WorldWideScience

Sample records for high-energy positron beams

  1. Bulk Materials Analysis Using High-Energy Positron Beams

    International Nuclear Information System (INIS)

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G.R.

    2002-01-01

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides

  2. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    Ritter, S.

    1985-04-01

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  3. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  4. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  5. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  6. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  7. Use of specific features of electron and positron interactions with monocrystals for the control of high-energy particle beam parameters

    International Nuclear Information System (INIS)

    Bochek, G.L.; Vit'ko, V.I.; Grishaev, I.A.; Kovalenko, G.D.; Kulibaba, V.I.; Morokhovskij, V.L.; Shramenko, B.I.

    1977-01-01

    To study possibilities of using the effect of high energy positron and electron interactions with crystals in practice at the 2 GeV Kharkov lineac the effect of a light particle charge sign on the processes of bremsstrahlung, elastic scattering and revealing ''blocking effect'' in elastic scatterina has been investigated experimentally of 1 GeV electron (positron) beam is directed to a silicon crystal of 185 μkm thickness. Dependence of total bremsstrahlung flow on the angle between the beam direction and crystal axis has shown, that positron bremsstrahlung is minimum (positrons are channelling, but electron bremsstrahlung is maximum, when crystallographic axis direction coincides with particle direction. The process of positron annihilation in flight has been investigated in 300 μkm thick silicon monocrystal. Bremsstrahlung intensity for channeling positrons drops 4.4 times, and intensity of annihilation radiation - 1.6 times as compared to the case, when channeling regime is absent. Experimental data point out the possibility of using monocrystals for control of the parameters of high-energy particle control beams

  8. High energy electron positron physics

    International Nuclear Information System (INIS)

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  9. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  10. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  11. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  12. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  13. Intense low energy positron beams

    International Nuclear Information System (INIS)

    Lynn, K.G.; Jacobsen, F.M.

    1993-01-01

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e + beams exist producing of the order of 10 8 - 10 9 e + /sec. Several laboratories are aiming at high intensity, high brightness e + beams with intensities greater than 10 9 e + /sec and current densities of the order of 10 13 - 10 14 e + sec - 1 cm -2 . Intense e + beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B + moderators or by increasing the available activity of B + particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e + collisions with atoms and molecules. Within solid state physics high intensity, high brightness e + beams are in demand in areas such as the re-emission e + microscope, two dimensional angular correlation of annihilation radiation, low energy e + diffraction and other fields. Intense e + beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies

  14. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  15. Beam Commissioning of the PEP-II High Energy Ring

    International Nuclear Information System (INIS)

    Wienands, U.; Anderson, S.; Assmann, R.; Bharadwaj, V.; Cai, Y.; Clendenin, J.; Corredoura, P.; Decker, F.J.; Donald, M.; Ecklund, S.; Emma, P.; Erickson, R.; Fox, J.; Fieguth, T.; Fisher, A.; Heifets, S.; Hill, A.; Himel, T.; Iverson, R.; Johnson, R.; Judkins, J.; Krejcik, P.; Kulikov, A.; Lee, M.; Mattison, T.; Minty, M.; Nosochkov, Y.; Phinney, N.; Placidi, M.; Prabhakar, S.; Ross, M.; Smith, S.; Schwarz, H.; Stanek, M.; Teytelman, D.; Traller, R.; Turner, J.; Zimmermann, F.; Barry, W.; Chattopadhyay, S.; Corlett, J.; Decking, W.; Furman, M.; Nishimura, H.; Portmann, G.; Rimmer, R.; Zholents, A.; Zisman, M.; Kozanecki, W.; Hofmann, A.; Zotter, B.; Steier, C.; Bialowons, W.; Lomperski, M.; Lumpkin, A.; Reichel, I.; Safranek, J.; Smith, V.; Tighe, R.; Sullivan, M.; Byrd, J.; Li, D.

    1998-01-01

    The PEP-II High Energy Ring (HER), a 9 GeV electron storage ring, has been in commissioning since spring 1997. Initial beam commissioning activities focused on systems checkout and commissioning and on determining the behavior of the machine systems at high beam currents. This phase culminated with the accumulation of 0.75 A of stored beam-sufficient to achieve design luminosity--in January 1998 after 3.5 months of beam time. Collisions with the 3 GeV positron beam of the Low Energy Ring (LER) were achieved in Summer of 1998. At high beam currents, collective instabilities have been seen. Since then, commissioning activities for the HER have shifted in focus towards characterization of the machine and a rigorous program to understand the machine and the beam dynamics is presently underway

  16. Development of slow positron beam lines and applications

    Science.gov (United States)

    Mondal, Nagendra Nath

    2018-05-01

    A positron is an antiparticle of an electron that can be formed in diverse methods: natural or artificial β-decay process, fission and fusion reactions, and a pair production of electron-positron occurred in the reactor and the high energy accelerator centers. Usually a long-lifetime radio isotope is customized for the construction of a slow positron beam lines in many laboratories. The typical intensity of this beam depends upon the strength of the positron source, moderator efficiency, and guiding, pulsing, focusing and detecting systems. This article will review a few positron beam lines and their potential applications in research, especially in the Positronium Bose-Einstein Condensation.

  17. Positron annihilation spectroscopy using high-energy photons

    International Nuclear Information System (INIS)

    Butterling, Maik; Jungmann, Marco; Krause-Rehberg, Reinhard; Krille, Arnold; Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E.; Hartmann, Andreas; Kosev, Krasimir; Schwengner, Ronald; Wagner, Andreas

    2010-01-01

    The superconducting electron accelerator ELBE (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (Germany) serves as a high-intensity bremsstrahlung photon-source delivering a pulsed beam (26 MHz) with very short bunches (<5 ps). The photons are being converted into positrons by means of pair production inside the target material thus forming an intense positron source. The accelerator machine pulse is used as time reference allowing positron lifetime spectroscopy. We performed positron annihilation spectroscopy by pair production in different sample materials and used coincidence techniques to reduce the background due to scattered photons significantly in order resulting in spectra of extraordinary high quality. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Status of positron beams for dark photons experiments

    Directory of Open Access Journals (Sweden)

    Valente Paolo

    2017-01-01

    Full Text Available High energy positron beams are an important tool for fixed-target experiments searching for new particles produced in the annihilation on atomic electrons of a target. The status of existing or planned infrastructures is reviewed.

  19. A Southern African positron beam

    International Nuclear Information System (INIS)

    Britton, D.T.; Haerting, M.; Teemane, M.R.B.; Mills, S.; Nortier, F.M.; Van der Walt, T.N.

    1997-01-01

    The first stage of a state of the art positron beam, being constructed at the University of Cape Town, is currently being brought into operation. This is the first positron beam on the African continent, as well as being the first positron beam dedicated to solid and surface studies in the southern hemisphere. The project also contains a high proportion of local development, including the encapsulated 22 Na positron source developed by our collaboration. Novel features in the design include a purely magnetic in-line deflector, working in the solenoidal guiding field, to eliminate unmoderated positrons and block the direct line of sight to the source. A combined magnetic projector and single pole probe forming lens is being implemented in the second phase of construction to achieve a spot size of 10 μm without remoderation

  20. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  1. Pulsars as the sources of high energy cosmic ray positrons

    International Nuclear Information System (INIS)

    Hooper, Dan; Blasi, Pasquale; Serpico, Pasquale Dario

    2009-01-01

    Recent results from the PAMELA satellite indicate the presence of a large flux of positrons (relative to electrons) in the cosmic ray spectrum between approximately 10 and 100 GeV. As annihilating dark matter particles in many models are predicted to contribute to the cosmic ray positron spectrum in this energy range, a great deal of interest has resulted from this observation. Here, we consider pulsars (rapidly spinning, magnetized neutron stars) as an alternative source of this signal. After calculating the contribution to the cosmic ray positron and electron spectra from pulsars, we find that the spectrum observed by PAMELA could plausibly originate from such sources. In particular, a significant contribution is expected from the sum of all mature pulsars throughout the Milky Way, as well as from the most nearby mature pulsars (such as Geminga and B0656+14). The signal from nearby pulsars is expected to generate a small but significant dipole anisotropy in the cosmic ray electron spectrum, potentially providing a method by which the Fermi gamma-ray space telescope would be capable of discriminating between the pulsar and dark matter origins of the observed high energy positrons

  2. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  3. Intense positron beam and its application to surface science

    International Nuclear Information System (INIS)

    Ito, Y.; Hirose, M.; Kanazawa, I.; Sueoka, O.; Takamura, S.; Okada, S.

    1992-01-01

    Intense pulsed slow positron beam has been produced using the 100 MeV electron LINAC of JAERI · Tokai. In order to use the beam for surface studies such as positron diffraction and positron microscopy, it was transferred from the solenoid magnetic field to field free region and then was brightness-enhanced. The beam size was reduced from 10 mmφ (in the magnetic field) to 0.5 mmφ after two stages of re-moderation. Using the intense brightness-enhanced positron beam we have observed for the first time RHEPD (Reflection High-Energy Positron Diffraction) patterns. A design of re-emission positron microscopy is also described. (author)

  4. Super High Energy Colliding Beam Accelerators

    International Nuclear Information System (INIS)

    Abdelaziz, M.E.

    2009-01-01

    This lecture presents a review of cyclic accelerators and their energy limitations. A description is given of the phase stability principle and evolution of the synchrotron, an accelerator without energy limitation. Then the concept of colliding beams emerged to yield doubling of the beam energy as in the Tevatron 2 trillion electron volts (TeV) proton collider at Fermilab and the Large Hadron Collider (LHC) which is now planned as a 14-TeV machine in the 27 kilometer tunnel of the Large Electron Positron (LEP) collider at CERN. Then presentation is given of the Superconducting Supercollider (SSC), a giant accelerator complex with energy 40-TeV in a tunnel 87 kilometers in circumference under the country surrounding Waxahachie in Texas, U.S.A. These superhigh energy accelerators are intended to smash protons against protons at energy sufficient to reveal the nature of matter and to consolidate the prevailing general theory of elementary particle.

  5. Positron Beam Characteristics at NEPOMUC Upgrade

    Science.gov (United States)

    Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.

    2014-04-01

    In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.

  6. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  7. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  8. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  9. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  10. Scattering of thermal photons by a 46 GeV positron beam at LEP

    International Nuclear Information System (INIS)

    Bini, C.; De Zorzi, G.; Diambrini-Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Gauzzi, P.; Zanello, D.

    1991-01-01

    The scattering of thermal photons present in the vacuum pipe of LEP against the high energy positron beam has been detected. The spectrum of the back-scattered photons is presented for a positron beam energy of 46.1 GeV. Measurements have been performed in the interaction region 1 with the LEP-5 experiment calorimeter. (orig.)

  11. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  12. A Magnetic Transport Middle Eastern Positron Beam

    International Nuclear Information System (INIS)

    Al-Qaradawi, I.Y.; Britton, D.T.; Rajaraman, R.; Abdulmalik, D.

    2008-01-01

    A magnetically guided slow positron beam is being constructed at Qatar University and is currently being optimised for regular operation. This is the first positron beam in the Middle East, as well as being the first Arabic positron beam. Novel features in the design include a purely magnetic in-line deflector, working in the solenoid guiding field, to eliminate un-moderated positrons and block the direct line of sight to the source. The impact of this all-magnetic transport on the Larmor radius and resultant beam characteristics are studied by SIMION simulations for both ideal and real life magnetic field variations. These results are discussed in light of the coupled effect arising from electrostatic beam extraction

  13. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  14. Generation of slow positron beam and beam bunching

    International Nuclear Information System (INIS)

    Azuma, O.; Satoh, T.; Shitoh, M.; Kaneko, N.; Kawaratani, T.; Hara, O.

    1994-01-01

    Two items are described in this report. One is about the outline of our slow positron beam system, which has been fabricated as a commercial prototype. The other is about the calculation result of positron beam bunching, which will be an additional function to the system. (author)

  15. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  16. First high energy hydrogen cluster beams

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  17. Experimentation with low-energy positron beams

    International Nuclear Information System (INIS)

    Mills, A.P. Jr.

    1983-01-01

    The capability of studying the interactions of positrons with surfaces has recently been exploited by using ultra-high-vacuum techniques. The result has been a new understanding of how positrons interact with surfaces and because of this we are now able to make much stronger fluxes of slow positrons. The higher beam strengths in turn are opening up new possibilities for experimentation on surfaces and solids and for studying the atomic physics of positronium and positron-molecule scattering at low energies. The lectures are intended to review some of the history of this subject and to outline the present state of our knowledge of experimentation with low-energy positron beams. (orig./TW)

  18. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  19. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  20. Jet reconstruction at high-energy electron-positron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Boronat, M.; Fuster, J.; Garcia, I.; Vos, M. [IFIC (CSIC/UVEG), Valencia (Spain); Roloff, P.; Simoniello, R. [CERN, Geneva (Switzerland)

    2018-02-15

    In this paper we study the performance in e{sup +}e{sup -} collisions of classical e{sup +}e{sup -} jet reconstruction algorithms, longitudinally invariant algorithms and the recently proposed Valencia algorithm. The study includes a comparison of perturbative and non-perturbative jet energy corrections and the response under realistic background conditions. Several algorithms are benchmarked with a detailed detector simulation at √(s) = 3 TeV. We find that the classical e{sup +}e{sup -} algorithms, with or without beam jets, have the best response, but they are inadequate in environments with non-negligible background. The Valencia algorithm and longitudinally invariant k{sub t} algorithms have a much more robust performance, with a slight advantage for the former. (orig.)

  1. Plasma focusing and diagnosis of high energy particle beams

    International Nuclear Information System (INIS)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs

  2. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  3. Intense positron beams and possible experiments

    International Nuclear Information System (INIS)

    Lynn, K.G.; Frieze, W.E.

    1983-07-01

    In this paper, we survey some of the ideas that have been proposed regarding the production of intense beams of low energy positrons. Various facilities to produce beams of this type are already under design or construction and other methods beyond those in use have been previously discussed. Moreover, a variety of potential experiments utilizing intense positron beams have been suggested. It is to be hoped that this paper can serve as a useful summary of some of the current ideas, as well as a stimulation for new ideas to be forthcoming at the workshop. 31 references

  4. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Jakob

    2010-04-03

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to {delta}E/E{approx}10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION {sup registered} ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to {delta}E/E < 1. The exceptional surface sensitivity and elemental selectivity of PAES was demonstrated in measurements of Pd and Fe, both coated with Cu layers of varying thickness. PAES showed that with 0.96 monolayer of Cu on Fe, more than 55% of the detected Auger electrons stem from Cu. In the case of the Cu coated Pd sample 0.96 monolayer of Cu resulted in a Cu Auger fraction of more than 30% with PAES and less than 5% with electron induced Auger spectroscopy

  5. Positron beam studies of transients in semiconductors

    International Nuclear Information System (INIS)

    Beling, C.D.; Ling, C.C.; Cheung, C.K.; Naik, P.S.; Zhang, J.D.; Fung, S.

    2006-01-01

    Vacancy-sensing positron deep level transient spectroscopy (PDLTS) is a positron beam-based technique that seeks to provide information on the electronic ionization levels of vacancy defects probed by the positron through the monitoring of thermal transients. The experimental discoveries leading to the concept of vacancy-sensing PDLTS are first reviewed. The major problem associated with this technique is discussed, namely the strong electric fields establish in the near surface region of the sample during the thermal transient which tend to sweep positrons into the contact with negligible defect trapping. New simulations are presented which suggest that under certain conditions a sufficient fraction of positrons may be trapped into ionizing defects rendering PDLTS technique workable. Some suggestions are made for techniques that might avoid the problematic electric field problem, such as optical-PDLTS where deep levels are populated using light and the use of high forward bias currents for trap filling

  6. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  7. Positron-acoustic waves in an electron-positron plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.N.

    1996-01-01

    The nonlinear wave structures of large-amplitude positron-acoustic waves are studied in an electron-positron plasma in the presence of an electron beam with finite temperature and hot electrons and positrons. The region where positron-acoustic waves exist is presented by analysing the structure of the pseudopotential. The region depends sensitively on the positron density, the positron temperature and the electron beam temperature. It is shown that the maximum amplitude of the wave decreases as the positron temperature increases, and the region of positron-acoustic waves spreads as the positron temperature increases. 11 refs., 5 figs

  8. Description of the intense, low energy, monoenergetic positron beam at Brookhaven

    International Nuclear Information System (INIS)

    Lynn, K.G.; Mills, A.P. Jr.; Roellig, L.O.; Weber, M.

    1985-01-01

    An intense (4 x 10 7 s -1 ), low energy (approx. =1.0 eV), monoenergetic (ΔE approx. = 75 MeV) beam of positrons has been built at the Brookhaven National Laboratory. This flux is more than 10 times greater than any existing beam from radioactive sources. Plans are underway to increase further the flux by more than an order of magnitude. The intense low energy positron beam is made by utilizing the High Flux Beam Reactor at Brookhaven to produce the isotope 64 Cu with an activity of 40 curies of positrons. Source moderation techniques are utilized to produce the low energy positron beam from the high energy positrons emitted from 64 Cu. 31 refs., 7 figs

  9. Laboratory Astrophysics Using High Energy Density Photon and Electron Beams

    CERN Document Server

    Bingham, Robert

    2005-01-01

    The development of intense laser and particle beams has opened up new opportunities to study high energy density astrophysical processes in the Laboratory. With even higher laser intensities possible in the near future vacuum polarization processes such as photon - photon scattering with or without large magnetic fields may also be experimentally observed. In this talk I will review the status of laboratory experiments using intense beans to investigate extreme astrophysical phenomena such as supernovae explosions, gamma x-ray bursts, ultra-high energy cosmic accelerators etc. Just as intense photon or electron beams can excite relativistic electron plasma waves or wakefields used in plasma acceleration, intense neutrino beams from type II supernovae can also excite wakefields or plasma waves. Other instabilities driven by intense beams relevant to perhaps x-ray bursts is the Weibel instability. Simulation results of extreme processes will also be presented.

  10. Calculated intensity of high-energy neutron beams

    International Nuclear Information System (INIS)

    Mustapha, B.; Nolen, J.A.; Back, B.B.

    2004-01-01

    The flux, energy and angular distributions of high-energy neutrons produced by in-flight spallation and fission of a 400 MeV/A 238 U beam and by the break-up of a 400 MeV/A deuteron beam are calculated. In both cases very intense secondary neutron beams are produced, peaking at zero degrees, with a relatively narrow energy spread. Such secondary neutron beams can be produced with the primary beams from the proposed rare isotope accelerator driver linac. The break-up of a 400 kW deuteron beam on a liquid-lithium target can produce a neutron flux of >10 10 neutrons/cm 2 /s at a distance of 10 m from the target

  11. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  12. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  13. High-energy pion beams: Problems and prospects

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1992-01-01

    The investigation of relatively unexplored research areas with high energy pion beams requires new facilities. Presently existing meson factories such as LAMPF, TRIUMF and PSI provide insufficient pion fluxes above the 3,3 resonance region for access to topics such as strangeness production with the (π, K) reaction, baryon resonances, rare meson decays, and nuclear studies with penetrating pion beams. The problems and prospects of useful beams for these studies will be reviewed, both for existing facilities such as the AGS and KEK, and for possible future facilities like KAON and PILAC

  14. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  15. Surface studies with high-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stensgaard, Ivan [Aarhus Univ. (Denmark). Inst. of Physics

    1992-07-01

    High-energy ion scattering is an extremely useful technique for surface studies. Three methods for surface composition analysis (Rutherford backscattering, nuclear-reaction analysis and elastic recoil detection) are discussed. Directional effects in ion-beam surface interactions (shadowing and blocking) form the basis for surface structure analysis with high-energy ion beams and these phenomena are addressed in some detail. It is shown how surface relaxation and reconstruction, as well as positions of adsorbed atoms, can be determined by comparison with computer simulations. A special technique called transmission channelling is introduced and shown to be particularly well suited for studies of adsorption positions, even of hydrogen. Recent developments in the field are demonstrated by discussing a large number of important (experimental) applications which also include surface dynamics and melting, as well as epitaxy and interface structure. (author).

  16. Imaging instrument for positron emitting heavy ion beam injection

    International Nuclear Information System (INIS)

    Llacer, J.; Chatterjee, A.; Jackson, H.C.; Lin, J.C.; Zunzunegui, M.V.

    1978-10-01

    The design and performance of an instrument for the imaging of coincidence annihilation gamma rays emitted from the end point of the trajectories of radioactive high-energy heavy ions is described. The positron-emitting heavy ions are the result of nuclear fragmentation of accelerated heavy ions used in cancer therapy or diagnostic medicine. The instrument constructed is capable of locating the ion beam trajectory end point within 1 mm for an injected activity of 200 nanoCi in a measurement time of 1 sec in some favorable conditions. Limited imaging in three dimensions is also demonstrated

  17. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  18. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  19. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  20. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  1. Fast IMRT with narrow high energy scanned photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders [Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm (Sweden); Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, P.O. Box 260, SE-171 76 Stockholm, Sweden and Department of Hospital Physics, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  2. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  3. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-01-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state

  4. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  5. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  6. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  7. Hard photon emission from high energy electrons and positrons in single crystals

    International Nuclear Information System (INIS)

    Bajer, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1991-01-01

    A radiation of electrons and positrons in single crystals in coherent bremsstrahlung (CBS) region has been considered for the case when CBS has the most hard spectrum. Under this condition a particle moves near a crystalline plane (in fcc(d) crystal for axis (001) this is the plane (110)) and influence of the continuous plane potential should be taken into account. This potential gives additional contribution in soft part of the spectrum and affects on hard photon emission. Observation of this phenomena at high energy is discussed. 14 refs.; 5 figs.; 1 tab

  8. Improved beam jitter control methods for high energy laser systems

    OpenAIRE

    Frist, Duane C.

    2009-01-01

    Approved for public release, distribution unlimited The objective of this research was to develop beam jitter control methods for a High Energy Laser (HEL) testbed. The first step was to characterize the new HEL testbed at NPS. This included determination of natural frequencies and component models which were used to create a Matlab/Simulink model of the testbed. Adaptive filters using Filtered-X Least Mean Squares (FX-LMS) and Filtered-X Recursive Least Square (FX-RLS) were then implement...

  9. Overview of the APT high-energy beam transport and beam expanders

    International Nuclear Information System (INIS)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-01-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented

  10. High-energy electron beams for ceramic joining

    Science.gov (United States)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  11. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  12. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  13. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  14. Techniques for slow positron beam generation and the applications

    International Nuclear Information System (INIS)

    Okada, Sohei

    1994-01-01

    Slow positron beams have been expected to be a powerful tool for observation of nature in wide range of research fields from materials science to basic physics, chemistry and biology. In this paper, at first, the beam technology is reviewed, which includes the positron generation, the transformation to slow positron beams and the beam manipulation such as beam stretching, bunching and brightness enhancement. Next, the present status of the slow positron beam applications to a variety of fields is demonstrated in terms of special characteristics of positron, that is, depth controllability, surface sensitivity, unique ionization channels and elemental anti-particle properties. Finally, prospects to produce intense slow positron beams are described. (author) 65 refs

  15. High energy resolution and first time-dependent positron annihilation induced Auger electron spectroscopty

    International Nuclear Information System (INIS)

    Mayer, Jakob

    2010-01-01

    It was the aim of this thesis to improve the existing positron annihilation induced Auger spectrometer at the highly intense positron source NEPOMUC (NEutron induced POsitron source MUniCh) in several ways: Firstly, the measurement time for a single spectrum should be reduced from typically 12 h to roughly 1 h or even less. Secondly, the energy resolution, which amounted to ΔE/E∼10%, should be increased by at least one order of magnitude in order to make high resolution positron annihilation induced Auger spectroscopy (PAES)-measurements of Auger transitions possible and thus deliver more information about the nature of the Auger process. In order to achieve these objectives, the PAES spectrometer was equipped with a new electron energy analyzer. For its ideal operation all other components of the Auger analysis chamber had to be adapted. Particularly the sample manipulation and the positron beam guidance had to be renewed. Simulations with SIMION registered ensured the optimal positron lens parameters. After the adjustment of the new analyzer and its components, first measurements illustrated the improved performance of the PAES setup: Firstly, the measurement time for short overview measurements was reduced from 3 h to 420 s. The measurement time for more detailed Auger spectra was shortened from 12 h to 80 min. Secondly, even with the reduced measurement time, the signal to noise ratio was also enhanced by one order of magnitude. Finally, the energy resolution was improved to ΔE/E 2,3 VV-transition with PAES. Thus, within this thesis two objectives were achieved: Firstly, the PAES spectrometer was renewed and improved by at least one order of magnitude with respect to the signal to noise ratio, the measurement time and the energy resolution. Secondly, several measurements have been carried out, demonstrating the high performance of the spectrometer. Amongst them are first dynamic PAES measurements and a high resolution measurement of the CuM 2,3 VV

  16. A new slow positron beam facility using a compact cyclotron

    International Nuclear Information System (INIS)

    Hirose, Masafumi

    1998-01-01

    In 1993, Sumitomo Heavy Industries became the first in the world to successfully produce a slow positron beam using a compact cyclotron. Slow positron beam production using an accelerator had mainly consisted of using an electron linear accelerator (LINAC). However, the newly developed system that uses a compact cyclotron enabled cost reduction, downsizing of equipment, production of a DC slow positron beam, a polarized slow positron beam, and other benefits. After that, a genuine slow positron beam facility was developed with the construction of compact cyclotron No.2, and beam production in the new facility has already been started. The features of this new slow positron beam facility are explained below. 1) It is the world's first compact slow positron beam facility using a compact cyclotron. 2) It is the only genuine slow positron beam facility in the world which incorporates the production and use of a slow positron beam in the design stage of the cyclotron. To use a slow positron beam for non-destructive detection of lattice defects in semiconductor material, it is necessary to convert the beam into ultra-short pulses of several hundreds of pico-seconds. Sumitomo Heavy Industries has devised a new short-pulsing method (i.e. an induction bunching method) that enables the conversion of a slow positron beam into short pulses with an optimum pulsing electric field change, and succeeded in converting a slow positron beam into short pulses using this method for the first time in the world. Non-destructive detection of lattice defects in semiconductor material using this equipment has already been started, and some information about the depth distribution, size, density, etc. of lattice defects has already been obtained. (J.P.N.)

  17. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  18. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  19. Positron beam studies of solids and surfaces: A summary

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2006-01-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations

  20. Positron beam studies of solids and surfaces: A summary

    Science.gov (United States)

    Coleman, P. G.

    2006-02-01

    A personal overview is given of the advances in positron beam studies of solids and surfaces presented at the 10th International Workshop on Positron Beams, held in Doha, Qatar, in March 2005. Solids studied include semiconductors, metals, alloys and insulators, as well as biophysical systems. Surface studies focussed on positron annihilation-induced Auger electron spectroscopy (PAES), but interesting applications of positron-surface interactions in fields as diverse as semiconductor technology and studies of the interstellar medium serve to illustrate once again the breadth of scientific endeavour covered by slow positron beam investigations.

  1. Measuring pion beta decay with high-energy pion beams

    International Nuclear Information System (INIS)

    McFarlane, W.K.; Hoffman, C.M.

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay π + → π 0 e + vε is predicted by the Standard Model (SM) to be R(π + → π 0 e + vε) = 0.3999±0.0005 s -1 . The best experimental number, obtained using in-flight decays, is R(π + → π 0 e + vε) = 0.394 ± 0.015 s -1 . A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required

  2. Modeling and Simulation of Longitudinal Dynamics for Low Energy Ring-High Energy Ring at the Positron-Electron Project

    International Nuclear Information System (INIS)

    Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.

    2007-01-01

    A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored

  3. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  4. Investigation and realization of a slow-positron beam

    International Nuclear Information System (INIS)

    Ruiz, Nicolas

    2011-01-01

    This research thesis first proposes a presentation of the GBAR project (Gravitational Behaviour of Anti-hydrogen at Rest) within which this research took place, and which aims at performing the first direct test of the Weak Equivalence Principle on anti-matter by studying the free fall of anti-hydrogen atoms in the Earth gravitational field. The author presents different aspects of this project: scientific objective, experiment principle and structure, detailed structure (positron beam, positron trap, positron/positronium conversion, anti-proton beam, trapping, slowing down and neutralisation of anti-hydrogen ions). The author then reports the design of the positron beam: study of source technology, studies related to the fast positron source, design of the low positron line (approach, functions, simulations, technology). The two last chapters report the construction and the characterization of the slow-positron line [fr

  5. The proposed INEL intense slow positron source, beam line, and positron microscope facility

    International Nuclear Information System (INIS)

    Makowitz, H.; Denison, A.B.; Brown, B.

    1993-01-01

    A program is currently underway at the Idaho National Engineering Laboratory (INEL) to design and construct an Intense Slow Positron Beam Facility with an associated Positron Microscope. Positron beams have been shown to be valuable research tools and have potential application in industrial processing and nondestructive evaluation (microelectronics, etc.). The limit of resolution or overall usefulness of the technique has been limited because of lack of sufficient intensity. The goal of the INEL positron beam is ≥ 10 12 slow e+/s over a 0.03 cm diameter which represents a 10 3 to 10 4 advancement in beam current over existing beam facilities. The INEL is an ideal site for such a facility because of the nuclear reactors capable of producing intense positron sources and the personnel and facilities capable of handling high levels of radioactivity. A design using 58 Co with moderators and remoderators in conjunction with electrostatic positron beam optics has been reached after numerous computer code studies. Proof-of-principle electron tests have demonstrated the feasibility of the large area source focusing optics. The positron microscope development is occurring in conjunction with the University of Michigan positron microscope group. Such a Beam Facility and associated Intense Slow Positron Source (ISPS) can also be utilized for the generation and study of positron, and positron electron plasmas at ≤ 10 14 particles/cm 3 with plasma temperatures ranging from an eV to many keV, as well as an intense x-ray source via positron channeling radiation. The possibility of a tunable x-ray laser based on channeling positron radiation also exists. In this discussion the authors will present a progress report on various activities associated with the INEL ISPS

  6. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  7. Output calibration in solid water for high energy photon beams

    International Nuclear Information System (INIS)

    Reft, C.S.

    1989-01-01

    The AAPM Protocol recommends the use of water, polystyrene or acrylic media for measuring the output of high energy photon beams. It provides the appropriate restricted mass stopping powers and mass energy absorption coefficients for converting the dose to these media to dose to water. A water-equivalent solid has been developed for dosimetric applications. [C. Constantinou, F. Attix, and B. Paliwal, Med. Phys. 9, 436 (1982)]. Calculated values for the restricted mass stopping powers and mass energy absorption coefficients have been published for this material. [A. Ho and B. Paliwal, Med. Phys. 13, 403 (1986)]. The accuracy of these calculations was investigated by making output measurements, following the Protocol, with a Farmer type chamber in four materials for Co-60, 4, 6, 10, 18, and 24 MV photon beams. The results show that the scaled dose to water for the different media agree to better than 1%, and the analysis supports the methodology of the Protocol for obtaining the dose to water from the different media

  8. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Piochacz, Christian

    2009-11-20

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55{+-}0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 {mu}m. The efficiency of the re-moderation process in this second stage was 24.5{+-}4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the

  9. Generation of a high-brightness pulsed positron beam for the Munich scanning positron microscope

    International Nuclear Information System (INIS)

    Piochacz, Christian

    2009-01-01

    Within the present work the prerequisites for the operation of the Munich scanning positron microscope (SPM) at the high intense neutron induced positron source Munich (NEPOMUC) were established. This was accomplished in two steps: Firstly, a re-moderation device was installed at the positron beam facility NEPOMUC, which enhances the brightness of the positron beam for all connected experiments. The second step was the design, set up and initial operation of the SPM interface for the high efficient conversion of the continuous beam into a bunched beam. The in-pile positron source NEPOMUC creates a positron beam with a diameter of typically 7 mm, a kinetic energy of 1 keV and an energy spread of 50 eV. The NEPOMUC re-moderator generates from this beam a low energy positron beam (20 - 200 eV) with a diameter of less than 2 mm and an energy spread well below 2.5 eV. This was achieved with an excellent total efficiency of 6.55±0.25 %. The re-moderator was not only the rst step to implement the SPM at NEPOMUc, it enables also the operation of the pulsed low energy positron beam system (PLEPS). Within the present work, at this spectrometer rst positron lifetime measurements were performed, which revealed the defect types of an ion irradiated uranium molybdenum alloy. Moreover, the instruments which were already connected to the positron beam facility bene ts considerably of the high brightness enhancement. In the new SPM interface an additional re-moderation stage enhances the brightness of the beam even more and will enable positron lifetime measurements at the SPM with a lateral resolution below 1 μm. The efficiency of the re-moderation process in this second stage was 24.5±4.5 %. In order to convert high efficiently the continuous positron beam into a pulsed beam with a repetition rate of 50 MHz and a pulse duration of less than 50 ps, a sub-harmonic pre-bucher was combined with two sine wave bunchers. Furthermore, the additional re-moderation stage of the SPM

  10. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  11. Preservation effect of high energy electron beam on kyoho grape

    International Nuclear Information System (INIS)

    Wang Qiufeng; Chen Zhaoliang; Qiao Yongjin; Wang Haihong; Qiao Xuguang

    2010-01-01

    The Kyoho grapes were kept in cold storage of-0.5 degree C ∼ 0.5 degree C, RH 85% ∼ 95% after irradiation of 400, 700, 1000, 1500, 2500 Gy and SO 2 treatment, and the antiseptic effect and storage quality were studied. The result showed that high energy electron beam could control the growth of bacteria, mould, yeast, coliform, alleviate the deterioration of grapes during storage. Irradiation below the dose 1000 Gy can decrease the respiration intensity, prevent the decreasing of titratable acid, ascorbic acid content, and keep higher activity of SOD enzyme. The Vc content was 3.79 mg /100 g after 700 Gy irradiation 90 days, the titratable acid and total soluble sugar content were 0.348%, 11.44%, and the activity of SOD was 14.89 U /g, which was higher than the control significantly (P 2 bleaching spot. Integrate the effects on microorganism control and grape quality, treatment of 700 Gy had the best preservation effect in this study. After preserved for 98 d, the good fruit rate of 700 Gy treatment was 93.33% , significantly higher than other treatments (P < 0.05). (authors)

  12. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  13. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  14. Developments on positron scattering experiments including beam production and detection

    International Nuclear Information System (INIS)

    Selim, F.A.; Golovchenko, J.A.

    2001-01-01

    Positron scattering and channeling experiments require high quality (low emittance) beams. A new electrostatic optics system for extracting positrons from a moderator is presented. The system features improved efficiency of focusing and beam transport of moderated positrons emitted with angular spreads up to ± 30 , with good phase space characteristics. The presented optics also provides a high degree of freedom in controlling exit beam trajectories. The system has been installed in the LLNL Pelletron accelerator and showed great enhancement on the beam quality. On the detection side, image plates were used to measure the angular distributions of positrons transmitted through the gold crystals. The measurements demonstrate the advantages of image plates as quantitative position sensitive detectors for positrons. (orig.)

  15. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  16. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  17. High energy high intensity coherent photon beam for the SSC

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1984-01-01

    What is proposed for the 20 TeV protons hitting a fixed target is to make a tertiary electron beam similar to that which is the basis of the tagged photon beam at Fermilab. Briefly, a zero degree neutral beam is formed by sweeping out the primary proton beam and any secondary charged particles. Then the photons, from the decay of π 0 in the neutral beam, are converted to e + e - pairs in a lead converter and a high quality electron beam is formed. This beam is brought to the target area where it is converted to a photon beam by Bremsstrahlung in a radiator

  18. Next generation of electron-positron colliding beam machines

    International Nuclear Information System (INIS)

    Richter, B.

    1979-03-01

    The contribution of electron-positron colliding beam experiments to high-energy physics in the 1970's has been prodigious. From the research done with the two highest-energy e + e - machines of the present generation of these devices, have come such things as the discovery and illumination of the properties of the psi family, charmed particles, a new heavy lepton, non-ambigious evidence for hadronic jets, etc. The rapid pace of new developments in physics from such machines comes about for two reasons. First, the electron-positron annihilation process at present energies is particularly simple and well understood, making the problem of determining the quantum numbers and properties of new particles particularly simple. Second, in electron-positron annihilation all final states are on a relatively equal footing, and small production cross sections are compensated for by a lack of confusing background. For example, the rate of production of charmed particles at the SPEAR storage ring at SLAC and the DORIS storage ring at DESY is 3 or 4 orders of magnitude less than the rate of production at FNAL and the SPS. Yet these particles were first found at the storage rings where the background cross sections are comparable to the signal cross section, and have not yet been observed directly by their hadronic decays at the proton machines where the background cross sections are 4 orders of magnitude larger than the signal cross sections. The machines PEP at SLAC and PETRA at DESY will soon be operating at 35 to 40 GeV cm to explore new regions of energy. Studies of electron-positron annihilation at much higher energies than presently planned have a great deal to teach, not only about particle structure and dynamics, but also about the nature of the weak interaction. Some of the physics which can be done with such machines is discussed with a view toward getting an idea of the minimum required energy for the new generation of colliding beam devices

  19. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed

  20. The creation of high energy densities with antimatter beams

    International Nuclear Information System (INIS)

    Gibbs, W.R.; Kruk, J.W.; Rice Univ., Houston, TX

    1989-01-01

    The use of antiprotons (and antideuterons) for the study of the behavior of nuclear matter at high energy density is considered. It is shown that high temperatures and high energy densities can be achieved for small volumes. Also investigated is the strangeness production in antimatter annihilation. It is found that the high rate of Lambda production seen in a recent experiment is easily understood. The Lambda and K-short rapidity distributions are also reproduced by the model considered. 11 refs., 6 figs

  1. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  2. Depth profiling of boron implanted silicon by positron beam

    International Nuclear Information System (INIS)

    Oevuenc, S.

    2004-01-01

    Positron depth profiling analyses of low energy implants of silicon aim to observe tbe structure and density of the vacancies generating by implantation and the effect of annealing. This work present the results to several set of data starting S and W parameters. Boron implanted Silicon samples with different implantation energies,20,22,24,and 26 keV are analyzed by Slow positron beam (0-40 keV and 10 5 e + /s )(Variable Energy Positron) at the Positron Centre Delf-HOLLAND

  3. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  4. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  5. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Science.gov (United States)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  6. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.

    Science.gov (United States)

    Panettieri, Vanessa; Duch, Maria Amor; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully

  7. Application of electron beam, ion beam and positron beam to polymer sciences

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1999-01-01

    Full text: Particle beams are finding increasing application in material sciences and the interest covers both applied as well as fundamental investigations. In the present talk application of electron and ion beams in several polymers such as polysilanes, polystyrene, polyolefins, polymethylmethacrylates and related polymers will be presented. It includes among other investigations (such as product analysis) pulse radiolysis studies and effect of LET on polymers. Importance of positron studies in material sciences especially bulk polymers is well documented. A relatively new technique, namely, positron beam application especially in thin film polymers is a new and emerging areas. The interest ranges from applied aspects as well as fundamental understanding of surfaces and interfaces. The present talk will detail the development of a pulsed positron beam using LINAC at Institute of Scientific and Industrial Research (ISIR) as well as its applications to polymer thin films

  8. High energy heavy ion beam lithography in silicon

    International Nuclear Information System (INIS)

    Rout, Bibhudutta; Dymnikov, Alexander D.; Zachry, Daniel P.; Eschenazi, Elia V.; Wang, Yongqiang Q.; Greco, Richard R.; Glass, Gary A.

    2007-01-01

    As high energy ions travel through a crystalline semiconductor materials they produce damage along the path which results in resistance to some of the wet chemical etching. A series of preliminary experiments have been performed at the Louisiana Accelerator Center (LAC) to examine the feasibility of irradiating high energy (keV-MeV) ions such as protons, xenon and gold through microscale masked structures on crystalline (n-type) Si substrates followed by wet chemical etch with KOH for attaining deep micromachining in Si. The results of these experiments are reported

  9. Observation of the undulator radiation from the positron beam

    International Nuclear Information System (INIS)

    Maezawa, Hideki.

    1986-02-01

    A spectral measurement of the 1st harmonic of the undulator radiation emitted from positron beam was made on Dec. 21, 1985 during a test operation of the Photon Factory storage ring with the 2.5 GeV positron beam which was stored up to 5.5 mA. In comparison to the same measurement performed with the electron beam, no appreciable difference in the spectral properties of the undulator radiation was found between the two cases under the condition of the low beam current of a few mA. (author)

  10. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  11. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  12. Clinical application of in vivo treatment delivery verification based on PET/CT imaging of positron activity induced at high energy photon therapy

    Science.gov (United States)

    Janek Strååt, Sara; Andreassen, Björn; Jonsson, Cathrine; Noz, Marilyn E.; Maguire, Gerald Q., Jr.; Näfstadius, Peder; Näslund, Ingemar; Schoenahl, Frederic; Brahme, Anders

    2013-08-01

    The purpose of this study was to investigate in vivo verification of radiation treatment with high energy photon beams using PET/CT to image the induced positron activity. The measurements of the positron activation induced in a preoperative rectal cancer patient and a prostate cancer patient following 50 MV photon treatments are presented. A total dose of 5 and 8 Gy, respectively, were delivered to the tumors. Imaging was performed with a 64-slice PET/CT scanner for 30 min, starting 7 min after the end of the treatment. The CT volume from the PET/CT and the treatment planning CT were coregistered by matching anatomical reference points in the patient. The treatment delivery was imaged in vivo based on the distribution of the induced positron emitters produced by photonuclear reactions in tissue mapped on to the associated dose distribution of the treatment plan. The results showed that spatial distribution of induced activity in both patients agreed well with the delivered beam portals of the treatment plans in the entrance subcutaneous fat regions but less so in blood and oxygen rich soft tissues. For the preoperative rectal cancer patient however, a 2 ± (0.5) cm misalignment was observed in the cranial-caudal direction of the patient between the induced activity distribution and treatment plan, indicating a beam patient setup error. No misalignment of this kind was seen in the prostate cancer patient. However, due to a fast patient setup error in the PET/CT scanner a slight mis-position of the patient in the PET/CT was observed in all three planes, resulting in a deformed activity distribution compared to the treatment plan. The present study indicates that the induced positron emitters by high energy photon beams can be measured quite accurately using PET imaging of subcutaneous fat to allow portal verification of the delivered treatment beams. Measurement of the induced activity in the patient 7 min after receiving 5 Gy involved count rates which were about

  13. Physics with very high energy e+e- colliding beams

    International Nuclear Information System (INIS)

    Camilleri, L.; Cundy, D.; Darriulat, P.; Ellis, J.; Field, J.; Fischer, H.; Gabathuler, E.; Gaillard, M.K.; Hoffmann, H.; Johnson, K.; Keil, E.; Palmonari, F.; Preparata, G.; Richter, B.; Rubbia, C.; Steinberger, J.; Willis, W.; Winter, K.; Wiik, B.

    1976-01-01

    This report consists of a collection of documents produced by a Study Group on Large Electron-Positron Storage Rings (LEP). The reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting, in each case, the design of an experimental set-up. Event rates are estimated using currently prevailing theoretical models and by extrapolation of results at present accelerators. A number of technical reports previously issued by members of the LEP Design Study Group are included as appendices. (author)

  14. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  15. Production of high energy photon beam at TAC

    International Nuclear Information System (INIS)

    Akkurt, I.; Tekin, H. O.; Demir, N.; Cakirli, R. B.; Akkus, B.; Kupa, I.

    2010-01-01

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  16. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  17. Shutter designed to block high-energy particle beams

    International Nuclear Information System (INIS)

    Donnadille, B.

    1976-01-01

    A description is given of a shutter designed for temporarily closing off an opening formed in the wall of an irradiation room for the passage of a particle beam. A cylindrical metal block can rotate about its axis and occupy two stable positions which are 180 0 from one another. A cylindrical cage closed at its two ends by two circular plates is equipped respectively with eccentric holes for the passage of the particle beam. The block is provided with a longitudinal passage through which there can pass the particle beam and a blind hole or ''pit'' disposed symmetrically to the longitudinal passage and which can block the particle beam according to the positioning of the block by respect with the eccentric holes

  18. Beams at U.S. high energy physics laboratories

    International Nuclear Information System (INIS)

    1976-06-01

    Tables are given of beam characteristics for particle accelerators at Argonne National Laboratory, Brookhaven National Laboratory, Cornell University, Fermi National Accelerator Laboratory, and the Stanford Linear Accelerator Center. Characteristics given include energy, momentum, and flux

  19. Proposal for an intense slow positron beam facility at PSI

    International Nuclear Information System (INIS)

    Waeber, W.B.; Taqqu, D.; Zimmermann, U.; Solt, G.

    1990-05-01

    In the domain of condensed matter physics and materials sciences monoenergetic slow positrons in the form of highest intensity beams are demonstrated to be extreamly useful and considered to be highly needed. This conclusion has been reached and the scientific relevance of the positron probe has been highlighted at an international workshop in November 1989 at PSI, where the state of the art and the international situation on slow positron beams, the fields of application of intense beams and the technical possibilities at PSI for installing intense positron sources have been evaluated. The participants agreed that a high intensity beam as a large-scale user facility at PSI would serve fundamental and applied research. The analysis of responses given by numerous members of a widespread positron community has revealed a large research potential in the domain of solid-state physics, atomic physics and surface, thin-film and defect physics, for example. The excellent feature of slow positron beams to be a suitable probe also for lattice defects near surfaces or interfaces has attracted the interest not only of science but also of industry.In this report we propose the installation of an intense slow positron beam facility at PSI including various beam lines of different qualities and based on the Cyclotron production of β + emitting source material and on a highest efficiency moderation scheme which exceeds standard moderation efficiencies by two orders of magnitude. In its proposed form, the project is estimated to be realizable in the nineties and costs will amount to between 15 and 20 MSFr. (author) 10 figs., 6 tabs., 78 refs

  20. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  1. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  2. Radiation collimator for use with high energy radiation beams

    International Nuclear Information System (INIS)

    Malak, S.P.

    1978-01-01

    A collimator is described for use with a beam of radiation, and in particular, for use in controlling the cross-sectional size and shape of the radiation beam and intercepting undesired off-focus radiation in an x-ray apparatus. The collimator is positioned adjacent to the source of radiation and embodies a plurality longitudinally extending leaves pivotally mounted on and between two supports, the leaves move about their pivots to close overlapping relation to define a hollow cone. The cone defines an aperture at its narrow end which can be adjusted in size and shape by rotation of the two supports which are adaptable to being moved one relative to the other, to cause an expansion or contraction of the hollow cone and correspondingly an increase or decrease of the cross-sectional size and/or shape of the radiation beam passing through the aperture

  3. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1986-05-01

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  4. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    Cecatti, E.R.

    1983-01-01

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author) [pt

  5. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  6. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...... atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far...

  7. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  8. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  9. Multibunch beam breakup in high energy linear colliders

    International Nuclear Information System (INIS)

    Thompson, K.A.; Ruth, R.D.

    1989-03-01

    The SLAC design for a next-generation linear collider with center-of-mass energy of 0.5 to 1.0 TeV requires that multiple bunches (/approximately/10) be accelerated on each rf fill. At the beam intensity (/approximately/10 10 particles per bunch) and rf frequency (11--17 GHz) required, the beam would be highly unstable transversely. Using computer simulation and analytic models, we have studied several possible methods of controlling the transverse instability: using damped cavities to damp the transverse dipole modes; adjusting the frequency of the dominant transverse mode relative to the rf frequency, so that bunches are placed near zero crossings of the wake; introducing a cell-to-cell spread in the transverse dipole mode frequencies; and introducing a bunch-to-bunch variation in the transverse focusing. The best cure(s) to use depend on the bunch spacing, intensity, and other features of the final design. 8 refs., 3 figs

  10. High energy nuclear beams at Berkeley: present and future possibilities

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-01-01

    The primary goal of the Bevalac research program continues to be the study of nuclear matter at extreme conditions of temperature and baryon density while still addressing more conventional aspects of nuclear physics. Future plans are for a colliding beam machine in the energy range of 20 GeV/n. The conceptual design and basin requirements for such a relativistic nuclear collider (RNC) are outlined. In addition the central physics themes to be addressed by an RNC are briefly discussed

  11. A high energy photon beam derived from neutral strange particle decay

    International Nuclear Information System (INIS)

    Reibel, K.; Ruchti, R.

    1982-01-01

    Conventional methods for generating photon beams include: tagged beams in which the photons are derived from electron bremsstrahlung in a radiator target; and broad band beams in which the photons are derived from π/sup 0/ decay - the hadronic component (n, K/sub s//sup 0/) accompanying such a beam is usually suppressed by passage of the beam through a low Z (D/sub 2/) filter. Although one can generate high energy photons by these techniques, the major drawback to these beams is that the photon energy spectrum obtained is peaked at very low E/sub γ/. (Recall that the bremsstrahlung spectrum falls as 1/k). With very high energy proton beams (20 TeV/c), one can image other alternatives for photon beam design. The authors consider one such option here

  12. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    Masugata, Katsumi

    2011-04-01

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  13. Positron beams: The journey from fundamental physics to industrial application

    International Nuclear Information System (INIS)

    Coleman, P.G.

    2002-01-01

    Monoenergetic beams of positrons developed for fundamental atomic physics experiments have evolved - via basic and applied research in condensed matter physics and chemistry - to a phase in which possibilities for commercial exploitation are becoming apparent. The evolution of positron beam technology, from table-top laboratory-based apparatus with positrons of energies controllable in the 10 0 -10 2 eV energy range and beam intensities of ∼1 s -1 , to systems capable of delivering positrons of energies from 0.02 eV to MeV at intensities as high as 10 8 s -1 , has been both steady and saltatory. The journey from fundamental research to industrial application is a classic example of scientific development; a brief summary of steps on the way is followed by an example in which an attempt is being made to harness the efficacy of positron beams applied to defect spectroscopy of semiconductor structures to create an instrument of value to the ion implantation industry

  14. Industrial applications of high energy micro-beams

    International Nuclear Information System (INIS)

    Bakhru, H.; Nickles, E.; Haberl, A.W.

    1995-01-01

    The University at Albany ion scanning microprobe has been used for industrial applications. Several examples of such applications will be presented. Focused proton and helium ion beams of 1-2 μm dimensions have been used for the analysis. Rutherford backscattering spectrometry (RBS) and particle induced X-ray emission (PIXE) analysis have been performed on very large scale integrated circuits, thin film superconductors, small structures of high voltage cables and for several other industrial applications. Several examples of chemical and microstructural analysis will be presented. (orig.)

  15. Applications and advances of positron beam spectroscopy: appendix a

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  16. Medium and high energy electron beam processing system

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Masayuki [Nissin-High Voltage Co., Ltd., Kyoto (Japan)

    2003-02-01

    Electron Beam Processing System (EPS) is a useful and powerful tool for industrial irradiation process. The specification of EPS is decided by consideration to irradiate what material with how thick and wide, how much dose, how to handle, in what atmosphere. In designing an EPS, it is necessary to consider safety measure such as x-ray shielding, ozone control and interlock system. The initial costs to install typical EPS are estimated for acceleration voltages from 500 kV to 5 MV, including following items; those are electron beam machine, x-ray shielding, auxiliary equipment, material handling, survey for installation, ozone exhaust duct, cooling water system, wiring and piping. These prices are reference only because the price should be changed for each case. The price of x-ray shielding should be changed by construction cost. Auxiliary equipment includes window, cooling blower, ozone exhaust blower and SF6 gas handling equipment. In installation work at site, actual workers of 3 - 4 persons for 2 months are necessary. Material handling system is considered only rolls provided in the shielding room as reference. In addition to the initial installation, operators and workers may be required to wear a personal radiation monitor. An x-ray monitor of suitable design should be installed outside the shield room to monitor x-ray level in the working area. (Y. Tanaka)

  17. Superconducting magnet system for the AGS high energy unseparated beam

    International Nuclear Information System (INIS)

    Morgan, G.; Aggus, J.; Bamberger, J.

    1975-01-01

    A beam line to the Multi-Particle Spectrometer capable of handling 30 GeV/c secondary beams will consist of four large identical superconducting dipoles and a number of room temperature quadrupoles. The total bending angle is 20 0 , 5 0 per magnet, and the room temperature aperture required in the dipoles is 20 cm. The four dipoles will be of the cos theta type and will have an overall length of 2.5 m and nominal maximum field of 4.0 T at 2800 A. The conductor will be a thin, wide metal-impregnated braid. The circular aperture is surrounded by coils which are a six-block approximation to a single-layer cos theta current sheet, and a coaxial cylinder of laminated iron at helium temperature. Each magnet will weigh about 10 tons. The design of the dewar including its heat load is discussed. The system is planned to be operational in Fall 1975. (U.S.)

  18. Nucleation mechanisms in high energy ion beam induced dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Michael; Garmatter, Daniel; Ferhati, Redi; Amirthapandian, Sankarakumar; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany)

    2011-07-01

    Solid coatings, when heated above their melting points, often break up by forming small round holes, which then grow, coalesce and finally turn the initially contiguous film into a pattern of isolated droplets. Such dewetting has been intensively studied using thin polymer films on Si. Three different hole nucleation mechanisms were discovered: homogeneous (spontaneous) nucleation, heterogeneous nucleation at defects, and spinodal dewetting by self-amplifying capillary waves. We have recently found that swift heavy ion (SHI) irradiation of thin oxide films on Si results in similar dewetting patterns, even though the films were kept far below their melting points. Using our new in-situ SEM at the UNILAC accelerator of GSI, we were now able to identify the mechanisms behind this SHI induced dewetting phenomenon. By varying the film thickness and introducing defects at the interface, we can directly address the hole nucleation processes. Besides homogeneous and heterogeneous nucleation, we also found a process, which very much resembles the spinodal mechanism found for liquid polymers, although in the present case the instable wavy surface is not generated by capillary waves, but by ion beam induced stresses.

  19. Positron annihilation measurements in high-energy alpha-irradiated n-type gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sandip; Mandal, Arunava; SenGupta, Asmita [Visva-Bharati, Department of Physics, Santiniketan, West Bengal (India); Roychowdhury, Anirban [UGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata, West Bengal (India)

    2015-07-15

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime τ{sub avg} = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of τ{sub 2} (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in τ{sub avg} at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter (S) and defect-specific parameter (R) during annealing in the temperature region 25-800 C resemble the behaviour of τ{sub avg} indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C. (orig.)

  20. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Escobar Galindo, R.; van Veen, A.; Garcia, A.A.; Schut, H.; de Hosson, J.T.M.; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy

  1. Low-energy positron beams - origins, developments and applications

    International Nuclear Information System (INIS)

    Beling, C.D.; Charlton, M.

    1987-01-01

    Over the last 15 years there have been rapid advances in the technology associated with low-energy positron beams. The origins of these advances, and some of the major developments, are discussed. Some applications from the diverse fields of surface physics, atomic scattering and positronium studies are highlighted. (author)

  2. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co 60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  3. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  4. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  5. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  6. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  7. Device for the collimation of a high-energy beam, in particular a X-ray beam

    International Nuclear Information System (INIS)

    Peyser, L.F.

    1976-01-01

    The design of apertures made of radiation-absorbing material intended for limiting an aperture for a radiation beam of high energy, in particular an X-ray beam is claimed. The apertures are shaped as trapezoids, are held movably, and are adjustable by means of a control device. (UWI) [de

  8. A high intensity positron beam at the Brookhaven reactor

    International Nuclear Information System (INIS)

    Weber, M.; Lynn, K.G.; Roellig, L.O.; Mills, A.P. Jr.; Moodenbaugh, A.R.

    1987-01-01

    We describe a high intensity, low energy positron beam utilizing high specific activity /sup 64/Cu sources (870 Ci/g) produced in a reactor with high thermal neutron flux. Fast-to-slow moderation can be performed in a self moderation mode or with a transmission moderator. Slow positron rates up to 1.6 x 10/sup 8/ e/sup +//s with a half life of 12.8 h are calculated. Up to 1.0 x 10/sup 8/ e/sup +//s have been observed. New developments including a Ne moderator and an on-line isotope separation process are discussed. 21 refs., 9 figs

  9. Dynamics of positron beam from a convertor target while beam additional accelerating in a travelling wave electron linac

    International Nuclear Information System (INIS)

    Dzhilavyan, L.Z.; Karev, A.I.

    1981-01-01

    The results of experimental and theoretical investigations of the dynamics of a positron beam produced in a tantalum converter of the 6 mm thickness in the process of beam reacceleration in an electron linac (ELA) are presented. The mean finite positron currents and their dependences on the accelerating electric field are measured. The energy spectra of accelerated positrons are given. A good agreement between the calculated and experimental data is shown. As a result of investigations some peculiarities of positron production on the ELA intersection targets, which are defined by both the initial positron beam parameters from the converter and the dynamics of positron reacceleration in the ELA [ru

  10. High energy beam thermal processing of alpha zirconium alloys and the resulting articles

    International Nuclear Information System (INIS)

    Sabol, G.P.; McDonald, S.G.; Nurminen, J.I.

    1983-01-01

    Alpha zirconium alloy fabrication methods and resultant products exhibiting improved high temperature, high pressure steam corrosion resistance. The process, according to one aspect of this invention, utilizes a high energy beam thermal treatment to provide a layer of beta treated microstructure on an alpha zirconium alloy intermediate product. The treated product is then alpha worked to final size. According to another aspect of the invention, high energy beam thermal treatment is used to produce an alpha annealed microstructure in a Zircaloy alloy intermediate size or final size component. The resultant products are suitable for use in pressurized water and boiling water reactors

  11. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.

    1979-01-01

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  12. Automation of variable low-energy positron beam experiments

    CERN Document Server

    Jayapandian, J; Amarendra, G; Venugopal-Rao, G; Purniah, B; Viswanathan, B

    2000-01-01

    By exploiting the special BIOS interrupt (INT 1CH) of PC in conjunction with a compatible high-voltage controller card and menu-driven control program, we report here the automation of variable low-energy positron beam experiments. The beam experiment consists of monitoring the Doppler broadening lineshape parameters corresponding to the annihilation 511 keV gamma-ray at various positron beam implantation energies. The variation and monitoring of the sample high voltage, which determines positron beam energy, is carried out using a controller add-on card coupled to a 0-30 kV high-voltage unit. The design features of this controller card are discussed. This controller card is housed in a PC, which also houses a multichannel analyser (MCA) card. The MCA stores the Doppler energy spectrum of the annihilation gamma-ray. The interactive control program, written in Turbo C, carries out the assigned tasks. The design features of the automation and results are presented.

  13. The edge transient-current technique (E-TCT) with high energy hadron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor [J. Stefan Institute, Ljubljana (Slovenia); Mikuž, Marko [J. Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Muškinja, Miha; Zavrtanik, Marko [J. Stefan Institute, Ljubljana (Slovenia)

    2016-09-21

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  14. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  15. Renormalization theory of beam-beam interaction in electron-positron colliders

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1989-07-01

    This note is devoted to explaining the essence of the renormalization theory of beam-beam interaction for carrying out analytical calculations of equilibrium particle distributions in electron-positron colliding beam storage rings. Some new numerical examples are presented such as for betatron tune dependence of the rms beam size. The theory shows reasonably good agreements with the results of computer simulations. 5 refs., 6 figs

  16. Parameters affecting profile shape of a high energy low current thin ion beam. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Salam, F W; Moustafa, O A; El-Khabeary, H [Accelerators Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    The shape of the profile of a high energy, low current beam of finite length has beam investigated. The beam profile shape depends on the initial beam radius, beam perveance, atomic mass number, charge state of ions, and beam length. These parameters can affect the relation between the initial beam radius and the corresponding final one. An optimum initial beam radius corresponding to minimum final beam at the target has been formulated and the relation between them is deduced taking account of the space charge effect. The minimum beam radius at the target was found to be equal to 2.3 of the optimum initial radius. It is concluded that in order to obtain a small beam radius at a target placed at a finite distance from an ion source, a beam of a low perveance, low atomic mass number and high number of electronic charge is required. This is an important detection for micro machining applications using the oscillating electron ion source which produces nearly paraxial thin beam of low perveance. 12 figs.

  17. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Brauer, G.; Jungmann, M.; Krille, A.; Rogov, A.; Noack, K.

    2008-01-01

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  18. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    International Nuclear Information System (INIS)

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle

  19. Production and application of pulsed slow-positron beam using an electron LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Tetsuo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Kobayashi, Yoshinori

    1997-03-01

    Slow-positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line by exploiting an electron linac has been constructed in order to carry out various experiments on material analysis. The beam line can generates pulsed positron beams of variable energy and of variable pulse period. Many experiments have been carried out so far with the beam line. In this paper, various capability of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed. (author)

  20. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  1. Electron-positron annihilation at high luminosity colliding beams

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Khodzhamiryan, A.Yu.

    1977-01-01

    Experiments are discussed, which can be carried out at the electron-positron storage rings with increased luminosity (up to 10 34 cm -2 sec -1 ) and corresponding improvement of detectors at total energy region up to 10 GeV. This improvement of the experimental conditions may provide valuable physical information from the theoretical point of view. The comparison is made with analogous experimental possibilities of the projected high energy e + e - storage rings with luminosity up to 10 32 cm -2 sec -1

  2. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    1987-03-01

    In this report e + e - colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  3. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  4. Audit of high energy therapy beams in hospital oncology departments by the National Radiation Laboratory

    International Nuclear Information System (INIS)

    Smyth, V.G.

    1994-02-01

    In 1993 the output of every high energy radiotherapy beam used clinically in New Zealand was measured by National Radiation Laboratory (NRL) staff using independent dosimetry equipment. The purpose of this was to audit the dosimetry that is used by hospital physicists for the basis of patient treatments, and to uncover any errors that may be clinically significant. This report analyses the uncertainties involved in comparing the NRL and hospital measurements, and presents the results of the 1993 audit. The overall uncertainty turns out to be about 1.5%. The results for linear accelerator photon beams are consistent with a purely random variation within this uncertainty. Electron beams show some small errors beyond the expected uncertainty. Gamma beams have the potential to be the most accurately measured, but in practice are less accurately measured than linear accelerator beams. None of the disagreements indicated an error of clinical significance. 8 refs., 3 figs., 2 tabs

  5. Applications of high energy neutralized ion beams to a compact torus

    International Nuclear Information System (INIS)

    Rostoker, N.; Katzenstein, J.

    1986-01-01

    Pulsed ion beams can be produced with ion diodes and Marx generators. The technology exists to produce high energy beams efficiently. A neutralized ion beam has an equal number of co-moving electrons. The resultant beam is electrically neutral, has no net current and can be transported across a magnetic field if the current density is sufficiently large. Preliminary experimental results have been obtained on injecting a neutralized proton beam into a small tokamak. To illuminate the physical processes involved in injection and trapping an experiment has been designed for TEXT. Possible applications to a compact torus include plasma heating, current maintenance and non-equilibrium reactors that do not require ignition. Each application is discussed and comparisons are made with other methods. (author)

  6. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  7. Positron emission medical measurements with accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Llacer, J.

    1988-01-01

    This paper reviews in some detail the process by which a heavy ion accelerator can be used to inject positron emitting radioactive particles into a human body for a range of possible medical measurements. The process of radioactive beam generation and injection is described, followed by a study of the relationship between activity that can be injected versus dose to the patient as a function of which of the positron emitting ions is used. It is found that 6 C 10 and 10 Ne 19 are the two isotopes that appear more promising for injection into humans. The design considerations for a non-tomographic instrument to obtain images from beam injections are outlined and the results of 10 Ne 19 preliminary measurements with human phantoms and actual patients for the determination of end-of-range of cancer therapy ion beams is reported. Accuracies in the order of ±1 mm in the measurements of stopping point of a therapy beam with safe doses to the patient are reported. The paper concludes with a simple analysis of requirements to extend the technique to on-line verification of cancer treatment and to nuclear medicine research and diagnostics measurements. 17 refs.; 16 figs.; 3 tabs

  8. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Alpen, E.L.; Chatterjee, A.; Llacer, J.

    1981-01-01

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11 C and 19 Ne beams, but the short half-life of 19 Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  9. Automatically controlled correlation spectrometer with a bounded positron beam

    International Nuclear Information System (INIS)

    Grone, R.

    1991-01-01

    The spectrometer consists of a frame which carries a fixed arm with collimating slits and a pair of scintillator units positioned against each other, and a movable arm which moves in the horizontal plane and also holds collimating slits and two scintillator units positioned against each other. In the centre of the frame is a shielding cover with a chamber housing a slidable positron source. The end of the cover is fitted with a replaceable diaphragm against which a sample holder is positioned. The chamber with a bounded positron beam can be employed to measure a sample at preselected sites and thus gain information concerning various parts of the sample surface and its inhomogeneity. (M.D.). 3 figs

  10. The generation and development of the moderators for slow positron beam

    International Nuclear Information System (INIS)

    Yu Weizhong; Yuan Jiaping

    2001-01-01

    The positron annihilation technique is a sensitive tool for studying microdefects and phase transitions in various materials. Usually the energy of positrons is on the order of MeV and the implantation depth about 100 microns, so the bulk average defect density can be studied. In a slow positron beam the positron energy is about keV and the implantation depth a few microns, so surface defects can be detected. Positron moderator is the key device for obtaining a slow positron beam. The authors review the history and development of the positron moderator, including four methods that convert fast positrons into slow mono-energetic positrons and five array types. The tungsten moderator is the most widely used one while the inert gas solid moderator is the most efficient. Field-enhanced moderators with their high efficiency have great potential but need to be developed. The vane arrangement is the most commonly found

  11. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    Saadatmand, K.; Johnson, K.F.; Schneider, J.D.

    1991-01-01

    A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs

  12. Operating instructions for ORELA [Oak Ridge Electron Linear Accelerator] positron beam line

    International Nuclear Information System (INIS)

    Donohue, D.L.; Hulett, L.D. Jr.; Lewis, T.A.

    1990-11-01

    This report will contain details of the construction and operation of the positron beam line. Special procedures which are performed on a less frequent basis will also be described. Appendices will contain operating instructions for experiments which make use of the positron beam and are connected to the beam line. Finally, a review of safety-related considerations will be presented

  13. The beam energy measurement system for the Beijing electron-positron collider

    International Nuclear Information System (INIS)

    Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.; Todyshev, K.Yu.

    2011-01-01

    The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2×10 -5 . The relative uncertainty of the beam's energy spread is about 6%.

  14. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Zhang, Jing; Zhang, Guilong; Cai, Dongqing; Wu, Zhengyan

    2015-01-01

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  15. Immediate remediation of heavy metal (Cr(VI)) contaminated soil by high energy electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Zhang, Guilong [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei 230031 (China); Bioenergy Forest Research Center of State Forestry Administration, Hefei 230031 (China)

    2015-03-21

    Highlights: • An immediate remediation method for Cr(VI) contaminated soil (CCS) was developed. • High energy electron beam (HEEB) irradiation could reduce Cr(VI) in CCS to Cr(III). • This effect was attributed to electrons, hydrated electrons, and reductive radicals. • This remediation method was effective, environmentally friendly, and low-cost. - Abstract: This work developed an immediate and high-performance remediation method for Cr(VI) contaminated soil (CCS) using high energy electron beam (HEEB) irradiation. The result indicated that, compared with γ-ray irradiation, HEEB irradiation displayed a significant reduction efficiency on Cr(VI) in CCS to Cr(III) with substantially lower toxicity, which was mainly attributed to the reduction effects of electrons, hydrated electrons, and reductive radicals generated in the irradiation process of HEEB. This work could provide a one-step and effective method for the remediation of heavy metal contaminated soil (HMCS)

  16. Cooling equilibrium and beam loss with internal targets in high energy storage rings

    International Nuclear Information System (INIS)

    Boine-Frankenheim, O.; Hasse, R.; Hinterberger, F.; Lehrach, A.; Zenkevich, P.

    2006-01-01

    The beam cooling equilibrium with internal target interaction is analyzed for parameters relevant to the proposed High Energy Storage Ring (HESR). For the proposed experiments with anti-protons high luminosities together with low momentum spreads are required. Rate equations are used to predict the rms equilibrium beam parameters. The cooling and IBS rate coefficients are obtained from simplified models. Energy loss straggling in the target and the associated beam loss are analyzed analytically assuming a thin target. A longitudinal kinetic simulation code is used to study the evolution of the momentum distribution in coasting and bunched beams. Analytic expressions for the target induced momentum tail are found in good agreement with the simulation results

  17. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  18. On beam quality and stopping power ratios for high-energy x-rays

    International Nuclear Information System (INIS)

    Johnsson, S.A.; Ceberg, C.P.; Knoeoes, T.; Nilsson, P.

    2000-01-01

    The aim of this work is to quantitatively compare two commonly used beam quality indices, TPR(20/10) and %dd(10) x , with respect to their ability to predict stopping power ratios (water to air), s w,air , for high-energy x-rays. In particular, effects due to a varied amount of filtration of the photon beam will be studied. A new method for characterizing beam quality is also presented, where the information we strive to obtain is the moments of the spectral distribution. We will show how the moments enter into a general description of the transmission curve and that it is possible to correlate the moments to s w,air with a unique and simple relationship. Comparisons with TPR(20/10) and %dd(10) x show that the moments are well suited for beam quality specification in terms of choosing the correct s w,air . (author)

  19. On a method for high-energy electron beam production in proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1979-01-01

    It is suggested to produce high-energy electron beams in such a way that the ultrarelativistic protons give an amount of their kinetic energy to the electrons of a thin target, placed inside the working volume of the proton synchrotron. The kinematics of the elastic scattering of relativistic protons on electrons at rest is treated. Evaluation of a number of elastically-scattered electrons by 1000 GeV and 3000 GeV proton beams is presented. The method under consideration is of certain practical interest and may appear to be preferable in a definite energy range of protons and electrons

  20. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  1. High energy accelerator and colliding beam user group. Progress report 1978/1979

    International Nuclear Information System (INIS)

    Snow, G.

    1979-12-01

    The High Energy Physics Group at the U. of Maryland engaged in a substantial number of different types of particle physics experiments. The largest and most important experiment is that on e + e - interactions. Three experiments were carried out to search for exotic particles or interactions: a heavy neutral lepton, muonium to antimuonium transitions, axions produced by an intense electron beam. No evidence for any of these phenomena was obtained, and the corresponding limitations on relevant parameters were deduced. 10 figures

  2. Utilization of high energy electron beam in the treatment of drinking and waste water

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-08-01

    Samples of drinking water and waste water were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% tri halomethanes (THM) in drinking water (concentration from 2.7 μg/1 to 45μg/1, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid waste water. (author)

  3. High energy density in matter produced by heavy ion beams. Annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    Research activities presented in this annual report were carried out in 1987 in the framework of the government-funded program 'High Energy Density in Matter Produced by Heavy Ion Beams'. It addresses fundamental problems of the generation and investigation of hot dense matter. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense heavy ion beams. The new accelerator facility SIS/ESR now under construction at GSI will provide an excellent potential for research in this field. The construction work at the new validity is on schedule. The building construction is near completion and the SIS accelerator will have its first beam at the beginning of next year. First experiments at lower intensity will start in summer 1989 and the full program will run after the cooler and storage ring ESR has got operational. Accordingly, the planning and the preparation of the high energy density experiments at this unique facility was an essential part of the activities last year. In this funding period emphasis was given to the experimental activities at the existing accelerator. In addition to a number of accelerator-oriented and instrumental developments, an experiment on beam-plasma interaction had first exciting results, a significant increase of the stopping power for heavy ions in plasma was measured. Other important activities were the investigation of dielectronic recombination of highly charged ions, spectroscopic investigations aiming at the pumping of short wavelength lasers by heavy ion beams and a crossed beam experiment for the determination of Bi + + Bi + ionization cross sections. As in previous years theoretical work an space-charge dominated beam dynamics as well as on hydrodynamics of dense plasmas, radiation transport and beam plasma interaction was continued, thus providing a basis for the future experiments. (orig.)

  4. EPOS-An intense positron beam project at the ELBE radiation source in Rossendorf

    International Nuclear Information System (INIS)

    Krause-Rehberg, R.; Sachert, S.; Brauer, G.; Rogov, A.; Noack, K.

    2006-01-01

    EPOS, the acronym of ELBE Positron Source, describes a running project to build an intense pulsed beam of mono-energetic positrons (0.2-40 keV) for materials research. Positrons will be created via pair production at a tungsten target using the pulsed 40 MeV electron beam of the superconducting linac electron linac with high brilliance and low emittance (ELBE) at Forschungszentrum Rossendorf (near Dresden, Germany). The chosen design of the system under construction is described and results of calculations simulating the interaction of the electron beam with the target are presented, and positron beam formation and transportation is also discussed

  5. Positron and positronium annihilation in low-dielectric-constant films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Yu, R.S.; Shioya, Y.; Ichikawa, H.; Hosomi, H.; Ishikiriyama, K.; Shirataki, H.; Matsuno, S.; Xu, J.

    2004-01-01

    Positron and positronium annihilation in porous low-dielectric-constant (low-k) films deposited by plasma-enhanced chemical vapor deposition (PECVD) and spin-on dielectric (SOD) have been investigated by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The ortho-positronium (o-Ps) lifetime strongly depends on the deposition condition. In general, PECVD low-k films have shorter o-Ps lifetimes than SOD low-k films, indicating PECVD low-k films have smaller pores. Since o-Ps diffusion and escaping from the surface occurs in most of porous SOD films, three-gamma annihilation measurement is important. To investigate o-Ps behavior in SOD films, we have carried out two-dimensional (2D) PALS measurement, which measures annihilation time and pulse-height of the scintillation detector simultaneously. Monte-Carlo simulation of the o-Ps diffusion and escaping in porous films has been carried out to simulate the 2D-PALS results. (orig.)

  6. Radiation hygienization of cattle and swine slurry with high energy electron beam

    International Nuclear Information System (INIS)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-01-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D 90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms. - Highlights: ► The hygienic efficiency of electron beam against slurry was researched. ► The hygienization efficiency depended on the slurry characteristics and microorganism species. ► In most of the cases 7 kGy dose was sufficient for slurry hygienization. ► Dose below 1 kGy allowed for 90% elimination of microorganism population. ► The radiation hygienization is a good alternative for typical slurry treatment methods

  7. Simulation of wire-compensation of long range beam beam interaction in high energy accelerators

    International Nuclear Information System (INIS)

    Dorda, U.; )

    2006-01-01

    Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)

  8. Simulation of the magnetic mirror effect on a beam of positrons

    CERN Document Server

    Boursette, Delphine

    2014-01-01

    I simulated a beam of positrons at the entrance of a 5 Tesla magnet for the Aegis experiment. The goal was to show how many positrons are lost because of the magnetic mirror effect. To do my simulation, I used Comsol to create the magnetic field map and Geant4 to draw the trajectories of the positrons in this field map.

  9. Studies on the dose distribution and treatment technique of high energy electron beams

    International Nuclear Information System (INIS)

    Lee, D.H.; Chu, S.S.

    1978-01-01

    Some important properties of high energy electron beams from the linear accelerator, LMR-13, installed in the Yonsei Cancer Center were studied. The results of experimental studies on the problems associated with the 8, 10, and 12 MeV electron beam therapy were as followings; The ionization type dosemeters calibrated by 90 Sr standard source were suitable to the measurements of the outputs and the obsorbed doses in accuracy point of view, and dose measurements using ionization chambers were difficult when measuring doses in small field size and the regions of rapid fall off. The electron energies were measured precisely with an energy spectrometer, and the practical electron energy was calculated within 5% error in the maximum range of the high energy electron beam in water. The correcting factors of perturbated dose distributions owing to radiation field, energy, and materials of the treatment cone were checked and described systematically and thus the variation of dose distributions due to the non-homogeneities of tissues and slopping skin surfaces were completely compensated. The electron beams were adequately diffused using the scatterers, and minimized the bremsstrahlung, irradiation field size, and materials of scatterers. Thus, the therapeutic capacity with the limited electron energy could be extended by improving the dose distributions. (author)

  10. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  11. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  12. Production of slow positron beam with small diameter using electron linac in Osaka University

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Yoshihide; Sawada, Junichi; Yamada, Masaki; Maekawa, Masaki; Okuda, Shuichi; Yoshida, Yoichi; Isoyama, Goro; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Yamamoto, Takayoshi

    1997-03-01

    A slow positron facility using an electron linac was designed and constructed. The specifications were mainly decided by numerical calculations. The slow positrons are transported along magnetic field line. The cross sectional size of slow positron beam is 1-2cm and the maximum conversion rate from electron to positron is about 1.5 x 10{sup -6}. This value is about 1/4 of ideal case in our system. Extraction of slow positron beam from magnetic field region was made and preliminary brightness enhancement experiment was also performed. (author)

  13. Measurement of residual radioactivity in cooper exposed to high energy heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunjoo; Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Uwamino, Yoshitomo; Ito, Sachiko; Fukumura, Akifumi

    1999-03-01

    The residual radioactivities produced by high energy heavy ions have been measured using the heavy ion beams of the Heavy Ion Medical Accelerator (HIMAC) at National Institute of Radiological Sciences. The spatial distribution of residual radioactivities in 3.5 cm, 5.5 cm and 10 cm thick copper targets of 10 cm x 10 cm size bombarded by 290 MeV/u, 400 MeV/u-{sup 12}C ion beams and 400 MeV/u-{sup 20}Ne ion beam, respectively, were obtained by measuring the gamma-ray activities of 0.5 mm thick copper foil inserted in the target with a high purity Ge detector after about 1 hour to 6 hours irradiation. (author)

  14. On some methods to produce high-energy polarized electron beams by means of proton synchrotrons

    International Nuclear Information System (INIS)

    Bessonov, E.G.; Vazdik, Ya.A.

    1980-01-01

    Some methods of production of high-energy polarized electron beams by means of proton synchrotrons are considered. These methods are based on transfer by protons of a part of their energy to the polarized electrons of a thin target placed inside the working volume of the synchrotron. It is suggested to use as a polarized electron target a magnetized crystalline iron in which proton channeling is realized, polarized atomic beams and the polarized plasma. It is shown that by this method one can produce polarized electron beams with energy approximately 100 GeV, energy spread +- 5 % and intensity approximately 10 7 electron/c, polarization approximately 30% and with intensity approximately 10 4 -10 5 electron/c, polarization approximately 100% [ru

  15. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang

    2015-02-01

    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10^{21}  W/cm^{2}.

  16. Physical measurements with a high-energy proton beam using liquid and solid tissue substitutes

    International Nuclear Information System (INIS)

    Constantinou, C.; Kember, N.F.; Huxtable, G.; Whitehead, C.

    1980-01-01

    The measurement of the physical parameters of a high-energy proton beam, using a range of liquid and solid tissue substitutes, is described. The system, the detectors used and the experimental verification of the tissue equivalence of the new tissue substitutes is presented. The measurements with the scattered but uncollimated proton beam in muscle-and brain-equivalent liquids and in water are compared to similar data obtained from the scattered but collimated beam. The effect of lung, fat and bone on the dose distributions in composite phantoms is also investigated and the necessary corrections established. A simulated patient treatment indicated that the Bragg peak can be positioned with an error not exceeding +-0.5 mm. (author)

  17. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  18. Resonant production of dark photons in positron beam dump experiments

    Science.gov (United States)

    Nardi, Enrico; Carvajal, Cristian D. R.; Ghoshal, Anish; Meloni, Davide; Raggi, Mauro

    2018-05-01

    Positrons beam dump experiments have unique features to search for very narrow resonances coupled superweakly to e+e- pairs. Due to the continued loss of energy from soft photon bremsstrahlung, in the first few radiation lengths of the dump a positron beam can continuously scan for resonant production of new resonances via e+ annihilation off an atomic e- in the target. In the case of a dark photon A' kinetically mixed with the photon, this production mode is of first order in the electromagnetic coupling α , and thus parametrically enhanced with respect to the O (α2)e+e-→γ A' production mode and to the O (α3)A' bremsstrahlung in e- -nucleon scattering so far considered. If the lifetime is sufficiently long to allow the A' to exit the dump, A'→e+e- decays could be easily detected and distinguished from backgrounds. We explore the foreseeable sensitivity of the Frascati PADME experiment in searching with this technique for the 17 MeV dark photon invoked to explain the Be 8 anomaly in nuclear transitions.

  19. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    International Nuclear Information System (INIS)

    Guessoum, N.; Jean, P.; Gillard, W.

    2006-01-01

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM

  20. Relevance of slow positron beam research to astrophysical studies of positron interactions and annihilation in the interstellar medium

    Energy Technology Data Exchange (ETDEWEB)

    Guessoum, N. [American University of Sharjah, Physics Department, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: nguessoum@aus.ac.ae; Jean, P. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France); Gillard, W. [Centre d' Etude Spatiale des Rayonnements, Toulouse (France)

    2006-02-28

    The processes undergone by positrons in the interstellar medium (ISM) from the moments of their birth to their annihilation are examined. Both the physics of the positron interactions with gases and solids (dust grains), and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation taking place, are reviewed. An explanation is given as to how all the relevant physical information are taken into account in order to calculate annihilation rates and spectra of the 511 keV emission for the various phases of the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. An attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of slow positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the solid-state positron communities is strongly emphasized and specific experimental work is suggested which could assist the modeling of the interaction and annihilation of positrons in the ISM.

  1. Physics of neutralization of intense high-energy ion beam pulses by electrons

    International Nuclear Information System (INIS)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  2. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B.; Lee, E.P.; Friedman, A.

    2010-01-01

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  3. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  4. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  5. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  6. Semiconductor devices as track detectors in high energy colliding beam experiments

    International Nuclear Information System (INIS)

    Ludlam, T.

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems

  7. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  8. Semiconductor devices as track detectors in high energy colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  9. Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd., 5-3 Ozushima, Izumiohtsu, Osaka 595-0074 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-04-01

    A novel method for preparing thin Au films directly on resin substrates using an electron beam was developed. The thin Au films were prepared on a resin substrate by the reduction of Au ions in an aqueous solution via irradiation with a high-energy electron beam (4.8 MeV). This reduction method required 7 s of the irradiation time of the electron beam. Furthermore, no reductant or catalyst was needed. As the concentration of Au ions in the precursor solution was increased, the amount of Au deposited on the resin substrate increased, too, and the structure of the prepared Au film changed. As a result, the film color changed as well. Cross-sectional scanning electron microscope images of the thus-prepared Au film indicated that the Au films were consisted of two layers: a particle layer and a bottom bulk layer. There was strong adhesion between the Au films and the underlying resin substrates. This was confirmed by the tape-peeling test and through ultrasonic cleaning. After both processes, Au remained on the resin substrates, while most of the particle-like moieties were removed. This indicated that the thin Au films prepared via irradiation with a high-energy electron beam adhered strongly to the resin substrates. - Highlights: • A thin gold (Au) film was formed by EBIRM for the first time. • The irradiation time of the electron beam was less than 10 s. • Thin Au films were obtained without reductant or catalyst. • Au films were consisted of two layers: a particle layer and a bottom bulk layer. • There was strong adhesion between the bottom bulk layer and the underlying resin substrates.

  10. Automatic sup sup 1 sup sup 8 F positron source supply system for a monoenergetic positron beam

    CERN Document Server

    Saito, F; Itoh, Y; Goto, A; Fujiwara, I; Kurihara, T; Iwata, R; Nagashima, Y; Hyodo, T

    2000-01-01

    A system which supplies an intense sup sup 1 sup sup 8 F (half life 110 min) positron source produced by an AVF cyclotron through sup sup 1 sup sup 8 O(p,n) sup sup 1 sup sup 8 F reaction has been constructed. Produced sup sup 1 sup sup 8 F is transferred to a low background experiment hall through a capillary. It is electro-deposited on a graphite rod and used for a source of a slow positron beam. In the meantime the next batch of target sup sup 1 sup sup 8 O water is loaded and proton irradiation proceeds. This system makes it possible to perform continuous positron beam experiments using the 18 F positron source.

  11. The beam energy measurement system for the Beijing electron-positron collider

    International Nuclear Information System (INIS)

    Zhang, J.Y.; Abakumova, E.V.; Achasov, M.N.; Blinov, V.E.; Cai, X.; Dong, H.Y.; Fu, C.D.; Harris, F.A.; Kaminsky, V.V.; Krasnov, A.A.; Liu, Q.; Mo, X.H.; Muchnoi, N.Yu.; Nikolaev, I.B.; Qin, Q.; Qu, H.M.; Olsen, S.L.; Pyata, E.E.; Shamov, A.G.; Shen, C.P.

    2012-01-01

    The beam energy measurement system (BEMS) for the upgraded Beijing electron-positron collider BEPC-II is described. The system is based on measuring the energies of Compton back-scattered photons. The relative systematic uncertainty of the electron and positron beam energy determination is estimated as 2⋅10 -5 .

  12. Treatment of extra-mammary Paget's disease with high energy electron beam

    International Nuclear Information System (INIS)

    Ogawa, Yasuhiro; Kimura, Syuji; Kumano, Machiko; Tsuboi, Yoshitaka; Gose, Kyuhei.

    1979-01-01

    10 patients with extra-mammary Paget's disease were treated with high energy electron beam. 3 were treated surgically before irradiation. They were irradiated with the dose from, 6,000 rad in 40 fractions in 53 days to 9,900 rad in 66 fractions in 90 days. 3 recurred within 2 years and 1 recurred after 4.8 years and 1 recurred after 5 years. The early recurrence was observed around the irradiated field, while the late recurrence was seen in the irradiated field. A wider area should be irradiated to control this invasive disease. (author)

  13. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  14. Hardness enhancement and crosslinking mechanisms in polystyrene irradiated with high energy ion-beams

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Mansur, L.K.

    1996-01-01

    Surface hardness values several times larger than steel were produced using high energy ion beams at several hundred keV to MeV. High LET is important for crosslinking. Crosslinking is studied by analyzing hardness variations in response to irradiation parameter such as ion species, energy, and fluence. Effective crosslinking radii at hardness saturation are derived base on experimental data for 350 keV H + and 1 MeV Ar + irradiation of polystyrene. Saturation value for surface hardness is about 20 GPa

  15. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    International Nuclear Information System (INIS)

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-01-01

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations.

  16. Hydrogen microscopy and analysis of DNA repair using focused high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Dollinger, G. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany)]. E-mail: guenther.dollinger@unibw.de; Bergmaier, A. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Hauptner, A. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Dietzel, S. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Drexler, G.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany); Greubel, C. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Hable, V. [Universitaet der Bundeswehr Muenchen, LRT 2, Werner Heisenberg Weg 39, D-85579 Neubiberg (Germany); Reichart, P. [School of Physics, University of Melbourne, Victoria 3010 (Australia); Kruecken, R. [Physik Department E 12, Technische Universitaet Muenchen, D-85748 Garching (Germany); Cremer, T. [Department Biologie II, Ludwigs-Maximilians-Universitaet Muenchen, Grosshaderner Str. 2, 82152 Planegg-Martinsried (Germany); Friedl, A.A. [Strahlenbiologisches Institut, LMU Muenchen, Schillerstr. 42, D-80336 Muenchen und Institut fuer Strahlenbiologie, GSF-Forschungszentrum, D-85764 Neuherberg (Germany)

    2006-08-15

    The ion microprobe SNAKE (Supraleitendes Nanoskop fuer Angewandte Kernphysikalische Experimente) at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, i.e. 4-28 MeV protons or up to 250 MeV gold ions. Due to these ion beams, SNAKE is particularly attractive for ion beam analyses in various fields. Here we describe two main applications of SNAKE. One is the unique possibility to perform three-dimensional hydrogen microscopy by elastic proton-proton scattering utilizing high energy proton beams. The high proton energies allow the analysis of samples with a thickness in the 100 {mu}m range with micrometer resolution and a sensitivity better than 1 ppm. In a second application, SNAKE is used to analyse protein dynamics in cells by irradiating live cells with single focussed ions. Fluorescence from immunostained protein 53BP1 is used as biological track detector after irradiation of HeLa cells. It is used to examine the irradiated region in comparison with the targeted region. Observed patterns of fluorescence foci agree reasonably well with irradiation patterns, indicating an overall targeting accuracy of about 2 {mu}m while the beam spot size is less than 0.5 {mu}m in diameter. This performance shows successful adaptation of SNAKE for biological experiments where cells are targeted on a sub-cellular level by energetic ions.

  17. Imaging high energy photons with PILATUS II at the tagged photon beam at MAX-lab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V. [School of Physics, University of Melbourne, Parkville 3010 (Australia)], E-mail: leev@physics.unimelb.edu.au; Peake, D.J.; Sobott, B. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Schroeder, B. [MAX-lab, Lund University, Lund (Sweden); Broennimann, Ch. [DECTRIS Ltd., Baden (Switzerland); Henrich, B. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Hansen, K. [MAX-lab, Lund University, Lund (Sweden); O' Keefe, G.J. [Centre for PET, Austin Hospital, Heidelberg, Victoria 3084 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Taylor, G.N. [School of Physics, University of Melbourne, Parkville 3010 (Australia); Boland, M.J. [Australian Synchrotron, Clayton, Victoria 3168 (Australia); School of Physics, University of Melbourne, Parkville 3010 (Australia); Thompson, M.N.; Rassool, R.P. [School of Physics, University of Melbourne, Parkville 3010 (Australia)

    2009-05-21

    In photonuclear experiments precise location of the photon beam relative to the experimental sample is critical. Previously used techniques such as using photographic film to identify the position, intensity and centroid of the beam is time-consuming and a faster method is required. PILATUS is a single-photon-counting pixel detector developed at the Paul Scherrer Institute (PSI), Switzerland. It is a silicon-based, two-dimensional detector with a large dynamic range and zero readout noise. Designed as an X-ray detector, its optimal quantum efficiency is between 3 and 30 keV. This paper reports measurements carried out at the MAX-lab tagged photon facility in Lund, Sweden. The beam endpoint energy of approximately 200 MeV is far above the designed optimal energy detection range of PILATUS, and provides a critical test of the use of PILATUS under high energy conditions. The detector was placed in the photon beam and images were taken both downstream of other experiments, and in close range of a 19 mm collimator. The successful measurements demonstrate the versatility and robustness of the detector and provide an effective way of quickly and accurately monitoring beam position and profile in real time.

  18. Performance of a MICROMEGAS-based TPC in a high-energy neutron beam

    Science.gov (United States)

    Snyder, L.; Manning, B.; Bowden, N. S.; Bundgaard, J.; Casperson, R. J.; Cebra, D. A.; Classen, T.; Duke, D. L.; Gearhart, J.; Greife, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Higgins, D.; Isenhower, D.; King, J.; Klay, J. L.; Geppert-Kleinrath, V.; Loveland, W.; Magee, J. A.; Mendenhall, M. P.; Sangiorgio, S.; Seilhan, B.; Schmitt, K. T.; Tovesson, F.; Towell, R. S.; Walsh, N.; Watson, S.; Yao, L.; Younes, W.

    2018-02-01

    The MICROMEGAS (MICRO-MEsh GAseous Structure) charge amplification structure has found wide use in many detection applications, especially as a gain stage for the charge readout of Time Projection Chambers (TPCs). Here we report on the behavior of a MICROMEGAS TPC when operated in a high-energy (up to 800 MeV) neutron beam. It is found that neutron-induced reactions can cause discharges in some drift gas mixtures that are stable in the absence of the neutron beam. The discharges result from recoil ions close to the MICROMEGAS that deposit high specific ionization density and have a limited diffusion time. For a binary drift gas, increasing the percentage of the molecular component (quench gas) relative to the noble component and operating at lower pressures generally improves stability.

  19. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  20. Inhomogeneities in high energy photon beams used in radiotherapy. Experimental and theoretical studies

    International Nuclear Information System (INIS)

    Kappas, K.

    1986-01-01

    This work is dedicated to the influence of the human body inhomogeneities on the dose distribution for high energy photons beams used in Radiotherapy. It consists in an experimental part and a theoretical analysis leading to original models of calculation. We study essentially, - the beam quality of the machines used and its influence on some basic dosimetric quantities and on the response of an ionization chamber. - The dose perturbation due to off-axis heterogeneous volumes at off-axis points of measurement; a model is suggested to take into account the perturbation of the multiple scatter. The perturbation of the dose in the transition region, between water equivalent medium and heterogeneous medium (air) is also investigated. The last part is devoted to computer applications of the proposed correction methods and to a comparison between the different computerized treatment planning systems which take into account of inhomogeneities [fr

  1. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    International Nuclear Information System (INIS)

    Nadrowitz, Roger; Feyerabend, Thomas

    2001-01-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved

  2. Backscatter dose from metallic materials due to obliquely incident high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Nadrowitz, Roger; Feyerabend, Thomas [Medical University of Luebeck, Germany, Department of Radiotherapy and Nuclear Medicine, Ratzeburger Allee 160, Luebeck, D-23538 (Germany)

    2001-06-01

    If metallic material is exposed to ionizing radiation of sufficient high energy, an increase in dose due to backscatter radiation occurs in front of this material. Our purpose in this study was to quantify these doses at variable distances between scattering materials and the detector at axial beam angles between 0 deg. (zero angle in beams eye view) and 90 deg. . Copper, silver and lead sheets embedded in a phantom of perspex were exposed to 10 MV-bremsstrahlung. The detector we developed is based on the fluorescence property of pyromellitic acid (1,2,4,5 benzenetetracarboxylic acid) after exposure to ionizing radiation. Our results show that the additional doses and the corresponding dose distribution in front of the scattering materials depend quantitatively and qualitatively on the beam angle. The backscatter dose increases with varying beam angle from 0 deg. to 90 deg. up to a maximum at 55 deg. for copper and silver. At angles of 0 deg. and 55 deg. the integral backscatter doses over a tissue-equivalent depth of 2 mm are 11.2% and 21.6% for copper and 24% and 28% for silver, respectively. In contrast, in front of lead there are no obvious differences of the measured backscatter doses at angles between 0 deg. and 55 deg. With a further increase of the beam angle from 55 deg. to 90 deg. the backscatter dose decreases steeply for all three materials. In front of copper a markedly lower penetrating depth of the backscattered electrons was found for an angle of 0 deg. compared to 55 deg. This dependence from the beam angle was less pronounced in front of silver and not detectable in front of lead. In conclusion, the dependence of the backscatter dose from the angle between axial beam and scattering material must be considered, as higher scattering doses have to be considered than previously expected. This may have a clinical impact since the surface of metallic implants is usually curved.

  3. Generation and application of slow positrons based on a electron LINAC

    International Nuclear Information System (INIS)

    Kurihara, Toshikazu

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses 58 Co, 64 Cu, 11 C, 13 N, 15 O and 18 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihilation excitation and positron reemission microscope are developed. (S.Y.)

  4. Radiation processing of polymers with high energy electron beams: novel materials and processes

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Sabharwal, Sunil

    2002-01-01

    High-energy ionizing radiation available from electron beam (EB) accelerators has the ability to create extremely reactive species like free radicals or ions at room temperature or even at low temperature in any phase and in a variety of substrates without addition of external additives. This unique advantage of high energy has been utilized in the recent years to produce better quality materials in an environment friendly and cost-effective manner. The availability of high power and reliable EB accelerators has provided new tools to modify the materials and/or processes for a variety of applications. At BARC, a 2 MeV, 20 kW electron beam accelerator has been the nucleus of developing industrial applications of radiation processing in India for last 10 years. The focus has been on developing technologies that are of relevance to Indian socio-economic conditions and also provide economic benefits to the industry. In the areas of polymer processing industry, commercial success has already been achieved while for exploring its applications in the areas of food and agriculture and environment, technology demonstration plants are being set up. The current status of the programme, the new developments and future direction of radiation processing technology shall be presented in this paper. (author)

  5. Scintillation screen materials for beam profile measurements of high energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Renuka

    2016-06-22

    For the application as a transverse ion beam diagnostics device, various scintillation screen materials were analysed. The properties of the materials such as light output, image reproduction and radiation stability were investigated with the ion beams extracted from heavy ion synchrotron SIS-18. The ion species (C, Ne, Ar, Ta and U) were chosen to cover the large range of elements in the periodic table. The ions were accelerated to the kinetic energies of 200 MeV/u and 300 MeV/u extracted with 300 ms pulse duration and applied to the screens. The particle intensity of the ion beam was varied from 10{sup 4} to 10{sup 9} particles per pulse. The screens were irradiated with typically 40 beam pulses and the scintillation light was captured using a CCD camera followed by characterization of the beam spot. The radiation hardness of the screens was estimated with high intensity Uranium ion irradiation. In the study, a linear light output for 5 orders of magnitude of particle intensities was observed from sensitive scintillators and ceramic screens such as Al{sub 2}O{sub 3}:Cr and Al{sub 2}O{sub 3}. The highest light output was recorded by CsI:Tl and the lowest one by Herasil. At higher beam intensity saturation of light output was noticed from Y and Mg doped ZrO{sub 2} screens. The light output from the screen depends not only on the particle intensity but also on the ion species used for irradiation. The light yield (i.e. the light intensity normalised to the energy deposition in the material by the ion) is calculated from the experimental data for each ion beam setting. It is shown that the light yield for light ions is about a factor 2 larger than the one of heavy ions. The image widths recorded exhibit a dependence on the screens material and differences up to 50 % were registered. On radiation stability analysis with high particle intensity of Uranium ions of about 6 x 10{sup 8} ppp, a stable performance in light output and image reproduction was documented from Al

  6. Embedded design based virtual instrument program for positron beam automation

    International Nuclear Information System (INIS)

    Jayapandian, J.; Gururaj, K.; Abhaya, S.; Parimala, J.; Amarendra, G.

    2008-01-01

    Automation of positron beam experiment with a single chip embedded design using a programmable system on chip (PSoC) which provides easy interfacing of the high-voltage DC power supply is reported. Virtual Instrument (VI) control program written in Visual Basic 6.0 ensures the following functions (i) adjusting of sample high voltage by interacting with the programmed PSoC hardware, (ii) control of personal computer (PC) based multi channel analyzer (MCA) card for energy spectroscopy, (iii) analysis of the obtained spectrum to extract the relevant line shape parameters, (iv) plotting of relevant parameters and (v) saving the file in the appropriate format. The present study highlights the hardware features of the PSoC hardware module as well as the control of MCA and other units through programming in Visual Basic

  7. Skin damage probabilities using fixation materials in high-energy photon beams

    International Nuclear Information System (INIS)

    Carl, J.; Vestergaard, A.

    2000-01-01

    Patient fixation, such as thermoplastic masks, carbon-fibre support plates and polystyrene bead vacuum cradles, is used to reproduce patient positioning in radiotherapy. Consequently low-density materials may be introduced in high-energy photon beams. The aim of the this study was to measure the increase in skin dose when low-density materials are present and calculate the radiobiological consequences in terms of probabilities of early and late skin damage. An experimental thin-windowed plane-parallel ion chamber was used. Skin doses were measured using various overlaying low-density fixation materials. A fixed geometry of a 10 x 10 cm field, a SSD = 100 cm and photon energies of 4, 6 and 10 MV on Varian Clinac 2100C accelerators were used for all measurements. Radiobiological consequences of introducing these materials into the high-energy photon beams were evaluated in terms of early and late damage of the skin based on the measured surface doses and the LQ-model. The experimental ion chamber save results consistent with other studies. A relationship between skin dose and material thickness in mg/cm 2 was established and used to calculate skin doses in scenarios assuming radiotherapy treatment with opposed fields. Conventional radiotherapy may apply mid-point doses up to 60-66 Gy in daily 2-Gy fractions opposed fields. Using thermoplastic fixation and high-energy photons as low as 4 MV do increase the dose to the skin considerably. However, using thermoplastic materials with thickness less than 100 mg/cm 2 skin doses are comparable with those produced by variation in source to skin distance, field size or blocking trays within clinical treatment set-ups. The use of polystyrene cradles and carbon-fibre materials with thickness less than 100 mg/cm 2 should be avoided at 4 MV at doses above 54-60 Gy. (author)

  8. Studies on the production of high energy densities in matter by intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-08-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopical amount of matter is studied. Thereby high energy densities in the target matter are produced. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A KR + -ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focussed by a fine-focusing lens to a closed xenon gas target. The light emitted from the target was space- and time resolved taken up by a spectrometer as well as by a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam was observed. The free electron density of the plasma was determined from the Stark broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The temperature could be determined by different methods (shock-wave velocity, degree of ionization, line ratios). The electron temperature amounted in the center of the pipe to kT ≅ 0.75 eV. For the opacity of the target by which the emitted light power is determined under the assumption of the two-dimensional model (equilibrium between emitted and absorbed energy) the value κ p ≅ 7700 cm 2 /g resulted. (orig./HSI) [de

  9. Studies on the production of high energy density in matter with intense heavy-ion beams

    International Nuclear Information System (INIS)

    Jacoby, J.

    1989-01-01

    In the framework of the present thesis the interaction of an intense heavy-ion beam with a small, but macroscopic, amount of matter is studied. Thereby high energy densities are produced in the target matter. For this experiment it was for the first time possible to heat matter with ion beams from conventional heavy-ion accelerators up to plasma conditions. A Kr + ion beam was first accelerated with the heavy-ion accelerator MAXILAC to 45 keV/u and then focused by a fine-focusing lens on a closed xenon gas target. The light emitted from the target was space- and time-resolved taken up with a spectrometer as well a streak and CCD camera. Thereby the radial development of the plasma and the penetration behaviour of the ion beam were consecuted. The free-electron density of the plasma was determined from the Stark-broadening of emission lines (n e ≅ 4x10 16 cm -3 ). The electron temperature amounted in the center of the pipelet kT ≅ 0.75 eV. (orig./HSI) [de

  10. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  11. Vector mesons in reactions with colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Gakh, G.I.

    1980-01-01

    Polarization phenomena in the processes of vector meson production in reactions with colliding electron-positron beams e + e - → V+X, where V is a vector meson, X is a nondetected set of particles are investigated. For the one-photon mechanism of the process, where V and X are hadrons, the mutually unambiguous correspondence between the structural functions is found. The dependence of the e + e - → VX differential cross section upon the electron and positron polarizations is calculated using the virtual photon density matrix in the helicity basis. This formalism permits to take explicitly into account the P-invariance consequences for the angular distribution of the V-meson decay products. For the processes e + e - → πA 1 , and e + e - → rho + rho - the structural functions are calculated in terms of the corresponding electromagnetic form factors. It is noted that six functions out ten real structural functions describing the e + e - → VX reaction can be determined by means of investigation of the angular distribution of the V-meson decay products which is produced in collisions of unpolarized leptons. To study the collision of polarized leptons one more structural function can be determined. The formation of the X system with definite values of parity and spin is characterized by seven structural functions, five of which can be found while studying the angular distribution of the V-meson decay products produced in e + e - collisions with unpolarized (polarized) particles. If the spin of the X state is 1, in experiments with polarized beams all structural functions can be determined while investigating the angular distribution of the V-meson decay products

  12. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  13. Performance of a slow positron beam using a hybrid lens design

    International Nuclear Information System (INIS)

    Cheung, C.K.; Naik, P.S.; Beling, C.D.; Fung, S.; Weng, H.M.

    2006-01-01

    The University of Hong Kong positron beam employs conventional magnetic field transport to the target, but has a special hybrid lens design around the positron moderator that allows the beam to be focused to millimeter spot sizes at the target. The good focusing capabilities of the beam are made possible by extracting work-function positrons from the moderator in a magnetic field free region using a conventional Soa lens thus minimizing beam canonical angular momentum. An Einzel lens is used to focus the positrons into the magnetic funnel at the end of transportation magnetic field while at the same time bringing up the beam energy to the intermediate value of 7.5 keV. The beam is E x B filtered at this intermediate energy. The final beam energy is obtained by floating the Soa-Einzel system, E x B filter and flight tube, and accelerating the positrons just before the target. External beam steering saddle coils fine tune the position, and the magnetic field around the target chamber is adjusted so as to keep one of the beam foci always on the target. The system is fully computer controlled. Variable energy-Doppler broadened annihilation radiation (VEDBAR) data for a GaN sample are shown which demonstrate the performance of the positron beam system

  14. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  15. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  16. An on-site dosimetry audit for high-energy electron beams

    Directory of Open Access Journals (Sweden)

    Leon de Prez

    2018-01-01

    Full Text Available Background and purpose: External dosimetry audits are powerful quality assurance instruments for radiotherapy. The aim of this study was to implement an electron dosimetry audit based on a contemporary code of practice within the requirements for calibration laboratories performing proficiency tests. This involved the determination of suitable acceptance criteria based on thorough uncertainty analyses. Materials and methods: Subject of the audit was the determination of absorbed dose to water, Dw, and the beam quality specifier, R50,dos. Fifteen electron beams were measured in four institutes according to the Belgian-Dutch code of practice for high-energy electron beams. The expanded uncertainty (k = 2 for the Dw values was 3.6% for a Roos chamber calibrated in 60Co and 3.2% for a Roos chamber cross-calibrated against a Farmer chamber. The expanded uncertainty for the beam quality specifier, R50,dos, was 0.14 cm. The audit acceptance levels were based on the expanded uncertainties for the comparison results and estimated to be 2.4%. Results: The audit was implemented and validated successfully. All Dw audit results were satisfactory with differences in Dw values mostly smaller than 0.5% and always smaller than 1%. Except for one, differences in R50,dos were smaller than 0.2 cm and always smaller than 0.3 cm. Conclusions: An electron dosimetry audit based on absorbed dose to water and present-day requirements for calibration laboratories performing proficiency tests was successfully implemented. It proved international traceability of the participants value with an uncertainty better than 3.6% (k = 2. Keywords: Absorbed dose to water, Audit, Code of practice, Dosimetry, Electron beam, Radiation therapy

  17. Analytic representation of the backscatter correction factor at the exit of high energy photon beams

    International Nuclear Information System (INIS)

    Kappas, K.; Rosenwald, J.C.

    1991-01-01

    In high-energy X-ray beams, the dose calculated near the exit surface under electronic equilibrium conditions is generally over-estimated since it is derived from measurements performed in water with large thickness of backscattering material. The resulting error depends on a number of parameters such as beam energy, field dimension, thickness of overlying and underlying material. The authors have systematically measured for 4 different energies and for different para- meters and for different combinations of the above parameters, the reduction of dose due to backscatter. This correction is expressed as a multiplicative factor, called 'Backscatter Correction Factor' (BCF). This BCF is larger for lower energies, larger field sizes and larger depths. The BCF has been represented by an analytical expression which involves an exponential function of the backscattering thickness and linear relationships with depth field size and beam quality index. Using this expression, the BCF can be calculated within 0.5% for any conditions in the energy range investigated. (author). 14 refs.; 4 figs.; 3 tabs

  18. Liquid scintillator for 2D dosimetry for high-energy photon beams

    International Nuclear Information System (INIS)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T.

    2009-01-01

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  19. Liquid scintillator for 2D dosimetry for high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Poenisch, Falk; Archambault, Louis; Briere, Tina Marie; Sahoo, Narayan; Mohan, Radhe; Beddar, Sam; Gillin, Michael T. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard., Unit 94, Houston, Texas 77030 (United States)

    2009-05-15

    Complex radiation therapy techniques require dosimetric verification of treatment planning and delivery. The authors investigated a liquid scintillator (LS) system for application for real-time high-energy photon beam dosimetry. The system was comprised of a transparent acrylic tank filled with liquid scintillating material, an opaque outer tank, and a CCD camera. A series of images was acquired when the tank with liquid scintillator was irradiated with a 6 MV photon beam, and the light data measured with the CCD camera were filtered to correct for scattering of the optical light inside the liquid scintillator. Depth-dose and lateral profiles as well as two-dimensional (2D) dose distributions were found to agree with results from the treatment planning system. Further, the corrected light output was found to be linear with dose, dose rate independent, and is robust for single or multiple acquisitions. The short time needed for image acquisition and processing could make this system ideal for fast verification of the beam characteristics of the treatment machine. This new detector system shows a potential usefulness of the LS for 2D QA.

  20. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  1. Generation and application of slow positrons based on a electron LINAC

    CERN Document Server

    Kurihara, T

    2002-01-01

    History of slow positron in Institute of Materials Structure Science High Energy Accelerator Research Organization is explained. The principle of generation and application of intense positron beam is mentioned. Two sources of intense positron are radioactive decay of radioactive isotopes emitting positron and electron-positron pair creation. The radioactive decay method uses sup 5 sup 8 Co, sup 6 sup 4 Cu, sup 1 sup 1 C, sup 1 sup 3 N, sup 1 sup 5 O and sup 1 sup 8 F. The electron-positron pair creation method uses nuclear reactor or electron linear accelerator (LINAC). The positron experimental facility in this organization consists of electron LINAC, slow positron beam source, positron transport and experimental station. The outline of this facility is started. The intense slow positron beam is applied to research positronium work function, electron structure of surface. New method such as combination of positron lifetime measurement and slow positron beam or Auger electron spectroscopy by positron annihil...

  2. Disinfection by-products/precursor control using an innovative treatment process -- high energy electron beam irradiation

    International Nuclear Information System (INIS)

    Sawal, K.; Millington, B.; Slifker, R.A.; Cooper, W.J.; Nickelsen, M.G.; Kurucz, C.N.; Waite, T.D.

    1993-01-01

    When waters containing naturally occurring humic substances, precursors, are chlorinated, reaction (disinfection) by-products (DBPs) that may compromise the chemical water quality of the drinking water are formed. Two options exist for the treatment of THMs and other DBPs, removal of precursor material prior to chlorination, or destruction of the by-products once they are formed. The authors have initiated a study using an innovative process, high energy electron beam irradiation, as an alternative treatment for the destruction of toxic organic compounds. Preliminary studies indicated that the process would also be effective in the removal of precursors. An added advantage of this process is that is would serve as a primary disinfectant, destroying any toxic compounds in the source water and may assist in the removal of algae and cyanobacteria toxins. This paper discusses studies in precursor removal and control of THMs

  3. Contribution to the development of a primary standard for high energy neutron beams

    International Nuclear Information System (INIS)

    Mancaux, M.

    1983-12-01

    A tissue equivalent calorimeter, made of Shonka A-150 plastic, has been constructed in order to create a primary standard for high energy neutrons and to establish a calibration procedure for ionization chambers used in neutrontherapy. After a detailed description of the calorimeter and the associated measuring system, the preliminary tests are presented, in particular, the evolution of the response as a function of accumulated dose. The measurements of the total absorbed dose (n + γ) by calorimetry in a neutron beam, in order to determine chambers' calibration factors in terms of absorbed dose to A-150 plastic, have been performed at the Neutrontherapy Unit of the Centre Hospitalier Regional d'Orleans. The uncertainty in the determination of the total absorbed dose to the tissu equivalent material using the new procedure is 3% lower than that obtained with the usual procedure, derived from an exposure calibration [fr

  4. Commercialization of a high energy neutral beam ion source. Final report

    International Nuclear Information System (INIS)

    1979-01-01

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations

  5. Transverse and Longitudinal Beam Collimation in a High-Energy Proton Collider (LHC)

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In the Large Hadron Collider (LHC), particles from the beam halo might potentially impinge on the vacuum chamber, effecting harmful transitions of the superconducting magnets ("quenches"). This can be prevented by the collimation system which confines the particle losses to special, non superconducting sections of the machine. Due to the high energy and intensity of the LHC, any removal system must attain an unprecedented efficiency. The cleaning system was designed on the basis of purely geometric and optical models which neglect non linear effects and assume perfectly absorbing materials. In a second step, true scattering in matter is considered. A series of machine developments (MD) were carried out in 1996-7 with the principal aim of validating the design assumptions. A collimation system comparable to that of the LHC was employed. The predictions of the numerical model used to compute the LHC collimation system efficiency were compared with the data acquired during the measurement sessions. The experimen...

  6. In Bern high-energy physics shares proton beams with the hospital

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    A joint venture bringing together public institutions and private companies is building a new facility on the campus of Inselspital, Bern’s university hospital. The facility will host a cyclotron for the production of radiopharmaceuticals for use in PET as well as in multidisciplinary research laboratories for the development of new products for medical imaging. The Laboratory for High Energy Physics (LHEP) of Bern University, which is deeply involved in the project, will have access to a dedicated beam line and specialized labs.     Construction of the new facility is ongoing at Bern's University Hospital, where the cyclotron will be installed.   The first Bern Cyclotron symposium will take place on 6 and 7 June this year. The event is being organised by LHEP in collaboration with Bern’s Inselspital and will bring together experts – including several from CERN – to promote research activities at the new Bern Cyclotron Laboratory. &ld...

  7. Measurement of water decomposition products after the irradiation with high-energy heavy-ion beams

    International Nuclear Information System (INIS)

    Katsumura, Y.; Yamashita, S.; Muroya, Y.; Lin, M.; Miyazaki, T.; Kudo, H.; Murakami, T.

    2005-01-01

    We measured the G-values of water decomposition products produced by high-energy heavy-ion beams. It was found that the evaluated yields are consistent with reported ones. In other words, with the increase of LET, the radical yields decrease, and the molecular yields increase and tend to level off. But the evaluated yields are slightly higher than reported values. So we have started two trials. One is to check the values with experiment again, and the other is to explain the difference between the yields by using the spur diffusion model. In order to explain the values quantitatively, the spur diffusion model has been applied and track structure has been investigated. (author)

  8. Commercialization of a high energy neutral beam ion source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-21

    This final report summarizes the effort and presents the results of a Phase II fabrication effort to build an industrial prototype of the LBL developed high energy neutral beam source. The effort was primarily concentrated on incorporating hard vacuum dielectric seals and a ceramic high voltage accelerator insulator. Several other design changes were incorporated for cost, reliability or life improvements to include: (1) accelerator grid locating dowel pins to aid final alignment, (2) plasma source to accelerator captive fasteners to aid filament replacement during source maintenance, (3) molybdenum cooling tubes on all accelerator grids, (4) additional fasteners in the plasma generator to facilitate hard seals, (5) modified suppressor grid rails and holders to simplify final grid alignment, (6) adjusting screws on exit grid rail holders to simplify final grid alignment, (7) addition of adjusting screws to the grid end pieces to simplify alignment, and (8) addition of accelerator hat shims to allow two different grid positioning locations.

  9. Measurement of few-electron uranium ions on a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    The high-energy electron beam ion trap, dubbed Super-EBIT, was used to produce, trap, and excite uranium ions as highly charged as fully stripped U 92+ . The production of such highly charged ions was indicated by the x-ray emission observed with high-purity Ge detectors. Moreover, high-resolution Bragg crystal spectromters were used to analyze the x-ray emission, including a detailed measurement of both the 2s 1/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole transitions. Unlike in ion accelerators, where the uranium ions move at relativistic speeds, the ions in this trap are stationary. Thus very precise measurements of the transition energies could be made, and the QED contribution to the transition energies could be measured within less than 1 %. Details of the production of these highly charged ions and their measurement is given

  10. Positron annihilation studies on bulk metallic glass and high intensity positron beam developments

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Stoeffl, W.

    2003-01-01

    Positron annihilation spectroscopy is an ideal probe to examine atomic scale open-volume regions in materials. Below, we summarize the recent results on studies of open-volume regions of a multicomponent Zr-Ti-Ni-Cu-Be bulk metallic glass. Our studies establish two types of open-volume regions, one group that is too shallow to trap positrons at room temperature and becomes effective only at low temperatures and the other group that localizes positrons at room temperature and is large enough to accommodate hydrogen. The second half of the paper will concentrate on the high intensity positron program at Lawrence Livermore National Laboratory. A new positron production target is under development and we are constructing two experimental end stations to accommodate a pulsed positron microprobe and an experiment on positron diffraction and holography. Important design considerations of these experiments will be described. (author)

  11. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  12. Analytical expression for the phantom generated bremsstrahlung background in high energy electron beams

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Hyoedynmaa, S; Brahme, A.

    1995-01-01

    Qualification of the bremsstrahlung photon background generated by an electron beam in a phantom is important for accurate high energy electron beam dosimetry in radiation therapy. An analytical expression has been derived for the background of phantom generated bremsstrahlung photons in plane parallel electron beams normally incident on phantoms of any atomic number between 4 and 92 (Be, C, H 2 O, Al, Cu, Ag, Pb and U). The expression can be used with fairly good accuracy in the energy range between 1 and 50 MeV. The expression is globally based on known scattering power and radiation and collision stopping power data for the phantom material at the mean energy of the incident electrons. The depth dose distribution due to the bremsstrahlung generated in the phantom is derived by folding the bremsstrahlung energy fluence with a simple analytical one-dimensional photon energy deposition kernel. The energy loss of the primary electrons and the generation, attenuation and absorption of bremsstrahlung photons are taken into account in the analytical formula. The photon energy deposition kernel is used to account for the bremsstrahlung produced at one depth that will contribute to the down stream dose. A simple analytical expression for photon energy deposition kernel is consistent with the classical analytical relation describing the photon depth dose distribution. From the surface to the practical range the photon dose increases almost linearly due to accumulation and buildup of the photon produced at different phantom layers. At depths beyond the practical range a simple exponential function can be use to describe the bremsstrahlung attenuation in the phantom. For comparison Monte Carlo calculated distributions using ITS3 Monte Carlo Code were used. Good agreement is found between the analytical expression and Monte Carlo calculation. Deviations of 5% from Monte Carlo calculated bremmstrahlung background are observed for high atomic number materials. The method can

  13. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  14. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  15. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    Science.gov (United States)

    Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  16. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    Fontbonne, J.M.

    2002-12-01

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  17. Comparison of the NPL water calorimeter with other dosimetric techniques for high energy photon beams

    International Nuclear Information System (INIS)

    Rosser, K.E.; Williams, A.J.

    1999-01-01

    At present, the primary standard of absorbed dose to water at NPL in high energy photon beams is a graphite calorimeter. However the quantity of interest in radiation dosimetry is absorbed dose to water. Therefore, a new absorbed dose to water standard based on water calorimetry is being developed at NPL. The calorimeter operates at 4 deg. C, with temperature control being provided by a combination of liquid and air cooling. The sealed glass inner vessel of the calorimeter has been designed to minimise the effect of non-water materials on the measurement of absorbed dose. Measurements of absorbed dose to water made in 6, 10 and 19 MV photon beams agreed within the measurement uncertainties with those determined using the primary standard graphite calorimeter. Also the absorbed dose to water measured using the water calorimeter agrees with that based on the air kerma standards for 60 Co γ-radiation within the uncertainties. The development of the water calorimeter will lead to a very robust dosimetry system at NPL, where the absorbed dose to water can be determined using three independent techniques. (author)

  18. Evaluation of Monte Carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    C. Rutjes (Casper); D. Sarria (David); A.B. Skeltved (Alexander Broberg); A. Luque (Alejandro); G. Diniz (Gabriel); N. Østgaard (Nikolai); U. M. Ebert (Ute)

    2016-01-01

    textabstractThe emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires

  19. Evaluation of monte carlo tools for high energy atmospheric physics

    NARCIS (Netherlands)

    Rutjes, Casper; Sarria, David; Skeltved, Alexander Broberg; Luque, Alejandro; Diniz, Gabriel; Østgaard, Nikolai; Ebert, Ute

    2016-01-01

    The emerging field of high energy atmospheric physics (HEAP) includes terrestrial gamma-ray flashes, electron-positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate

  20. Dosimetry of small circular beams of high energy photons for stereotactic radiosurgery and radiotherapy: the use of small ionization chambers

    International Nuclear Information System (INIS)

    Mazal, A.; Gaboriauid, G.; Zefkili, S.; Rosenwald, J.C.; Boutaudon, S.; Pontvert, D.

    1999-01-01

    The irradiation of small targets in the brain in a singe fraction (radiosurgery) or with a fractionated approach (stereotactic radiosurgery) with small beams of photons requires specific conditions to measure and to model the dosimetric data needed for treatment planning. In this work we present the method and materials adopted in our institution since 1988 to perform the dosimetry of high energy (6-23) circular photon beams with diameters ranging from 10 to 40 mm at the isocenter of linear accelerators, and its evolution as new dosimetric material became commercially available. in circular ionization chambers of small dimensions. We want to answer the following questions: Which are the minimal basic data needed to model small circular beams of high energy photons? Can we extrapolate or convert data from conventional data of larger beams? Which are the detectors well adapted for these kind of measurements and for which range of beam sizes?

  1. Performance analysis of the intense slow-positron beam at the NC State University PULSTAR reactor

    International Nuclear Information System (INIS)

    Moxom, J.; Hathaway, A.G.; Bodnaruk, E.W.; Hawari, A.I.; Xu, J.

    2007-01-01

    An intense positron beam, for application in nanophase characterization, is now under construction at the 1 MW PULSTAR nuclear reactor at North Carolina State University (NCSU). A tungsten converter/moderator is used, allowing positrons to be emitted from the surface with energies of a few electron volts. These slow positrons will be extracted from the moderator and formed into a beam by electrostatic lenses and then injected into a solenoidal magnetic field for transport to one of three experimental stations, via a beam switch. To optimize the performance of the beam and to predict the slow-positron intensity, a series of simulations were performed. A specialized Monte-Carlo routine was integrated into the charged-particle transport calculations to allow accounting for the probabilities of positron re-emission and backscattering from multiple-bank moderator/converter configurations. The results indicate that either a two-bank or a four-bank tungsten moderator/converter system is preferred for the final beam design. The predicted slow-positron beam intensities range from nearly 7x10 8 to 9x10 8 e + /s for the two-bank and the four-bank systems, respectively

  2. The Intense Slow Positron Beam Facility at the NC State University PULSTAR Reactor

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Moxom, Jeremy; Hathaway, Alfred G.; Brown, Benjamin; Gidley, David W.; Vallery, Richard; Xu, Jun

    2009-01-01

    An intense slow positron beam is in its early stages of operation at the 1-MW open-pool PULSTAR research reactor at North Carolina State University. The positron beam line is installed in a beam port that has a 30-cmx30-cm cross sectional view of the core. The positrons are created in a tungsten converter/moderator by pair-production using gamma rays produced in the reactor core and by neutron capture reactions in cadmium cladding surrounding the tungsten. Upon moderation, slow (∼3 eV) positrons that are emitted from the moderator are electrostatically extracted, focused and magnetically guided until they exit the reactor biological shield with 1-keV energy, approximately 3-cm beam diameter and an intensity exceeding 6x10 8 positrons per second. A magnetic beam switch and transport system has been installed and tested that directs the beam into one of two spectrometers. The spectrometers are designed to implement state-of-the-art PALS and DBS techniques to perform positron and positronium annihilation studies of nanophases in matter.

  3. Positron lifetime measurements and positron-annihilation induced auger electron spectroscpy using slow positron beams; Teisoku yodenshi bimu wo mochiita yodenshi jumyo sokutei oyobi yodenshi shometsu reiki oje denshi bunko

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R. [Electrotechnical Lab., Tsukuba (Japan)

    1996-02-20

    Slow positron beam with less than several eV can be controlled freely such as accelerating, throttling the beam size, shortening the pulse or making pulse with short time width and so forth. These low positron beams are applied to various measurements like Doppler broadening measurement of annihilation {gamma} rays or lifetime measurement of positron, and secondary particle measurements using positron microscope, positron electron ray diffraction, flight time method and so forth. In particular, these recent years, high intensity slow positron beams were possible using accelerators like electron linac and its application is increasing. In this report, pulse shortening method for high intensity slow positron beam, and incidence energy variable positron lifetime measurement method using this slow pulsed beam and flight time type positron-annihilation-induced auger electron spectroscopy are outlined. In future, these measurements can be possible to carry out with high resolution and also with high counting rate if higher intensity monochromatic excellent positron beam than present one is produced. 31 refs., 5 figs.

  4. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  5. High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J. [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); Ehm, Lars [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Zhong, Zhong; Ghose, Sanjit [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973 (United States); Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-07-27

    In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.

  6. Calibration of an advanced photon source linac beam position monitor used for positron position measurement of a beam containing both positrons and electrons

    International Nuclear Information System (INIS)

    Sereno, Nicholas S.

    1998-01-01

    The Advanced Photon Source (APS) linac beam position monitors can be used to monitor the position of a beam containing both positrons and electrons. To accomplish this task, both the signal at the bunching frequency of 2856 MHz and the signal at 2x2856 MHz are acquired and processed for each stripline. The positron beam position is obtained by forming a linear combination of both 2856 and 5712 MHz signals for each stripline and then performing the standard difference over sum computation. The required linear combination of the 2856 and 5712 MHz signals depends on the electrical calibration of each stripline/cable combination. In this paper, the calibration constants for both 2856 MHz and 5712 MHz signals for each stripline are determined using a pure beam of electrons. The calibration constants are obtained by measuring the 2856 and 5712 MHz stripline signals at various electron beam currents and positions. Finally, the calibration constants measured using electrons are used to determine positron beam position for the mixed beam case

  7. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  8. Study of the effects of high-energy proton beams on escherichia coli

    Science.gov (United States)

    Park, Jeong Chan; Jung, Myung-Hwan

    2015-10-01

    Antibiotic-resistant bacterial infection is one of the most serious risks to public health care today. However, discouragingly, the development of new antibiotics has progressed little over the last decade. There is an urgent need for alternative approaches to treat antibiotic-resistant bacteria. Novel methods, which include photothermal therapy based on gold nano-materials and ionizing radiation such as X-rays and gamma rays, have been reported. Studies of the effects of high-energy proton radiation on bacteria have mainly focused on Bacillus species and its spores. The effect of proton beams on Escherichia coli (E. coli) has been limitedly reported. Escherichia coli is an important biological tool to obtain metabolic and genetic information and is a common model microorganism for studying toxicity and antimicrobial activity. In addition, E. coli is a common bacterium in the intestinal tract of mammals. In this research, the morphological and the physiological changes of E. coli after proton irradiation were investigated. Diluted solutions of cells were used for proton beam radiation. LB agar plates were used to count the number of colonies formed. The growth profile of the cells was monitored by using the optical density at 600 nm. The morphology of the irradiated cells was observed with an optical microscope. A microarray analysis was performed to examine the gene expression changes between irradiated samples and control samples without irradiation. E coli cells have observed to be elongated after proton irradiation with doses ranging from 13 to 93 Gy. Twenty-two were up-regulated more than twofold in proton-irradiated samples (93 Gy) compared with unexposed one.

  9. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  10. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  11. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    Science.gov (United States)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  12. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.; Thomas, R.A.S.

    2002-01-01

    An investigation was carried out into the performance of parallel-plate chambers in 60 Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60 C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental k Q factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the

  13. Positron annihilation studies of mesoporous silica films using a slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Kinomura, Atsushi; Suzuki, Ryoichi; Ito, Kenji; Kabayashi, Yoshinori

    2006-01-01

    Positron annihilation lifetime spectra were measured for mesoporous silica films, which were synthesized using triblock copolymer (EO 106 PO 70 EO 106 ) as a structure-directing agent. Different positron lifetime spectra for the deposited and calcined films indicated the formation of meso-structure after calcination, which was confirmed by Fourier transform infrared (FTIR) spectra and field emission-scanning electron microscopy (FE-SEM) observation. Open porosity or pore interconnectivity of a silica film might be evaluated by a two-dimensional positron annihilation lifetime spectrum of an uncapped film. Pore sizes and their distributions in the silica films were found to be affected by thermal treatments

  14. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  15. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers

    International Nuclear Information System (INIS)

    Hourdakis, Constantine J.; Boziari, A.

    2008-01-01

    Background and purpose: Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002 - 2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. Materials and Methods: The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. Results: The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside ±3% and 31% outside ±5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and

  16. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    Science.gov (United States)

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  17. Ion-irradiated polymer studied by a slow positron beam

    International Nuclear Information System (INIS)

    Kobayashi, Yoshinori; Kojima, Isao; Hishita, Shunichi; Suzuki, Takenori.

    1995-01-01

    Poly (aryl-ether-ether ketone) (PEEK) films were irradiated with 1MeV and 2MeV 0 + ions and the positron annihilation Doppler broadening was measured as a function of the positron energy. The annihilation lines recorded at relatively low positron energies were found to become broader with increasing the irradiation dose, suggesting that positronium (Ps) formation may be inhibited in the damaged regions. A correlation was observed between the Doppler broadening and spin densities determined by electron spin resonance (ESR). (author)

  18. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  19. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  20. Performance of the KTeV high-energy neutral kaon beam at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1998-01-01

    The performance of the primary and secondary beams for the KTeV experiments E832 and E799-II is reviewed. The beam was commissioned in the summer of 1996 and initially operated for approximately one year. The report includes results on the primary beam, target station including primary beam dump and muon sweeping system, neutral beam collimation system, and alignment

  1. Beam transport of PF (Positron Factory) 2.5-GeV linac

    International Nuclear Information System (INIS)

    Shiraga, Takahiro; Asami, Akira; Suwada, Tsuyoshi; Kobayashi, Hitoshi.

    1993-01-01

    The beam transport is one of the most important problems in the linac to be used as the injector for the B-FACTORY accelerators. A basic problem of the beam transport is how to correct transport parameters immediately when a klystron becomes off. This is studied with the PF (Positron Factory) 2.5-GeV linac. (author)

  2. Measurement of the cross-section of electron-positron scattering at high energy and quantum electrodynamics testing

    International Nuclear Information System (INIS)

    Lalanne, D.

    1970-01-01

    The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV

  3. Monitoring of the tensor polarization of high energy deuteron beams; Monitoring tenzornoj polyarizatsii dejtronnykh puchkov vysokoj ehnergii

    Energy Technology Data Exchange (ETDEWEB)

    Zolin, L S; Litvinenko, A G; Pilipenko, Yu K; Reznikov, S G; Rukoyatkin, P A; Fimushkin, V V

    1998-12-01

    The method of determining the tensor component of high energy polarized deuteron beams, based on measuring of the tensor analyzing power in the deuteron stripping reaction, is discussed. This method is convenient for monitoring during long time runs on the tensor polarized deuteron beams. The method was tested in the 5-days run at the LHE JINR accelerator with the 3 and 9 GeV/c tensor polarized deuterons. The results made it possible to estimate the beam polarization stability in time 5 refs., 4 figs., 1 tab.

  4. Application of positron annihilation to polymer and development of a radioisotopes-based pulsed slow positron beam apparatus

    International Nuclear Information System (INIS)

    Suzuki, Takenori

    2004-01-01

    Positrons injected into polymer behave as nanometer probes, which can detect the size and amount of intermolecular spaces among polymer structures. Although positrons can probe the characteristics of polymer, they induce a radiation effect on polymer samples. At low temperature, the radiation effect induces free electrons, which can be trapped in a shallow potential created among intermolecular structures after freezing molecular motions. These trapped electrons can be released after the disappearance of the shallow potential due to the reappearance of molecular motion above the relaxation temperature. Thus, positrons can be used as a probe for relaxation studies. Coincidence of Doppler broadening spectroscopy (CDBS) can improve the S/N ratio to 10 7 , which makes it possible to detect trace elements, since CDBS can separate the high-momentum component of core electrons. A pulsed slow positron beam apparatus is necessary for measuring holes in the polymer film and allows the measurement of the characteristics of thin film coated on semiconductors used widely in electronics industries. (author)

  5. Design of an efficient pulsing system for a slow-positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Nagayasu; Suzuki, Takenori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Kanazawa, Ikuzo; Ito, Yasuo

    1996-07-01

    In this paper, a new design of a pulsed slow positron system for PALS measurement is reported. By using this new system, it will be possible to obtain a short-pulsed slow-positron beam with high efficiency ({>=}50%) and a relatively low minimum energy ({approx}200 eV). This system is also easy to construct on the laboratory scale. (J.P.N.)

  6. A positron beam for the linear collider scheme of a B-meson factory

    International Nuclear Information System (INIS)

    Chehab, R.

    1988-02-01

    An approach for a conventional positron source intended to a BantiB linear collider scheme is here given. Optical matching devices between the source and the accelerator are considered and some comparisons are made regarding the maximum acceptance and the positron beam qualities. Focusing in the preaccelerator and in the main linac are also considered. Heating and radiation problems which may introduce severe limitations are only partly examined

  7. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    Science.gov (United States)

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  8. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...... Carlo simulations with SHIELD-HIT10A reasonably matched the most abundant PET isotopes 11C and 15O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10A and measurement. Improved modeling requires more accurate measurements of cross-section values....

  9. High energy density physics with intense ion and laser beams. Annual report 2003

    International Nuclear Information System (INIS)

    Weyrich, K.

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  10. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  11. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  12. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  13. The design and performance of the FNAL high-energy polarized-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D P; Hill, D A; Laghai, M R; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab. (USA); Lehar, F; Lesquen, A de; Rossum, L van [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires; Carey, D C; Coleman, R N; Cossairt, J D; Read, A L; Schailey, R [Fermi National Accelerator Lab., Batavia, IL (USA); Derevschikov, A A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Rzaev, R A; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Tamura, N; Yoshida, T [Kyoto Univ. (Japan). Dept. of Physics; Takashima, R [Kyoto Univ. of Education, Fushimi (Japan); Takeutchi, F [Kyoto Sangyo Univ. (Japan); Maki, T [University of Occupational and Environmental; FNAL-E581/704 Collaboration

    1990-05-10

    A new polarized-proton and -antiproton beam with 185 GeV/c momentum has been built at Fermilab. The design uses the parity-nonconserving decays of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively, a beam-transport system that minimizes depolarization effects, and a set of twelve dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles. This allows a selection of particles in definite intervals of momentum and polarization. Measurements performed by two different polarimeters showed that the beam is polarized and the determination of polarization by beam-particle tagging is verified. A new measurement of the analyzing power of large-x{sub F} {pi}{sup 0} production may lead to another beam polarimeter.

  14. Development and applications of time-bunched and velocity-selected positron beams

    DEFF Research Database (Denmark)

    Merrison, J.P.; Charlton, M.; Aggerholm, P.

    2003-01-01

    the buncher was used to compress positron pulses produced from an electron accelerator-based beam. Computer simulations of particle trajectories in the buncher have been performed resulting in a detailed evaluation of the factors that govern and limit the time resolution of the instrument. A sector magnet...... for propagation of the applied voltage pulse along the electrode system and to facilitate operation at frequencies up to 100 kHz. A parabolic potential distribution for time focusing was used. Tests with a dc positron beam produced from a radioactive source are described, together with measurements in which...

  15. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillin, I.V. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); Shul' ga, N.F. [Akhiezer Institute for Theoretical Physics, National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkov (Ukraine); V.N. Karazin Kharkov National University, Kharkov (Ukraine); Bandiera, L. [INFN Sezione di Ferrara, Ferrara (Italy); Guidi, V.; Mazzolari, A. [INFN Sezione di Ferrara, Ferrara (Italy); Universita degli Studi di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy)

    2017-02-15

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders. (orig.)

  16. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  17. A self-calibrating ionisation chamber for the precise intensity calibration of high-energy heavy-ion beam monitors

    International Nuclear Information System (INIS)

    Junghans, A.

    1996-01-01

    The intensity of a 136 Xe(600 A MeV) beam has been determined by simultaneously measuring the particle rate and the corresponding ionisation current with an ionisation chamber. The ionisation current of this self-calibrating device was compared at higher intensities with the current of a secondary-electron monitor and a calibration of the secondary-electron current was achieved with a precision of 2%. This method can be applied to all high-energy heavy-ion beams. (orig.)

  18. Utilization of the high energy electrons beams generated in accelerator for treatment of drinking water and wastewater

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Borrely, S.I.; Morita, D.M.

    1991-01-01

    Samples of drinking water and wastewater were irradiated using high energy electron beam with doses from 0.37kGy to 100kGy. Preliminary data show the removal of about 100% of trihalomethanes (THM) in drinking water (concentration from 2.7μg/l to 45μg/l, 90% of the color of the Public Owned Wastewater Treatment Plant effluent and 87% of oil and grease of the cutting fluid wastewater. (author)

  19. Four-D propagation code for high-energy laser beams: a user's manual

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.R.

    1976-08-05

    This manual describes the use and structure of the June 30, 1976 version of the Four-D propagation code for high energy laser beams. It provides selected sample output from a typical run and from several debug runs. The Four-D code now includes the important noncoplanar scenario feature. Many problems that required excessive computer time can now be meaningfully simulated as steady-state noncoplanar problems with short run times.

  20. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  1. 14th International Workshop on Slow Positron Beam Techniques and Applications

    International Nuclear Information System (INIS)

    2017-01-01

    These proceedings arose from the 14th International Workshop on Slow Positron Beam Techniques (SLOPOS14), which was held at Kunibiki Messe, Matsue, Shimane prefecture, Japan, from the 22nd—27th May 2016. Meetings in the SLOPOS series are held every three years. The SLOPOS workshop series has traditionally been devoted to investigations on the production of positron and positronium beams, their fundamental physics and chemistry, and their applications to materials such as metals, semiconductors and soft matter. During the workshop numerous applications using positron and positronium beams were also presented, clearly demonstrating the usefulness of such beams to the determination of surface structure, defect characterization as well as to fundamental scientific studies. For SLOPOS14 the main subjects of the workshop included the following: • Positron transport and beam technology • Pulsed positron beams and positron traps • Defect profiling in bulk and layered structures • Nano structures, porous materials and thin films • Surface and interface analysis • Positronium formation, emission and beamsPositron and positronium interactions with atoms and molecules • Many positrons and anti-hydrogen • Improvement of experimental techniques 106 delegates from 14 countries participated in the SLOPOS14, including 31 student delegates, which was a most encouraging sign for the future. The scientific program comprised 5 plenary talks, 22 invited talks, 32 contributed talks and 46 posters presented during two poster sessions. Student prizes were awarded for the best presented scientific contributions by 4 students from University of College London, Universität der Bundeswehr München and The University of Tokyo. On a sad note, delegates paid tribute to the contributions of our recently deceased colleagues, Prof. A. Seeger, Prof. R.N. West, Prof. T.C. Griffith, and Prof. Z. Tang. Memorial talks were given and a one minute silence was observed before the

  2. Variable-energy positron-beam studies of Ni implanted with He

    International Nuclear Information System (INIS)

    Lynn, K.G.; Chen, D.M.; Nielsen, B.; Pareja, R.; Myers, S.

    1986-01-01

    Variable-energy positron-beam studies have been made on well-annealed polycrystalline Ni samples implanted with 30-, 90-, and 180-keV 4 He ions. The positron-annihilation characteristics were measured with a solid-state Ge detector at a number of different incident-positron energies and after isochronal annealing at various temperatures. The Doppler broadening of the annihilation photons was found to be strongly influenced by the 4 He implantations. The data indicate that trapping of the positrons occurred predominantly at small He bubbles. The variation of the broadening with incident-positron energy was sensitive to the depth distribution of the traps. A diffusion model assuming a square concentration-defect profile was developed and analytically fitted to the parametrized momentum data. These fitted results were compared to Monte Carlo range calculations for 4 He in Ni, and fairly good agreement was found. This investigation demonstrates the capabilities of positron annihilation for nondestructive depth profiling in ion-implanted systems. In addition, it establishes parallels between the trapping behavior of positrons and that reported elsewhere for hydrogen, thereby augmenting the present level of understanding of the technologically important trapping of hydrogen by the bubbles

  3. Slow positron beam production by a 14 MeV C.W. electron accelerator

    Science.gov (United States)

    Begemann, M.; Gräff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-10-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface ofsurface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two NaI-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 × 10 5 slow positrons per second reaching thedetector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons.

  4. Slow positron beam production by a 14 MeV c.w. electron accelerator

    International Nuclear Information System (INIS)

    Begemann, M.; Graeff, G.; Herminghaus, H.; Kalinowsky, H.; Ley, R.

    1982-01-01

    A 14 MeV c.w. electron accelerator is used for pair production in a tungsten target of 0.7 radiation lengths thickness. A small fraction of the positrons is thermalized and diffuses out of the surface of a well annealed tungsten foil coated with MgO which is positioned immediately behind the target. The slow positrons are extracted from the target region and magnetically guided over a distance of 10 m onto a channelplate multiplier at the end of an S-shaped solenoid. The positrons are identified by their annihilation radiation using two Nal-detectors. The intensity of the slow positrons is proportional to the accelerator electron beam current. The maximum intensity of 2.2 x 10 5 slow positrons per second reaching the detector at an accelerator current of 15 μA was limited by the power deposited in the uncooled target. The energy of the positrons is concentrated in a small region at about 1 eV and clearly demonstrates the emission of thermal positrons. (orig.)

  5. Experimental results of beryllium exposed to intense high energy proton beam pulses

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Butcher, M; Guinchard, M; Calviani, M; Losito, R; Roberts, S; Kuksenko, V; Atherton, A; Caretta, O; Davenne, T; Densham, C; Fitton, M; Loveridge, J; O'Dell, J

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and co...

  6. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.

    2017-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  7. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  8. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  9. Time-Dependent Propagation of High-Energy Laser Beams through the Atmosphere: II

    National Research Council Canada - National Science Library

    Fleck, J

    1976-01-01

    ...; in particular, noncoplanarity should benefit multipulse more than cw beams. The methods of treating nonhorizontal winds hydrodynamically for cw and multipulse steady-state sources are discussed...

  10. Very high energy colliders

    International Nuclear Information System (INIS)

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  11. High energy extraction of electron beam pumped KrF lasers at multi atmospheres

    NARCIS (Netherlands)

    Kleikamp, B.M.H.H.; Witteman, W.J.

    1984-01-01

    The construction is described of a simple and compact KrF laser with electron beam excitation. The electron beam is generated in a coaxial vacuum diode, driven directly by a ten-stage coaxial Marx generator. A flat MgF2 outcoupler and a suprasil roof prism, protected by an MgF2 window, proved to be

  12. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  13. Analysis of defects near the surface and the interface of semiconductors by monoenergetic positron beam

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro

    1989-01-01

    A monoenergetic low-speed positron beam line is constructed and a study is made on defects near the surface and the interface of semiconductors by using the beam line. Sodium-22 is used as beam source. Ion implantation, though being an essential technique for semiconductor integrated circuit production, can introduce lattice defects, affecting the yield and reliability of the resultant semiconductor devices. Some observations are made on the dependence of the Doppler broadening on the depth, and the ΔS-E relationship in P + -ion implanted SiO 2 (43nm)-Si. These observations demonstrate that monoenergetic positron beam is useful to detect hole-type defects resulting from ion implantation over a very wide range of defect density. Another study is made for the detection of defects near an interface. Positrons are expected to drift when left in an electric field with a gradient. Observations made here show that positrons can be concentrated at any desired interface by introducing an electric field intensity gradient in the oxide. This process also serves for accurate measurement of the electronic structure at the interface, and the effect of ion implantation and radiations on the interface. (N.K.)

  14. High energy density in matter produced by heavy ion beams. Annual report 1993

    International Nuclear Information System (INIS)

    1994-06-01

    The experimental activities at GSI were concentrated on the progress in beam-plasma interaction experiments of heavy ion with ionized matter, plasma -lens forming devices, intense beam at high temperature experimental area, and charge exchange collisions of ions. The development to higher intensities and phase space densities during 1993 for the SIS and the ESR is recorded. The possibility of studying of funneling of two beams in a two-beam RFQ is studied. Specific results are presented with respect to inertial confinement fusion (ICF). The problem of ion stopping in plasma and pumping X-ray lasers with heavy ion beams are discussed. Various contributions deal with dense plasma effects, shocks and opacity. (HP)

  15. The Beam Instrumentation and Diagnostic Challenges for LHC Operation at high Energy

    CERN Document Server

    Jones, OR

    2014-01-01

    This contribution will present the role of beam diagnostics in facing the challenges posed by running the LHC close to its design energy of 7TeV. Machine protection will be ever more critical, with the quench level of the magnets significantly reduced, so relying heavily on the beam loss system, abort gap monitor, interlocks on the beam position and fast beam current change system. Non-invasive profile monitoring also becomes more of a challenge, with standard synchrotron light imaging limited by diffraction and rest gas ionization monitoring dominated by space charge effects. There is also a requirement to better understand beam instabilities, of which several were observed during Run I, leading to the need for synchronised bunch-by-bunch, turn-by-turn information from many distributed instrumentation systems. All of these challenges will be discussed along with the strategies adopted to overcome them.

  16. Output characteristics of piezoelectric lead zirconate titanate detector using high-energy heavy-ion beam

    International Nuclear Information System (INIS)

    Takechi, Seiji; Sekiguchi, Masahiro; Miyachi, Takashi; Kobayashi, Masanori; Hattori, Maki; Okudaira, Osamu; Shibata, Hiromi; Fujii, Masayuki; Okada, Nagaya; Murakami, Takeshi; Uchihori, Yukio

    2014-01-01

    A radiation detector fabricated using piezoelectric lead zirconate titanate (PZT) has been studied by irradiating it with a 400 MeV/n xenon (Xe) beam. The beam diameter was controlled to change the irradiation conditions. It was found that the magnitude of the output observed from the PZT detector may be related to the number of Xe ions per unit area per unit time within the limits of the experimental conditions. -- Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • The beam diameter was controlled to change the irradiation conditions. • By the control, the number of Xe ions per one pulse was changed from ∼500 to ∼1500. • The output of the PZT detector was not always larger with more intense beam. • The energy of Xe ions per unit area per unit time may determine the output

  17. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  18. Formation of hexagonal silicon carbide by high energy ion beam irradiation on Si (1 0 0) substrate

    International Nuclear Information System (INIS)

    Bhuyan, H; Favre, M; Valderrama, E; Avaria, G; Chuaqui, H; Mitchell, I; Wyndham, E; Saavedra, R; Paulraj, M

    2007-01-01

    We report the investigation of high energy ion beam irradiation on Si (1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The unexposed and ion exposed substrates were characterized by x-ray diffraction, scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive x-ray analysis and atomic force microscopy (AFM) and the results are reported. The interaction of the pulsed PF ion beams, with characteristic energy in the 60-450 keV range, with the Si surface, results in the formation of a surface layer of hexagonal silicon carbide. The SEM and AFM analyses indicate clear step bunching on the silicon carbide surface with an average step height of 50 nm and a terrace width of 800 nm

  19. Interaction of positron beams with thin silver foils and surfaces

    International Nuclear Information System (INIS)

    Rysholt Poulsen, M.

    1994-01-01

    Experimental investigations of positron interactions with solid silver and the necessary platform to analyse the data have been presented. The main objective was to study Ps formation at a Ag(100) surface. The different ingredients of the scenario, including thermalization and diffusion of positrons and emission of Ps, were analysed and quantified in whatever way appropriate. The scattering and possible thermalization were described. The parametrization of Monte-Carlo simulated implantation profiles for semi-infinite materials were presented and the applicability of such profiles to thin foils assessed. The latter was done in conjunction with an analysis of experimental data on thermalization and diffusion in 1900 Aa Ag(100) foils. The necessity for MC simulated rather than parametrized implantation profiles was argued. The velocity of thermally desorbed Ps from a Ag(100) surface at ∼800 K appeared to obey and one-dimensional Maxwell Boltzmann distribution multiplied by a velocity dependent factor. More experimental investigations are needed before firm conclusions can be made on the nature of the emission process. The velocity distribution, though, was found to be near-thermal and indicative of the sample temperature. It has been shown that positrons can be converted into Ps atoms in the transmission geometry of a thin 1900 Aa Ag(100) foil with a high efficiency. Furthermore, 61% of the emitted Ps will have a mean velocity of v z =1.2x10 5 m/sec and 39% will have a maximum kinetic energy of 1.5 eV (v z =5.1x10 5 m/sec) at a foil temperature of 800 K, all velocities that are suitable for producing a 'dense' Ps gas target. (EG) 12 refs

  20. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    International Nuclear Information System (INIS)

    1987-09-01

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e + e - interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs

  1. High efficiency and high-energy intra-cavity beam shaping laser

    International Nuclear Information System (INIS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-01-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%. (paper)

  2. High efficiency and high-energy intra-cavity beam shaping laser

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  3. Study of dose distribution in high energy photon beam used in radiotherapy

    International Nuclear Information System (INIS)

    Rafaravavy, R.; Raoelina Andriambololona; Bridier, A.

    2007-01-01

    The dose distribution in a medium traversed by a photon beam depends on beam energy, field size and medium nature. Percent depth dose (PDD), Dose Profile (DP) and Opening Collimator Factor (OCF) curves will be established to study this distribution. So, the PDD curves are composed by tree parts: the build-up region, the maximal dose and the quasi-equilibrium region. The maximum dose depth and the dose in depth increase with increasing photon beam energy but the dose surface decreases. The PDD increases with increasing field size.

  4. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Mitošinková, Klára; Stöckel, Jan; Varju, Jozef; Weinzettl, Vladimír

    2016-01-01

    Roč. 61, č. 4 (2016), s. 419-423 ISSN 0029-5922. [Summer School of Plasma Diagnostics PhDiaFusion 2015: “Soft X-ray Diagnostics for Fusion Plasma”. Bezmiechowa, 16.06.2015-20.06.2015] R&D Projects: GA MŠk(CZ) LM2011021; GA MŠk(CZ) 8D15001 Institutional support: RVO:61389021 Keywords : tokamak * neutral beam injection (NBI) * Doppler effect * beam composition * beam composition Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 http://www.ichtj.waw.pl/nukleonikaa/?p=1256

  5. Low energy positron beam system for the investigation of 2D and porous materials

    International Nuclear Information System (INIS)

    Chrysler, M D; Chirayath, V A; Mcdonald, A D; Gladen, R W; Fairchild, A J; Koymen, A R; Weiss, A H

    2017-01-01

    An advanced variable energy positron beam (∼2 eV to 20 keV) has been designed, tested and utilized for coincidence Doppler broadening (CDB) measurements at the University of Texas at Arlington (UTA). A high efficiency solidified rare gas (Neon) moderator was used for the generation of a slow positron beam. The gamma rays produced as a result of the annihilation of positrons with the sample electrons are measured using a high purity Germanium (HPGe) detector in coincidence with a NaI(Tl) detector. Modifications to the system, currently underway, permits simultaneous measurements utilizing Positron annihilation induced Auger Electron Spectroscopy (PAES) and CDB. The tendency of positrons to become trapped in an image potential well at the surface will allow the new system to be used in measurements of the chemical structure of surfaces, internal or external and interfaces. The system will utilize a time of flight (TOF) technique for electron energy measurements. A 3m flight path from the sample to a micro-channel plate (MCP) in the new system will give it superior energy resolution at higher electron energies as compared to previous TOF systems utilizing shorter flight paths. (paper)

  6. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    International Nuclear Information System (INIS)

    Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo

    2016-01-01

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  7. Experimental and Monte Carlo studies of fluence corrections for graphite calorimetry in low- and high-energy clinical proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lourenço, Ana, E-mail: am.lourenco@ucl.ac.uk [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Thomas, Russell; Bouchard, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Kacperek, Andrzej [National Eye Proton Therapy Centre, Clatterbridge Cancer Centre, Wirral CH63 4JY (United Kingdom); Vondracek, Vladimir [Proton Therapy Center, Budinova 1a, Prague 8 CZ-180 00 (Czech Republic); Royle, Gary [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Palmans, Hugo [Division of Acoustics and Ionising Radiation, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, A-2700 Wiener Neustadt (Austria)

    2016-07-15

    Purpose: The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Methods: Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the FLUKA code [A. Ferrari et al., “FLUKA: A multi-particle transport code,” in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., “The FLUKA Code: Developments and challenges for high energy and medical applications,” Nucl. Data Sheets 120, 211–214 (2014)], to partial fluence corrections measured experimentally. Results: A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Conclusions: Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary

  8. Assessment of beam stability of high energy and low energy Varian medical linear accelerators

    International Nuclear Information System (INIS)

    Jayesh, K.; Mohan, R.; Joshi, R.C.; Ganesh, T.; Hegazy, M.; Oubaye, A.J.; AI Idrisi, Maha

    2008-01-01

    An accurate measurement of the dose delivered to the tumor in external beam radiotherapy is one of the primary responsibilities of a medical physicist. In general, such measurements have been based on the application of a dosimetry protocol and quality assurance procedures. Clinically one must be able to assess the beam quality, flatness and symmetry and variation in the output on daily basis. Flatness and symmetry are the main parameters for determining the pattern of a photon and electron beam produced by linear accelerators. The quality assurance in routine clinical practice of radiotherapy and consequently the treatment-outcome depends definitely on the physical parameters of treatment-delivery. Several recommendations from national and international associations are reported to define the limits for the beam parameters. The review of literature and various reports on quality assurance in radiotherapy show that for flatness, symmetry and output constancy the optimal level of deviation should be within ±3%

  9. Defect layer in SiO2-Sic interface proved by a slow positron beam

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Miyashita, A.; Suzuki, R.; Ohdaira, T.

    2006-01-01

    The structure of the SiO 2 -4ph-SiC interface layer produced by dry oxidation has been studied by positron annihilation spectroscopy using slow positron beams. From Doppler broadening measurements, the interface layer was clearly distinguished from the SiO 2 and SiC layers and was observed to be defective. At the interface layer, a single long positron lifetime of 451 ps, which is close to the second lifetime in the SiO 2 layer, was obtained, thus suggesting that the structure of the interface layer resembles an amorphous SiO 2 network. A comparison was made between the obtained electron momentum distribution at the interface layer and the theoretical calculation. It was found that positrons annihilate with oxygen valence electrons. By annealing after the oxidation, the annihilation probability of the positrons with oxygen valence electrons and the number of interface traps decreased in the same temperature range, thus suggesting a correlation between interface traps and positron annihilation sites

  10. Experience with high-energy electron beam therapy at the University of Chicago

    International Nuclear Information System (INIS)

    Griem, M.L.; Kuchnir, F.T.; Lanzl, L.H.; Skaggs, L.S.; Sutton, H.G.; Tokars, R.

    1979-01-01

    Current utilization of the linear accelerator as well as 5-year cumulative experience in radiotherapy is presented. Cutaneous lymphomas and mammary gland carcinomas were the prime experience region; however, cancers at other locations were treated with mixed-beam therapy; employing fast neutrons and photon beams. The technique appears promising for abdominal tumors and deep-seated malignancies. Carcinoma of the pancreas responds favorably to this technique

  11. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    International Nuclear Information System (INIS)

    Miyatake, Aya; Nishio, Teiji

    2013-01-01

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are 12 C nuclei, 16 O nuclei, and 40 Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP beam

  12. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  13. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  14. Tungsten mesh as positron transmission moderator in a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Weng, H.M.; Ling, C.C.; Beling, C.D.; Fung, S.; Cheung, C.K.; Kwan, P.Y.; Hui, I.P.

    2004-01-01

    The slow positron yield has been measured for various tungsten (W) moderator samples from a 22 Na radioactive source. Multi-folded W mesh, W(1 0 0) single crystal foil and W polycrystalline foil samples have been investigated. It is found that the fast to slow conversion efficiency of the W mesh moderator depends on: (1) the annealing pretreatments, (2) the chemical etching duration and (3) the number of the folding layers. With the raw W mesh material having a wire diameter of 20 μm and transmission efficiency of 92.5%, an optimal efficiency of 1.2 x 10 -3 was achieved with 5 min etching duration and a folding number of 12 layers

  15. A program for monitor unit calculation for high energy photon beams in isocentric condition based on measured data

    International Nuclear Information System (INIS)

    Gesheva-Atanasova, N.

    2008-01-01

    The aim of this study is: 1) to propose a procedure and a program for monitor unit calculation for radiation therapy with high energy photon beams, based on data measured by author; 2) to compare this data with published one and 3) to evaluate the precision of the monitor unit calculation program. From this study it could be concluded that, we reproduced with a good agreement the published data, except the TPR values for dept up to 5 cm. The measured relative weight of upper and lower jaws - parameter A was dramatically different from the published data, but perfectly described the collimator exchange effect for our treatment machine. No difference was found between the head scatter ratios, measured in a mini phantom and those measured with a proper brass buildup cap. Our monitor unit calculation program was found to be reliable and it can be applied for check up of the patient's plans for irradiation with high energy photon beams and for some fast calculations. Because of the identity in the construction, design and characteristics of the Siemens accelerators, and the agreement with the published data for the same beam qualities, we hope that most of our experimental data and this program can be used after verification in other hospitals

  16. Evaluation of secondary electron filter for removing contaminant electrons from high-energy 6 MV x-ray beam

    International Nuclear Information System (INIS)

    Kumagai, Kozo

    1988-01-01

    When using high energy X-rays, the dose increases at the skin surface and build-up region of beam contamination of secondary electrons coming out from the inner surface of the lineac head. At our radiotherapy department, many cases of external otitis from severe skin reactions, particularly resulting from whole brain irradiation of primary and metastatic brain tumors with a 6 MV X-ray lineac, have been encountered. An investigation was made of the physical aspects of a 6 MV X-ray beam using three electron filters, lead lucite, lead glass and lucite to remove secondary electrons. Transparent materials for filters should be preferable for locating the light field. The following results were obtained: 1) For removing secondary electrons, a lead lucite filter was found best. 2) The lead lucite filter proved most effective for removing secondary electrons from the area of treatment. It reduced the dose of irradiation to the skin surface and build-up region, and furthermore improved the depth dose relative to that without filters. 3) From a clinical standpoint, skin reactions such as external otitis remarkably decreased using a lead lucite filter. 4) It thus appears necessary to use a high energy X-ray with newly designed filters to reduce beam contamination of secondary electrons. (author)

  17. Measurement of high energy x-ray beam penumbra with Gafchromic trade mark sign EBT radiochromic film

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, Martin J.; Yu, Peter K. N.

    2006-01-01

    High energy x-ray beam penumbra are measured using Gafchromic trade mark sign EBT film. Gafchromic trade mark sign EBT, due to its limited energy dependence and high spatial resolution provide a high level of accuracy for dose assessment in penumbral regions. The spatial resolution of film detector systems is normally limited by the scanning resolution of the densitometer. Penumbral widths (80%/20%) measured at D max were found to be 2.8, 3.0, 3.2, and 3.4 mm (±0.2 mm) using 5, 10, 20, and 30 cm square field sizes, respectively, for a 6 MV linear accelerator produced x-ray beam. This is compared to 3.2 mm±0.2 mm (Kodak EDR2) and 3.6 mm±0.2 mm (Kodak X-Omat V) at 10 cmx10 cm measured using radiographic film. Using a zero volume extrapolation technique for ionization chamber measurements, the 10 cmx10 cm field penumbra at D max was measured to be 3.1 mm, a close match to Gafchromic trade mark sign EBT results. Penumbral measurements can also be made at other depths, including the surface, as the film does not suffer significantly from dosimetric variations caused by changing x-ray energy spectra. Gafchromic trade mark sign EBT film provides an adequate measure of penumbral dose for high energy x-ray beams

  18. Positron annihilation and thermally stimulated current of electron beam irradiated polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Shigetaka; Shinyama, Katsuyoshi; Baba, Makoto [Hachinohe Inst. of Tech., Hachinohe, Aomori (Japan); Suzuki, Takenori

    1997-03-01

    Positron lifetime measurements were applied to electron beam irradiated poly(ether-ether-ketone). The lifetime, {tau}{sub 3}, of the ortho-positronium of unirradiated and 5 MGy irradiated specimen became rapidly longer above about 150degC. {tau}{sub 3} of 50 MGy and 100 MGy irradiated specimen was shorter than that of unirradiated one. Thermally stimulated current (TSC) decreased with increasing the dose before voltage application. In the case of voltage application, a TSC peak appeared and the peak value decreased with increased the dose. The correlation between the results of positron annihilation and TSC was investigated. (author)

  19. Tunable pores in mesoporous silica films studied using a pulsed slow positron beam

    International Nuclear Information System (INIS)

    He Chunqing; Muramatsu, Makoto; Ohdaira, Toshiyuki; Oshima, Nagayasu; Kinomura, Atsushi; Suzuki, Ryoichi; Kobayashi, Yoshinori

    2007-01-01

    Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO-PPO-PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates

  20. Defects introduced by Ar plasma exposure in GaAs probed by monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Kawano, Takao; Wada, Kazumi; Nakanishi, Hideo

    1994-10-01

    Ar-plasma-induced defects in n-type GaAs were probed by a monoenergetic positron beam. The depth distribution of the defects was obtained from measurements of Doppler broadening profiles of the annihilation radiation as a function of incident positron energy. The damaged layer induced by the exposure was found to extend far beyond the stopping range of Ar ions, and the dominant defects were identified as interstitial-type defects. After 100degC annealing, such defects were annealed. Instead, vacancy-type defects were found to be the dominant defects in the subsurface region. (author).

  1. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  2. The correlations of electrochromism and thermochromism of tungsten oxide films studied by slow positron beam

    International Nuclear Information System (INIS)

    Ma Chuangxin; Zhou Chunlan; Zhang Zhiming; Wang Baoyi; Wei Long

    2004-01-01

    Electrochromic (EC) and thermochromic (TC) tungsten oxide (WO 3 ) films, deposited by magnetron sputtering and vacuum thermal evaporation, were studied systematically by means of slow positron measurements. The S parameters of colored amorphous WO 3 film and crystalline WO 3 film behaved quite similarly in the processes of thermochromism and electrochromism, little influenced by the different deposition methods. It indicates that the coloration processes under various external conditions are correlated with each other. It also shows that the slow positron beam technique may play a particular role in the study of chromogenic materials. (orig.)

  3. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  4. Hard X-ray bremsstrahlung production in solar flares by high-energy proton beams

    Science.gov (United States)

    Emslie, A. G.; Brown, J. C.

    1985-01-01

    The possibility that solar hard X-ray bremsstrahlung is produced by acceleration of stationary electrons by fast-moving protons, rather than vice versa, as commonly assumed, was investigated. It was found that a beam of protons which involves 1836 times fewer particles, each having an energy 1836 times greater than that of the electrons in the equivalent electron beam model, has exactly the same bremsstrahlung yield for a given target, i.e., the mechanism has an energetic efficiency equal to that of conventional bremsstrahlung models. Allowance for the different degrees of target ionization appropriate to the two models (for conventional flare geometries) makes the proton beam model more efficient than the electron beam model, by a factor of order three. The model places less stringent constraints than a conventional electron beam model on the flare energy release mechanism. It is also consistent with observed X-ray burst spectra, intensities, and directivities. The altitude distribution of hard X-rays predicted by the model agrees with observations only if nonvertical injection of the protons is assumed. The model is inconsistent with gamma-ray data in terms of conventional modeling.

  5. Thermoluminescent characteristics of CaSO4:Dy+PTFE irradiated with high energy electron beams

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y.; Rodriguez, J.; Oviedo, O.; Azorin, J.

    2011-10-01

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO 4 :Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO 4 :Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO 4 :Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO 4 :Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  6. Advanced Oxidation Treatment of Drinking Water and Wastewater Using High-energy Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2007-03-01

    Full Text Available Application of electron beam as a strong oxidation method for disinfection of drinking water and wastewater has been investigated. Drinking water samples were prepared from wells in rock zones in Yazd Province. Wastewater samples were collected from Yazd Wastewater Treatment Plant. Samples were irradiated by 10 MeV electron beam accelerator at Yazd Radiation Processing Center. The irradiation dose range varied from 0.5-5 kGy. Biological parameters and microbial agents such as aerobic mesophiles and coliforms including E. coli count before and after irradiation versus irradiation dose were obtained using MPN method. The data obtained from irradiated water and wastewater were compared with un-irradiated (control samples. The results showed a removal of 90% of all microorganisms at irradiation doses below 5 kGy, suggesting electron beam irradiation as an effective method for disinfection of wastewater.

  7. Application of methodology for calibration of instruments utilized in dosimetry of high energy beams, for radiodiagnosis

    International Nuclear Information System (INIS)

    Potiens, Maria P.A.; Caldas, Linda V.E.

    2000-01-01

    The radiation qualities recommended by the IEC 1267 standard for the calibration of instruments used in diagnostic radiology measurements were established using a neo-diagnomax X-ray system (125 kV). The RQR radiation qualities are recommended to test ionization chambers used in non attenuated beams, and the RQA radiation qualities in attenuated beams (behind a phantom). To apply the methodology, 6 ionization chambers commonly used in diagnostic radiology were tested. The higher energy dependence (17%) was obtained for an ionization chamber recommended for mammography beams, that is not the case of the X radiation system used in this work. The other ionization chambers presented good performance in terms of energy (maximum of 5%), therefore within the limits of the international recommendations for this kind of instrument. (author)

  8. Studies of absorbed dose determinations and spatial dose distributions for high energy proton beams

    International Nuclear Information System (INIS)

    Hiraoka, Takeshi

    1982-01-01

    Absolute dose determinations were made with three types of ionization chamber and a Faraday cup. Methane based tissue equivalent (TE) gas, nitrogen, carbon dioxide, air were used as an ionizing gas with flow rate of 10 ml per minute. Measurements were made at the entrance position of unmodulated beams and for a beam of a spread out Bragg peak at a depth of 17.3 mm in water. For both positions, the mean value of dose determined by the ionization chambers was 0.993 +- 0.014 cGy for which the value of TE gas was taken as unity. The agreement between the doses estimated by the ionization chambers and the Faraday cup was within 5%. Total uncertainty estimated in the ionization chamber and the Faraday cup determinations is 6 and 4%, respectively. Common sources of error in calculating the dose from ionization chamber measurements are depend on the factors of ion recombination, W value, and mass stopping power ratio. These factors were studied by both experimentally and theoretically. The observed values for the factors show a good agreement to the predicted one. Proton beam dosimetry intercomparison between Japan and the United States was held. Good agreement was obtained with standard deviation of 1.6%. The value of the TE calorimeter is close to the mean value of all. In the proton spot scanning system, lateral dose distributions at any depth for one spot beam can be simulated by the Gaussian distribution. From the Gaussian distributions and the central axis depth doses for one spot beam, it is easy to calculate isodose distributions in the desired field by superposition of dose distribution for one spot beam. Calculated and observed isodose curves were agreed within 1 mm at any dose levels. (J.P.N.)

  9. A Polarized High-Energy Photon Beam for Production of Exotic Mesons

    Energy Technology Data Exchange (ETDEWEB)

    Senderovich, Igor [Univ. of Connecticut, Storrs, CT (United States)

    2012-01-01

    This work describes design, prototyping and testing of various components of the Jefferson Lab Hall D photon beamline. These include coherent bremsstrahlung radiators to be used in this facility for generating the photon beam, a fine resolution hodoscope for the facility's tagging spectrometer, and a photon beam position sensor for stabilizing the beam on a collimator. The principal instrumentation project was the hodoscope: its design, implementation and beam testing will be thoroughly described. Studies of the coherent bremsstrahlung radiators involved X-ray characterization of diamond crystals to identify the appropriate line of manufactured radiators and the proper techniques for thinning them to the desired specification of the beamline. The photon beam position sensor project involved completion of a designed detector and its beam test. The results of these shorter studies will also be presented. The second part of this work discusses a Monte Carlo study of a possible photo-production and decay channel in the GlueX experiment that will be housed in the Hall D facility. Specifically, the γ p → Xp → b1 π → ω π+1 π-1 channel was studied including its Amplitude Analysis. This exercise attempted to generate a possible physics signal, complete with internal angular momentum states, and be able to reconstruct the signal in the detector and find the proper set of JPC quantum numbers through an amplitude fit. Derivation of the proper set of amplitudes in the helicity basis is described, followed by a discussion of the implementation, generation of the data sets, reconstruction techniques, the amplitude fit and results of this study.

  10. LHC@Home: A Volunteer computing system for Massive Numerical Simulations of Beam Dynamics and High Energy Physics Events

    CERN Document Server

    Giovannozzi, M; Høimyr, N; Jones, PL; Karneyeu, A; Marquina, MA; McIntosh, E; Segal, B; Skands, P; Grey, F; Lombraña González, D; Rivkin, L; Zacharov, I

    2012-01-01

    Recently, the LHC@home system has been revived at CERN. It is a volunteer computing system based on BOINC which boosts the available CPU-power in institutional computer centres with the help of individuals that donate the CPU-time of their PCs. Currently two projects are hosted on the system, namely SixTrack and Test4Theory. The first is aimed at performing beam dynamics simulations, while the latter deals with the simulation of high-energy events. In this paper the details of the global system, as well a discussion of the capabilities of each project will be presented.

  11. Harvard University High Energy Physics

    International Nuclear Information System (INIS)

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  12. GPU-Powered Modelling of Nonlinear Effects due to Head-On Beam-Beam Interactions in High-Energy Hadron Colliders.

    CERN Document Server

    Furuseth, Sondre

    2017-01-01

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. This report discusses results from an implementation of the weak-strong model, studying the effects of head-on beam-beam interactions. The assumptions has been shown to be valid for configurations where the growth and losses of the beam are small. The tracking has been done using an original code which applies graphic cards to reduce the computation time. The bunches in the beams have been modelled cylindrically symmetrical, based on a Gaussian distribution in three dimensions. This choice fits well with bunches...

  13. Study of the ATLAS MDT spectrometer using high energy CERN combined test beam data

    NARCIS (Netherlands)

    Adorisio, C.; et al., [Unknown; Barisonzi, M.; Bobbink, G.; Boterenbrood, H.; Brouwer, G.; Groenstege, H.; Hart, R.; Konig, A.; Linde, F.; van der Graaf, H.; Vermeulen, J.; Vreeswijk, M.; Werneke, P.

    2009-01-01

    In 2004, a combined system test was performed in the H8 beam line at the CERN SPS with a setup reproducing the geometry of sectors of the ATLAS Muon Spectrometer, formed by three stations of Monitored Drift Tubes (MDT). The full ATLAS analysis chain was used to obtain the results presented in this

  14. Compact Undulator for the Cornell High Energy Synchrotron Source: Design and Beam Test Results

    Science.gov (United States)

    Temnykh, A.; Dale, D.; Fontes, E.; Li, Y.; Lyndaker, A.; Revesz, P.; Rice, D.; Woll, A.

    2013-03-01

    We developed, built and beam tested a novel, compact, in-vacuum undulator magnet based on an adjustable phase (AP) scheme. The undulator is 1 m long with a 5mm gap. It has a pure permanent magnet structure with 24.4mm period and 1.1 Tesla maximum peak field. The device consists of two planar magnet arrays mounted on rails inside of a rectangular box-like frame with 156 mm × 146 mm dimensions. The undulator magnet is enclosed in a 273 mm (10.75") diameter cylindrical vacuum vessel with a driver mechanism placed outside. In May 2012 the CHESS Compact Undulator (CCU) was installed in Cornell Electron Storage Ring and beam tested. During four weeks of dedicated run we evaluated undulator radiation properties as well as magnetic, mechanical and vacuum properties of the undulator magnet. We also studied the effect of the CCU on storage ring beam. The spectral characteristics and intensity of radiation were found to be in very good agreement with expected. The magnet demonstrated reproducibility of undulator parameter K at 1.4 × 10-4 level. It was also found that the undulator K. parameter change does not affect electron beam orbit and betatron tunes.

  15. Performance Modeling and Optimization of a High Energy CollidingBeam Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-06-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms.

  16. Performance Modeling and Optimization of a High Energy Colliding Beam Simulation Code

    International Nuclear Information System (INIS)

    Shan, Hongzhang; Strohmaier, Erich; Qiang, Ji; Bailey, David H.; Yelick, Kathy

    2006-01-01

    An accurate modeling of the beam-beam interaction is essential to maximizing the luminosity in existing and future colliders. BeamBeam3D was the first parallel code that can be used to study this interaction fully self-consistently on high-performance computing platforms. Various all-to-all personalized communication (AAPC) algorithms dominate its communication patterns, for which we developed a sequence of performance models using a series of micro-benchmarks. We find that for SMP based systems the most important performance constraint is node-adapter contention, while for 3D-Torus topologies good performance models are not possible without considering link contention. The best average model prediction error is very low on SMP based systems with of 3% to 7%. On torus based systems errors of 29% are higher but optimized performance can again be predicted within 8% in some cases. These excellent results across five different systems indicate that this methodology for performance modeling can be applied to a large class of algorithms

  17. The response of Kodak EDR2 film in high-energy electron beams.

    Science.gov (United States)

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  18. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    Science.gov (United States)

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  19. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  20. High energy metal ion implantation using 'Magis', a novel, broad-beam, Marx-generator-based ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ''Magis'' with a single power supply (at ground potential) for both plasma production and ion extraction

  1. Native defects in ZnO films studied by slow positron beam

    International Nuclear Information System (INIS)

    Peng Chengxiao; Weng Huimin; Ye Bangjiao; Zhou Xianyi; Han Rongdian; Yang Xiaojie

    2005-01-01

    Native defects in ZnO films grown by radio frequency (RF) reactive magnetron sputtering under variable oxygen fraction conditions have been investigated by using monoenergetic positrons beam technique. The results show that the same type defects dominate in these ZnO samples grown at oxygen fraction less than 70% in the process chamber; and zinc vacancies are preponderant in the ZnO films fabricated in richer oxygen environment. The concentration of zinc vacancies increases with oxygen partial fraction rising. While oxygen fraction reaches 85%, zinc vacancies that could trap positrons decrease, which suggests that impurities could shield zinc vacancies. A combination between hydrogen atoms and the dangling bonds in the lattice could weaken the trap of positrons under the 50% oxygen fraction condition. The concentration of zinc vacancies varies in different oxygen fraction films, which is in agreement with the conclusion of photoluminescence spectroscopy. (authors)

  2. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  3. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa.

    1994-01-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author)

  4. Defects in heavily phosphorus-doped Si epitaxial films probed by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro [Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science; Suzuki, Ryoichi; Ohgaki, Hideaki; Mikado, Tomohisa

    1994-11-01

    Vacancy-type defects in heavily phosphorus-doped Si epitaxial films were probed by monoenergetic positron beams. Doppler broadening profiles of the annihilation radiation and lifetime spectra of positrons were measured for the epitaxial films grown on the Si substrates by plasma chemical vapor deposition. For the as-deposited film, divacancy-phosphorus complexes were found with high concentration. After 600degC annealing, vacancy clusters were formed near the Si/Si interface, while no drastic change in the depth distribution of the divacancy-phosphorus complexes was observed. By 900degC annealing, the vacancy clusters were annealed out; however, the average number of phosphorus atoms coupled with divacancies increased. The relationship between the vacancy-type defects probed by the positron annihilation technique and the carrier concentration was confirmed. (author).

  5. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  6. High energy electron beams characterization using CaSO{sub 4}:Dy+PTFE Phosphors for clinical therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico); Espinoza, A.; Von, S.M. [Centro Estatal de Cancerologia de los Servicios de Salud de Nayarit, Enfermeria S/n, Fracc, Fray Junipero Serra, 63169 Tepic Nay (Mexico); Alvarez, R.; Jimenez, Y. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico)

    2012-07-15

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 Degree-Sign C. TL response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. - Highlights: Black-Right-Pointing-Pointer Developing of CaSO{sub 4}:Dy to electron beams dosimetry. Black-Right-Pointing-Pointer Characterization of caSO{sub 4}:Dy to radiation safety in LINACs. Black-Right-Pointing-Pointer TL characteristics of CaSO{sub 4}:Dy for electron beams quality control.

  7. Multi-megajoule heating of large tokamaks with high energy heavy ion beams

    International Nuclear Information System (INIS)

    Dei-Cas, R.

    1981-07-01

    The fast neutral injection heating and RF heating for tokamak like plasmas are now well established. We consider in this paper the use of high energy (approximately 1 GeV) heavy ions (Xe 132 ) to reach ignition in JET or INTOR like tokamaks. The main advantages of such a method will be outlined. The capture and the confinement of heavy ions have been analysed in a particular case and with the described RF linac it seems possible to inject in the order of 50 MJ in 1 sec with a modest increase of the effective charge Zsub(eff)<1.05 in a JET-like plasma for a particle life time of 1 sec and then the additional radiated power should be maintained at a relatively low level in comparison to the injected power

  8. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    Science.gov (United States)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  9. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    Science.gov (United States)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  10. Feasibility study of radiophotoluminescent glass rod dosimeter postal dose intercomparison for high energy photon beam

    International Nuclear Information System (INIS)

    Rah, Jeong-Eun; Kim, Siyong; Cheong, Kwang-Ho; Lee, Jeong-Woo; Chung, Jin-Beom; Shin, Dong-Oh; Suh, Tae-Suk

    2009-01-01

    A radiophotoluminescent glass rod dosimeter (GRD) system has recently become commercially available. In this study we evaluated whether the GRD would be suitable for external dosimetric audit program in radiotherapy. For this purpose, we introduced a methodology of the absorbed dose determination with the GRD by establishing calibration coefficient and various correction factors (non-linearity dose response, fading, energy dependence and angular dependence). A feasibility test of the GRD postal dose intercomparison was also performed for eight high photon beams by considering four radiotherapy centers in Korea. In the accuracy evaluation of the GRD dosimetry established in this study, we obtained within 1.5% agreements with the ionization chamber dosimetry for the 60 Co beam. It was also observed that, in the feasibility study, all the relative deviations were smaller than 3%. Based on these results, we believe that the new GRD system has considerable potential to be used for a postal dose audit program

  11. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  12. The use of GaSe semiconductor detectors for monitoring high energy muon beams

    CERN Document Server

    Mancini, A M; Murri, R; Quirini, A; Rizzo, A; Vasanelli, L

    1976-01-01

    GaSe semiconductor detectors have been successfully tested during one year for monitoring muon beams in the GeV range in the neutrino experiment at CERN. Their performances are comparable with those of commercial Si surface barrier detectors for this particular application. Crystal growth, detector fabrication and characterization are briefly described. Various advantages (cost, ruggedness, resistance to radiation damage, manufacturing simplicity, etc.) are discussed. (8 refs).

  13. Portal imaging improvement with a low energy un flattened beam in high energy medical accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Krutman, Y; Faermann, S; Tsechanski, A [Ben-Gurion Univ. of the Negev, Beersheba (Israel)

    1996-12-01

    In this work we present a further improvement of the portal film option, for a Clinac 18 accelerator with a 10 MV therapeutic x-ray beam. This is done by lowering the nominal photon energy to 4 MV, therefore increasing the relative contribution of the low energy portion of the x-ray spectrum. Improvement of the image quality is demonstrated with a portal film scale tray, and with an anthropomorphic phantom, a graphical analysis demonstrates the improvement on image (authors).

  14. Scanned beams of high-energy charged particles and features of their collimation

    International Nuclear Information System (INIS)

    Zor'ko, K.I.; Kudoyarov, M.F.; Matyukov, A.V.; Mukhin, S.A.; Patrova, M.Ya.

    2007-01-01

    The coordinate distributions of the accelerated charged particle flux density that are simultaneously formed by sinusoidal scanning and collimation are analyzed. Under certain formation conditions, the edge portions of these distributions are shown to take a two-humped shape. The experimental data obtained are in good agreement with the calculation. Recommendations are made about practical use of these beams in view of the above effects [ru

  15. Probing WWγ and WWγγ couplings with high energy photon beams

    International Nuclear Information System (INIS)

    Choi, S.Y.; Schrempp, F.

    1992-01-01

    The potential of a 500 GeV 'Next Linear e + e - Collider' (NLC) for probing anomalous WWγ and WWγγ couplings in the γ(γ) mode is investigated. The γe - →W - ν and the γγ→W + W - processes are studied. Differential cross sections are given for polarized and unpolarized beams. CP violating couplings are also discussed. (K.A.) 13 refs., 6 figs

  16. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target

    Czech Academy of Sciences Publication Activity Database

    Bulanov, S.S.; Esarey, E.; Schroeder, C.B.; Leemans, W.P.; Bulanov, S.V.; Margarone, Daniele; Korn, Georg; Haberer, T.

    2015-01-01

    Roč. 18, č. 6 (2015), "061302-1"-"061302-6" ISSN 1098-4402 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : ion accelerators * tumor-therapy * proton * beams * plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.500, year: 2015

  17. High energy Xe{sup +} ion beam induced ripple structures on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Antje; Grenzer, Joerg; Facsko, Stefan; Winkler, Ingolf [Forschungszentrum Dresden-Rossendorf, Institute for Ion Beam Physics and Materials Research, Dresden (Germany); Biermanns, Andreas; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany). Institute of Physics

    2008-07-01

    Ion beam bombardment on semiconductor surfaces leads to well-defined morphological structures in the nanoscale range. Due to the impact of ions a self-organized wave-like surface structure develops. Ion bombardment causes an amorphization of a surface-adjacent layer of several nanometers and creates a periodical structure on the surface as well as at the amorphous-crystalline interface. We investigate the dependence of the periodicity on the crystallography of (100) silicon bombarded with Xe{sup +} ions, the ion beam incidence and the azimutal angle of the sample surface. So far we found that the ripple wavelength scales with the ion energy in a range of 5 to 70 keV. In order to understand the initiation of the ripple formation we also ask the question which role the initial surface structure plays. Therefore we investigate the formation of ripples on pre-structured and rough surfaces such as wafers with an intentional miscut. Therefore, we not only introduce a certain initial roughness but also vary the orientation of the (100) lattice plane in respect to the surface. We distinguish between ion beam induced surface effects (sputter erosion) and the influence of the crystalline Si lattice (strain) on the ripple formation.

  18. Probing WWγ and WWγγ couplings with high energy photon beams

    International Nuclear Information System (INIS)

    Choi, S.Y.; Schrempp, F.

    1991-12-01

    We examine the potential of a future 500 GeV linear e + e - collider for probing anomalous WW γ and WW γγ couplings in the so-called γ(γ)model, corresponding to colliding γe and γγ beams from Compton backscattering of laser light. We consider in detail the 'minimal' set (k γ , λ γ ) of CP conserving anomalous couplings and present first results for the CP violating 'partner' couplings (anti K γ , anti l γ ) as well. The reactions under consideration are γe → Wν, γγ → W + W - and, as a reference, also e + e - → W + W - . We discuss the impact of both circular polarization of laser photons and polarized e(anti e) beams. Photon 'beams' due to classical Bremsstrahlung are also studied for comparison. We analyze in detail, how changes of the assumed machine parameters, cuts and systematic errors affect the sensitivity to the anomalous couplings. (orig.)

  19. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-01-01

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite

  20. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chong [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Guilong; Wang, Min [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Jianfeng [Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Cai, Dongqing, E-mail: dqcai@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Wu, Zhengyan, E-mail: zywu@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-08-15

    Highlights: • High energy electron beam (HEEB) irradiation and hydrothermal treatment were used. • HEEB irradiation could make the impurities in the pores of diatomite loose. • Hydrothermal treatment (HT) could remove these impurities from the pores. • They could effectively improve pore size distribution and decrease the bulk density. • Catalytic performance of the corresponding catalyst was significantly improved. - Abstract: High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer–Emmett–Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  1. Evaluation of the mechanical and corrosion protection performance of electrodeposited hydroxyapatite on the high energy electron beam treated titanium alloy

    International Nuclear Information System (INIS)

    Gopi, D.; Sherif, El-Sayed M.; Rajeswari, D.; Kavitha, L.; Pramod, R.; Dwivedi, Jishnu; Polaki, S.R.

    2014-01-01

    Graphical abstract: - Highlights: • Ti–6Al–4V alloy was surface treated by high energy low current DC electron beam. • Successful electrodeposition of HAP was achieved on surface treated Ti–6Al–4V. • The as-formed coating possessed improved surface wettability and adhesion strength. • Maximum corrosion protection performance was exhibited by the as-formed coating. - Abstract: In our present study, the Ti–6Al–4V alloy surface was modified by irradiating with the high energy low current DC electron beam (HELCDEB) using 700 keV DC accelerator. Following this, the HELCDEB treated surface was coated with hydroxyapatite by adopting electrodeposition method. The microstructure and hardness of HELCDEB treated Ti–6A1–4V alloy with and without electrodeposited hydroxyapatite were investigated. Also, the electrochemical corrosion characteristics of the samples in simulated body fluid (SBF) was studied by potentiodynamic polarisation and electrochemical impedence techniques (EIS) which showed an enhanced corrosion resistance and revealed an improved life time for the hydroxyapatite coating developed on the HELCDEB treated Ti–6A1–4V alloy than the untreated sample

  2. Positron annihilation studies of defects in molecular beam epitaxy grown III-V layers

    International Nuclear Information System (INIS)

    Umlor, M.T.; Keeble, D.J.; Cooke, P.W.

    1994-01-01

    A summary of recent positron annihilation experiments on molecular beam epitaxy (MBE) grown III-V layers is Presented. Variable energy positron beam measurements on Al 0.32 Ga 0.68 As undoped and Si doped have been completed. Positron trapping at a open volume defect in Al 0.32 Ga 0.68 :Si for temperatures from 300 to 25 K in the dark was observed. The positron trap was lost after 1.3 eV illumination at 25K. These results indicate an open volume defect is associated with the local structure of the deep donor state of the DX center. Stability of MBE GaAs to thermal annealing war, investigated over the temperature range of 230 to 700 degrees C, Proximity wafer furnace anneals in flowing argon were used, Samples grown above 450 degrees C were shown to be stable but for sample below this temperature an anneal induced vacancy related defect was produced for anneals between 400 and 500 degrees C. The nature of the defect was shown to be different for material grown at 350 and 230 degrees C. Activation energies of 2.5 eV to 2.3 eV were obtained from isochronal anneal experiments for samples grown at 350 and 230 degrees C, respectively

  3. Intense γ-ray generation for a polarized positron beam in a linear collider

    Directory of Open Access Journals (Sweden)

    Y. Miyahara

    2001-12-01

    Full Text Available γ-ray generation by Compton backscattering in an optical lens series with periodic focal points is considered to produce a polarized positron beam for a linear collider. The lens series is composed of 20 unit cells with a length of 210 mm. Each lens has a hole to pass an electron beam with an energy of 5.8 GeV and the generated γ rays. It is shown by diffraction analysis that laser beam loss in the series is very small, and the beam size is periodically reduced to 26 μm. Electron beam size is reduced to 34 μm in a superconducting solenoid with a field of 15 T. To get a required γ-ray yield of 7×10^{15} γ/s, only one circularly polarized CO_{2} laser source with a power of 24 kW is needed.

  4. The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Hyoedynmaa, S.; Brahme, A.

    1996-01-01

    An analytical expression has been derived for the phantom generated bremsstrahlung photons in plane-parallel monoenergetic electron beams normally incident on material of any atomic number (Be, H 2 O, Al, Cu and U). The expression is suitable for the energy range from 1 to 50 MeV and it is solely based on known scattering power and radiative and collision stopping power data for the material at the incident electron energy. The depth dose distribution due to the bremsstrahlung generated by the electrons in the phantom is derived by convolving the bremsstrahlung energy fluence produced in the phantom with a simple analytical energy deposition kernel. The kernel accounts for both electrons and photons set in motion by the bremsstrahlung photons. The energy loss by the primary electrons, the build-up of the electron fluence and the generation, attenuation and absorption of bremsstrahlung photons are all taken into account in the analytical formula. The longitudinal energy deposition kernel is derived analytically and it is consistent with both the classical biexponential relation describing the photon depth dose distribution and the exponential attenuation of the primary photons. For comparison Monte Carlo calculated energy deposition distributions using ITS3 code were used. Good agreement was found between the results with the analytical expression and the Monte Carlo calculation. For tissue equivalent materials, the maximum total energy deposition differs by less than 0.2% from Monte Carlo calculated dose distributions. The result can be used to estimate the depth dependence of phantom generated bremsstrahlung in different materials in therapeutic electron beams and the bremsstrahlung production in different electron absorbers such as scattering foils, transmission monitors and photon and electron collimators. By subtracting the phantom generated bremsstrahlung from the total bremsstrahlung background the photon contamination generated in the treatment head can be

  5. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    Science.gov (United States)

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  6. Absorbed dose determination in high energy photon beams using new IAEA TRS - 398 Code of Practice

    International Nuclear Information System (INIS)

    Suriyapee, S.; Srimanoroath, S.; Jumpangern, C.

    2002-01-01

    The absorbed dose calibration of 6 and 10 MV X-ray beams from Varian Clinac 1800 at King Chulalongkorn Memorial Hospital Bangkok, Thailand were performed using cylindrical chamber 0.6 cc NE2571 Serial No. 1633 with graphite wall and Delrin build up cap and lonex Dosemaster NE 2590 Serial No. 223. The absorbed dose determination followed the IAEA code of practice TRS-277. The new IAEA code of practice TRS-398 have been studied to compare the result with the IAEA TRS-277

  7. On the η and η′ photoproduction beam asymmetry at high energies

    Directory of Open Access Journals (Sweden)

    V. Mathieu

    2017-11-01

    Full Text Available We show that, in the Regge limit, beam asymmetries in η and η′ photoproduction are sensitive to hidden strangeness components. Under reasonable assumptions about the couplings we estimate the contribution of the ϕ Regge pole, which is expected to be the dominant hidden strangeness contribution. The ratio of the asymmetries in η′ and η production is estimated to be close to unity in the forward region 0<−t/GeV2≤1 at the photon energy Elab=9 GeV, relevant for the upcoming measurements at Jefferson Lab.

  8. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  9. High-energy ion-beam-induced phase separation in SiOx films

    International Nuclear Information System (INIS)

    Arnoldbik, W.M.; Tomozeiu, N.; Hattum, E.D. van; Lof, R.W.; Vredenberg, A.M.; Habraken, F.H.P.M.

    2005-01-01

    The modification of the nanostructure of silicon suboxide (SiO x ) films as a result of high-energy heavy-ion irradiation has been studied for the entire range 0.1≤x x films have been obtained by radio-frequency magnetron sputter deposition. For 50 MeV 63 Cu 8+ ions and an angle of incidence of 20 deg. with the plane of the surface, and for x≥0.5, it takes a fluence of about 10 14 /cm 2 to reach a Si-O-Si infrared absorption spectrum, which is supposed to be characteristic for a Si-SiO 2 composite film structure. For smaller x values, it takes a much larger fluence. The interpretation of the IR spectra is corroborated for the surface region by results from x-ray photoelectron spectroscopy. The results present evidence for a mechanism, in which the phase separation takes place in the thermal spike, initiated by the energy deposited in many overlapping independent ion tracks. Such a process is possible since the suboxides fulfill the conditions for spinodal decomposition

  10. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  11. Dosimetry study comparing NCS report-2 versus IAEA TRS-398 protocol for high energy photon beams

    International Nuclear Information System (INIS)

    Attalaa, E.M.; Khaled, N.E.; Abou Elenein, H.S.; Elsayed, A.A.

    2005-01-01

    In this work a dosimetry study is presented in which the results of absorbed dose determined at reference condition according to the IAEA TRS-398 protocol and the NCS report-2 are compared. The IAEA TRS-398 protocol for absorbed dose calibration is based on ionization chamber having absorbed dose to water calibration factor N d w, while the NCS-2 dosimetry report for absorbed dose calibration is based on an ionization chamber having air- kerma calibration factor N k . This study shows that the absorbed dose which is calculated with The IAEA TRS-398 formalisms is higher than that calculated with NCS report-2 formalisms within range from 0.4 to 0.9% in cobalt-60 beam as sensed by different ionization chambers, and from 0.2 to 1.1% for different higher energy photon beams of 6, 8 and 18 MV. The chambers used are PTW 30001, 30004, and NE-2571; which have calibration factors N k and N d w traceable to the BIPM (Bureau International des Poids et Mesures)

  12. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Oproiu, C.; Popescu, A.; Hategan, D.; Morariu, V.V.

    1998-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation at various low temperatures, as well as the influence of the presence or absence of deuterium ions in the suspending medium of the enzyme, on the global enzymatic activity of lactate dehydrogenase have been studied. Frozen lactate dehydrogenase suspensions at 0 degC, -3 degC and -196 degC temperatures have been irradiated with the 5 MeV electron beam of a linear accelerator in the dose range 0-400 Gy. Liquid lactate dehydrogenase suspensions in D 2 O (99.98 %) and ultrapure water (17 ppm) at 0 degC have been irradiated in the dose range 0 -15 Gy. An exponential decrease was found in the enzymatic activity of irradiated lactate dehydrogenase, at all irradiation temperatures. The drastic decrease in the activity for the enzyme irradiated at 0 degC (total inhibition for a final dose of 100 Gy) indicate that at this temperature the indirect effects of radiation (due to the water radicals induced by radiation in the samples) are predominant. At -3 degC irradiation temperature the indirect effects of radiation are smaller but still present (a total decrease in the enzymatic activity for a dose of 250 Gy), while at -196 degC they are orders of magnitude reduced and the decrease in the enzymatic activity is due almost to the direct interaction of electrons with the macromolecules (70 % for a dose of 400 Gy)

  13. Observation of point defects in impurity-doped zinc selenide films using a monoenergetic positron beam

    International Nuclear Information System (INIS)

    Miyajima, T.; Okuyama, H.; Akimoto, K.; Mori, Y.; Wei, L.; Tanigawa, S.

    1992-01-01

    We studied point defects in ZnSe films grown by molecular beam epitaxy using the positron annihilation method. We found that doping with Ga atoms induces vacancy-type defects such as Zn vacancies, and that heavy doping with oxygen atoms induces interstitial type defects. We think that these defects are one of the causes of active carrier saturation in doped ZnSe films. (author)

  14. Probing the structure of matter with Stanford's new $78 million high-energy accelerator

    International Nuclear Information System (INIS)

    Nolan, G.

    1981-01-01

    The US high-energy physics program recently gained a powerful new experimental tool with the completion of the Positron Electron Project (PEP). PEP is a colliding beam storage ring two kilometres in circumference. Collisions are obtained in the PEP ring by injecting electrons and positrons from SLAC's existing linear accelerator so that they circulate in opposite directions. At 6 points in the ring the beams will collide. PEP will enable collisions to be produced at up to 36 GeV

  15. Study on quantum beam science by using ultra short electron pulse, FEL, and slow positron beam at ISIR (Institute of Science and Industrial Research), Osaka University

    International Nuclear Information System (INIS)

    Yoshida, Y.; Tagawa, S.; Okuda, S.; Honda, Y.; Kimura, N.; Yamamoto, T.; Isoyama, G.

    1995-01-01

    Three projects for quantum beam science, an ultra fast electron pulse, a free electron laser, and a slow positron beam, has been started by using 38 MeV L-band and 150 MeV S-band linacs at ISIR in Osaka University. Both study on the production of three beams and study on quantum material science by using three beams will play an important role in the beam science. (author)

  16. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  17. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  18. A new Thomson Spectrometer for high energy laser-driven beams diagnostic

    International Nuclear Information System (INIS)

    Cirrone, G A P; Tramontana, A; Candiano, G; Cavallaro, S; Cutroneo, M; Cuttone, G; Pisciotta, P; Romano, F; Schillaci, F; Scuderi, V; Torrisi, L; Carpinelli, M; Martinis, C De; Giove, D; Krása, J; Korn, G; Margarone, D; Prokůpek, J; Velyhan, A; Maggiore, M

    2014-01-01

    Thomson Spectrometers (TPs) are widely used for beam diagnostic as they provide simultaneous information on charge over mass ratio, energy and momentum of detected ions. A new TP design has been realized at INFN-LNS within the LILIA (Laser Induced Light Ion Acceleration) and ELIMED (MEDical application at ELI-Beamlines) projects. This paper reports on the construction details of the TP and on its experimental tests performed at PALS laboratory in Prague, with the ASTERIX IV laser system. Reported data are obtained with polyethylene and polyvinyl alcohol solid targets, they have been compared with data obtained from other detectors. Consistency among results confirms the correct functioning of the new TP. The main features, characterizing the design, are a wide acceptance of the deflection sector and a tunability of the, partially overlapping, magnetic and electric fields that allow to resolve ions with energy up to about 40 MeV for protons

  19. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  20. Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam

    International Nuclear Information System (INIS)

    Gonzalez Vanderhaghen, D.E.

    1998-01-01

    In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water

  1. A new approach to film dosimetry for high-energy photon beams using organic plastic scintillators

    International Nuclear Information System (INIS)

    Yeo, I.J.; Wang, C.-K.C.; Burch, S.E.

    1999-01-01

    Successful radiotherapy relies on accurate dose measurement. Traditional dosimeters such as ion chambers, TLDs and diodes have disadvantages such as relatively long measurement time and poor spatial resolution. These drawbacks become more serious problems for dynamic beams (i.e. with the use of dynamic wedges or even the intensity modulation technique). X-ray film, an integrating dosimeter, may not be associated with the above disadvantages and problems. However, there are several major issues regarding use of x-ray film for routine dosimetry, including the over-response of the film to low-energy photons, variations in the dose response curve (nonlinearity), lack of reproducibility due to variation in processing, etc. This paper addresses the first problem. That is, x-ray film over-responds to low-energy photons (energies below 400 keV), and thus generates unacceptably inaccurate dosimetric data compared with ion-chamber data. To overcome the over-response problem of x-ray film in a phantom, a scintillation method has been investigated. In this method, a film is sandwiched by two plastic scintillation screens to enhance the film response to upstream electrons, and therefore minimize the over-response caused by low-energy photons. The sandwiched system was tested with a 4 MV linac beam. The result shows that, depending on the uniformity of the scintillation screens, the depth-dose distribution obtained from the sandwich system can be made to agree well with that obtained from ion chambers. However, the required high degree of uniformity remains a challenge for the scintillation screen manufacturers. (author)

  2. An accurate energy-range relationship for high-energy electron beams in arbitrary materials

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Brahme, A.

    1994-01-01

    A general analytical energy-range relationship has been derived to relate the practical range, R p to the most probable energy, E p , of incident electron beams in the range 1 to 50 MeV and above, for absorbers of any atomic number. In the present study only Monte Carlo data determined with the new ITS.3 code have been employed. The standard deviations of the mean deviation from the Monte Carlo data at any energy are about 0.10, 0.12, 0.04, 0.11, 0.04, 0.03, 0.02 mm for Be, C, H 2 O, Al, Cu, Ag and U, respectively, and the relative standard deviation of the mean is about 0.5% for all materials. The fitting program gives some priority to water-equivalent materials, which explains the low standard deviation for water. A small error in the fall-off slope can give a different value for R p . We describe a new method which reduces the uncertainty in the R p determination, by fitting an odd function to the descending portion of the depth-dose curve in order to accurately determine the tangent at the inflection point, and thereby the practical range. An approximate inverse relation is given expressing the most probable energy of an electron beam as a function of the practical range. The resultant relative standard error of the energy is less than 0.7%, and the maximum energy error ΔE p is less than 0.3 MeV. (author)

  3. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  4. Polarization effects in the reaction of charm baryon production on colliding electron-positron beams

    International Nuclear Information System (INIS)

    Rekalo, M.P.; Korzh, A.P.; Barannik, V.P.

    1980-01-01

    To calculate energy and angular distributions of various decay products of charm baAyons, which are prodUced in reactions on colliding e + e - beams, it is necessary to know the differential cross sections of the e + e - → C+anti C process which correspond to different polarized states of produced C and anti C (C - charm baryon). These differential cross sections are calculated for a single-photon mechanism with respect to the contribution of the anapole and electric dipole form factors of C-baryon. Polarizations of colliding electron-positron beams are taken into account in a full volume

  5. MO-H-19A-01: FEATURED PRESENTATION - Treatment Planning Tool for Radiotherapy with Very High-Energy Electron Beams

    International Nuclear Information System (INIS)

    Bazalova, M; Qu, B; Palma, B; Loo, B; Maxim, P; Hynning, E; Hardemark, B

    2014-01-01

    Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N and pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of

  6. Study of surface layer assessment of solids by ultra-slow and short-pulsed positron beams

    International Nuclear Information System (INIS)

    Suzuki, Ryouichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Yamada, Kawakatsu

    2004-01-01

    Thin films of insulators with low dielectric constant, as a candidate for next generation LSI (large scale integration), were assessed by two dimensional positron life time and wave height measurements using variable incident energy and also short pulsed positron beams. Linkages and openness of nano-scale voids in the films were evaluated by the measurements. Amorphous SiO 2 films were compared with SiCOH films synthesized by plasma CVD (Chemical Vapor Deposition) by measurements of the correlation between positron lifetime and momentum using short-pulsed positron beams. From the measurements, many hydrocarbons were found on void surface of SiCOH films. Positron lifetime measurement gives information about void sizes, and Doppler broadening due to annihilation γ-rays offers electron momentum distribution, which is a counterpart of positron annihilation. Two γ-rays are emitted on the positron annihilation. Coincident measurements of these two γ-rays provide the correlation spectra between positron lifetime and momentum. An instrument for positron annihilation excitation Auger electron spectroscopy (PAES) was improved, and a time-of-flight (TOF) PAES instrument was developed. Double counting rate and high resolution, compared with a conventional Auger electron spectrometer, were attained in elementary analysis using above TOF-PAES instrument. (Y. Kazumata)

  7. Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams

    Science.gov (United States)

    Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.

    2017-09-01

    The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm  ×  10 cm field size agreed with the results of ionization chamber measurements within  ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.

  8. Optimization of laser parameters to obtain high-energy, high-quality electron beams through laser-plasma acceleration

    International Nuclear Information System (INIS)

    Samant, Sushil Arun; Sarkar, Deepangkar; Krishnagopal, Srinivas; Upadhyay, Ajay K.; Jha, Pallavi

    2010-01-01

    The propagation of an intense (a 0 =3), short-pulse (L∼λ p ) laser through a homogeneous plasma has been investigated. Using two-dimensional simulations for a 0 =3, the pulse-length and spot-size at three different plasma densities were optimized in order to get a better quality beam in laser wakefield accelerator. The study reveals that with increasing pulse-length the acceleration increases, but after a certain pulse-length (L>0.23λ p ) the emittance blows-up unacceptably. For spot-sizes less than that given by k p0 r s =2√(a 0 ), trapping is poor or nonexistent, and the optimal spot-size is larger. The deviation of the optimal spot-size from this formula increases as the density decreases. The efficacy of these two-dimensional simulations has been validated by running three-dimensional simulations at the highest density. It has been shown that good quality GeV-class beams can be obtained at plasma densities of ∼10 18 cm -3 . The quality of the beam can be substantially improved by selecting only the high-energy peak; in this fashion an energy-spread of better than 1% and a current in tens of kA can be achieved, which are important for applications such as free-electron lasers.

  9. A study on the influence of High-energy Electron Beam Irradiation on Stabilities of IGZO Based TTFT

    International Nuclear Information System (INIS)

    Moon, Hye Ji; Oh, Hye Ran; Jung, So Hyun; Bae, Byung Seong; Yun, Eui Jung; Ryu, Min Ki; Cho, Kyoung Ik

    2011-01-01

    Recently, Ionizing has been used as an active layer in applications of transparent thin film transistors and the stabilities of TTFTs become the curricula issue. High-performance, stable IGZO-based TTFTsare also required in a high radiation environment, such as X-rays, gamma-rays, electron beams, etc., which suggests that studies on the variations in the electrical properties in a radiation environment are of critical importance for space applications of IGZO-based materials and devices. Hence, in this study we investigated the influence of high-energy electron beam irradiation on optical and gate-bias stabilities of IGZO-based TTFTs. The TTFTs has a top gate structure, which used IGZO and Al 2 O 3 films for the active layer and the gate dielectric, respectively. The W/L of the TTFTs was 10μm/10μm. The TTFTs were treated with Hubbub in air at room temperature at an electron beam energy of 0.8 MeV and a dose for 1 Χ 10 14 electrons/cm 2 . We developed TTFTs with excellent device properties and conclude that the Hubbub can improve the stabilities of IGZO-based TTFTs

  10. Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams

    International Nuclear Information System (INIS)

    Weaver, Randi D.; Gerbi, Bruce J.; Dusenbery, Kathryn E.

    1998-01-01

    Purpose: To protect the lens and cornea of the eye when treating the eyelid with electrons, we designed a tungsten and aluminum eye shield that protected both the lens and cornea, and also limited the amount of backscatter to the overlying eyelid when using electron beam therapy. Methods and Materials: Custom curved tungsten eye shields, 2 mm and 3 mm thick, were placed on Kodak XV film on 8 cm polystyrene and irradiated to evaluate the transmission through the shields. To simulate the thickness of the eyelid and to hold the micro-TLDs, an aquaplast mold was made to match the curvature of the eye shields. Backscatter was measured by placing the micro-TLDs on the beam entrance side to check the dose to the underside of the eyelid. Measurements were done with no aluminum, 0.5, and 1.0 mm of aluminum on top of the tungsten eye shields. The measurements were repeated with 2- and 3-mm flat pieces of lead to determine both the transmission and the backscatter dose for this material. Results: Tungsten proved to be superior to lead for shielding the underlying structures and for reducing backscatter. At 6 MeV, a 3-mm flat slab of tungsten plus 0.5 mm of aluminum, resulted in .042 Gy under the shield when 1.00 Gy is delivered to d max . At 6 MeV for a 3-mm lead plus 0.5-mm aluminum, .046 Gy was measured beneath the shield, a 9.5% decrease with the tungsten. Backscatter was also decreased from 1.17 to 1.13 Gy, a 4% decrease, when using tungsten plus 0.5 mm of aluminum vs. the same thickness of lead. Measurements using 9 MeV were performed in the same manner. With 3 mm tungsten and 0.5 mm of aluminum, at 3 mm depth the dose was .048 Gy compared to .079 Gy with lead and aluminum (39% decrease). Additionally, the backscatter dose was 3% less using tungsten. Simulating the lens dose 3 mm beyond the shield for the 2-mm and 3-mm custom curved tungsten eye shields plus 0.5 mm of aluminum was .030 and .024 Gy, respectively, using 6 MeV (20% decrease). Using 9-MeV electrons, the dose

  11. High energy neutron radiography

    International Nuclear Information System (INIS)

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  12. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  13. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

    International Nuclear Information System (INIS)

    Papanikolaou, Niko; Stathakis, Sotirios

    2009-01-01

    Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.

  14. MTBE and priority contaminant treatment with high energy electron beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J; Nickelsen, Michael G; Mezyk, Stephen P; Leslie, Greg; Tornatore, Paul M; Hardison, Wayne; Hajali, Paris A

    2002-11-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.

  15. MTBE and priority contaminant treatment with high energy electron beam injection

    International Nuclear Information System (INIS)

    Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.

    2002-01-01

    A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters

  16. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P M [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T B; Dries, W

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  17. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-01-01

    Measurements of 2s l/2 -2p 3/2 electric dipole and 2p 1/2 -2p 3/2 magnetic dipole and electric quadrupole transitions in U 82+ through U 89+ have been made with a high-resolution crystal spectrometer that recorded the line radiation from stationary ions produced and trapped in a high-energy electron beam ion trap. From the measurements we infer -39.21 ± 0.23 eV for the QED contribution to the 2s 1/2 -2p 3/2 transition energy of lithiumlike U 89+ . A comparison between our measurements and various computations illustrates the need for continued improvements in theoretical approaches for calculating the atomic structure of ions with two or more electrons in the L shell

  18. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  19. Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment

    Science.gov (United States)

    Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan

    2014-08-01

    High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.

  20. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  1. Measurements of the Influence of Thermoplastic Mask in High Energy Photon Beams: Gel Dosimeter or Ionizing Chamber?

    Science.gov (United States)

    Moreira, M. V.; Petchevist, C. D.; de Almeida, A.

    2009-12-01

    The influence of the immobilization mask material on the absorbed dose distribution in patients exposed to radiotherapy treatment with photon beams has been investigated for photons from a 60Co source and a 6 MV Linac. Absorbed dose values have been inferred at different depths and in the build-up region. Dose measurements were obtained using Fricke Xylenol Gel dosimeter and the cylindrical PTW Freiburg TM 31016-0.016 cc ionizing micro chamber; their discrepancies are discussed. The affinities of FXG and PTW ICMicro for measurements with high energy photons and the difference in the effective atomic numbers due to their compositions are most likely the most important factors that contribute to the measured dose in the build-up region. The measured values show that the use of the mask material contributes to increase the absorbed doses near the surface of the tissue. The result also shows that the build-up effect for 60Co is significantly smaller than that for 6 MV photons; however, the variations noted in the final doses of the radiotherapic treatments with photons of high energy do not represent alterations in the total doses received by the patients submitted to the radiotherapy.

  2. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    International Nuclear Information System (INIS)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G.; Loo, Billy W.; Hårdemark, Björn; Hynning, Elin

    2015-01-01

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  3. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  4. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  5. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  6. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    Energy Technology Data Exchange (ETDEWEB)

    Reuen, Lars

    2011-02-15

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on {delta}-electrons will be presented here. (orig.)

  7. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  8. High energy density physics effects predicted in simulations of the CERN HiRadMat beam-target interaction experiments

    Science.gov (United States)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.

    2016-12-01

    Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.

  9. Analysis of pixel systematics and space point reconstruction with DEPFET PXD5 matrices using high energy beam test data

    International Nuclear Information System (INIS)

    Reuen, Lars

    2011-02-01

    To answer the current questions in particle physics vertex-detectors, the innermost sub-detector system of a multipurpose particle detector, with brilliant spatial resolution and at the same time with as little sensor material as possible are mandatory. These requirements are the driving force behind the newest generation of silicon pixel sensors like the DEPFET pixel, which incorporates the first amplification stage in form of a transistor in the fully depleted sensor bulk, allowing for a high spatial resolution even with thinned down sensors. A DEPFET pixel prototype system, build for the future TeV-scale liner collider ILC, was characterized in a high energy beam test at CERN with a spatial resolution and statistics that allowed for the first time in-pixel homogeneity measurements of DEPFET pixels. Yet, in the quest for higher precision the sensor development must be accompanied by progress in position reconstruction algorithms. A study with three novel approaches in position reconstruction was undertaken. The results of the in-pixel beam test and the performance of the new methods with an emphasis on δ-electrons will be presented here. (orig.)

  10. Annealing of low-temperature GaAs studied using a variable energy positron beam

    International Nuclear Information System (INIS)

    Keeble, D.J.; Umlor, M.T.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1993-01-01

    The annihilation characteristics of monoenergetic positrons implanted in a molecular beam epitaxy layer of low-temperature (LT) GaAs annealed at temperatures from 300 to 600 degree C were measured. A gallium vacancy concentration of approximately 3x10 17 cm -3 is inferred for the as-grown material. The S parameter increased significantly upon anneal to 500 degree C. The dominant positron traps in samples annealed at and below 400 degree C are distinct from those acting for samples annealed to 500 or 600 degree C. The change in S parameter for the 600 degree C annealed sample compared to the GaAs substrate, S LT,600 =1.047S sub , is consistent with divacancies or larger open volume defects

  11. Exploring of defects in He+ implanted Si(100) by slow positron beam

    International Nuclear Information System (INIS)

    Zhang Tianhao; Weng Huimin; Fan Yangmei; Du Jiangfeng; Zhou Xianyi; Han Rongdian; Zhang Miao; Lin Chenglu

    2001-01-01

    Si(100) crystal implanted by 5 x 10 16 cm -2 , 140 keV He + was probed by slow positron beam, and defect distribution along depth was obtained from the relation between S parameter and positron incidence energy. The near surface region of implanted sample was only slightly damaged. Small vacancies and vacancy clusters less than 1 nm in diameter were the dominant defects, while the deeper region around the He + projected range was heavily damaged and had dense larger helium micro-bubbles and microvoids. Thermal anneal study at different temperatures showed that low temperature annealing could remove most vacancy-type defects effectively. However, annealing at high temperature enlarged the diameters of micro-bubbles and microvoids

  12. Design and Characterization of a Three-Dimensional Positron Annihilation Spectroscopy System Using a Low-Energy Positron Beam

    Science.gov (United States)

    2012-03-22

    Technique Applied to Measure Oxygen -Atom Defects in 6H Silicon Carbide”. 2010. [31] Y. C. Jean , P. E. Mallon and D. M. Schrader. Principles and Applications...that result in β+ emission, by photon interactions with nuclei and subsequent pair production, or by β+ decays from radioactive isotopes made by...reactions for creating positrons [7], some of which are used to to create radioactive isotopes that β+ decay. Regardless of the positron source, positrons

  13. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  14. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  15. The relative biological effectiveness of a high energy neutron beam for micronuclei induction in T-lymphocytes of different individuals

    Energy Technology Data Exchange (ETDEWEB)

    Slabbert, J.P., E-mail: jps@tlabs.ac.z [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Dept. of Medical Imaging and Clinical Oncology, University of Stellenbosch (South Africa); August, L. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa); Vral, A. [Dept. of Basic Medical Sciences, Ghent University (Belgium); Symons, J. [NRF iThemba LABS (Laboratory for Accelerated Based Sciences), Somerset West (South Africa)

    2010-12-15

    In assessing the radiation risk of personnel exposed to cosmic radiation fields as it pertains to radiological damage during travel in civilian aircrafts, it is particularly important to know the relative biological effectiveness (RBE) for high energy neutrons. It has been the subject of numerous investigations in recent years using different neutron energies and cytogenetic examinations. Variations in the radiosensitivity of white blood cells for different individuals are likely to influence the estimate of the relative biological effectiveness for high energy neutrons. This as such observations have been noted in the response of different cancer cell lines with varying inherent sensitivities. In this work the radiosensitivities of T-lymphocytes of different individuals to the p(66)/Be neutron beam at iThemba LABS were measured using micronuclei formations and compared to that noted following exposure to {sup 60}Co {gamma}-rays. The principle objective of this investigation was to establish if a relationship between neutron RBE and variation in biological response to {sup 60}Co {gamma}-rays for lymphocytes from different individuals could be determined. Peripheral blood samples were collected from four healthy donors and isolated lymphocytes were exposed to different doses of {sup 60}Co {gamma}-rays (1-5 Gy) and p(66)/Be neutrons (0.5-2.5 Gy). One sample per donor was not exposed to radiation and served as a control. Lymphocytes were stimulated using PHA and cultured to induce micronuclei in cytokinesis-blocked cells. Micronuclei yields were numerated using fluorescent microscopy. Radiosensitivities and RBE values were calculated from the fitted parameters describing the micronuclei frequency dose response data. Dissimilar dose response curves for different donors were observed reflecting varying inherent sensitivities to both neutron and gamma radiation. A clear reduction in the dose limiting RBE{sub M} is noted for donors with lymphocytes more sensitive to

  16. Ion-implantation induced defects in ZnO studied by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sekiguchi, T.; Suzuki, R.

    2004-01-01

    Introduction and annealing behavior of defects in Al + -implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al + -implantation. With increasing ion dose above 10 14 Al + /cm 2 the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  17. Ion-implantation induced defects in ZnO studied by a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A. [Japan Atomic Energy Research Institute, Gunma (Japan); Sekiguchi, T. [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan); Suzuki, R. [National Inst. of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan)

    2004-07-01

    Introduction and annealing behavior of defects in Al{sup +}-implanted ZnO have been studied using an energy variable slow positron beam. Vacancy clusters are produced after Al{sup +}-implantation. With increasing ion dose above 10{sup 14} Al{sup +}/cm{sup 2} the implanted layer is amorphized. Heat treatment up to 600 C enhances the creation of large voids that allow the positronium formation. The large voids disappear accompanying the recrystallization process by further heat treatment above 600 C. Afterwards, implanted Al impurities are completely activated to contribute to the n-type conduction. The ZnO crystal quality is also improved after recrystallization. (orig.)

  18. Very high-energy electron (VHEE) beams in radiation therapy; Treatment plan comparison between VHEE, VMAT, and PPBS.

    Science.gov (United States)

    Schüler, Emil; Eriksson, Kjell; Hynning, Elin; Hancock, Steven L; Hiniker, Susan M; Bazalova-Carter, Magdalena; Wong, Tony; Le, Quynh-Thu; Loo, Billy W; Maxim, Peter G

    2017-06-01

    The aim of this study was to evaluate the performance of very high-energy electron beams (VHEE) in comparison to clinically derived treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PPBS) technology. We developed a custom optimization script that could be applied automatically across modalities to eliminate operator bias during IMRT optimization. Four clinical cases were selected (prostate cancer, lung cancer, pediatric brain tumor, and head and neck cancer (HNC)). The VHEE beams were calculated in the EGSnrc/DOSXYZnrc Monte Carlo code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PPBS were optimized in a research version of RayStation using an in-house developed script to minimize operator bias between the different techniques. The in-house developed script generated similar or superior plans to the clinically used plans. In the comparisons between the modalities, the integral dose was lowest for the PPBS-generated plans in all cases. For the prostate case, the 200 MeV VHEE plan showed reduced integral dose and reduced organ at risk (OAR) dose compared to the VMAT plan. For all other cases, both the 100 and the 200 MeV VHEE plans were superior to the VMAT plans, and the VHEE plans showed better conformity and lower spinal cord dose in the pediatric brain case and lower brain stem dose in the HNC case when compared to the PPBS plan. The automated optimization developed in this study generated similar or superior plans as compared to the clinically used plan and represents an unbiased approach to compare treatment plans generated for different modalities. In the present study, we also show that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases, and VHEE plans can even achieve reductions in OAR doses compared to PPBS plans for shallow targets. With increased VHEE energy, better conformity and even higher

  19. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1995-01-01

    Positron Annihilation Spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems

  20. Point defects in MnSi and YBCO studied by Doppler Broadening Spectroscopy using a positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Markus

    2015-10-28

    The positron beam NEPOMUC was used in order to investigate MnSi and YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) single crystals. The Doppler broadening of the annihilation radiation of electron-positron pairs was analyzed. Thus, the concentration of Mn vacancies in MnSi crystals was determined. In thin YBCO films, the Doppler broadening is correlated with the oxygen deficiency δ. Its spatial distribution and its high-temperature behavior were studied using positrons.

  1. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1997-01-01

    Positron annihilation spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems. (author)

  2. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  3. Evolution of voids in Al+-implanted ZnO probed by a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Yamamoto, S.; Kawasuso, A.; Yuan, X.L.; Sekiguchi, T.; Suzuki, R.; Ohdaira, T.

    2004-01-01

    Undoped ZnO single crystals were implanted with aluminum ions up to a dose of 10 15 Al + /cm 2 . Vacancy defects in the implanted layers were detected using positron lifetime and Doppler broadening measurements with slow positron beams. It shows that vacancy clusters, which are close to the size of V 8 , are generated by implantation. Postimplantation annealing shows that the Doppler broadening S parameter increases in the temperature range from 200 deg. C to 600 deg. C suggesting further agglomeration of vacancy clusters to voids. Detailed analyses of Doppler broadening spectra show formation of positronium after 600 deg. C annealing of the implanted samples with doses higher than 10 14 Al + /cm 2 . Positron lifetime measurements further suggest that the void diameter is about 0.8 nm. The voids disappear and the vacancy concentration reaches the detection limit after annealing at 600-900 deg. C. Hall measurement shows that the implanted Al + ions are fully activated with improved carrier mobility after final annealing. Cathodoluminescence measurements show that the ultraviolet luminescence is much stronger than the unimplanted state. These findings also suggest that the electrical and optical properties of ZnO become much better by Al + implantation and subsequent annealing

  4. High-energy electron beam irradiation of Al-doped ZnO thin films deposited at room temperature

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Hwang, Jong-Ha; Lee, Byung-Cheol; Jung, Myung-Hee

    2011-01-01

    In this research, we demonstrated the effects of high-energy electron beam irradiation (HEEBI) on the optical and structural properties of Al-doped ZnO (AZO) films grown on transparent corning glass substrates at room temperature (RT) by using a radio-frequency magnetron sputtering technique. The AZO thin films were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and doses of 1 x 10 14 - 1 x 10 16 electrons/cm 2 . The photoluminescence (PL) measurements revealed that the dominant peak at 2.77 eV was a blue emission originating from donor-like defects, oxygen vacancies (V o ), suggesting that the n-type conductivity was preserved in HEEBI-treated films. On the basis of PL, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results, we suggest that the density of V o donor defects is decreased due to in-diffusion of oxygen from the ambient into the films after HEEBI treatment at low doses up to 10 15 electrons/cm 2 while the opposite phenomenon can occur with further increase in the dose. We also found from the XRD analysis that the worse crystallinity with a smaller grain size was observed in HEEBI-treated AZO films at a higher dose, corresponding to a higher oxygen fraction in the films. We believe that our results will contribute to developing high-quality AZO-based materials and devices for space applications.

  5. Effect of high-energy electron beam irradiation on the device characteristics of IGZO-based transparent thin film transistors

    International Nuclear Information System (INIS)

    Moon, Hye Ji; Oh, Hye Ran; Bae, Byung Seong; Yun, Eui Jung; Ryu, Min Ki; Cho, Kyoung Ik

    2012-01-01

    In this study, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the device properties of indium-gallium-zinc-oxide (IGZO)-based transparent thin film transistors (TTFTs). The developed TTFTs had a top gate structure, which used IGZO and Al 2 O 3 films for the active layer and the gate dielectric, respectively. The developed TTFTs were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and a dose of 1 x 10 14 electrons/cm 2 . Without the HEEBI treatment, the devices operated in depletion mode with a threshold voltage (V th ) of -11.25 V, a field-effect mobility (μ FE ) of 8.71 cm 2 /Vs, an on-off ratio (I on/off ) of 1.3 x 10 8 and a sub-threshold slope (SS) of 0.3 V/decade. A huge positive-shifted V th of -1 V, a very high μ FE of 420 cm 2 /Vs, a high I on/off of 6.1 x 10 8 , and a lower SS of 0.25 V/decade were achieved for the HEEBI-treated devices, suggesting that the device characteristics of the developed TTFTs were significantly improved by the HEEBI treatment. The best device characteristics, which include I on/off of 8.1 x 10 8 , SS of 0.25 V/decade, V th of +1 V, μ FE of 8.8 cm 2 /Vs, and operation in the enhancement mode without aging, were obtained for the samples that had been annealed after HEEBI treatment. On the basis of the experimental results, we believe that HEEBI treatment can be crucial to develop IGZO-based TFTs with high performance and long-term reliability.

  6. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  7. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    Energy Technology Data Exchange (ETDEWEB)

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  8. Estimation of deep, eye lens and skin doses for high energy electron beams for dosimetry and protection purpose

    International Nuclear Information System (INIS)

    Reena Kumari; Rakesh, R.B.

    2018-01-01

    In the radiological protection especially for individual as well as area monitoring, it is generally considered that beta sources deposit skin and eye lens doses only as they do not have enough energy for depositing doses at 10 mm depth. Also, the skin and eye lens doses differ substantially due to attenuation of beta particles at 0.07 mm (skin) and 3 mm (eye lens) depths and the surface doses are always greater than eye lens doses even for the highest energy beta source used in brachytherapy applications. However, worldwide increase in the use of high energy electron accelerators, new challenges are being posed for radiological protection and the operational quantities defined previously by ICRU are being reviewed. In view of these developments, studies have been performed for different electron beams in the energy range from (4 - 20) MeV generated using a medical linear accelerator. The aim of the study is to measure doses deposited at various depths as defined by ICRU 39 for individual and area monitoring purposes

  9. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    International Nuclear Information System (INIS)

    Szabó, J.; Pálfalvi, J.K.

    2012-01-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008–2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  10. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, J., E-mail: julianna.szabo@energia.mta.hu [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary); Palfalvi, J.K. [Hungarian Academy of Sciences, Centre for Energy Research, Konkoly Thege Miklos ut 29-33, 1525 Budapest 114, P.O. Box 49 (Hungary)

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  11. Applications of High Energy Ion Beam Techniques in Environmental Science: Investigation Associated with Glass and Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Thevuthasan, Suntharampillai; Shutthanandan, V; Zhang, Yanwen

    2006-02-01

    High energy ion beam capabilities including Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) have been very effectively used in environmental science to investigate the ion exchange mechanisms in glass waste forms and the effects of irradiation in glass and ceramic waste forms in the past. In this study, RBS and NRA along with SIMNRA simulations were used to monitor the Na depletion and D and 18O uptake in alumina silicate glasses, respectively, after the glass coupons were exposed to aqueous solution. These results show that the formation of a reaction layer and an establishment of a region where diffusion limited ion exchange occur in these glasses during exposure to silica-saturated solutions. Different regions including reaction and diffusion regions were identified on the basis of the depth distributions of these elements. In the case of ceramics, damage accumulation was studied as a function of ion dose at different irradiation temperatures. A sigmoidal dependence of relative disorder on the ion dose was observed. The defect dechanneling factors were calculated for two irradiated regions in SrTiO? using the critical angles determined from the angular yield curves. The dependence of defect dechanneling parameter on the incident energy was investigated and it was observed that the generated defects are mostly interstitial atoms and amorphous clusters. Thermal recovery experiments were performed to study the damage recovery processes up to a maximum temperature of 870 K.

  12. Coherent bremsstrahlung in crystals as a tool for producing high energy photon beams to be used in photoproduction experiments at CERN SPS

    Energy Technology Data Exchange (ETDEWEB)

    Bilokon, H; D' Ettorre Piazzoli, B; Mannocchi, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Bologna, G; Picchi, P [Turin Univ. (Italy). Ist. di Fisica Generale; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati); Celani, F; Falcioni, R [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1983-01-01

    We recall the properties of coherent bremsstrahlung of high energy electrons in single crystals and show that a suitably oriented diamond crystal can produce a high energy bremsstrahlung beam whose quasimonochromatic spectral composition may be exploited for increasing the production rate in a photoproduction experiment at hundreds of GeV. A careful analysis of the required angular resolutions is performed. It turns out that the standard deviation of the electron beam angular divergence in one plane should be less than 0.3 mrad, for a beam energy of 150 GeV. The standard deviation in the perpendicular plane is not critical. In this situation the photoproduction rate in a typical case is increased by a factor of about 3 with respect to the conventional bremsstrahlung beam.

  13. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam

    Science.gov (United States)

    Warwick, J.; Dzelzainis, T.; Dieckmann, M. E.; Schumaker, W.; Doria, D.; Romagnani, L.; Poder, K.; Cole, J. M.; Alejo, A.; Yeung, M.; Krushelnick, K.; Mangles, S. P. D.; Najmudin, Z.; Reville, B.; Samarin, G. M.; Symes, D. D.; Thomas, A. G. R.; Borghesi, M.; Sarri, G.

    2017-11-01

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T ) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ɛB≈10-3 is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  14. Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam.

    Science.gov (United States)

    Warwick, J; Dzelzainis, T; Dieckmann, M E; Schumaker, W; Doria, D; Romagnani, L; Poder, K; Cole, J M; Alejo, A; Yeung, M; Krushelnick, K; Mangles, S P D; Najmudin, Z; Reville, B; Samarin, G M; Symes, D D; Thomas, A G R; Borghesi, M; Sarri, G

    2017-11-03

    We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1  T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

  15. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  16. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Science.gov (United States)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  17. SU-E-T-608: Perturbation Corrections for Alanine Dosimeters in Different Phantom Materials in High-Energy Photon Beams

    International Nuclear Information System (INIS)

    Voigts-Rhetz, P von; Czarnecki, D; Anton, M; Zink, K

    2015-01-01

    Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from 60 Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k env for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted with BEAMnrc to a 60 Co unit and an Elekta (E nom =6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n e /n e,w ) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k env =0.9991+0.0049 *((n e /n e,w )−0.7659) 3 Conclusion: A perturbation correction factor k env accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n e /n e,w ) between 1 and 1.4. For denser materials such as bone or much less dense

  18. SU-E-T-267: Development of the Compact Graphite Calorimetry System for the High Energy Photon Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. C.; Kim, I. J.; Kim, J. H.; Yi, C. Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-06-15

    Purpose: Graphite calorimeter systems are used for the absolute photon dosimetry. But many electronics are demanded in order to measure the tiny temperature changes. Minimizing the control system is needed to make a portable graphite calorimeter. Methods: A Domen-type graphite calorimetry system is constructing to measure the absorbed dose of the high energy photon beam. The graphite calorimeter divided into three parts, Core, Jacket, and Shield. In order to measure the temperature rising of the core due to the radiation accurately, the temperatures of the jacket and the shield should be controlled properly. A commercial temperature controller (Model 350, Lake Shore Cryogenics) was used to minimize the size of control system for making a portable graphite calorimetry system at the cost of the measurement uncertainty. The PID control of the jacket is conducted by the software (LabView) and Model 350 maintain the temperature of shield. Results: Our design value of the heat deposition power in the core is 0.04 mW for the dose rate of 3 Gy/min where the temperature sensitivity of the graphite is 1.4 mK/Gy. While the residuals of the Steinhart-hart equation fitting for the core thermistor were less than 0.1 mK, the temperature resolution of Model 350 is 1 mK. The temperature of the shield was kept within the 5 mK when the room temperature variation was about 0.5 K. Conclusion: The resolution of Model 350 for the temperature measurement and control is not good enough as the control system for the compact graphite calorimetry system. But The performance of Model 350 is good enough to maintain the temperature of the shield constantly. The Model 350 will be replaced by the AC resistance bridge (Model 372, Lake Shore Cryogenics) for the core temperature measurement and the jacket control.

  19. Arcing and rf signal generation during target irradiation by a high-energy, pulsed neutral particle beam

    International Nuclear Information System (INIS)

    Robiscoe, R.T.

    1988-02-01

    We present a theory describing the dynamics of arc discharges in bulk dielectric materials on board space-based vehicles. Such ''punch-through'' arcs can occur in target satellites irradiated by high-energy (250 MeV), pulsed (100 mA x 10 ms) neutral particle beams. We treat the arc as a capacitively limited avalanche current in the target dielectric material, and we find expressions for the arc duration, charge transport, currents, and discharge energy. These quantities are adjusted to be consistent with known scaling laws for the area of charge depleted by the arc. After a brief account of the statistical distribution of voltages at which the arc starts and stops, we calculate the signal strength and frequency spectrum of the electromagnetic radiation broadcast by the arc. We find that arcs from thick (/similar to/1 cm) targets can generate rf signals detectable up to 1000 km from the target, bu a radio receiver operating at frequency 80 MHz, bandwidth 100 kHz, and detection threshold -105 dBm. These thick-target arc signals are 10 to 20 dB above ambient noise at the receiver, and they provide target hit assessment if the signal spectrum can be sampled at several frequencies in the nominal range 30-200 MHz. Thin-target (/similar to/1 mm) arc signals are much weaker, but when they are detecable in conjunction with thick-target signals, target discrimination is possible by comparing the signal frequency spectra. 24 refs., 12 figs

  20. A high-energy double-crystal fixed exit monochromator for the X17 superconducting wiggler beam line at the NSLS

    International Nuclear Information System (INIS)

    Garrett, R.F.; Dilmanian, F.A.; Oversluizen, T.; Lenhard, A.; Berman, L.E.; Chapman, L.D.; Stoeber, W.

    1992-01-01

    A high-energy double-crystal x-ray monochromator has been constructed for use on the X-17 beam line at the National Synchrotron Light Source (NSLS). Its design is based on the ''boomerang'' right angle linkage, and features a fixed exit beam, a cooled first crystal, and an energy range of 8--92 keV. The entire mechanism is UHV compatible. The design is described and performance details, obtained in testing at the X17 beam line, are presented

  1. Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay

    Science.gov (United States)

    Liszkay, L.; Comini, P.; Corbel, C.; Debu, P.; Grandemange, P.; Pérez, P.; Rey, J.-M.; Reymond, J.-M.; Ruiz, N.; Sacquin, Y.; Vallage, B.

    2014-04-01

    A new slow positron beamline featuring a large acceptance positronium lifetime spectrometer has been constructed and tested at the linac-based slow positron source at IRFU CEA Saclay, France. The new instrument will be used in the development of a dense positronium target cloud for the GBAR experiment. The GBAR project aims at precise measurement of the gravitational acceleration of antihydrogen in the gravitational field of the Earth. Beyond application in fundamental science, the positron spectrometer will be used in materials research, for testing thin porous films and layers by means of positronium annihilation. The slow positron beamline is being used as a test bench to develop further instrumentation for positron annihilation spectroscopy (Ps time-of-flight, pulsed positron beam). The positron source is built on a low energy linear electron accelerator (linac). The 4.3 MeV electron energy used is well below the photoneutron threshold, making the source a genuine on-off device, without remaining radioactivity. The spectrometer features large BGO (Bismuth Germanate) scintillator detectors, with sufficiently large acceptance to detect all ortho-positronium annihilation lifetime components (annihilation in vacuum and in nanopores).

  2. Slow positron applications at slow positron facility of institute of materials structure science, KEK

    Science.gov (United States)

    Hyodo, Toshio; Mochizuki, Izumi; Wada, Ken; Toge, Nobukazu; Shidara, Tetsuo

    2018-05-01

    Slow Positron Facility at High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy-tunable (0.1 - 35 keV) slow positron beam created by a dedicated ˜ 50 MeV linac. It operates in a short pulse (width 1-12 ns, variable, 5×106 e+/s) and a long pulse (width 1.2 µs, 5×107 e+/s) modes of 50 Hz. High energy positrons from pair creation are moderated by reemission after thermalization in W foils. The reemitted positrons are then electrostatically accelerated to a desired energy up to 35 keV and magnetically transported. A pulse-stretching section (pulse stretcher) is installed in the middle of the beamline. It stretches the slow positron pulse for the experiments where too many positrons annihilating in the sample at the same time has to be avoided. Four experiment stations for TRHEPD (total-reflection high-energy positron diffraction), LEPD (low-energy positron diffraction), Ps- (positronium negative ion), and Ps-TOF (positronium time-of-flight) experiments are connected to the beamline branches, SPF-A3, SPF-A4, SPF-B1 and SPF-B2, respectively. Recent results of these stations are briefly described.

  3. Stress evaluation at the ILC positron source

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, Andriy; Moortgat-Pick, Gudrid [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Luruper Chaussee 149, 22761 Hamburg (Germany); Riemann, Sabine; Dietrich, Felix [Deutsches Elektronen-Synchrotron (DESY), Standort Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany); Aulenbacher, Kurt; Tyukin, Valery; Heil, Philipp [Johannes Gutenberg-Universitaet Mainz, Institut fuer Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz (Germany)

    2016-07-01

    High luminosity is required at future Linear Colliders which is particularly challenging for all corresponding positron sources. At the International Linear Collider (ILC), polarized positrons are obtained from electron-positron pairs by converting high-energy photons produced by passing the high-energy main electron beam through a helical undulator. The conversion target undergoes cyclic stress with high peak values. To distribute the thermal load, the target is designed as wheel spinning in vacuum with 100 m/s. However, the cyclic stress over long time at high target temperatures could exceed the fatigue stress limit. In the talk, an overview of the ILC positron source is given. The prospects to study material parameters under conditions as expected at the ILC are discussed.

  4. Channeling crystals for positron production

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    Particles traversing at small angles along a single crystal axis experience a collective scattering force of many crystal atoms. The enormous fields can trap the particles along an axis or plane, called channeling. High energy electrons are attracted by the positive nuclei and therefore produce strongly enhanced so called coherent bremsstrahlung and pair production. These effects could be used in a positron production target: A single tungsten crystal is oriented to the incident electron beam within 1 mrad. At 28 GeV/c the effective radiation length is with 0.9 mm about one quarter of the amorphous material. So the target length can be shorter, which yields a higher conversion coefficient and a lower emittance of the positron beam. This makes single crystals very interesting for positron production targets. 18 refs., 2 figs

  5. High energy photon reference for radiation protection: technical design of the LINAC beam and ionization chambers; and calculation of monoenergetic conversion coefficients

    Directory of Open Access Journals (Sweden)

    Dusciac D.

    2016-01-01

    Full Text Available In this work, we present the results of the first part of a research project aimed at offering a complete response to dosimeters providers and nuclear physicists’ demands for high-energy (6 – 9 MeV photon beams for radiation protection purposes. Classical facilities allowing the production of high-energy photonic radiation (proton accelerators, nuclear reactors are very rare and need large investment for development and use. A novel solution is proposed, consisting in the use of a medical linear accelerator, allowing a significant decrease of all costs.Using Monte Carlo simulations (MCNP5 and PENELOPE codes, a specifically designed electron-photon conversion target allowing for obtaining a high energy photon beam (with an average energy weighted by fluence of about 6 MeV has been built for radiation protection purposes. Due to the specific design of the target, this “realistic” radiation protection high-energy photon beam presents a uniform distribution of air kerma rate at a distance of 1 m, over a 30 × 30 cm2 surface. Two graphite cavity ionizing chambers for ionometric measurements have been built. For one of these chambers, the charge collection volume has been measured allowing for its use as a primary standard. The second ionizing chamber is used as a transfer standard; as such it has been calibrated in a 60Co beam, and in the high energy photon beam for radiation protection.The measurements with these ionizing chambers allowed for an evaluation of the air kerma rate in the LINAC based high-energy photon beam for radiation protection: the values cover a range between 36 mGy/h and 210 mGy/h, compatible with radiation protection purposes.Finally, using Monte Carlo simulations, conversion coefficients from air kerma to dose equivalent quantities have been calculated in the range between 10 keV and 22.4 MeV, for the spectral distribution of the fluence corresponding to the beam produced by the linear accelerator of the LNE-LNHB.

  6. Study of the production and confinement of positron beams. An application to the Linear Accelerator of Orsay

    International Nuclear Information System (INIS)

    Chehab, Robert.

    1975-04-01

    This study on the production and confinement of positron beams is divided into three parts. In the first one, an analytical approximation of lateral, angular and energy distribution is given. This survey is based on the late tables of Messel et Crawford (1970) and is in good agreement with SLAC and FRASCATI estimations and measurements. Positron beam focusing is investigated in the second part: ''quarter wave'' and adiabatically tapered solenoids as well as pediodic multiplets are considered. More specially, positron injector focussing for DCI collision rings is described. In the last part of this work, a comparison between ''quarter wave'' and adiabatically tapered solenoids is presented. Larger total acceptance of the latter is pointed out in the range of medium and higher energy (>=1 GeV) accelerators [fr

  7. Characterization of nanoparticle and porous ultra low-k using positron beam

    International Nuclear Information System (INIS)

    Xu, Jun; Moxom, J.; Suzuki, R.; Ohdaira, T.; Mills, A.P. Jr.

    2003-01-01

    Nanoparticle materials are important because they exhibit unique properties due to size effects, quantum tunneling, and quantum confinement. As particle sizes are reduced to the nanometer scale, presence of vacancy clusters is expected to affect properties of nanomaterials. A combination of positron lifetime spectroscopy, which tells size of vacancy clusters, and coincidence Doppler broadening of annihilation radiation, which tell where vacancy clusters are located was used to study defect structures on nanomaterials of Au nanoparticles embedded in MgO. Vacancy clusters were found on the surfaces of Au nanoparticles. When the packing density between multilevel interconnects in microelectronic devices increases, a low dielectric constant material is needed to minimize RC delay. Porous oxide films are some of these new low-k materials that have been actively studied by the microelectronics industry. An ideal porous material would consist of a network of closed, small pores with narrow size distribution. However, large and interconnected pores, so called 'killer pores', result in high current leakage and poor mechanical strength. Clearly, characterization and understanding of pore size and interconnectivity are important to optimize the design of porous materials. Using positron beam, we have found that pore percolation in porous methyl-silsesquioxane (MSQ) films strongly depends on the molecular mass of pore generators. (author)

  8. Defect characterization of CdTe thin films using a slow positron beam

    International Nuclear Information System (INIS)

    Neretina, S.; Grebennikov, D.; Mascher, P.; Hughes, R.A.; Weber, M.; Lynn, K.G.; Simpson, P.J.; Preston, J.S.

    2007-01-01

    Cadmium Telluride (CdTe) is the most well established II-VI compound largely due to its use as a photonic material. Existing applications, as well as those under consideration, are demanding increasingly stringent control of the material properties. The deposition of high quality thin films is of the utmost importance to such applications. In this regard, we present a report detailing the role of lattice mismatch in determining the film quality. Thin films were deposited on a wide variety of substrate materials using the pulsed laser deposition technique. Common to all substrates was the strong tendency towards the preferential alignment of CdTe's (111) planes parallel to the substrate's surface. X-ray diffraction analysis, however, revealed that the crystalline quality varied dramatically depending upon the substrate used with the best results yielding a single crystal film. This tendency also manifested itself in the surface morphology with higher structural perfection yielding smoother surfaces. Slow positron beam techniques revealed a strong correlation between the defect concentration and the degree of structural perfection. Simulations of the data using the POSTRAP 5 program were used to calculate the defect concentration in relative (atom -1 ) and absolute units and to determine the diffusion lengths of the positrons in the film. All of these characterization techniques point towards lattice mismatch as being the dominant mechanism in determining the quality of CdTe films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  10. Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy

    International Nuclear Information System (INIS)

    Carvalho, I; Schut, H; Fedorov, A; Luzginova, N; Desgardin, P; Sietsma, J

    2013-01-01

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To mimic neutron irradiation conditions, Eurofer97 samples were implanted with helium ions at energies of 500 keV and 2 MeV and doses of 5x10 15 -10 16 He /cm 2 , creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). The DB data could be fitted with one or two layers of material, depending on the He implantation energy. The S and W values obtained for the implanted regions suggest the presence of not only vacancy clusters but also positron traps of the type present in a sub-surface region found on the reference sample. The traps found in the implanted layers are expected to be He n V m clusters. For the 2 MeV, 10 16 He/cm 2 implanted sample, three temperature regions can be observed in the TDS data. Peaks below 450 K can be ascribed to He released from vacancies in the neighbourhood of the surface, the phase transition is found at 1180 K and the peak at 1350 K is likely caused by the migration of bubbles.

  11. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  12. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  13. Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Venugopal Rao, G.; Parimala, J.; Purniah, B.

    1997-01-01

    The design, development and commissioning details of an ultra high vacuum compatible, magnetically-guided and compact variable low energy positron beam facility are reported. Information pertaining to the nature, concentration and spatial distribution of defects present at various depths in the near-surface layers of a material can be obtained using this technique. Some of the experimental results obtained using this facility, in terms of surface-sensitive positronium fraction measurements on Cu surfaces as well as defect-sensitive Doppler broadening measurements on semiconductor interfaces and ion irradiated silicon are presented. These results essentially provide an illustration of the research capability of the technique for the study of sub-surface regions and thin film interfaces. (author)

  14. Variable energy positron beam study of Xe-implanted uranium oxide

    International Nuclear Information System (INIS)

    Djourelov, Nikolay; Marchand, Benoît; Marinov, Hristo; Moncoffre, Nathalie; Pipon, Yves; Nédélec, Patrick; Toulhoat, Nelly; Sillou, Daniel

    2013-01-01

    Doppler broadening of annihilation gamma-line combined with a slow positron beam was used to measure the momentum density distribution of annihilating pair in a set of sintered UO 2 samples. The influence of surface polishing, of implantation with 800-keV 136 Xe 2+ at fluences of 1 × 10 15 and 1 × 10 16 Xe cm −2 , and of annealing were studied by following the changes of the momentum distribution shape by means of S and W parameters. The program used for this purpose was VEPFIT. At the two fluences in the stoichiometric as-implanted UO 2 , formation of Xe bubbles was not detected. The post-implantation annealing and over-stoichiometry in the as-implanted sample caused Xe precipitation and formation of Xe bubbles.

  15. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  16. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  17. High-energy-accelerator and colliding-beam user group. Progress report, March 1, 1982-February 28, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    Three major areas are covered, progress report, budget report, and proposed research program. The progress report covers the following major topics: electron-positron interactions at PETRA with PLUTO; neutrino-deuterium interactions in the 15 foot bubble chamber; hadron jet physics experiment at Fermilab; status of neutrino-electron and proton-proton scattering experiments at Los Alamos; and work on future projects

  18. Hypofractionated high-energy proton-beam irradiation is an alternative treatment for WHO grade I meningiomas.

    Science.gov (United States)

    Vlachogiannis, Pavlos; Gudjonsson, Olafur; Montelius, Anders; Grusell, Erik; Isacsson, Ulf; Nilsson, Kristina; Blomquist, Erik

    2017-12-01

    Radiation treatment is commonly employed in the treatment of meningiomas. The aim of this study was to evaluate the effectiveness and safety of hypofractionated high-energy proton therapy as adjuvant or primary treatment for WHO grade I meningiomas. A total of 170 patients who received irradiation with protons for grade I meningiomas between 1994 and 2007 were included in the study. The majority of the tumours were located at the skull base (n = 155). Eighty-four patients were treated post subtotal resection, 42 at tumour relapse and 44 with upfront radiotherapy after diagnosis based on the typical radiological image. Irradiation was given in a hypofractionated fashion (3-8 fractions, usually 5 or 6 Gy) with a mean dose of 21.9 Gy (range, 14-46 Gy). All patients were planned for follow-up with clinical controls and magnetic resonance imaging scans at 6 months and 1, 2, 3, 5, 7 and 10 years after treatment. The median follow-up time was 84 months. Age, gender, tumour location, Simpson resection grade and target volume were assessed as possible prognostic factors for post-irradiation tumour progression and radiation related complications. The actuarial 5- and 10-year progression-free survival rates were 93% and 85% respectively. Overall mortality rate was 13.5%, while disease-specific mortality was 1.7% (3/170 patients). Older patients and patients with tumours located in the middle cranial fossa had a lower risk for tumour progression. Radiation-related complications were seen in 16 patients (9.4%), with pituitary insufficiency being the most common. Tumour location in the anterior cranial fossa was the only factor that significantly increased the risk of complications. Hypofractionated proton-beam radiation therapy may be used particularly in the treatment of larger World Health Organisation grade I meningiomas not amenable to total surgical resection. Treatment is associated with high rates of long-term tumour growth control and acceptable risk for

  19. Trapping and accumulation of positrons from a pulsed beam produced by a linear accelerator for gravitational interaction of antimatter study

    International Nuclear Information System (INIS)

    Grandemange, Pierre

    2013-01-01

    The Gravitational Behaviour of Anti-hydrogen at Rest experiment - GBAR - is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration (g-bar) of anti-hydrogen atoms in free fall. Its originality is to produce H-bar + ions and use sympathetic cooling to achieve μK temperature. H-bar + ions are produced by the reactions: p-bar + Ps → H-bar + e - , and H-bar + Ps → H-bar + + e - , where p-bar is an antiproton, Ps stands for positronium (the bound-state of a positron and an electron), H-bar is the anti-hydrogen and H-bar + the anti-ion associated. To produce enough Ps atoms, 2*10 10 positrons must be impinged on a porous SiO 2 target within 100 ns. Such an intense flux requires the accumulation (collection and cooling) of the positrons in a particle trap. This thesis describes the injector being commissioned at CEA Saclay for GBAR. It consists of a Penning-Malmberg trap (moved from RIKEN) fed by a slow positron beam. A 4.3 MeV linear accelerator shooting electrons on a tungsten target produces the pulsed positron beam, which is moderated by a multi-grid tungsten moderator. The slow positron flux is 10 4 e + /pulse, or 2*10 6 e + /s at 200 Hz. This work presents the first ever accumulation of low-energy positrons produced by an accelerator (rather than a radioactive source) and their cooling by a prepared reservoir of 2*10 10 cold electrons. (author) [fr

  20. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  1. A time-pulsed positronium beam and a study of oxides on silicon using positrons

    International Nuclear Information System (INIS)

    Khatri, R.K.

    1993-01-01

    The studies on rare gas solid moderators were carried out with a 350 μCi 22 Na radioactive source. The corrected efficiency for neon moderator in conical geometrical configuration was as high as (1.4 ± 0.2)%. The conical configuration moderator performed better by a factor of (2.2 ± 0.2) than the cylindrical configuration. A time pulsed positron beam was built to carry out investigations on the positronium formation processes and positronium beam. This beam has the capability to store low energy e + in a magnetic bottle, with a magnetic bottle at one end and an electrostatic mirror at the other. These stored e + are then bunched to form a pulse with a buncher. The bunched beam had a FWHM of 17 nsec and contained 1 to 2 e + /pulse. A thin carbon foil of 50 angstrom thickness was used for positronium formation by process of charge exchange. Positronium Annihilation Spectroscopy (PAS) was utilized to carry out studies on the activation energy of hydrogen at the interface of oxide and silicon substrate and the effect of irradiation on the oxides in SiO 2 /Si(100) sample. The activation energy of hydrogen at the interface of SiO 2 /Si(100) samples with n- and p-type substrate was measured to be 2.60(6) eV and 2.47(6) eV respectively. The investigations of the samples irradiated with x-ray and γ-ray led to the first time identification of creation of E' centers with PAS

  2. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  3. Characteristics of background radiation behind one-dimensional radiation shielding of high-energy particle beams; Kharakteristiki fonovogo izlucheniya za odnomernymi radiatsionnymi zashchitami puchkov vysokoehnergeticheskikh chastits

    Energy Technology Data Exchange (ETDEWEB)

    Gorbatkov, D V; Kryuchkov, V P

    1994-12-31

    The calculational investigations of component, spatial and energy distributions of background radiation behind radiation shielding of high-energy hadron beams were carried out. The relations between different ingredients of radiation have been obtained. The numerous data of spatial and energy distribution of protons, neutrons, pions and photons in homogeneous and heterogeneous shielding from concrete and iron, presented in the paper, can be used as a reference data. 23 refs., 50 figs.

  4. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  5. Defect distribution in low-temperature molecular beam epitaxy grown Si/Si(100), improved depth profiling with monoenergetic positrons

    International Nuclear Information System (INIS)

    Szeles, C.; Asoka-Kumar, P.; Lynn, K.G.; Gossmann, H.; Unterwald, F.C.; Boone, T.

    1995-01-01

    The depth distribution of open-volume defects has been studied in Si(100) crystals grown by molecular beam epitaxy at 300 degree C by the variable-energy monoenergetic positron beam technique combined with well-controlled chemical etching. This procedure gave a 10 nm depth resolution which is a significant improvement over the inherent depth resolving power of the positron beam technique. The epitaxial layer was found to grow defect-free up to 80 nm, from the interface, where small vacancy clusters, larger than divacancies, appear. The defect density then sharply increases toward the film surface. The result clearly shows that the nucleation of small open-volume defects is a precursor state to the breakdown of epitaxy and to the evolution of an amorphous film

  6. High energy electron radiography system design and simulation study of beam angle-position correlation and aperture effect on the images

    International Nuclear Information System (INIS)

    Zhao, Quantang; Cao, S.C.; Liu, M.; Sheng, X.K.; Wang, Y.R.; Zong, Y.; Zhang, X.M.; Jing, Y.; Cheng, R.; Zhao, Y.T.; Zhang, Z.M.; Du, Y.C.; Gai, W.

    2016-01-01

    A beam line dedicated to high-energy electron radiography experimental research with linear achromat and imaging lens systems has been designed. The field of view requirement on the target and the beam angle-position correlation correction can be achieved by fine-tuning the fields of the quadrupoles used in the achromat in combination with already existing six quadrupoles before the achromat. The radiography system is designed by fully considering the space limitation of the laboratory and the beam diagnostics devices. Two kinds of imaging lens system, a quadruplet and an octuplet system are integrated into one beam line with the same object plane and image plane but with different magnification factor. The beam angle-position correlation on the target required by the imaging lens system and the aperture effect on the images are studied with particle tracking simulation. It is shown that the aperture position is also correlated to the beam angle-position on the target. With matched beam on the target, corresponding aperture position and suitable aperture radius, clear pictures can be imaged by both lens systems. The aperture is very important for the imaging. The details of the beam optical requirements, optimized parameters and the simulation results are presented.

  7. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  8. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  9. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  10. Evaluation of Monte Carlo tools for high energy atmospheric physics

    Directory of Open Access Journals (Sweden)

    C. Rutjes

    2016-11-01

    Full Text Available The emerging field of high energy atmospheric physics (HEAP includes terrestrial gamma-ray flashes, electron–positron beams and gamma-ray glows from thunderstorms. Similar emissions of high energy particles occur in pulsed high voltage discharges. Understanding these phenomena requires appropriate models for the interaction of electrons, positrons and photons of up to 40 MeV energy with atmospheric air. In this paper, we benchmark the performance of the Monte Carlo codes Geant4, EGS5 and FLUKA developed in other fields of physics and of the custom-made codes GRRR and MC-PEPTITA against each other within the parameter regime relevant for high energy atmospheric physics. We focus on basic tests, namely on the evolution of monoenergetic and directed beams of electrons, positrons and photons with kinetic energies between 100 keV and 40 MeV through homogeneous air in the absence of electric and magnetic fields, using a low energy cutoff of 50 keV. We discuss important differences between the results of the different codes and provide plausible explanations. We also test the computational performance of the codes. The Supplement contains all results, providing a first benchmark for present and future custom-made codes that are more flexible in including electrodynamic interactions.

  11. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1994-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal field - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders. Some new ideas associated with these sources are also presented. (orig.)

  12. Positron sources

    International Nuclear Information System (INIS)

    Chehab, R.

    1989-01-01

    A tentative survey of positron sources is given. Physical processes on which positron generation is based are indicated and analyzed. Explanation of the general features of electromagnetic interactions and nuclear β + decay makes it possible to predict the yield and emittance for a given optical matching system between the positron source and the accelerator. Some kinds of matching systems commonly used - mainly working with solenoidal fields - are studied and the acceptance volume calculated. Such knowledge is helpful in comparing different matching systems. Since for large machines, a significant distance exists between the positron source and the experimental facility, positron emittance has to be preserved during beam transfer over large distances and methods used for that purpose are indicated. Comparison of existing positron sources leads to extrapolation to sources for future linear colliders

  13. Influences of thermal deformation of cavity mirrors induced by high energy DF laser to beam quality under the simulated real physical circumstances

    Science.gov (United States)

    Deng, Shaoyong; Zhang, Shiqiang; He, Minbo; Zhang, Zheng; Guan, Xiaowei

    2017-05-01

    The positive-branch confocal unstable resonator with inhomogeneous gain medium was studied for the normal used high energy DF laser system. The fast changing process of the resonator's eigenmodes was coupled with the slow changing process of the thermal deformation of cavity mirrors. Influences of the thermal deformation of cavity mirrors to the outcoupled beam quality and transmission loss of high frequency components of high energy laser were computed. The simulations are done through programs compiled by MATLAB and GLAD software and the method of combination of finite elements and Fox-li iteration algorithm was used. Effects of thermal distortion, misaligned of cavity mirrors and inhomogeneous distribution of gain medium were introduced to simulate the real physical circumstances of laser cavity. The wavefront distribution and beam quality (including RMS of wavefront, power in the bucket, Strehl ratio, diffraction limit β, position of the beam spot center, spot size and intensity distribution in far-field ) of the distorted outcoupled beam were studied. The conclusions of the simulation agree with the experimental results. This work would supply references of wavefront correction range to the adaptive optics system of interior alleyway.

  14. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  15. Positronium formation in NaY-zeolites studied by lifetime, positron beam Doppler broadening and 3-gamma detection techniques

    CERN Document Server

    Schut, H; Kolar, Z I; Veen, A V; Clet, G

    2000-01-01

    Results of positron annihilation measurements on NaY pressed powders and deposited thin films using slow positron beam and conventional fast positron techniques are presented. In lifetime experiments using an external sup sup 2 sup sup 2 Na source an averaged long lifetime of 1.8 ns with a sum intensity of 27% was observed in pressed powders in the presence of air at room temperature (RT). In literature this lifetime is ascribed to positrons annihilating in water filled alpha or beta cages Habrowska, A.M., Popiel, E.S., 1987. Positron annihilation in zeolite 13X. J. Appl. Phys. 62, 2419. By means of isotopic exchange some of the Na was replaced by sup sup 2 sup sup 2 Na. These powders showed a long lifetime component of 7-8 ns with an intensity increasing from 1 to 12% when heated under normal atmosphere from RT to 200 deg. C. No significant increase of the shorter (1.5 ns) lifetime was observed, while its intensity dropped from 13.4 to 6.6%. Both effects are ascribed to the loss of water from alpha cages onl...

  16. High energy density matter issues related to future circular collider. Simulations of full beam impact with a solid copper cylindrical target

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Burkart, F.; Schmidt, R.; Wollmann, D. [CERN-AB, Geneva (Switzerland); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [E.T.S.I. Industrials, University of Castilla-La Mancha, Ciudad Real (Spain)

    2017-11-15

    This paper presents numerical simulations of the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is subjected to the full impact of one future circular collider (FCC) ultra-relativistic proton beam. The target is facially irradiated so that the beam axis coincides with the cylinder axis. The simulations have been carried out employing an energy deposition code, FLUKA, and a 2D hydrodynamic code, BIG2, iteratively. The simulations show that, although the static range of a single FCC proton and its shower in solid copper is ∝1.5 m, the full beam may penetrate up to 350 m into the target as a result of hydrodynamic tunnelling. Moreover, simulations also show that a major part of the target is converted into high energy density (HED) matter, including warm dense matter (WDM) and strongly coupled plasma. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  18. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  19. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  20. Influence of the Integral Quality Monitor transmission detector on high energy photon beams: A multi-centre study.

    Science.gov (United States)

    Casar, Bozidar; Pasler, Marlies; Wegener, Sonja; Hoffman, David; Talamonti, Cinzia; Qian, Jianguo; Mendez, Ignasi; Brojan, Denis; Perrin, Bruce; Kusters, Martijn; Canters, Richard; Pallotta, Stefania; Peterlin, Primoz

    2017-09-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1×1cm 2 to 20×20cm 2 , the effect of IQM on beam quality was assessed from the PDD 20,10 values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4×4cm 2 to 20×20cm 2 . The transmission factor was calculated by means of measured absorbed dose at 10cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (pphoton energies except for 18MV. The change in surface dose was smaller than 3.3% in all cases except for the 20×20cm 2 field and 10MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6MV to 0.9578 for 18MV and 0.9440 for 6MV FFF; 0.9533 for 10MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice. Copyright © 2017. Published by Elsevier GmbH.