WorldWideScience

Sample records for high-energy spin dynamics

  1. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  2. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  3. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  4. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  5. FERMILAB: High energy spin effects

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-03-15

    While many physicists would agree that it is important to study interactions of different isospin states (for example comparing proton and neutron data), many of them also accept as normal data averaged or integrated over ordinary spin. However an ongoing programme at Brookhaven studying elastic scattering (where the incoming particles 'bounce' off each other) produced marked spin effects which are not well understood. Our understanding of particle interactions should not be influenced by which observables are easy to measure and which aren't, and until a clear understanding of spin effects emerges, it is important to continue and extend these studies.

  6. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  7. Hadron dynamics at high energies

    International Nuclear Information System (INIS)

    Storrow, J.K.

    1977-01-01

    The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)

  8. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  9. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  10. Electron spin polarization in high-energy storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.

    1987-01-01

    In a high energy storage ring, a single photon emission has relatively little effect on the orbital motion, but it can produce a relatively large change in the electron spin state. Hence the unperturbed orbital motion can be satisfactorily described using classical mechanics, but the spin must be treated quantum mechanically. The electron motion is therefore treated semi-classically in this thesis. It is explained how to diagonalize the unperturbed Hamiltonian to the leading order in Planck's constant. The effects of perturbations are then included, and the relevant time-scales and ensemble averages are elucidated. The Derbenev-Kondratenko formula for the equilibrium degree of polarization is rederived. Mathematical details of the rederivation are given. Since the original authors used a different formalism, a proof is offered of the equivalence between their method and the one used in this thesis. An algorithm is also presented to evaluate the equilibrium polarization. It has a number of new features, which enable the polarization to be calculated to a higher degree of approximation than has hitherto been possible. This facilitates the calculation of so-called spin resonances, which are points at which the polarization almost vanishes. A computer program has been written to implement the above algorithm, in the approximation of linear orbital dynamics, and sample results are presented

  11. Dynamics of high energy reactions

    International Nuclear Information System (INIS)

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  12. Significance of high energy spin effects in constituent pictures

    International Nuclear Information System (INIS)

    Chen, C.K.

    1977-01-01

    The spin information about high energy hadronic reactions is important for further understanding of the nature and the behavior of hadronic constituents. The usefulness of the information is discussed in the cases of dilepton production from hadronic collisions, large P/sub T/ inclusive and elastic scatterings, and small angle elastic scattering and quantum number exchanged reactions

  13. SLAC workshop on high energy electroproduction and spin physics

    International Nuclear Information System (INIS)

    1992-01-01

    These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A

  14. Analysis of possibilities for a spin flip in high energy electron ring HERA

    International Nuclear Information System (INIS)

    Stres, S.; Pestotnik, R.

    2007-01-01

    In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model

  15. Summary of the 9th international symposium on high energy spin-physics

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1990-11-01

    Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p perpendicular production, transverse polarization and asymmetries from transversely polarized targets in high p perpendicular scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops

  16. Dynamic nuclear spin polarization

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)

    1996-11-01

    Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.

  17. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  18. High energy spin waves in iron measured by neutron scattering

    International Nuclear Information System (INIS)

    Boothroyd, A.T.; Paul, D.M.; Mook, H.A.

    1991-01-01

    We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs

  19. Dynamic compaction with high energy of sandy hydraulic fills

    Directory of Open Access Journals (Sweden)

    Khelalfa Houssam

    2017-09-01

    Full Text Available A case study about the adoption of the dynamic compaction technique with high energy in a sandy hydraulic fill is presented. The feasibility of this technique to ensure the stability of the caisson workshop and to minimize the risk of liquefaction during manufacture. This Article is interested to establish diagnostic of dynamic compaction test, basing on the results of SPT tests and quality control as well as the details of work of compaction and the properties of filling materials. A theory of soil response to a high-energy impact during dynamic compaction is proposed.

  20. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  1. High-energy outer radiation belt dynamic modeling

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Nightingale, R.W.; Rinaldi, M.A.

    1989-01-01

    Specification of the average high-energy radiation belt environment in terms of phenomenological montages of satellite measurements has been available for some time. However, for many reasons both scientific and applicational (including concerns for a better understanding of the high-energy radiatino background in space), it is desirable to model the dynamic response of the high-energy radiation belts to sources, to losses, and to geomagnetic activity. Indeed, in the outer electron belt, this is the only mode of modeling that can handle the large intensity fluctuations. Anticipating the dynamic modeling objective of the upcoming Combined Release and Radiation Effects Satellite (CRRES) program, we have undertaken to initiate the study of the various essential elements in constructing a dynamic radiation belt model based on interpretation of satellite data according to simultaneous radial and pitch-angle diffusion theory. In order to prepare for the dynamic radiation belt modeling based on a large data set spanning a relatively large segment of L-values, such as required for CRRES, it is important to study a number of test cases with data of similar characteristics but more restricted in space-time coverage. In this way, models of increasing comprehensiveness can be built up from the experience of elucidating the dynamics of more restrictive data sets. The principal objectives of this paper are to discuss issues concerning dynamic modeling in general and to summarize in particular the good results of an initial attempt at constructing the dynamics of the outer electron radiation belt based on a moderately active data period from Lockheed's SC-3 instrument flown on board the SCATHA (P78-2) spacecraft. Further, we shall discuss the issues brought out and lessons learned in this test case

  2. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  3. Summary of the 8th international symposium on high energy spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1988-01-01

    The series of conferences on high energy spin physics dates back to Argonne, 1974, and the first use of the polarized proton beam at the ZGS. This conference is unique in that it is concerned both with the technology of spin and with particle physics: particle physicists need to know what experiments might be possible and target/beam/source physicists want to know what their work will lead to, and get new ideas. In many cases, and I believe that this is central to the success of spin physics and of this conference series, these are the same people. This summary will have three basic parts: where we are now relative to Argonne in 1974; a discussion of new experiments and theory---there were many new and intriguing results presented here; and new ideas for polarized sources, beams, and targets which point toward an exciting future program of particle physics. 13 refs., 2 figs., 4 tabs

  4. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, Matthias; Nowak, Wolf-Dieter; MILLER, A.

    2009-01-01

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress i

  5. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  6. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP CIRCUM-PAN-PACIFIC RIKEN SYMPOSIUM ON HIGH ENERGY SPIN PHYSICS, VOLUME 25

    Energy Technology Data Exchange (ETDEWEB)

    KUMANO,S.; SHIBATA,T.A.; YAZAKI,K.

    2000-06-28

    The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields.

  7. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  8. Relativistic fluid dynamics with spin

    Science.gov (United States)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  9. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  10. Nonlinear dynamic analysis of high energy line pipe whip

    International Nuclear Information System (INIS)

    Hsu, L.C.; Kuo, A.Y.; Tang, H.T.

    1983-01-01

    To facilitate potential cost savings in pipe whip protection design, TVA conducted a 1'' high pressure line break test to investigate the pipe whip behavior. The test results are available to EPRI as a data base for a generic study on nonlinear dynamic behavior of piping systems and pipe whip phenomena. This paper describes a nonlinear dynamic analysis of the TVA high energy line tests using ABAQUS-EPGEN code. The analysis considers the effects of large deformation and high strain rate on resisting moment and energy absorption capability of the analyzed piping system. The numerical results of impact forces, impact velocities, and reaction forces at pipe supports are compared to the TVA test data. The pipe whip impact time and forces have also been calculated per the current NRC guidelines and compared. The calculated pipe support reaction forces prior to impact have been found to be in good agreement with the TVA test data except for some peak values at the very beginning of the pipe break. These peaks are believed to be due to stress wave propagation which cannot be addressed by the ABAQUS code. Both the effects of elbow crushing and strain rate have been approximately simulated. The results are found to be important on pipe whip impact evaluation. (orig.)

  11. Spin-current emission governed by nonlinear spin dynamics.

    Science.gov (United States)

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  12. Spin-polarized high-energy scattering of charged leptons on nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Burkardt, M. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Physics; Miller, C.A. [TRIUMF, Vancouver, BC (Canada); Nowak, W.D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-08-15

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  13. Spin-polarized high-energy scattering of charged leptons on nucleons

    International Nuclear Information System (INIS)

    Burkardt, M.; Nowak, W.D.

    2009-08-01

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress is reviewed and an outlook for the future is offered. (orig.)

  14. High-energy hadron spin-flip amplitude at small momentum transfer and new AN data from RHIC

    International Nuclear Information System (INIS)

    Cudell, J.-R.; Selyugin, O.V.; Predazzi, E.

    2004-01-01

    In the case of elastic high-energy hadron-hadron scattering, the impact of the large-distance contributions on the behaviour of the slopes of the spin-non-flip and of the spin-flip amplitudes is analysed. It is shown that the long tail of the hadronic potential in impact parameter space leads to a value of the slope of the reduced spin-flip amplitude larger than that of the spin-non-flip amplitude. This effect is taken into account in the calculation of the analysing power in proton-nucleus reactions at high energies. It is shown that the preliminary measurement of A N for p 12 C obtained by the E950 Collaboration indeed favours a spin-flip amplitude with a large slope. Predictions for A N at p L =250/ GeV/c are given. (orig.)

  15. Magnetic Nanostructures Spin Dynamics and Spin Transport

    CERN Document Server

    Farle, Michael

    2013-01-01

    Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

  16. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  17. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  18. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    International Nuclear Information System (INIS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-01-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems

  19. Dynamical spin accumulation in large-spin magnetic molecules

    Science.gov (United States)

    Płomińska, Anna; Weymann, Ireneusz; Misiorny, Maciej

    2018-01-01

    The frequency-dependent transport through a nanodevice containing a large-spin magnetic molecule is studied theoretically in the Kondo regime. Specifically, the effect of magnetic anisotropy on dynamical spin accumulation is of primary interest. Such accumulation arises due to finite components of frequency-dependent conductance that are off diagonal in spin. Here, employing the Kubo formalism and the numerical renormalization group method, we demonstrate that the dynamical transport properties strongly depend on the relative orientation of spin moments in electrodes of the device, as well as on intrinsic parameters of the molecule. In particular, the effect of dynamical spin accumulation is found to be greatly affected by the type of magnetic anisotropy exhibited by the molecule, and it develops for frequencies corresponding to the Kondo temperature. For the parallel magnetic configuration of the device, the presence of dynamical spin accumulation is conditioned by the interplay of ferromagnetic-lead-induced exchange field and the Kondo correlations.

  20. Spin-1/2 particles in non-inertial reference frames. Low- and high-energy approximations

    International Nuclear Information System (INIS)

    Singh, D.; Papini, G.

    2000-01-01

    Spin-1/2 particles can be used to study inertial and gravitational effects by means of interferometers, particle accelerators, and ultimately quantum systems. These studies require, in general, knowledge of the Hamiltonian and of the inertial and gravitational quantum phases. The procedure followed gives both in the low- and high-energy approximations. The latter affords a more consistent treatment of mass at high energies. The procedure is based on general relativity and on a solution of the Dirac equation that is exact to first-order in the metric deviation. Several previously known acceleration- and rotation-induced effects are rederived in a comprehensive, unified way. Several new effects involve spin, electromagnetic and inertial/gravitational fields in different combinations

  1. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  2. Spin physics in the high energy hadron productions. A systematic study of the spin asymmetries induced by pp, γp, ep and νp collisions

    International Nuclear Information System (INIS)

    Kubo, K.-I.; Suzuki, K.; Nakajima, N.

    2002-01-01

    The spin polarizations of hadrons inclusively produced by pp, γp and νp collisions are studied by the quark rearrangement model. The present model is a phenomenological one based on the relativistic spin equations of motion and using the quark distribution functions in hadrons and photon. A general success of the model is demonstrated. We find usefulness of the present formulation for studying the dynamics producing spin asymmetry distributions and the statics determining signs and magnitudes of the spin polarization by reflecting the characteristic quark structure in hadrons. (author)

  3. Universal spin dynamics in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, E. A.; Zülicke, U.; Winkler, R.

    2017-10-01

    We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Our work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.

  4. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  5. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  6. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  7. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  8. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  9. Dynamics of Coupled Quantum Spin Chains

    International Nuclear Information System (INIS)

    Schulz, H.J.

    1996-01-01

    Static and dynamical properties of weakly coupled antiferromagnetic spin chains are treated using a mean-field approximation for the interchain coupling and exact results for the resulting effective one-dimensional problem. Results for staggered magnetization, Nacute eel temperature, and spin wave excitations are in agreement with experiments on KCuF 3 . The existence of a narrow longitudinal mode is predicted. The results are in agreement with general scaling arguments, contrary to spin wave theory. copyright 1996 The American Physical Society

  10. SSC High Energy Booster resonance corrector and dynamic tune scanning simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Machida, S.

    1993-05-01

    A resonance correction system for the High Energy Booster (HEB) of the Superconducting Super Collider (SSCL) was investigated by means of dynamic multiparticle tracking. In the simulation the operating tune is scanned as a function of time so that the bunch goes through a resonance. The performance of the half integer and third integer resonance correction system is demonstrated.

  11. Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.

    Science.gov (United States)

    Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R

    2017-10-25

    In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c  = [Formula: see text], supporting previous theoretical predictions.

  12. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  13. Why high energy physics

    International Nuclear Information System (INIS)

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  14. From the numerics of dynamics to the dynamics of numerics and visa versa in high energy particle physics

    International Nuclear Information System (INIS)

    Zhong Ting

    2009-01-01

    Starting from the concepts of statistical symmetry we consider different aspects of the connections between nonlinear dynamics and high energy physics. We pay special attention to the interplay between number theory and dynamics. We subsequently utilize the so obtained insight to compute vital constants relevant to the program of grand unification and quantum gravity.

  15. High energy radiation from neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  16. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  17. Spin dynamics on percolating networks

    International Nuclear Information System (INIS)

    Aeppli, G.; Guggenheim, H.; Uemura, Y.J.

    1985-01-01

    We have used inelastic neutron scattering to measure the order parameter relaxation rate GAMMA in the dilute, two-dimensional Ising antiferromagnet Rb 2 CoMg/sub 1-c/F 4 with c very close to the magnetic percolation threshold. Where kappa is the inverse magnetic correlation length, GAMMA approx. kappa/sup z/ with z = 2.4/sub -0.1//sup +0.2/. Our results are discussed in terms of current ideas about spin relaxation on fractals. 13 refs., 1 fig

  18. The classical and quantum dynamics of molecular spins on graphene

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  19. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  20. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  1. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  2. Using High Energy Precipitation for Magnetic Mapping in the Nightside Transition Region During Dynamic Events

    Science.gov (United States)

    Spanswick, E.

    2017-12-01

    Identifying the magnetic footprint of a satellite can be done using the in situ observations together with some ionospheric or low-altitude satellite observation to argue that the two measurements were made on the same field line. Nishimura et al. [2011], e.g., correlated a time series of chorus wave power near the magnetic equator with the time series of intensities of every pixel of a is roughly magnetically conjugate ASI. Often, the pattern of correlation shows a well-defined peak at the location of the satellite's magnetic footprint. Their results cannot be replicated during dynamic events (e.g., substorms), because the required auroral forms do not occur at such times. It would be important if we could make mappings with such confidence during active times. The Transition Region Explorer (TREx), which is presently being implemented, is a new ground-based facility that will remote sense electron precipitation across 3 hours of MLT and 12 degrees of magnetic latitude spanning the auroral zone in western Canada. TREx includes the world's first imaging riometers array with a contiguous field of view large enough to seamlessly track the spatio-temporal evolution of high energy electron precipitation at mesoscales. Two studies motivated the TREx riometers array. First, Baker et al. [1981] demonstrated riometer absorption is an excellent proxy for the electron energy flux integrated from 30 keV to 200keV keV at the magnetic equator on the flux tube corresponding to the location of that riometers. Second, Spanswick et al. [2007] showed the correlation between the riometers absorption and the integrated electron energy flux near the magnetic equator peaked when the satellite was nearest to conjugate to the riometers. Here we present observations using CANOPUS single beam riometers and CRRES MEB to illustrate how the relative closeness of the footpoint of an equatorial spacecraft can be assessed using high energy precipitation. As well, we present the capabilities of

  3. Magnetic monopole dynamics in spin ice.

    Science.gov (United States)

    Jaubert, L D C; Holdsworth, P C W

    2011-04-27

    One of the most remarkable examples of emergent quasi-particles is that of the 'fractionalization' of magnetic dipoles in the low energy configurations of materials known as 'spin ice' into free and unconfined magnetic monopoles interacting via Coulomb's 1/r law (Castelnovo et al 2008 Nature 451 42-5). Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within the 'quantum tunnelling' regime is modelled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.

  4. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    Science.gov (United States)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  5. Spin and tunneling dynamics in an asymmetrical double quantum dot with spin-orbit coupling: Selective spin transport device

    Science.gov (United States)

    Singh, Madhav K.; Jha, Pradeep K.; Bhattacherjee, Aranya B.

    2017-09-01

    In this article, we study the spin and tunneling dynamics as a function of magnetic field in a one-dimensional GaAs double quantum dot with both the Dresselhaus and Rashba spin-orbit coupling. In particular, we consider different spatial widths for the spin-up and spin-down electronic states. We find that the spin dynamics is a superposition of slow as well as fast Rabi oscillations. It is found that the Rashba interaction strength as well as the external magnetic field strongly modifies the slow Rabi oscillations which is particularly useful for implementing solid state selective spin transport device.

  6. DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT

    Energy Technology Data Exchange (ETDEWEB)

    Gedalin, M. [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il [Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg (Germany)

    2016-07-10

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  7. Dynamics of an inhomogeneous anisotropic antiferromagnetic spin chain

    International Nuclear Information System (INIS)

    Daniel, M.; Amuda, R.

    1994-11-01

    We investigate the nonlinear spin excitations in the two sublattice model of a one dimensional classical continuum Heisenberg inhomogeneous antiferromagnetic spin chain. The dynamics of the inhomogeneous chain reduces to that of its homogeneous counterpart when the inhomogeneity assumes a particular form. Apart from the usual twists and pulses, we obtain some planar configurations representing the nonlinear dynamics of spins. (author). 12 refs

  8. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  9. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  10. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    Energy Technology Data Exchange (ETDEWEB)

    Crocombette, Jean-Paul, E-mail: jpcrocombette@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, UPSay, F-91191 Gif-sur-Yvette (France); Van Brutzel, Laurent [CEA, DEN, Service de Corrosion et du Comportement des Matériaux dans leur Environnement, UPSay, F-91191 Gif-sur-Yvette (France); Simeone, David [CEA, DEN, Service de Recherches de Métallurgie Appliqué, Matériaux Fonctionnels pour l' Energie, CNRS-CEA-ECP, UPSay, F-91191 Gif-sur-Yvette (France); Luneville, Laurence [CEA, DEN, Service d' Etudes des Réacteurs et de Mathématiques Appliquées, Matériaux Fonctionnels pour l' Energie, CNRS-CEA-ECP, UPSay, F-91191 Gif-sur-Yvette (France)

    2016-06-15

    Displacement cascades have been calculated in two ordered alloys (Ni{sub 3}Al and UO{sub 2}) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  11. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    International Nuclear Information System (INIS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-01-01

    Displacement cascades have been calculated in two ordered alloys (Ni_3Al and UO_2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  12. Spin dynamics in a two-dimensional quantum gas

    DEFF Research Database (Denmark)

    Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank

    2014-01-01

    We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...

  13. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  14. Dynamic aperture ampersand extraction studies for the SSC High-Energy Booster

    International Nuclear Information System (INIS)

    Chao, A.W.; Dutt, S.K.; Johnson, D.E.; Sen, T.; Yan, Y.

    1990-09-01

    The final booster in the injector chain for the Superconducting Super Collider is a machine approximately twice the size of the Tevatron. Its design includes approximately 450, 15+ m superconducting dipoles. The original designs specified dipoles with a 7 cm coil-winding diameter and an inner horizontal beam-pipe aperture of 55 mm. This dipole design was chosen in order to provide an adequately large good-field aperture for both the beam injection process and for the slow-extraction of high-energy test beams. With the recent decision to increase the Collider dipole coil-winding diameter to 5 cm, the question of the needed HEB aperture was raised. An argument for dipole commonality between the HEB and Collider was developed, and a preliminary examination of a 5 cm HEB dipole was undertaken. This paper reports the results of a detailed study of the injection dynamic aperture for magnet errors corresponding to both a 5 cm and 7 cm dipole. Also studied and reported are preliminary results of the resonant-extraction process for the two magnet designs in question. These studies are in the form of multiparticle computer simulations. The results of the studies indicate that the 7 cm dipole design is consistent with the desired performance requirements for the HEB, while the 5 cm dipole design is marginal. We have not studied intermediate aperture values. 8 refs., 11 figs

  15. Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors

    Science.gov (United States)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.

  16. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  17. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  18. Low temperature spin wave dynamics in classical Heisenberg chains

    International Nuclear Information System (INIS)

    Heller, P.; Blume, M.

    1977-11-01

    A detailed and quantitative study of the low-temperature spin-wave dynamics was made for the classical Heisenberg-coupled chain using computer simulation. Results for the spin-wave damping rates and the renormalization of the spin-wave frequencies are presented and compared with existing predictions

  19. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  20. Spin Interactions and Spin Dynamics in Electronic Nanostructures

    Science.gov (United States)

    2006-08-31

    041302(R) (2005). 30. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W. H. Lau, D. D. Awschalom, S.-Y. Bae, S. Wang, S. Vaidya. and G...Yazdani, Journal of Superconductivity: Incorporating Novel Magnetism 18, 23 (2005). 32. “Room-temperature spin coherence in ZnO ,” S. Ghosh, V. Sih, W...C. Ralph, invited lecture presented by at 2005 Electrochemistry Gordon Research Conference, February 20-25, 2005, Ventura, CA 94. “Tools for Studying

  1. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  2. Dynamics of dimer and z spin component fluctuations in spin-1/2 XY chain

    Directory of Open Access Journals (Sweden)

    P.Hlushak

    2005-01-01

    Full Text Available One-dimensional quantum spin-1/2 XY models admit the rigorous analysis not only of their static properties (i.e. the thermodynamic quantities and the equal-time spin correlation functions but also of their dynamic properties (i.e. the different-time spin correlation functions, the dynamic susceptibilities, the dynamic structure factors. This becomes possible after exploiting the Jordan-Wigner transformation which reduces the spin model to a model of spinless noninteracting fermions. A number of dynamic quantities (e.g. related to transverse spin operator or dimer operator fluctuations are entirely determined by two-fermion excitations and can be examined in much detail.

  3. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  4. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  5. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  6. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  7. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1993-01-01

    Progress in the areas of pQCD radiative processes in dense matter, QCD transport theories to describe the evolution of nonequilibrium phenomena in dense matter, and the development and testing of phenomenological models of high-energy nuclear collisions is summarized. The evolution of the total energy density of quarks and gluons with minijet initial conditions at RHIC energy is shown for Au+Au

  8. Bifurcation analysis of magnetization dynamics driven by spin transfer

    International Nuclear Information System (INIS)

    Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.

    2005-01-01

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined

  9. Bifurcation analysis of magnetization dynamics driven by spin transfer

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)

    2005-04-15

    Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.

  10. Magnetic ground state of low-doped manganites probed by spin dynamics under magnetic field

    International Nuclear Information System (INIS)

    Kober, P.; Hennion, M.; Moussa, F.; Ivanov, A.; Regnault, L.-P.; Pinsard, L.; Revcolevschi, A.

    2004-01-01

    We present a neutron scattering study of spin dynamics under magnetic field in La 0.9 Ca 0.1 MnO 3 . In zero field, the spin wave spectrum consists of two branches, a high and a low-energy one. In applied field, the high-energy branch splits into two branches due to twinned domains. The gap of the new intermediate-energy branch strongly decreases above a spin-flop transition that occurs for H//b and H>2 T. Furthermore, this branch, that we could attribute to the twinned domain H//b, shows a q-discontinuity under field. The low-energy branch, measurable only around ferromagnetic zone centers at H=0, appears at all q-values under field

  11. Measurements of the spin rotation parameter R in high energy elastic scattering and helicity amplitudes at Serpukhov energies

    International Nuclear Information System (INIS)

    Pierrard, J.; Bruneton, C.; Bystricky, J.; Cozzika, G.; Deregel, J.; Ducros, Y.; Gaidot, A.; Khantine-Langlois, F.; Lehar, F.; Lesquen, A. de; Merlo, J.P.; Miyashita, S.; Movchet, J.; Raoul, J.C.; Van Rossum, L.; Kanavets, V.P.

    1975-01-01

    The spin rotation parameter R in pp and π + p elastic scattering at 45GeV/c has been measured at the Serpukhov accelerator, for /t/ ranging from 0.2 to 0.5(GeV/c) 2 . The results are presented, together with previous R measurements at 3.8, 6, 16 and 40GeV/c, and are compared with the predictions of Regge pole models. The equality of the values for R in proton-proton and pion-proton scattering, within the experimental errors, is a test of factorization of the residues. An s-channel helicity amplitude analysis for pion-nucleon scattering at 40GeV/c is made using all available data. Significant results are obtained for the non flip amplitude in isoscalar exchange and for flip amplitudes on both isovector and isoscalar exchanges. The helicity flip in isoscalar exchange is non negligible. The energy dependence of this amplitude, at 6, 16 and 40GeV/c, is compared with predictions of Regge pole models [fr

  12. Binary black holes: Spin dynamics and gravitational recoil

    International Nuclear Information System (INIS)

    Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M.; Laguna, Pablo; Matzner, Richard A.

    2007-01-01

    We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are antialigned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with antialigned spins to fit the parameters in the Kidder kick formula, and verify that the recoil in the direction of the orbital angular momentum is ∝sinθ and on the orbital plane ∝cosθ, with θ the angle between the spin directions and the orbital angular momentum. We also find that the black hole spins can be well estimated by evaluating the isolated horizon spin on spheres of constant coordinate radius

  13. Polarized neutron inelastic scattering experiments on spin dynamics

    International Nuclear Information System (INIS)

    Kakurai, Kazuhisa

    2016-01-01

    The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)

  14. Prototype drift chamber for high energy heavy ions with a large dynamic range

    International Nuclear Information System (INIS)

    Kobayashi, T.; Bieser, F.; Crawford, H.; Lindstrom, P.; Baumgartner, M.; Greiner, D.

    1985-01-01

    The authors have constructed and tested a small prototype drift chamber designed for high energy heavy ions. When a drift chamber is used as a tracking detector for heavy projectile fragments from high energy nucleus-nucleus reactions, the major problem comes from the many spurious hits due to delta-rays. Three methods have been developed to solve this problem. The first one is to use a constant fraction discriminator to pick up the timing signal from the core ionization under the large background of delta-rays. The second one is to use pulse height information from the drift chamber to find the cell hit by the heavy ion. The last one is the idea of distributed planes. Modular planes (12 in this case) are distributed 10 cm apart on a rigid base plate to provide accurate relative positioning of the wires. The performance of the prototype chamber has been measured as a function of the high voltage bias and of the charge of the heavy ion from protons up to uranium at around 1 GeV/nucleon

  15. SD-CAS: Spin Dynamics by Computer Algebra System.

    Science.gov (United States)

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Spin dynamics in tunneling decay of a metastable state

    OpenAIRE

    Ban, Yue; Sherman, E. Ya.

    2012-01-01

    We analyze spin dynamics in the tunneling decay of a metastable localized state in the presence of spin-orbit coupling. We find that the spin polarization at short time scales is affected by the initial state while at long time scales both the probability- and the spin density exhibit diffraction-in-time phenomenon. We find that in addition to the tunneling time the tunneling in general can be characterized by a new parameter, the tunneling length. Although the tunneling length is independent...

  17. Elementary particle physics and high energy phenomena

    International Nuclear Information System (INIS)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  18. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    Lee, Chang Jae.

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  19. Dynamically Decoupled 13C Spins in Hyperpolarized Nanodiamond

    Science.gov (United States)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David; Reilly, David

    The spin-spin relaxation time, T2, which determines how long a quantum state remains coherent, is an important factor for many applications ranging from MRI to quantum computing. A common technique used in quantum information technology to extend the T2, involves averaging out certain noise spectra via dynamical decoupling sequences. Depending on the nature of the noise in the system, specific sequences, such as CPMG, UDD or KDD, can be tailored to optimize T2. Here we combine hyperpolarization techniques and dynamical decoupling sequences to extend the T2 of 13C nuclear spins in nanodiamond by three orders of magnitude.

  20. LHC@Home: A Volunteer computing system for Massive Numerical Simulations of Beam Dynamics and High Energy Physics Events

    CERN Document Server

    Giovannozzi, M; Høimyr, N; Jones, PL; Karneyeu, A; Marquina, MA; McIntosh, E; Segal, B; Skands, P; Grey, F; Lombraña González, D; Rivkin, L; Zacharov, I

    2012-01-01

    Recently, the LHC@home system has been revived at CERN. It is a volunteer computing system based on BOINC which boosts the available CPU-power in institutional computer centres with the help of individuals that donate the CPU-time of their PCs. Currently two projects are hosted on the system, namely SixTrack and Test4Theory. The first is aimed at performing beam dynamics simulations, while the latter deals with the simulation of high-energy events. In this paper the details of the global system, as well a discussion of the capabilities of each project will be presented.

  1. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  2. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  3. Dynamical decoupling assisted acceleration of two-spin evolution in XY spin-chain environment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yong-Bo; Zou, Jian [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wang, Zhao-Ming [Department of Physics, Ocean University of China, Qingdao 266100 (China); Shao, Bin, E-mail: sbin610@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Li, Hai [School of Information and Electronic Engineering, Shandong Institute of Business and Technology, Yantai 264000 (China)

    2016-01-28

    We study the speed-up role of dynamical decoupling in an open system, which is modeled as two central spins coupled to their own XY spin-chain environment. We show that the fast bang–bang pulses can suppress the system evolution, which manifests the quantum Zeno effect. In contrast, with the increasing of the pulse interval time, the bang–bang pulses can enhance the decay of the quantum speed limit time and induce the speed-up process, which displays the quantum anti-Zeno effect. In addition, we show that the random pulses can also induce the speed-up of quantum evolution. - Highlights: • We propose a scheme to accelerate the dynamical evolution of central spins in an open system. • The quantum speed limit of central spins can be modulated by changing pulse frequency. • The random pulses can play the same role as the regular pulses do for small perturbation.

  4. Nuclear and partonic dynamics in high energy elastic nucleus-nucleus scattering

    International Nuclear Information System (INIS)

    Malecki, A.

    1991-01-01

    A hybrid description of diffraction which combines a geometrical modelling of multiple scattering with many-channel effects resulting from intrinsic dynamics on nuclear and sub-nuclear level is presented. The application to the 4 He- 4 He elastic scattering is very satisfactory. Our analysis suggests that at large momentum transfers the parton constituents of nucleons immersed in nuclei are deconfined. (author)

  5. Dynamic perception: Some theorems about the possibility of parallel pattern recognition with an application to high energy physics

    International Nuclear Information System (INIS)

    Perrone, A.; Basti, G.

    1994-01-01

    In the context of M. Minsky's and S. Papert's theorems on the impossibility of evaluating simple linear predicates by parallel architectures the authors want to show how these limitations can be avoided by introducing a generalized input-dependent preprocessing technique that does not suppose any a-priori knowledge of input like in classical input filtering procedures. This technique can be formalized in a very general way and can be also deduced by metamathematical arguments. A further development of the same technique can be applied at level of learning procedure to introduce in such a way the complete notion of open-quotes dynamic perceptronclose quotes. From the experimental standpoint, they show two applications of the open-quotes dynamic perceptronclose quotes in particle track recognition in high-energy accelerators. Firstly, they show the amazing improvement of performances that can be obtained in a perceptron architecture with classical learning by adding their open-quotes dynamicclose quotes pre-processing technique, already introduced last year in another paper presented at this Conference. Secondly, they show the results of this technique extended also at the level of learning procedure always applied to the problem of particle track recognition. This work is a part of open-quotes Feniceclose quotes international collaboration supported by INFN (National Institute for Nuclear Physics) devoted to the study of the time-like electromagnetic form factor of neutrons obtained by electron-positron high energy collisions in ADONE (Frascati, Rome) storage ring

  6. Fractional Spin Fluctuations as a Precursor of Quantum Spin Liquids: Majorana Dynamical Mean-Field Study for the Kitaev Model.

    Science.gov (United States)

    Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi

    2016-10-07

    Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

  7. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In

  8. Production of entropy on simplified dynamics in spin glass systems

    CERN Document Server

    Saakyan, D B

    2001-01-01

    In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space

  9. Mechanisms of defect production and atomic mixing in high energy displacement cascades: A molecular dynamics study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Guinan, M.W.

    1991-01-01

    We have performed molecular dynamics computer simulation studies of displacement cascades in Cu at low temperature. For 25 keV recoils we observe the splitting of a cascade into subcascades and show that cascades in Cu may lead to the formation of vacancy and interstitial dislocation loops. We discuss a new mechanism of defect production based on the observation of interstitial prismatic dislocation loop punching from cascades at 10 K. We also show that below the subcascade threshold, atomic mixing in the cascade is recoil-energy dependent and obtain a mixing efficiency that scales as the square root of the primary recoil energy. 44 refs., 12 figs

  10. Spin tunnelling dynamics for spin-1 Bose-Einstein condensates in a swept magnetic field

    International Nuclear Information System (INIS)

    Wang Guanfang; Fu Libin; Liu Jie

    2008-01-01

    We investigate the spin tunnelling of spin-1 Bose-Einstein condensates in a linearly swept magnetic field with a mean-field treatment. We focus on the two typical alkali Bose atoms 87 Rb and 23 Na condensates and study their tunnelling dynamics according to the sweep rates of the external magnetic fields. In the adiabatic (i.e. slowly sweeping) and sudden (i.e. fast sweeping) limits, no tunnelling is observed. For the case of moderate sweep rates, the tunnelling dynamics is found to be very sensitive to the sweep rates, so the plots of tunnelling probability versus sweep rate only become resolvable at a resolution of 10 -4 G s -1 . Moreover, a conserved quantity standing for the magnetization in experiments is found to affect dramatically the dynamics of the spin tunnelling. Theoretically we have given a complete interpretation of the above findings, and our studies could stimulate the experimental study of spinor Bose-Einstein condensates

  11. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  12. High-energy hadron dynamics based on a stochastic-field multieikonal theory

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1977-01-01

    Multieikonal theory, using a stochastic-field representation for collective long-range rapidity correlations, is developed and applied to the calculation of Regge-pole parameters, high-transverse-momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multieikonal method, the pole spectrum is modified in three ways: promotion and renormalization of leading trajectories (suggesting an effective Pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub T/ inclusive cross sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined

  13. High energy hadron dynamics based on a Stochastic-field multi-eikonal theory

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1977-06-01

    Multi-eikonal theory, using a stoichastic-field representation for collective long range rapidity correlations, is developed and applied to the calculation of Regge pole parameters, high transverse momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multi-eikonal method, the pole spectrum is modified in three ways; promotion and renormalization of leading trajectories (suggesting an effective pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub tau/ inclusive cross-sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined

  14. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  15. Optically induced dynamic nuclear spin polarisation in diamond

    International Nuclear Information System (INIS)

    Scheuer, Jochen; Naydenov, Boris; Jelezko, Fedor; Schwartz, Ilai; Chen, Qiong; Plenio, Martin B; Schulze-Sünninghausen, David; Luy, Burkhard; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis. (paper)

  16. Dynamic chaos phenomenon and coherent radiation accompanying high energy particle motion through crystals

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Truten', V.I.; Shul'ga, N.F.

    1991-01-01

    A crystal has a regular structure, therefore every motion in such a structure seems to be regular. However, it is not actually so and even in perfect crystals the particle motion may be either regular or chaotic. Everything depends on the number of integrals of motion determining a particle trajectory. The character of particle motion in a crystal, i.e. its regularity or chaoticity, affects many physical processes accompanying the particle's motion. In this paper we shall consider the effect of dynamic chaos on the coherent radiation of fast particles in a crystal. We also consider the validity conditions of coherent radiation theory results, the role of the second and higher Born approximations in the radiation theory of fast particles in crystals, the continuous string approximation in this theory, the coherent radiation in the model of random strings, and the multiple scattering effect on the coherent radiation. (author)

  17. Entanglement dephasing dynamics driven by a bath of spins

    International Nuclear Information System (INIS)

    Xu Jie; Jing Jun; Yu Ting

    2011-01-01

    We have studied the entanglement dynamics for a two-qubit system coupled to a spin environment of different configurations by a z-x-type interaction. Quantum dynamics of the models considered in this paper is solved analytically. Moreover, we show that simple and concise results may be obtained when certain approximations are properly made. Our purpose is to find out how the entanglement of a central spin system is affected by the pre-designed factors of the system and its environment, such as their initial states and the coupling constants between the system and its environment. Clearly, how the system is coupled to its environment will inevitably change the feature of entanglement evolution of the central spin system. Our major findings include the following: (i) the entanglement of the system of interest is sensitive to the number of spins in the environment, (ii) the initial states of the environment can profoundly affect the dynamics of the entanglement of the central spin system and (iii) the entangled environment can speed up the decay and revival of the entanglement of the central spin system. Our results exhibit some interesting features that have not been found for a bosonic environment.

  18. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  19. Spin-orbit maps and electron spin dynamics for the luminosity upgrade project at HERA

    International Nuclear Information System (INIS)

    Berglund, G.Z.M.

    2001-09-01

    HERA is the high energy electron(positron)-proton collider at deutsches elektronen-synchrotron (DESY) in Hamburg. Following eight years of successful running, five of which were with a longitudinally spin polarized electron(positron) beam for the HERMES experiment, the rings have now been modified to increase the luminosity by a factor of about five and spin rotators have been installed for the H1 and ZEUS experiments. The modifications involve nonstandard configurations of overlapping magnetic fields and other aspects which have profound implications for the polarization. This thesis addresses the problem of calculating the polarization in the upgraded machine and the measures needed to maintain the polarization. A central topic is the construction of realistic spin-orbit transport maps for the regions of overlapping fields and their implementation in existing software. This is the first time that calculations with such fields have been possible. Using the upgraded software, calculations are presented for the polarization that can be expected in the upgraded machine and an analysis is made of the contributions to depolarization from the various parts of the machine. It is concluded that about 50% polarization should be possible. The key issues for tuning the machine are discussed. The last chapter deals with a separate topic, namely how to exploit a simple unitary model of spin motion to describe electron depolarization and thereby expose a misconception appearing in the literature. (orig.)

  20. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  1. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  2. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  3. NMR study of spin dynamics in mesoscopic molecular clusters

    Science.gov (United States)

    Borsa, Ferdinando

    1998-03-01

    Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).

  4. Dynamics of magnetization in ferromagnet with spin-transfer torque

    Science.gov (United States)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  5. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  6. Spin Glasses : Statics and Dynamics : Summer School

    CERN Document Server

    Bovier, Anton

    2009-01-01

    Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious “Parisi solution” of the Sherrington–Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. These articles range from pedagogical introductions to state of the art papers, covering the latest developments. In their whole, they give a nice overview on the current state of the ?eld from the mathematical side. The review by Bovier and Kurkova gives a concise introduction to mean ?eld models, starting with the Curie–...

  7. A molecular dynamics study of high-energy displacement cascades in α-zirconium

    International Nuclear Information System (INIS)

    Wooding, S.J.; Howe, L.M.; Gao, F.; Calder, A.F.; Bacon, D.J.

    1998-01-01

    The damage produced in α-zirconium at 100 K by displacement cascades with energy, E p , up to 20 keV has been investigated by molecular dynamics using a many-body interatomic potential. The results are compared with similar data for cascades of energy up to 10 keV in α-titanium. The production efficiency of Frenkel pairs falls to about 25% of the NRT value as E p rises above 10 keV in zirconium, and to about 30% at 10 keV in titanium. The power-law dependence of the number of Frenkel pairs, N F , on E p found previously is obeyed, i.e., N F = A(E p ) m . Interstitial and vacancy clusters with sizes of the same order are created in the cascade process, and clusters containing up to 25 interstitials and 30 vacancies were formed in zirconium by 20 keV cascades. Two thirds of the SIAs are produced in clusters in zirconium at high cascade energy. Most interstitial clusters have dislocation character with perfect Burgers vectors of the form 1/3(11 2 - 0), but a few metastable clusters are formed and are persistent over the timescale of MD simulations. Collapse of the 30-vacancy cluster to a faulted loop on the prism plane was found to occur over a period of more than 100 ps. Annealing over this timescale has a stronger effect on the number and clustering of defects in cascades that are dispersed over a large region of crystal than in cascades that form a compact region of damage. (author)

  8. Strong interactions at high energy

    International Nuclear Information System (INIS)

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  9. Experimental evidence for dynamic scaling in spin glasses

    CERN Document Server

    Pappas, C; Ehlers, G; Campbell, I A

    2002-01-01

    Dynamics is the key to the understanding of glassy transitions. A detailed analysis of s(Q,t) in the spin glass system Au sub 0 sub . sub 8 sub 6 Fe sub 0 sub . sub 1 sub 4 shows that at T sub g the autocorrelation function decays as t sup - sup x , with x propor to 0.12. Above T sub g , s(Q,t) is then described by the form proposed by Ogielski: t sup - sup x exp(-(t/tau sub 0) supbeta). These results agree with predictions of large scale numerical simulations and are a direct confirmation of dynamic scaling in spin glasses. (orig.)

  10. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    International Nuclear Information System (INIS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-01-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields

  11. The su(2 vertical bar 3) dynamic spin chain

    International Nuclear Information System (INIS)

    Beisert, Niklas

    2004-01-01

    The complete one-loop, planar dilatation operator of the N=4 superconformal gauge theory was recently derived and shown to be integrable. Here, we present further compelling evidence for a generalisation of this integrable structure to higher orders of the coupling constant. For that we consider the su(2 vertical bar 3) subsector and investigate the restrictions imposed on the spin chain Hamiltonian by the symmetry algebra. This allows us to uniquely fix the energy shifts up to the three-loop level and thus prove the correctness of a conjecture in hep-th/0303060. A novel aspect of this spin chain model is that the higher-loop Hamiltonian, as for N=4 SYM in general, does not preserve the number of spin sites. Yet this dynamic spin chain appears to be integrable

  12. Hexagonal type Ising nanowire with mixed spins: Some dynamic behaviors

    International Nuclear Information System (INIS)

    Kantar, Ersin; Kocakaplan, Yusuf

    2015-01-01

    The dynamic behaviors of a mixed spin (1/2–1) hexagonal Ising nanowire (HIN) with core–shell structure in the presence of a time dependent magnetic field are investigated by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics (DEFT). According to the values of interaction parameters, temperature dependence of the dynamic magnetizations, the hysteresis loop areas and the dynamic correlations are investigated to characterize the nature (first- or second-order) of the dynamic phase transitions (DPTs). Dynamic phase diagrams, including compensation points, are also obtained. Moreover, from the thermal variations of the dynamic total magnetization, the five compensation types can be found under certain conditions, namely the Q-, R-, S-, P-, and N-types. - Highlights: • Dynamic behaviors of mixed spin HIN system are obtained within the EFT. • The system exhibits i, p and nm fundamental phases. • The dynamic phase diagrams are presented in (h, T), (D, T), (Δ S , T) and (r, T) planes. • The dynamic phase diagrams exhibit the dynamic tricritical point (TCP). • Different dynamic compensation types are obtained

  13. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    Science.gov (United States)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  14. Spin dynamics of paramagnetic centers with anisotropic g tensor and spin of 1/2

    Science.gov (United States)

    Maryasov, Alexander G.; Bowman, Michael K.

    2012-08-01

    The influence of g tensor anisotropy on spin dynamics of paramagnetic centers having real or effective spin of 1/2 is studied. The g anisotropy affects both the excitation and the detection of EPR signals, producing noticeable differences between conventional continuous-wave (cw) EPR and pulsed EPR spectra. The magnitudes and directions of the spin and magnetic moment vectors are generally not proportional to each other, but are related to each other through the g tensor. The equilibrium magnetic moment direction is generally parallel to neither the magnetic field nor the spin quantization axis due to the g anisotropy. After excitation with short microwave pulses, the spin vector precesses around its quantization axis, in a plane that is generally not perpendicular to the applied magnetic field. Paradoxically, the magnetic moment vector precesses around its equilibrium direction in a plane exactly perpendicular to the external magnetic field. In the general case, the oscillating part of the magnetic moment is elliptically polarized and the direction of precession is determined by the sign of the g tensor determinant (g tensor signature). Conventional pulsed and cw EPR spectrometers do not allow determination of the g tensor signature or the ellipticity of the magnetic moment trajectory. It is generally impossible to set a uniform spin turning angle for simple pulses in an unoriented or 'powder' sample when g tensor anisotropy is significant.

  15. Spin dynamics of the itinerant helimagnet MnSi studied by positive muon spin relaxation

    International Nuclear Information System (INIS)

    Kadono, R.; Matsuzaki, T.; Yamazaki, T.; Kreitzman, S.R.; Brewer, J.H.

    1990-03-01

    The local magnetic fields and spin dynamics of the itinerant helimagnet MnSi(T c ≅ 29.5 K) have been studied experimentally using positive muon spin rotation/relaxation (μ + SR) methods. In the ordered phase (T c ), zero-field μSR was used to measure the hyperfine fields at the muon sites as well as the muon spin-lattice relaxation time T 1 μ . Two magnetically inequivalent interstitial μ + sites were found with hyperfine coupling constants A hf (1) = -3.94 kOe/μ B and A hf (2) = -6.94 kOe/μ B , respectively. In the paramagnetic phase (T > T c ), the muon-nuclear spin double relaxation technique was used to simultaneously but independently determine the spin-lattice relaxation time T 1 Mn of 55 Mn spins and that of positive muons (T 1 μ ) over a wide temperature range (T c 1 Mn and T 1 μ in both phases shows systematic deviations from the predictions of self-consistent renormalization (SCR) theory. (author)

  16. Quantum dynamics of spin qubits in optically active quantum dots

    International Nuclear Information System (INIS)

    Bechtold, Alexander

    2017-01-01

    The control of solid-state qubits for quantum information processing requires a detailed understanding of the mechanisms responsible for decoherence. During the past decade a considerable progress has been achieved for describing the qubit dynamics in relatively strong external magnetic fields. However, until now it has been impossible to experimentally test many theoretical predictions at very low magnetic fields and uncover mechanisms associated with reduced coherence times of spin qubits in solids. In particular, the role of the quadrupolar coupling of nuclear spins in this process is to date poorly understood. In the framework of this thesis, a spin memory device is utilized to optically prepare individual electron spin qubits in a single InGaAs quantum dot. After storages over timescales extending into the microsecond range the qubit��s state is read out to monitor the impact of the environment on it the spin dynamics. By performing such pump-probe experiments, the dominant electron spin decoherence mechanisms are identified in a wide range of external magnetic fields (0-5 T) and lattice temperatures of ∝10 K. The results presented in this thesis show that, without application of external magnetic fields the initially orientated electron spin rapidly loses its polarization due to precession around the fluctuating Overhauser field with a dispersion of 10.5 mT. The inhomogeneous dephasing time associated with these hyperfine mediated dynamics is of the order of T * 2 =2 ns. Over longer timescales, an unexpected stage of central spin relaxation is observed, namely the appearance of a second feature in the relaxation curve around T Q =750 ns. By comparison with theoretical simulations, this additional decoherence channel is shown to arise from coherent dynamics in the nuclear spin bath itself. Such coherent dynamics are induced by a quadrupolar coupling of the nuclear spins to the strain induced electric field gradients in the quantum dot. These processes

  17. Polarized targets in high energy physics

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1994-01-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous 3 He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail

  18. Polarized targets in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Cates, G.D. Jr. [Princeton Univ., NJ (United States)

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, an experiment to measure the spin structure function of the neutron, and is described in detail.

  19. Intermediate/high energy nuclear physics

    International Nuclear Information System (INIS)

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  20. Particle spin dynamics as the grassmann variant of classical mechanics

    International Nuclear Information System (INIS)

    Berezin, F.A.; Marinov, M.S.

    1976-01-01

    A generalization of the calssical mechanics is presented. The dynamical variables are assumed to be elements of an algebra with anticommuting generators (The Grassmann algebra). The action functional and the Poisson brackets are defined. The equations of motion are deduced from the variational principle. The dynamics is described also by means of the Liouville equation for the phase-space distribution. The canonical quantization lead phase-space path integral approach to the quantum theory is also formulated. The theory is applied to describe the particle spin. Classical description of the spin precession and of the spin-orbital forces is given. The phase-space distribution and the interaction with an external field are also considered

  1. On the stochastic dynamics of disordered spin models

    International Nuclear Information System (INIS)

    Semerjian, G.; Montanari, A.; Cugliandolo, L.F.

    2003-09-01

    In this article we discuss several aspects of the stochastic dynamics of spin models. The paper has two independent parts. Firstly, we explore a few properties of the multi-point correlations and responses of generic systems evolving in equilibrium with a thermal bath. We propose a fluctuation principle that allows us to derive fluctuation-dissipation relations for many-time correlations and linear responses. We also speculate on how these features will be modified in systems evolving slowly out of equilibrium, as finite-dimensional or dilute spin-glasses. Secondly, we present a formalism that allows one to derive a series of approximated equations that determine the dynamics of disordered spin models on random (hyper) graphs. (author)

  2. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Buchelt, R.J.

    2000-05-01

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  3. Magnetization dynamics of imprinted non-collinear spin textures

    Energy Technology Data Exchange (ETDEWEB)

    Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Fischer, Peter [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, UC Santa Cruz, Santa Cruz, California 95064 (United States); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW Dresden, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz (Germany)

    2015-09-14

    We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamics are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.

  4. Spin dynamics in storage rings and linear accelerators

    International Nuclear Information System (INIS)

    Irwin, J.

    1994-04-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included

  5. Spin dynamics in storage rings and linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J. [Stanford Univ., CA (United States)

    1994-12-01

    The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.

  6. Anomalous quantum critical spin dynamics in YFe2Al10

    Science.gov (United States)

    Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.

    2018-04-01

    We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.

  7. Increasing Spin Coherence in Nanodiamond via Dynamic Nuclear Polarization

    Science.gov (United States)

    Gaebel, Torsten; Rej, Ewa; Boele, Thomas; Waddington, David; Reilly, David

    Nanodiamonds are of interest for quantum information technology, as metrological sensors, and more recently as a probe of biological environments. Here we present results examining how intrinsic defects can be used for dynamic nuclear polarization that leads to a dramatic increase in both T1 and T2 for 13C spins in nanodiamond. Mechanisms to explain this enhancement are discussed.

  8. Multi spin-flip dynamics: a solution of the one-dimensional Ising model

    International Nuclear Information System (INIS)

    Novak, I.

    1990-01-01

    The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs

  9. Dynamics of the conservative and dissipative spin-orbit problem

    CERN Document Server

    Celletti, A; Lega, E

    2006-01-01

    We investigate the dynamics of the spin--orbit coupling under different settings. First we consider the conservative problem, and then we add a dissipative torque as provided by MacDonald's or Darwin's models. By means of frequency analysis and of the computation of the maximum Lyapunov indicator we explore the different dynamical behaviors associated to the main resonances. In particular we focus on the 1:1 and 3:2 resonances in which the Moon and Mercury are actually trapped.

  10. Dynamical phase transitions in spin models and automata

    International Nuclear Information System (INIS)

    Derrida, B.

    1989-01-01

    Some of the models and methods developed in the study of the dynamics of spin models and automata are described. Special attention is given to the distance method which consists of comparing the time evolution of two configurations. The method is used to obtain the phase boundary between a frozen and a chaotic phase in the case of deterministic models. For stochastic systems the method is used to obtain dynamical phase transitions

  11. Exploring the dynamics about the glass transition by muon spin relaxation and muon spin rotation

    International Nuclear Information System (INIS)

    Bermejo, F J; Bustinduy, I; Cox, S F J; Lord, J S; Cabrillo, C; Gonzalez, M A

    2006-01-01

    The capability of muon spin rotation and muon spin relaxation to explore dynamics in the vicinity of the glass transition is illustrated by results pertaining to three materials exhibiting two different glass-forming abilities. Measurements under transverse magnetic fields enable us to monitor the dynamics of muonium-labelled closed-shell molecules within the microsecond range. The results display the onset of stochastic molecular motions taking place upon crossing from below the glass-transition temperature. In turn, the molecular dynamics of radicals formed by addition of atomic muonium to unsaturated organic molecules can also be explored up to far shorter times by means of relaxation measurements under longitudinal fields. The technique is then shown to be capable of singling out stochastic reorientational motions from others, which usually are strongly coupled to them and usually dominate the material response when measured using higher-frequency probes such as neutron and light scattering

  12. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  13. Computer studies of multiple-quantum spin dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  14. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells.

    Science.gov (United States)

    Miah, M Idrish

    2009-01-17

    We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL) measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P(PL)) with and without magnetic field is studied. The P(PL) without magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However, P(PL) in a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron-hole exchange interaction in the electric field.

  15. Photo-Induced Spin Dynamics in Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Miah M

    2009-01-01

    Full Text Available Abstract We experimentally investigate the dynamics of spins in GaAs quantum wells under applied electric bias by photoluminescence (PL measurements excited with circularly polarized light. The bias-dependent circular polarization of PL (P PL with and without magnetic field is studied. TheP PLwithout magnetic field is found to be decayed with an enhancement of increasing the strength of the negative bias. However,P PLin a transverse magnetic field shows oscillations under an electric bias, indicating that the precession of electron spin occurs in quantum wells. The results are discussed based on the electron–hole exchange interaction in the electric field.

  16. Computer studies of multiple-quantum spin dynamics

    International Nuclear Information System (INIS)

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment

  17. Nonlinear dynamics and chaotic behaviour of spin wave instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, S M; Aguiar, F.M. de.

    1986-09-01

    Recent experiments revealed that spin wave instabilities driven by microwave fields, either parallel or transverse to the static magnetic field, display chaotic dynamics similar to other physical systems. A theory based on the coupled nonlinear equations of motion for two spin wave modes is presented which explains most features of the experimental observations. The model predicts subharmonic routes to chaos that depend on the parameter values. For certain parameters the system exhibits a Feigenbaum scenario characteristic of one-dimensional maps. Other parameters lead to different subharmonic routes indicative of multidimensional behavior, as observed in some experiments.

  18. High energy

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1990-01-01

    We report here on the considerable progress that we made for the year beginning November 1, 1989, for DOE Contract No. AS05-76ERO5096. One of our Fermilab experiments, E704 -- polarization studies with 200 GeV protons, was run from February through August of this year. This experiment has been in the planning, construction, and commissioning stages for over ten years. In this report we detail just what measurements we managed to complete during the run. Our other Fermilab experiment, E683 -- photoproduction of jets, has had parasitic test beam during most of the same period. There was also a one week engineering test run in June. The schedule calls for a three month data run beginning in January, 1991. We also had three test runs for our CERN experiment, NA47 (SMC) -- spin dependent structure functions for the proton and neutron. We are in the midst of major apparatus construction for this experiment. More of our plans for the future are included in the accompanying Renewal Proposal. As in recent years, the format we follow in both the Progress Report and the Renewal Proposal is to have a brief writeup on each individual experiment and to include in the appendices copies of published papers which provide much greater detail. For manuscripts that have been submitted for publication and experimental proposals, we provide only the cover and abstract page. The aim is to concentrate on the physics goals, results and their significance in the main body of the report. For our two Fermilab experiments and the SMC experiment, exhaustive reports of the physics goals have been provided in previous years and are not repeated here

  19. Spin-dynamics in a p(bar p) ring

    International Nuclear Information System (INIS)

    Pisent, A.

    1990-01-01

    In this paper after a short introduction on the main concepts of spin dynamics, like the conservation of the polarization as a stability condition, the depolarizing resonances and their care by the Siberian Snake schema, two particular applications are discussed. In the European hadron Facility, and in the other future hadron machines in the same range of energies (30--40 Gev), the polarization in the main ring can be maintained using a Siberian Snake. We shall discuss the design of such a device. As a second example is considered the Spin Splitter, a proposed experiment with the aim of polarizing bar p. Also in this case the spin stability is realized by the Siberian Snake schema

  20. Spinning Flight Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones

    CERN Document Server

    Lorenz, Ralph D

    2006-01-01

    More frisbees are sold each year than baseballs, basketballs, and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Many readers will have enjoyed these vehicles and their dynamics in recreational settings, so this book will be of wide interest. In addition to spinning objects of various shapes, several exotic manned aircraft with disc platforms have been proposed and prototypes built - these include a Nazi ‘secret weapon’ and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by cou...

  1. Effects of finite size on spin glass dynamics

    Science.gov (United States)

    Sato, Tetsuya; Komatsu, Katsuyoshi

    2010-12-01

    In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.

  2. A Molecular dynamics study of helium bubble stability during high-energy displacement cascades in alpha-iron

    International Nuclear Information System (INIS)

    Pu, Jin; Yang, Li; Zu, Xiaotao; Gao, Fei

    2007-01-01

    The interactions of high-energy displacement cascades with helium bubbles in a-Fe are investigated using molecular dynamics simulations. Initial bubbles with the volumes of 212 and 636 (angstrom)3 are considered, and the helium-to-vacancy (He/V) ratio in the bubbles varies from 0.5 to 3. Primary knock-on atom (PKA) energy, Ep, is up to 40 keV. The results show that the change of nm-sized He bubbles due to displacement cascade does not depend much on the bubble size, but rather on the He/V ratio and the recoil energy. For the initial He/V ratio less than 1, the size of the bubbles decreases with increasing PKA energy, but the He/V ratio increases. However, for the initial He/V ratio of 3, the size of the bubbles increases, and the He/V ratio decreases with PKA energy. For the initial He/V ratio of 1, the ratio of the small bubble decreases slightly, but the ratio of the large bubble remains unchanged for lower PKA energy, and increases slightly for higher PKA energy. The reasons for these observed phenomena have been explained

  3. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  4. Epidemic Dynamics in Open Quantum Spin Systems

    Science.gov (United States)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  5. Spin dynamics of large-spin fermions in a harmonic trap

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn

    2017-04-15

    Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. We also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.

  6. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  7. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    International Nuclear Information System (INIS)

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-01-01

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  8. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  9. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  10. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  11. Spin-motive Force Induced by Domain Wall Dynamics in the Antiferromagnetic Spin Valve

    Science.gov (United States)

    Sugano, Ryoko; Ichimura, Masahiko; Takahashi, Saburo; Maekawa, Sadamichi; Crest Collaboration

    2014-03-01

    In spite of no net magnetization in antiferromagnetic (AF) textures, the local magnetic properties (Neel magnetization) can be manipulated in a similar fashion to ferromagnetic (F) ones. It is expected that, even in AF metals, spin transfer torques (STTs) lead to the domain wall (DW) motion and that the DW motion induces spin-motive force (SMF). In order to study the Neel magnetization dynamics and the resultant SMF, we treat the nano-structured F1/AF/F2 junction. The F1 and F2 leads behave as a spin current injector and a detector, respectively. Each F lead is fixed in the different magnetization direction. Torsions (DW in AF) are introduced reflecting the fixed magnetization of two F leads. We simulated the STT-induced Neel magnetization dynamics with the injecting current from F1 to F2 and evaluate induced SMF. Based on the adiabatic electron dynamics in the AF texture, Langevin simulations are performed at finite temperature. This research was supported by JST, CREST, Japan.

  12. Coherent spin-rotational dynamics of oxygen superrotors

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Milner, Valery

    2014-09-01

    We use state- and time-resolved coherent Raman spectroscopy to study the rotational dynamics of oxygen molecules in ultra-high rotational states. While it is possible to reach rotational quantum numbers up to N≈ 50 by increasing the gas temperature to 1500 K, low population levels and gas densities result in correspondingly weak optical response. By spinning {{O}2} molecules with an optical centrifuge, we efficiently excite extreme rotational states with N≤slant 109 in high-density room temperature ensembles. Fast molecular rotation results in the enhanced robustness of the created rotational wave packets against collisions, enabling us to observe the effects of weak spin-rotation coupling in the coherent rotational dynamics of oxygen. The decay rate of spin-rotational coherence due to collisions is measured as a function of the molecular angular momentum and its dependence on the collisional adiabaticity parameter is discussed. We find that at high values of N, the rotational decoherence of oxygen is much faster than that of the previously studied non-magnetic nitrogen molecules, pointing at the effects of spin relaxation in paramagnetic gases.

  13. Nonlinear quantum dynamics in diatomic molecules: Vibration, rotation and spin

    International Nuclear Information System (INIS)

    Yang, Ciann-Dong; Weng, Hung-Jen

    2012-01-01

    Highlights: ► This paper reveals the internal nonlinear dynamics embedded in a molecular quantum state. ► Analyze quantum molecular dynamics in a deterministic way, while preserving the consistency with probability interpretation. ► Molecular vibration–rotation interaction and spin–orbital coupling are considered simultaneously. ► Spin is just the remnant angular motion when orbital angular momentum is zero. ► Spin is the “zero dynamics” of nonlinear quantum dynamics. - Abstract: For a given molecular wavefunction Ψ, the probability density function Ψ ∗ Ψ is not the only information that can be extracted from Ψ. We point out in this paper that nonlinear quantum dynamics of a diatomic molecule, completely consistent with the probability prediction of quantum mechanics, does exist and can be derived from the quantum Hamilton equations of motion determined by Ψ. It can be said that the probability density function Ψ ∗ Ψ is an external representation of the quantum state Ψ, while the related Hamilton dynamics is an internal representation of Ψ, which reveals the internal mechanism underlying the externally observed random events. The proposed internal representation of Ψ establishes a bridge between nonlinear dynamics and quantum mechanics, which allows the methods and tools already developed by the former to be applied to the latter. Based on the quantum Hamilton equations of motion derived from Ψ, vibration, rotation and spin motions of a diatomic molecule and the interactions between them can be analyzed simultaneously. The resulting dynamic analysis of molecular motion is compared with the conventional probability analysis and the consistency between them is demonstrated.

  14. Dynamical spin structure factors of α-RuCl3

    Science.gov (United States)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-03-01

    Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.

  15. Breakdown of Spin-Waves in Anisotropic Magnets: Spin Dynamics in α-RuCl3

    Science.gov (United States)

    Winter, Stephen; Riedl, Kira; Honecker, Andreas; Valenti, Roser

    α -RuCl3 has recently emerged as a promising candidate for realizing the hexagonal Kitaev model in a real material. Similar to the related iridates (e.g. Na2IrO3), complex magnetic interactions arise from a competition between various similar energy scales, including spin-orbit coupling (SOC), Hund's coupling, and crystal-field splitting. Due to this complexity, the correct spin Hamiltonians for such systems remain hotly debated. For α-RuCl3, a combination of ab-initio calculations, microscopic considerations, and analysis of the static magnetic response have suggested off-diagonal couplings (Γ ,Γ') and long-range interactions in addition to the expected Kitaev exchange. However, the effect of such additional terms on the dynamic response remains unclear. In this contribution, we discuss the recently measured inelastic neutron scattering response in the context of realistic proposals for the microscopic spin Hamiltonian. We conclude that the observed scattering continuum, which has been taken as a signature of Kitaev spin liquid physics, likely persists over a broad range of parameters.

  16. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    Science.gov (United States)

    2017-06-27

    control the spin wave dynamics of magnetic structures twisted spatially, we prepared the exchange-coupled films with the hard magnetic L10-FePt and...information writing of magnetic storage and spintronic applications. Introduction and Objective: Recent rapid progress in the research field of nano...scaled bilayer elements is also an important aim of this project. Approach/Method: The exchange-coupled films with the hard magnetic L10-FePt and

  17. Second post-Newtonian Lagrangian dynamics of spinning compact binaries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Wu, Xin [Nanchang University, Department of Physics and Institute of Astronomy, Nanchang (China); Ma, DaZhu [Hubei University for Nationalities, School of Science, Enshi (China)

    2016-09-15

    The leading-order spin-orbit coupling is included in a post-Newtonian Lagrangian formulation of spinning compact binaries, which consists of the Newtonian term, first post-Newtonian (1PN) and 2PN non-spin terms and 2PN spin-spin coupling. This leads to a 3PN spin-spin coupling occurring in the derived Hamiltonian. The spin-spin couplings are mainly responsible for chaos in the Hamiltonians. However, the 3PN spin-spin Hamiltonian is small and has different signs, compared with the 2PN spin-spin Hamiltonian equivalent to the 2PN spin-spin Lagrangian. As a result, the probability of the occurrence of chaos in the Lagrangian formulation without the spin-orbit coupling is larger than that in the Lagrangian formulation with the spin-orbit coupling. Numerical evidences support this claim. (orig.)

  18. Field control of anisotropic spin transport and spin helix dynamics in a modulation-doped GaAs quantum well

    Science.gov (United States)

    Anghel, S.; Passmann, F.; Singh, A.; Ruppert, C.; Poshakinskiy, A. V.; Tarasenko, S. A.; Moore, J. N.; Yusa, G.; Mano, T.; Noda, T.; Li, X.; Bristow, A. D.; Betz, M.

    2018-03-01

    Electron spin transport and dynamics are investigated in a single, high-mobility, modulation-doped, GaAs quantum well using ultrafast two-color Kerr-rotation microspectroscopy, supported by qualitative kinetic theory simulations of spin diffusion and transport. Evolution of the spins is governed by the Dresselhaus bulk and Rashba structural inversion asymmetries, which manifest as an effective magnetic field that can be extracted directly from the experimental coherent spin precession. A spin-precession length λSOI is defined as one complete precession in the effective magnetic field. It is observed that application of (i) an out-of-plane electric field changes the spin decay time and λSOI through the Rashba component of the spin-orbit coupling, (ii) an in-plane magnetic field allows for extraction of the Dresselhaus and Rashba parameters, and (iii) an in-plane electric field markedly modifies both the λSOI and diffusion coefficient.

  19. Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n -GaAs

    Science.gov (United States)

    Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.

    2017-12-01

    The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.

  20. Dynamical TAP equations for non-equilibrium Ising spin glasses

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....

  1. Dynamical sensitivity control of a single-spin quantum sensor.

    Science.gov (United States)

    Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan

    2017-07-26

    The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.

  2. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    Science.gov (United States)

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  3. Signatures of a quantum dynamical phase transition in a three-spin system in presence of a spin environment

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.

    2007-01-01

    We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Alvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states vertical bar ↑,↓> and vertical bar ↓,↑> gives an oscillation with a Rabi frequency b/ℎ (the spin-spin coupling). The interaction, ℎ/τ SE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτ SE > or approx. ℎ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form

  4. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, A., E-mail: a.secchi@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Lichtenstein, A.I., E-mail: alichten@physnet.uni-hamburg.de [Universitat Hamburg, Institut für Theoretische Physik, Jungiusstraße 9, D-20355 Hamburg (Germany); Katsnelson, M.I., E-mail: m.katsnelson@science.ru.nl [Radboud University, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands)

    2016-02-15

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii–Moriya interaction and other symmetric terms such as dipole–dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms. - Highlights: • We give formulas for the exchange interaction tensor in strongly correlated systems. • Interactions are written in terms of electronic Green's functions and self-energies. • The method is suitable for a Dynamical Mean Field Theory implementation. • No quenching of the orbital magnetic moments is assumed. • Spin and orbital contributions to magnetism can be computed separately.

  5. Part I: Spin wave dynamics in YIG spheres

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    An experimental study is made of the interactions between spin wave modes excited in a sphere of yttrium iron garnet by pumping the Suhl subsidiary absorption with microwaves. The dynamical behavior of the magnetization is observed under high resolution by varying the dc field and microwave pump power. Varied behavior is found: (1) onset of the Suhl instability by excitation of a single spin wave mode; (2) when two or more modes are excited, interactions lead to auto-oscillations displaying period-doubling to chaos; (3) quasiperiodicity, locking, and chaos occur when three or more modes are excited; (4) abrupt transition to wide band power spectra (i.e., turbulence), with hysteresis; (5) irregular relaxation oscillations and aperiodic spiking behavior. A theoretical model is developed using the plane wave approximation obtaining the lowest order nonlinear interaction terms between the excited modes. Extension of this analysis to the true spherical spin-modes is discussed. Bifurcation behavior is examined, and dynamical behavior is numerically computed and compared to the experimental data. A theory is developed regarding the nature of the experimentally observed relaxation oscillations and spiking behavior based on the interaction of ''weak'' and ''strong'' modes, and this is demonstrated in the numerical simulations for two modes. Quasiperiodicity is shown to occur in the numerical study when at least 3 modes are excited with appropriate parameter values. A possible mechanism for generating microwave subharmonics at half of the pumping frequency is discussed. 57 refs., 25 figs., 5 tabs

  6. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  7. Dynamics of spins in semiconductor quantum wells under drift

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2009-01-01

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  8. Dynamics of spins in semiconductor quantum wells under drift

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-15

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  9. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  10. Dynamics of carrions in the spin-fermion model

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.; Marvakov, D.

    1996-01-01

    The spectrum of hole quasiparticles (carrions) and the role of magnetic correlations has been considered in the framework of spin-fermion (Kondo-Heisenberg) model by means of the equation-of-motion method. The hole quasiparticle dynamics has been discussed for t-J model and compared with that of for spin-fermion model to determine how the one- and two-magnon processes define the true nature of carriers in HTSC. For this Kondo-Heisenberg-type model it was clearly pointed out on the self-energy level, beyond Hartree-Fock approximation, that two-magnon processes can play a role for the formation of the superconducting state. 60 refs

  11. Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field

    International Nuclear Information System (INIS)

    Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely

    2005-01-01

    The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory

  12. Constrained dynamics of universally coupled massive spin 2-spin 0 gravities

    International Nuclear Information System (INIS)

    Pitts, J Brian

    2006-01-01

    The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom

  13. Spin dynamics in 122-type iron-based superconductors

    International Nuclear Information System (INIS)

    Park, Jitae

    2012-01-01

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba 1-x K x Fe 2 As 2 compound, we report the phase separation between

  14. Spin dynamics in 122-type iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jitae

    2012-07-16

    In this thesis, we present the experimental data on four different iron-based SC materials. It is mainly about the magnetic-dynamics study in the FeSC that is assumed to be among the most crucial ingredients for superconductivity in this system. Thus, the main goal of this thesis is to figure out the exact relationship between spin dynamics and superconductivity, and then further to realize what is the contribution of magnetic fluctuations for superconductivity by providing experimental data for modeling a microscopic mechanism of electron pairing in the FeSC system. In Chap. 2, we first discuss basic characteristics of FeSC, such as crystal structure and electron band-structure by briefly reviewing the relevant literature. Then, an introduction about magnetic and SC phases will follow based on the generic phase diagram. Details about current understanding of magnetic ground state in the parent compounds will be discussed in terms of spin-wave excitations which would be important when we are considering the spin dynamics in doped materials. To study magnetic dynamics in FeSC, we employed the inelastic-neutron-scattering (INS) method which can uniquely probe the underlying spin dynamics in the four dimensional energy and momentum space in a wide range. By taking advantage of the well developed theory for the magnetic neutron-scattering process, one can quantify the imaginary part of spin susceptibility that is an essential physical quantity the description of elementary magnetic excitations and can be compared with theoretical calculations directly. Moreover, the technique's energy-resolving scale spans over the most relevant energy range of magnetic fluctuations (from 0 to 100 meV). For these reasons, neutron scattering is a very powerful technique for magnetism study, and we introduce how neutron-scattering experiment works theoretically and practically in Chap. 3. For a slightly underdoped Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} compound, we report the phase

  15. Spin asymmetries $A_1$ of the proton and the deuteron in the low $x$ and low $Q^2$ region from polarized high energy muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Baum, G; Berglund, P; Betev, L; De Botton, N R; Bradamante, Franco; Bravar, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    We present the results of the spin asymmetries $A_1$ of the proton and the deuteron in the kinematic region extending down to $x=6\\cdot 10^{-5}$ and $Q^2=0.01$ GeV$^2$. The data were taken with a dedicated low $x$ trigger, which required hadron detection in addition to the scattered muon, so as to reduce the background at low $x$. The results complement our previous measurements and the two sets are consistent in the overlap region. No sig\\-ni\\-fi\\-cant spin effects are found in the newly explored region.

  16. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    Science.gov (United States)

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  17. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  18. On the spin-axis dynamics of a Moonless Earth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, The Institute for Theory and Computation, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficient as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.

  19. Spin dynamics of EuS in the paramagnetic phase

    International Nuclear Information System (INIS)

    Chaudhury, R.; Shastry, B.S.

    1988-07-01

    The spin dynamics of the semiclassical Heisenberg model on the fcc lattice, with ferromagnetic interaction in the first neighbour shell, anti-ferromagnetic interaction in the second neighbour shell and which undergoes a ferromagnetic transition, is studied in the paramagnetic phase at the temperature 1.1 T c using the Monte-Carlo molecular dynamics technique. The important quantities calculated are the dynamic structure function S(q-vector,ω) and the spin auto-correlation function i (O)·S-vector i (t)>. Our results for S(q-vector,ω) show the existence of purely diffusive modes in the low q regime. For q-vector close to the zone boundary, our calculated S(q-vector,ω) shows multi-peaked structure, signifying damped propagating modes. This result disagrees with the theoretical predictions of Young and Shastry and also of Lindgard. Our results for S(q-vector,ω) in the entire q-vector-space are in good qualitative and quantitative agreement with the recent neutron scattering experiments of Boni et al. and also Bohn et al. Our calculated auto-correlation function shows a diffusive behaviour temporally. (author). 15 refs, 5 figs

  20. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  1. Dynamics of the two-spin spin-boson model with a common bath

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tianrui [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058 (China); Yan, Yiying; Chen, Lipeng; Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-04-14

    Dynamics of the two-spin spin-boson model in the presence of Ohmic and sub-Ohmic baths is investigated by employing a multitude of the Davydov D{sub 1} trial states, also known as the multi-D{sub 1} Ansatz. Its accuracy in dynamics simulations of the two-spin SBM is improved significantly over the single D{sub 1} Ansatz, especially in the weak to moderately strong coupling regime. Validity of the multi-D{sub 1} Ansatz for various coupling strengths is also systematically examined by making use of the deviation vector which quantifies how faithfully the trial state obeys the Schrödinger equation. The time evolution of population difference and entanglement has been studied for various initial conditions and coupling strengths. Careful comparisons are carried out between our approach and three other methods, i.e., the time-dependent numerical renormalization group (TD-NRG) approach, the Bloch-Redfield theory, and a method based on a variational master equation. For strong coupling, the multi-D{sub 1} trial state yields consistent results as the TD-NRG approach in the Ohmic regime while the two disagree in the sub-Ohmic regime, where the multi-D{sub 1} trial state is shown to be more accurate. For weak coupling, the multi-D{sub 1} trial state agrees with the two master-equation methods in the presence of both Ohmic and sub-Ohmic baths, but shows considerable differences with the TD-NRG approach in the presence of a sub-Ohmic bath, calling into question the validity of the TD-NRG results at long times in the literature.

  2. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    Energy Technology Data Exchange (ETDEWEB)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get`man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de Physique des Particules, de Physique Nucleaire et de l`Instrumentation Associee]|[I.V. Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)]|[Kharkov Inst. of Physics and Technology (Russian Federation)]|[Lab. of Nuclear Problems, JINR, Dubna (Russian Federation)]|[Lab. of High Energy Physics, JINR, Dubna (Russian Federation)]|[Lab. National SATURNE, CNRS, 91 - Gif-sur-Yvette (France)]|[Inst. of Physics, Belarus Academy of Sciences, Minsk (Belarus)]|[Dept. of Physics, Petersburg Nuclear Physics Inst., Gatchina (Russian Federation)

    1995-03-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  3. The movable polarized target as a basic equipment for high energy spin physics experiments at the JINR-Dubna accelerator complex

    International Nuclear Information System (INIS)

    Lehar, F.; Adiasevich, B.; Androsov, V.P.; Angelov, N.; Anischenko, N.; Antonenko, V.; Ball, J.; Baryshevsky, V.G.; Bazhanov, N.A.; Belyaev, A.A.; Benda, B.; Bodyagin, V.; Borisov, N.; Borzunov, Yu.; Bradamante, F.; Bunyatova, E.; Burinov, V.; Chernykh, E.; Combet, M.; Datskov, A.; Durand, G.; Dzyubak, A.P.; Fontaine, J.M.; Get'man, V.A.; Giorgi, M.; Golovanov, L.; Grebenyuk, V.; Grosnick, D.; Gurevich, G.; Hasegawa, T.; Hill, D.; Horikawa, N.; Igo, G.; Janout, Z.; Kalinnikov, V.A.; Karnaukhov, I.M.; Kasprzyk, T.; Khachaturov, B.A.; Kirillov, A.; Kisselev, Yu.; Kousmine, E.S.; Kovalenko, A.; Kovaljov, A.I.; Ladygin, V.P.; Lazarev, A.; Leconte, P.; Lesquen, A. de; Lukhanin, A.A.; Mango, S.; Martin, A.; Matafonov, V.N.; Matyushevsky, E.; Mironov, S.; Neganov, A.B.; Neganov, B.S.; Nomofilov, A.; Perelygin, V.; Plis, Yu.; Pilipenko, Yu.; Pisarev, I.L.; Piskunov, N.; Polunin, Yu.; Popkov, Yu.P.; Propov, A.A.; Prokofiev, A.N.; Rekalo, M.P.; Rukoyatkin, P.; Sans, J.L.; Sapozhnikov, M.G.; Sharov, V.; Shilov, S.; Shishov, Yu.; Sitnik, I.M.; Sorokin, P.V.; Spinka, H.; Sporov, E.A.; Strunov, L.N.; Svetov, A.; De Swart, J.J.; Telegin, Yu.P.; Tolmashov, I.; Trentalange, S.; Tsvinev, A.; Usov, Yu.A.; Vikhrov, V.V.; Whitten, C.A.; Zaporozhets, S.; Zarubin, A.; Zhdanov, A.A.; Zolin, L.

    1995-01-01

    A movable polarized proton target is planned to be installed in polarized beams of the Synchrophasotron-Nuclotron complex in order to carry out a spin physics experimental program at Dubna. The project is described and the first proposed experiments are discussed. ((orig.))

  4. Supersymmetry and pseudoclassical dynamics of particle with any spin

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1976-12-01

    The use of anticommuting c-numbers in describing physical systems and their simmetries has recently drawn much interest. Supersymmetry among bosons and fermions can be given an adequate formulation using them. Applications to Hamiltonian dynamics of electron adapting Dirac's method of handling singular Lagrangians were quite successful. An extension to particle of any spin following the systematic treatment of Casalbuoni et al. is discussed here. Formulation of Bargmann and Wigner for relativistic particle is obtained on quantization in self-consistent manner. It may be remarked that some of the Dirac brackets between anticommuting variables are required to go to commutators instead of anticommutators

  5. Spin dynamics in high-TC superconducting cuprates

    International Nuclear Information System (INIS)

    Bourges, Ph.

    2003-07-01

    This work is dedicated to the detailed investigations of the magnetic resonance peak in the superconducting state of cuprates. The existence of such a peak could be the signature of a mechanism linked to magnetism that could explain high critical temperature superconductivity. Inelastic neutron scattering is an adequate tool for the understanding of cuprate properties because it reveals magnetic fluctuations whose behaviour and variety depend strongly on temperature and on the level of doping. The last part of this work is dedicated to the study of spin dynamics in YBa 2 Cu 3 O 6+x system

  6. Spin asymmetries $A_1$ and structure functions $g_1$ of the proton and the deuteron from polarized high energy muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, E; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; Björkholm, P; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Golutvin, I A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiryushin, Yu T; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rock, S E; Rodríguez, M; Rondio, Ewa; Ropelewski, Leszek; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Seitz, R; Semertzidis, Y K; Sergeev, S; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zamiatin, N I; Zhao, J

    1998-01-01

    We present the final results of the spin asymmetries $A_1$ and the spin structure functions $g_1$ of the proton and the deuteron in the kinematic range $0.0008

  7. Information-flux approach to multiple-spin dynamics

    International Nuclear Information System (INIS)

    Di Franco, C.; Paternostro, M.; Kim, M. S.; Palma, G. M.

    2007-01-01

    We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning and quantum state transfer and we also sketch its extension to nonunitary dynamics

  8. Nuclear spin dynamics in soap solutions and related systems

    International Nuclear Information System (INIS)

    Bloom, M.

    1973-01-01

    Soap molecules consist of a hydrophilic head and a hydrophobic lipid tail. For example, potassium laureate, the soap molecule on which the most complete study of nuclear spin dynamics has been made has the chemical formula KCOO(CH 2 ) 10 CH 3 . High concentration (greater than or approximately equal to 20% soap molecules by weight) soap solutions in water form ordered, liquid crystal structures in which the polar heads are arranged on regular surfaces which define a lattice having long range order. The soap molecules diffuse very rapidly parallel to the surfaces and undergo rapid conformational changes. Studies of T 1 , Tsub(1p) and Tsub(D) have indicated a wide spectrum of correlation times associated with these changes. Because of the orientational order of the soap molecules, the dipolar interactions between nuclear spins on a single molecule are not averaged to zero by the molecular motions. Thus, it is possible to use NMR techniques normally applied to solids (i.e. transfer of Zeeman into dipolar order, etc.) to study their static and dynamical properties. These systems are unusual in that they are basically one-dimensional systems in which the effective, time-averaged, dipolar coupling constants become progressively stronger for protons closer to the polar heads ot the molecules. A review will be presented of the experimental and theoretical NMR work performed on such systems to date. (author)

  9. Nuclear spin dynamics in double quantum dots : Fixed points, transients, and intermittency

    NARCIS (Netherlands)

    Rudner, M.S.; Koppens, F.H.L.; Folk, J.A.; Vandersypen, L.M.K.; Levitov, L.S.

    2011-01-01

    Transport through spin-blockaded quantum dots provides a means for electrical control and detection of nuclear spin dynamics in the host material. Although such experiments have become increasingly popular in recent years, interpretation of their results in terms of the underlying nuclear spin

  10. Influence of temperature on spin polarization dynamics in dilute nitride semiconductors—Role of nonparamagnetic centers

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, M.; Misiewicz, J. [Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Wroclaw University of Technology, Wybrzeze, Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-10-21

    We report theoretical studies of spin polarization dynamics in dilute nitride semiconductors. We develop a commonly used rate equation model [Lagarde et al., Phys. Status Solidi A 204, 208 (2007) and Kunold et al. Phys. Rev. B 83, 165202 (2011)] to take into account the influence of shallow localizing states on the temperature dependence of spin polarization dynamics and a spin filtering effect. Presented investigations show that the experimentally observed temperature dependence of a spin polarization lifetime in dilute nitrides can be related to the electron capture process by shallow localizing states without paramagnetic properties. This process reduces the efficiency of spin filtering effect by deep paramagnetic centers, especially at low temperatures.

  11. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  12. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  13. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    International Nuclear Information System (INIS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-01-01

    The spin dynamics in the helical chain Co(hfac) 2 NITPhOMe has been investigated by 1 H NMR and μSR relaxation. In the temperature range 15< T<60 K, the results are consistent with the relaxation of the homogeneous magnetization. For T≤15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived

  14. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    Science.gov (United States)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  15. Spin-charge coupled dynamics driven by a time-dependent magnetization

    Science.gov (United States)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  16. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    Science.gov (United States)

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  17. Coercivity of magneto-optical media by spin dynamics

    International Nuclear Information System (INIS)

    Suits, J.C.

    1990-01-01

    Spin dynamics computer simulations have been carried out to study the effect of pinning on domain-wall motion in TbFeCo-like media. These calculations were done on a 30x30x1 mesh, where the spin direction at each lattice site was calculated with the Landau--Lifshitz--Gilbert equation. The simulations were made in an IBM 3090 mainframe--personal computer environment where the result of the calculation is a movie that runs at three frames/second on an AT and shows graphically the domain-wall--defect interaction. The domain wall is caused to move in an external field toward a defect, and the maximum field that pins the domain wall was observed. The defects have finite length and zero magnetization, which correspond to voids or nonmagnetic second phase in the media. The simulation shows that small defects on the order of 100 A in size can pin walls with pinning strength appropriate to the coercivity of magneto-optical media, i.e., local coercivities in the range 1--10 kOe. For sufficiently high fields a single wall may break up into two separate sections at the defect, and then join together beyond the defect to become a single wall again. For rectangular defects, the coercivity depends strongly and nearly linearly on defect length (parallel to the domain-wall surface) and only weakly on defect width for widths greater than about 50 A (perpendicular to the wall surface)

  18. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    Science.gov (United States)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  19. A new and unifying approach to spin dynamics and beam polarization in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2014-09-01

    With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.

  20. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    Science.gov (United States)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  1. Dynamics of domain wall driven by spin-transfer torque

    International Nuclear Information System (INIS)

    Chureemart, P.; Evans, R. F. L.; Chantrell, R. W.

    2011-01-01

    Spin-torque switching of magnetic devices offers new technological possibilities for data storage and integrated circuits. We have investigated domain-wall motion in a ferromagnetic thin film driven by a spin-polarized current using an atomistic spin model with a modified Landau-Lifshitz-Gilbert equation including the effect of the spin-transfer torque. The presence of the spin-transfer torque is shown to create an out-of-plane domain wall, in contrast to the external-field-driven case where an in-plane wall is found. We have investigated the effect of the spin torque on domain-wall displacement, domain-wall velocity, and domain-wall width, as well as the equilibration time in the presence of the spin-transfer torque. We have shown that the minimum spin-current density, regarded as the critical value for domain-wall motion, decreases with increasing temperature.

  2. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    International Nuclear Information System (INIS)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi

    2016-01-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  3. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  4. Classical dynamics and localization of resonances in the high-energy region of the hydrogen atom in crossed fields.

    Science.gov (United States)

    Schweiner, Frank; Main, Jörg; Cartarius, Holger; Wunner, Günter

    2015-01-01

    When superimposing the potentials of external fields on the Coulomb potential of the hydrogen atom, a saddle point (called the Stark saddle point) appears. For energies slightly above the saddle point energy, one can find classical orbits that are located in the vicinity of this point. We follow those so-called quasi-Penning orbits to high energies and field strengths, observing structural changes and uncovering their bifurcation behavior. By plotting the stability behavior of those orbits against energy and field strength, the appearance of a stability apex is reported. A cusp bifurcation, located in the vicinity of the apex, will be investigated in detail. In this cusp bifurcation, another orbit of similar shape is found. This orbit becomes completely stable in the observed region of positive energy, i.e., in a region of parameter space, where the Kepler-like orbits located around the nucleus are already unstable. By quantum mechanically exact calculations, we prove the existence of signatures in quantum spectra belonging to those orbits. Husimi distributions are used to compare quantum-Poincaré sections with the extension of the classical torus structure around the orbits. Since periodic orbit theory predicts that each classical periodic orbit contributes an oscillating term to photoabsorption spectra, we finally give an estimation for future experiments, which could verify the existence of the stable orbits.

  5. Dynamic magnetic hysteresis behavior and dynamic phase transition in the spin-1 Blume-Capel model

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-03-15

    The nature (time variation) of response magnetization m(wt) of the spin-1 Blume-Capel model in the presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization, hysteresis loop area and correlation near the transition point in order to characterize the nature (first- or second-order) of the dynamic transitions as well as obtain the dynamic phase transition temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical ( Bullet ), zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or mixed phase region, (F+P) and the reentrant behavior exist in the system. The results are in good agreement with some experimental and theoretical results. - Highlights: Black-Right-Pointing-Pointer Kinetic spin-1 Blume-Capel model is studied using the effective-field theory. Black-Right-Pointing-Pointer We investigated the dynamic magnetic hysteresis behavior. Black-Right-Pointing-Pointer Dynamic magnetization, hysteresis loop area and correlation are investigated. Black-Right-Pointing-Pointer System exhibits tricritical, zero-temperature, triple and multicritical points. Black-Right-Pointing-Pointer We present the dynamic phase diagrams and compare the results of the EFT

  6. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  7. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)(3)](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate......Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2...

  8. Spatiotemporal dynamics of the spin transition in [Fe (HB(tz)3) 2] single crystals

    Science.gov (United States)

    Ridier, Karl; Rat, Sylvain; Shepherd, Helena J.; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine

    2017-10-01

    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe (HB (tz )3)2] (tz = 1 ,2 ,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ˜1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 µm/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø = 2 μ m ) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model.

  9. QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains

    Directory of Open Access Journals (Sweden)

    Phillip Weinberg, Marin Bukov

    2017-02-01

    Full Text Available We present a new open-source Python package for exact diagonalization and quantum dynamics of spin(-photon chains, called QuSpin, supporting the use of various symmetries in 1-dimension and (imaginary time evolution for chains up to 32 sites in length. The package is well-suited to study, among others, quantum quenches at finite and infinite times, the Eigenstate Thermalisation hypothesis, many-body localisation and other dynamical phase transitions, periodically-driven (Floquet systems, adiabatic and counter-diabatic ramps, and spin-photon interactions. Moreover, QuSpin's user-friendly interface can easily be used in combination with other Python packages which makes it amenable to a high-level customisation. We explain how to use QuSpin using four detailed examples: (i Standard exact diagonalisation of XXZ chain (ii adiabatic ramping of parameters in the many-body localised XXZ model, (iii heating in the periodically-driven transverse-field Ising model in a parallel field, and (iv quantised light-atom interactions: recovering the periodically-driven atom in the semi-classical limit of a static Hamiltonian.

  10. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Sanjay, E-mail: sprabhakar@wlu.ca [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Melnik, Roderick [M 2NeT Laboratory, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario N2L 3C5 (Canada); Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Bonilla, Luis L. [Gregorio Millan Institute, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Raynolds, James E. [Drinker Biddle and Reath LLP, Washington, DC 20005 (United States)

    2013-12-02

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges.

  11. Spin echo dynamics under an applied drift field in graphene nanoribbon superlattices

    International Nuclear Information System (INIS)

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.; Raynolds, James E.

    2013-01-01

    We investigate the evolution of spin dynamics in graphene nanoribbon superlattices (GNSLs) with armchair and zigzag edges in the presence of a drift field. We determine the exact evolution operator and show that it exhibits spin echo phenomena due to rapid oscillations of the quantum states along the ribbon. The evolution of the spin polarization is accompanied by strong beating patterns. We also provide detailed analysis of the band structure of GNSLs with armchair and zigzag edges

  12. Dynamical Monte Carlo investigation of spin reversals and nonequilibrium magnetization of single-molecule magnets

    OpenAIRE

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-01-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDI). We calculate spin reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the pr...

  13. Spin dynamics in the anisotropic spin glass Fe2TiO5

    DEFF Research Database (Denmark)

    Yeshurun, Y.; Tholence, J. L.; Kjems, Jørgen

    1985-01-01

    We have studied spin-freezing phenomena along the magnetic easy axis of the insulating spin glass Fe2TiOS by magnetisation, AC susceptibility and neutron scattering experiments. The characteristic measurement time for these techniques varies over more than fourteen orders of magnitude. The results...

  14. Real-Space Application of the Mean-Field Description of Spin-Glass Dynamics

    International Nuclear Information System (INIS)

    Barrat, Alain; Berthier, Ludovic

    2001-01-01

    The out of equilibrium dynamics of finite dimensional spin glasses is considered from a point of view going beyond the standard 'mean-field theory' versus 'droplet picture' debate of the past decades. The main predictions of both theories concerning the spin-glass dynamics are discussed. It is shown, in particular, that predictions originating from mean-field ideas concerning the violations of the fluctuation-dissipation theorem apply quantitatively, provided one properly takes into account the role of a spin-glass coherence length, which plays a central role in the droplet picture. Dynamics in a uniform magnetic field is also briefly discussed

  15. Siberian Snakes in high-energy accelerators

    International Nuclear Information System (INIS)

    Mane, S R; Shatunov, Yu M; Yokoya, K

    2005-01-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  16. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  17. Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase

    DEFF Research Database (Denmark)

    Schröder, A.; Aeppli, G.; Mason, T.E.

    1997-01-01

    The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition to...

  18. Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas Bagger Stibius

    2015-01-01

    We report significant details of the magnetic structure and spin dynamics of LiFePO4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis...

  19. Proton radiography of dynamic electric and magnetic fields in laser-produced high-energy-density plasmas

    International Nuclear Information System (INIS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Manuel, M.; Casey, D.; Sinenian, N.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Rygg, J. R.; Town, R. P. J.; Betti, R.; Meyerhofer, D. D.; Delettrez, J.; Knauer, J. P.; Marshall, F.; Sangster, T. C.; Smalyuk, V. A.; Soures, J. M.; Shvarts, D.

    2009-01-01

    Time-gated, monoenergetic-proton radiography provides unique measurements of the electric (E) and magnetic (B) fields produced in laser-foil interactions and during the implosion of inertial-confinement-fusion capsules. These experiments resulted in the first observations of several new and important features: (1) observations of the generation, decay dynamics, and instabilities of megagauss B fields in laser-driven planar plastic foils, (2) the observation of radial E fields inside an imploding capsule, which are initially directed inward, reverse direction during deceleration, and are likely related to the evolution of the electron pressure gradient, and (3) the observation of many radial filaments with complex electromagnetic field striations in the expanding coronal plasmas surrounding the capsule. The physics behind and implications of such observed fields are discussed.

  20. Spin dynamics on cyclic iron wheels in high magnetic fields

    International Nuclear Information System (INIS)

    Schnelzer, Lars

    2008-01-01

    In the present thesis the spin dynamics of cyclic spin-cluster compounds, the so called ''ferric wheels'' were studied by means of the NMR. In the iron wheels Li/Na rate at Fe 6 (tea) 6 and Cs rate at Fe 8 (tea) 8 as probes of NMR both the protons and the centrally lying alkali atoms 7 Li, 23 Na, and 133 Cs were available. For this purpose measurements in the magnetic field region up to B=20 T and at temperatures between room temperature and T=50 mK were performed. The longitudinal relaxation rate was temperature dependently studied at two field values on the lithium cluster and a frequency independent maximum of the relaxation rate at a temperature of T∼30 K resulted. Different behaviour showed the measurement on the sodium cluster. the longitudinal relaxation rate slopes linearly with the temperature and shows no maximum. The two quadrupole satellites of the 23 Na could be resolved. From the distance of the satellites to the central transition both on the field gradient of the iron ring and on the orientation of the symmetry axis to the external magnetic field could be concluded. The determined field gradient of the Na rate at Fe 6 (tea) 6 of eq=4.78(11).10 20 V/m 2 was in very good agreement with the present theoretically calculated value. The orientation of the crystal was determined to θ(c,B)=62.8 . The very low splitting of the 7 Li NMR spectrum of the lithium cluster allows to give as upper limit for the value of the field gradient eq=1.82(11).10 20 V/m 2 . From the seven lines of the cesium spectrum theoretically to be expected five were resolved. The evaluation yielded for the cesium ring a value of eq=-1.3(1).10 21 V/m 2 . The study of the field-dependent line position of the 23 Na NMR line led to the determination of the parameter of the transferred hyperfine interaction to A tHf /2π=140 kHz. For the first time on a cyclic iron cluster a level crossing could be studied by means of the central ion. The temperature dependence of the longitudinal

  1. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    Science.gov (United States)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  2. Dynamics of a driven spin coupled to an antiferromagnetic spin bath

    International Nuclear Information System (INIS)

    Yuan Xiaozhong; Goan, Hsi-Sheng; Zhu, Ka-Di

    2011-01-01

    We study the behavior of the Rabi oscillations of a driven central spin (qubit) coupled to an antiferromagnetic spin bath (environment). It is found that the decoherence behavior of the central spin depends on the detuning, driving strength, qubit-bath coupling and an important factor Ω, associated with the number of coupled atoms, the detailed lattice structure and the temperature of the environment. If detuning exists, Rabi oscillations may show the behavior of collapses and revivals; however, if detuning is absent, such a behavior will not appear. We investigate the weighted frequency distribution of the time evolution of the central spin inversion and give a reasonable explanation of this phenomenon of collapses and revivals. We also discuss the decoherence and pointer states of the qubit from the perspective of von Neumann entropy. We found that the eigenstates of the qubit self-Hamiltonian emerge as pointer states in the weak system-environment coupling limit.

  3. Illuminating massive black holes with white dwarfs: orbital dynamics and high-energy transients from tidal interactions

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Goldstein, Jacqueline; Ramirez-Ruiz, Enrico; Guillochon, James; Samsing, Johan

    2014-01-01

    White dwarfs (WDs) can be tidally disrupted only by massive black holes (MBHs) with masses less than ∼10 5 M ☉ . These tidal interactions feed material to the MBH well above its Eddington limit, with the potential to launch a relativistic jet. The corresponding beamed emission is a promising indication of an otherwise quiescent MBH of relatively low mass. We show that the mass transfer history, and thus the light curve, is quite different when the disruptive orbit is parabolic, eccentric, or circular. The mass lost each orbit exponentiates in the eccentric-orbit case, leading to the destruction of the WD after several tens of orbits. We examine the stellar dynamics of clusters surrounding MBHs to show that single-passage WD disruptions are substantially more common than repeating encounters. The 10 49 erg s –1 peak luminosity of these events makes them visible to cosmological distances. They may be detectible at rates of as many as tens per year by instruments like Swift. In fact, WD-disruption transients significantly outshine their main-sequence star counterparts and are the tidal interaction most likely to be detected arising from MBHs with masses less than 10 5 M ☉ . The detection or nondetection of such WD-disruption transients by Swift is, therefore, a powerful tool to constrain the lower end of the MBH mass function. The emerging ultralong gamma-ray burst class of events all have peak luminosities and durations reminiscent of WD disruptions, offering a hint that WD-disruption transients may already be present in existing data sets.

  4. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  5. The system-dynamic and evolutionary non-Euclidean approach and the 'Lobachevsky-Poincare programme' idea for its successive realization in high energy physics

    International Nuclear Information System (INIS)

    Bubelev, E.G.; Kuchin, I.A.

    1998-01-01

    The necessity of creating mesophysics is motivated on the basis of a general likeness of the description of many phenomena and processes in micro- and macroworld. For a general and detailed investigation of the former in modern high energy physics (HEP), the Absolute (arising from Minkovsky and irrespective of any reference system) universal approach is used. Its two conceptually new branches are non-linear system-dynamic and non-Euclidean evolutionary ones. They are complementary ones and completely adequate to an extreme complexity of directly unobservable HEP objects. Some primary problems of them are briefly made clear on the basis of synergetics principles and HEP's internal Lobachevsky-Euclidean geometry. They are noted as the primary content of the Lobachevsky-Poincare Programme (LPP) the idea of which has been proposed recently for their successive solution

  6. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    Science.gov (United States)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  7. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  8. Phase dynamics of oscillating magnetizations coupled via spin pumping

    Science.gov (United States)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  9. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Inter-Institute Centre for High Energy Physics, which was formed by an agreement between the UMM, the JU and the INP to honour the late Prof. Marian Miesowicz, the founder and the long-time leader of the high energy physics community in Cracow. Since the modern high energy physics experiments require enormous technical, man-power and financial efforts, the research is mainly carried out in large international collaborations. These are listed at proper places in the following text. They were formed at the leading laboratories: the European CERN in Geneva (SPS, LEP, LHC), DESY in Hamburg (HERA), Brookhaven RHIC, Fermilab TEVATRON, and KEK B-Factory in Tsukuba. The work in 1998 resulted in the publication of interesting results from the e + e - experiment DELPHI at LEP, the e + /e - p experiments H1 and ZEUS at HERA, and on heavy ion collisions from BNL and CERN. Short reviews of some of these can be found in the following pages together with important results obtained in other experiments, like e.g. the cosmic ray experiment JACEE, and also with those published by theorists. Close research contacts in some projects such as the DELPHI, ZEUS, NA49 and LHC experiments are being maintained with the A. Soltan Institute of Nuclear Studies in Warsaw and the Institute of Experimental Physics of the Warsaw University. In 1998 the division organized the Cracow Epiphany Conference on Spin Effects in Particle Physics. The titles of Honorary Professors of the Institute were bestowed on two outstanding high-energy physicists from DESY: Prof. Johann Bienlein and Prof. Bjorn Wiik

  10. Theoretical models of the spin-dependent charge-carrier dynamics in metals and semiconductors

    International Nuclear Information System (INIS)

    Krauss, Michael

    2010-01-01

    This thesis is concerned with spin-dependent carrier dynamics in semiconductors and metals. We are especially interested in the dynamics on ultrashort timescales, which can be driven by ultrashort optical excitation, and use of a theoretical description in terms of the dynamical spin-density matrix. The first part of this thesis is concerned with spin-dependent carrier dynamics in bulk GaAs. For conduction electrons in GaAs, the most important mechanisms, by which an electron spin polarization can be destroyed, are the Dyakonov-Perel and Bir-Aronov-Pikus mechanisms. For the Dyakonov-Perel effect, our treatment is the first calculation of the dynamics of the spindensity matrix for bulk GaAs. From our microsopic calculation, we extract spin-dephasing times. In particular, we can describe the dependence of the spin-dephasing time for a wide range of n-doping concentrations and explain the spin-dephasing dynamics in and out of the motional-narrowing regime. For the Bir-Aronov-Pikus mechanism, i.e., the exchange interaction of electronics with holes, approximate relaxation times for limiting cases were derived about 30 years ago. We show that these approaches provide an incomplete picture of spin relaxation, and are only valid for high or low densities, whereas the microscopic calculation is capable of explaining the electronic dynamics also for intermediate doping densities, which are most interesting for typical experiments. The spin-dependent hole dynamics in GaAs is much faster than that of electrons, because the p-like hole bands experience the spin-orbit interaction directly, rather than through the interaction with other bands. The resulting spin relaxation is sometimes referred to as an Elliott-Yafet mechanism. For the first time, we present results for the microscopic dynamics of this mechanism for holes in bulk GaAs, and we discuss the different results that may be obtained with different measurement techniques. We also analyze the importance of ''spin hot

  11. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  12. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  13. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  14. Hadron dynamics at high energies

    International Nuclear Information System (INIS)

    Storrow, J.K.

    1976-01-01

    This lecture covers the following topics: two body phenomenology (two body data; Regge poles; duality; geometrical concepts; applications); multi-particle reactions (exclusive reactions; inclusive reactions). (U.K.)

  15. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    International Nuclear Information System (INIS)

    Huang Li; Wu Xin; Huang Guo-Qing; Mei Li-Jie

    2017-01-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically. (paper)

  16. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  17. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    Science.gov (United States)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  18. Spin dynamics and Kondo physics in optical tweezers

    Science.gov (United States)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  19. Spin currents and magnon dynamics in insulating magnets

    Science.gov (United States)

    Nakata, Kouki; Simon, Pascal; Loss, Daniel

    2017-03-01

    Nambu-Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu-Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann-Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin-Wagner-Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga-Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.

  20. Spin currents and magnon dynamics in insulating magnets

    International Nuclear Information System (INIS)

    Nakata, Kouki; Loss, Daniel; Simon, Pascal

    2017-01-01

    Nambu–Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu–Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann–Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin–Wagner–Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga–Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics. (paper)

  1. Spin filtering neutrons with a proton target dynamically polarized using photo-excited triplet states

    International Nuclear Information System (INIS)

    Haag, M.; Brandt, B. van den; Eichhorn, T.R.; Hautle, P.; Wenckebach, W.Th.

    2012-01-01

    In a test of principle a neutron spin filter has been built, which is based on dynamic nuclear polarization (DNP) using photo-excited triplet states. This DNP method has advantages over classical concepts as the requirements for cryogenic equipment and magnets are much relaxed: the spin filter is operated in a field of 0.3 T at a temperature of about 100 K and has performed reliably over periods of several weeks. The neutron beam was also used to analyze the polarization of the target employed as a spin filter. We obtained an independent measurement of the proton spin polarization of ∼0.13 in good agreement with the value determined with NMR. Moreover, the neutron beam was used to measure the proton spin polarization as a function of position in the naphthalene sample. The polarization was found to be homogeneous, even at low laser power, in contradiction to existing models describing the photo-excitation process.

  2. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei

    2013-02-22

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spin-cast bulk heterojunction solar cells: A dynamical investigation

    KAUST Repository

    Chou, Kang Wei; Yan, Buyi; Li, Ruipeng; Li, Erqiang; Zhao, Kui; Anjum, Dalaver H.; Alvarez, Steven; Gassaway, Robert; Biocca, Alan K.; Thoroddsen, Sigurdur T; Hexemer, Alexander; Amassian, Aram

    2013-01-01

    Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analysis of thermally induced magnetization dynamics in spin-transfer nano-oscillators

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino, M., E-mail: daquino@uniparthenope.it [Department of Technology, University of Naples ' Parthenope' , 80143 Naples (Italy); Serpico, C. [Department of Engineering, University of Naples Federico II, 80125 Naples (Italy); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica 10135 Torino (Italy); Bonin, R. [Politecnico di Torino - Sede di Verres, 11029 Verres (Aosta) (Italy); Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States)

    2012-05-01

    The thermally induced magnetization dynamics in the presence of spin-polarized currents injected into a spin-valve-like structure used as microwave spin-transfer nano-oscillator (STNO) is considered. Magnetization dynamics is described by the stochastic Landau-Lifshitz-Slonczewski (LLS) equation. First, it is shown that, in the presence of thermal fluctuations, the spectrum of the output signal of the STNO exhibits multiple peaks at low and high frequencies. This circumstance is associated with the occurrence of thermally induced transitions between stationary states and magnetization self-oscillations. Then, a theoretical approach based on the separation of time-scales is developed to obtain a stochastic dynamics only in the slow state variable, namely the energy. The stationary distribution of the energy and the aforementioned transition rates are analytically computed and compared with the results of direct integration of the LLS dynamics, showing very good agreement.

  5. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  6. Dynamical Properties of a Diluted Dipolar-Interaction Heisenberg Spin Glass

    International Nuclear Information System (INIS)

    Zhang Kai-Cheng; Liu Yong; Chi Feng

    2014-01-01

    Up to now the chirality is seldom studied in the diluted spin glass although many investigations have been performed on the site-ordered Edwards—Anderson model. By simulation, we investigate the dynamical properties of both the spin-glass and the chiral-glass phases in a diluted dipolar system, which was manifested to have a spin-glass transition by recent numerical study. By scaling we find that both phases have the same aging behavior and closer aging parameter μ. Similarly, the domains grow in the same way and both phases have a closer barrier exponent Ψ. It means that both the spins and the chirality have the same dynamical properties and they may freeze at the same temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Effects of three-body interactions on the dynamics of entanglement in spin chains

    International Nuclear Information System (INIS)

    Shi Cuihua; Wu Yinzhong; Li Zhenya

    2009-01-01

    With the consideration of three-body interaction, dynamics of pairwise entanglement in spin chains is studied. The dependence of pairwise entanglement dynamics on the type of coupling, and distance between the spins is analyzed in a finite chain for different initial states. It is found that, for an Ising chain, three-body interactions are not in favor of preparing entanglement between the nearest neighbor spins, while three-body interactions are favorable for creating entanglement between remote spins from a separable initial state. For an isotropic Heisenberg chain, the pairwise concurrence will decrease when three-body interactions are considered both for a separable initial state and for a maximally entangled initial state, however, three-body interactions will retard the decay of the concurrence in an Ising chain when the initial state takes the maximally entangled state.

  8. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael; Müller, Jens [Institute of Physics, Goethe-University Frankfurt, Frankfurt/Main (Germany); Stockem, Irina; Schröder, Christian [Bielefeld Institute for Applied Materials Research, FH Bielefeld-University of Applied Sciences, Bielefeld (Germany)

    2016-10-14

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  9. Quantum dynamics and entanglement of spins on a square lattice

    DEFF Research Database (Denmark)

    Christensen, Niels Bech; Rønnow, Henrik Moodysson; McMorrow, Desmond Francis

    2007-01-01

    in understanding quantum effects in one-dimensional quantum antiferromagnets, but a complete experimental description of even simple two-dimensional antiferromagnets is lacking. Here we describe a comprehensive set of neutron scattering measurements that reveal a non-spin-wave continuum and strong quantum effects...

  10. First-principles approach to noncollinear magnetism: Towards spin dynamics

    DEFF Research Database (Denmark)

    Sharma, S.; Dewhurst, J.K.; Ambrosch-Draxl, C.

    2007-01-01

    A description of noncollinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived...

  11. High energy astrophysics

    International Nuclear Information System (INIS)

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  12. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells

    International Nuclear Information System (INIS)

    Wang Gang; Ye Hui-Qi; Shi Zhen-Wu; Wang Wen-Xin; Liu Bao-Li; Xavier Marie; Andrea Balocchi; Thierry Amand

    2012-01-01

    The electron spin dynamics is investigated by the time-resolved Kerr rotation technique in a pair of special GaAs/AlGaAs asymmetric quantum well samples grown on (111)-oriented substrates, whose structures are the same except for their opposite directions of potential asymmetry. A large difference of spin lifetimes between the two samples is observed at low temperature. This difference is interpreted in terms of a cancellation effect between the Dresselhaus spin-splitting term in the conduction band and another term induced by interface inversion asymmetry. The deviation decreases with the increasing temperature, and almost disappears when T > 100 K because the cubic Dresselhaus term becomes more important

  13. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  14. Spin dynamics in a molecular ferrimagnetic ring, [Mn(hfac)2NITPh]6

    International Nuclear Information System (INIS)

    Itou, T.; Funahashi, S.; Oyamada, A.; Maegawa, S.; Fujita, K.; Amezawa, K.; Yamaguchi, R.

    2007-01-01

    We studied the spin dynamics of a ferrimagnetic ring [Mn(hfac) 2 NITPh] 6 with an S=12 ground state by means of H-NMR1 experiments under several fields. The spin-lattice relaxation rate increases monotonically with increasing temperature. This monotonous behavior is not reproduced by the calculation based on the lifetimes of eigenstates caused by the spin-phonon interaction. The relaxation rate is possibly caused by the dispersion resulting from the interaction between the clusters, which is far smaller than the interaction in the cluster but comparable to the nuclear Zeeman energy

  15. Stochastic differential equations for quantum dynamics of spin-boson networks

    International Nuclear Information System (INIS)

    Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E

    2015-01-01

    A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)

  16. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  17. Spin dynamics at level crossing in molecular AF rings probed by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Lascialfari, A. E-mail: lascialfari@fisicavolta.unipv.it; Borsa, F.; Julien, M.-H.; Micotti, E.; Furukawa, Y.; Jang, Z.H.; Cornia, A.; Gatteschi, D.; Horvatic, M.; Van Slageren, J

    2004-05-01

    The low-temperature spin dynamics in molecular rings with a finite number (N{<=}10) of magnetic ions was studied by means of {sup 1}H NMR. When an external magnetic field (B) induces a crossing between energy levels, peaks are observed in the spin-lattice relaxation rate of protons, 1/T{sub 1}(B), at constant temperature. We discuss similarities and differences in the data from three different rings: Fe10, Fe6:Li and Cr8.

  18. Spin dynamics at level crossing in molecular AF rings probed by NMR

    International Nuclear Information System (INIS)

    Lascialfari, A.; Borsa, F.; Julien, M.-H.; Micotti, E.; Furukawa, Y.; Jang, Z.H.; Cornia, A.; Gatteschi, D.; Horvatic, M.; Van Slageren, J.

    2004-01-01

    The low-temperature spin dynamics in molecular rings with a finite number (N≤10) of magnetic ions was studied by means of 1 H NMR. When an external magnetic field (B) induces a crossing between energy levels, peaks are observed in the spin-lattice relaxation rate of protons, 1/T 1 (B), at constant temperature. We discuss similarities and differences in the data from three different rings: Fe10, Fe6:Li and Cr8

  19. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  20. Skyrmion dynamics in single-hole Neel ordered doped two-dimensional antiferromagnets with arbitrary spin

    International Nuclear Information System (INIS)

    Moura, A.R.; Pereira, A.R.; Moura-Melo, W.A.; Pires, A.S.T.

    2008-01-01

    We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Neel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the 'mass center' of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size

  1. A linear dynamic model for rotor-spun composite yarn spinning process

    International Nuclear Information System (INIS)

    Yang, R H; Wang, S Y

    2008-01-01

    A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process

  2. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  3. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics

    Science.gov (United States)

    Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver

    2017-08-01

    Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.

  4. Dynamical nuclear spin polarization induced by electronic current through double quantum dots

    International Nuclear Information System (INIS)

    Lopez-Monis, Carlos; Platero, Gloria; Inarrea, Jesus

    2011-01-01

    We analyse electron-spin relaxation in electronic transport through coherently coupled double quantum dots (DQDs) in the spin blockade regime. In particular, we focus on hyperfine (HF) interaction as the spin-relaxation mechanism. We pay special attention to the effect of the dynamical nuclear spin polarization induced by the electronic current on the nuclear environment. We discuss the behaviour of the electronic current and the induced nuclear spin polarization versus an external magnetic field for different HF coupling intensities and interdot tunnelling strengths. We take into account, for each magnetic field, all HF-mediated spin-relaxation processes coming from different opposite spin level approaches. We find that the current as a function of the external magnetic field shows a peak or a dip and that the transition from a current dip to a current peak behaviour is obtained by decreasing the HF coupling or by increasing the interdot tunnelling strength. We give a physical picture in terms of the interplay between the electrons tunnelling out of the DQD and the spin-flip processes due to the nuclear environment.

  5. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Science.gov (United States)

    Segal, Dvira

    2014-04-01

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  6. Two-level system in spin baths: Non-adiabatic dynamics and heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)

    2014-04-28

    We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.

  7. On the dynamics of compound bedforms in high-energy tidal channels: field observations in the German Bight and the Danish Wadden Sea

    Science.gov (United States)

    Ernstsen, Verner B.; Winter, Christian; Becker, Marius; Bartholdy, Jesper

    2010-05-01

    Tidal inlets are a common feature along much of the world's coastlines. They interrupt the alongshore continuity of shoreline processes, and by being exposed to both wave and current forcing, tidal inlets belong to the morphologically most dynamic and complex coastal systems on Earth. The tidal channels in these inlets are characterized by high flow velocities and, accordingly, the channel beds are typically sandy and covered with bedforms. The bedform fields in nature are often complex systems with larger primary-bedforms superimposed by smaller secondary-bedforms (cf. Bartholdy et al., 2002). There is a considerable amount of detailed field investigations on the dynamics of primary-bedforms at various temporal scales, ranging from short- to long-term tide-related cycles to flood hydrographs to seasonality. However, Julien et al. (2002) stated that a composite analysis of primary- and secondary-bedforms is recommended for future studies on resistance to flow. Such knowledge on the behaviour of compound bedforms is still deficient. In this study, we combine the findings on the dynamics of primary- and secondary-bedform height from detailed field investigations carried out in two high-energy tidal channels during 2007 and 2008: the Knudedyb tidal inlet channel in the Danish Wadden Sea and the Innenjade tidal channel in the Jade Bay, German Bight (both survey areas being ebb-dominated). We provide process-based explanations of the bedform behaviour and present a conceptual model of compound bedform dynamics. The conducted field investigations comprised repetitive, simultaneous measurements of high-resolution swath bathymetry (using a multibeam echosounder system) and flow velocity (using an acoustic Doppler current profiler) in combination with detailed spatial mapping of bed material characteristics (from grab sampling of bed material). For an objective and discrete analysis of primary- and secondary-bedforms a modified version of the bedform tracking tool

  8. An overview of spin physics

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1991-07-01

    Spin physics is playing an increasingly important role in high energy experiments and theory. This review looks at selected topics in high energy spin physics that were discussed at the 9th International Symposium on High Energy Spin Physics at Bonn in September 1990

  9. Elementary particle physics and high energy phenomena. [Dept. of Physics, Univ. of Colorado, Boulder, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z[sup 0] with the SLD detector; fixed-target K-decay experiments; the R D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  10. Elementary particle physics and high energy phenomena. Progress report for FY93

    Energy Technology Data Exchange (ETDEWEB)

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z{sup 0} with the SLD detector; fixed-target K-decay experiments; the R&D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs.

  11. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  12. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  13. Spin dynamics in SiGe quantum dot lines and ring molecules

    Science.gov (United States)

    Zinovieva, A. F.; Nenashev, A. V.; Dvurechenskii, A. V.

    2016-04-01

    Semiconductor quantum dot (QD) structures can be used as a model for understanding the effect of the microscopic structure, symmetry of crystals, and molecules on their macroscopic properties. In this work, the results of two theoretical approaches demonstrate that the spin dynamics in ordered QD structures depends on the size, spatial configuration, and topology of the object built of QDs. It was shown that the spin dynamics in QD structures with the hopping regime of conductivity significantly differs from the spin dynamics in two-dimensional (2D) and three-dimensional (3D) structures being at the other side of the metal-insulator transition. The special character of the effective magnetic field δ H fluctuations appearing only during tunneling between quantum dots is responsible for the insensitivity of spin relaxation times to the magnitude of the external magnetic field in infinite QD structures (2D square lattice and 1D linear QD chain). In finite QD structures (QD rings and linear chains), an external magnetic field H0 is directly involved in the spin relaxation process and spin is lost due to interaction with a special combination of fields Δ H ˜[H0×δ H ]/δ H that leads to an unusual orientation dependence of ESR linewidth, recently observed for QD chains. It was shown that the ordering of QD structures can be used for the conservation of spin orientation. For 1D finite quantum dot chains, the ordering can provide the stabilization of all spin components Sx,Sy, and Sz, while for ringlike molecules only Sz polarization can be stabilized. The results obtained in this work can be useful for development of novel semiconductor devices and in quantum information processing.

  14. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Corini, Cosimo

    2009-06-12

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  15. RosettaEPR: rotamer library for spin label structure and dynamics.

    Directory of Open Access Journals (Sweden)

    Nathan S Alexander

    Full Text Available An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta's ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2 is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.

  16. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    International Nuclear Information System (INIS)

    Corini, Cosimo

    2009-01-01

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  17. Spin 1990

    International Nuclear Information System (INIS)

    Anton, Gisela

    1990-01-01

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  18. Spin 1990

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Gisela

    1990-12-15

    The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.

  19. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  20. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  1. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  2. Effect of thermal fluctuations in spin-torque driven magnetization dynamics

    International Nuclear Information System (INIS)

    Bonin, R.; Bertotti, G.; Serpico, C.; Mayergoyz, I.D.; D'Aquino, M.

    2007-01-01

    Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection

  3. Effect of thermal fluctuations in spin-torque driven magnetization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, R. [INRiM, I-10135 Turin (Italy)]. E-mail: bonin@inrim.it; Bertotti, G. [INRiM, I-10135 Turin (Italy); Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' Federico II' I-80125 Naples (Italy); Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); D' Aquino, M. [Dipartimento per le Tecnologie, Universita di Napoli ' Parthenope' , I-80133 Naples (Italy)

    2007-09-15

    Nanomagnets with uniaxial symmetry driven by an external field and spin-polarized currents are considered. Anisotropy, applied field, and spin polarization are all aligned along the symmetry axis. Thermal fluctuations are described by adding a Gaussian white noise stochastic term to the Landau-Lifshitz-Gilbert equation for the deterministic dynamics. The corresponding Fokker-Planck equation is derived. It is shown that deterministic dynamics, thermal relaxation, and transition rate between stable states are governed by an effective potential including the effect of current injection.

  4. Dynamical stability for finite quantum spin chains against a time-periodic inhomogeneous perturbation

    International Nuclear Information System (INIS)

    Kudo, Kazue; Nakamura, Katsuhiro

    2009-01-01

    We investigate dynamical stability of the ground state against a time-periodic and spatially-inhomogeneous magnetic field for finite quantum XXZ spin chains. We use the survival probability as a measure of stability and demonstrate that it decays as P(t) ∝ t -1/2 under a certain condition. The dynamical properties should also be related to the level statistics of the XXZ spin chains with a constant spatially-inhomogeneous magnetic field. The level statistics depends on the anisotropy parameter and the field strength. We show how the survival probability depends on the anisotropy parameter, the strength and frequency of the field.

  5. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Erol [Dokuz Eylül University, Graduate School of Natural and Applied Sciences, TR-35160 Izmir (Turkey); Polat, Hamza, E-mail: hamza.polat@deu.edu.tr [Department of Physics, Dokuz Eylül University, TR-35160 Izmir (Turkey)

    2015-10-15

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters. - Highlights: • Spin-1/2 and spin-3/2 Ising ferrimagnetic model is examined. • The system is exposed to time-dependent magnetic field. • Kinetic Monte Carlo simulation technique is used. • Any evidence of first-order phase transition has not been found.

  6. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  7. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  8. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  9. Spin wave dynamics in Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Bin-Zhou, E-mail: mbzfjerry2008@126.com [Department of Basic Curriculum, North China Institute of Science and Technology, Beijing 101601 (China); Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-09-15

    The spin wave dynamics, including the magnetization, spin wave dispersion relation, and energy level splitting, of Heisenberg ferromagnetic/antiferromagnetic single-walled nanotubes are systematically calculated by use of the double-time Green’s function method within the random phase approximation. The role of temperature, diameter of the tube, and wave vector on spin wave energy spectrum and energy level splitting are carefully analyzed. There are two categories of spin wave modes, which are quantized and degenerate, and the total number of independent magnon branches is dependent on diameter of the tube, caused by the physical symmetry of nanotubes. Moreover, the number of flat spin wave modes increases with diameter of the tube rising. The spin wave energy and the energy level splitting decrease with temperature rising, and become zero as temperature reaches the critical point. At any temperature, the energy level splitting varies with wave vector, and for a larger wave vector it is smaller. When pb=π, the boundary of first Brillouin zone, spin wave energies are degenerate, and the energy level splittings are zero.

  10. Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode

    International Nuclear Information System (INIS)

    Vladimirov, A.A.; Plakida, N.M.; Ihle, D.

    2010-01-01

    A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found

  11. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  12. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    Science.gov (United States)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel

    2017-12-01

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magnetotransport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.

  13. High-Frequency Dynamics Modulated by Collective Magnetization Reversal in Artificial Spin Ice

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Matthias B.; Sklenar, Joseph; Ding, Junjia; Park, Jungsik; Pearson, John E.; Novosad, Valentine; Schiffer, Peter; Hoffmann, Axel

    2017-12-01

    Spin-torque ferromagnetic resonance arises in heavy metal-ferromagnet heterostructures when an alternating charge current is passed through the bilayer stack. The methodology to detect the resonance is based on the anisotropic magnetoresistance, which is the change in the electrical resistance due to different orientations of the magnetization. In connected networks of ferromagnetic nanowires, known as artificial spin ice, the magnetoresistance is rather complex owing to the underlying collective behavior of the geometrically frustrated magnetic domain structure. Here, we demonstrate spin-torque ferromagnetic resonance investigations in a square artificial spin-ice system and correlate our observations to magneto-transport measurements. The experimental findings are described using a simulation approach that highlights the importance of the correlated dynamics response of the magnetic system. Our results open the possibility of designing reconfigurable microwave oscillators and magnetoresistive devices based on connected networks of nanomagnets.

  14. Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space

    Directory of Open Access Journals (Sweden)

    J. Schachenmayer

    2015-02-01

    Full Text Available Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.

  15. Theoretical high energy physics

    International Nuclear Information System (INIS)

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  16. High energy astrophysics

    International Nuclear Information System (INIS)

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  17. High energy battery. Hochenergiebatterie

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  18. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  19. High energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  20. High Energy Physics

    Science.gov (United States)

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  1. Spin dynamics in micron-sized magnetic elements using time-resolved XMCD-PEEM

    International Nuclear Information System (INIS)

    Fukumoto, K.; Kinoshita, T.

    2011-01-01

    Ultrafast dynamics of magnetic spin structures in ultrasmall ferromagnets is now a prominent topic concerning the next generation of memory devices. In particular, the unique dynamics of vortex spin structures in disk-shaped magnets has attracted much attention. To understand the mechanism and to explore even more unique features, we constructed a time-resolved X-ray magnetic circular dichroism (XMCD) with a photoelectron emission microscopy (PEEM) system onto the soft X-ray beamline BL25SU in SPring-8. We observed oscillatory motions of vortex cores after magnetic field pulses as reported in other articles. The time evolution of spin structures the fast magnetic field pulse was also successfully observed. We found that for disks with a larger radius, displacement of the vortex core was not linear with the field amplitude, and there was a delay of the core motion. At the same time, deformation of the vortex structures was observed. (author)

  2. Comparison of quantum-mechanical and semiclassical approaches for an analysis of spin dynamics in quantum dots

    International Nuclear Information System (INIS)

    Petrov, M. Yu.; Yakovlev, S. V.

    2012-01-01

    Two approaches to the description of spin dynamics of electron-nuclear system in quantum dots are compared: the quantum-mechanical one is based on direct diagonalization of the model Hamiltonian and semiclassical one is based on coupled equations for precession of mean electron spin and mean spin of nuclear spin fluctuations. The comparison was done for a model problem describing periodic excitation of electron-nuclear system by optical excitation. The computation results show that scattering of parameters related to fluctuation of the nuclear spin system leads to appearance of an ordered state in the system caused by periodic excitation and to the effect of electron-spin mode locking in an external magnetic field. It is concluded that both models can qualitatively describe the mode-locking effect, however give significantly different quantitative results. This may indicate the limited applicability of the precession model for describing the spin dynamics in quantum dots in the presence of optical pumping.

  3. Statistics of energy levels and zero temperature dynamics for deterministic spin models with glassy behaviour

    NARCIS (Netherlands)

    Degli Esposti, M.; Giardinà, C.; Graffi, S.; Isola, S.

    2001-01-01

    We consider the zero-temperature dynamics for the infinite-range, non translation invariant one-dimensional spin model introduced by Marinari, Parisi and Ritort to generate glassy behaviour out of a deterministic interaction. It is argued that there can be a large number of metastable (i.e.,

  4. Imaging of propagation dynamics of optically-excited spin waves in a garnet film

    International Nuclear Information System (INIS)

    Hashimoto, Yusuke; Saitoh, Eiji

    2016-01-01

    We demonstrate the direct imaging of the propagation dynamics of the optically-excited spin waves in a garnet film observed with an all-optical pump-and-probe magneto-optical imaging technique having sub-pico second time-resolution, sub-micrometer spatial resolution, and milli-degrees of accuracy in the rotation angle of the light polarization. (author)

  5. Learning nitrogen-vacancy electron spin dynamics on a silicon quantum photonic simulator

    NARCIS (Netherlands)

    Wang, J.; Paesani, S.; Santagati, R.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; Laing, A.; Rarity, J. G.; O'Brien, J. L.; Thompson, M. G.

    2017-01-01

    We present the experimental demonstration of quantum Hamiltonian learning. Using an integrated silicon-photonics quantum simulator with the classical machine learning technique, we successfully learn the Hamiltonian dynamics of a diamond nitrogen-vacancy center's electron ground-state spin.

  6. Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions

    Science.gov (United States)

    Blessy, B. S. Gnana; Latha, M. M.

    2017-10-01

    We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.

  7. Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load

    Science.gov (United States)

    Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.

    2005-01-01

    After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.

  8. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    OpenAIRE

    Steinhaus, Sebastian

    2015-01-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the ...

  9. Lagrangian dynamics of spinning particles and polarized media in general relativity

    International Nuclear Information System (INIS)

    Bailey, Ian.

    1980-01-01

    The dynamic laws governing spinning multipole test particles and polarized media with internal spin are derived from both variational principles and the multipole formalism of extended bodies. The general form of the Lagrangian equations of motion is derived for a spinning multipole particle in given external fields. The author then considers the dynamics of a continuous medium with internal spin and multipole structure. From a four-dimensional action integral the field equations relating to fields generated by the medium to its bulk properties are derived, together with the balance laws expressing conservation of total four-momentum and spin. A natural splitting of the total energy-momentum tensor into matter and field parts is adopted that leads to a generalized Minkowski electromagnetic energy tensor. In both the electromagnetic and the gravitational field equations the source terms contain polarization contributions. It is shown that the multipole formalism may be used to formulate the same equations of motion, balance laws and decomposition of total energy-momentum as those resulting from variational principles

  10. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  11. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  12. Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations

    Science.gov (United States)

    Wu, Xufei; Liu, Zeyu; Luo, Tengfei

    2018-02-01

    In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.

  13. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  14. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  15. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  16. High energy dosimetry

    International Nuclear Information System (INIS)

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  17. Bell inequalities in high energy physics

    International Nuclear Information System (INIS)

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  18. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  19. Low energy excitations in fermionic spin glasses: A quantum-dynamical image of Parisi symmetry breaking

    International Nuclear Information System (INIS)

    Oppermann, R.; Rosenow, B.

    1997-10-01

    We report large effects of Parisi replica permutation symmetry breaking (RPSB) on elementary excitations of fermionic systems with frustrated magnetic interactions. The electronic density of states is obtained exactly in the zero temperature limit for (K = 1)- step RPSB together with relations for arbitrary breaking K, which lead to a new fermionic and dynamical Parisi solution at K = ∞. The Ward identity for charge conservation indicates RPSB-effects on the conductivity in metallic quantum spin glasses. This implies that RPSB is essential for any fermionic system showing spin glass sections within its phase diagram. An astonishing similarity with a neural network problem is also observed. (author)

  20. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    Energy Technology Data Exchange (ETDEWEB)

    Tomasello, R. [Department of Computer Science, Modeling, Electronics and System Science, University of Calabria, Rende (CS) (Italy); Carpentieri, M., E-mail: m.carpentieri@poliba.it [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy)

    2013-12-16

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

  1. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    International Nuclear Information System (INIS)

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2013-01-01

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed

  2. Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.

    Science.gov (United States)

    Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T

    2007-09-28

    Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.

  3. Spin dynamics of superfluid 3He-B in a slab geometry

    International Nuclear Information System (INIS)

    Ishikawa, O.; Sasaki, Y.; Mizusaki, T.; Hirai, A.; Tsubota, M.

    1989-01-01

    The spin dynamics and the spin relaxation mechanisms of the superfluid 3 He-B were studied by using the NMR method in a slab geometry, where the superfluid 3 He-B was confined between narrow parallel plates with a gap smaller than the healing length of the n-texture and the magnetic field was applied and to the plates. The relaxation parameter in the Leggett-Takagi (LT) equations was determined from a line width measurement of the transverse CW NMR. By using the pulsed NMR method, spin dynamics were studied in the nonlinear region. The observed spin dynamics were in good agreement with a numerical calculation of the LT equations together with the relaxation parameter determined by the CW NMR. When the tipping angle became larger than a certain critical value, the superfluid 3 He-B entered the Brinkman-Smith (BS) state. In this case, they observed the slow relaxation process in the BS state and then the rapid recovery process from the BS state to the initial non-Leggett configuration. The slow process in the BS state was attributed to the surface relaxation mechanism due to the torque from the surface-field energy

  4. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  5. Magnetic structure and spin dynamics of the quasi-one-dimensional spin-chain antiferromagnet BaCo2V2O8

    DEFF Research Database (Denmark)

    Kawasaki, Yu; Gavilano, Jorge L.; Keller, Lukas

    2011-01-01

    ,0,1), independent of external magnetic fields for fields below a critical value H-c(T). The ordered moments of 2.18 mu(B) per Co ion are aligned along the crystallographic c axis. Within the screw chains, along the c axis, the moments are arranged antiferromagnetically. In the basal planes the spins are arranged......We report a neutron diffraction and muon spin relaxation mu SR study of static and dynamical magnetic properties of BaCo2V2O8, a quasi-one-dimensional spin-chain system. A proposed model for the antiferromagnetic structure includes: a propagation vector (k) over right arrow (AF) = (0...

  6. Simulation of spin dynamics: a tool in MRI system development

    International Nuclear Information System (INIS)

    Stoecker, Tony; Vahedipour, Kaveh; Shah, N Jon

    2011-01-01

    Magnetic Resonance Imaging (MRI) is a routine diagnostic tool in the clinics and the method of choice in soft-tissue contrast medical imaging. It is an important tool in neuroscience to investigate structure and function of the living brain on a systemic level. The latter is one of the driving forces to further develop MRI technology, as neuroscience especially demands higher spatiotemporal resolution which is to be achieved through increasing the static main magnetic field, B 0 . Although standard MRI is a mature technology, ultra high field (UHF) systems, at B 0 ≥ 7 T, offer space for new technical inventions as the physical conditions dramatically change. This work shows that the development strongly benefits from computer simulations of the measurement process on the basis of a semi-classical, nuclear spin-1/2 treatment given by the Bloch equations. Possible applications of such simulations are outlined, suggesting new solutions to the UHF-specific inhomogeneity problems of the static main field as well as the high-frequency transmit field.

  7. Novel spin dynamics in ferrimagnetic molecular chains from {sup 1}H NMR and {mu}SR spin-lattice relaxation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Micotti, E. E-mail: micotti@fisicavolta.unipv.it; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L

    2004-05-01

    The spin dynamics in the helical chain Co(hfac){sub 2}NITPhOMe has been investigated by {sup 1}H NMR and {mu}SR relaxation. In the temperature range 15spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  8. Coupled dynamics of interacting spin-1 bosons in a double-well potential

    Science.gov (United States)

    Carvalho, D. W. S.; Foerster, A.; Gusmão, M. A.

    2018-03-01

    We present a detailed analysis of dynamical processes involving two or three particles in a double-well potential. Motivated by experimental realizations of such a system with optically trapped cold atoms, we focus on spin-1 bosons with special attention on the effects of a spin-dependent interaction in addition to the usual Hubbard-like repulsive one. For a sufficiently weak tunneling amplitude in comparison to the dominant Hubbard coupling, particle motion is strongly correlated, occurring only under fine-tuned relationships between well-depth asymmetry and interactions. We highlight processes involving tunneling of coupled particle pairs and triads, emphasizing the role of the spin-dependent interaction in resonance conditions.

  9. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  10. Theoretical High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  11. High energy physics

    International Nuclear Information System (INIS)

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  12. High energy cosmic rays

    CERN Document Server

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  13. Spin-coupled charge dynamics in layered manganite crystals

    CERN Document Server

    Tokura, Y; Ishikawa, T

    1998-01-01

    Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.

  14. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    Science.gov (United States)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  15. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    Science.gov (United States)

    Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.

    2016-01-01

    As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  16. Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

    Directory of Open Access Journals (Sweden)

    Yifei Wang

    2016-02-01

    Full Text Available As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex. Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.

  17. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale

    International Nuclear Information System (INIS)

    Bonetti, Stefano

    2017-01-01

    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers. (topical review)

  18. Charge Dynamics and Spin Blockade in a Hybrid Double Quantum Dot in Silicon

    Directory of Open Access Journals (Sweden)

    Matias Urdampilleta

    2015-08-01

    Full Text Available Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer because of silicon’s “semiconductor vacuum” character and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability, and scalability. Here, we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum-dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterize the charge dynamics, which reveals a charge T_{2}^{*} of 200 ps and a relaxation time T_{1} of 100 ns. Additionally, we demonstrate a spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.

  19. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    Science.gov (United States)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  20. Spin motive force driven by the magnetization dynamics in chiral magnets

    International Nuclear Information System (INIS)

    Ohe, Jun-ichiro; Shimada, Yuhki

    2015-01-01

    The magnetization dynamics induces the spin-dependent force on the conduction electrons via the s-d coupling. We have investigated numerically this force, so called 'spin-motive force', generated in chiral magnets forming the Skyrmion structure. We solve the Landau-Lifshitz-Gilbert equation and obtain the Skyrmion lattice structure (SkX) by introducing the Dzyaloshinskii-Moriya (DM) interaction. The corrective mode of the Skyrmion core is obtained by applying the in-plane AC magnetic field. The spin-motive force is generated perpendicular to the velocity of the Skyrmion core. The total voltage due to the spin-motive force is enhanced by the cascade effect of the voltage for each Skyrmion core. For the isolated magnetic disc system, the corrective mode of the Skyrmion lattice is modulated from that of the bulk system by the influence of the edge structure. The phase-locking motion of each Skyrmion core is obtained only in the lowest frequency mode in which the cascade effect of the spin-motive force still remain. (author)

  1. Comprehensive study of the dynamics of a classical Kitaev Spin Liquid

    Science.gov (United States)

    Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen

    Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.

  2. The magnetization dynamics of nano-contact spin-torque vortex oscillators

    Science.gov (United States)

    Keatley, Paul

    The operation of nano-contact (NC) spin-torque vortex oscillators (STVOs) is underpinned by vortex gyration in response to spin-torque delivered by high density current passing through the magnetic layers of a spin valve. Gyration directly beneath the NC yields radio frequency (RF) emission through the giant magnetoresistance (GMR) effect, which can be readily detected electronically. The magnetization dynamics that extend beyond the NC perimeter contribute little to the GMR signal, but are crucial for synchronization of multiple NC-STVOs that share the same spin valve film. In this work time-resolved scanning Kerr microscopy (TRSKM) was used to directly image the extended dynamics of STVOs phase-locked to an injected RF current. In this talk the dynamics of single 250-nm diameter NCs, and a pair of 100-nm diameter NCs, will be presented. In general the Kerr images reveal well-defined localized and far-field dynamics, driven by spin-torque and RF current Oersted fields respectively. The RF frequency, RF Oersted field, direction of an in-plane magnetic field, and equilibrium magnetic state, all influenced the spatial character of the dynamics observed in single NCs. In the pair of NCs, two modes were observed in the RF emission. Kerr images revealed that a vortex was formed beneath each NC and that the mode with enhanced spectral amplitude and line quality appeared to be correlated with two localized regions oscillating with similar amplitude and phase, while a second weaker mode exhibited amplitude and phase differences. This suggests that the RF emission was generated by collective modes of vortex gyration dynamically coupled via magnetization dynamics and dipolar interactions of the shared magnetic layers. Within the constraints of injection locking, this work demonstrates that TRSKM can provide valuable insight into the spatial character and time-evolution of magnetization dynamics generated by NC-STVOs and the conditions that may favor their synchronization

  3. Higher charges in dynamical spin chains for SYM theory

    International Nuclear Information System (INIS)

    Agarwal, Abhishek; Ferretti, Gabriele

    2005-01-01

    We construct, to the first two non-trivial orders, the next conserved charge in the su(2|3) sector of N = 4 Super Yang-Mills theory. This represents a test of integrability in a sector where the interactions change the number of sites of the chain. The expression for the charge is completely determined by the algebra and can be written in a diagrammatic form in terms of the interactions already present in the hamiltonian. It appears likely that this diagrammatic expression remains valid in the full theory and can be generalized to higher loops and higher charges thus helping in establishing complete integrability for these dynamical chains

  4. Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

    Directory of Open Access Journals (Sweden)

    Hermann eStoll

    2015-04-01

    Full Text Available The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM, combining magnetic (XMCD contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.

  5. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules

    Science.gov (United States)

    Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko

    2016-08-01

    Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.

  6. Spin-transfer torque induced dynamics of magnetic vortices in nanopillars

    International Nuclear Information System (INIS)

    Sluka, Volker

    2011-01-01

    The subject of this work are lithographically defined cylindrical nanopillars containing a stack of two Iron disks separated by a nonmagnetic spacer. The dimensions of the ferromagnetic disks are chosen such that at low magnetic fields, the so-called magnetic vortex is stabilized. In zero field, the magnetization of these objects is basically parallel to the disk plane and circulates the disk center. In doing so, the build-up of large in-plane stray fields is avoided. At the center of this distribution however, exchange forces turn the magnetization out of the disk plane, resulting in the formation of what is referred to as the vortex core. Magnetic vortices have attracted much attention in recent years. This interest is in large parts due to the highly interesting dynamic properties of these structures. In this work the static and dynamic properties of magnetic vortices and their behavior under the influence of spin-transfer torque are investigated. This is achieved by measuring the static and time dependent magnetoresistance under the influence of external magnetic fields. The samples allow the formation of a large variety of states. First, the focus is set on configurations, where one disk is in a vortex state while the other one is homogeneously magnetized. It is shown that spin-transfer torque excites the vortex gyrotropic mode in this configuration. The dependence of the mode frequency on the magnetic field is analyzed. The measurements show that as the vortex center of gyration shifts through the disk under the action of the magnetic field, the effective potential in which it is moving undergoes a change in shape. This shape change is reflected in a V-shaped field dependence of the gyration frequency. Analytical calculations are performed to investigate the effect of the asymmetry of the spin-transfer torque efficiency function on the vortex dynamics. It is shown that by means of asymmetry, spin-transfer torque can transfer energy to a gyrating vortex even

  7. Coexistence of spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7} as probed by μSR and NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dengre, Shanu; Sarkar, Rajib; Braeuninger, Sascha Albert; Brueckner, Felix; Materne, Philipp; Klauss, Hans-Henning [Institute for Solid State Physics, TU Dresden (Germany); Krizan, Jason W.; Cava, Robert J. [Department of Chemistry, Princeton University, Princeton, NJ (United States); Luetkens, Hubertus; Baines, Chris [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Villigen (Switzerland)

    2016-07-01

    {sup 23}Na -and {sup 19}F NMR, and μSR experiments are performed to explore the microscopic properties of NaSrCo{sub 2}F{sub 7}, which is a newly discovered magnetically frustrated pyrochlore with weak bond disorder and with a frustration index of f = 42. While {sup 23}Na and {sup 19}F NMR experiments clearly suggest the presence of quasi static field distribution below ∝3 K as reflected in the huge NMR line broadening and wipe out effect of NMR signal intensity, μSR experiments on the other hand remains passive to this spin frozen state. Both NMR and μSR results indicate the slowing down of the magnetic (spin) fluctuations upon cooling towards the NMR spin frozen state. μSR relaxation rate increases slightly below ∝ 3 K, and remains not only constant down to 20 mK, but also stands independent in longitudinal magnetic field upto 4000 G implying that the spin fluctuations are dynamic. These observations suggest the coexistence of partial spin frozen state and persistent spin dynamics in NaSrCo{sub 2}F{sub 7}.

  8. I. Advances in NMR Signal Processing. II. Spin Dynamics in Quantum Dissipative Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yung-Ya [Univ. of California, Berkeley, CA (United States)

    1998-11-01

    Part I. Advances in IVMR Signal Processing. Improvements of sensitivity and resolution are two major objects in the development of NMR/MRI. A signal enhancement method is first presented which recovers signal from noise by a judicious combination of a priordmowledge to define the desired feasible solutions and a set theoretic estimation for restoring signal properties that have been lost due to noise contamination. The effect of noise can be significantly mitigated through the process of iteratively modifying the noisy data set to the smallest degree necessary so that it possesses a collection of prescribed properties and also lies closest to the original data set. A novel detection-estimation scheme is then introduced to analyze noisy and/or strongly damped or truncated FIDs. Based on exponential modeling, the number of signals is detected based on information estimated using the matrix pencil method. theory and the spectral parameters are Part II. Spin Dynamics in body dipole-coupled systems Quantum Dissipative Systems. Spin dynamics in manyconstitutes one of the most fundamental problems in magnetic resonance and condensed-matter physics. Its many-spin nature precludes any rigorous treatment. ‘Therefore, the spin-boson model is adopted to describe in the rotating frame the influence of the dipolar local fields on a tagged spin. Based on the polaronic transform and a perturbation treatment, an analytical solution is derived, suggesting the existence of self-trapped states in the. strong coupling limit, i.e., when transverse local field >> longitudinal local field. Such nonlinear phenomena originate from the joint action of the lattice fluctuations and the reaction field. Under semiclassical approximation, it is found that the main effect of the reaction field is the renormalization of the Hamiltonian of interest. Its direct consequence is the two-step relaxation process: the spin is initially localized in a quasiequilibrium state, which is later detrapped by

  9. Spin-wave dynamics in Invar Fe65Ni35 studied by small-angle polarized neutron scattering

    NARCIS (Netherlands)

    Brück, E.H.; Grigoriev, S.V.; Deriglazov, V.V.; Okorokov, A.I.; Dijk van, N.H.; Klaasse, J.C.P.

    2002-01-01

    Abstract. Spin dynamics in Fe65Ni35 Invar alloy has been studied by left-right asymmetry of small-angle polarized neutron scattering below TC=485 K in external magnetic fields of H=0.05-0.25 T inclined relative to the incident beam. The spin-wave stiffness D and the damping & were obtained by

  10. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  11. Prospects at high energies

    International Nuclear Information System (INIS)

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  12. High energy physics problems

    International Nuclear Information System (INIS)

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  13. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  14. High energy deep inelastic scattering in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Wallon, S.

    1996-01-01

    In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)

  15. Spin-polarization dependent carrier recombination dynamics and spin relaxation mechanism in asymmetrically doped (110) n-GaAs quantum wells

    Science.gov (United States)

    Teng, Lihua; Jiang, Tianran; Wang, Xia; Lai, Tianshu

    2018-05-01

    Carrier recombination and electron spin relaxation dynamics in asymmetric n-doped (110) GaAs/AlGaAs quantum wells are investigated with time-resolved pump-probe spectroscopy. The experiment results reveal that the measured carrier recombination time depends strongly on the polarization of pump pulse. With the same pump photon flux densities, the recombination time of spin-polarized carriers is always longer than that of the spin-balanced carriers except at low pump photon flux densities, this anomaly originates from the polarization-sensitive nonlinear absorption effect. Differing from the traditional views, in the low carrier density regime, the D'yakonov-Perel' (DP) mechanism can be more important than the Bir-Aronov-Pikus (BAP) mechanism, since the DP mechanism takes effect, the spin relaxation time in (110) GaAs QWs is shortened obviously via asymmetric doping.

  16. Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice

    International Nuclear Information System (INIS)

    Temizer, Ümüt

    2014-01-01

    In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system. - Highlights: • The mixed spin (1, 3/2) Ising system is studied on a two-layer square lattice. • The Glauber transition rates are employed to construct the dynamic equations. • The dynamic phase diagrams are presented in seven different planes. • The system displays many dynamic critical points. • The reentrant behavior is observed for AFM/FM interaction

  17. Spin dynamics in the single-ion magnet [Er(W5O18) 2 ] 9 -

    Science.gov (United States)

    Mariani, M.; Borsa, F.; Graf, M. J.; Sanna, S.; Filibian, M.; Orlando, T.; Sabareesh, K. P. V.; Cardona-Serra, S.; Coronado, E.; Lascialfari, A.

    2018-04-01

    In this work we present a detailed NMR and μ+SR investigation of the spin dynamics in the new hydrated sodium salt containing the single-ion magnet [Er(W5O18) 2 ] 9 -. The 1HNMR absorption spectra at various applied magnetic fields present a line broadening on decreasing temperature which indicates a progressive spin freezing of the single-molecule magnetic moments. The onset of quasistatic local magnetic fields, due to spin freezing, is observed also in the muon relaxation curves at low temperature. Both techniques yield a local field distribution of the order of 0.1-0.2 T, which appears to be of dipolar origin. On decreasing the temperature, a gradual loss of the 1HNMR signal intensity is observed, a phenomenon known as wipe-out effect. The effect is analyzed quantitatively on the basis of a simple model which relies on the enhancement of the NMR spin-spin, T2-1, relaxation rate due to the slowing down of the magnetic fluctuations. Measurements of spin-lattice relaxation rate T1-1 for 1HNMR and of the muon longitudinal relaxation rate λ show an increase as the temperature is lowered. However, while for the NMR case the signal is lost before reaching the very slow fluctuation region, the muon spin-lattice relaxation λ can be followed until very low temperatures and the characteristic maximum, reached when the electronic spin fluctuation frequency becomes of the order of the muon Larmor frequency, can be observed. At high temperatures, the data can be well reproduced with a simple model based on a single correlation time τ =τ0exp (Δ /T ) for the magnetic fluctuations. However, to fit the relaxation data for both NMR and μ+SR over the whole temperature and magnetic field range, one has to use a more detailed model that takes into account spin-phonon transitions among the E r3 + magnetic sublevels. A good agreement for both proton NMR and μ+SR relaxation is obtained, which confirms the validity of the energy level scheme previously calculated from an

  18. On the dynamics of polymers in dense systems - Results of neutron spin echo spectroscopy

    International Nuclear Information System (INIS)

    Richter, D.

    1997-01-01

    One of the basic problems in the dynamics of polymers concerns the importance of geometrical or topological interactions which are directly related to the large scale molecular structures. In the famous reptation model these constraints are pictured in terms of a tube of localization following the average chain profile and confining the chain motion to the curve-linear tube. Recently studying the dynamic structure factor of a single labeled chain in a polymer melt by means of neutron spin echo spectroscopy (NSE) led to a direct observation of these tube constraints. Here I shall summarize these neutron spin echo experiments. I shall address the NSE technique, present results on the entropy driven segmental chain dynamics, discuss the dynamics of single chains in the melt where the chain length is increased through the transition to 'reptation' dynamics and display NSE measurements on long chain systems which revealed the molecular existence of the entanglement distance. Their magnitudes agree very well with tube diameters derived from dynamical mechanical measurements on the basis of the reptation model proving thereby the basic assumption of this Nobel Price winning concept

  19. Dynamical scaling in polymer solutions investigated by the neutron spin echo technique

    International Nuclear Information System (INIS)

    Richter, D.; Ewen, B.

    1979-01-01

    Chain dynamics in polymer solutions was investigated by means of the recently developed neutron spin echo spectroscopy. - By this technique, it was possible for the first time to verify unambiguously the scaling predictions of the Zimm model in the case of single chain behaviour and to observe the cross over to many chain behaviour. The segmental diffusion of single chains exhibits deviations from a simple exponential law, indicating the importance of memory effects. (orig.) [de

  20. Bioengineering Spin-Offs from Dynamical Systems Theory

    Science.gov (United States)

    Collins, J. J.

    1997-03-01

    Recently, there has been considerable interest in applying concepts and techniques from dynamical systems and statistical physics to physiological systems. In this talk, we present work dealing which two active topics in this area: stochastic resonance and (2) chaos control. Stochastic resonance is a phenomenon wherein the response of nonlinear system to a weak input signal is optimally enhanced by the presence of a particular level of noise. Here we demonstrate that noise-based techniques can be used to lower sensory detection thresholds in humans. We discuss how from a bioengineering and clinical standpoint, these developments may be particularly relevant for individuals with elevated sensory thresholds, such as older adults and patients with peripheral neuropathy. Chaos control techniques have been applied to a wide range of experimental systems, including biological preparations. The application of chaos control to biological systems has led to speculations that these methods may be clinically useful. Here we demonstrate that the principles of chaos control can be utilized to stabilize underlying unstable periodic orbits in non-chaotic biological systems. We discuss how from a bioengineering and clinical standpoint, these developments may be important for suppressing or eliminating certain types of cardiac arrhythmias.

  1. High Energy Colliders and Hidden Sectors

    Science.gov (United States)

    Dror, Asaf Jeff

    This thesis explores two dominant frontiers of theoretical physics, high energy colliders and hidden sectors. The Large Hadron Collider (LHC) is just starting to reach its maximum operational capabilities. However, already with the current data, large classes of models are being put under significant pressure. It is crucial to understand whether the (thus far) null results are a consequence of a lack of solution to the hierarchy problem around the weak scale or requires expanding the search strategy employed at the LHC. It is the duty of the current generation of physicists to design new searches to ensure that no stone is left unturned. To this end, we study the sensitivity of the LHC to the couplings in the Standard Model top sector. We find it can significantly improve the measurements on ZtRtR coupling by a novel search strategy, making use of an implied unitarity violation in such models. Analogously, we show that other couplings in the top sector can also be measured with the same technique. Furthermore, we critically analyze a set of anomalies in the LHC data and how they may appear from consistent UV completions. We also propose a technique to measure lifetimes of new colored particles with non-trivial spin. While the high energy frontier will continue to take data, it is likely the only collider of its kind for the next couple decades. On the other hand, low-energy experiments have a promising future with many new proposed experiments to probe the existence of particles well below the weak scale but with small couplings to the Standard Model. In this work we survey the different possibilities, focusingon the constraints as well as possible new hidden sector dynamics. In particular, we show that vector portals which couple to an anomalous current, e.g., baryon number, are significantly constrained from flavor changing meson decays and rare Z decays. Furthermore, we present a new mechanism for dark matter freezeout which depletes the dark sector through an

  2. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    Science.gov (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  3. Pulsed Electrical Spin Injection into InGaAs Quantum Dots: Studies of the Electroluminescence Polarization Dynamics

    International Nuclear Information System (INIS)

    Asshoff, P.; Loeffler, W.; Fluegge, H.; Zimmer, J.; Mueller, J.; Westenfelder, B.; Hu, D. Z.; Schaadt, D. M.; Kalt, H.; Hetterich, M.

    2010-01-01

    We present time-resolved studies of the spin polarization dynamics during and after initialization through pulsed electrical spin injection into InGaAs quantum dots embedded in a p-i-n-type spin-injection light-emitting diode. Experiments are performed with pulse widths in the nanosecond range and a time-resolved single photon counting setup is used to detect the subsequent electroluminescence. We find evidence that the achieved spin polarization shows an unexpected temporal behavior, attributed mainly to many-carrier and non-equilibrium effects in the device.

  4. Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.

    2009-08-01

    We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.

  5. HIGH ENERGY HADRON POLARIMETRY

    International Nuclear Information System (INIS)

    BUNCE, G.

    2007-01-01

    Proton polarimetry at RHIC uses the interference of electromagnetic (EM) and hadronic scattering amplitudes. The EM spin-flip amplitude for protons is responsible for the proton's anomalous magnetic moment, and is large. This then generates a significant analyzing power for small angle elastic scattering. RHIC polarimetry has reached a 5% uncertainty on the beam polarization, and seem capable of reducing this uncertainty further. Polarized neutron beams ax also interesting for RHIC and for a polarized electron-polarized proton/ion collider in the fume. In this case, deuterons, for example, have a very small anomalous magnetic moment, making the approach used for protons impractical. Although it might be possible to use quasielastic scattering from the protons in the deuteron to monitor the polarization. 3-He beams can provide polarized neutrons, and do have a large anomalous magnetic moment, making a similar approach to proton polarimetry possible

  6. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  7. Static and dynamic spin fluctuations in the spin glass doping regime in La2-xSrxCuO4+y

    International Nuclear Information System (INIS)

    Birgeneau, R.J.; Belk, N.; Kastner, M.A.; Keimer, B.; Shirane, G.

    1991-01-01

    We review the results of neutron scattering studies of the static and dynamic spin fluctuations crystals of La 2-x Sr x CuO 4+δ in the doping regime intermediate between the Neel and superconducting regions. In this regime the in-plane resistance is linear in temperature down to ∼80 K with a crossover due to logarithmic conductance effects at lower temperatures. The static spin correlations are well-described by a simple model in which the inverse correlation length κ(x,T) =κ(x,0) + κ(0,T). The most dramatic new result is the discovery by Keimer et al. that the dynamic spin fluctuations exhibit a temperature dependence which is a simple function of ω/T for temperatures 10 K≤T≤500 K for a wide range of energies. This scaling leads to a natural explanation of a variety of normal state properties of the copper oxides. 21 refs., 4 figs

  8. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  9. Cumulative quantum work-deficit versus entanglement in the dynamics of an infinite spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Himadri Shekhar [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Ghosh, Rupamanjari [School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, UP 203207 (India); Sen, Aditi [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Sen, Ujjwal, E-mail: ujjwal@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India)

    2014-03-01

    We find that the dynamical phase transition (DPT) in nearest-neighbor bipartite entanglement of time-evolved states of the anisotropic infinite quantum XY spin chain, in a transverse time-dependent magnetic field, can be quantitatively characterized by the dynamics of an information-theoretic quantum correlation measure, namely, quantum work-deficit (QWD). We show that only those nonequilibrium states exhibit entanglement resurrection after death, on changing the field parameter during the DPT, for which the cumulative bipartite QWD is above a threshold. The results point to an interesting inter-relation between two quantum correlation measures that are conceptualized from different perspectives.

  10. Dynamics of polymers in elongational flow studied by the neutron spin-echo technique

    International Nuclear Information System (INIS)

    Rheinstaedter, Maikel C.; Sattler, Rainer; Haeussler, Wolfgang; Wagner, Christian

    2010-01-01

    The nanoscale fluctuation dynamics of semidilute high molecular weight polymer solutions of polyethylenoxide (PEO) in D 2 O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. Neutron scattering experiments in dilute polymer solutions are challenging because of the low polymer concentration and corresponding small quasi-elastic signals. A relaxation process with relaxation times of about 10 ps was observed, which shows anisotropic dynamics with applied flow.

  11. FSU High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  12. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  13. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    Science.gov (United States)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  14. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  15. High energy physics

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  16. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  17. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  18. Nonequilibrium dynamics of spin-boson models from phase-space methods

    Science.gov (United States)

    Piñeiro Orioli, Asier; Safavi-Naini, Arghavan; Wall, Michael L.; Rey, Ana Maria

    2017-09-01

    An accurate description of the nonequilibrium dynamics of systems with coupled spin and bosonic degrees of freedom remains theoretically challenging, especially for large system sizes and in higher than one dimension. Phase-space methods such as the truncated Wigner approximation (TWA) have the advantage of being easily scalable and applicable to arbitrary dimensions. In this work we adapt the TWA to generic spin-boson models by making use of recently developed algorithms for discrete phase spaces [J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev. X 5, 011022 (2015), 10.1103/PhysRevX.5.011022]. Furthermore we go beyond the standard TWA approximation by applying a scheme based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations to our coupled spin-boson model. This allows us, in principle, to study how systematically adding higher-order corrections improves the convergence of the method. To test various levels of approximation we study an exactly solvable spin-boson model, which is particularly relevant for trapped-ion arrays. Using TWA and its BBGKY extension we accurately reproduce the time evolution of a number of one- and two-point correlation functions in several dimensions and for an arbitrary number of bosonic modes.

  19. Dynamic Spin-Lattice Coupling and Nematic Fluctuations in NaFeAs

    Directory of Open Access Journals (Sweden)

    Yu Li

    2018-06-01

    Full Text Available We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron-pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at T_{s}≈58  K and a collinear antiferromagnetic order at T_{N}≈45  K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to T_{s} and then harden on approaching T_{N} before saturating below T_{N}. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the c axis increase dramatically below T_{s} and show a weak anomaly across T_{N}. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon–two-magnon mechanism.

  20. Numerical Investigations of Post-Newtonian Hamiltonian Dynamics for Spinning Compact Binaries

    Science.gov (United States)

    Zhong, S. Y.

    2012-03-01

    Spinning compact binaries, consisting of neutron stars or black holes, not only have rich dynamic phenomena of resonance and chaos, but also are the most promising source for detecting gravitational waves. There should be a certain relation between the dynamics of the gravitational bodies and the gravitational waveforms. Based on the least-squares correction, several manifold correction schemes like the single-scaling method and the dual-scaling method are designed to suppress numerical errors from 6 integrals of motion in a conservative post-Newtonian (PN) Hamiltonian of spinning compact binaries. Taking a fifth order Runge-Kutta algorithm as a basic integrator, we wonder whether the PN contributions, the spin effects, and the classification of orbits exert some influences on these correction schemes and the Nacozy's approach. It is found that they are almost the same in correcting the integrals for the pure Kepler problem. Once the third-order PN contributions are added to the pure orbital part, there are explicit differences of correction effectiveness among these methods. As an interesting case, the efficiency of correction is better for chaotic eccentric orbits than for quasicircular regular ones. In all cases tested, the new momentum-position dual-scaling scheme does always have the optimal performance. It costs a little but not much expensive additional computational cost when the spin effects exist, and several time-saving techniques are used. The corrected numerical results are more accurate than the uncorrected ones, so that chaos from the numerical errors can be avoided. See Phys. Rev. D 81, 104037 (2010) for more details. Lubich et al. (Phys. Rev. D 81, 104025 (2010)) presented a noncanonically symplectic integrator for the PN Hamiltonian of a spinning compact binary. However, the Euler mixed integrator is problematic because of its bad numerical stability.We improved the work by constructing the second-order and the fourth-order fixed symplectic

  1. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    Science.gov (United States)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  2. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ+ spin relaxation study

    International Nuclear Information System (INIS)

    Arosio, Paolo; Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-01-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] were investigated by means of the Muon Spin Relaxation (μ + SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac) 3 (NIT(C 6 H 4 OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ + SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ interm (T), associated with the intermediate relaxing component. The experimental λ interm (T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ 0 exp(Δ/k B T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state

  3. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  4. Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.

    2013-04-01

    In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.

  5. Contrast-enhanced dynamic MR imaging of parasellar tumor using fast spin-echo sequence

    International Nuclear Information System (INIS)

    Kusunoki, Katsusuke; Ohue, Shiro; Ichikawa, Haruhisa; Saito, Masahiro; Sadamoto, Kazuhiko; Sakaki, Saburo; Miki, Hitoshi.

    1995-01-01

    We have applied a new dynamic MRI technique that uses a fast spin-echo sequence to parasellar tumors. This sequence has less susceptible effect and better spatial resolution than a gradient echo sequence, providing faster images than a short spin-echo sequence does. Image was obtained in the coronal or sagittal plane using a 1.5T clinical MRI system, and then, dynamic MR images were acquired every 10 to 20 sec after administration of Gd-DTPA (0.1 mmol/kg). The subjects were 12 patients (5 microadenomas, 5 macroadenomas and 2 Rathke's cleft cysts) and 5 normal volunteers. As for volunteers, the cavernous sinus, pituitary stalk and posterior pituitary gland were contrasted on the first image, followed by visualization of the proximal portion adjacent to the junction of the infundibulum and the anterior pituitary gland, and finally by contrasting the distal portion of the anterior pituitary gland. There was a difference with respect to tumor contrast between microadenomas and macroadenomas. In the case of the macroadenomas, the tumor was contrasted at the same time as, or faster than the anterior pituitary gland, while with the microadenomas the tumor was enhanced later than the anterior pituitary gland. No enhancement with contrast medium was seen in Rathke's cleft cysts. In addition, it was possible to differentiate a recurrent tumor from a piece of muscle placed at surgery since the images obtained by the fast spin-echo sequence were clearer than those obtained by gradient echo sequence. (author)

  6. High-energy Cu spin excitations in PrBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Andersen, N.H.; Larsen, B.H.

    2005-01-01

    -150 meV. The observed magnon dispersion can be described satisfactorily in this energy range by a spin wave model including intra- and inter-layer nearest-neighbor exchange constants J(parallel to) and J(perpendicular to). We find J(parallel to)=127 +/- 10 meV and J(perpendicular to)=5.5 +/- 0.9 me...

  7. High energy nuclear collisions

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  8. Anisotropic magnetic interactions and spin dynamics in the spin-chain compound Cu (py) 2Br2 : An experimental and theoretical study

    Science.gov (United States)

    Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.

    2017-07-01

    We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.

  9. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    Science.gov (United States)

    Lee, Kenneth William, III

    previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  10. Dynamical correlation functions of the quadratic coupling spin-Boson model

    Science.gov (United States)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).

  11. NMR magnetization exchange dynamics for three spin-1/2 systems

    International Nuclear Information System (INIS)

    Demco, D.E.; Filip, X.; Filip, C.

    1997-01-01

    The magnetization exchange dynamics in one-dimensional NMR exchange experiments performed with static samples is analyzed for the relevant case of three spin systems. The magnetization decays recorded in the experiments performed with different chemical shift filters for the short mixing times are derived analytically. In this regime the decay rates depend on the dipolar coupling between the spins belonging to different functional groups. The predictions of the theoretical model are compared with the magnetization exchange data obtained for cross-linked poly(styrene-co-butadiene) samples. The residual dipolar coupling between the functional CH- and CH2-groups of butadiene are measured from the magnetization exchange experiments in the short mixing time regime. (authors)

  12. Collective spin correlations and entangled state dynamics in coupled quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2018-02-01

    Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.

  13. Spin dynamics and implications for superconductivity. Some problems with the d-wave scenario

    International Nuclear Information System (INIS)

    Levin, K.; Zha, Y.; Radtke, R.J.; Si, Q.; Norman, M.R.; Schuettler, H.B.

    1994-01-01

    We review the spin dynamics of the normal state of the cuprates with special emphasis on neutron data in both the YBa 2 Cu 3 O 7-δ and La 2-x Sr x CuO 4 systems. When realistic models of the Fermi surface shapes are incorporated, along with a moderate degree of spin fluctuations, we find good semiquantitative agreement with experiment for both cuprates. Building on the success of this Fermi-liquid-based scheme, we explore the implications for d-wave pairing from a number of vantage points. We conclude that our present experimental and theoretical understanding is inadequate to confirm or refute the d-wave scenario. 26 refs., 6 figs

  14. Dynamical systems with classical spin in the Einstein-Maxwell-Cartan theory

    International Nuclear Information System (INIS)

    Amorin, R.M. de.

    1984-01-01

    By using variational precedures, spinning charged particles and fluids, with magnetic dipole moment, are analysed. Electromagnetic and gravitational interactions are also dynamically considered. A relativistic formalism which describes the space-time as a Riemann-Cartan manifold caraccterized by curvature and torsion tensors was adopted. The specific features of the Einstein-Maxell-Cartan theory have been analised in detail for the considered models. Also the holonomy of the local Lorentz Frames and constraints has been studied, and as a consequence it has been possible to generate new equations of motion for particles with spin. It has also been possible to derive the complete differential system which includes the fluid, the electromagnetic, the curvature and the torsion fields. (author) [pt

  15. Inhomogeneous quasi-adiabatic driving of quantum critical dynamics in weakly disordered spin chains

    International Nuclear Information System (INIS)

    Rams, Marek M; Mohseni, Masoud; Campo, Adolfo del

    2016-01-01

    We introduce an inhomogeneous protocol to drive a weakly disordered quantum spin chain quasi-adiabatically across a quantum phase transition and minimize the residual energy of the final state. The number of spins that simultaneously reach the critical point is controlled by the length scale in which the magnetic field is modulated, introducing an effective size that favors adiabatic dynamics. The dependence of the residual energy on this length scale and the velocity at which the magnetic field sweeps out the chain is shown to be nonmonotonic. We determine the conditions for an optimal suppression of the residual energy of the final state and show that inhomogeneous driving can outperform conventional adiabatic schemes based on homogeneous control fields by several orders of magnitude. (paper)

  16. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-06-15

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  17. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Kantar, Ersin

    2009-01-01

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  18. [High energy physics

    International Nuclear Information System (INIS)

    Bonner, B.E.; Roberts, J.B. Jr.

    1991-01-01

    An intense analysis effort on the data we obtained in a seven month run on E704 last year has produced a flood of new results on polarization effects in particle production at 200 GeV/c. We are fortunate to be able to report in detail on those results. Our other Fermilab experiment, E683 (photoproduction of jets) has been delayed an unbelievable amount of time by Fermilab schedule slippages. It was scheduled and ready for beam two years ago exclamation point As this report is being written, we have been running for two months and are expecting four months of production data taking. In this report we show some of our preliminary results. In addition we are near the end of a six month run on our CERN experiment, NA47 (SMC) which will measure the spin dependent structure functions for the proton and neutron. It is with a sense of relief, mixed with pride, that we report that all the equipment which we constructed for that experiment is currently working as designed. The random coincidence of accelerator schedules has left us slightly dazed, but all experiments are getting done and analyzed in a timely fashion. As members of the Solenoidal Detector Collaboration, we have been preparing for the only currently approved experiment at the SSC. Here we report on our scintillating fiber tracker design and simulation activities. In addition we report the results of our investigation of the detector response to heavy Z particles. Since our last report, we have joined the D0 collaboration with the primary aim of contributing to the D0 upgrade over the next few years. It is also important for us to gain experience in collider physics during the period leading up to the SDC turn-on

  19. A wide dynamic range experiment to measure high energy γ-showers in air by detecting Cherenkov light in the middle ultraviolet

    International Nuclear Information System (INIS)

    Apollinari, G.; Bedeschi, F.; Belforte, S.; Bellettini, G.; Bertolucci, E.; Cervelli, F.; Chiarelli, G.; Dell'Orso, M.; Giannetti, P.; Menzione, A.; Ristori, L.; Scribano, A.; Sestini, P.; Stefanini, A.; Zetti, F.; Pisa Univ.

    1988-01-01

    An experiment to study high energy γ rays from localized cosmic sources is described. A number of Al mirrors reflects the Cherenkov light emitted by the showers into photosensitive gas chambers on the mirror focal plane. The use of gas chambers with large active areas allows a sensitivity superior to existing experiments to be reached. Pad readout gives the required angular accuracy. The chamber is sensitive to the middle ultraviolet Cherenkov light produced by the showers in the atmosphere. Since the ozone in the upper atmosphere absorbs the direct ultraviolet light from any outer source, the lower level atmosphere provides a large dark volume in which the Cherenkov radiation from the showers can be isolated. (orig.)

  20. Dynamical spin susceptibility in the TD-LDA and QSGW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Schilfgaarde, Mark Van [Arizona State Univ., Mesa, AZ (United States); Kotani, Takao [Arizona State Univ., Mesa, AZ (United States)

    2012-10-15

    Abstract. This project was aimed at building the transverse dynamical spin susceptibility with the TD-LDA and the recently-developed Quasparticle Self-Consisent Approximations, which determines an optimum quasiparticle picture in a self-consistent manner within the GW approximation. Our main results were published into two papers, (J. Phys. Cond. Matt. 20, 95214 (2008), and Phys. Rev. B83, 060404(R) (2011). In the first paper we present spin wave dispersions for MnO, NiO, and -MnAs based on quasiparticle self-consistent GW approximation (QSGW). For MnO and NiO, QSGW results are in rather good agreement with experiments, in contrast to the LDA and LDA+U descriptions. For -MnAs, we find a collinear ferromagnetic ground state in QSGW, while this phase is unstable in the LDA. In the second, we apply TD-LDA to the CaFeAs2 the first attempt the first ab initio calculation of dynamical susceptibililty in a system with complex electronic structure Magnetic excitations in the striped phase of CaFe2As2 are studied as a function of local moment amplitude. We find a new kind of excitation: sharp resonances of Stoner-like (itinerant) excitations at energies comparable to the ´eel temperature, originating largely from a narrow band of Fe d states near the Fermi level, and coexisting with more conventional (localized) spin waves. Both kinds of excitations can show multiple branches, highlighting the inadequacy of a description based on a localized spin model.

  1. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  2. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  3. Neutron spin-echo investigation of the microemulsion dynamics. in bicontinuous lamellar and droplet phases

    CERN Document Server

    Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B

    2002-01-01

    Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...

  4. Spin symposium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-01-15

    The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.

  5. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  6. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  7. Waiting time distribution revealing the internal spin dynamics in a double quantum dot

    Science.gov (United States)

    Ptaszyński, Krzysztof

    2017-07-01

    Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.

  8. Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment

    Science.gov (United States)

    Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing

    2018-03-01

    In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.

  9. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath

    International Nuclear Information System (INIS)

    Ajoy, Ashok; Alvarez, Gonzalo A.; Suter, Dieter

    2011-01-01

    Maintaining quantum coherence is a crucial requirement for quantum computation; hence protecting quantum systems against their irreversible corruption due to environmental noise is an important open problem. Dynamical decoupling (DD) is an effective method for reducing decoherence with a low control overhead. It also plays an important role in quantum metrology, where, for instance, it is employed in multiparameter estimation. While a sequence of equidistant control pulses [the Carr-Purcell-Meiboom-Gill (CPMG) sequence] has been ubiquitously used for decoupling, Uhrig recently proposed that a nonequidistant pulse sequence [the Uhrig dynamic decoupling (UDD) sequence] may enhance DD performance, especially for systems where the spectral density of the environment has a sharp frequency cutoff. On the other hand, equidistant sequences outperform UDD for soft cutoffs. The relative advantage provided by UDD for intermediate regimes is not clear. In this paper, we analyze the relative DD performance in this regime experimentally, using solid-state nuclear magnetic resonance. Our system qubits are 13 C nuclear spins and the environment consists of a 1 H nuclear spin bath whose spectral density is close to a normal (Gaussian) distribution. We find that in the presence of such a bath, the CPMG sequence outperforms the UDD sequence. An analogy between dynamical decoupling and interference effects in optics provides an intuitive explanation as to why the CPMG sequence performs better than any nonequidistant DD sequence in the presence of this kind of environmental noise.

  10. Persistent low-temperature spin dynamics in the mixed-valence iridate Ba3InIr2O9

    Science.gov (United States)

    Dey, Tusharkanti; Majumder, M.; Orain, J. C.; Senyshyn, A.; Prinz-Zwick, M.; Bachus, S.; Tokiwa, Y.; Bert, F.; Khuntia, P.; Büttgen, N.; Tsirlin, A. A.; Gegenwart, P.

    2017-11-01

    Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba3InIr2O9 , where unpaired electrons are localized on mixed-valence Ir2O9 dimers with Ir4.5 + ions. Despite the antiferromagnetic Curie-Weiss temperature on the order of 10 K, neither long-range magnetic order nor spin freezing are observed down to at least 20 mK, such that spins are short-range correlated and dynamic over nearly three decades in temperature. Quadratic power-law behavior of both the spin-lattice relaxation rate and specific heat indicates the gapless nature of the ground state. We envisage that this exotic behavior may be related to an unprecedented combination of the triangular and buckled honeycomb geometries of nearest-neighbor exchange couplings in the mixed-valence setting.

  11. Longitudinal and transverse spin dynamics of donor-bound electrons in fluorine-doped ZnSe: Spin inertia versus Hanle effect

    Science.gov (United States)

    Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.

    2015-06-01

    The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.

  12. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    Science.gov (United States)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  13. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  14. Dynamically induced spin-dependent interaction in the elastic scattering of heavy-ions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1982-02-01

    Dynamical polarization effect in heavy-ion elastic scattering is investigated in the framework of the coupled-reaction-channel theory. By using the adiabatic approximation at low incident energies, this effect is expressed as a spin-orbit (L vector.S vector) interaction with a L vector and S vector independent radial function. The strength of the (L vector.S vector) interaction calculated for the 12 C + 13 C system is in the same order of magnitude as deduced from experiments and is about two orders of magnitude larger than that obtained from the folding model calculation. (author)

  15. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  16. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei. Progress report, December 15, 1993--December 14, 1994

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1994-01-01

    This report summarizes the progress made during the second year of the three year DOE agreement DE-FG02-93ER40764 on theoretical nuclear physics research performed at the Columbia University and presents a detailed budget adjustment for the third year period December 15, 1994 to December 14, 1995. Sections 1.1 to 1.8 highlight the technical progress made on the following general areas: Multiple scattering and radiative processes in QCD; the quark-gluon plasma transition in nuclear matter; QCD transport theory and dissipative mechanism in dense matter; phenomenological models of high energy interactions involving nuclei; signatures of quark-gluon plasma formation in A+A; neurocomputation theory. Section 2 contains a bibliography of published papers and invited conference papers. Section 3 lists the Columbia nuclear theory members for the December 15, 1994 to December 14, 1995 period. Finally, the budget adjustment requesting $319,830 for the third year relative to the original $320,000 is presented in section 6. Copies of the research papers accompany this report

  17. Theory of ultra dense matter and the dynamics of high energy interactions involving nuclei. Progress report, December 15, 1993--December 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1994-09-12

    This report summarizes the progress made during the second year of the three year DOE agreement DE-FG02-93ER40764 on theoretical nuclear physics research performed at the Columbia University and presents a detailed budget adjustment for the third year period December 15, 1994 to December 14, 1995. Sections 1.1 to 1.8 highlight the technical progress made on the following general areas: Multiple scattering and radiative processes in QCD; the quark-gluon plasma transition in nuclear matter; QCD transport theory and dissipative mechanism in dense matter; phenomenological models of high energy interactions involving nuclei; signatures of quark-gluon plasma formation in A+A; neurocomputation theory. Section 2 contains a bibliography of published papers and invited conference papers. Section 3 lists the Columbia nuclear theory members for the December 15, 1994 to December 14, 1995 period. Finally, the budget adjustment requesting $319,830 for the third year relative to the original $320,000 is presented in section 6. Copies of the research papers accompany this report.

  18. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution

    International Nuclear Information System (INIS)

    Papoular, Robert

    1992-06-01

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr

  19. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    International Nuclear Information System (INIS)

    Seung-Ho-Baek

    2004-01-01

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T l ) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T l probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions

  20. Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ho-Baek, Seung [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  1. Spin dynamics and quantum tunneling in Fe8 nanomagnet and in AFM rings by NMR

    Science.gov (United States)

    Baek, Seung-Ho

    In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs). For this we have selected two different classes of SMMs: a ferromagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T1) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs. T and H for the first time. For AFM rings, we have shown that 1/T1 probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power-law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

  2. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin bath

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo A.; Suter, Dieter; Ajoy, Ashok; Peng Xinhua

    2010-01-01

    Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use 13 C nuclear spins as qubits and an environment of 1 H nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 μs. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

  3. Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets

    Science.gov (United States)

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-10-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDIs). We calculate spin-reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12 samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be applicable to other SMM systems and could be used to study other properties of SMM systems.

  4. Contrasting dynamic spin susceptibility models and their relation to high-temperature superconductivity

    International Nuclear Information System (INIS)

    Schuettler, H.; Norman, M.R.

    1996-01-01

    We compare the normal-state resistivities ρ and the critical temperatures T c for superconducting d x 2 -y 2 pairing due to antiferromagnetic (AF) spin fluctuation exchange in the context of two phenomenological dynamical spin susceptibility models for the cuprate high-T c materials, one based on fits to NMR data on Y-Ba-Cu-O (YBCO) proposed by Millis, Monien, and Pines (MMP) and Monthoux and Pines (MP), and the other based on fits to neutron scattering data on YBCO proposed by Radtke, Ullah, Levin, and Norman (RULN). Assuming comparable electronic bandwidths and resistivities in both models, we show that the RULN model gives a much lower d-wave T c (approx-lt 20 K) than the MMP model (with T c ∼100 K). We demonstrate that these profound differences in the T c close-quote s arise from fundamental differences in the spectral weight distributions of the two model susceptibilities at high (>100 meV) frequencies and are not primarily caused by differences in the calculational techniques employed by MP and RULN. Further neutron scattering experiments, to explore the spectral weight distribution at all wave vectors over a sufficiently large excitation energy range, will thus be of crucial importance to resolve the question whether AF spin fluctuation exchange can provide a viable mechanism to account for high-T c superconductivity. Limitations of the Migdal-Eliashberg approach in such models will be discussed. copyright 1996 The American Physical Society

  5. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  6. Ultrafast dynamics of photoexcited charge and spin currents in semiconductor nanostructures

    Science.gov (United States)

    Meier, Torsten; Pasenow, Bernhard; Duc, Huynh Thanh; Vu, Quang Tuyen; Haug, Hartmut; Koch, Stephan W.

    2007-02-01

    Employing the quantum interference among one- and two-photon excitations induced by ultrashort two-color laser pulses it is possible to generate charge and spin currents in semiconductors and semiconductor nanostructures on femtosecond time scales. Here, it is reviewed how the excitation process and the dynamics of such photocurrents can be described on the basis of a microscopic many-body theory. Numerical solutions of the semiconductor Bloch equations (SBE) provide a detailed description of the time-dependent material excitations. Applied to the case of photocurrents, numerical solutions of the SBE for a two-band model including many-body correlations on the second-Born Markov level predict an enhanced damping of the spin current relative to that of the charge current. Interesting effects are obtained when the scattering processes are computed beyond the Markovian limit. Whereas the overall decay of the currents is basically correctly described already within the Markov approximation, quantum-kinetic calculations show that memory effects may lead to additional oscillatory signatures in the current transients. When transitions to coupled heavy- and light-hole valence bands are incorporated into the SBE, additional charge and spin currents, which are not described by the two-band model, appear.

  7. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Science.gov (United States)

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  8. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  9. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  10. Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day.

    Science.gov (United States)

    Albert, Brice J; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L; Rand, Peter W; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Barnes, Alexander B

    2017-10-01

    Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90L per day to perform magic-angle spinning (MAS) DNP experiments below 85K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328±3 at 81±2K, and 276±4 at 105±2K. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Clustering Effects on Dynamics in Ionomer Solutions: A Neutron Spin Echo Insight

    Science.gov (United States)

    Perahia, Dvora; Wijesinghe, Sidath; Senanayake, Manjula; Wickramasinghe, Anuradhi; Mohottalalage, Supun S.; Ohl, Michael

    Ionizable blocks in ionomers associate into aggregates serving as physical cross-links and concurrently form transport pathways. The dynamics of ionomers underline their functionality. Incorporating small numbers of ionic groups into polymers significantly constraint their dynamics. Recent computational studies demonstrated a direct correlation between ionic cluster morphology and polymer dynamics. Here using neutron spin echo, we probe the segmental dynamics of polystyrene sulfonate (PSS) as the degree of sulfonation of the PSS and the solution dielectrics are varied. Specifically, 20Wt% PSS of 11,000 g/mol with polydispersity of 1.02 with 3% and 9% sulfonation were studies in toluene (dielectric constant ɛ = 2.8), a good solvent for polystyrene, and with 5Wt% of ethanol (ɛ = 24.3l) added. The dynamic structure factor S(q,t) was analyzed with a single exponential except for a limited q range where two time constants associated with constraint and mobile segments were detected. S(q,t) exhibits several distinctive time and length scales for the dynamics with a crossover appearing at the length scale of the ionic clusters. NSF DMR 1611136.

  12. University of Colorado high energy physics progress report for 1990--1991

    International Nuclear Information System (INIS)

    Baranko, G.; Cumalat, J.; de Alwis, S.P.; DeGrand, T.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1991-06-01

    This report discusses: High energy photoproduction of states containing heavy quarks; electron-positron physics with the Mark II detector at SLC; the study of the properties of the Z 0 with the SLD detector; electron-positron physics with the CLEO II detector at CESR; central tracking for the SDC detector; the R ampersand D program of the muon group in the SDC detector; mostly lattice QCD; spin models and dynamically triangulated random surfaces; string theory and quantum gravity; and reanalysis of a measurement of fifth force

  13. Nonequilibrium Dynamics of Anisotropic Large Spins in the Kondo Regime: Time-Dependent Numerical Renormalization Group Analysis

    Science.gov (United States)

    Roosen, David; Wegewijs, Maarten R.; Hofstetter, Walter

    2008-02-01

    We investigate the time-dependent Kondo effect in a single-molecule magnet (SMM) strongly coupled to metallic electrodes. Describing the SMM by a Kondo model with large spin S>1/2, we analyze the underscreening of the local moment and the effect of anisotropy terms on the relaxation dynamics of the magnetization. Underscreening by single-channel Kondo processes leads to a logarithmically slow relaxation, while finite uniaxial anisotropy causes a saturation of the SMM’s magnetization. Additional transverse anisotropy terms induce quantum spin tunneling and a pseudospin-1/2 Kondo effect sensitive to the spin parity.

  14. Comment on ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’

    International Nuclear Information System (INIS)

    De Gier, Jan

    2012-01-01

    We consider the paper ‘Adjacent spin operator dynamical structure factor of the S = 1/2 Heisenberg chain’, by Klauser, Mossel and Caux (2012 J. Stat. Mech. P03012) to be a new and important step in the numerical analysis of the correlation functions of quantum spin chains. The correlation functions considered in this paper were not previously computed, their analytical study is extremely complicated and the numerical results can be used for comparison with experiments. (news and perspectives)

  15. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    Science.gov (United States)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics

  16. Spin dynamics in the pseudo-gap state of a high-temperature superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hinkov, V; Lin, C T; Chen, D P; Keimer, B [Max Planck Inst Solid State Res, D-70569 Stuttgart, (Germany); Bourges, P; Pailhes, S; Sidis, Y [CEA, CNRS, CE Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Ivanov, A [Inst Max Von Laue Paul Langevin, F-38042 Grenoble, (France); Frost, C D; Perring, T G [Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, (United Kingdom)

    2007-07-01

    The pseudo-gap is one of the most pervasive phenomena of high-temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature, Tc, or to a hidden order parameter competing with superconductivity. Here, we use inelastic neutron scattering from under-doped YBa{sub 2}Cu{sub 3}O{sub 6.6} to show that the dispersion relations of spin excitations in the superconducting and pseudo-gap states are qualitatively different. Specifically, the extensively studied 'hour glass' shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudo-gap state and we observe an unusual 'vertical' dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudo-gap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudo-gap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work. (authors)

  17. Computing in high energy physics

    International Nuclear Information System (INIS)

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  18. Dynamics of the sub-Ohmic spin-boson model: A time-dependent variational study

    International Nuclear Information System (INIS)

    Wu Ning; Duan Liwei; Zhao Yang; Li Xin

    2013-01-01

    The Dirac-Frenkel time-dependent variation is employed to probe the dynamics of the zero temperature sub-Ohmic spin-boson model with strong friction utilizing the Davydov D 1 ansatz. It is shown that initial conditions of the phonon bath have considerable influence on the dynamics. Counterintuitively, even in the very strong coupling regime, quantum coherence features still manage to survive under the polarized bath initial condition, while such features are absent under the factorized bath initial condition. In addition, a coherent-incoherent transition is found at a critical coupling strength α≈ 0.1 for s= 0.25 under the factorized bath initial condition. We quantify how faithfully our ansatz follows the Schrödinger equation, finding that the time-dependent variational approach is robust for strong dissipation and deep sub-Ohmic baths (s≪ 1).

  19. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    Science.gov (United States)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  20. Charged domain-wall dynamics in doped antiferromagnets and spin fluctuations in cuprate superconductors

    International Nuclear Information System (INIS)

    Zaanen, J.; Horbach, M.L.; van Saarloos, W.

    1996-01-01

    Evidence is accumulating that the electron liquid in the cuprate superconductors is characterized by many-hole correlations of the charged magnetic domain-wall type. Here we focus on the strong-coupling limit where all holes are bound to domain walls. We assert that at high temperatures a classical domain-wall fluid is realized and show that the dynamics of such a fluid is characterized by spatial and temporal crossover scales set by temperature itself. The fundamental parameters of this fluid are such that the domain-wall motions dominate the low-frequency spin fluctuations and we derive predictions for the behavior of the dynamical magnetic susceptibility. We argue that a crossover occurs from a high-temperature classical to a low-temperature quantum regime, in direct analogy with helium. We discuss some general characteristics of the domain-wall quantum liquid, realized at low temperatures. copyright 1996 The American Physical Society

  1. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    Science.gov (United States)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  2. Quantum dynamics of a particle with a spin-dependent velocity

    International Nuclear Information System (INIS)

    Aslangul, Claude

    2005-01-01

    We study the dynamics of a particle in continuous time and space, the displacement of which is governed by an internal degree of freedom (spin). In one definite limit, the so-called quantum random walk is recovered but, although quite simple, the model possesses a rich variety of dynamics and goes far beyond this problem. Generally speaking, our framework can describe the motion of an electron in a magnetic sea near the Fermi level when linearization of the dispersion law is possible, coupled to a transverse magnetic field. Quite unexpected behaviours are obtained. In particular, we find that when the initial wave packet is fully localized in space, the J z angular momentum component is frozen; this is an interesting example of an observable which, although it is not a constant of motion, has a constant expectation value. For a non-completely localized wave packet, the effect still occurs although less pronounced, and the spin keeps for ever memory of its initial state. Generally speaking, as time goes on, the spatial density profile looks rather complex, as a consequence of the competition between drift and precession, and displays various shapes according to the ratio between the Larmor period and the characteristic time of flight. The density profile gradually changes from a multimodal quickly moving distribution when the scattering rate is small, to a unimodal standing but flattening distribution in the opposite case

  3. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.

  4. Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehun [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Fujii, Yuya; Konioshi, Katsunori [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Yoon, Jungbum [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kim, Nam-Hui; Jung, Jinyong [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of); Miwa, Shinji [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Jung, Myung-Hwa [Department of Physics, Sogang University, Seoul, 121-742 (Korea, Republic of); Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); You, Chun-Yeol, E-mail: cyyou@inha.ac.kr [Department of Physics, Inha University, Incheon, 402-751 (Korea, Republic of)

    2016-07-01

    We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, N{sub z} (N{sub y}) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while N{sub x} is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case. - Highlights: • We investigate the spin dynamic properties in the ferromagnetic nanowire arrays. • The demagnetization factors have similar tendency with the prism geometry results. • The Gilbert damping constant is increased from 0.018 to 0.051 as the increasing nanowire width for the transverse. • The Gilbert damping constant is almost constant as 0.021 for the longitudinal case.

  5. RHIC spin program

    International Nuclear Information System (INIS)

    Bunce, G.

    1995-01-01

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization

  6. RHIC spin program

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  7. Model expressions for the spin-orbit interaction and phonon-mediated spin dynamics in quantum dots

    Science.gov (United States)

    Vaughan, M. P.; Rorison, J. M.

    2018-01-01

    Model expressions for the spin-orbit interaction in a quantum dot are obtained. The resulting form does not neglect cubic terms and allows for a generalized structural inversion asymmetry. We also obtain analytical expressions for the coupling between states for the electron-phonon interaction and use these to derive spin-relaxation rates, which are found to be qualitatively similar to those derived elsewhere in the literature. We find that, due to the inclusion of cubic terms, the Dresselhaus contribution to the ground state spin relaxation disappears for spherical dots. A comparison with previous theory and existing experimental results shows good agreement thereby presenting a clear analytical formalism for future developments. Comparative calculations for potential materials are presented.

  8. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  9. Magnetic order, magnetic correlations, and spin dynamics in the pyrochlore antiferromagnet Er2Ti2O7

    Science.gov (United States)

    Dalmas de Réotier, P.; Yaouanc, A.; Chapuis, Y.; Curnoe, S. H.; Grenier, B.; Ressouche, E.; Marin, C.; Lago, J.; Baines, C.; Giblin, S. R.

    2012-09-01

    Er2Ti2O7 is believed to be a realization of an XY antiferromagnet on a frustrated lattice of corner-sharing regular tetrahedra. It is presented as an example of the order-by-disorder mechanism in which fluctuations lift the degeneracy of the ground state, leading to an ordered state. Here we report detailed measurements of the low-temperature magnetic properties of Er2Ti2O7, which displays a second-order phase transition at TN≃1.2 K with coexisting short- and long-range orders. Magnetic susceptibility studies show that there is no spin-glass-like irreversible effect. Heat capacity measurements reveal that the paramagnetic critical exponent is typical of a 3-dimensional XY magnet while the low-temperature specific heat sets an upper limit on the possible spin-gap value and provides an estimate for the spin-wave velocity. Muon spin relaxation measurements show the presence of spin dynamics in the nanosecond time scale down to 21 mK. This time range is intermediate between the shorter time characterizing the spin dynamics in Tb2Sn2O7, which also displays long- and short-range magnetic order, and the time scale typical of conventional magnets. Hence the ground state is characterized by exotic spin dynamics. We determine the parameters of a symmetry-dictated Hamiltonian restricted to the spins in a tetrahedron, by fitting the paramagnetic diffuse neutron scattering intensity for two reciprocal lattice planes. These data are recorded in a temperature region where the assumption that the correlations are limited to nearest neighbors is fair.

  10. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  11. Dynamics of oxygen ordering in YBa2CU3O6+x studied by neutron and high-energy synchrotron x-ray diffiaction.

    Science.gov (United States)

    Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.

    1997-08-01

    The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.

  12. Spin dynamics and zero-field splitting constants of the triplet exciplex generated by photoinduced electron transfer reaction between erythrosin B and duroquinone

    OpenAIRE

    Tachikawa, Takashi; Kobori, Yasuhiro; Akiyama, Kimio; Katsuki, Akio; Steiner, Ulrich; Tero-Kubota, Shozo

    2002-01-01

    The spin dynamics of the duroquinone anion radical generated by photoinduced electron transfer reactions from triplet erythrosin B to duroquinone has been studied by using transient absorption and pulsed FT-EPR spectroscopy. Triplet exciplex formation as the reaction intermediate is verified by the observation of spin orbit coupling induced electron spin polarization. The kinetic parameters for exciplex formation and the intrinsic enhancement factors of electron spin polarization are determin...

  13. Inhomogeneous Low Frequency Spin Dynamics in La1.65Eu0.2Sr0.15CuO4

    International Nuclear Information System (INIS)

    Curro, N. J.; Hammel, P. C.; Suh, B. J.; Huecker, M.; Buechner, B.; Ammerahl, U.; Revcolevschi, A.

    2000-01-01

    We report Cu and La nuclear magnetic resonance measurements in the title compound that reveal an inhomogeneous glassy behavior of the spin dynamics. A low temperature peak in the La spin lattice relaxation rate and the ''wipeout'' of Cu intensity both arise from these slow electronic spin fluctuations that reveal a distribution of activation energies. Inhomogeneous slowing of spin fluctuations appears to be a general feature of doped lanthanum cuprate. (c) 2000 The American Physical Society

  14. Relationship between energy landscape and low-temperature dynamics of ±J spin glasses

    International Nuclear Information System (INIS)

    Kobe, S.; Krawczyk, J.

    2004-01-01

    Clusters and valleys in the exact low-energy landscape of finite Edwards-Anderson ±J spin glasses are related to the distribution of spin domains and free spins in the ground states. The time evolution of the spin correlation function reflects a walk through the landscape at a given temperature and shows typical glassy behaviour

  15. Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. J. [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, Y. J.; Ge, C. N [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Guo, Y. Y. [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Yan, Z. B.; Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-05-07

    In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.

  16. Conference on High Energy Physics

    CERN Document Server

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  17. Elasto-dynamic analysis of spinning nanodisks via a surface energy-based model

    Science.gov (United States)

    Kiani, Keivan

    2016-07-01

    Using the surface elasticity theory of Gurtin and Murdoch, in-plane vibrations of annular nanodisks due to their rotary motion are explored. By the imposition of non-classical boundary conditions on the innermost and outermost surfaces and employing Hamilton’s principle, the unknown elasto-dynamic fields of the bulk zone are determined via the finite element method. The roles of both nanodisk geometry and surface effect on the natural frequencies are addressed. Subsequently, forced vibrations of spinning nanodisks with fixed-free and free-free boundary conditions are comprehensively examined. The obtained results show that the maximum dynamic elastic fields grow in a parabolic manner as the steady angular velocity increases. By increasing the outermost radius, the maximum dynamic elastic field is magnified and the influence of the surface effect on the results reduced. This work can be considered as a pivotal step towards optimal design and dynamic analysis of nanorotors with disk-like parts, which are one of the basic building blocks of the upcoming advanced nanotechnologies.

  18. Tuning the presence of dynamical phase transitions in a generalized XY spin chain.

    Science.gov (United States)

    Divakaran, Uma; Sharma, Shraddha; Dutta, Amit

    2016-05-01

    We study an integrable spin chain with three spin interactions and the staggered field (λ) while the latter is quenched either slowly [in a linear fashion in time (t) as t/τ, where t goes from a large negative value to a large positive value and τ is the inverse rate of quenching] or suddenly. In the process, the system crosses quantum critical points and gapless phases. We address the question whether there exist nonanalyticities [known as dynamical phase transitions (DPTs)] in the subsequent real-time evolution of the state (reached following the quench) governed by the final time-independent Hamiltonian. In the case of sufficiently slow quenching (when τ exceeds a critical value τ_{1}), we show that DPTs, of the form similar to those occurring for quenching across an isolated critical point, can occur even when the system is slowly driven across more than one critical point and gapless phases. More interestingly, in the anisotropic situation we show that DPTs can completely disappear for some values of the anisotropy term (γ) and τ, thereby establishing the existence of boundaries in the (γ-τ) plane between the DPT and no-DPT regions in both isotropic and anisotropic cases. Our study therefore leads to a unique situation when DPTs may not occur even when an integrable model is slowly ramped across a QCP. On the other hand, considering sudden quenches from an initial value λ_{i} to a final value λ_{f}, we show that the condition for the presence of DPTs is governed by relations involving λ_{i},λ_{f}, and γ, and the spin chain must be swept across λ=0 for DPTs to occur.

  19. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    Science.gov (United States)

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  20. Nuclear spin dynamics in solid {sup 3}He at ultralow temperatures; Kernspindynamik in festem {sup 3}He bei ultratiefen Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Kath, Matthias

    2009-11-06

    In this thesis the experimental study of the spin dynamics of solid {sup 3}He is described. By means of magnetization measurements above 3 mK a Curie-Weiss behaviour was found with {theta}{sub W}{approx}2.1 mK and by this an order parameter of J={theta}{sub W}k{sub B}/{approx}-0.5 Kk{sub B} was observed, while in the range of 1 to 3 mK a pure Curie behaviour was found. By means of NMR measurements the values of {tau}{sub 1}(6 mK)=240 ms{+-}12 ms and {tau}{sub 1}(1 mK){approx} 40 ms were determined, while spin-echo measurements yielded the spin-spin relaxation time {tau}{sub 2}(6 mK)=4540 {mu}s{+-}140 {mu}s. Furthermore neutron scattering studies were performed. (HSI)

  1. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    Science.gov (United States)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  2. An experimental high energy physics program

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.

    1988-01-01

    The theoretical and experimental high energy physics program is reviewed, including particle detectors. Topics discussed include τ and B physics, gamma-ray astronomy, neutrino oscillations in matter with three flavors applied to solar and supernova neutrinos, effective field theories, a possible fifth force, the dynamics of hadrons and superstrings, mathematics of grand unified theories, chiral symmetry breaking, physics at the Fermilab collider, and development of the TOPAZ detector

  3. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Andrey S., E-mail: andrey.moskalenko@uni-konstanz.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz (Germany); Zhu, Zhen-Gang, E-mail: zgzhu@ucas.ac.cn [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany); School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049 (China); Berakdar, Jamal, E-mail: jamal.berakdar@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Germany)

    2017-02-17

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver

  4. High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  5. [High energy physics and cosmology

    International Nuclear Information System (INIS)

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  6. High Energy Transport Code HETC

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  7. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  8. Computing in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  9. [Research in high energy physics

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  10. Computing in high energy physics

    International Nuclear Information System (INIS)

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  11. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  12. Developments in high energy theory

    Indian Academy of Sciences (India)

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  13. Research in high energy physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  14. Toward the fourth dimension of membrane protein structure: insight into dynamics from spin-labeling EPR spectroscopy.

    Science.gov (United States)

    McHaourab, Hassane S; Steed, P Ryan; Kazmier, Kelli

    2011-11-09

    Trapping membrane proteins in the confines of a crystal lattice obscures dynamic modes essential for interconversion between multiple conformations in the functional cycle. Moreover, lattice forces could conspire with detergent solubilization to stabilize a minor conformer in an ensemble thus confounding mechanistic interpretation. Spin labeling in conjunction with electron paramagnetic resonance (EPR) spectroscopy offers an exquisite window into membrane protein dynamics in the native-like environment of a lipid bilayer. Systematic application of spin labeling and EPR identifies sequence-specific secondary structures, defines their topology and their packing in the tertiary fold. Long range distance measurements (60 Å-80 Å) between pairs of spin labels enable quantitative analysis of equilibrium dynamics and triggered conformational changes. This review highlights the contribution of spin labeling to bridging structure and mechanism. Efforts to develop methods for determining structures from EPR restraints and to increase sensitivity and throughput promise to expand spin labeling applications in membrane protein structural biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Many-body dynamics of holes in a driven, dissipative spin chain of Rydberg superatoms

    Science.gov (United States)

    Letscher, Fabian; Petrosyan, David; Fleischhauer, Michael

    2017-11-01

    Strong, long-range interactions between atoms in high-lying Rydberg states can suppress multiple Rydberg excitations within a micron-sized trapping volume and yield sizable Rydberg level shifts at larger distances. Ensembles of atoms in optical microtraps then form Rydberg superatoms with collectively enhanced transition rates to the singly excited state. These superatoms can represent mesoscopic, strongly interacting spins. We study a regular array of such effective spins driven by a laser field tuned to compensate the interaction-induced level shifts between neighboring superatoms. During the initial transient, a few excited superatoms seed a cascade of resonantly facilitated excitation of large clusters of superatoms. Due to spontaneous decay, the system then relaxes to the steady state having nearly universal Rydberg excitation density {ρ }{{R}}=2/3. This state is characterized by highly non-trivial equilibrium dynamics of quasi-particles—excitation holes in the lattice of Rydberg excited superatoms. We derive an effective many-body model that accounts for hole mobility as well as continuous creation and annihilation of holes upon collisions with each other. We find that holes exhibit a nearly incompressible liquid phase with highly sub-Poissonian number statistics and finite-range density-density correlations.

  16. Spin dynamics study of magnetic molecular clusters by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cianchi, L.; Del Giallo, F.; Spina, G.; Reiff, W.; Caneschi, A.

    2002-01-01

    Spin dynamics of the two magnetic molecular clusters Fe4 and Fe8, with four and eight Fe(III) ions, respectively, was studied by means of Moessbauer spectroscopy. The transition probabilities W's between the spin states of the ground multiplet were obtained from the fitting of the spectra. For the Fe4 cluster we found that, in the range from 1.38 to 77 K, the trend of W's versus the temperature corresponds to an Orbach's process involving an excited state with energy of about 160 K. For the Fe8, which, due to the presence of a low-energy excited state, could not be studied at temperatures greater than 20 K, the trend of W's in the range from 4 to 18 K seems to correspond to a direct process. The correlation functions of the magnetization were then calculated in terms of the W's. They have an exponential trend for the Fe4 cluster, while a small oscillating component is also present for the Fe8 cluster. For the first of the clusters, τ vs T (τ is the decay time of the magnetization) has a trend which, at low temperatures (T 15 K, τ follows the trend of W -1 . For the Fe8, τ follows an Arrhenius law, but with a prefactor which is smaller than the one obtained susceptibility measurements

  17. Spin-valley dynamics of electrically driven ambipolar carbon-nanotube quantum dots

    Science.gov (United States)

    Osika, E. N.; Chacón, A.; Lewenstein, M.; Szafran, B.

    2017-07-01

    An ambipolar n-p double quantum dot defined by potential variation along a semiconducting carbon-nanotube is considered. We focus on the (1e,1h) charge configuration with a single excess electron of the conduction band confined in the n-type dot and a single missing electron in the valence band state of the p-type dot for which lifting of the Pauli blockade of the current was observed in the electric-dipole spin resonance (Laird et al 2013 Nat. Nanotechnol. 8 565). The dynamics of the system driven by periodic electric field is studied with the Floquet theory and the time-dependent configuration interaction method with the single-electron spin-valley-orbitals determined for atomistic tight-binding Hamiltonian. We find that the transitions lifting the Pauli blockade are strongly influenced by coupling to a vacuum state with an empty n dot and a fully filled p dot. The coupling shifts the transition energies and strongly modifies the effective g factors for axial magnetic field. The coupling is modulated by the bias between the dots but it appears effective for surprisingly large energy splitting between the (1e,1h) ground state and the vacuum (0e, 0h) state. Multiphoton transitions and high harmonic generation effects are also discussed.

  18. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    Science.gov (United States)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  19. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  20. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, Yann [Univ. of Grenoble (France)

    2006-08-07

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly