertebral body shape. In recent years, a new method was implemented based on dual-energy X-ray absorptiometry. Morphometric X-ray absorptiometry, MXA, is a source of lower radiation and there is no image distortion. Several aspects of its application are under heavy discussion: image quality, accuracy and precision, reference databases, age changes in vertebral shape. The differential diagnosis of vertebral fracture/deformity is difficult. MXA has prove its value in large epidemiological studies on prevalence of vertebral deformities, as well in assessing the effects of different diseases and medications on vertebral body architecture. MXA is a promising method for future research and clinical work. (author)

  16. Determination of the effective energy in X-rays standard beams, mammography level

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Eduardo de Lima; Vivolo, Vitor; Potiens, Maria da Penha A., E-mail: Vivolo@ipen.b, E-mail: mppalbu@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The X-rays beams used in diagnostic radiology are heterogeneous. This means that, in a radiological beam, it can be found photons with different energies. Because of that is common to work with the concept of effective energy. In this study the effective energy of an X-rays system used in instruments calibration was determined, as part of the mammography radiation qualities establishment. The procedure presented here was developed based on information found in the literature. The X-ray mass attenuation coefficients for aluminum, given by NIST web site, were used and the mathematical adjusts were done using the Origin 8.0 program. The results are part of the mammographic X-rays beams characteristics determination and it is important to keep the quality of this reference system. (author)

  17. X-ray laser '' oscillator-amplifier'' experiments

    International Nuclear Information System (INIS)

    Shimkaveg, G.M.; Carter, M.R.; Young, B.K.F.; Walling, R.S.; Osterheld, A.L.; Trebes, J.E.; London, R.A.; Ratowsky, R.P.; Stewart, R.E.; Craxton, R.S.

    1993-01-01

    We present results from experiments directed toward increasing the degree of transverse coherence in x-ray laser beams. We have concentrated on the neon-like yttrium (Z=39) collisionally-pumped x-ray laser as the test system for these studies because of its unique combination of brightness, monochromaticity, and high-reflectivity optics availability. Attempts at improving laser performance using proximate feedback optics failed. Modest success has been found to date in ''double foil'' experiments, involving two x-ray lasers spatially separated by 29 cm and shot sequentially in an ''oscillator-amplifier'' configuration

  18. Bone X-ray absorptiometry using two energies

    International Nuclear Information System (INIS)

    Laval-Jeantet, A.M.; Laval-Jeantet, M.; Bloch, J.

    1979-01-01

    A method of X-ray absorptiometry using two energies (28 and 36 keV) as a means of determining mineralisation of a bone specimen is described. The ratio of coefficients determined at the different energies varies according to the total mineralisation of the bone studied. A model, representing a serie of bone specimens constructed to study this relationship is described. The coefficients of attenuation for a given wavelength were measured. The relation between the coefficients found at two energies for a given specimen of known mineral content was found to vary as a function of the mineralisation. It is possible to determine the coefficient of attenuation characteristic of a bone and hence its mineralisation and thickness by measurements at two different wavelengths using this function. Experimental results show this potential of the method, but also its high sensitivity to small measurements errors [fr

  19. Energy dispersive X-Ray fluorescence spectrometric study of ...

    African Journals Online (AJOL)

    Energy dispersive X-Ray fluorescence spectrometric study of compositional differences in trace elements in dried Moringa oleifera leaves grown in two different agro-ecological locations in Ebonyi State, Nigeria.

  20. MCP characterization at the Cu and Mo Kα x-ray energies

    International Nuclear Information System (INIS)

    Walsh, P.J.; Evans, S.; Schappert, G.T.; Kyrala, G.A.

    1998-03-01

    The authors are investigating the usefulness of microchannel plate (MCP) intensifiers for imaging x-rays at high photon energies, specifically by using filtered X-rays from an electron bombardment source to generate the K α lines of Cu at 8.04 KeV and Mo at 17.5 KeV. These high energy lines are used to measure the resolution of an MCP based intensifier produced at Los Alamos National Laboratory. They have investigated the spot size of a fielded MCP intensifier by observing, on film, the result of single photon excitation of microchannels. Measurement of the spot size was done with visible light microscopy. They report initial results of the spot size distribution in the stripline direction. They have also begun a measurement of the azimuthal anisotropy in the spatial resolution, accentuated at these energies by the inclination of the axis of the MCP channels. They concentrate on an actual ''fielded instrument'' resolution, rather than ideal, for the purpose of analyzing image data captured at the NOVA Laser Facility