WorldWideScience

Sample records for high-energy muon neutrinos

  1. Explanation for the Low Flux of High Energy Astrophysical Muon Neutrinos

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Joshipura, Anjan; Mohanty, Subhendra

    2014-01-01

    There has been some concern about the unexpected paucity of cosmic high energy muon neutrinos in detectors probing the energy region beyond 1 PeV. As a possible solution we consider the possibility that some exotic neutrino property is responsible for reducing the muon neutrino flux at high energies from distant sources; specifically, we consider: (i) neutrino decay and (ii) neutrinos being pseudo-Dirac particles. This would provide a mechanism for the reduction of high energy muon events in the IceCube detector, for example

  2. Mighty Murines: Neutrino Physics at very high Energy Muon Colliders

    International Nuclear Information System (INIS)

    King, B.J.

    2000-01-01

    An overview is given of the potential for neutrino physics studies through parasitic use of the intense high energy neutrino beams that would be produced at future many-TeV muon colliders. Neutrino experiments clearly cannot compete with the collider physics. Except at the very highest energy muon colliders, the main thrust of the neutrino physics program would be to improve on the measurements from preceding neutrino experiments at lower energy muon colliders, particularly in the fields of B physics, quark mixing and CP violation. Muon colliders at the 10 TeV energy scale might already produce of order 10 8 B hadrons per year in a favorable and unique enough experimental environment to have some analytical capabilities beyond any of the currently operating or proposed B factories. The most important of the quark mixing measurements at these energies might well be the improved measurements of the important CKM matrix elements |V ub | and |V cb | and, possibly, the first measurements of |V td | in the process of flavor changing neutral current interactions involving a top quark loop. Muon colliders at the highest center-of-mass energies that have been conjectured, 100--1,000 TeV, would produce neutrino beams for neutrino-nucleon interaction experiments with maximum center-of-mass energies from 300--1,000 GeV. Such energies are close to, or beyond, the discovery reach of all colliders before the turn-on of the LHC. In particular, they are comparable to the 314 GeV center-of-mass energy for electron-proton scattering at the currently operating HERA collider and so HERA provides a convenient benchmark for the physics potential. It is shown that these ultimate terrestrial neutrino experiments, should they eventually come to pass, would have several orders of magnitude more luminosity than HERA. This would potentially open up the possibility for high statistics studies of any exotic particles, such as leptoquarks, that might have been previously discovered at these

  3. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  4. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  5. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  6. Extending the search for high-energy muon neutrinos from GRBs with ANTARES

    CERN Multimedia

    2017-01-01

    Gamma-ray bursts (GRBs) are transient sources, potential sites of cosmic-rays acceleration: they are expected to produce high-energy neutrinos in pγ interactions through the decay of charged mesons, thus they constitute promising targets for neutrino telescopes. A search for muon neutrinos from GRBs using 9 years of ANTARES data is here presented, assuming particle acceleration at internal shocks, as expected in the fireball model.

  7. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  8. Intense muon beams and neutrino factories

    International Nuclear Information System (INIS)

    Parsa, Z.

    2000-01-01

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy μ + μ - colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings (μSR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included

  9. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES

    International Nuclear Information System (INIS)

    PARSA, Z.

    2001-01-01

    Intense muon sources for the purpose of providing intense high energy neutrino beams (ν factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both ± μ. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider

  10. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  11. Direct cosmic ray muons and atmospheric neutrinos

    International Nuclear Information System (INIS)

    Ryazhskaya, O.G.; Volkova, L.V.; Zatsepin, G.T.

    2005-01-01

    A possible contribution of very short living particles (particles with life-time much shorter than that of charmed particles), for example, resonances, into cosmic ray muon and atmospheric neutrino fluxes (direct muons and neutrinos) is estimated. This contribution could become of the same order of magnitude as that from pions and kaons (conventional) already at energies of hundreds TeV and tens TeV for muons and muon neutrinos coming to the sea level in the vertical direction correspondingly. Of course, the estimation has quite a qualitative character and even it is quite arbitrary but it is necessary to keep this contribution in mind when studying EAS, cosmic ray muon component or trying to interpret data of experiments on cosmic neutrino searching at high energies

  12. Influence of hadronic interaction models and the cosmic ray spectrum on the high-energy atmospheric muon and neutrino flux

    Directory of Open Access Journals (Sweden)

    Desiati Paolo

    2013-06-01

    Full Text Available The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to derive the inclusive differential spectra (yields of muons, muon neutrinos and electron neutrinos at the surface for energies between 80 GeV and hundreds of PeV. Using these results the differential flux and the flavor ratios of leptons were calculated. The air shower simulator CORSIKA 6.990 was used for showering and propagation of the secondary particles through the atmosphere, employing the established high energy hadronic interaction models SIBYLL 2.1, QGSJet-01 and QGSJet-II-03. We show that the performance of the interaction models allows makes it possible to predict the spectra within experimental uncertainties, while SIBYLL generally yields a higher flux at the surface than the QGSJet models. The calculation of the flavor and charge ratios has lead to inconsistent results, mainly influenced by the different representations of the K/π ratio within the models. The influence of the knee of cosmic rays is reflected in the secondary spectra at energies between 100 and 200 TeV. Furthermore, we could quantify systematic uncertainties of atmospheric muon- and neutrino fluxes, associated to the models of the primary cosmic ray spectrum and the interaction models. For most recent parametrizations of the cosmic ray primary spectrum, atmospheric muons can be determined with an uncertainty smaller than +15/-13% of the average flux. Uncertainties of the muon and electron neutrino fluxes can be calculated within an average error of +32/-22% and +25

  13. Muon physics possibilities at a muon-neutrino factory

    NARCIS (Netherlands)

    Jungmann, KP

    2001-01-01

    New intense proton accelerators with above GeV energies and MW beam power, such as they are discussed in connection with neutrino factories, appear to be excellently suited for feeding bright muon sources for low-energy muon science. Muon rates with several orders of magnitude increased flux

  14. Neutrino physics at a muon collider

    International Nuclear Information System (INIS)

    King, B.J.

    1998-02-01

    This paper gives an overview of the neutrino physics possibilities at a future muon storage ring, which can be either a muon collider ring or a ring dedicated to neutrino physics that uses muon collider technology to store large muon currents. After a general characterization of the neutrino beam and its interactions, some crude quantitative estimates are given for the physics performance of a muon ring neutrino experiment (MURINE) consisting of a high rate, high performance neutrino detector at a 250 GeV muon collider storage ring. The paper is organized as follows. The next section describes neutrino production from a muon storage rings and gives expressions for event rates in general purpose and long baseline detectors. This is followed by a section outlining a serious design constraint for muon storage rings: the need to limit the radiation levels produced by the neutrino beam. The following two sections describe a general purpose detector and the experimental reconstruction of interactions in the neutrino target then, finally, the physics capabilities of a MURINE are surveyed

  15. High energy leptons from muons in transit

    International Nuclear Information System (INIS)

    Bulmahn, Alexander; Reno, Mary Hall

    2010-01-01

    The differential energy distribution for electrons and taus produced from lepton pair production from muons in transit through materials is numerically evaluated. We use the differential cross section to calculate underground lepton fluxes from an incident atmospheric muon flux, considering contributions from both conventional and prompt fluxes. An approximate form for the charged current differential neutrino cross section is provided and used to calculate single lepton production from atmospheric neutrinos. We compare the fluxes of underground leptons produced from incident muons with those produced from incident neutrinos and photons from muon bremsstrahlung. We discuss their relevance for underground detectors.

  16. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  17. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  18. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  19. Neutrino fluxes produced by high energy solar flare particles

    International Nuclear Information System (INIS)

    Kolomeets, E.V.; Shmonin, V.L.

    1975-01-01

    In this work the calculated differential energy spectra of neutrinos poduced by high energy protons accelerated during 'small' solar flares are presented. The muon flux produced by neutrino interactions with the matter at large depths under the ground is calculated. The obtained flux of muons for the total number of solar flare accelerated protons of 10 28 - 10 32 is within 10 9 - 10 13 particles/cm 2 X s x ster. (orig.) [de

  20. A feasibility study of a neutrino source based on a muon storage ring

    CERN Document Server

    Finley, D

    2001-01-01

    We present the results of a study commissioned by the Fermilab Director on the feasibility of an intense neutrino source, based on a muon storage ring. Muon colliders have been discussed as an alternate route to very high-energy lepton colliders. As a by-product, such a collider would produce very intense neutrino beams because of the decaying muons circulating in the storage ring. In a dedicated storage ring, these neutrino beams could be produced in long straight sections which would point towards long, medium or short baseline detectors, opening up a whole new class of neutrino physics experiments because of the enormous neutrino flux that, in principle, could be achieved in such a facility as compared to more standard fixed target sources. Intense pion sources in combination with powerful emittance cooling strategies for the comparatively large muon emittance are necessary to make this type of neutrino source as well as a muon collider, feasible for a possible future high energy physics facility. The Neut...

  1. High-Energy Neutrino Interactions

    CERN Multimedia

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  2. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the ......V and 2.2 PeV, which contains 90% of the expected events....

  3. Search for atmospheric muon-neutrinos and extraterrestric neutrino point sources in the 1997 AMANDA-B10 data

    International Nuclear Information System (INIS)

    Biron von Curland, A.

    2002-07-01

    The young field of high energy neutrino astronomy can be motivated by the search for the origin of the charged cosmic rays. Large astrophysical objects like AGNs or supernova remnants are candidates to accelerate hadrons which then can interact to eventually produce high energy neutrinos. Neutrino-induced muons can be detected via their emission of Cherenkov light in large neutrino telescopes like AMANDA. More than 10 9 atmospheric muon events and approximately 5000 atmospheric neutrino events were registered by AMANDA-B10 in 1997. Out of these, 223 atmospheric neutrino candidate events have been extracted. This data set contains approximately 15 background events. It allows to confirm the expected sensitivity of the detector towards neutrino events. A second set containing 369 (approximately 270 atmospheric neutrino events and 100 atmospheric muon events) was used to search for extraterrestrial neutrino point sources. Neither a binned search, nor a cluster search, nor a search for preselected sources gave indications for the existence of a strong neutrino point source. Based on this result, flux limits were derived. Assuming E ν -2 spectra, typical flux limits for selected sources of the order of Φ μ limit ∝ 10 -14 cm -2 s -1 for muons and Φ ν limit ∝ 10 -7 cm -2 s -1 for neutrinos have been obtained. (orig.)

  4. Atmospheric neutrino-induced muons in the MACRO detector

    CERN Document Server

    Ronga, F

    1999-01-01

    A measurement of the flux of neutrino-induced muons using the MACRO detector is presented. Different event topologies, corresponding to different neutrino parent energies can be detected. The upward throughgoing muon sample is the larger event sample. The observed upward-throughgoing muons are 26% fewer than expected and the zenith angle distribution does not fit with the expected one. Assuming neutrino oscillations, both measurements suggest maximum mixing and Dm2 of a few times 10-3 eV2. The other samples are due to the internally produced events and to upward-going stopping muons. These data show a regular deficit of observed events in each angular bin, as expected assuming neutrino oscillations with maximum mixing, in agreement with the analysis of the upward-throughgoing muon sample.

  5. Recent progress in neutrino factory and muon collider research within the Muon Collaboration

    Directory of Open Access Journals (Sweden)

    Mohammad M. Alsharo’a

    2003-08-01

    Full Text Available We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs factories and compact high-energy lepton colliders. The status and time scale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.

  6. Recent progress in neutrino factory and muon collider research within the muon collaboration

    International Nuclear Information System (INIS)

    Alsharo'a, Mohammad M.; Ankenbrandt, Charles M.; Atac, Muzaffer; Autin, Bruno R.; Balbekov, Valeri I.; Barger, Vernon D.; Benary, Odette; Bennett, J. Roger J.; Berger, Michael S.; Berg, J. Scott; Berz, Martin; Black, Edgar L.; Blondel, Alain; Bogacz, S. Alex; Bonesini, M.; Bracker, Stephen B.; Bross, Alan D.; Bruno, Luca; Buckley-Geer, Elizabeth J.; Caldwell, Allen C.; Companelli, Mario; Cassel, Kevin W.; Catanesi, M. Gabriela; Chattopadhyay, Swapan; Chou, Weiren; Cline, David B.; Coney, Linda R.; Conrad, Janet M.; Corlett, John N.; Cremaldi, Lucien; Cummings, Mary Anne; Darve, Christine; DeJongh, Fritz; Drozhdin, Alexandr; Drumm, Paul; Elvira, V. Daniel; Errede, Deborah; Fabich, Adrian; Fawley, William M.; Fernow, Richard C.; Ferrario, Massimo; Finley, David A.; Fisch, Nathaniel J.; Fukui, Yasuo; Furman, Miguel A.; Gabriel, Tony A.; Galea, Raphael; Gallardo, Juan C.; Garoby, Roland; Garren, Alper A.; Geer, Stephen H.; Gilardoni, Simone; Van Ginneken, Andreas J.; Ginzburg, Ilya F.; Godang, Romulus; Goodman, Maury; Gosz, Michael R.; Green, Michael A.; Gruber, Peter; Gunion, John F.; Gupta, Ramesh; Haines, John R.; Hanke, Klaus; Hanson, Gail G.; Han, Tao; Haney, Michael; Hartill, Don; Hartline, Robert E.; Haseroth, Helmut D.; Hassanein, Ahmed; Hoffman, Kara; Holtkamp, Norbert; Holzer, E. Barbara; Johnson, Colin; Johnson, Rolland P.; Johnstone, Carol; Jungmann, Klaus; Kahn, Stephen A.; Kaplan, Daniel M.; Keil, Eberhard K.; Kim, Eun-San; Kim, Kwang-Je; King, Bruce J.; Kirk, Harold G.; Kuno, Yoshitaka; Ladran, Tony S.; Lau, Wing W.; Learned, John G.; Lebedev, Valeri; Lebrun, Paul; Lee, Kevin; Lettry, Jacques A.; Lavender, Marco; Li, Derun; Lombardi, Alessandra; Lu, Changguo; Makino, Kyoko; Malkin, Vladimir; Marfatia, D.; McDonald, Kirk T.; Mezzetto, Mauro; Miller, John R.; Mills, Frederick E.; Mocioiu, I.; Mokhov, Nikolai V.; Monroe, Jocelyn; Moretti, Aldred; Mori, Yoshiharu; Neuffer, David V.; Ng, King-Yuen; Norem, James H.

    2003-01-01

    We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinal and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons

  7. A search for oscillations of muon-neutrinos to electron-neutrinos

    CERN Document Server

    Procario, Michael

    1986-01-01

    The author has searched in the heavy liquid bubble chamber BEBC for electron neutrino charge current events which could arise from oscillation of the muon neutrinos (average energy ∼1.5 GeV) obtained with a low energy proton beam at the CERN PS targeted 825 m upstream from BEBC. The appearance of electron neutrino CC interactions provides a sensitive indication of nu/sub μ/ → nu/sub e/ oscillation. The author observed 460 muon neutrino CC events and 4 electron neutrino CC events with an estimated background of 3.5 electron neutrino CC events. Using the likelihood ratio method to test the oscillation hypothesis, the author finds no evidence for nu/sub μ/ → nu/sub e/ oscillation and set the limits δm2 ≤ 0.13 eV2 (maximal mixing) and sin22theta ≤ 0.018 for δm2 = 3 eV2 at 90% confidence level

  8. Atmospheric neutrino oscillations from upward throughgoing muon multiple scattering in MACRO

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Antolini, R.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiarusi, T.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kumar, A.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lipari, P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Perrone, L.; Petrera, S.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Togo, V.; Vakili, M.; Walter, C.W.; Webb, R

    2003-07-24

    The energy of atmospheric neutrinos detected by MACRO was estimated using multiple Coulomb scattering of upward throughgoing muons. This analysis allows a test of atmospheric neutrino oscillations, relying on the distortion of the muon energy distribution. These results have been combined with those coming from the upward throughgoing muon angular distribution only. Both analyses are independent of the neutrino flux normalization and provide strong evidence, above the 4{sigma} level, in favour of neutrino oscillations.

  9. Search for point-like sources using the diffuse astrophysical muon-neutrino flux in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, Rene; Haack, Christian; Raedel, Leif; Schoenen, Sebastian; Schumacher, Lisa; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube, a cubic-kilometer sized neutrino detector at the geographic South Pole, has recently confirmed a flux of high-energy astrophysical neutrinos in the track-like muon channel. Although this muon-neutrino flux has now been observed with high significance, no point sources or source classes could be identified yet with these well pointing events. We present a search for point-like sources based on a six year sample of upgoing muon-neutrinos with very low background contamination. To improve the sensitivity, the standard likelihood approach has been modified to focus on the properties of the measured astrophysical muon-neutrino flux.

  10. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    Directory of Open Access Journals (Sweden)

    Ruhe T.

    2016-01-01

    Full Text Available IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  11. R and D Toward a Neutrino Factory and Muon Collider

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2009-01-01

    There is considerable interest in the use of muon beams to create either an intense source of decay neutrinos aimed at a detector located 3000-7500 km away (a Neutrino Factory), or a Muon Collider that produces high-luminosity collisions at the energy frontier. R and D aimed at producing these facilities has been under way for more than 10 years. This paper will review experimental results from MuCool, MERIT, and MICE and indicate the extent to which they will provide proof-of-principle demonstrations of the key technologies required for a Neutrino Factory or Muon Collider. Progress in constructing components for the MICE experiment will also be described.

  12. Measuring the Disappearance of Muon Neutrinos with the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Radovic, Alexander [Univ. College London, Bloomsbury (United Kingdom)

    2013-08-01

    MINOS is a long baseline neutrino oscillation experiment. It measures the flux from the predominately muon neutrino NuMI beam first 1 km from beam start and then again 735 km later using a pair of steel scintillator tracking calorimeters. The comparison of measured neutrino energy spectra at our Far Detector with the prediction based on our Near Detector measurement allows for a measurement of the parameters which define neutrino oscillations. This thesis will describe the most recent measurement of muon neutrino disappearance in the NuMI muon neutrino beam using the MINOS experiment.

  13. Muon Colliders: the Ultimate Neutrino Beamlines

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    It is shown that muon decays in straight sections of muon collider rings will naturally produce highly collimated neutrino beams that can be several orders of magnitude stronger than the beams at existing accelerators. We discuss possible experimental setups and give a very brief overview of the physics potential from such beamlines. Formulae are given for the neutrino event rates at both short and long baseline neutrino experiments in these beams

  14. New initiatives on lepton flavor violation and neutrino oscillation with high intense muon and neutrino sources

    CERN Document Server

    Kuno, Yoshitaka; Pakvasa, Sandip

    2002-01-01

    The area of physics involving muons and neutrinos has become exciting in particle physics. Using their high intensity sources, physicists undertake, in various ways, extensive searches for new physics beyond the Standard Model, such as tests of supersymmetric grand unification (SUSY-GUT) and precision measurements of the muon and neutrino properties, which will in future extend to ambitious studies such as determination of the three-generation neutrino mixing matrix elements and CP violation in the lepton sector. The physics of this field is advancing, with potential improvements of the source

  15. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, H.M.

    1983-01-01

    The present work mainly describes the 'Neutrino Flux Monitoring' system (NFM), which has been built for the 400-GeV Super Proton Synchrotron (SPS) neutrino beams. A treatment is given of some general subjects related to the utilization of silicon detectors and the properties of high-energy muons. Energy loss of minimal-ionizing particles, which has to be distinguished from energy deposition in the detector, is considered. Secondary radiation, also called 'spray', consisting of 'delta rays' and other cascade products, is shown to play an important role in the muon flux measurement inside a shield, especially for muons of high energy (> 100 GeV). Radiation induced damage in the detectors, which determines the long term performance, is discussed. The relation between the detector response and the real muon flux is determined. The use of NFM system for on-line beam monitoring is described. (Auth.)

  16. Simultaneous production of two muons by high energy neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Benvenuti, A.; Cline, D.; Ford, W.T.; Imlay, R.; Ling, T.Y.; Mann, A.K.; Messing, F.; Orr, R.; Reeder, D.D.; Rubbia, C.; Stefanski, R.; Sulak, L.; Wanderer, P.

    1975-01-01

    Neutrino interaction investigation reveals approximately 1% events with two muons. An analysis of the background due to π and K meson in-flight decays allows a lepton production from a new source to be deduced (heavy lepton, new particle)

  17. Search for high energy skimming neutrinos at a surface detector array

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh; Pham Ngoc Diep

    2010-01-01

    In the present study we propose a new method for detection of high energy cosmological muon neutrinos by transition radiations at a medium interface. The emerging electro-magnetic radiations induced by earth-skimming heavy charged leptons are able to trigger a few of aligned neighboring local water Cherenkov stations at a surface detector array similar to the Pierre Auger Observatory. The estimation applied to the model of Gamma Ray Burst induced neutrino fluxes and the spherical earth surface shows a competitive rate of muon neutrino events in the energy range below the GZK cut-off. (author)

  18. The Case for Muon-based Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Patrick [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bross, Alan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Palmer, Mark [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-11-03

    For the foreseeable future, high energy physics accelerator capabilities in the US will be deployed to study the physics of the neutrino sector. In this context, it is useful to explore the sensitivities and limiting systematic effects of the planned neutrino oscillation program, so that we can evaluate the issues that must be addressed in order to ensure the success of these efforts. It is only in this way that we will ultimately be able to elucidate the fundamental physics processes involved. We conclude that success can only be guaranteed by, at some point in the future, being able to deploy muon accelerator capabilities. Such capabilities provide the only route to precision neutrino beams with which to study and mitigate, at the sub-percent level, the limiting systematic issues of future oscillation measurements. Thus this analysis argues strongly for maintaining a viable accelerator research program towards future muon accelerator capabilities.

  19. Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Samarai, I. Al [Département de Physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Archinger, M.; Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Collaboration: IceCube Collaboration; and others

    2017-07-10

    We present an all-sky search for muon neutrinos produced during the prompt γ -ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high-energy cosmic-ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt γ -ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from northern hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from southern hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.

  20. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering was determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the frame-work of the quark-proton model

  1. Hadron production in high energy muon scattering

    International Nuclear Information System (INIS)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10 10 muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s/ 0 and Λ 0 decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references

  2. Preliminary limits on the flux of muon neutrinos from extraterrestrial point sources

    International Nuclear Information System (INIS)

    Bionta, R.M.; Blewitt, G.; Bratton, C.B.

    1985-01-01

    We present the arrival directions of 117 upward-going muon events collected with the IMB proton lifetime detector during 317 days of live detector operation. The rate of upward-going muons observed in our detector was found to be consistent with the rate expected from atmospheric neutrino production. The upper limit on the total flux of extraterrestrial neutrinos >1 GeV is 2 -sec. Using our data and a Monte Carlo simulation of high energy muon production in the earth surrounding the detector, we place limits on the flux of neutrinos from a point source in the Vela X-2 system of 2 -sec with E > 1 GeV. 6 refs., 5 figs

  3. Measurement of Muon Neutrino Disappearance with the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vinton, Luke [Sussex U.

    2018-01-01

    The NOvA experiment consists of two functionally identical tracking calorimeter detectors which measure the neutrino energy and flavour composition of the NuMI beam at baselines of 1~km and 810~km. Measurements of neutrino oscillation parameters are extracted by comparing the neutrino energy spectrum in the far detector with predictions of the oscillated neutrino energy spectra that are made using information extracted from the near detector. Observation of muon neutrino disappearance allows NOvA to make measurements of the mass squared splitting $\\Delta m^2_{32}$ and the mixing angle $\\theta_{23}$. The measurement of $\\theta_{23}$ will provide insight into the make-up of the third mass eigenstate and probe the muon-tau symmetry hypothesis that requires $\\theta_{23} = \\pi/4$. This thesis introduces three methods to improve the sensitivity of NOvA's muon neutrino disappearance analysis. First, neutrino events are separated according to an estimate of their energy resolution to distinguish well resolved events from events that are not so well resolved. Second, an optimised neutrino energy binning is implemented that uses finer binning in the region of maximum muon neutrino disappearance. Third, a hybrid selection is introduced that selects muon neutrino events with greater efficiency and purity. The combination of these improvements produces an increase in the sensitivity of the analysis equivalent to collecting 40-100\\% more data across the range of possible values of $\\Delta m^2_{32}$ and $\\sin^2\\theta_{23}$. This thesis presents new results using a 14~ktonne detector equivalent exposure of $6.05\\times 10^{20}$~protons~on~target. A fit to the far detector data, assuming normal hierarchy, produces $\\Delta m^2_{32}=2.45^{+0.087}_{-0.079}\\times10^{-3}~\\text{eV}^2$ and $\\sin^2\\theta_{23}$ in the range 0.429~-~0.593 with two statistically degenerate best fit points at 0.481 and 0.547. This measurement is consistent with maximal mixing where $\\theta

  4. Status of neutrino factory and muon collider R and D

    International Nuclear Information System (INIS)

    Zisman, M.S.

    2001-01-01

    A significant worldwide R and D effort is presently directed toward solving the technical challenges of producing, cooling, accelerating, storing, and eventually colliding beams of muons. Its primary thrust is toward issues critical to a Neutrino Factory, for which R and D efforts are under way in the U.S., via the Neutrino Factory and Muon Collider Collaboration (MC); in Europe, centered at CERN; and in Japan, at KEK. Under study and experimental development are production targets handling intense proton beams (1-4 MW), phase rotation systems to reduce beam energy spread, cooling channels to reduce transverse beam emittance for the acceleration system, and storage rings where muon decays in a long straight section provide a neutrino beam for a long-baseline (3000 km) experiment. Critical experimental activities include development of very high gradient normal conducting RF (NCRF) and superconducting RF (SCRF) cavities, high-power liquid-hydrogen absorbers, and high-field superconducting solenoids. Components and instrumentation that tolerate the intense decay products of the muon beam are being developed for testing. For a high-luminosity collider, muons must be cooled longitudinally as well as transversely, requiring an emittance exchange scheme. In addition to the experimental R and D effort, sophisticated theoretical and simulation tools are needed for the design. Here, the goals, present status, and future R and D plans in these areas will be described

  5. Search for Ultra High-Energy Neutrinos with AMANDA-II

    International Nuclear Information System (INIS)

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-01-01

    A search for diffuse neutrinos with energies in excess of 10 5 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10 7 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E 2 Φ 90%CL -7 GeV cm -2 s -1 sr -1 valid over the energy range of 2 x 10 5 GeV to 10 9 GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level

  6. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  7. Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux

    OpenAIRE

    Fedynitch, Anatoli; Tjus, Julia Becker; Desiati, Paolo

    2012-01-01

    The recent observations of muon charge ratio up to about 10 TeV and of atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed interest into the high-energy interaction models and cosmic ray primary composition. A reviewed calculation of lepton spectra produced in cosmic ray induced extensive air showers is carried out with a primary cosmic ray spectrum that fits the latest direct measurements below the knee. In order to achieve this, we used a full Monte Carlo method to...

  8. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  9. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  10. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  11. Impact of bremsstrahlung on the neutrinosphere for muon and tau neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Hannah; Bartl, Alexander [Institut fuer Kernphysik, TU Darmstadt (Germany); Arcones, Almudena [Institut fuer Kernphysik, TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-07-01

    Core-collapse supernovae present a challenging and exciting problem that strongly depends on all forces (strong, weak, electromagnetism, and gravity). Neutrinos, although weakly interacting, are key to transporting energy and momentum. Therefore, detailed treatment of neutrino reactions is critical to understand these high energy events. We have studied the impact of different neutrino reactions on the position of the neutrinosphere (i.e., region where neutrinos decouple from matter). Since the density in this region is high the effect of nuclear interactions has to be considered for bremsstrahlung: N+N→N+N+ν+ anti ν. We have employed new, improved approaches to calculate the inverse process and show the effect on the position of the neutrinosphere for muon and tau neutrinos.

  12. Indirect search for neutralino dark matter with high energy neutrinos

    International Nuclear Information System (INIS)

    Barger, V.; Halzen, Francis; Hooper, Dan; Kao, Chung

    2002-01-01

    We investigate the prospects of indirect searches for supersymmetric neutralino dark matter. Relic neutralinos gravitationally accumulate in the Sun and their annihilations produce high energy neutrinos. Muon neutrinos of this origin can be seen in large detectors such as AMANDA, IceCube, and ANTARES. We evaluate the relic density and the detection rate in several models--the minimal supersymmetric model, minimal supergravity, and supergravity with nonuniversal Higgs boson masses at the grand unification scale. We make realistic estimates for the indirect detection rates including effects of the muon detection threshold, quark hadronization, and solar absorption. We find good prospects for detection of neutralinos with mass above 200 GeV

  13. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  14. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Stephen James [College of William and Mary, Williamsburg, VA (United States)

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  15. A measurement of muon neutrino disappearance with the MINOS detectors and NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ospanov, Rustem [Texas U.

    2008-08-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. The neutrino beam is produced by the NuMI facility at Fermilab, Batavia, Illinois, and is observed at near and far detectors placed 734 km apart. The neutrino interactions in the near detector are used to measure the initial muon neutrino fl The vast majority of neutrinos travel through the near detector and Earth matter without interactions. A fraction of muon neutrinos oscillate into other fl vors resulting in the disappearance of muon neutrinos at the far detector. This thesis presents a measurement of the muon neutrino oscillation parameters in the framework of the two-neutrino oscillation hypothesis.

  16. How Many Muons Do We Need to Store in a Ring For Neutrino Cross-Section Measurements?

    International Nuclear Information System (INIS)

    Geer, Steve

    2011-01-01

    Analytical estimate of the number of muons that must decay in the straight section of a storage ring to produce a neutrino and anti-neutrino beam of sufficient intensity to facilitate cross-section measurements with a statistical precision of 1%. As we move into the era of precision long-baseline ν μ → ν e and (bar ν) μ → (bar ν) e measurements there is a growing need to precisely determine the ν e and (bar ν) e cross-sections in the relevant energy range, from a fraction of 1 GeV to a few GeV. This will require ν e and (bar ν) e beams with precisely known fluxes and spectra. One way to produce these beams is to use a storage ring with long straight sections in which muon decays (μ - → e - ν μ (bar ν) e if negative muons are stored, and ν + → e + ν e (bar ν) μ if positive muons are stored) produce the desired beam. The challenge is to capture enough muons in the ring to obtain useful neutrino and anti-neutrino fluxes. Early proposals to use a muon storage ring for neutrino oscillation experiments were based upon injecting 'high energy' charged pions into the ring which then decayed to create stored muons. These proposals were hampered by lack of sufficient intensity to pursue the physics. The Neutrino Factory proposal in 1997 was designed to fix this problem by using a Muon Collider class 'low energy' muon source to capture many more pions at low energy, allow them to decay in an external decay channel, manipulate their phase space to capture as many muons as possible within the acceptance of an accelerator, and then accelerate to the energy of choice before injecting into a specially designed ring with long straight sections. All this technology would do a wonderful job in fixing the intensity problem, but at a price that excludes this solution from being realized in the short term. The question that we are now faced with is whether the older, lower intensity 'parasitic' muon storage ring based on 'high energy' pion decays can, with

  17. Determination of the atmospheric muon flux with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    Picq, C.

    2009-06-01

    The neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detector, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account. (author)

  18. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 40-string detector

    International Nuclear Information System (INIS)

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Krasberg, M.; Kurahashi, N.

    2011-01-01

    The IceCube Neutrino Observatory is a 1 km 3 detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A total of 12 877 upward-going candidate neutrino events have been selected for this analysis. No evidence for a diffuse flux of astrophysical muon neutrinos was found in the data set leading to a 90% C.L. upper limit on the normalization of an E -2 astrophysical ν μ flux of 8.9x10 -9 GeV cm -2 s -1 sr -1 . The analysis is sensitive in the energy range between 35 TeV and 7 PeV. The 12 877 candidate neutrino events are consistent with atmospheric muon neutrinos measured from 332 GeV to 84 TeV and no evidence for a prompt component to the atmospheric neutrino spectrum is found.

  19. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    Heijne, E.H.M.

    1983-01-01

    The neutrino beam installations at the CERN SPS accelerator are described, with emphasis on the beam monitoring systems. Especially the muon flux measurement system is considered in detail, and the calibration procedure and systematic aspects of the measurements are discussed. An introduction is given to the use of silicon semiconductor detectors and their related electronics. Other special chapters concern non-linear phenomena in the silicon detectors, radiation damage in silicon detectors, energy loss and energy deposition in silicon and a review of energy loss phenomena for high energy muons in matter. (orig.)

  20. High-energy cosmic rays: Puzzles, models, and giga-ton neutrino ...

    Indian Academy of Sciences (India)

    magnetic field, it is believed that cosmic rays of energy <1019 eV are of galactic ... high energy near the central source is impossible due to the high density of pho- .... 1020 eV, the Fly's Eye, HiRes and Yakutsk experiments are in agreement .... detection rate of ~20 neutrino-induced muon events per year (over 4π sr) in a.

  1. Probing Very High Energy Prompt Muon and Neutrino fluxes and the cosmic ray knee via Underground Muons

    OpenAIRE

    Gandhi, Raj; Panda, Sukanta

    2005-01-01

    We calculate event rate and demonstrate the observational feasibility of very high energy muons (1-1000 TeV) in a large mass underground detector operating as a pair-meter. This energy range corresponds to surface muon energies of $\\sim$(5 TeV - 5000 TeV) and primary cosmic ray energies of $\\sim$ (50 TeV - 5 $\\times 10^4$ TeV). Such measurements would significantly assist in an improved understanding of the prompt contribution to $\

  2. A Monte Carlo study of atmospheric muon-neutrinos in Amanda

    Energy Technology Data Exchange (ETDEWEB)

    Dalberg, E.

    1998-01-01

    The response of AMANDA detector to atmospheric muon-neutrinos has been simulated. The neutrino flux, which has its origin from cosmic ray interactions with the atmosphere, induce muons in the vicinity of the detector. These muons will be relativistic and emit Cerenkov photons which can be detected by the optical modules buried in the deep South Pole glacier ice. The aim of the simulations is to predict the trigger rates in the existing detector, as well as in future extensions. The efficiency to detect muons with different angles and energies is also studied. Some of the simulated events have been analysed and it is discussed how the quality of this analysis can be judged. 35 refs, 30 figs.

  3. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  4. Muon Acceleration: Neutrino Factory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-03-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.

  5. Search for Muon neutrino → Tau neutrino oscillations motivation and feasibility

    International Nuclear Information System (INIS)

    Zacek, V.

    1988-01-01

    Theoretical prejudices derived from solar-neutrino matter oscillations and assumptions of neutrino mass hierarchies suggest, that neutrino-oscillations are observable in laboratory with mass parameters of Δm 2 = 10 -3 -10 4 eV 2 . In particular Muon neutrino → Tau neutrino appearance searches at accelerators seem strongly motivated

  6. E1 Working Group summary: Neutrino factories and muon colliders Neutrino Factories and Muon Colliders

    CERN Document Server

    Adams, T.; Balbekov, V.; Barenboim, G.; Harris, Deborah A.; Chou, W.; DeJongh, F.; Geer, S.; Johnstone, C.; Mokhov, N.; Morfin, J.; Neuffer, D.; Raja, R.; Romanino, A.; Shanahan, P.; Spentzouris, P.; Yu, J.; Barger, V.; Marfatia, D.; Han, Tao; Aoki, M.; Kuno, Y.; Sato, A.; Ichikawa, K.; Nakaya, T.; Machida, S.; Nagamine, K.; Yoshimura, K.; Ball, R.D.; Campanelli, Mario; Casper, D.; Molzon, W.; sobel, H.; Cline, D.B.; Cushman, P.; Diwan, M.; Kahn, S.; Morse, W.; Palmer, R.; Parsa, Zohreh; Roser, T.; Fleming, Bonnie T.; Formaggio, J.A.; Garren, A.; Gavela, M.B.; Gonzalez-Garcia, M.C.; Hanson, G.; Berger, M.; Kayser, Boris; Jung, C.K.; Shrock, R.; McGrew, C.; Mocioiu, I.; Lindner, M.; McDonald, K.; McFarland, Kevin Scott; Nienaber, P.; Olness, F.; Pope, B.; Rigolin, S.; Roberts, L.; Schellman, H.; Shiozawa, M.; Wai, L.; Wang, Y.F.; Whisnant, K.; Zeller, M.

    2001-01-01

    We are in the middle of a time of exciting discovery, namely that neutrinos have mass and oscillate. In order to take the next steps to understand this potential window onto what well might be the mechanism that links the quarks and leptons, we need both new neutrino beams and new detectors. The new beamlines can and should also provide new laboratories for doing charged lepton flavor physics, and the new detectors can and should also provide laboratories for doing other physics like proton decay, supernovae searches, etc. The new neutrino beams serve as milestones along the way to a muon collider, which can answer questions in yet another sector of particle physics, namely the Higgs sector or ultimately the energy frontier. In this report we discuss the current status of neutrino oscillation physics, what other oscillation measurements are needed to fully explore the phenomenon, and finally, what other new physics can be explored as a result of building of these facilities.

  7. Muon sources

    International Nuclear Information System (INIS)

    Parsa, Z.

    2001-01-01

    A full high energy muon collider may take considerable time to realize. However, intermediate steps in its direction are possible and could help facilitate the process. Employing an intense muon source to carry out forefront low energy research, such as the search for muon-number non-conservation, represents one interesting possibility. For example, the MECO proposal at BNL aims for 2 x 10 -17 sensitivity in their search for coherent muon-electron conversion in the field of a nucleus. To reach that goal requires the production, capture and stopping of muons at an unprecedented 10 11 μ/sec. If successful, such an effort would significantly advance the state of muon technology. More ambitious ideas for utilizing high intensity muon sources are also being explored. Building a muon storage ring for the purpose of providing intense high energy neutrino beams is particularly exciting.We present an overview of muon sources and example of a muon storage ring based Neutrino Factory at BNL with various detector location possibilities

  8. The Low-Energy Neutrino Factory

    International Nuclear Information System (INIS)

    Brass, Alan; Geer, Steve; Ellis, Malcolm; Mena, Olga; Pascoli, Silvia

    2008-01-01

    To date most studies of Neutrino Factories have focused on facilities where the energy of the muon in the storage ring has been in the range of 25-50 GeV. In this paper we present a concept for a Low-Energy (∼ 4 GeV) neutrino factory. For baselines of O(1000 km), the rich oscillation pattern at low neutrino interaction energy (0.5 - ∼3 GeV) provides the unique performance of this facility with regard to its sensitivity to CP violation and the determination of the neutrino mass hierarchy. A unique neutrino detector is needed, however, in order to exploit this oscillation pattern. We will describe the basic accelerator facility, demonstrate the methodology of the analysis and give an estimate on how well the Low-Energy neutrino factory can measure θ 13 , CP violation and the mass hierarchy. We will also describe the detector concept that is used, show a preliminary analysis regarding its performance and indicate what R and D is still needed. Finally we will show how the Low-Energy neutrino factory could be a step towards an energy frontier muon collider.

  9. Plasma Lens for Muon and Neutrino Beams

    International Nuclear Information System (INIS)

    Kahn, S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-01-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented

  10. Capture of muons with high energy transfer (μ-,pn) on the 2040Ca

    International Nuclear Information System (INIS)

    Arques, Marc

    1978-01-01

    As several Russian experiments had shown that the capture of mesons of negative charge in some target nuclei (Si, S, Ca, Cu, Pb) could lead to the emission of high energy protons and neutrons (a kinetic energy higher than 30 MeV), the author reports a preliminary measurement of the capture or a negatively charged muon in a K orbit around a nucleus, actually a capture with a simultaneous emission of a proton and a neutron, and of a neutrino with an as low as possible energy. After having outlined the interest of such an experiment, the author describes the kinematics of capture of a resting muon, the production of muons, the experimental assembly, the experiment and the associated electronics. Results are interpreted

  11. Muon energy estimate through multiple scattering with the MACRO detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; De Deo, M.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lindozzi, M.; Lipari, P.; Longley, N.P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E. E-mail: eugenio.scapparone@bo.infn.it; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M. E-mail: maximiliano.sioli@bo.infn.it; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C.W.; Webb, R

    2002-10-21

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E{sub {mu}}<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.

  12. Charge ratio of muons from atmospheric neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, T.K.; Stanev, Todor

    2003-05-22

    We calculate the intensities and angular distributions of positive and negative muons produced by atmospheric neutrinos. We comment on some sources of uncertainty in the charge ratio. We also draw attention to a potentially interesting signature of neutrino oscillations in the muon charge ratio, and we discuss the prospects for its observation (which are not quite within the reach of currently planned magnetized detectors)

  13. Muon energy estimate through multiple scattering with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Candela, A; Carboni, M; Caruso, R; Cassese, F; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Deo, M; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J; De Vincenzi, M; Di Credico, A; Dincecco, M; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lindozzi, M; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Tatananni, E; Togo, V; Vakili, M; Walter, C W; Webb, R

    2002-01-01

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to r...

  14. R and D Toward Neutrino Factories and Muon Colliders

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2003-01-01

    R and D aimed at the production, acceleration, and storage of intense muon beams is under way in the U.S., in Europe, and in Japan. Considerable progress has been made in the past few years toward the design of a ''Neutrino Factory'' in which a beam of 20-50 GeV mu- or mu+ is stored. Decay neutrinos from the beam illuminate a detector located roughly 3000 km from the ring. Here, we briefly describe the ingredients of a Neutrino Factory and then discuss the current R and D program and its results. A key concept in the design is ''ionization cooling,'' a process whereby the muon emittance is reduced by repeated interactions with an absorber material followed by reacceleration with high-gradient rf cavities. Plans to test this concept in the Muon Ionization Cooling Experiment (MICE) are well along and are described briefly

  15. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  16. Search for low energy quasi-vertical muons with an underwater cosmic neutrino detector, environmental study of the detector setting

    International Nuclear Information System (INIS)

    Blondeau, F.

    1999-06-01

    The European collaboration named ANTARES aims at operating a large submarine neutrino telescope. Mooring lines make up this detector. Each is about four hundred metres high and equipped with photomultiplier tubes. These tubes record the Cherenkov light emitted by muons resulting from the interaction of neutrinos with matter. It was chosen to install the telescope in the Mediterranean, off the shore of Toulon, by a depth of twenty-three hundred metres. One chapter of this dissertation is devoted to the environment parameters of this site: amount of natural light, fouling of glass elements and water transparency is reviewed. Such a disposal is originally designed to look for possible astronomic neutrino sources emitting neutrinos, thus being complementary with the study of our Universe relying on gamma rays. It is shown in this dissertation that two other current riddles in physics can be investigated by ANTARES, when a specific analysis is taken into account: what is the mass of the neutrinos on the one hand (via the phenomenon called neutrino oscillations), and in the other hand the evidence for a new particle which could participate to the nature of the dark matter in the Universe. This analysis is based upon the detection of nearly vertical muons (zenith angle less than fifteen degrees), with an energy lower than 100 GeV. (author)

  17. THE PRIMARY TARGET FACILITY FOR A NEUTRINO FACTORY BASED ON MUON BEAMS

    International Nuclear Information System (INIS)

    HASSENEIN, A.; KAHN, S.A.; KING, B.J.; KIRK, H.G.; LUDEWIG, H.; PALMER, R.B.; PEARSON, C.E.; SAMULYAK, R.; SIMOS, N.; STUMER, I.; THIEBERGER, P.; WEGGEL, R.J.

    2001-01-01

    Neutrino beams from the decay of muons in a storage ring offer the prospect of very high flux, well-understood spectra, and equal numbers of electron and muon neutrinos, as desirable for detailed exploration of neutrino oscillations via long baseline detectors [1]. Such beams require. large numbers of muons, and hence a high performance target station at which a 1-4 MW proton beam of 16-24 GeV impinges on a compact target, all inside a high field solenoid channel to capture as much of the phase volume of soft pions as possible. A first concept was based on a carbon target, as reported in 2000 the Neutrino Factory Study-I [2]. A higher performance option based on a free mercury jet has been studied in 2001 as part of the Neutrino Factory Feasibility Study-II [3,4]. An overview of a mercury jet target facility is presented here, including requirements, design concept and summaries of simulated performance. Further details are presented in related papers at this conference

  18. High energy neutrinos from the tidal disruption of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lunardini, Cecilia [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-05-17

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  19. High energy neutrinos from the tidal disruption of stars

    International Nuclear Information System (INIS)

    Lunardini, Cecilia

    2017-01-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  20. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    Science.gov (United States)

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  1. Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory

    OpenAIRE

    Aharmim, B; Peeters, S J M; SNO Collaboration,

    2009-01-01

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between $-1 \\le \\cos{\\theta}_{\\rm zenith} \\le 0.4$ in a tota...

  2. Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources

    International Nuclear Information System (INIS)

    Mena, Olga; Mocioiu, Irina; Razzaque, Soebur

    2007-01-01

    High-energy neutrinos are expected to be produced in a variety of astrophysical sources as well as in optically thick hidden sources. We explore the matter-induced oscillation effects on emitted neutrino fluxes of three different flavors from the latter class. We use the ratio of electron and tau induced showers to muon tracks, in upcoming neutrino telescopes, as the principal observable in our analysis. This ratio depends on the neutrino energy, density profile of the sources, and on the oscillation parameters. The largely unknown flux normalization drops out of our calculation and only affects the statistics. For the current knowledge of the oscillation parameters we find that the matter-induced effects are non-negligible and the enhancement of the ratio from its vacuum value takes place in an energy range where the neutrino telescopes are the most sensitive. Quantifying the effect would be useful to learn about the astrophysics of the sources as well as the oscillation parameters. If the neutrino telescopes mostly detect diffuse neutrinos without identifying their sources, then any deviation of the measured flux ratios from the vacuum expectation values would be most naturally explained by a large population of hidden sources for which matter-induced neutrino oscillation effects are important

  3. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, L.

    2006-06-01

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10 13 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  4. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC

    CERN Document Server

    Adey, D.; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Evans, J.; Geelhoed, M.; George, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Parke, S.; Palmer, M.A.; Pascoli, S.; Pasternak, J.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Soby, L.; Soler, F.J.P.; Soldner-Rembold, S.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.; Yang, U.K.

    2013-01-01

    The nuSTORM facility has been designed to deliver beams of electron neutrinos and muon neutrinos (and their anti-particles) from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. The facility is unique in that it will: 1. Allow searches for sterile neutrinos of exquisite sensitivity to be carried out; 2. Serve future long- and short-baseline neutrino-oscillation programs by providing definitive measurements of electron neutrino and muon neutrino scattering cross sections off nuclei with percent-level precision; and 3. Constitutes the crucial first step in the development of muon accelerators as a powerful new technique for particle physics. The document describes the facility in detail and demonstrates its physics capabilities. This document was submitted to the Fermilab Physics Advisory Committee in consideration for Stage I approval.

  5. New target solution for a muon collider or a muon-decay neutrino beam facility: The granular waterfall target

    Directory of Open Access Journals (Sweden)

    Han-Jie Cai

    2017-02-01

    Full Text Available A new target solution, the granular waterfall target, is proposed here for a muon collider or a muon-decay neutrino beam facility, especially for the moment which adopts a 15 MW continuous-wave (cw superconducting linac. Compared to the mercury jet target, the granular waterfall target works by a much simpler mechanism which can operate with a much more powerful beam, which are indicated by the detailed investigations into the heat depositions and the evaluations of the temperature increases for different target concepts. By varying proton beam kinetic energy and the geometrical parameters of the waterfall target, an overall understanding of the figure of merit concerning muon production for this target concept as the target solutions of the long-baseline neutrino factory and the medium-baseline moment is obtained. With 8 GeV beam energy and the optimal geometrical parameters, the influence on muon yield by adopting different beam-target interaction parameters is explored. Studies and discussions of the design details concerning beam dumping are also presented.

  6. Status of Neutrino Factory R and D within the Muon Collaboration

    International Nuclear Information System (INIS)

    Rajendran Raja

    2004-01-01

    The authors describe the current status of the research within the Muon Collaboration towards realizing a Neutrino Factory. The authors describe briefly the physics motivation behind the neutrino factory approach to studying neutrino oscillations and the longer term goal of building the Muon Collider. The benefits of a step by step staged approach of building a proton driver, collecting and cooling muons followed by the acceleration and storage of cooled muons are emphasized. Several usages of cooled muons open up at each new stage in such an approach and new physics opportunities are realized at the completion of each stage

  7. Measurement of CNGS muon neutrino speed with Borexino

    CERN Document Server

    Alvarez Sanchez, P.; Bellini, G.; Benziger, J.; Betti, B.; Biagi, L.; Bick, D.; Bonfini, G.; Bravo, D.; Avanzini, M.Buizza; Caccianiga, B.; Cadonati, L.; Carraro, C.; Cavalcante, P.; Cerretto, G.; Chavarria, A.; D'Angelo, D.; Davini, S.; De Gaetani, C.; Derbin, A.; Etenko, A.; Esteban, H.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goger-Neff, M.; Goretti, A.; Grandi, L.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Kayunov, A.; Kobychev, V.; Korablev, D.; Korga, G.; Koshio, Y.; Kryn, D.; Laubenstein, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Lombardi, F.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Missiaen, D.; Montanari, D.; Mosteiro, P.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Passoni, D.; Pinto, L.; Perasso, L.; Perasso, S.; Pettiti, V.; Plantard, C.; Pocar, A.; Raghavan, R.S.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schonert, S.; Serrano, J.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Spinnato, P.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Visconti, M.G.; Vogelaar, R.B.; Von Feilitzsch, F.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2012-10-02

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between a =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {\\delta}t = 0.8 \\pm 0.7stat \\pm 2.9sys ns, well consistent with zero.

  8. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  9. Measurement of CNGS muon neutrino speed with Borexino

    International Nuclear Information System (INIS)

    Alvarez Sanchez, P.; Barzaghi, R.; Bellini, G.; Benziger, J.; Betti, B.; Biagi, L.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Carraro, C.; Cavalcante, P.; Cerretto, G.; Chavarria, A.; D'Angelo, D.; Davini, S.; De Gaetani, C.; Derbin, A.

    2012-01-01

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between an 〈E〉=17 GeV muon neutrino and a particle moving at the speed of light in vacuum is δt=0.8±0.7 stat ±2.9 sys ns, well consistent with zero.

  10. R and D Toward a Neutrino Factory and Muon Collider

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2011-01-01

    Significant progress has been made in recent years in R and D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R and D efforts. This paper will review the U.S. MAP R and D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  11. Search for low energy quasi-vertical muons with an underwater cosmic neutrino detector, environmental study of the detector setting; Recherche de muons quasi verticaux de basse energie a l'aide d'un detecteur de neutrinos cosmiques sous-marin et etude environnementale de son site d'installation

    Energy Technology Data Exchange (ETDEWEB)

    Blondeau, F [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France); [Paris-7 Univ., 75 (France)

    1999-06-01

    The European collaboration named ANTARES aims at operating a large submarine neutrino telescope. Mooring lines make up this detector. Each is about four hundred metres high and equipped with photomultiplier tubes. These tubes record the Cherenkov light emitted by muons resulting from the interaction of neutrinos with matter. It was chosen to install the telescope in the Mediterranean, off the shore of Toulon, by a depth of twenty-three hundred metres. One chapter of this dissertation is devoted to the environment parameters of this site: amount of natural light, fouling of glass elements and water transparency is reviewed. Such a disposal is originally designed to look for possible astronomic neutrino sources emitting neutrinos, thus being complementary with the study of our Universe relying on gamma rays. It is shown in this dissertation that two other current riddles in physics can be investigated by ANTARES, when a specific analysis is taken into account: what is the mass of the neutrinos on the one hand (via the phenomenon called neutrino oscillations), and in the other hand the evidence for a new particle which could participate to the nature of the dark matter in the Universe. This analysis is based upon the detection of nearly vertical muons (zenith angle less than fifteen degrees), with an energy lower than 100 GeV. (author)

  12. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE-Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [CSIC-Universitat de Valencia, IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M. [INFN-Sezione di Bari, Bari (Italy); Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dumas, A.; Gay, P. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje, Texel (Netherlands); Hugon, C.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kouchner, A. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Institut Universitaire de France, Paris (France); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E. [INFN-Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (France); Marinelli, A. [INFN-Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (MA); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Sanguineti, M. [Dipartimento di Fisica dell' Universita, Genoa (IT); Schuessler, F.; Stolarczyk, T.; Vallage, B. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT)

    2017-01-15

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  13. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Sieger, C.; Tselengidou, M.; Wagner, S.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Mathieu, A.; Vallee, C.; Baret, B.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Michael, T.; Steijger, J.J.M.; Visser, E.; Bruijn, R.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Caramete, L.; Pavalas, G.E.; Popa, V.; Chiarusi, T.; Circella, M.; Creusot, A.; Galata, S.; Gracia-Ruiz, R.; Van Elewyck, V.; Dekeyser, I.; Lefevre, D.; Tamburini, C.; Deschamps, A.; Hello, Y.; Donzaud, C.; Dumas, A.; Gay, P.; Elsaesser, D.; Kadler, M.; Kreter, M.; Mueller, C.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Giordano, V.; Haren, H. van; Hugon, C.; Taiuti, M.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Loucatos, S.; Marinelli, A.; Migliozzi, P.; Moussa, A.; Pradier, T.; Sanguineti, M.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vivolo, D.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level. (orig.)

  14. Data filtering and expected muon and neutrino event rates in the KM3NeT neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Shanidze, Rezo [ECAP, University of Erlangen-Nuremberg, Erwin-Rommel-Str.1, 91058 Erlangen (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2011-07-01

    KM3NeT is a future Mediterranean deep sea neutrino telescope with an instrumented volume of several cubic kilometres. The neutrino and muon events in KM3NeT will be reconstructed from the signals collected from the telescope's photo detectors. However, in the deep sea the dominant source of photon signals are the decays of K40 nuclei and bioluminescence. The selection of neutrino and muon events requires the implementation of fast and efficient data filtering algorithms for the reduction of accidental background event rates. Possible data filtering and triggering schemes for the KM3NeT neutrino telescope and expected muon and neutrino event rates are discussed.

  15. Monopoles, muons, neutrinos, and Cygnus X-3

    International Nuclear Information System (INIS)

    Cherry, M.L.; Corbato, S.; Kieda, D.; Lande, K.; Lee, C.K.

    1988-01-01

    The deep underground large area scintillation detector and the surface air shower array at the Homestake Gold Mine are now in operation. Beginning in January 1985, the underground detector has been searching for muons from Cygnus X-3; we have seen no excess signal with the characteristic 4.8 hour period from the direction of Cygnus X-3, with an upper limit below that of the NUSEX result. The surface array has been collecting high energy cosmic ray data, in coincidence with the underground detector, since July of 1985. The authors describe the initial surface-underground data, and discuss the experiments to search for magnetic monopolies at the level of the Parker limit, neutrinos, and high energy cosmic ray air showers with these instruments and with a new atmospheric Cerenkov detector

  16. Measurement of CNGS muon neutrino speed with Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Sanchez, P., E-mail: spokeperson-borex@lngs.infn.it [CERN, Geneva (Switzerland); Barzaghi, R. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bellini, G. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Benziger, J. [Chemical Engineering Department, Princeton University, Princeton, NJ 08544 (United States); Betti, B.; Biagi, L. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Bick, D. [University of Hamburg, Hamburg (Germany); Bonfini, G. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Bravo, D. [Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buizza Avanzini, M.; Caccianiga, B. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Cadonati, L. [Physics Department, University of Massachusetts, Amherst, MA 01003 (United States); Carraro, C. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Cavalcante, P. [INFN-Laboratori Nazionali del Gran Sasso, Assergi 67010 (Italy); Cerretto, G. [Optics Division, INRIM (Istituto Nazionale di Ricerca Metrologica), Torino (Italy); Chavarria, A. [Physics Department, Princeton University, Princeton, NJ 08544 (United States); D' Angelo, D. [Dipartimento di Fisica, Universita degli Studi e INFN, Milano 20133 (Italy); Davini, S. [Dipartimento di Fisica, Universita e INFN, Genova 16146 (Italy); Physics Department, Houston University, Houston, TX 77204-5005 (United States); De Gaetani, C. [DIIAR-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Derbin, A. [St. Petersburg Nuclear Physics Institute, Gatchina 188350 (Russian Federation); and others

    2012-10-02

    We have measured the speed of muon neutrinos with the Borexino detector using short-bunch CNGS beams. The final result for the difference in time-of-flight between an Left-Pointing-Angle-Bracket E Right-Pointing-Angle-Bracket =17 GeV muon neutrino and a particle moving at the speed of light in vacuum is {delta}t=0.8{+-}0.7{sub stat}{+-}2.9{sub sys} ns, well consistent with zero.

  17. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  18. Study of the ANTARES detector sensitivity to a diffuse high-energy cosmic neutrino flux; Etude de la sensibilite du detecteur ANTARES a un flux diffus de neutrinos cosmiques de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer, A

    2003-04-01

    The ANTARES collaboration aims to built an underwater neutrino telescope, 2 400 m deep, 40 km from Toulon (France). This detector is constituted by 12 strings, each one comprising 90 photomultipliers. Neutrinos are detected through their charged current interaction in the medium surrounding the detector (water or rock) leading to the production of a muon in the final state. Its Cherenkov light emitted all along its travel is detected by a three dimensional array of photomultipliers. The diffuse neutrino flux is constituted by the addition of the neutrino emission of sources. Only astrophysical ones have been discussed. The different theoretical models predicting such a flux have been listed and added to the simulation possibilities. As the muon energy reconstruction was a crucial parameter in this analysis, a new energy estimator has been developed. It gives a resolution of a factor three on the muon energy above 1 TeV. Discriminant variables have been also developed in order to reject the atmospheric muon background. Including all these developments, the ANTARES sensitivity is found to be around 8.10{sup -8} GeV-cm{sup -2}-s{sup -1}-sr{sup -1} after one year of data taking for an E{sup -2} spectrum and a 10 string detector. (author)

  19. The Search for Muon Neutrinos from Northern HemisphereGamma-Ray Bursts with AMANDA

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer; Achterberg, A.

    2007-05-08

    We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the Northern Hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. Based on our observations of zero neutrinos during and immediately prior to the GRBs in the dataset, we set the most stringent upper limit on muon neutrino emission correlated with gamma-ray bursts. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalization at 1 PeV of E{sup 2}{Phi}{sub {nu}} {le} 6.0 x 10{sup -9} GeV cm{sup -2}s{sup -1}sr{sup -1}, with 90% of the events expected within the energy range of {approx}10 TeV to {approx}3 PeV. The impact of this limit on several theoretical models of GRBs is discussed, as well as the future potential for detection of GRBs by next generation neutrino telescopes. Finally, we briefly describe several modifications to this analysis in order to apply it to other types of transient point sources.

  20. Search for low energy quasi-vertical muons with an underwater cosmic neutrino detector, environmental study of the detector setting; Recherche de muons quasi verticaux de basse energie a l'aide d'un detecteur de neutrinos cosmiques sous-marin et etude environnementale de son site d'installation

    Energy Technology Data Exchange (ETDEWEB)

    Blondeau, F. [CEA/Saclay, Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee (DAPNIA), 91 - Gif-sur-Yvette (France)]|[Paris-7 Univ., 75 (France)

    1999-06-01

    The European collaboration named ANTARES aims at operating a large submarine neutrino telescope. Mooring lines make up this detector. Each is about four hundred metres high and equipped with photomultiplier tubes. These tubes record the Cherenkov light emitted by muons resulting from the interaction of neutrinos with matter. It was chosen to install the telescope in the Mediterranean, off the shore of Toulon, by a depth of twenty-three hundred metres. One chapter of this dissertation is devoted to the environment parameters of this site: amount of natural light, fouling of glass elements and water transparency is reviewed. Such a disposal is originally designed to look for possible astronomic neutrino sources emitting neutrinos, thus being complementary with the study of our Universe relying on gamma rays. It is shown in this dissertation that two other current riddles in physics can be investigated by ANTARES, when a specific analysis is taken into account: what is the mass of the neutrinos on the one hand (via the phenomenon called neutrino oscillations), and in the other hand the evidence for a new particle which could participate to the nature of the dark matter in the Universe. This analysis is based upon the detection of nearly vertical muons (zenith angle less than fifteen degrees), with an energy lower than 100 GeV. (author)

  1. Search for muon to electron neutrino oscillations

    International Nuclear Information System (INIS)

    Vilain, P.; Wilquet, G.; Beyer, R.; Flegel, W.; Mouthuy, T.; Oeveraas, H.; Panman, J.; Rozanov, A.; Winter, K.; Zacek, G.; Zacek, V.; Buesser, F.W.; Foos, C.; Gerland, L.; Layda, T.; Niebergall, F.; Raedel, G.; Staehelin, P.; Voss, T.; Favart, D.; Gregoire, G.; Knoops, E.; Lemaitre, V.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Lippich, W.; Nathaniel, A.; Staude, A.; Vogt, J.; Cocco, A.G.; Ereditato, A.; Fiorillo, G.; Marchetti-Stasi, F.; Palladino, V.; Strolin, P.; Capone, A.; De Pedis, D.; Dore, U.; Frenkel-Rambaldi, A.; Loverre, P.F.; Macina, D.; Piredda, G.; Santacesaria, R.; Di Capua, E.; Ricciardi, S.; Saitta, B.; Akkus, B.; Arik, E.; Serin-Zeyrek, M.; Sever, R.; Tolun, P.; Zeyrek, M.T.; Hiller, K.; Nahnhauer, R.; Roloff, H.E.

    1994-01-01

    A search for ν μ → ν e and anti ν μ → anti ν e oscillations has been carried out with the CHARM II detector exposed to the CERN wide band neutrino beam. The data were collected over five years, alternating beams mainly composed of muon-neutrinos and muon-antineutrinos. The number of interactions of ν e and anti ν e observed is comparable with the number of events expected from flux calculations. For large squared mass differences the upper limits obtained on the mixing angle are sin 2 2θ -3 for ν μ oscillating to ν e and sin 2 2θ -3 for anti ν μ to anti ν e , at the 90% confidence level. Combining neutrino and antineutrino data the upper limit is 5.6 . 10 -3 . (orig.)

  2. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, P.; Smith, D.R.; /Brunel U.; Coney, L.; /UC, Riverside; Pascoli, S.; /Durham U., IPPP; Ankenbrandt, C.; Brice, S.J.; Bross, A.D.; Cease, H.; Kopp, J.; Mokhov, N.; Morfin, J.; /Fermilab /Yerkes Observ. /Glasgow U. /Imperial Coll., London /Valencia U. /Jefferson Lab /Kyoto U. /Northwestern U. /Osaka U.

    2012-06-01

    The idea of using a muon storage ring to produce a high-energy ({approx_equal} 50 GeV) neutrino beam for experiments was first discussed by Koshkarev in 1974. A detailed description of a muon storage ring for neutrino oscillation experiments was first produced by Neuffer in 1980. In his paper, Neuffer studied muon decay rings with E{sub {mu}} of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of {approx_equal} 6 x 10{sup 9} useful neutrinos per 3 x 10{sup 13} protons on target. The facility we describe here ({nu}STORM) is essentially the same facility proposed in 1980 and would utilize a 3-4 GeV/c muon storage ring to study eV-scale oscillation physics and, in addition, could add significantly to our understanding of {nu}{sub e} and {nu}{sub {mu}} cross sections. In particular the facility can: (1) address the large {Delta}m{sup 2} oscillation regime and make a major contribution to the study of sterile neutrinos, (2) make precision {nu}{sub e} and {bar {nu}}{sub e} cross-section measurements, (3) provide a technology ({mu} decay ring) test demonstration and {mu} beam diagnostics test bed, and (4) provide a precisely understood {nu} beam for detector studies. The facility is the simplest implementation of the Neutrino Factory concept. In our case, 60 GeV/c protons are used to produce pions off a conventional solid target. The pions are collected with a focusing device (horn or lithium lens) and are then transported to, and injected into, a storage ring. The pions that decay in the first straight of the ring can yield a muon that is captured in the ring. The circulating muons then subsequently decay into electrons and neutrinos. We are starting with a storage ring design that is optimized for 3.8 GeV/c muon momentum. This momentum was selected to maximize the physics reach for both oscillation and the cross section physics. See Fig. 1 for a schematic of the facility.

  3. Muon-muon and other high energy colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization's operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020

  4. Observation of muon-electron pairs in neutrino reactions

    International Nuclear Information System (INIS)

    Hoffmann, D.

    1980-05-01

    The present thesis describes the observation of muon-electron pairs in neutrino reactions. This experiment was performed using an optical multiplate spark chamber in the broad band neutrino beam of the CERN proton synchrotron. (orig.) [de

  5. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  6. Neutrino and muon physics in the collider mode of future accelerators

    International Nuclear Information System (INIS)

    Rujula, A. de; Rueckl, R.

    1984-01-01

    Extracted beams and fixed target facilities at future colliders (the SSC and the LHC) may be (respectively) impaired by economic and 'ecological' considerations. Neutrino and muon physics in the multi-TeV range would appear not to be an option for these machines. We partially reverse this conclusion by estimating the characteristics of the 'prompt' νsub(μ), νsub(e), νsub(tau) and μ beams necessarily produced (for free) at the pp or anti pp intersections. The neutrino beams from a high luminosity (pp) collider are not much less intense than the neutrino beam from the collider's dump, but require no muon shielding. The muon beams from the same intersections are intense and energetic enough to study μp and μN interactions with considerable statistics and a Q 2 -coverage well beyond the presently available one. The physics program allowed by these lepton beams is a strong advocate of machines with the highest possible luminosity: pp (not anti pp) colliders. (orig.)

  7. A candidate for production of a top quark pair in CMS, where both top quarks decay into a W and a b quark, and both W particles decay into a muon and neutrino. This results in 2 muons (red tracks), 2 jets tagged as b-quark jets and missing energy (from the escaping neutrinos).

    CERN Multimedia

    CMS Collaboration

    2010-01-01

    A candidate for production of a top quark pair in CMS, where both top quarks decay into a W and a b quark, and both W particles decay into a muon and neutrino. This results in 2 muons (red tracks), 2 jets tagged as b-quark jets and missing energy (from the escaping neutrinos).

  8. Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    International Nuclear Information System (INIS)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Boeser, S.; Botner, O.; Bouchta, A.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Doksus, P.; Ekstrom, P.; Feser, T.; Gaisser, T.K.; Ganugapati, R.; Gaug, M.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hulth, P.O.; Hughey, B.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kuehn, K.; Kim, J.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Mandli, K.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, P.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schlenstedt, S.; Schinarakis, K.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Stamatikos, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sulanke, K.-H.; Taboada, I.; Tilav, S.; Wagner, W.; Walck, C.; Wang, Y.-R.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2003-01-01

    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E -2 spectrum, a 90 percent classical confidence level upper limit has been placed at a level E 2 Phi(E) = 8.4 x 10 -7 GeV cm -2 s -1 1 sr -1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded

  9. Power Deposition due to Muon Decay Losses in a Neutrino Factory

    CERN Document Server

    Keil, Eberhard

    2000-01-01

    The power in the charged muon decay products, deposited per unit distance, depends on the muon energy only through the relativistic factor beta. For a typical neutrino factory it is about one Watt/m, multiplied by the number of passes through a particular component. The power is highest in the muon decay ring, where the muon lifetime cooresponds to about 150 turns. The electrons or positrons from muon decay in the long straight section may remain inside the vacuum chamber, until they are lost at the beginning of the arcs, because of their large energy errors, that are enhanced by synchrotron radiation losses. The power losses along the straight section and the arcs are studied by computer simulation, and the results are presented. About two thirds of the power ends up in the straight section, the remainder in the matching section and in the first half of the dispersion suppressor.

  10. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    Energy Technology Data Exchange (ETDEWEB)

    Psihas Olmedo, Silvia Fernanda [Univ. of Minnesota, Duluth, MN (United States)

    2013-06-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  11. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    Energy Technology Data Exchange (ETDEWEB)

    Psihas Olmedo, Silvia Fernanda [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  12. Mass limits for the muon neutrino

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Sandberg, V.D.

    1982-01-01

    The possibility of improving the present limit on the mass of the muon neutrino is discussed. It is found that decays of muons and pions are not useful means to significantly improve this limit. On the other hand, the decays K 0 /sub L/ → π/sup +-/μ/sup -+/nu/sub μ/ and K + → π 0 μ + nu/sub μ/ appear to be quite promising. Possible experiments are discussed

  13. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  14. Search for Muon Neutrino Disappearance in a Short-Baseline Accelerator Neutrino Beam

    OpenAIRE

    Nakajima, Yasuhiro; Collaboration, for the SciBooNE

    2010-01-01

    We report a search for muon neutrino disappearance in the $\\Delta m^{2}$ region of 0.5-40 $eV^2$ using data from both SciBooNE and MiniBooNE experiments. SciBooNE data provides a constraint on the neutrino flux, so that the sensitivity to $\

  15. Neutrino energy reconstruction from one-muon and one-proton events

    Energy Technology Data Exchange (ETDEWEB)

    Furmanski, Andrew P.; Sobczyk, Jan T.

    2017-06-01

    We propose a method of selecting a high-purity sample of charged current quasielastic neutrino interactions to obtain a precise reconstruction of the neutrino energy. The performance of the method was verified with several tests using genie, neut, and nuwro Monte Carlo event generators with both carbon and argon targets. The method can be useful in neutrino oscillation studies with beams of a few GeV.

  16. Study of Anti-Neutrino Beam with Muon Monitor in the T2K experiment

    Science.gov (United States)

    Hiraki, Takahiro

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed.

  17. Study of anti-neutrino beam with Muon Monitor in the T2K experiment

    International Nuclear Information System (INIS)

    Hiraki, Takahiro

    2015-01-01

    The T2K experiment is a long-baseline neutrino oscillation experiment. In 2013, the T2K collaboration observed electron neutrino appearance in a muon neutrino beam at 7.3 sigma significance. One of the next main goals of the T2K experiment is to measure electron anti-neutrino appearance. In June 2014 we took anti-neutrino beam data for the first time. The anti-neutrino beam was obtained by reversing the polarity of horn focusing magnets. To monitor the direction and intensity of the neutrino beam which is produced from the decay of pions and kaons, the muon beam is continuously measured by Muon Monitor (MUMON). To reconstruct the profile of the muon beam, MUMON is equipped with 49 sensors distributed on a plane behind the beam dump. In this report, we show some results of the anti-neutrino beam data taken by monitors including MUMON. In particular, dependence of the muon beam intensity on electric current of the horns, correlation between the proton beam position and the MUMON profile, and beam stability are presented. Comparison between the data and Monte Carlo simulation is also discussed. (author)

  18. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  19. Muon track reconstruction and data selection techniques in AMANDA

    International Nuclear Information System (INIS)

    Ahrens, J.; Bai, X.; Bay, R.; Barwick, S.W.; Becka, T.; Becker, J.K.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Biron, A.; Boersma, D.J.; Boeser, S.; Botner, O.; Bouchta, A.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Collin, B.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Ekstroem, P.; Feser, T.; Gaug, M.; Gaisser, T.K.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Gross, A.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Harenberg, T.; Hauschildt, T.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hubert, D.; Hughey, B.; Hulth, P.O.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kestel, M.; Koepke, L.; Kowalski, M.; Kuehn, K.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Muenich, K.S.; Nam, J.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Oegelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Ross, D.; Sander, H.-G.; Schinarakis, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Stamatikos, M.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sulanke, K.-H.; Streicher, O.; Taboada, I.; Thollander, L.; Tilav, S.; Wagner, W.; Walck, C.; Wang, Y.-R.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G.

    2004-01-01

    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500 and 2000 m. The primary goal of this detector is to discover astrophysical sources of high-energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 deg. accuracy

  20. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  1. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  2. Issues in Acceleration of A Muon Beam for a Neutrino Factory

    International Nuclear Information System (INIS)

    J. Delayen; D. Douglas; L. Harwood; V. Lebedev; C. Leemann; L. Merminga

    2001-01-01

    We have developed a concept for acceleration of a large phase-space, pulsed muon beam from 190 MeV to 50 GeV as part of a collaborative study of the feasibility of a neutrino factory based on in-flight decay of muons. The muon beam's initial energy spread was ∼20% and each bunch has the physical size of a soccer ball. Production of the muons will be quite expensive, so prevention of loss due to scraping or decay is critical. The former drives the system to large apertures and the latter calls for high real-estate-average gradients. The solution to be presented utilizes a 3 GeV linac to capture the beam, a 4-pass recirculating linac to get the beam to 10 GeV, and then a 5-pass linac to get the beam to 50 GeV. Throughout the system, longitudinal dynamics issues far outweighed transverse dynamics issues. This paper focuses on the issues surrounding the choice of superconducting rf structures over copper structures

  3. Limit on the muon neutrino magnetic moment and a measurement of the CCPIP to CCQE cross section ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ouedraogo, Serge Aristide [Louisiana State Univ., Baton Rouge, LA (United States)

    2008-12-01

    A search for the muon neutrino magnetic moment was conducted using the Mini-BooNE low energy neutrino data. The analysis was performed by analyzing the elastic scattering interactions of muon neutrinos on electrons. The analysis looked for an excess of elastic scattering events above the Standard Model prediction from which a limit on the neutrino magnetic could be set. In this thesis, we report an excess of 15.3 ± 6.6(stat)±4.1(syst) vμe events above the expected background. At 90% C.L., we derived a limit on the muon neutrino magnetic moment of 12.7 x 10-10 μB. The other analysis reported in this thesis is a measurement of charged current single pion production (CCπ+) to charged current quasi elastic (CCQE) interactions cross sections ratio. This measurement was performed with two different fitting algorithms and the results from both fitters are consistent with each other.

  4. High energy neutrinos: sources and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  5. Composition from high pT muons in IceCube

    Directory of Open Access Journals (Sweden)

    Soldin Dennis

    2015-01-01

    Full Text Available Cosmic rays with energies up to 1011 GeV enter the atmosphere and produce showers of secondary particles. Inside these showers muons with high transverse momentum (pT ≳ 2 GeV are produced from the decay of heavy hadrons, or from high pT pions and kaons very early in the shower development. These isolated muons can have large transverse separations from the shower core up to several hundred meters, together with the muon bundle forming a double or triple track signature in IceCube. The separation from the core is a measure of the transverse momentum of the muon's parent particle. Assuming the validity of perturbative quantum chromodynamics (pQCD the muon lateral distribution depends on the composition of the incident nuclei, thus the composition of high energy cosmic rays can be determined from muon separation measurements. Vice versa these muons can help to understand uncertainties due to phenomenological models as well as test pQCD predictions of high energy interactions involving heavy nuclei. After introducing the physics scenario of high pT muons in kilometer-scale neutrino telescopes we will review results from IceCube in its 59-string configuration as a starting point and discuss recent studies on composition using laterally separated muons in the final detector configuration.

  6. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm2 about equals 1-eV2 region

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, David W. [Columbia Univ., New York, NY (United States)

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm2 ~ 1 eV2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  7. Design Concepts for Muon-Based Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirk, H. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratkis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alexahin, Y. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bross, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gollwitzer, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mokhov, N. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Snopok, P. [IIT, Chicago, IL (United States); Bogacz, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roberts, T. J. [Muons Inc., Batavia, IL (United States); Delahaye, J. -P. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced, thus enabling high-quality physics results. Thanks to these and other advances in design & simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider. This paper summarizes the current status of design concepts for muon-based accelerators for neutrino factories and a muon collider.

  8. Neutrino oscillation study in the muon neutrino → electron neutrino channel at the Brookhaven accelerator

    International Nuclear Information System (INIS)

    Astier, P.

    1987-09-01

    The E816 experiment described in this thesis is devoted to a neutrino oscillation search at the Brookhaven AGS. The method used here is to look with a fine grained calorimeter for the appearence of electron neutrino in a muon neutrino beam. After recalling the theoretical treatment of the neutrino mass problem, the experimental phenomenology of massive neutrinos and more specifically neutrino oscillations is reviewed. The experiment itself is then extensively described, both on the technical side (detector, beam, simulation) and on the analysis side. In particular the statistical separation of the electromagnetic showers from electrons - our signal - and from photons - our background - treated in detail. The present analysis is based on 2/3 of the final statistics and it leads to the - preliminary - observation of an electron excess in the neutrino interactions yielding 19 ± 15.6 (stat) ± 7 (syst) [fr

  9. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei [Indiana Univ., Bloomington, IN (United States)

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  10. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Jiajie [Univ. of South Carolina, Columbia, SC (United States)

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  11. Determining neutrino mass hierarchy from electron disappearance at a low energy neutrino factory

    International Nuclear Information System (INIS)

    Raut, Sushant K.

    2013-01-01

    Reactor neutrino experiments have recently measured the value of θ 13 , to be non-zero and moderately large. This makes the determination of the neutrino mass hierarchy possible. However, our lack of knowledge of δ CP results in a parameter degeneracy, which makes this task difficult. The electron neutrino disappearance probability does not depend on δ CP . Therefore, in principle, it is possible to determine the hierarchy independently of δ CP using this channel. Previous studies of neutrino factories have not considered this channel, because the effect of systematics in electron disappearance is substantial. However, we show that for the moderately large value of θ 13 measured, hierarchy determination is possible in spite of systematic effects. We consider a low energy neutrino factory (LENF) setup with a totally active scintillator detector (TASD) with charge-identification. We optimize the setup in muon energy and baseline, for different allowed values of θ 13 and runtime. We find that a LENF with baseline of around 1300 km and muon energy around 3-4 GeV is well suited for hierarchy determination. For the RENO best-fit value of θ 13 , this setup can determine the hierarchy at 5ω, for all values of δ CP and for both hierarchies. (author)

  12. Search for high-energy neutrinos from bright GRBs with ANTARES

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, T.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Vizzocca, A.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in pγ interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C,

  13. Muon-Neutrino Electron Elastic Scattering and a Search for the Muon-Neutrino Magnetic Moment in the NOvA Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao [Southern Methodist U.

    2017-01-01

    We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino- electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. So that beneting from the precise cross-section of this channel, we are able to tune the neutrino beam ux simulation in the future. Giving the exposure of 3:62 1020 POT in the NOvA near detector, we report 1:58 10

  14. Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction

    International Nuclear Information System (INIS)

    Cervera, A.; Laing, A.; Martin-Albo, J.; Soler, F.J.P.

    2010-01-01

    A Neutrino Factory producing an intense beam composed of ν e (ν-bar e ) and ν-bar μ (ν μ ) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters, θ 13 and δ CP . Using the 'wrong-sign muon' signal to measure ν e →ν μ (ν-bar e →ν-bar μ ) oscillations in a 50 kt Magnetised Iron Neutrino Detector (MIND) sensitivity to δ CP could be maintained down to small values of θ 13 . However, the detector efficiencies used in these previous studies were calculated assuming perfect pattern recognition. In this paper, MIND is reassessed taking into account, for the first time, a realistic pattern recognition for the muon candidate. Reoptimisation of the analysis utilises a combination of methods, including a multivariate analysis similar to the one used in MINOS, to maintain high efficiency while suppressing backgrounds, ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses. As a result MIND remains the most sensitive future facility for the discovery of CP violation from neutrino oscillations.

  15. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    Science.gov (United States)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  16. Neutrino Factory and Muon Collider Collaboration R and D Program

    International Nuclear Information System (INIS)

    Zisman, M.S.

    2000-01-01

    The Neutrino Factory and Muon Collider Collaboration (MC) comprises some 140 scientists and engineers located at U.S. National Laboratories and Universities, and at a number of non-U.S. research institutions. In the past year, the MC R and D program has shifted its focus mainly toward the design issues related to the development of a Neutrino Factory based on a muon storage ring. In this paper the status of the various R and D activities is described, and future plans are outlined

  17. Plasma Lens for Muon and Neutrino Beams

    Science.gov (United States)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  18. Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Scotto Lavina, L.; Selvi, M.; Tabarelli de Fatis, T.; Terranova, F.

    2008-01-01

    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like neutrino factories and beta beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kT iron detector and a high energy beta beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ 13 values greater than 4 . (orig.)

  19. Muon acceleration in cosmic-ray sources

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-01-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10 13 keV cm –1 . At gradients above 1.6 keV cm –1 , muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  20. A study of the interactions of high energy electron-neutrinos

    International Nuclear Information System (INIS)

    Nieuwenhuis, C.H.M.

    1986-01-01

    This thesis describes an analysis of electron-neutrino and anti-neutrino interactions with nuclei. The data were collected with the calorimeter of the Amsterdam-CERN-Hamburg-Moscow-Rome (CHARM) group in a beam dump exposure to 400 GeV/c protons from the CERN SPS in 1982. The predictions of the Standard Model for the quantities measured in this experiment are given. The results of the analysis of events without a primary muon in the final state are given in the form of an experimental y-distribution. The measured quantities are compared with the predictions of the theory and the measurements of other experiments. Presented are the cross-section ratio of neutral current and charged current electron-neutrino induced events, the prompt CC ν(anti ν) e interaction rate, the prompt (ν e +anti ν e )/(ν μ +anti ν μ ) flux ratio, the energy dependence of the prompt electron-neutrino flux and a measurement of the DantiD cross-section times semileptonic branching ratio based on prompt electron-neutrino interactions. (Auth.)

  1. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Kinga Anna [Yale Univ., New Haven, CT (United States)

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be both illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  2. Unfolding measurement of the atmospheric muon neutrino spectrum using IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Mathis; Ruhe, Tim; Meier, Maximilian; Schlunder, Philipp; Menne, Thorben; Fuchs, Tomasz [Dept. of Physics, Technical University of Dortmund, 44227 Dortmund (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    IceCube is a cubic kilometer neutrino observatory located at the geographic South Pole. With its huge volume, the detector is well suited for measurements of the atmospheric muon neutrino energy spectrum. Over the last years, several unfolding analyses for single years were able to provide model independent measurements for the northern hemisphere in an energy region between 200 GeV and 3.2 PeV. In this talk, the extension of the analyses to four additional years of data is presented. With this significant enlargement of the data basis, it is possible to reanalyze the full northern hemisphere with smaller statistical errors. Moreover, the spectrum can be unfolded in several small zenith bands. Measurements of the energy spectrum for different zenith regions provide further information on the composition and the shape of the flux.

  3. Evaluation of the astrophysical origin of a vertical high-energy neutrino event in IceCube using IceTop information

    Energy Technology Data Exchange (ETDEWEB)

    Stahlberg, Martin; Auffenberg, Jan; Rongen, Martin; Kemp, Julian; Hansmann, Bengt; Schaufel, Merlin; Wiebusch, Christopher [RWTH Aachen, III. Physikalisches Institut B, Otto-Blumenthal-Strasse, 52074 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    A main goal of the IceCube neutrino observatory is the detection of high-energy astrophysical neutrinos. IceCube's surface detector component IceTop is an array of 81 stations comprised of two Cherenkov-light detecting tanks, each of which is filled with clear ice and contains two photomultiplier modules. IceTop allows for the detection of cosmic-ray induced air-showers above energies of a few 100 TeV. In addition, the atmospheric origin of neutrino events detected with IceCube can be verified by the observation of a coincident air-shower component on the surface with IceTop. In 2014, a vertically down-going high-energy muon neutrino event starting in IceCube has been observed. The astrophysical origin of this event is tested by a close examination of the IceTop data. The outcome of this analysis is used to assess the potential of the proposed IceTop extension, IceVeto, which further increases the geometrical acceptance of the surface detector.

  4. A model for pseudo-Dirac neutrinos: leptogenesis and ultra-high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.H. [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 (Korea, Republic of); Kang, Sin Kyu [Insitute for Convergence Fundamental Study, School of Liberal Arts, Seoul-Tech.,Seoul, 01811 (Korea, Republic of); Kim, C.S. [Dept. of Physics and IPAP, Yonsei University,Seoul, 120-749 (Korea, Republic of)

    2016-10-18

    We propose a model where sterile neutrinos are introduced to make light neutrinos to be pseudo-Dirac particles. It is shown how tiny mass splitting necessary for realizing pseudo-Dirac neutrinos can be achieved. Within the model, we show how leptogenesis can be successfully generated. Motivated by the recent observation of very high energy neutrino events at IceCube, we study a possibility to observe the effects of the pseudo-Dirac property of neutrinos by performing astronomical-scale baseline experiments to uncover the oscillation effects of very tiny mass splitting. We also discuss future prospect to observe the effects of the pseudo-Dirac property of neutrinos at high energy neutrino experiments.

  5. Feasibility studies of the geochemical Ti-205 solar neutrino experiment

    CERN Document Server

    Neumaier, S; Nolte, E; Morinaga, H

    1991-01-01

    New investigations on the signal to background ratio of the geochemical 205Tl( v., e-)205Pb solar neutrino experiment are presented. The neutrino capture rate of 205Tl and a possible reduction of the neutrino signal due to neutrino oscillations in matter are discussed. The contributions of natural radioactivity, stopped negative muons and fast muons to the background of 205Pb are estimated. The production of radioisotopes in the lead region induced by cosmic ray muons was studied at the high energy muon beam (M2) of CERN with 120, 200 and 280 GeV muons. The background contribution of cosmic ray muons is found to be significantly higher than expected by former estimations and restricts the feasibility of the 205Tl solar neutrino experiment.

  6. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector

    International Nuclear Information System (INIS)

    Guillard, G.

    2010-10-01

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  7. Exotic muon decays and searches for neutrino oscillations

    International Nuclear Information System (INIS)

    Herczeg, P.

    1997-06-01

    Experiments that search for anti ν e 's from μ + -decay are sensitive not only to oscillations of neutrinos into anti ν e , but also to μ + → e + anti ν e n x decays, where n x is a neutrino or an antineutrino. The author considers such muon decays and the possible size of their branching ratios in left-right symmetric models and in the minimal supersymmetric standard model with R-parity violation

  8. The search for neutrino oscillations in the appearance mode nu/sub μ/ → nu/sub e/ for neutrino energies near the muon threshold

    International Nuclear Information System (INIS)

    Huang, Ying-Chiang.

    1986-12-01

    To investigate the possibility of neutrino oscillation, a search for the exclusive mode, nu/sub μ/ → nu/sub e/, was performed at LAMPF. The reactions studied were nu/sub μ/ + C → μ - + X; μ - → e - + anti nu/sub e/ + nu/sub μ/, and nu/sub e/ + C → e - + X (if nu/sub μ/ → nu/sub e/). The detector was located at an effective distance of 20 m from the water target. The beam was composed primarily of muon-neutrinos from pion decay, and the neutrino flux (of mean energy 150 MeV) was computed to be 6.2 x 10 5 nu/cm 2 -sec for 20 μA of proton beam on our target. We saw no evidence for oscillations, and were able to set upper limits sin 2 (2Θ) ≤ 8.8 x 10 -3 (90% C.L.) (in the limit of large Δm 2 ) and Δm 2 sin(2Θ) ≤ 0.59 eV 2 (in the limit of small Δm 2 )

  9. Search for Sterile Neutrinos in the Muon Neutrino Disappearance Mode at FNAL

    CERN Document Server

    Anokhina, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M.T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the {\\em muon--neutrino disappearance} measurements at short baselines in order to put severe constraints to models with more than the three--standard neutrinos, or even to robustly establish the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL--Booster neutrino beam for a Short--Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were extensively studied, together with the achievable performances of two OPERA--like spectrometers. The study was constrained by the availability of existing hardware and a time--schedule compatible with the undergoing project of multi--site Liquid--Argon detectors at FNAL. \

  10. Production of wrong sign muons in neutrino-nucleon and antineutrino-nucleon collisions

    International Nuclear Information System (INIS)

    Onipchuk, A.B.

    1988-01-01

    The contribution is considered introduced by the quasipartonic mechanism to production of muons with a wrong sign in ν μ (ν-bar μ )N collisions. The ratios of muon production cross sections in the processes ν μ (ν-bar μ )N → μ + (μ - ) + ... to the inclusive cross sections have been calculated. Comparison to neutrino-nucleon data is made. The x and y distributions and mean kinematical characteristics of the scattered neutrinos are found

  11. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  12. Study of the high energy Cosmic Rays large scale anisotropies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Illuminati, Giulia

    2016-01-01

    We present the analysis method used to search for an anisotropy in the high energy Cosmic Rays arrival distribution using data collected by the ANTARES telescope. ANTARES is a neutrino detector, where the collected data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Northern sky. The main challenge for this analysis is accounting for those effects which can mimic an apparent anisotropy in the muon arrival direction: the detector exposure asymmetries, non-uniform time coverage, diurnal and seasonal variation of the atmospheric temperature. Once all these effects have been corrected, a study of the anisotropy profiles along the right ascension can be performed. (paper)

  13. Oscillation sensitivity with up-going muons in lCAL at India based Neutrino Observatory (INO)

    International Nuclear Information System (INIS)

    Rawat, Kanishka; Bhatnagar, Vipin; Indumathi, D.

    2013-01-01

    The proposed magnetised Iron Calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) lab is mostly sensitive to the muon neutrinos. We present preliminary results for oscillation studies with up-going muons. We have used charge-current events with Honda flux for the analysis. Honda flux is calculated for INO-Theni site where the INO-ICAl detector will be placed. For up-going muon with 2-flavour oscillation, the parameters taken are: θ 12 = 34, θ 13 = 0, θ 23 = 45, Δm 2 31 = 7.92 x 10 -5 eV 2 , Δm 2 21 = 2.4 x 10 -3 eV 2 , δ cp = 0. We generate events using the ICAL geometry in the Nuance neutrino generator and pass the produced events through the ICAl-GEANT4 simulated detector. The muon tracks are reconstructed according to this package through a Kalman filter algorithm that returns both the magnitude and direction of the muon momentum. The sensitivity of these events to oscillations in the parent neutrino flux will be studied next

  14. Total cross section measurement of muon neutrinos on isoscalar target. Exact determination of the electroweak mixing parameter

    International Nuclear Information System (INIS)

    Pain, R.

    1987-09-01

    The work presented in this thesis is concerned with high energy muon-neutrino nucleon interactions. The experiment was performed at CERN in 1984 using the CHARM marble target-calorimeter exposed to the 160 GeV narrow band beam. The experimental analysis is based on an event-by-event classification of neutral currents (NC) and charged currents (CC) interactions and on precise measurements of neutrinos and antineutrinos fluxes. This leads to precise measurements of CC total cross-sections of neutrinos and antineutrinos between 10 and 160 GeV and of NC to CC ratios of total cross-sections of events with hadron energy greater than 4 GeV: R n eutrino and R a ntineutrino. From the measurements of R n eutrino and of the ratio of CC total cross-sections of antineutrinos and neutrinos, we obtain a high precision value of the electroweak mixing angle. Comparison of this result with those obtained in proton-antiproton collisions make it possible to derive a measurement of electroweak radiative corrections and a precise determination of ρ [fr

  15. Charmed muons in ice. Measurement of the high-energetic atmospheric energy spectrum with IceCube in the detector configuration IC86-1

    International Nuclear Information System (INIS)

    Fuchs, Tomasz

    2016-01-01

    In this thesis the flux of high-energy muons in the energy regime from 10 TeV to 1 PeV is reconstructed and analyzed using data collected with the IceCube detector in the time span 13.05.2011 to 15.05.2012. From a data set containing muon bundles only those events are selected which contain a muon that is energetically dominating the others in the bundle. For the separation a Random Forest model is applied, resulting in a data set of high-energy muons with an efficiency of (40.8±0.6) % and a purity of (93.1±0.4) %. Attributes considered in the separation are selected by the mRMR algorithm. The energy spectrum of muons is reconstructed with a regularized unfolding using the software TRUEE. The hypothesis of a prompt and a conventional component of atmospheric muons results in flux normalizations of N conv. =1.03±0.06 and N prompt =1.59±1.57. Due to the large uncertainty of the prompt component, the hypothesis of a pure conventional flux cannot be excluded. Using these normalizations, it is possible to determine if the measured high-energy neutrino flux above 60 TeV is of atmospheric origin. The p-value for this hypothesis is found to be 0.045, which indicates the need of an astrophysical component to explain the excess at high energies.

  16. IceCube: Particle Astrophysics with High Energy Neutrinos

    CERN Multimedia

    Université de Genève

    2012-01-01

    GENEVA UNIVERSITY École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92 Monday 7 May 2012 17h. - Ecole de Physique, Auditoire Stueckelberg IceCube: Particle Astrophysics with High Energy Neutrinos Prof. Francis Halzen / University of Wisconsin, Madison Construction and commissioning of the cubic-kilometer IceCube neutrino detector and its low energy extension DeepCore have been completed. The instrument detects neutrinos over a wide energy range: from 10 GeV atmospheric neutrinos to 1010 GeV cosmogenic neutrinos. We will discuss initial results based on a subsample of the ~100,000 neutrino events recorded during construction. We will emphasize the first measurement of the high-energy atmospheric neutrino spectrum, the search for the still enigmatic sources of the Galactic and extragalactic cosmic rays and for the particle nature of dark matter. Une ve...

  17. Production of wrong-sign muons in neutrino-nucleon and antineutrino-nucleon collisions

    International Nuclear Information System (INIS)

    Onipchuk, A.B.; Choban, E.A.

    1988-01-01

    We consider the contribution of the quasiparton mechanism to the production of wrong-sign muons in ν/sub μ/(nu-bar/sub μ/)N collisions. We obtain the ratios of the production cross sections of muons in the processes ν/sub μ/(nu-bar/sub μ/)N→μ + (μ - )+... and the inclusive cross sections, and compare them with experiment in the case of neutrino-nucleon interactions. We find the x and y distributions and the average kinematical characteristics of the scattered neutrino

  18. Flavor composition of the IceCube neutrinos: A quest for sterile neutrinos?

    International Nuclear Information System (INIS)

    Biondi, R.

    2016-01-01

    The identification of flavor content in the cosmic high-energy neutrinos recently observed by the IceCube collaboration could spread the light on the origin of these neutrinos. We study the expected fraction of muon tracks for different cases of the neutrino flavor composition at the sources taking into account uncertainties in the neutrino mixing angles and CP-phase. We show that in the frame of the three known neutrinos it is hard to explain the ν_μ fraction observed at IceCube. However if the cosmic component is produced in some hidden sector, in the form of sterile neutrinos which then oscillate into ordinary ones, a better agreement can be obtained. Especially, in a scenario when heavy dark matter with mass of few PeV decay into sterile neutrinos which then oscillate in ordinary neutrinos due to tiny mixing with the latter, it is possible to explain the low fraction of muon tracks in the events observed by IceCube in the energy region from 60TeV to 2PeV

  19. Low-energy solar neutrino spectroscopy with Borexino. Towards the detection of the solar pep and CNO neutrino flux

    Energy Technology Data Exchange (ETDEWEB)

    Maneschg, Werner

    2011-05-11

    Borexino is a large-volume organic liquid scintillator detector of unprecedented high radiopurity which has been designed for low-energy neutrino spectroscopy in real time. Besides the main objective of the experiment, the measurement of the solar {sup 7}Be neutrino flux, Borexino also aims at detecting solar neutrinos from the pep fusion process and from the CNO cycle. The detectability of these neutrinos is strictly connected to a successful rejection of all relevant background components. The identification and reduction of these background signals is the central subject of this dissertation. In the first part, contaminants induced by cosmic-ray muons and muon showers were analyzed. The dominant background is the cosmogenic radioisotope {sup 11}C. Its rate is {proportional_to}10 times higher than the expected combined pep and CNO neutrino rate in the preferred energy window of observation at [0.8,1.3] MeV. Since {sup 11}C is mostly produced under the release of a free neutron, {sup 11}C can be tagged with a threefold coincidence (TFC) consisting of the muon signal, the neutron capture and the subsequent {sup 11}C decay. By optimizing the TFC method and other rejection techniques, a {sup 11}C rejection efficiency of 80% was achieved. This led to a neutrino-to-background ratio of 1:1.7, whereby 61% of statistics is lost. The second part of the work concerns the study of the external background. Especially long-range 2.6 MeV gamma rays from {sup 208}Tl decays in the outer detector parts can reach the scintillator in the innermost region of the detector. For the determination of the resultant spectral shape, a custom-made {proportional_to}5 MBq {sup 228}Th source was produced and an external calibration was carried out for the first time. The obtained calibration data and the achieved {sup 11}C rejection efficiency will allow for the direct detection of solar pep and possibly also CNO neutrinos with Borexino. (orig.)

  20. Low-energy solar neutrino spectroscopy with Borexino. Towards the detection of the solar pep and CNO neutrino flux

    International Nuclear Information System (INIS)

    Maneschg, Werner

    2011-01-01

    Borexino is a large-volume organic liquid scintillator detector of unprecedented high radiopurity which has been designed for low-energy neutrino spectroscopy in real time. Besides the main objective of the experiment, the measurement of the solar 7 Be neutrino flux, Borexino also aims at detecting solar neutrinos from the pep fusion process and from the CNO cycle. The detectability of these neutrinos is strictly connected to a successful rejection of all relevant background components. The identification and reduction of these background signals is the central subject of this dissertation. In the first part, contaminants induced by cosmic-ray muons and muon showers were analyzed. The dominant background is the cosmogenic radioisotope 11 C. Its rate is ∝10 times higher than the expected combined pep and CNO neutrino rate in the preferred energy window of observation at [0.8,1.3] MeV. Since 11 C is mostly produced under the release of a free neutron, 11 C can be tagged with a threefold coincidence (TFC) consisting of the muon signal, the neutron capture and the subsequent 11 C decay. By optimizing the TFC method and other rejection techniques, a 11 C rejection efficiency of 80% was achieved. This led to a neutrino-to-background ratio of 1:1.7, whereby 61% of statistics is lost. The second part of the work concerns the study of the external background. Especially long-range 2.6 MeV gamma rays from 208 Tl decays in the outer detector parts can reach the scintillator in the innermost region of the detector. For the determination of the resultant spectral shape, a custom-made ∝5 MBq 228 Th source was produced and an external calibration was carried out for the first time. The obtained calibration data and the achieved 11 C rejection efficiency will allow for the direct detection of solar pep and possibly also CNO neutrinos with Borexino. (orig.)

  1. ATLAS Event Display: a W boson decays into one muon and one neutrino

    CERN Multimedia

    ATLAS Collaboration

    2017-01-01

    Display of a candidate event for a W boson decaying into one muon and one neutrino from proton-proton collisions recorded by ATLAS with LHC stable beams at a collision energy of 7 TeV. The muon (red line) has a transverse momentum of 32.8 GeV and the missing transverse energy is 52.4 GeV (cyan blue line), resulting in a transverse mass of 82.9 GeV of the di-lepton system. Little hadronic activity is measured, indicating a small transverse momentum of the W boson candidate. The event was recorded in June 2011 and was used for the measurement of the W boson mass. Event details: Run Number 183081, Event Number 101291517

  2. La Physique des autres projets
    Les neutrinos et les muons - Partie I

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Un autre programme de R&D mené de manière très active à travers le monde (mais pas au CERN) concerne la production intense de muons et de neutrinos, en vue de l'exploitation de collisionneurs à muons de précision ou de haute énergie, et d'usines ou de super-faisceaux de neutrinos. Ce programme d'avant-garde ambitieux et ses motivations scientifiques seront discutés.

  3. Report of the High Energy Physics Advisory Panel (HEPAP) subpanel on high energy gamma ray and neutrino astronomy

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Gordon, H.A.; Melissinos, A.; Rosen, S.P.; Ruderman, M.A.; Turner, M.S.; Zeller, M.

    1988-11-01

    This report contains information on topics of neutrino and gammay-ray astronomy. Some of the topics discussed are: SN1987A, statistics and variability, background rejection and muons, relation between photon and neutrinos, sensitivity of gamma-ray experiments, comparison of air Cherenkov experiments, air shower experiment, and underground experiments

  4. Design of the magnetized muon shield for the prompt-neutrino facility

    International Nuclear Information System (INIS)

    Baltay, C.; Bosek, N.; Couch, J.

    1982-01-01

    The main technical challenge in the design of the prompt neutrino beam is the magnetized muon shield. Two satisfactory alternate designs have been developed for such a shield during this past year and the background muon fluxes have been calculated by three independent programs at Columbia, Fermilab, and MIT. The background muon fluxes have been calculated to be satisfactory in all of the detectors that might use the beam. In Section III of this report we describe in detail the three Monte Carlo programs used in these calculations. In Section IV we give the details of the flux calculations for the E-613 shield and the comparisons with the observed fluxes with various configurations of that shield. In Section V we describe the designs that have been developed for the neutrino area shield. In Section VI we discuss the problem of proton beam transport losses and the associated muon fluxes. Finally, in Section VII a comparison of the two solutions is made which covers cost, effectiveness, schedule and responsiveness to future unknowns. We conclude that there are not overwhelming reasons for the choice of one design over the other. However, for a variety of secondary reasons the superconducting design offers advantages. We therefore propose the construction of the prompt neutrino facility with the superconducting magnet design

  5. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    International Nuclear Information System (INIS)

    Anokhina, A.; Dzhatdoev, T.; Morgunova, O.; Roganova, T.; Bagulya, A.; Chernyavskiy, M.; Dalkarov, O.; Mingazheva, R.; Shchedrina, T.; Starkov, N.; Vladymyrov, M.; Benettoni, M.; Dal Corso, F.; Dusini, S.; Lippi, I.; Longhin, A.; Bernardini, P.; Mancarella, G.; Marsella, G.; Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Roda, M.; Sirignano, C.; Calabrese, M.; Fiore, G.; Surdo, A.; Cecchetti, A.; Orecchini, D.; Paoloni, A.; Cecchini, S.; Di Ferdinando, D.; Guerzoni, M.; Laurenti, G.; Mandrioli, G.; Mauri, N.; Patrizii, L.; Pozzato, M.; Sahnoun, Z.; Sirri, G.; Togo, V.; Del Prete, A.; Papadia, G.; De Robertis, G.; Fini, R.A.; Loddo, F.; Pastore, A.; De Serio, M.; Paparella, L.; Simone, S.; Klicek, B.; Jakovcic, K.; Malenica, M.; Stipcevic, M.; Kose, U.; Nessi, M.; Margiotta, A.; Pasqualini, L.; Spurio, M.; Muciaccia, M.T.; Polukhina, N.; Rosa, G.; Stanco, L.; Tenti, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν μ disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν μ disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far. (orig.)

  6. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    Science.gov (United States)

    Anokhina, A.; Bagulya, A.; Benettoni, M.; Bernardini, P.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Chernyavskiy, M.; Dal Corso, F.; Dalkarov, O.; Del Prete, A.; De Robertis, G.; De Serio, M.; Di Ferdinando, D.; Dusini, S.; Dzhatdoev, T.; Fini, R. A.; Fiore, G.; Garfagnini, A.; Guerzoni, M.; Klicek, B.; Kose, U.; Jakovcic, K.; Laurenti, G.; Lippi, I.; Loddo, F.; Longhin, A.; Malenica, M.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mingazheva, R.; Morgunova, O.; Muciaccia, M. T.; Nessi, M.; Orecchini, D.; Paoloni, A.; Papadia, G.; Paparella, L.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Polukhina, N.; Pozzato, M.; Roda, M.; Roganova, T.; Rosa, G.; Sahnoun, Z.; Shchedrina, T.; Simone, S.; Sirignano, C.; Sirri, G.; Spurio, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Surdo, A.; Tenti, M.; Togo, V.; Vladymyrov, M.

    2017-01-01

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν _{μ } disappearance and the ν e appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν _{μ } disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far.

  7. Search for sterile neutrinos in muon neutrino disappearance mode at FNAL

    Energy Technology Data Exchange (ETDEWEB)

    Anokhina, A.; Dzhatdoev, T.; Morgunova, O.; Roganova, T. [Lomonosov Moscow State University (MSU SINP), Moscow (Russian Federation); Bagulya, A.; Chernyavskiy, M.; Dalkarov, O.; Mingazheva, R.; Shchedrina, T.; Starkov, N.; Vladymyrov, M. [Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Benettoni, M.; Dal Corso, F.; Dusini, S.; Lippi, I.; Longhin, A. [INFN, Sezione di Padova, Padua (Italy); Bernardini, P.; Mancarella, G.; Marsella, G. [Universita del Salento, Dipartimento di Matematica e Fisica, Lecce (Italy); INFN, Sezione di Lecce, Lecce (Italy); Brugnera, R.; Garfagnini, A.; Medinaceli, E.; Roda, M.; Sirignano, C. [INFN, Sezione di Padova, Padua (Italy); Universita di Padova, Dipartimento di Fisica e Astronomia, Padua (Italy); Calabrese, M.; Fiore, G.; Surdo, A. [INFN, Sezione di Lecce, Lecce (Italy); Cecchetti, A.; Orecchini, D.; Paoloni, A. [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Cecchini, S.; Di Ferdinando, D.; Guerzoni, M.; Laurenti, G.; Mandrioli, G.; Mauri, N.; Patrizii, L.; Pozzato, M.; Sahnoun, Z.; Sirri, G.; Togo, V. [INFN, Sezione di Bologna, Bologna (Italy); Del Prete, A.; Papadia, G. [INFN, Sezione di Lecce, Lecce (Italy); Universita del Salento, Dipartimento di Ingegneria dell' Innovazione, Lecce (Italy); De Robertis, G.; Fini, R.A.; Loddo, F.; Pastore, A. [INFN, Sezione di Bari, Bari (Italy); De Serio, M.; Paparella, L.; Simone, S. [INFN, Sezione di Bari, Bari (Italy); Universita di Bari, Dipartimento di Fisica, Bari (Italy); Klicek, B.; Jakovcic, K.; Malenica, M.; Stipcevic, M. [Rudjer Boskovic Institute, Zagreb (Croatia); Kose, U.; Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Margiotta, A.; Pasqualini, L.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Muciaccia, M.T. [Universita di Bari, Dipartimento di Fisica, Bari (Italy); Polukhina, N. [Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Rosa, G. [INFN, Sezione di Roma, Rome (Italy); Stanco, L. [INFN, Sezione di Padova, Padua (Italy); Tenti, M. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); NFN-CNAF, Bologna (Italy)

    2017-01-15

    The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon-neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline experiment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones. The detector locations were studied, together with the achievable performances of two OPERA-like spectrometers. The study was constrained by the availability of existing hardware and a time-schedule compatible with the undergoing project of multi-site Liquid-Argon detectors at FNAL. The settled physics case and the kind of proposed experiment on the Booster neutrino beam would definitively clarify the existing tension between the ν{sub μ} disappearance and the ν{sub e} appearance/disappearance at the eV mass scale. In the context of neutrino oscillations the measurement of ν{sub μ} disappearance is a robust and fast approach to either reject or discover new neutrino states at the eV mass scale. We discuss an experimental program able to extend by more than one order of magnitude (for neutrino disappearance) and by almost one order of magnitude (for antineutrino disappearance) the present range of sensitivity for the mixing angle between standard and sterile neutrinos. These extensions are larger than those achieved in any other proposal presented so far. (orig.)

  8. Search for “anomalies” from neutrino and anti-neutrino oscillations at $\\Delta_m^{2} ≈ 1eV^{2}$ with muon spectrometers and large LAr–TPC imaging detectors

    CERN Document Server

    Antonello, M; Baibussinov, B; Bilokon, H; Boffelli, F; Bonesini, M; Calligarich, E; Canci, N; Centro, S; Cesana, A; Cieslik, K; Cline, D B; Cocco, A G; Dequal, D; Dermenev, A; Dolfini, R; De Gerone, M; Dussoni, S; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Garvey, G T; Gatti, F; Gibin, D; Gninenko, S; Guber, F; Guglielmi, A; Haranczyk, M; Holeczek, J; Ivashkin, A; Kirsanov, M; Kisiel, J; Kochanek, I; Kurepin, A; Łagoda, J; Lucchini, G; Louis, W C; Mania, S; Mannocchi, G; Marchini, S; Matveev, V; Menegolli, A; Meng, G; Mills, G B; Montanari, C; Nicoletto, M; Otwinowski, S; Palczewski, T J; Passardi, G; Perfetto, F; Picchi, P; Pietropaolo, F; Płonski, P; Rappoldi, A; Raselli, G L; Rossella, M; Rubbia, C; Sala, P; Scaramelli, A; Segreto, E; Stefan, D; Stepaniak, J; Sulej, R; Suvorova, O; Terrani, M; Tlisov, D; Van de Water, R G; Trinchero, G; Turcato, M; Varanini, F; Ventura, S; Vignoli, C; Wang, H G; Yang, X; Zani, A; Zaremba, K; Benettoni, M; Bernardini, P; Bertolin, A; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Creti, P; Dal Corso, F; De Mitri, I; De Robertis, G; De Serio, M; Degli Esposti, L; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Giacomelli, G; Giacomelli, R; Grella, G; Guandalini, C; Guerzoni, M; Kose, U; Laurenti, G; Laveder, M; Lippi, I; Loddo, F; Longhin, A; Loverre, P; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mezzetto, M; Michinelli, R; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V; Ventura, M; Zago, M

    2012-01-01

    This proposal describes an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-magnet, to perform charge identification and muon momentum measurements in a wide energy range over a large transverse area. In the two positions, the radial and energy spectra of the nu_e beam are practically identical. Comparing the two detectors, in absence of oscillations, all cross sections and experimenta...

  9. IceCube-Gen2 sensitivity improvement for steady neutrino point sources

    Energy Technology Data Exchange (ETDEWEB)

    Coenders, Stefan; Resconi, Elisa [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The observation of an astrophysical neutrino flux by high-energy events starting in IceCube strengthens the search for sources of astrophysical neutrinos. Identification of these sources requires good pointing at high statistics, mainly using muons created by charged-current muon neutrino interactions going through the IceCube detector. We report about preliminary studies of a possible high-energy extension IceCube-Gen2. Using a 6 times bigger detection volume, effective area as well as reconstruction accuracy will improve with respect to IceCube. Moreover, using (in-ice) active veto techniques will significantly improve the performance for Southern hemisphere events, where possible local candidate neutrino sources are located.

  10. nuSTORM - Neutrinos from STORed Muons: Letter of Intent to the Fermilab Physics Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, P.; et al.

    2012-06-01

    The results of LSND and MiniBooNE, along with the recent papers on a possible reactor neutrino flux anomaly give tantalizing hints of new physics. Models beyond the neutrino-SM have been developed to explain these results and involve one or more additional neutrinos that are non-interacting or 'sterile.' Neutrino beams produced from the decay of muons in a racetrack-like decay ring provide a powerful way to study this potential new physics. In this Letter of Intent, we describe a facility, nuSTORM, 'Neutrinos from STORed Muons,' and an appropriate far detector for neutrino oscillation searches at short baseline. We present sensitivity plots that indicated that this experimental approach can provide over 10 sigma confirmation or rejection of the LSND/MinBooNE results. In addition we indicate how the facility can be used to make precision neutrino interaction cross section measurements important to the next generation of long-baseline neutrino oscillation experiments.

  11. Astrophysical searches for exotic phenomena in ultrahigh energy neutrino-nucleon scattering

    International Nuclear Information System (INIS)

    Morris, D.A.; Ringwald, A.

    1994-03-01

    We investigate the potential of near-future neutrino telescopes like NESTOR for searches for exotic processes in ultrahigh energy neutrino-quark scattering. We consider signatures such as muon bundles and/or contained cascades from the nonperturbative production of multiple weak gauge bosons in the Standard Model, compositeness and leptoquark production. (orig.)

  12. DUMAND-II (deep underwater muon and neutrino detector) progress report

    Science.gov (United States)

    Young, Kenneth K.

    1995-07-01

    The DUMAND II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with the expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in late 1994 or early 1995.

  13. High energy cosmic neutrinos and the equivalence principle

    International Nuclear Information System (INIS)

    Minakata, H.

    1996-01-01

    Observation of ultra-high energy neutrinos, in particular detection of ν τ , from cosmologically distant sources like active galactic nuclei (AGN) opens new possibilities to search for neutrino flavor conversion. We consider the effects of violation of the equivalence principle (VEP) on propagation of these cosmic neutrinos. In particular, we discuss two effects: (1) the oscillations of neutrinos due to VEP in the gravitational field of our Galaxy and in the intergalactic space; (2) resonance flavor conversion driven by the gravitational potential of AGN. We show that ultra-high energies of the neutrinos as well as cosmological distances to AGN, or strong AGN gravitational potential allow to improve the accuracy of testing of the equivalence principle by 25 orders of magnitude for massless neutrinos (Δf ∼ 10 -41 ) and by 11 orders of magnitude for massive neutrinos (Δf ∼ 10 -28 x (Δm 2 /1eV 2 )). The experimental signatures of the transitions induced by VEP are discussed. (author). 17 refs

  14. Upper limit of the muon-neutrino mass and charged-pion mass from the momentum analysis of a surface muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, P R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Using a surface muon beam and a magnetic spectrometer equipped with a position-sensitive detector, we have measured the muon momentum from pion decay at rest {pi}{sup +}{yields}{mu}{sup +}{nu}{sub {mu}}, to be p{sub {mu}{sup +}}=(29.79200{+-}0.00011)MeV/c. This value together with the muon mass and the favoured pion mass leads to an upper limit of 0.17 MeV (90%CL) for the muon-neutrino mass. (author) 4 figs., 5 refs.

  15. Point-source and diffuse high-energy neutrino emission from Type IIn supernovae

    Science.gov (United States)

    Petropoulou, M.; Coenders, S.; Vasilopoulos, G.; Kamble, A.; Sironi, L.

    2017-09-01

    Type IIn supernovae (SNe), a rare subclass of core collapse SNe, explode in dense circumstellar media that have been modified by the SNe progenitors at their last evolutionary stages. The interaction of the freely expanding SN ejecta with the circumstellar medium gives rise to a shock wave propagating in the dense SN environment, which may accelerate protons to multi-PeV energies. Inelastic proton-proton collisions between the shock-accelerated protons and those of the circumstellar medium lead to multimessenger signatures. Here, we evaluate the possible neutrino signal of Type IIn SNe and compare with IceCube observations. We employ a Monte Carlo method for the calculation of the diffuse neutrino emission from the SN IIn class to account for the spread in their properties. The cumulative neutrino emission is found to be ˜10 per cent of the observed IceCube neutrino flux above 60 TeV. Type IIn SNe would be the dominant component of the diffuse astrophysical flux, only if 4 per cent of all core collapse SNe were of this type and 20-30 per cent of the shock energy was channeled to accelerated protons. Lower values of the acceleration efficiency are accessible by the observation of a single Type IIn SN as a neutrino point source with IceCube using up-going muon neutrinos. Such an identification is possible in the first year following the SN shock breakout for sources within 20 Mpc.

  16. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector; Etude de la sensibilite du telescope a neutrinos Antares aux photons de tres haute energie: Contribution a l'etalonnage en temps du detecteur

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, G.

    2010-10-15

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  17. Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos

    Science.gov (United States)

    Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun

    2018-06-01

    Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.

  18. Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    CERN Document Server

    Antonello, A.; Baibussinov, B.; Bilokon, H.; Boffelli, F.; Bonesini, M.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieslik, K.; Cline, D.B.; Cocco, A.G.; Dequal, D.; Dermenev, A.; Dolfini, R.; De Gerone, M.; Dussoni, S.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Garvey, G.T.; Gatti, F.; Gibin, D.; Gninenko, S.; Guber, F.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Kurepin, A.; Lagoda, J.; Lucchini, G.; Louis, W.C.; Mania, S.; Mannocchi, G.; Marchini, S.; Matveev, V.; Menegolli, A.; Meng, G.; Mills, G.B.; Montanari, C.; Nicoletto, M.; Otwinowski, S.; Palczewki, T.J.; Passardi, G.; Perfetto, F.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.; Scaramelli, A.; Segreto, E.; Stefan, D.; Stepaniak, J.; Sulej, R.; Suvorova, O.; Terrani, M.; Tlisov, D.; Van de Water, R.G.; Trinchero, G.; Turcato, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zani, A.; Zaremba, K; Benettoni, M.; Bernardini, P.; Bertolin, A.; Brugnera, R.; Calabrese, M.; Cecchetti, A.; Cecchini, S.; Collazuol, G.; Creti, P.; Corso, F.Dal; Del Prete, A.; De Mitri, I.; De Robertis, G.; De Serio, M.; Esposti, L.Degli; Di Ferdinando, D.; Dore, U.; Dusini, S.; Fabbricatore, P.; Fanin, C.; Fini, R.A.; Fiore, G.; Garfagnini, A.; Giacomelli, G.; Giacomelli, R.; Guandalini, C.; Guerzoni, M.; Kose, U.; Laurenti, G.; Laveder, M.; Lippi, I.; Loddo, F.; Longhin, A.; Loverre, P.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marsella, G.; Mauri, N.; Medinaceli, E.; Mengucci, A.; Mezzetto, M.; Michinelli, R.; Muciaccia, M.T.; Orecchini, D.; Paoloni, A.; Papadia, G.; Pastore, A.; Patrizii, L.; Pozzato, M.; Rosa, G.; Sahnounm, Z.; Simone, S.; Sioli, M.; Sirri, G.; Spurio, M.; Stanco, L.; Surdo, A.; Tenti, M.; Togo, V.; Ventura, M.; Zago, M.

    2012-01-01

    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly comple...

  19. Diffuse fluxes of cosmic high-energy neutrinos

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1979-01-01

    Production spectra of high-energy neutrinos from galactic cosmic-ray interactions with interstellar gas and extragalactic ultrahigh-energy cosmic-ray interactions with microwave blackbody photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic γ-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made, and the reasons for significant differences with previous estimates are discussed. Small predicted event rates for a DUMAND type detection system, combined with a possible significant flux of prompt neutrinos from the atmosphere above 50 TeV, may make the study of diffuse extraterrestrial neutrinos more difficult than previously thought

  20. Measurement of the Muon Neutrino Double-Differential Charged Current Quasi-Elastic Like Cross Section on a Hydrocarbon Target at Ev ~ 3.5 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado Anampa, Kenyi Paolo [Rio de Janeiro, CBPF

    2016-01-01

    The MINERvA Experiment (Main Injector Experiment v ₋ A interaction) [1] is a highly segmented detector of neutrinos, able to record events with high precision (over than thirteen million event in a four year run), using the NuMI Beam (Neutrino Main Injector) at the Fermi National Accelerator Laboratory [2]. This thesis presents a measurement of the Charged Current Quasi-Elastic Like1 vμ interaction on polystyrene scintillator (CH) in the MINERvA experiment with neutrino energies between 1.5 and 10 GeV. We use data taken between2 March 2010 and April 2012. The interactions were selected by requiring a negative muon, a reconstructed and identified proton, no michel electrons in the final state (in order to get rid of soft pions decaying) and a low calorimetric recoil energy away from the interaction vertex. The analysis is performed on 66,214 quasi-elastic like event candidates in the detectors tracker region with an estimated purity of 74%. The final measurement reported is a double differential cross sections in terms of the muon longitudinal and transversal momentum observables.

  1. The Neutrinos Saga

    International Nuclear Information System (INIS)

    La Souchere, Marie-Christine de; Moran, John

    2009-04-01

    The author proposes a history of the discovery and study of neutrinos. This history starts shortly after the discovery of radioactivity in 1896 with the observation of an inhomogeneous deceleration of electrons in the radioactive source which raised an issue of shortage of energy. Pauli then introduced the idea of a ghost particle which could preserve the principle of energy conservation and also the issue of statistics related to the laws of quantum mechanics. Works by the Joliot-Curies and Chadwick resulted in the identification of a neutral particle, first called a neutron, and then neutrino. The author then reports experiments performed to highlight neutrinos, and to identify different forms of neutrinos: muon, tau, lepton. She also addresses questions raised by solar neutrinos, experiments proving the metamorphosis of electron neutrinos into muon neutrinos. She discusses the interest of neutrino as cosmic messengers as they are emitted by various cosmic events, and also as a way to study dark matter

  2. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  3. Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation

    International Nuclear Information System (INIS)

    Sanuki, T.; Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2007-01-01

    We have studied the hadronic interaction for the calculation of the atmospheric neutrino flux by summarizing the accurately measured atmospheric muon flux data and comparing with simulations. We find the atmospheric muon and neutrino fluxes respond to errors in the π-production of the hadronic interaction similarly, and compare the atmospheric muon flux calculated using the HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).] code with experimental measurements. The μ + +μ - data show good agreement in the 1∼30 GeV/c range, but a large disagreement above 30 GeV/c. The μ + /μ - ratio shows sizable differences at lower and higher momenta for opposite directions. As the disagreements are considered to be due to assumptions in the hadronic interaction model, we try to improve it phenomenologically based on the quark parton model. The improved interaction model reproduces the observed muon flux data well. The calculation of the atmospheric neutrino flux will be reported in the following paper [M. Honda et al., Phys. Rev. D 75, 043006 (2007).

  4. Ultra-High Energy Cosmic Rays and Neutrinos

    International Nuclear Information System (INIS)

    Nagataki, Shigehiro

    2011-01-01

    In this paper, simulation of propagation of UHE-protons from nearby galaxies is presented. We found good parameter sets to explain the arrival distribution of UHECRs reported by AGASA and energy spectrum reported by HiRes. Using a good parameter set, we demonstrated how the distribution of arrival direction of UHECRs will be as a function of event numbers. We showed clearly that 1000-10000 events are necessary to see the clear source distribution. We also showed that effects of interactions and trapping of UHE-Nuclei in a galaxy cluster are very important. Especially, when a UHECR source is a bursting source such as GRB/AGN flare, heavy UHE-Nuclei are trapped for a long time in the galaxy cluster, which changes the spectrum and chemical composition of UHECRs coming from the galaxy cluster. We also showed that such effects can be also important when there have been sources of UHE-Nuclei in Milky Way. Since light nuclei escape from Milky Way in a short timescale, the chemical composition of UHECRs observed at the Earth can be heavy at high-energy range. Finally, we showed how much high-energy neutrinos are produced in GRBs. Since GRB neutrinos do not suffer from magnetic field bending, detection of high-energy neutrinos are very important to identify sources of UHECRs. Especially, for the case of GRBs, high-energy neutrinos arrive at the earth with gamma-rays simultaneously, which is very strong feature to identify the sources of UHECRs.

  5. High energy neutrino astronomy and its telescopes

    International Nuclear Information System (INIS)

    Halzen, F.

    1995-01-01

    Doing astronomy with photons of energies in excess of a GeV has turned out to be extremely challenging. Efforts are underway to develop instruments that may push astronomy to wavelengths smaller than 10 -14 cm by mapping the sky using high energy neutrinos instead. Neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach outside the galaxy and make measurements relevant to cosmology. The field is immersed in technology in the domains of particle physics to which many of its research goals are intellectually connected. To mind come the search for neutrino mass, cold dark matter (supersymmetric particles?) and the monopoles of the Standard Model. While a variety of collaborations are pioneering complementary methods by building telescopes with effective area in excess of 0.01 km 2 , we show here that the natural scale of a high energy neutrino telescope is 1 km 2 . With several thousand optical modules and a price tag unlikely to exceed 100 million dollars, the scope of a kilometer-scale instrument is similar to that of experiments presently being commissioned such as the SNO neutrino observatory in Canada and the Superkamiokande experiment in Japan

  6. On the High-Energy Neutrino Emission from Active Galactic Nuclei

    Directory of Open Access Journals (Sweden)

    Emma Kun

    2018-02-01

    Full Text Available We review observational aspects of the active galactic nuclei and their jets in connection with the detection of high-energy neutrinos by the Antarctic IceCube Neutrino Observatory. We propose that a reoriented jet generated by the spin-flipping supermassive black hole in a binary merger is likely the source of such high-energy neutrinos. Hence they encode important information on the afterlife of coalescing supermassive black hole binaries. As the gravitational radiation emanating from them will be monitored by the future LISA space mission, high-energy neutrino detections could be considered a contributor to multi-messenger astronomy.

  7. ANTARES: A High Energy Neutrino Undersea Telescope

    International Nuclear Information System (INIS)

    Hernandez, J.J.

    1999-01-01

    Neutrinos can reveal a brand new Universe at high energies. The ANTARES collaboration, formed in 1996, works towards the building and deployment of a neutrino telescope. This detector could observe and study high energy astrophysical sources such as X-ray binary systems, young supernova remnants or Active Galactic Nuclei and help to discover or set exclusion limits on some of the elementary particles and objects that have been put forward as candidates to fill the Universe (WIMPS, neutralinos, topological defects, Q-balls, etc.). A neutrino telescope will certainly open a new observational window and can shed light on the most energetic phenomena of the Universe. A review of the progress made by the ANTARES collaboration to achieve this goal is presented. (author)

  8. A note on the mixings of heavy neutrinos and muon decays

    International Nuclear Information System (INIS)

    Kalyniak, P.; Ng, J.N.

    1982-11-01

    The authors set limits on the mixing of heavy neutrinos into the muon family /U sub(μi)/sup(2) for neutrino masses in the range of 30 to 70 MeV/c 2 . Both the Michel parameter and the e + spectrum are used. This complements limits from leptonic decays of pseudoscalar mesons. They also give indications of how current experiments can be used to improve these limits

  9. Use of a neutrino detector for muon identification by the CYGNUS air-shower array

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; DeLay, R.S.; Lu, X.Q.; Yodh, G.B. (Univ. of California, Irvine (United States)); Burman, R.L.; Cady, D.R.; Lloyd-Evans, J.; Nagle, D.E.; Sandberg, V.D.; Sena, A.J. (Los Alamos National Lab., NM (United States)); Chang, C.Y.; Dingus, B.L.; Gupta, S.; Goodman, J.A.; Haines, T.J.; Krakauer, D.A.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States)); Potter, M.E.; Thompson, T.N. (Univ. of California, Irvine (United States) Los Alamos National Lab., NM (United States))

    1992-01-01

    The muon content of extensive air showers observed by the CYGNUS experiment are measured by a well-shielded apparatus originally used for accelerator neutrino detection. Primary identification and counting of muons relies on a 44 m{sup 2} array of multiwire proportional counters that has operated continously since the experiment's inception to the present time. During the experiment's first 20 months, the central detector, consisting of flash-tube chambers, was used for high-resolution reconstruction of muon trajectories for a limited subsample of air showers. The ability to distinguish individual muons in the tracking device enabled verification and calibration of the muon counting by the proportional-counter system. The tracking capability was also used to verify the systematic pointing accuracy of the extensive air-shower arrival direction, as determined, as determined by the CYGNUS array, to better than 0.5{sup 0}. (orig.).

  10. Observation of oscillations of atmospheric neutrinos with the IceCube Neutrino Observatory

    International Nuclear Information System (INIS)

    Euler, Sebastian

    2014-01-01

    Neutrino oscillations have become one of the most important research topics in particle physics since their discovery 15 years ago. In the past, the study of neutrino oscillations has been largely the domain of dedicated experiments, but in the last year also the large-volume neutrino telescopes ANTARES and IceCube reported their results on the oscillations of atmospheric muon neutrinos and thus joined the community of experiments studying neutrino oscillations. The precision of their results is not yet competitive, but their sheer size and the consequently enormous statistics give rise to the expectation of a competitive measurement in the future. This thesis describes an analysis that was done on IceCube data taken with the nearly complete detector in the years 2010/2011. IceCube is the world's largest neutrino detector, located at the geographic South Pole, where it uses the Antarctic ice sheet as its detection medium. It detects neutrinos interacting within or close to the instrumented volume by observing the Cherenkov light which is emitted by secondary particles produced in these interactions. An array of optical sensors deployed within a cubic kilometer of ice detects the Cherenkov light and makes it possible to reconstruct the energy and direction of the initial neutrino. Unfortunately, IceCube detects not only neutrinos: the desired neutrino signal is buried in a huge background of atmospheric muons, produced in air showers induced by cosmic rays. This background has to be rejected first. The analysis presented here employs an event selection that is based on the idea of using the outer layers of IceCube as an active veto against the background of atmospheric muons and achieves the necessary background rejection of more than 6 orders of magnitude while keeping a high-statistics sample of several thousands of muon neutrinos. In contrast to the earlier IceCube analysis, which used only the zenith angle, it then performs a 2-dimensional likelihood fit on

  11. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  12. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Tian [Iowa State U.

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  13. First measurement of muon-neutrino disappearance in NOvA

    Czech Academy of Sciences Publication Activity Database

    Adamson, P.; Ader, C.; Andrews, M.; Lokajíček, Miloš; Zálešák, Jaroslav

    2016-01-01

    Roč. 93, č. 5 (2016), 1-8, č. článku 051104. ISSN 2470-0010 R&D Projects: GA MŠk(CZ) LG15047; GA MŠk LM2015068 Institutional support: RVO:68378271 Keywords : neutrino: oscillation * neutrino/mu: beam * neutrino * mixing angle * neutrino: mass difference * neutrino * mass: hierarchy * NOvA Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.568, year: 2016

  14. Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal

    Energy Technology Data Exchange (ETDEWEB)

    Bari, Pasquale Di; Ludl, Patrick Otto [Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2016-11-21

    We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, N{sub DM} with mass M{sub DM}, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, N{sub S} with mass M{sub S}, induced by Higgs portal interactions. The same interactions are also responsible for N{sub DM} decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for M{sub DM}≫M{sub S}, there is an allowed window on M{sub DM} values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV ≲M{sub S}high-energy neutrino flux and show the predicted event spectrum for two exemplary cases. Although DM decays, with a relatively hard spectrum, cannot account for all the IceCube high-energy data, we illustrate how this extra source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.

  15. LOS ALAMOS: Candidate events in a search for neutrino oscillations

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the past several years, a number of experiments have searched for neutrino oscillations,where a neutrino of one type (say muon-antineutrinos) spontaneously transforms into a neutrino of another type (say electron antineutrinos). For this phenomenon to occur, neutrinos must be massive and the apparent conservation law of lepton families must be violated. At this time, there is no broadly accepted evidence for neutrino oscillations from a terrestrial experiment. The Liquid Scintillator Neutrino Detector (LSND) experiment (July 1993, page 10) at the Los Alamos Meson Physics facility (LAMPF) is designed to search with high sensitivity for muon-antineutrino electronantineutrino oscillations from positive muon decay at rest. The collaboration consists of groups from the University of California at Riverside, San Diego and Santa Barbara, the University California Intercampus Institute for Research at Particle Accelerators, Embry Riddle Aeronautical University, Linfield College, Los Alamos National Laboratory, Louisiana State University, Louisiana Tech University, the University of New Mexico, Southern University, and Temple University. LAMPF is an intense source of low energy neutrinos due to its 1 mA proton intensity and 800 MeV energy. The neutrino source is well understood because almost all neutrinos arise from positive pion or muon decay; negative muons and pions are readily captured in the iron of the shielding and copper of the beam stop. The production of kaons and heavier mesons is negligible at these energies. The electron-antineutrino rate is calculated to be only 4 x 10 -4 that of muon-antineutrinos in the neutrino energy range between 36 and 52.8 MeV, so that the observation of a significant electronantineutrino rate would be evidence for muon-antineutrino electronantineutrino oscillations. The LSND detector consists of an approximately cylindrical tank 8.3 m long by 5.7 m in diameter. The centre of the detector is 30 m from the neutrino source. On the

  16. Do high-energy neutrinos travel faster than photons in a discrete space-time?

    Energy Technology Data Exchange (ETDEWEB)

    Xue Shesheng, E-mail: xue@icra.it [ICRANeT, Piazzale della Repubblica, 10-65122, Pescara, Physics Department, University of Rome ' ' La Sapienza' ' , Rome (Italy)

    2011-12-06

    The recent OPERA measurement of high-energy neutrino velocity, once independently verified, implies new physics in the neutrino sector. We revisit the theoretical inconsistency of the fundamental high-energy cutoff attributing to quantum gravity with the parity-violating gauge symmetry of local quantum field theory describing neutrinos. This inconsistency suggests high-dimension operators of neutrino interactions. Based on these studies, we try to view the OPERA result, high-energy neutrino oscillations and indicate to observe the restoration of parity conservation by measuring the asymmetry of high-energy neutrinos colliding with left- and right-handed polarized electrons.

  17. Study of the muon-induced neutron background with the LVD detector

    International Nuclear Information System (INIS)

    Menghetti, H.; Selvi, M.

    2005-01-01

    High energy neutrons, generated as a product of cosmic muon interaction in the rock or in the detector passive material, represent the most dangerous background for a large list of topics like reactor neutrino studies, the search for SN relic neutrinos, solar antineutrinos, etc.Up to now there are few measurements of the muon-produced neutron flux at large depth underground. Moreover it is difficult to reproduce the measured data with Monte Carlo simulation because of the large uncertainties in the neutron production and propagation models.We present here the results of such a measurement with the LVD detector, which is well suited for the detection of neutrons produced by cosmic-ray muons, reporting the neutron flux at various distances from the muon track, for different neutron energies (E > 20 MeV) and as a function of the muon track length in scintillator

  18. Flavoured neutrino mass models. A taste of leptons at low and high energies

    International Nuclear Information System (INIS)

    Geib, Tanja

    2018-01-01

    The only direct experimental evidence for physics beyond the Standard Model are the oscillations of neutrino species. Explaining this surprising discovery has led to a variety of potential New Physics models. Since neutrino oscillations demonstrate that lepton flavour is not conserved in Nature, New Physics models tend to introduce additional lepton flavour and sometimes even lepton number violating physics. The validity of any New Physics setting is assessed based on the consistency of its predictions with experimental data. In the near future, lepton flavour and/or number violating conversions of bound muons are expected to undergo the most dramatic experimental advances. By improving currents limits by several orders of magnitude, these reactions will become the most sensitive probe for charged lepton flavour/number violation. Therefore, exploring new opportunities such as these is essential to unravel novel physics beyond the Standard Model. The goal of this thesis is to contribute to improving the testability of New Physics models with respect to two different aspects, focusing on neutrino models with additional lepton flavour and/or lepton number violation. First, both the lepton flavour violating μ - -e - conversion and the lepton flavour and lepton number violating μ - -e + conversion require solid theoretical predictions to fully exploit their potential for investigating promising New Physics models. Since both types of bound muon conversions currently lack certain elements in their theoretical treatment, we work towards closing these gaps. To that end, we present our detailed and comprehensive computations which aim at making both processes accessible to the particle physics community. Furthermore, we compare predictions from a selection of New Physics models to current experimental data and future expected sensitivities. We also show how experiments at low energies, indirectly looking for New Physics via charged lepton flavour and lepton number

  19. Neutral strange particle production in neutrino interactions at Tevatron energies

    International Nuclear Information System (INIS)

    De, K.

    1988-05-01

    This thesis reports on a study of neutral strange particle production by high energy muon-neutrinos. The neutrinos were obtained from a 800 GeV proton beam-dump at Fermilab. Neutrino events were observed using a hybrid bubble chamber detector system. The data contained deep inelastic neutrino-nucleon interactions with an average momentum transfer 2 > = 23 (GeV/c) 2 . Rates for K 0 and Λ production in neutrino and anti-neutrino charged current events are presented. The distributions of these particles in Feynman x and rapidity are also studied. Significant differences were observed in the production mechanism for the K 0 meson and the Λ baryon. The production rates of K 0 's were observed to increase with energy, whereas the rates for Λ production remained essentially constant. In Feynman x, the K 0 's were produced in the central region and the Λ's were produced backwards. The data are compared with the LUND monte carlo for string fragmentation. In the monte carlo, K 0 's are mostly produced from s/bar s/ pair production during fragmentation. The Λ's are generally produced through recombination with the diquark from the target nucleon. The data agree with this model for strange particle production. 39 refs., 24 figs., 10 tabs

  20. Neutrino sunshine

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    deficit is taken very seriously, and has led to ideas of neutrino oscillations, and oscillation resonances. If the different neutrino varieties - electron, muon and tau - have a mass, then they can oscillate between themselves. A neutrino beam starting off as pure muon-type, for example, would change its composition as it went along. Setting limits on this behaviour is an important objective in neutrino experiments, with 'long baseline' studies - beams covering a long distance between source and detector, playing a vital role. Lincoln Wolfenstein, one of the architects of the new neutrino oscillation scenarios, says 'it is still not clear whether neutrinos have masses or not'. Laboratory experiments try to measure these masses, but so far only upper Unfits have been established. These studies are beginning to reach the limit of their sensitivity and are unlikely to improve drastically. 'But there is indirect evidence,' says Wolfenstein, 'that neutrinos are much lighter.' The solar neutrino problem is really to solar neutrino opportunity,' he continues. Future experiments with gallium and other new neutrino detection techniques, coupled with new high energy neutrino studies, will answer the question

  1. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NARCIS (Netherlands)

    Ando, S.; Baret, B.; Bartos, I.; Bouhou, B.; Chassande-Mottin, E.; Corsi, A.; Di Palma, I.; Dietz, A.; Donzaud, C.; Eichler, D.; Finley, C.; Guetta, D.; Halzen, F.; Jones, G.; Kandhasamy, S.; Kotake, K.; Kouchner, A.; Mandic, V.; Márka, S.; Márka, Z.; Moscoso, L.; Papa, M.A.; Piran, T.; Pradier, T.; Romero, G.E.; Sutton, P.; Thrane, E.; van Elewyck, V.; Waxman, E.

    2013-01-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic

  2. An improved muon reconstruction algorithm for INO-ICAL experiment

    International Nuclear Information System (INIS)

    Bhattacharya, Kolahal; MandaI, Naba K.

    2013-01-01

    The charge current interaction of neutrino in INO-ICAL detector will be identified with a muon (μ ± ) in the detector whose kinematics is related with the kinematics of the neutrino. So, muon reconstruction is a very important step in achieving INO physics goals. The existing muon reconstruction package for INO-ICAL has poor performance in specific regimes of experimental interest: (a) for larger zenith angle (θ > 50°), (b) for lower energies (E < 1 GeV); mainly due to poor error propagation scheme insensitive to energy E, angle (θ, φ) and inhomogeneous magnetic field along the muon track. Since, a significant fraction of muons from atmospheric neutrino interactions will have initial energy < 1 GeV and almost uniform distribution in cosθ a robust package for muon reconstruction is essential. We have implemented higher order correction terms in the propagation of the state and error covariance matrices of the Kalman Iter. The algorithm ensures track element merging in most cases and also increases reconstruction efficiency. The performance of this package will be presented in comparison with the previous one. (author)

  3. Experimental search for muon-neutrino oscillations and analysis of the simultaneous mixing of three neutrino flavors

    International Nuclear Information System (INIS)

    Bluemer, J.

    1985-01-01

    In the present thesis the experiment of the CDHS collaboration on the search for inclusive muon-neutrino oscillations is described. The event rates of ν μ reactions via charged currents was simultaneously measured in two detectors which were 130 m and 885 m away from the beam origin. The data contain no hints for oscillation effects. At maximal mixing mass differences of the contributing eigenstates are excluded in a range 0.26 ≤ Δm 2 ≤ 90 eV 2 with 90% confidence. The best sensitivity was reached for Δm 2 =2.5 eV 2 and allows there a maximal mixing parameter sin 2 2 ≤ 0.053. From the CDHS data the hitherto best limits on oscillation parameters resulted. From a common analysis of different oscillation experiments the allowed parameters for the case of simultaneous transitions between electron, muon, and tau neutrinos could be obtained. Regarding systematic uncertainties also here no evidence for oscillations exists. (orig./HSI) [de

  4. High-energy neutrino background: Limitations on models of deuterium production

    International Nuclear Information System (INIS)

    Eichler, D.

    1979-01-01

    It is pointed out that Epstein's model for deuterium production via high-energy spallation reactions produces high-energy neutrinos in sufficient quantity to stand out above those that are produced by cosmic-ray interactions in the Earth's atmosphere. That the Reines experiment detected neutrinos of atmospheric origin without detecting any cosmic component restricts deuterium production by spallation reactions to very high redshifts (z> or approx. =300). Improved neutrino experiments may be able to push these limits back to recombination

  5. SUPERCONDUCTING SOLENOIDS FOR THE MUON COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,M.A.; EYSSA,Y.; KENNY,S.; MILLER,J.R.; PRESTEMON,S.; WEGGEL,R.J.

    2000-06-12

    The muon collider is a new idea for lepton colliders. The ultimate energy of an electron ring is limited by synchrotron radiation. Muons, which have a rest mass that is 200 times that of an electron can be stored at much higher energies before synchrotron radiation limits ring performance. The problem with muons is their short life time (2.1 {micro}s at rest). In order to operate a muon storage ring large numbers of muon must be collected, cooled and accelerated before they decay to an electron and two neutrinos. As the authors see it now, high field superconducting solenoids are an integral part of a muon collider muon production and cooling systems. This report describes the design parameters for superconducting and hybrid solenoids that are used for pion production and collection, RF phase rotations of the pions as they decay into muons and the muon cooling (reduction of the muon emittance) before acceleration.

  6. Structure of the neutral current coupling in high energy neutrino--nucleon interactions

    International Nuclear Information System (INIS)

    Merritt, F.S.

    1977-01-01

    The primary objective of this experiment was to determine the Lorentz structure of the neutral current coupling--that is, to determine what combination of V-A and V+A (or possibly S, P, and T) components make up the neutral coupling. The experiment used the Fermilab narrow band neutrino beam to provide separated neutrino and antineutrino fluxes, each consisting of two energy bands at approximately equal to 55 and approximately equal to 150 GeV. Deep inelastic inclusive neutrino-nucleon interactions of the form ν(anti ν) + N = μ - (μ + ) + hadrons (CC event) ν(anti ν) + N = ν(anti ν) + hadrons (NC event) were observed in an instrumented steel target-calorimeter, which measured the total energy of the hadrons produced in each event. The neutral current coupling was determined by comparing the hadron energy distributions of neutrino and antineutrino neutral current events. An analysis of the charged-current data was carried out in order to determine the background of charged-current events with unobserved muons, and to provide a normalization for the neutral current data. Various parameterizations of the CC interaction were tested, and their effects on the neutral current analysis were studied in detail. The neutral current analysis indicates that, if only vector and axial-vector components exist, then the neutral current coupling lies between V and V-A. A pure scalar coupling is excluded. The data were compared to the Weinberg--Salam theory (extended to semileptonic interactions), and are in very good agreement with its predictions. Comparison of these data to the low energy Gargamelle data indicates consistency with a scaling hypothesis

  7. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  8. Verifiable origin of neutrino mass at TeV scale

    International Nuclear Information System (INIS)

    Ma, Ernest

    2002-01-01

    The physics responsible for neutrino mass may reside at or below the TeV energy scale. The neutrino mass matrix in the (ν e ν μ ν gt ) basis may then be deduced from future high-energy accelerator experiments. The newly observed excess in the muon anomalous magnetic moment may also be related

  9. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  10. Atmospheric fluxes and energy spectra of positive and negative muons from Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Vulpescu, B.; Brancus, I.M.; Badea, A.F.; Duma, M.; Bozdog, H.; Petru, M.; Rebel, H.; Weintz, J.; Mathes, H.J.; Haungs, A.; Roth, M.

    1999-01-01

    Cosmic ray muons observed with detectors placed at the ground level originate from the decay of mesons produced by interactions of high energy cosmic ray primaries with air nuclei, mainly due to the decay of charged pions and kaons, processes which lead also to the production of atmospheric neutrinos. Prompted by recent accurate measurements of the charge ratio of atmospheric muons, the flux and energy spectra of positive and negative muons have been studied on the basis of Monte-Carlo simulations (CORSIKA) of the EAS development, using the GHEISHA and VENUS model as generators. The results have been analysed and compared with data under the aspect of their sensitivity to details of the hadronic interaction, in particular in the 3 GeV/n - 20 TeV/n region. The muon charge ratio proves to be a sensitive test quantity for the production model and propagation and it exhibits peculiar features at low energies (< 1 GeV). Results are shown, from magnetic spectrometer experiments in the difficult region of low momenta as well as the precise values obtained with the WILLI detector by observing the lifetime of negative muons stopped in material. The CORSIKA predictions on the charge ratio show a drop below 1 for very low muon momentum and needs further experimental investigations. The EAST-WEST effect is characteristic for low muon momenta and is well reproduced by simulations. The WILLI detector is planned to be developed in a new configuration, being able to investigate with high accuracy the muon charge ratio at different zenithal and azimuthal directions. (authors)

  11. High-energy neutrinos from gamma ray bursts

    International Nuclear Information System (INIS)

    Dermer, Charles D.; Atoyan, Armen

    2003-01-01

    We treat high-energy neutrino production in gamma ray bursts (GRBs). Detailed calculations of photomeson neutrino production are presented for the collapsar model, where internal nonthermal synchrotron radiation is the primary target photon field, and the supranova model, where external pulsar-wind synchrotron radiation provides important additional target photons. Detection of > or approx. 10 TeV neutrinos from GRBs with Doppler factors > or approx. 200, inferred from γ-ray observations, would support the supranova model. Detection of or approx. 3x10 -4 erg cm -2 offer a realistic prospect for detection of ν μ

  12. Dose characteristics of high-energy electrons, muons and photons

    International Nuclear Information System (INIS)

    Britvich, G.I.; Krupnyj, G.I.; Peleshko, V.N.; Rastsvetalov, Ya.N.

    1980-01-01

    Differential distribution of energy release at different depth of tissue-equivalent phantoms (plexiglas, polystyrene, polyethylene) at the energy of incident electrons, muons of 0.2-40 GeV and photons with the mean energy of 3.6 GeV are measured. The error of experimental results does not exceed 7%. On the basis of the data obtained dose characteristics of electrons, muons and photons for standard geometry are estimated. For all types of irradiation the maximum value of specific equivalent dose, nremxcm 2 /part. is presented. It is shown that published values of specific equivalent dose of electron radiation are higher in all the investigated energy range from 0.2 to 40 GeV, and for muon radiation a good agreement with the present experiment is observed. The highly precise results obtained which cover the wide dynamic range according to the energy of incident particles can serve as the basis for reconsidering the existing recommendations for dose characteristics of electron radiation [ru

  13. STATUS REPORT ON THE SIX-MONTH STUDY ON HIGH ENERGY MUON COLLIDERS

    International Nuclear Information System (INIS)

    KING, B.J.

    2001-01-01

    The structure, study topics, straw-man muon collider parameter sets and technical challenges for ''Six-Month Study on High Energy Muon Colliders: Oct'00-Apr'0l'' have been summarized at one month from completion of the study. The extremely high constituent particle energies and luminosities of the parameter sets presented in table 1 continue to suggest that muon colliders could play a central role in exploring and extending the HEP energy frontier. The study has already resulted in encouraging progress in areas such as the final focus lattice design and cost-efficient acceleration

  14. Observation of neutrino-like interactions without muon or electron in the Gargamelle neutrino experiment

    CERN Document Server

    Hasert, F J; Krenz, W; Conta, C; Von Krogh, J; Lanske, D; Morfín, J G; Schultze, K; Weerts, H; Bertrand-Coremans, G H; Sacton, J; Van Doninck, W K; Vilain, P; Camerini, U; Cundy, Donald C; Baldi, R; Danilchenko, I A; Fry, W F; Haidt, Dieter; Natali, S; Musset, P; Osculati, B; Palmer, R; Pattison, John Bryan M; Perkins, Donald Hill; Pullia, Antonio; Rousset, A; Venus, W A; Wachsmuth, H W; Brisson, V; Degrange, B; Haguenauer, Maurice; Kluberg, L; Nguyen-Khac, U; Petiau, P; Belotti, E; Bonetti, S; Cavalli, D; Fiorini, Ettore; Rollier, M; Aubert, Bernard; Blum, D; Chounet, L M; Heusse, P; Lagarrigue, A; Lutz, A M; Orkin-Lecourtois, A; Vialle, J P; Bullock, F W; Esten, M J; Jones, T W; McKenzie, J; Michette, A G; Myatt, Gerald; Scott, W G

    1974-01-01

    Events induced by neutral particles and producing only hadrons, but no muon or electron, have been observed in the heavy liquid bubble chamber Gargamelle exposed to neutrino ( nu ) and antineutrino ( nu ) beams at CERN. A study of the various sources which could give rise to such events reveals that less than 20% could be attributed to neutrons or K/sub L/ degrees . The events behave as expected if they arise from neutral current processes induced by neutrinos and antineutrinos. The ratio of the number of these events to the number of corresponding events with charged lepton is 0.22+or-0.04 for nu and 0.43+or-0.12 for nu . (8 refs).

  15. Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos.

    Science.gov (United States)

    Argüelles, Carlos A; Kheirandish, Ali; Vincent, Aaron C

    2017-11-17

    We show that the high-energy cosmic neutrinos seen by the IceCube Neutrino Observatory can be used to probe interactions between neutrinos and the dark sector that cannot be reached by current cosmological methods. The origin of the observed neutrinos is still unknown, and their arrival directions are compatible with an isotropic distribution. This observation, together with dedicated studies of Galactic plane correlations, suggests a predominantly extragalactic origin. Interactions between this isotropic extragalactic flux and the dense dark matter (DM) bulge of the Milky Way would thus lead to an observable imprint on the distribution, which would be seen by IceCube as (i) slightly suppressed fluxes at energies below a PeV and (ii) a deficit of events in the direction of the Galactic center. We perform an extended unbinned likelihood analysis using the four-year high-energy starting event data set to constrain the strength of DM-neutrino interactions for two model classes. We find that, in spite of low statistics, IceCube can probe regions of the parameter space inaccessible to current cosmological methods.

  16. One-point fluctuation analysis of the high-energy neutrino sky

    DEFF Research Database (Denmark)

    Feyereisen, Michael R.; Tamborra, Irene; Ando, Shin'ichiro

    2017-01-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even...

  17. Search for Muon Neutrino Disappearance in the Booster Neutrino Beam of Fermilab; Busqueda de Desaparicion de Neutrinos del Muon en el Haz de Neutrinos del Booster de Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Mendez, Diana Patricia [Univ. Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico)

    2015-01-01

    In this work we carried out the disappearance analysis of muon neutrinos produced in the Fermilab Booster Neutrino Beam, using the data released to the public by the collaborations of the MiniBooNE and SciBooNE experiments. The calculations were made with programs in C and C++, implementing the ROOT libraries. From the analysis, using both the classical Pearson method and the Feldman and Cousins frequentist corrections, we obtained the 90\\% C.L. limit for the oscillation parameters sin22θ and Δm2 in the region 0.1 ≤ Δm2 ≤ 10 eV2 using a two neutrino model. The result presented in this work is consistent with the official one, with small deviations ascribed to round-off errors in the format of the used data, as well as statistical fluctuations in the generation of fake experiments used in the Feldman and Cousins method. As the official one, our result is consistent with the null oscillation hypothesis. This work was carried out independently to the MiniBooNE and SciBooNE collaborations and its results are not official.

  18. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  19. Light sterile neutrino sensitivity at the nuSTORM facility

    CERN Document Server

    Adey, D; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bramsiepe, S.G.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M.A.; Ghosh, T.; Gomez-Cadenas, J.J.; de Gouvea, A.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando Morata, J.A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J.B.; Laing, A.; Liu, A.; Link, J.M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K.T.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M.A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Sby, L.; Soler, F.J.P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H.A.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Weber, A.; Wilking, M.J.; Wildner, E.; Winter, W.

    2014-01-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simulta...

  20. Phenomenology of neutrino oscillations at the neutrino factory

    International Nuclear Information System (INIS)

    Tang, Jian

    2011-01-01

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain μ + → ν e → ν μ → μ - and the right-charge muons coming from the chain μ + → anti ν μ → anti ν μ → μ - (similar to μ - chains), where ν e → ν μ and anti ν μ → anti ν μ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of τ decays, generated by appearance channels ν μ → ν τ and ν e → ν τ , on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero θ 13 , which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the

  1. Sensitivity to electronvolt-scale sterile neutrinos at a 3.8-GeV/c muon decay ring

    Energy Technology Data Exchange (ETDEWEB)

    Tunnell, Christopher D. [Univ. of Oxford (United Kingdom)

    2013-03-01

    The liquid-scintillator neutrino-detector (LSND) and mini booster neutrino experiment (MiniBooNE) experiments claim to observe the oscillation $\\bar{v}$μ → $\\bar{v}$e, which can only be explained by additional neutrinos and is a claim that must be further tested. This thesis proposes a new accelerator and experiment called neutrinos from stored muons ( STORM) to refute or confirm the oscillation these claims by studying the CPT-equivalent channel ve → vμ . A 3.8-GeV/c muon decay ring is proposed with neutrino detectors placed 20 m and 2000 m from the decay ring. The detector technology would be a magnetized iron sampling calorimeter, where the magnetic field is induced by a superconducting transmission line. In a frequentist study, the sensitivity of this experiment after 5 years would be >10σ . The range of the thesis discussion starts with the proton front-end design and ends with neutrino parameter estimation. After describing the phenomenology of sterile neutrinos, the facility and detector performance work is presented. Finally, the systematics are explained before the sensitivity and parameter-estimation works are explained

  2. An all-sky, three-flavor search for neutrinos from gamma-ray bursts with the icecube neutrino observatory

    Science.gov (United States)

    Hellauer, Robert Eugene, III

    Ultra high energy cosmic rays (UHECRs), defined by energy greater than 10. 18 eV, have been observed for decades, but their sources remain unknown. Protons and heavy ions, which comprise cosmic rays, interact with galactic and intergalactic magnetic fields and, consequently, do not point back to their sources upon measurement. Neutrinos, which are inevitably produced in photohadronic interactions, travel unimpeded through the universe and disclose the directions of their sources. Among the most plausible candidates for the origins of UHECRs is a class of astrophysical phenomena known as gamma-ray bursts (GRBs). GRBs are the most violent and energetic events witnessed in the observable universe. The IceCube Neutrino Observatory, located in the glacial ice 1450 m to 2450 m below the South Pole surface, is the largest neutrino detector in operation. IceCube detects charged particles, such as those emitted in high energy neutrino interactions in the ice, by the Cherenkov light radiated by these particles. The measurement of neutrinos of 100 TeV energy or greater in IceCube correlated with gamma-ray photons from GRBs, measured by spacecraft detectors, would provide evidence of hadronic interaction in these powerful phenomena and confirm their role in ultra high energy cosmic ray production. This work presents the first IceCube GRB-neutrino coincidence search optimized for charged-current interactions of electron and tau neutrinos as well as neutral-current interactions of all neutrino flavors, which produce nearly spherical Cherenkov light showers in the ice. These results for three years of data are combined with the results of previous searches over four years of data optimized for charged-current muon neutrino interactions, which produce extended Cherenkov light tracks. Several low significance events correlated with GRBs were detected, but are consistent with the background expectation from atmospheric muons and neutrinos. The combined results produce limits that

  3. Search for neutrino-induced cascade events in the icecube detector

    Energy Technology Data Exchange (ETDEWEB)

    Panknin, Sebastian

    2011-09-15

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72{+-}0.28{+-}{sup 1.54}{sub 0.49} events. For an assumed flavor ratio of {nu}{sub e}:{nu}{sub {mu}}:{nu}{sub {tau}}=1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2}.

  4. Search for neutrino-induced cascade events in the icecube detector

    International Nuclear Information System (INIS)

    Panknin, Sebastian

    2011-01-01

    This thesis presents results of a search for a diffuse flux of high energetic neutrinos from extra-terrestrial origin. Such a flux is predicted by several models of sources of cosmic ray particles. In a neutrino detector, such as IceCube, there are mainly two signatures available for detection of neutrinos: The track-like light signal of a neutrino induced muon and the spherical light pattern of a neutrino induced particle shower, called cascades in this context. The search is based on the measurement of neutrino induced cascades within the IceCube neutrino detector. The data were taken in 2008/2009 with a total uptime of 367 days. At that time the detector was still under construction and had just reached half of its final size. A search for a neutrino flux using cascades is sensitive to all neutrino flavors. A cascade develops within few meters, in contrast to the muon track of several kilometers length. Therefore a good energy reconstruction is possible. With such a reconstruction the astrophysical neutrino flux can be statistically distinguished from the background of atmospheric neutrinos. In the simulation of cascades so far it was not included, that in hadronic cascades muons are produced. This can influence the shape of the cascade, to a less spherical one. Therefore the effect was parameterized in this thesis and included in the simulation. Further cuts on the event topology and reconstructed energy were developed, in order to reduce the background of atmospheric muons and atmospheric neutrinos. Four events from the measured data pass these cuts. Taking the high systematic uncertainties into account, this result is in agreement with the expected background of 0.72±0.28± 1.54 0.49 events. For an assumed flavor ratio of ν e :ν μ :ν τ =1:1:1 the upper limit for the all flavor neutrino flux is 9.5.10 -8 E -2 GeVs -1 sr -1 cm -2 .

  5. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tingjun [Stanford Univ., CA (United States)

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  6. Results from the AMANDA high-energy neutrino detector

    International Nuclear Information System (INIS)

    Biron, A.

    2001-01-01

    This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For E μ > 10 TeV, the detector exceeds 10,000 m 2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favourably to existing limits for sources in the Southern sky. We also present the current status of the searches for high-energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the Earth

  7. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  8. Measurement of the Water to Scintillator Charged-Current Cross-Section Ratio for Muon Neutrinos at the T2K Near Detector

    CERN Document Server

    AUTHOR|(CDS)2083872

    2017-10-02

    The T2K experiment is a 295-km long-baseline neutrino experiment which aims at the measurement of neutrino oscillation parameters. Precise measurements of these parameters require accurate extrapolation of interaction rates from the near detector, ND280, mainly made of scintillator (hydrocarbon), to Super-Kamiokande, the water Cherenkov far detector. Measurements on water and of the water to hydrocarbon ratio, contribute to eliminate the uncertainties arising from carbon/oxygen differences. The cross section on water is obtained by subtraction of event distributions in two almost identical sub-detectors, one of which is equipped with water-filled modules. The measurement is performed by selecting a muon neutrino charged-current sample, in an exposure of 5.80 × 10^(20) protons on target. The water to hydrocarbon cross-section ratio is extracted for good acceptance kinematic regions (only forward muons with momentum higher than 100 MeV), in bins of reconstructed energy, the very quantity used in T2K oscillatio...

  9. Meson exchange second class currents and the neutrino mass in the muon capture by light nuclei

    International Nuclear Information System (INIS)

    Katkhat, Ch.L.

    1988-01-01

    Influence of the Kubodera-Delorme-Rho model parameters (ζ and ξ), the scalar form factor (F s ) and the muonic neutrino rest mass (m νμ ) on the asymmetry coefficient (α μν ) of neutrino emission with respect to the muon spin orientation in the muon capture by light nuclei is analyzed. It is shown, that the mass m νμ , the parameters of ζ and ξ, and the form factor F s may be estimated by studying the coefficient α μν in O -> O, Gamov-Teller, and mixed transitions, respectively

  10. Optimising the Target and Capture Sections of the Neutrino Factory

    CERN Document Server

    Hansen, Ole Martin; Stapnes, Steinar

    The Neutrino Factory is designed to produce an intense high energy neutrino beam from stored muons. The majority of the muons are obtained from the decay of pions, produced by a proton beam impinging on a free-flowing mercury-jet target and captured by a high magnetic field. It is important to capture a large fraction of the produced pions to maximize the intensity of the neutrino beam. Various optimisation studies have been performed with the aim of maximising the muon influx to the accelerator and thus the neutrino beam intensity. The optimisation studies were performed with the use of Monte Carlo simulation tools. The production of secondary particles, by interactions between the incoming proton beam and the mercury target, was optimised by varying the proton beam impact position and impact angles on the target. The proton beam and target interaction region was studied and showed to be off the central axis of the capture section in the baseline configuration. The off-centred interaction region resulted in ...

  11. R&D Proposal for the National Muon Acccelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-01

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  12. R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

    2010-02-24

    This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently

  13. Neutrino oscillations in dense neutrino gases

    International Nuclear Information System (INIS)

    Samuel, S.

    1993-01-01

    We consider oscillations of neutrinos under conditions in which the neutrino density is sufficiently large that neutrino-neutrino interactions cannot be neglected. A formalism is developed to treat this highly nonlinear system. Numerical analysis reveals a rich array of phenomena. In certain gases, a self-induced Mikheyev-Smirnov-Wolfenstein effect occurs in which electron neutrinos are resonantly converted into muon neutrinos. In another relatively low-density gas, an unexpected parametric resonant conversion takes place. Finally, neutrino-neutrino interactions maintain coherence in one system for which a priori one expected decoherence

  14. Detectors and flux instrumentation for future neutrino facilities

    CERN Document Server

    Abe, T.; Andreopoulos, C.; Ankowski, A.; Badertscher, A.; Battistoni, G.; Blondel, A.; Bouchez, J.; Bross, A.; Bueno, A.; Camilleri, L.; Campagne, Jean-Eric; Cazes, A.; Cervera-Villanueva, A.; De Lellis, G.; Di Capua, F.; Ellis, Malcolm; Ereditato, A.; Esposito, L.S.; Fukushima, C.; Gschwendtner, E.; Gomez-Cadenas, J.J.; Iwasaki, M.; Kaneyuki, K.; Karadzhov, Y.; Kashikhin, V.; Kawai, Y.; Komatsu, M.; Kozlovskaya, E.; Kudenko, Y.; Kusaka, A.; Kyushima, H.; Longhin, A.; Marchionni, A.; Marotta, A.; McGrew, C.; Menary, S.; Meregaglia, A.; Mezzeto, M.; Migliozzi, P.; Mondal, N.K.; Montanari, C.; Nakadaira, T.; Nakamura, M.; Nakumo, H.; Nakayama, H.; Nelson, J.; Nowak, J.; Ogawa, S.; Peltoniemi, J.; Pla-Dalmau, A.; Ragazzi, S.; Rubbia, A.; Sanchez, F.; Sarkamo, J.; Sato, O.; Selvi, M.; Shibuya, H.; Shozawa, M.; Sobczyk, J.; Soler, F.J.P.; Strolin, Paolo Emilio; Suyama, M.; Tanak, M.; Terranova, F.; Tsenov, R.; Uchida, Y.; Weber, A.; Zlobin, A.

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the $\\delta$-$\\theta_{13}$...

  15. The ideal neutrino beams

    CERN Document Server

    Lindroos, Mats

    2009-01-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented....

  16. Matter effects in upward-going muons and sterile neutrino oscillations

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lammanna, E; Lane, C; Levins, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2001-01-01

    The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector shows anomalies in good agreement with two flavor nu /sub mu / to nu /sub tau / oscillations with maximum mixing and Delta m/sup 2/ around 0.0024 eV/sup 2/. Exploiting the dependence of magnitude of the matter effect on the oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor nu /sub mu / to nu /sub s/ oscillation is disfavored with 99% C.L. with respect to nu /sub mu / to nu /sub tau /. (29 refs).

  17. International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities

    International Nuclear Information System (INIS)

    Abe, T; Aihara, H; Andreopoulos, C; Ankowski, A; Badertscher, A; Battistoni, G; Blondel, A; Bouchez, J; Bross, A; Ellis, M; Bueno, A; Camilleri, L; Campagne, J E; Cazes, A; Cervera-Villanueva, A; De Lellis, G; Di Capua, F; Ereditato, A; Esposito, L S

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the δ-θ 13 parameter space.

  18. A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts

    Science.gov (United States)

    Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.

    1995-01-01

    A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.

  19. The AMANDA Neutrino Detector - Status report

    International Nuclear Information System (INIS)

    Wischnewski, R.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.; Bay, R.; Becker, K.; Bergstroem, L.; Bertrand, D.; Besson, D.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Carius, S.; Carlson, M.; Chinowsky, W.; Chirkin, D.; Conrad, J.; Cowen, D.F.; Costa, C.; Dalberg, E.; Desiati, P.; Dewulf, J.; Deyoung, T.; Doksus, P.; Edsjoe, J.; Ekstroem, P.; Feser, T.; Frichter, G.; Gaisser, T.; Goldschmidt, A.; Goobar, A.; Hallgren, A.; Halzen, F.; Hardtke, R.; Hellwig, M.; Hill, G.; Hulth, P.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koepke, L.; Kowalski, M.; Kravchenko, I.; Lamoureux, J.; Leich, H.; Leuthold, M.; Lindahl, P.; Liss, T.; Loaiza, P.; Lowder, D.; Ludvig, J.; Marciniewski, P.; Matis, H.; Miller, T.; Miocinovic, P.; Mock, P.; Morse, R.; Neunhoeffer, T.; Newcomer, M.; Niessen, P.; Nygren, D.; Perez de los Heros, C.; Porrata, R.; Price, P.; Przybylski, G.; Rawlins, K.; Rhode, W.; Richter, S.; Rodriguez, J.; Romenesko, P.; Ross, D.; Rubinstein, H.; Sander, H.; Schaefer, U.; Schmidt, T.; Schneider, E.; Schwarz, R.; Schwendicke, U.; Silvestri, A.; Smoot, G.; Solarz, M.; Spiczak, G.; Spiering, C.; Starinski, N.; Steffen, P.; Stokstad, R.; Streicher, O.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Wiebusch, C.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2000-01-01

    The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B10, is taking data since 1997. We describe results on atmospheric neutrinos, limits on indirect WIMP detection, seasonal muon flux variation, relativistic monopole flux limits, a search for gravitational collapse neutrinos, and a depth scan of the optical ice properties. The next stage 19-string detector AMANDA-II with ∼650 PMTs will be completed in spring 2000

  20. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    CERN Multimedia

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  1. Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster

    CERN Document Server

    Anokhina, A; Benettoni, M; Bernardini, P; Brugnera, R; Calabrese, M; Cecchetti, A; Cecchini, S; Chernyavskiy, M; Creti, P; Corso, F Dal; Dalkarov, O; Del Prete, A; De Robertis, G; De Serio, M; Esposti, L Degli; Di Ferdinando, D; Dusini, S; Dzhatdoev, T; Fanin, C; Fini, R A; Fiore, G; Garfagnini, A; Golovanov, S; Guerzoni, M; Klicek, B; Kose, U; Jakovcic, K; Laurent, G; Lippi, I; Loddo, F; Longhin, A; Malenica, M; Mancarella, G; Mandrioli, G; Margiotta, A; Marsella, G; Mauri, N; Medinaceli, E; Mengucci, A; Mingazheva, R; Morgunova, O; Muciaccia, M T; Nessi, M; Orecchini, D; Paoloni, A; Papadia, G; Paparella, L; Pasqualini, L; Pastore, A; Patrizii, L; Polukhina, N; Pozzato, M; Roda, M; Roganova, T; Rosa, G; Sahnoun, Z; Simone, S; Sirignano, C; Sirri, G; Spurio, M; Stanco, L; Starkov, N; Stipcevic, M; Surdo, A; Tenti, M; Togo, V; Ventura, M; Vladymyrov, M

    2014-01-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle $\\theta_{13}$ in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small $L/E$, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. This proposal refers to the use of magnetic spectrometers at two different sites, Near and Far. Thei...

  2. An R and D program for targetry and capture at a neutrino factory and muon collider source

    International Nuclear Information System (INIS)

    Hassenein, A.; Bernadon, A.; Beshears, D.L.; Brown, K.A.; Cates, M.C.; Fabich, A.; Fernow, R.C.; Finfrock, C.C.; Fukui, Y.; Gabriel, T.A.; Gassner, D.M.; Green, M.A.; Greene, G.A.; Haines, J.R.; Johnson, C.D.; Kahn, S.A.; King, B.J.; Kirk, H.G.; Lettry, J.; Lu, C.; Ludewig, H.; McDonald, K.T.; Miller, J.R.; Mokhov, N.V.; Palmer, R.B.; Pendzick, A.F.; Prigl, R.; Ravn, H.; Reginato, L.L.; Riemer, B.W.; Samulyak, R.; Scaduto, J.; Simos, N.; Spampinato, P.T.; Thieberger, P.; Tsai, C.-C.; Tsang, T.Y.F.; Wang, H.; Weggel, R.J.; Zeller, A.

    2003-01-01

    The need for intense muon beams for muon colliders and for neutrino factories based on muon storage rings leads to a concept of 1-4 MW proton beams incident on a moving target that is inside a 20-T solenoid magnet, with a mercury jet as a preferred example. Novel technical issues for such a system include disruption of the mercury jet by the proton beam and distortion of the jet on entering the solenoid, as well as more conventional issues of materials lifetime and handling of activated materials in an intense radiation environment. As part of the R and D program of the Neutrino Factory and Muon Collider Collaboration, an R and D effort related to targetry is being performed within the context of experiment E951 at Brookhaven National Laboratory, first results of which are reported here

  3. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    Science.gov (United States)

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  4. New prospects for detecting high-energy neutrinos from nearby supernovae

    Science.gov (United States)

    Murase, Kohta

    2018-04-01

    Neutrinos from supernovae (SNe) are crucial probes of explosive phenomena at the deaths of massive stars and neutrino physics. High-energy neutrinos are produced through hadronic processes by cosmic rays, which are accelerated during interaction between the supernova (SN) ejecta and circumstellar material (CSM). Recent observations of extragalactic SNe have revealed that a dense CSM is commonly expelled by the progenitor star. We provide new quantitative predictions of time-dependent high-energy neutrino emission from diverse types of SNe. We show that IceCube and KM3Net can detect ˜103 events from a SN II-P (and ˜3 ×105 events from a SN IIn) at a distance of 10 kpc. The new model also enables us to critically optimize the time window for dedicated searches for nearby SNe. A successful detection will give us a multienergy neutrino view of SN physics and new opportunities to study neutrino properties, as well as clues to the cosmic-ray origin. GeV-TeV neutrinos may also be seen by KM3Net, Hyper-Kamiokande, and PINGU.

  5. Neutrino mass spectrum with υμ → υs oscillations of atmospheric neutrinos

    International Nuclear Information System (INIS)

    Liu, Q.Y.; Smirnov, A.Yu.

    1998-02-01

    We consider the ''standard'' spectrum of the active neutrinos (characterized by strong mass hierarchy and small mixing) with additional sterile, υ s . The sterile neutrino mixes strongly with the muon neutrino, so that υ μ ↔ υ s oscillations solve the atmospheric neutrino problem. We show that the parametric enhancement of the υ μ ↔ υ s oscillations occurs for the high energy atmospheric neutrinos which cross the core of the Earth. This can be relevant for the anomaly observed by the MACRO experiment. Solar neutrinos are converted both to υ μ and υ s . The heaviest neutrino (approx. υ τ ) may compose the hot dark matter of the Universe. Phenomenology of this scenario is elaborated and crucial experimental signatures are identified. We also discuss properties of the underlying neutrino mass matrix. (author)

  6. Applicability of neutrino beams to Earth exploration

    International Nuclear Information System (INIS)

    Dolgoshein, B.A.; Kalinovskij, A.N.

    1985-01-01

    The projects on applicability of neutrino beams from high energy accelerators for geological exploration and study of the Earth structure are discussed. The GENIUS (Geological Exploration by Neutrino Induced Underground Sound) project is among them. It covers detecting and studying space-time characteristics of acoustic signal arising in case of neutrino interaction with Earth depth rocks discussed. The GEMINI (Geological Exploration with Muons Induced by neutrino interactions) project represents one more possibility for using geotron neutrino beam for the purpose of geological exploration. The GEOSCAN project represents the possibility for applying high energy neutrino beams for the purpose of the Earth translusence to determine the changes in the density of internal part of the Earth. The necessity of detailed investigations of the problem of applicability of neutrino beams in the field of the Earth exploration is pointed out

  7. High energy neutrino astronomy; past, present and future

    International Nuclear Information System (INIS)

    Learned, J.G.

    1993-01-01

    The nascent field of high energy neutrino astronomy seems to be near to blossoming in the next few years, after decades of speculation and preliminary experimental work. The motivation for the endeavor, anticipated types of sources, consideration of energy regime for first attempts, scale size needed, and techniques are qualitatively reviewed. A summary of relevant current projects is presented with emphasis on the new initiatives with detectors of the 10,000m 2 class. It seems that by the end of the decade there may be a few such new generation instruments in operation, and that with luck the business of high energy neutrino astrophysics will be underway by the turn of the century. (orig.)

  8. CrossRef Neutrino factory proton driver and target design

    CERN Document Server

    Garoby, Roland; Thomason, John; Davenne, Tristan; Caretta, Ottone; Back, John J

    2016-01-01

    Neutrinos are very elusive particles belonging to the lepton family. They exist in different types corresponding to the different charged leptons, namely electrons, muons and taus. Contrary to electrons, neutrinos hardly interact with matter which makes them very difficult to detect and study. To the best of today’s knowledge, neutrinos have hardly any mass and they can change from one type to another (so-called “neutrino oscillation”). Most physicists think that this oscillation occurs because neutrinos have mass. A Neutrino Factory [1] is a special facility producing a large amount of neutrinos every year (typically 10$^{21}$ neutrinos/year). Its main purpose is to study the change of type of neutrinos between the place where they are generated and a remote location. In a Neutrino Factory, neutrinos result from the decay of muons, unstable particles with a mean lifetime of 2.2 $\\mu$s in their rest frame. Sharp beams of high energy neutrinos are obtained at the end of the long straight sections of a mu...

  9. Check of the accuracy of the relativity theory with atmospheric muon neutrinos from the AMANDA data of the years 2000 to 2003

    International Nuclear Information System (INIS)

    Ahrens, J.C.

    2006-01-01

    Atmospheric neutrinos allow one to test the principles of the Theory of Relativity in particular Lorentz invariance and the equivalence principle. Small deviations from these principles could lead, according to some theories, to detectable neutrino oscillations. Such oscillation effects are analysed in this thesis, using the data collected by the AMANDA detector. The neutrino telescope AMANDA is located at the South Pole and embedded in the Antarctic ice shield at a depth between 1500 m and 2000 m. AMANDA detects muon neutrinos via the Cherenkov light of neutrino induced muons allowing the reconstruction of the original neutrino direction. From the data of the years 2000 to 2003, which contain about seven billion recorded events and which mainly consist of the background of atmospheric muons, a sample of 3401 neutrino induced events has been selected. No indication for alternative oscillation effects has been found. For maximal mixing angles, a lower limit for parameters which violate Lorentz invariance or the equivalence principle could be set to Δβ(2 vertical stroke φ vertical stroke Δγ)≤5.15.10 -27 . (orig)

  10. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  11. Multiplicity distributions in high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.V.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.

    1976-01-01

    Results from the Fermilab 15-ft bubble chamber on the charged-particle multiplicity distributions produced in high-energy charged-current neutrino-proton interactions are presented. Comparisons are made to γp, ep, μp, and inclusive pp scattering. The mean hadronic multiplicity appears to depend only on the mass of the excited hadronic state, independent of the mode of excitation. A fit to the neutrino data gives = (1.09+-0.38) +(1.09+-0.03)lnW 2

  12. R and D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Geer, Stephen

    2010-01-01

    This document contains a description of a multi-year national R and amp;D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R and D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R and D and, as the P5 panel has

  13. R and D Proposal for the National Muon Acccelerator Program

    International Nuclear Information System (INIS)

    2010-01-01

    This document contains a description of a multi-year national R and D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R and D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons - the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R and D and, as the P5 panel has

  14. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  15. High energy neutrinos from gamma-ray bursts with precursor supernovae.

    Science.gov (United States)

    Razzaque, Soebur; Mészáros, Peter; Waxman, Eli

    2003-06-20

    The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.

  16. Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder...

  17. Studies of high energy phenomena using muons: Progress report, January 1987-February 1988

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.

    1988-01-01

    This paper discusses the use of muons for detection systems in high energy physics experiments. Discussed are DO detectors, muon data acquisition and electronics, muon software, heavy quark physics, chamber fabrication and superconductor super collider related work. 11 refs

  18. Progress in absorber R and D for muon cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.M. E-mail: kaplan@fnal.gov; Black, E.L.; Boghosian, M.; Cassel, K.W.; Johnson, R.P.; Geer, S.; Johnstone, C.J.; Popovic, M.; Ishimoto, S.; Yoshimura, K.; Bandura, L.; Cummings, M.A.; Dyshkant, A.; Hedin, D.; Kubik, D.; Darve, C.; Kuno, Y.; Errede, D.; Haney, M.; Majewski, S.; Reep, M.; Summers, D

    2003-05-01

    A stored-muon-beam neutrino factory may require transverse ionization cooling of the muon beam. We describe recent progress in research and development on energy absorbers for muon-beam cooling carried out by a collaboration of university and laboratory groups.

  19. Neutrinos and ultra-high-energy cosmic-ray nuclei from blazars

    International Nuclear Information System (INIS)

    Rodrigues, Xavier; Fedynitch, Anatoli; Gao, Shan; Boncioli, Denise; Winter, Walter

    2017-11-01

    We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call ''nuclear survival'' - typically found in low-luminosity BL Lacs, and ''nuclear cascade'' - typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

  20. Neutrinos and ultra-high-energy cosmic-ray nuclei from blazars

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Xavier; Fedynitch, Anatoli; Gao, Shan; Boncioli, Denise; Winter, Walter

    2017-11-15

    We discuss the production of ultra-high-energy cosmic ray (UHECR) nuclei and neutrinos from blazars. We compute the nuclear cascade in the jet for both BL Lac objects and flat-spectrum radio quasars (FSRQs), and in the ambient radiation zones for FSRQs as well. By modeling representative spectral energy distributions along the blazar sequence, two distinct regimes are identified, which we call ''nuclear survival'' - typically found in low-luminosity BL Lacs, and ''nuclear cascade'' - typically found in high-luminosity FSRQs. We quantify how the neutrino and cosmic-ray (CR) emission efficiencies evolve over the blazar sequence, and demonstrate that neutrinos and CRs come from very different object classes. For example, high-frequency peaked BL Lacs (HBLs) tend to produce CRs, and HL-FSRQs are the more efficient neutrino emitters. This conclusion does not depend on the CR escape mechanism, for which we discuss two alternatives (diffusive and advective escape). Finally, the neutrino spectrum from blazars is shown to significantly depend on the injection composition into the jet, especially in the nuclear cascade case: Injection compositions heavier than protons lead to reduced neutrino production at the peak, which moves at the same time to lower energies. Thus, these sources will exhibit better compatibility with the observed IceCube and UHECR data.

  1. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Science.gov (United States)

    Gibin, D.

    2013-04-01

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN "Far" position. An additional 1/4 of the T600 detector will be constructed and located in the "Near" position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin2(2θ) and a larger mass difference Δmnew2. The superior quality of the LAr imaging TPC, in particular its unique electron-π0 discrimination allows full rejection of backgrounds and offers a lossless νe detection capability. The determination of the muon charge with the spectrometers allows the full separation of νμ from anti-νμ and therefore controlling systematics from muon mis-identification largely at high momenta.

  2. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  3. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  4. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  5. Search for new neutral high-mass resonances decaying into muon pairs with the ATLAS detector

    CERN Document Server

    Viel, Simon; Stelzer-Chilton, Oliver

    The question of physics beyond the Standard Model remains as crucial as it was before the discovery of a Higgs boson at the Large Hadron Collider, as the theoretical and experimental shortcomings of the Standard Model remain unresolved. Indeed, theoretical problems such as the hierarchy of energy scales, the Higgs mass fine-tuning and the large number of postulated parameters need to be addressed, while the experimental observations of dark matter, dark energy and neutrino masses are not explained by the Standard Model. Many hypotheses addressing these issues predict the existence of new neutral high-mass resonances decaying into muon pairs. This dissertation documents a search for this process using 25.5 inverse femtobarns of proton-proton collision data collected by the ATLAS experiment in Run‑I of the Large Hadron Collider. After evaluating the performance of the detector for reconstructing muons at very high momentum, the event yields observed as a function of the invariant mass of muon pairs are compar...

  6. High-energy neutrinos from FR0 radio galaxies?

    Science.gov (United States)

    Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G.

    2018-04-01

    The sources responsible for the emission of high-energy (≳100 TeV) neutrinos detected by IceCube are still unknown. Among the possible candidates, active galactic nuclei with relativistic jets are often examined, since the outflowing plasma seems to offer the ideal environment to accelerate the required parent high-energy cosmic rays. The non-detection of single-point sources or - almost equivalently - the absence, in the IceCube events, of multiplets originating from the same sky position - constrains the cosmic density and the neutrino output of these sources, pointing to a numerous population of faint sources. Here we explore the possibility that FR0 radio galaxies, the population of compact sources recently identified in large radio and optical surveys and representing the bulk of radio-loud AGN population, can represent suitable candidates for neutrino emission. Modelling the spectral energy distribution of an FR0 radio galaxy recently associated with a γ-ray source detected by the Large Area Telescope onboard Fermi, we derive the physical parameters of its jet, in particular the power carried by it. We consider the possible mechanisms of neutrino production, concluding that pγ reactions in the jet between protons and ambient radiation is too inefficient to sustain the required output. We propose an alternative scenario, in which protons, accelerated in the jet, escape from it and diffuse in the host galaxy, producing neutrinos as a result of pp scattering with the interstellar gas, in strict analogy with the processes taking place in star-forming galaxies.

  7. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  8. Neutrino--proton interactions at Fermilab energies: Experimental arrangement, analysis procedures, and qualitative features of the data

    International Nuclear Information System (INIS)

    Chapman, J.W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Vander Velde, J.C.; Berge, J.P.; Bogert, D.; DiBianca, F.A.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Truxton, R.

    1976-01-01

    The Fermilab 15-ft bubble chamber filled with hydrogen was exposed to a broad-momentum-band horn-focused neutrino beam produced by 300-GeV interacting protons. The selection procedure to choose a charged-current neutrino event sample is discussed. Fewer than three percent of the events are due to neutral hadron interactions. We present and experimentally test a method that can be used to identify the muon, estimate the incident neutrino energy, and eliminate most neutral-current interactions from the charged-current sample. Above 10 GeV the method produces an approximately 86% pure sample of charged-current events with an error in energy estimation of the order of 8% over a broad region of the data. In addition we establish experimentally several important properties of high-energy charged-current neutrino interactions. The hadrons are produced in a jet, the individual particles having sharply limited momenta perpendicular to the hadronic axis. The jet structure is maintained with constant properties to very high values of Q 2 and hadronic mass. The fraction of energy going into invisible particles is moderate, consistent with that expected. The average number of neutral pions rises linearly with the average number of charged particles

  9. Propagation of GeV neutrinos through Earth

    Science.gov (United States)

    Olivas, Yaithd Daniel; Sahu, Sarira

    2018-06-01

    We have studied the Earth matter effect on the oscillation of upward going GeV neutrinos by taking into account the three active neutrino flavors. For neutrino energy in the range 3 to 12 GeV we observed three distinct resonant peaks for the oscillation process νe ↔νμ,τ in three distinct densities. However, according to the most realistic density profile of the Earth, the second peak at neutrino energy 6.18 GeV corresponding to the density 6.6 g/cm3 does not exist. So the resonance at this energy can not be of MSW-type. For the calculation of observed flux of these GeV neutrinos on Earth, we considered two different flux ratios at the source, the standard scenario with the flux ratio 1 : 2 : 0 and the muon damped scenario with 0 : 1 : 0. It is observed that at the detector while the standard scenario gives the observed flux ratio 1 : 1 : 1, the muon damped scenario has a different ratio. For muon damped case with Eν 20 GeV, we get the average Φνe ∼ 0 and Φνμ ≃Φντ ≃ 0.45. The upcoming PINGU will be able to shed more light on the nature of the resonance in these GeV neutrinos and hopefully will also be able to discriminate among different processes of neutrino production at the source in GeV energy range.

  10. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    Devan, Alena V.

    2015-01-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm 2 . An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δm s 2 ~ 1 eV 2 . The results of the 2013 sterile neutrino search are presented here.

  11. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer

    2009-01-01

    Cosmic-rays with energies up to 3 x 10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √s nn = 700 TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (> 1 TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates aresensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  12. Muon Production in Relativistic Cosmic-Ray Interactions

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2009-01-01

    Cosmic-rays with energies up to 3x10 20 eV have been observed. The nuclear composition of these cosmic rays is unknown but if the incident nuclei are protons then the corresponding center of mass energy is √(s nn )=700TeV. High energy muons can be used to probe the composition of these incident nuclei. The energy spectra of high-energy (>1TeV) cosmic ray induced muons have been measured with deep underground or under-ice detectors. These muons come from pion and kaon decays and from charm production in the atmosphere. Terrestrial experiments are most sensitive to far-forward muons so the production rates are sensitive to high-x partons in the incident nucleus and low-x partons in the nitrogen/oxygen targets. Muon measurements can complement the central-particle data collected at colliders. This paper will review muon production data and discuss some non-perturbative (soft) models that have been used to interpret the data. I will show measurements of TeV muon transverse momentum (p T ) spectra in cosmic-ray air showers from MACRO, and describe how the IceCube neutrino observatory and the proposed Km3Net detector will extend these measurements to a higher p T region where perturbative QCD should apply. With a 1 km 2 surface area, the full IceCube detector should observe hundreds of muons/year with p T in the pQCD regime.

  13. Technical Challenges and Scientific Payoffs of Muon Beam Accelerators for Particle Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2007-01-01

    Historically, progress in particle physics has largely been determined by development of more capable particle accelerators. This trend continues today with the recent advent of high-luminosity electron-positron colliders at KEK and SLAC operating as 'B factories', the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking to the future, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. A 20-50 GeV muon storage ring could serve as a copious source of well-characterized electron neutrinos or antineutrinos (a Neutrino Factory), providing beams aimed at detectors located 3000-7500 km from the ring. Such long baseline experiments are expected to be able to observe and characterize the phenomenon of charge-conjugation-parity (CP) violation in the lepton sector, and thus provide an answer to one of the most fundamental questions in science, namely, why the matter-dominated universe in which we reside exists at all. By accelerating muons to even higher energies of several TeV, we can envision a Muon Collider. In contrast with composite particles like protons, muons are point particles. This means that the full collision energy is available to create new particles. A Muon Collider has roughly ten times the energy reach of a proton collider at the same collision energy, and has a much smaller footprint. Indeed, an energy frontier Muon Collider could fit on the site of an existing laboratory, such as Fermilab or BNL. The challenges of muon-beam accelerators are related to the facts that (1) muons are produced as a tertiary beam, with very large 6D phase space, and (2) muons are unstable, with a lifetime at rest of only 2 microseconds. How these challenges are accommodated in the accelerator design will be described. Both a

  14. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Ruth B. [Univ. of Cambridge (United Kingdom). Pembroke College

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  15. Studying the muon background component in the Double Chooz experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Dennis

    2013-03-28

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ{sub 13} with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s{sup -1} in the Inner Detector (ID) and of 46 s{sup -1} in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was

  16. Studying the muon background component in the Double Chooz experiment

    International Nuclear Information System (INIS)

    Dietrich, Dennis

    2013-01-01

    The reactor anti-neutrino experiment Double Chooz (DC) will measure the third neutrino mixing angle θ 13 with very high precision. This mixing angle is connected to fundamental questions in particle physics beyond the current Standard Model. In DC neutrinos are detected via the Inverse Beta Decay reaction, which provides a clean signal distinguishable from most backgrounds. However, as neutrino interactions in the detector are very rare and an interfering muon background is present, a proper understanding and reduction of this background is mandatory. This is crucial because muons create fast neutrons and βn-emitters which lead to background capable of mimicking the neutrino interaction in the detector. This thesis covers different analysis topics related to the cosmic ray muon background at the DC far site. The thesis covers the identification of muons, the applied rejection technique and the determination of the muon rate at DC far site. Utilizing the muon rejection cuts of the neutrino analysis a muon rate of 13 s -1 in the Inner Detector (ID) and of 46 s -1 in the Inner Muon Veto (IV) was found. The efficiency of the IV to identify and reject cosmic ray muons was measured and a value greater than 99.97% has been found. The stability of the determined muon rates was examined and a seasonal modulation was found, compatible with a variation of the temperature profile of the atmosphere over the year. The parameter describing the strength between the relationship of temperature and muon rate change, the effective temperature coefficient was obtained: αT=0.39±0.01(stat.)±0.02(syst.). This gave the opportunity to measure the atmospheric kaon to pion ratio with the DC far detector which was found to be r(K/π)=0.14±0.06. Additional variations of muon rate with surface pressure were found and the barometric coefficient describing this effect was measured as βp=-0.59±0.20(stat.)±0.10(syst.) permille /mbar. Another central theme of this work was the extrapolation

  17. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Science.gov (United States)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  18. Alternative Muon Cooling Options based on Particle-Matter-Interaction for a Neutrino Factory

    CERN Document Server

    Stratakis, D; Alekou, A; Pasternak, J

    2013-01-01

    An ionization cooling channel is a tightly spaced lattice containing absorbers for reducing the momentum of the muon beam, rf cavities for restoring the momentum and strong solenoids for focusing the beam. Such a lattice is an essential feature of most designs for Neutrino Factories and Muon Colliders. Here, we explore three different approaches for designing ionization cooling channels based on periodic solenoidal focusing. Key parameters such as the engineering constraints arising from the length and separation between the solenoidal coils are systematically examined. In addition, we propose novel approaches for reducing the peak magnetic field inside the rf cavities, for example, by using bucked coils for focusing. Our lattice designs are numerically examined against two independent codes: The ICOOL and G4BL code. The performance of our proposed cooling channels is examined by implementing those to the front-end of a Neutrino Factory.

  19. Neutrino Oscillation Results from NOvA

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    NOvA is an accelerator long-baseline neutrino oscillation experiment optimised to measure electron neutrino appearance in a high-purity beam of muon neutrinos from Fermilab. The exciting discovery of the theta13 neutrino mixing angle in 2012 has opened a door to making multiple new measurements of neutrinos. These include leptonic CP violation, the neutrino mass ordering and the octant of theta23. NOvA with its 810km baseline and higher energy beam has about triple the matter effect of T2K which opens a new window on the neutrino mass ordering. With about 20% of our design beam exposure and significant analysis improvements we have recently released updated results. I will present both our disappearance and appearance measurements.

  20. First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    CERN Document Server

    Abe, K.

    2017-01-26

    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\\sim}0.8$~GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\\pi^+}>200$MeV/c, $p_{\\mu^-}>200$MeV/c, $\\cos \\theta_{\\pi^+}>0.3$ and $\\cos \\theta_{\\mu^-}>0.3$. The total flux integrated $\

  1. ICARUS+NESSiE: A proposal for short baseline neutrino anomalies with innovative LAr imaging detectors coupled with large muon spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gibin, D., E-mail: daniele.gibin@pd.infn.it

    2013-04-15

    The proposal for an experimental search for sterile neutrinos beyond the Standard Model with a new CERN-SPS neutrino beam is presented. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at 1600 and 300 m from the proton target. This project will exploit the ICARUS T600, moved from LNGS to the CERN “Far” position. An additional 1/4 of the T600 detector will be constructed and located in the “Near” position. Two spectrometers will be placed downstream of the two LAr-TPC detectors to greatly complement the physics capabilities. Comparing the two detectors, in absence of oscillations, all cross sections and experimental biases cancel out. Any difference of the event distributions at the locations of the two detectors might be attributed to the possible existence of ν-oscillations, presumably due to additional neutrinos with a mixing angle sin{sup 2}(2θ{sub new}) and a larger mass difference Δm{sub new}{sup 2}. The superior quality of the LAr imaging TPC, in particular its unique electron-π{sub 0} discrimination allows full rejection of backgrounds and offers a lossless ν{sub e} detection capability. The determination of the muon charge with the spectrometers allows the full separation of ν{sub μ} from anti-ν{sub μ} and therefore controlling systematics from muon mis-identification largely at high momenta.

  2. Search for neutrino generated air shower candidates with energy ≥ 1019 eV and Zenith angle θ

    Science.gov (United States)

    Knurenko, Stanislav; Petrov, Igor; Sabourov, Artem

    2017-06-01

    The description of the methodology and results of searching for air showers generated by neutral particles such as high energy gamma quanta and astroneutrinos are presented. For this purpose, we conducted a comprehensive analysis of the data: the electron, the muon and the EAS Cerenkov light, and their response time in scintillation and Cherenkov detectors. Air showers with energy more than 5·1018 eV and zenith angle θ ≥ 55∘ are selected and analyzed. Search results indicate a lack of air shower events formed by gamma-rays or high-energy neutrinos, but it does not mean that such air showers do not exist in nature; for example, experiments that recorded showers having a marked low muon content, i.e., "Muonless", are likely to be candidates for showers produced by neutral primary particles.

  3. One-point fluctuation analysis of the high-energy neutrino sky

    Energy Technology Data Exchange (ETDEWEB)

    Feyereisen, Michael R.; Ando, Shin' ichiro [GRAPPA Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Tamborra, Irene, E-mail: m.r.feyereisen@uva.nl, E-mail: tamborra@nbi.ku.dk, E-mail: s.ando@uva.nl [Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-03-01

    We perform the first one-point fluctuation analysis of the high-energy neutrino sky. This method reveals itself to be especially suited to contemporary neutrino data, as it allows to study the properties of the astrophysical components of the high-energy flux detected by the IceCube telescope, even with low statistics and in the absence of point source detection. Besides the veto-passing atmospheric foregrounds, we adopt a simple model of the high-energy neutrino background by assuming two main extra-galactic components: star-forming galaxies and blazars. By leveraging multi-wavelength data from Herschel and Fermi , we predict the spectral and anisotropic probability distributions for their expected neutrino counts in IceCube. We find that star-forming galaxies are likely to remain a diffuse background due to the poor angular resolution of IceCube, and we determine an upper limit on the number of shower events that can reasonably be associated to blazars. We also find that upper limits on the contribution of blazars to the measured flux are unfavourably affected by the skewness of the blazar flux distribution. One-point event clustering and likelihood analyses of the IceCube HESE data suggest that this method has the potential to dramatically improve over more conventional model-based analyses, especially for the next generation of neutrino telescopes.

  4. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  5. High energy neutrinos to see inside the Earth

    International Nuclear Information System (INIS)

    Borriello, E.; De Lellis, G.; Mangano, G.

    2010-01-01

    The new chances offered by elementary particles as probes of the internal structure of our planet are briefly reviewed, by paying particular attention to the case of high energy neutrinos. In particular, the new results concerning the shadow of mountains on ν τ flux at Pierre Auger Observatory is briefly discussed, and moreover the possibility to use the tail of atmospheric neutrinos to probe the core/mantle transition region is just sketched. (author)

  6. Studies for Muon Colliders at Center-of-Mass Energies of 10 TeV and 100 TeV

    International Nuclear Information System (INIS)

    King, Bruce J.

    1999-01-01

    Parameter lists are presented for speculative muon colliders at center-of-mass energies of 10 TeV and 100 TeV. The technological advances required to achieve the given parameters are itemized and discussed, and a discussion is given of the design goals and constraints. An important constraint for multi-TeV muon colliders is the need to minimize neutrino radiation from the collider ring

  7. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    International Nuclear Information System (INIS)

    Albert, A.; Drouhin, D.; Racca, C.; Andre, M.; Anghinolfi, M.; Anton, G.; Eberl, T.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C.; Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D.; Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C.; Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Belhorma, B.; Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A.; Bormuth, R.; Jong, M. de; Samtleben, D.F.E.; Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T.; Branzas, H.; Caramete, L.; Pavalas, G.E.; Popa, V.; Bruijn, R.; Melis, K.; Capone, A.; Di Palma, I.; Perrina, C.; Vizzoca, A.; Celli, S.; Cherkaoui El Moursli, R.; El Khayati, N.; Ettahiri, A.; Fassi, F.; Tayalati, Y.; Chiarusi, T.; Circella, M.; Sanchez-Losa, A.; Coleiro, A.; Diaz, A.F.; Deschamps, A.; Hello, Y.; De Bonis, G.; Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M.; Donzaud, C.; El Bojaddaini, I.; Moussa, A.; Elsaesser, D.; Kadler, M.; Kreter, M.; Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F.; Gay, P.; Giordano, V.; Glotin, H.; Haren, H. van; Kouchner, A.; Van Elewyck, V.; Kreykenbohm, I.; Wilms, J.; Kulikovskiy, V.; Lefevre, D.; Leonora, E.; Loucatos, S.; Vallage, B.; Marinelli, A.; Mele, R.; Vivolo, D.; Migliozzi, P.; Navas, S.; Organokov, M.; Pradier, T.; Schuessler, F.; Stolarczyk, T.

    2017-01-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500 s around the GW event time nor any time clustering of events over an extended time window of ±3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∝ 1.2 x 10 55 erg for a E -2 spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time. (orig.)

  8. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Albert, A.; Drouhin, D.; Racca, C. [Universite de Haute Alsace - Institut Universitaire de Technologie de Colmar, GRPHE, Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Genoa (Italy); Anton, G.; Eberl, T.; Graf, K.; Hallmann, S.; Hoessl, J.; Hofestaedt, J.; James, C.W.; Kalekin, O.; Katz, U.; Kiessling, D.; Lahmann, R.; Sieger, C. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Ardid, M.; Felis, I.; Martinez-Mora, J.A.; Saldana, M. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Costantini, H.; Coyle, P.; Dornic, D.; Enzenhoefer, A.; Quinn, L.; Salvadori, I.; Turpin, D. [Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille (France); Avgitas, T.; Baret, B.; Bourret, S.; Coelho, J.A.B.; Creusot, A.; Gregoire, T.; Gracia Ruiz, R.; Lachaud, C. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Toennis, C.; Zornoza, J.D.; Zuniga, J. [IFIC-Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM-Laboratoire d' Astrophysique de Marseille (France); Belhorma, B. [National Center for Energy Sciences and Nuclear Techniques, Rabat (Morocco); Biagi, S.; Coniglione, R.; Distefano, C.; Piattelli, P.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN-Laboratori Nazionali del Sud (LNS), Catania (Italy); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Universiteit Leiden, Huygens-Kamerlingh Onnes Laboratorium, Leiden (Netherlands); Bouwhuis, M.C.; Heijboer, A.J.; Jongen, M.; Michael, T. [Nikhef, Amsterdam (Netherlands); Branzas, H.; Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Science, Bucharest (Romania); Bruijn, R.; Melis, K. [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Capone, A.; Di Palma, I.; Perrina, C.; Vizzoca, A. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Celli, S. [INFN-Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Cherkaoui El Moursli, R.; El Khayati, N.; Ettahiri, A.; Fassi, F.; Tayalati, Y. [University Mohammed V, Faculty of Sciences, Rabat (Morocco); Chiarusi, T. [INFN-Sezione di Bologna, Bologna (Italy); Circella, M.; Sanchez-Losa, A. [INFN-Sezione di Bari, Bari (Italy); Coleiro, A. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); IFIC-Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Paterna, Valencia (Spain); Diaz, A.F. [University of Granada, Department of Computer Architecture and Technology/CITIC, Granada (Spain); Deschamps, A.; Hello, Y. [Geoazur, UCA, CNRS, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); De Bonis, G. [Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Domi, A.; Hugon, C.; Sanguineti, M.; Taiuti, M. [INFN-Sezione di Genova, Genoa (Italy); Dipartimento di Fisica dell' Universita, Genoa (Italy); Donzaud, C. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Universite Paris-Sud, Orsay (France); El Bojaddaini, I.; Moussa, A. [University Mohammed I, Laboratory of Physics of Matter and Radiations, Oujda (Morocco); Elsaesser, D.; Kadler, M.; Kreter, M. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, Wuerzburg (Germany); Fusco, L.A.; Margiotta, A.; Pellegrino, C.; Spurio, M.; Versari, F. [INFN-Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia dell' Universita, Bologna (Italy); Gay, P. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (France); Clermont Universite, Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand (France); Giordano, V. [INFN-Sezione di Catania, Catania (Italy); Glotin, H. [LSIS, Aix Marseille Universite CNRS ENSAM LSIS UMR 7296, Marseille (France); Universite de Toulon CNRS LSIS UMR 7296, La Garde (FR); Institut Universitaire de France, Paris (FR); Haren, H. van [Utrecht University, Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (NL); Kouchner, A.; Van Elewyck, V. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (FR); Institut Universitaire de France, Paris (FR); Kreykenbohm, I.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (DE); Kulikovskiy, V. [Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille (FR); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Lefevre, D. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille (FR); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde (FR); Leonora, E. [INFN-Sezione di Catania, Catania (IT); Dipartimento di Fisica e Astronomia dell' Universita, Catania (IT); Loucatos, S.; Vallage, B. [Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cite, APC, Paris (FR); Direction des Sciences de la Matiere-Institut de Recherche sur les Lois Fondamentales de l' Univers-Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Marinelli, A. [INFN-Sezione di Pisa, Pisa (IT); Dipartimento di Fisica dell' Universita, Pisa (IT); Mele, R.; Vivolo, D. [INFN-Sezione di Napoli, Naples (IT); Dipartimento di Fisica dell' Universita Federico II di Napoli, Naples (IT); Migliozzi, P. [INFN-Sezione di Napoli, Naples (IT); Navas, S. [University of Granada, Dept. de Fisica Teorica y del Cosmos y C.A.F.P.E., Granada (ES); Organokov, M.; Pradier, T. [Universite de Strasbourg, CNRS, Strasbourg (FR); Schuessler, F.; Stolarczyk, T. [Direction des Sciences de la Matiere-Institut de Recherche sur les Lois Fondamentales de l' Univers-Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (FR); Collaboration: The ANTARES Collaboration

    2017-12-15

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ±500 s around the GW event time nor any time clustering of events over an extended time window of ±3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ∝ 1.2 x 10{sup 55} erg for a E{sup -2} spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time. (orig.)

  9. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  10. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  11. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  12. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    Halladjian, G.

    2010-01-01

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  13. Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    International Nuclear Information System (INIS)

    Datta, Anindya; Gandhi, Raj; Mukhopadhyaya, Biswarup; Mehta, Poonam

    2001-01-01

    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the τ-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, for a wide and phenomenologically consistent choice of parameters, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics

  14. Method for detecting neutrinos from internal shocks in GRB fireballs with AMANDA

    CERN Document Server

    Stamatikos, M

    2004-01-01

    Neutrino-based astronomy provides a new window on the most energetic processes in the universe. The discovery of high-energy (E >or= 10 /sup 14/ eV) muonic neutrinos (v/sub mu /) from gamma-ray bursts (GRBs) would confirm hadronic acceleration in the relativistic GRB- wind, validate the phenomenology of the canonical fireball model and possibly reveal an acceleration mechanism for the highest energy cosmic rays (CRs). The Antarctic Muon and Neutrino Detector Array (AMANDA) is the world's largest operational neutrino telescope with a PeV muon effective area (averaged over zenith angle) ~ 50,000 m/sup 2 /. AMANDA uses the natural ice at the geographic South Pole as a Cherenkov medium and has been successfully calibrated on the signal of atmospheric neutrinos (v/sub atm/). Contrary to previous diffuse searches, we describe an analysis based upon confronting AMANDA observations of individual GRBs, adequately modeled by fireball phenomenology, with the predictions of the canonical fireball model. The expected neut...

  15. Magnets for Muon 6D Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  16. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Mathieu Aurore

    2016-01-01

    Full Text Available The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER and the Swift-XRT telescope, which are triggered when an “interesting” neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  17. Muon neutrino disappearance at MINOS

    International Nuclear Information System (INIS)

    Armstrong, R.

    2009-01-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm 32 2 = 2.45 +0.12 -0.12 x 10 -3 eV 2 and sin 2 (2θ 32 ) = 1.00 -0.04 +0.00 (> 0.90 at 90% confidence level).

  18. Numerical study of a magnetically insulated front-end channel for a neutrino factory

    Directory of Open Access Journals (Sweden)

    Diktys Stratakis

    2011-01-01

    Full Text Available A neutrino factory, which can deliver an intense flux of ∼10^{21} neutrinos per year from a multi-GeV stored muon beam, is seemingly the ideal tool for studying neutrino oscillations and CP violations for leptons. The front end of this facility plays a critical role in determining the number of muons that can be accepted by the downstream accelerators. Delivering peak performance requires transporting the muon beams through long sections of a beam channel containing high-gradient rf cavities and strong focusing solenoids. Here, we propose a novel scheme to improve the performance of the cavities, thereby increasing the number of muons within the acceptance of the accelerator chain. The key element of our new scheme is to apply a tangential magnetic field to the rf surfaces, thus forcing any field-emitted electrons to return to the surface before gaining enough energy to damage the cavity. We incorporate this idea into a new lattice design for a neutrino factory, and detail its performance numerically. Although our proposed front-end channel requires more rf power than conventional pillbox designs, it provides enough beam cooling and muon production to be a feasible option for a neutrino factory.

  19. Light sterile neutrino sensitivity at the nuSTORM facility

    Energy Technology Data Exchange (ETDEWEB)

    Adey, D.; Agarwalla, S. K.; Ankenbrandt, C. M.; Asfandiyarov, R.; Back, J. J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S. A.; Booth, C.; Boyd, S. B.; Bramsiepe, S. G.; Bravar, A.; Brice, S. J.; Bross, A. D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coloma, P.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.; Dracos, M.; Dufour, F.; Edgecock, R.; Geelhoed, M.; Uchida, M. A.; Ghosh, T.; Gómez-Cadenas, J. J.; de Gouvêa, A.; Haesler, A.; Hanson, G.; Harrison, P. F.; Hartz, M.; Hernández, P.; Hernando Morata, J. A.; Hodgson, P.; Huber, P.; Izmaylov, A.; Karadzhov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kuno, Y.; Kurup, A.; Kyberd, P.; Lagrange, J. B.; Laing, A.; Liu, A.; Link, J. M.; Long, K.; Mahn, K.; Mariani, C.; Martin, C.; Martin, J.; McCauley, N.; McDonald, K. T.; Mena, O.; Mishra, S. R.; Mokhov, N.; Morfín, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M. A.; Parke, S.; Pascoli, S.; Pasternak, J.; Plunkett, R.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Sen, T.; Scantamburlo, E.; Sedgbeer, J. K.; Smith, D. R.; Smith, P. J.; Sobczyk, J. T.; Søby, L.; Soler, F. J. P.; Sorel, M.; Snopok, P.; Stamoulis, P.; Stanco, L.; Striganov, S.; Tanaka, H. A.; Taylor, I. J.; Touramanis, C.; Tunnell, C. D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M. O.; Weber, A.; Wilking, M. J.; Wildner, E.; Winter, W.

    2014-04-01

    A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8GeV/c±10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10σ sensitivity, even assuming conservative estimates for the systematic uncertainties. This experiment would add greatly to our knowledge of the contribution of light sterile neutrinos to the number of effective neutrino flavors from the abundance of primordial helium production and from constraints on neutrino energy density from the cosmic microwave background. The appearance search is complemented by a simultaneous muon neutrino disappearance analysis that will facilitate tests of various sterile neutrino models.

  20. Neutrino reactions in hot and dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Lohs, Andreas

    2015-04-13

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  1. Neutrino reactions in hot and dense matter

    International Nuclear Information System (INIS)

    Lohs, Andreas

    2015-01-01

    In this thesis, neutrino reactions in hot and dense matter are studied. In particular, this work is concerned with neutrino-matter interactions that are relevant for neutrino transport in core-collapse supernovae (CCSNe). The majority of the energy from a CCSN is released in the form of neutrinos. Accurate understanding and computation of these interactions is most relevant to achieve sufficiently reliable predictions for the evolution of CCSNe and other related question such as the production of heavy elements or neutrino oscillations. For this purpose this work follows the combined approach of searching for new important neutrino reactions and improving the computation of those reactions that are already implemented. First we estimate the relevance of charged-current weak interactions that include muon-neutrinos or muons, as well as the role of neutron decay for neutrino transport in CCSNe. All of these reactions were previously neglected in CCSN-simulations. We derive and compute the matrix element and subsequent semi-analytic expressions for transport properties like the inverse mean free path of the new reactions. It is found that these reactions are important for muon neutrinos and low energy electron antineutrinos at very high densities in the protoneutron star surface. Consequently their implementation might lead to several changes in the prediction of CCSNe signatures such as the nucleosynthesis yields. Second we improve the precision in the computation of well known neutrino-nucleon reactions like neutrino absorption on neutrons. We derive semi-analytic expressions for transport properties that use less restrictive approximations while keeping the computational demand constant. Therefore we consider the full relativistic kinematics of all participating particles i.e. allowing for relativistic nucleons and finite lepton masses. Also the weak magnetism terms of the matrix elements are explicitly included to all orders. From our results we suggest that the

  2. A study of quasi-elastic muon (anti) neutrino scattering in the NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, V.V.; Popov, B.A.

    2008-01-01

    We have studied the muon neutrino and antineutrino-quasi-elastic (QEL) scattering reactions (ν μ n → μ - p and νbar μ p → μ + n) using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ (νbar μ ) charged current cross section. The results for the flux averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are (σ qel )ν μ = (0.92 ± 0.02 (stat.) ± 0.06 (syst.)) · 10 -38 cm 2 and (σ qel )νbar μ = (0.81 ± 0.05 (stat.) ± 0.08 (syst.)) · 10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A = 1.05 ± 0.02 (stat.) ± 0.06 (syst.) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. The measured M A is found to be in good agreement with the world average value obtained in the previous deuterium filled bubble chamber experiments. These results do not support M A measurements published recently by the K2K and MiniBooNE collaborations, which reported somewhat larger values, which are however compatible with our results within their large errors

  3. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    International Nuclear Information System (INIS)

    Lyubushkin, Vladimir

    2009-01-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (v μ n→μ - p and v-bar μ p→μ + n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total v μ (v-bar μ ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are qel >v μ = (0.92±0.02(stat)±0.06(syst))x10 -38 cm 2 and qel >v-bar μ = (0.81±0.05(stat)±0.09(syst))x10 -38 cm 2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is M A = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q 2 shape analysis of the high purity sample of v μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  4. Expression of Interest for Neutrinos Scattering on Glass: NuSOnG

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; /Florida State U.; Bugel, L.; Conrad, J.M.; /Columbia U.; Fisher, P.H.; Formaggio, J.A.; /MIT; de Gouvea, A.; /Northwestern U.; Loinaz, W.A.; /Amherst Coll.; Karagiorgi, G.; /Columbia U.; Kobilarcik, T.R.; /Fermilab; Kopp, S.; /Texas U.; Kyle, G.; /New Mexico State U. /Fermilab /MIT /Fermilab

    2009-07-01

    We propose a 3500 ton (3000 ton fiducial volume) SiO{sub 2} neutrino detector with sampling calorimetry, charged particle tracking, and muon spectrometers to run in a Tevatron Fixed Target Program. Improvements to the Fermilab accelerator complex should allow substantial increases in the neutrino flux over the previous NuTeV quad triplet beamline. With 4 x 10{sup 19} protons on target/year, a 5 year run would achieve event statistics more than 100 times higher than NuTeV. With 100 times the statistics of previous high energy neutrino experiments, the purely weak processes {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub {mu}} + e{sup -} and {nu}{sub {mu}} + e{sup -} {yields} {nu}{sub e} + {mu}{sup -} (inverse muon decay) can be measured with high accuracy for the first time. The inverse muon decay process is independent of strong interaction effects and can be used to significantly improve the flux normalization for all other processes. The high neutrino and antineutrino fluxes also make new searches for lepton flavor violation and neutral heavy leptons possible. In this document, we give a first look at the physics opportunities, detector and beam design, and calibration procedures.

  5. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  6. Enhanced Starting Track Event Selection for Astrophysical Neutrinos in IceCube

    Science.gov (United States)

    Jero, Kyle; IceCube Collaboration

    2017-09-01

    IceCube’s measurements of the astrophysical neutrino flux have applied veto techniques to suppress atmospheric neutrinos and muons. All the vetos thus far have used the outer regions of the detector to identify and reject penetrating muon tracks, leaving the inner parts of the detector available to observe the astrophysical neutrino flux. Here we discuss a method that is optimized for muon neutrinos which have a charged-current interaction with a contained vertex. This analysis exploits the high quality directional information of muons to determine a veto on an event by event basis. The final sample will contain astrophysical neutrinos with good purity starting around 10 TeV.

  7. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  8. Anti-neutrino imprint in solar neutrino flare

    Science.gov (United States)

    Fargion, D.

    2006-10-01

    A future neutrino detector at megaton mass might enlarge the neutrino telescope thresholds revealing cosmic supernova background and largest solar flares (SFs) neutrinos. Indeed the solar energetic (Ep>100 MeV) flare particles (protons, α), while scattering among themselves on solar corona atmosphere must produce prompt charged pions, whose chain decays are source of a solar (electron muon) neutrino 'flare' (at tens or hundreds MeV energy). These brief (minutes) neutrino 'bursts' at largest flare peak may overcome by three to five orders of magnitude the steady atmospheric neutrino noise on the Earth, possibly leading to their detection above detection thresholds (in a full mixed three flavour state). Moreover the birth of anti-neutrinos at a few tens of MeV very clearly flares above a null thermal 'hep' anti-neutrino solar background and also above a tiny supernova relic and atmospheric noise. The largest prompt solar anti-neutrino 'burst' may be well detected in future Super Kamikande (gadolinium implemented) anti-neutrino \\bar\

  9. Origin of the High-energy Neutrino Flux at IceCube

    Science.gov (United States)

    Carceller, J. M.; Illana, J. I.; Masip, M.; Meloni, D.

    2018-01-01

    We discuss the spectrum of the different components in the astrophysical neutrino flux reaching the Earth, and the possible contribution of each component to the high-energy IceCube data. We show that the diffuse flux from cosmic ray (CR) interactions with gas in our galaxy implies just two events among the 54-event sample. We argue that the neutrino flux from CR interactions in the intergalactic (intracluster) space depends critically on the transport parameter δ describing the energy dependence in the diffusion coefficient of galactic CRs. Our analysis motivates a {E}-2.1 neutrino spectrum with a drop at PeV energies that fits the data well, including the non-observation of the Glashow resonance at 6.3 PeV. We also show that a CR flux described by an unbroken power law may produce a neutrino flux with interesting spectral features (bumps and breaks) related to changes in the CR composition.

  10. NEUTRINO EMISSION FROM HIGH-ENERGY COMPONENT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Becker, Julia K.; Olivo, Martino; Halzen, Francis; O Murchadha, Aongus

    2010-01-01

    Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10 21 eV) and energy budget (10 44 erg yr -1 Mpc -3 ) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to ∼30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerable baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.

  11. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Science.gov (United States)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  12. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Zas Enrique

    2017-01-01

    Full Text Available The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth’s crust. It covers a large field of view between −85◦ and 60◦ declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  13. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    Energy Technology Data Exchange (ETDEWEB)

    Gogos, Jeremy Peter [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-12-01

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 ± 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin223 = 0.95 -0.32 and Δm$2\\atop{23}$ = 0.93$+3.94\\atop{ -0.44}$ x 10-3 eV2. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  14. The ideal neutrino beams

    Science.gov (United States)

    Lindroos, Mats

    2009-06-01

    The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.

  15. The capability to detect wimps with a high energy neutrino telescope

    International Nuclear Information System (INIS)

    Blondeau, F.

    1998-05-01

    We studied the potential of the proposed ANTARES undersea neutrino telescope to detect muons coming from from neutralinos annihilating at the center of the Earth. First results show that the full 1 km 3 -scale detector can indicate, after a few years of operation, if there are indeed neutralinos trapped at the core of celestial bodies, as expected are the major form of dark matter in our galaxy. (author)

  16. Neutrinos in the Electron

    International Nuclear Information System (INIS)

    Koschmieder, E. L.

    2007-01-01

    I will show that one half of the rest mass of the electron consists of electron neutrinos and that the other half of the rest mass of the electron consists of the mass in the energy of electric oscillations. With this composition we can explain the rest mass of the electron, its charge, its spin and its magnetic moment We have also determined the rest masses of the muon neutrino and the electron neutrino

  17. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  18. Search for ultra-high energy photons with AMIGA muon counters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Nicolas Martin [Instituto de Tecnologias en Deteccion y Astroparticulas, Buenos Aires (Argentina); Institut fuer Kernphysik, Karlsruher Institut fuer Technologie. (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The study of the composition of ultra-high energy (UHE) cosmic rays (CR) is one of the topical problems of astroparticle physics. The discovery of UHE photons, i.e. photons with energies around 1 EeV, in primary cosmic rays could be of particular interest for the field of astroparticle physics, and also for fundamental physics, since they are tracers of the highest-energy processes in the Universe. For the search for UHE photons at the Pierre Auger Observatory (PAO), several parameters have been proposed to distinguish between primary hadrons and photons. One of the most promising approaches to search for primary gamma rays is the study of the muon component in extensive air showers (EAS) produced in the interaction between the CR and the nuclei in the atmosphere. The number of muons in showers induced by gamma primaries is an order of magnitude lower than the hadronic primaries counterpart. The AMIGA extension of the PAO, consisting of an array of buried scintillators counters, allows the study of the muons produced during the EAS development. In this talk, the sensitivity of the muon counters to photon-initiated EAS and the possible discrimination procedures are discussed using dedicated EAS simulations with software package CORSIKA, including the detector response using the Offline package developed by the Pierre Auger Collaboration.

  19. MUON POLARIZATION EFFECTS IN THE FRONT END OF THE NEUTRINO FACTORY

    International Nuclear Information System (INIS)

    FERNOW, R.C.; GALLARDO, J.C.; FUKUI, Y.

    2000-01-01

    The authors summarize the methods used for simulation of polarization effects in the front end of a possible neutrino factory. They first discuss the helicity of muons in the pion decay process. They find that, neglecting acceptance considerations, the average helicity asymptotically approaches a magnitude of 0.185 at large pion momenta. Next they describe the methods used for tracking the spin through the complicated electromagnetic field configurations in the front end of the neutrino factory, including rf phase rotation and ionization cooling channels. Various depolarizing effects in matter are then considered, including multiple Coulomb scattering and elastic scattering from atomic electrons. Finally, they include all these effects in a simulation of a 480 m long, double phase rotation front end scenario

  20. Muon scattering into 1 to 5 muon final states

    International Nuclear Information System (INIS)

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1979-09-01

    Interactions of 209- and 90-GeV muons within a magnetized-steel calorimeter have produced final states containing one, two, three, four, and five muons. Redundant systems of proportional and drift chambers, fully sensitive in the forward direction, maintained 9% dimuon-mass resolution and high acceptance for multimuon final states. The first data are presented on F 2 (x, Q 2 ) from charged lepton-nucleon scattering spanning a range in ln (ln, Q 2 ) comparable to that measured in high energy neutrino scattering. The muon data confirm the decrease of F 2 with rising Q 2 in the region 0.2 80% of the world sample of fully-reconstructed 3μ final states containing the J/psi(3100), the first determination of the psi polarization yields sigma/sub L//sigma/sub T/ = xi 2 Q 2 /m/sub psi/ 2 with xi 2 = 4.0/sub -2.1/ +5 4 , 2.6 standard deviations above the vector-dominance expectation. A sample of 35539 two-muon final states contains a small excess of high p/sub perpendicular to/ high-Q 2 same-sign pairs and sets limits on neutral heavy lepton production by right-handed currents. Two five-muon final states are observed, of which only one is the likely result of a pure QED process. A single event with four muons in the final state is interpreted as diffractive b anti b production with anti b → psiX → μ + μ - X and b → μ - anti ν/sub μ/X. 42 references

  1. A Nine-Year Hunt for Neutrinos

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    How do we hunt for elusive neutrinos emitted by distant astrophysical sources? Submerge a huge observatory under ice or water and then wait patiently.Sneaky MessengersNeutrinos tiny, nearly massless particles that only weakly interact with other matter are thought to be produced as a constant background originating from throughout our universe. In contrast to known point sources of neutrinos (for instance, nearby supernovae), the diffuse flux of cosmic neutrinos could be emitted from unresolved astrophysical sources too faint to be individually detected, or from the interactions of high-energy cosmic rays propagating across the universe.Observations of this diffuse flux of cosmic neutrinos would be a huge step toward understanding cosmic-ray production, acceleration, and interaction properties. Unfortunately, these observations arent easy to make!Diagram showing the path of a neutrino from a distant astrophysical source (accelerator) through the Earth. It is eventually converted into an upward-traveling muon that registers in the ANTARES detector under the sea. [ANTARES]Looking for What Doesnt Want to Be FoundBecause neutrinos so rarely interact with matter, most pass right through us, eluding detection. The most common means of spotting the rare interacting neutrino is to look for Cherenkov radiation in a medium like ice or water, produced when a neutrino has interacted with matterto produce a charged particle (for instance, a muon) moving faster than the speed of light in the medium.Muons produced in our atmosphere can also register in such detectors, however, so we need a way of filtering out these non-cosmic background events. The solution is a clever trick: search for particles traveling upward, not downward. Atmospheric muons will come only from above, whereas muons produced by neutrinos should travel through the detectors in all directions, since cosmic neutrinos arrive from all directions including from below, after passing through the Earth

  2. The use of GaSe semiconductor detectors for monitoring high energy muon beams

    CERN Document Server

    Mancini, A M; Murri, R; Quirini, A; Rizzo, A; Vasanelli, L

    1976-01-01

    GaSe semiconductor detectors have been successfully tested during one year for monitoring muon beams in the GeV range in the neutrino experiment at CERN. Their performances are comparable with those of commercial Si surface barrier detectors for this particular application. Crystal growth, detector fabrication and characterization are briefly described. Various advantages (cost, ruggedness, resistance to radiation damage, manufacturing simplicity, etc.) are discussed. (8 refs).

  3. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V.; Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L.; Carloganu, C.; Gay, P.; Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R.; Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P.

    2010-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40 K and the bioluminescence in the sea water. The 40 K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  4. 7Be(p, γ)8B and the high-energy solar neutrino flux

    International Nuclear Information System (INIS)

    Csoto, A.

    1997-01-01

    Despite thirty years of extensive experimental and theoretical work, the predicted solar neutrino flux is still in sharp disagreement with measurements. The solar neutrino measurements strongly suggest that the problem cannot be solved within the standard electroweak and astrophysical theories. Thus, the solar neutrino problem constitutes the strongest evidence for physics beyond the Standard Model. Whatever the solution of the solar neutrino problem turns out to be, it is of paramount importance that the input parameters of the underlying electroweak and solar theories rest upon solid ground. The most uncertain nuclear input parameter in standard solar models is the low-energy 7 Be(p, γ) 8 B radiative capture cross section. This reaction produces 8 B in the Sun, whose β + decay is the main source of the high-energy solar neutrinos. Here, the importance of the 7 Be(p, γ) 8 B reaction in predicting the high energy solar neutrino flux is discussed. The author presents a microscopic eight-body model and a potential model for the calculation of the 7 Be(p, γ) 8 B cross section

  5. Neutrino factories

    International Nuclear Information System (INIS)

    Dydak, F.

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precision, high-rate neutrino scattering to physics with high-intensity stopped muons comes with it

  6. CNGS Muon Monitors

    CERN Document Server

    Marsili, A; Ferioli, G; Gschwendtner, E; Holzer, E B; Kramer, Daniel; CERN. Geneva. AB Department

    2008-01-01

    The CERN Neutrinos to Gran Sasso (CNGS) beam facility uses two muon detector stations as on-line feed back for the quality control of the neutrino beam. The muon detector stations are assembled in a cross-shaped array to provide the muon intensity and the vertical and horizontal muon profiles. Each station is equipped with 42 ionisation chambers, which are originally designed as Beam Loss Monitors (BLMs) for the Large Hadron Collider(LHC). The response of the muon detectors during the CNGS run 2007 and possible reasons for a non-linear behaviour with respect to the beam intensity are discussed. Results of the CNGS run 2008 are shown: The modifications done during the shutdown 2007/08 were successful and resulted in the expected linear behaviour of the muon detector response.

  7. Determinacion del error sistematico del momentum de muones producidos por interacciones neutrino-nucleon en el detector MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Bautista, Gonzalo A. [Pontifical Catholic Univ. of Peru, Lima (Peru)

    2015-11-29

    un tipo especco de interaccion denominado corriente cargada, cuyas partculas de estado nal incluye hadrones y, principalmente, muones. La precision en los resultados de secciones de choque esta sujeta a que la energa y el momentum estos muones sean, a su vez, correctamente caracterizados, incluyendo sus incertidumbres sistematicas. El objetivo de este trabajo de tesis es precisamente presentar la metodologa usada para medir las energas de los muones producidos por interacciones de neutrinos y sus correspondientes incertidumbres asociadas a dicha medicion.

  8. Modeling the radar scatter off of high-energy neutrino-induced particle cascades in ice

    NARCIS (Netherlands)

    de Vries, Krijn D.; van Eijndhoven, Nick; O'Murchadha, Aongus; Toscano, Simona; Scholten, Olaf

    2017-01-01

    We discuss the radar detection method as a probe for high-energy neutrino induced particle cascades in ice. In a previous work we showed that the radar detection techniqe is a promising method to probe the high-energy cosmic neutrino flux above PeV energies. This was done by considering a simplified

  9. Core-collapse supernovae as possible counterparts of IceCube neutrino multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora Linn; Kowalski, Marek; Franckowiak, Anna [DESY, Zeuthen (Germany); Voge, Markus [Bonn Univ. (Germany). Physikalisches Institut; Collaboration: IceCube-Collaboration

    2016-07-01

    While an astrophysical neutrino flux has been detected by the IceCube Neutrino Observatory its sources remain so far unidentified. IceCube's Optical Follow-up Program is designed to search for the counterparts of neutrino multiplets using the full energy range of the IceCube detector down to 100 GeV. Two or more muon neutrinos arriving from the same direction within few seconds can trigger follow-up observations with optical and X-ray telescopes. Since 2010 the Palomar Transient Factory has followed up about 40 such neutrino alerts and detected several supernovae. Many of the detections are however likely random coincidences. In this talk I describe our search for supernovae and the prospects of identifying a supernova as a source of high-energy neutrinos.

  10. High Energy $\

    CERN Multimedia

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  11. Study of the appearance of oscillating electron neutrinos issued from muon neutrino beam in the K2K experiment

    International Nuclear Information System (INIS)

    Argyriades, J.

    2006-05-01

    The work presented in this thesis has been done in the K2K experiment. His principle consists in the use of a beam of muon neutrinos, which flux has been measured at short and long distances. Those data enable us to study the effects of neutrino oscillation, particularly by measuring ν μ disappearance. Although this is not an appearance experiment, electronic neutrinos oscillation has been searched. In spite of no signal of appearance, this study enables to constrain oscillation parameters (Δm 23 2 , sin 2 2θ 13 ). With one event for 1,07 expected event from background, the exclusion area edges are close to the best actual limits, provided by Chooz experiment. By setting Δm 23 2 .= 2,8.10 -3 eV 2 , a limit at 90% confident level is reached: sin 2 2θ 13 < 0,2. (author)

  12. Possibility of observing high energy neutrinos from gamma bursts, with the Antanares telescope, feasibility study; Possibilite d'observation, par le telescope antares, de neutrinos de haute energie associes aux sursauts gamma et validation des techniques de detection a l'aide d'un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kouchner, A

    2001-04-01

    The European Antares collaboration intends to build a deep-sea neutrino telescope with a detection surface of about 1/10 km{sup 2} in the Mediterranean sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature and origin of cosmic rays and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (E>TeV) for observation of the universe. The first part of the thesis is dedicated to a study of the possibility of using the future telescope to look for correlations between gamma-ray bursts and high-energy neutrinos. It is based, on one hand, on the predictions of neutrino fluxes from gamma-ray bursts in the framework of the theoretical model of 'fireballs', and, on the other hand, on the temporal properties of the gamma-ray bursts in the 4. BATSE catalogue. The second part of the thesis presents the results obtained with a prototype detector line deployed, at the end of 1999, some forty km south-west off Marseilles. The objective was to operate a complete apparatus, similar to the future detector lines, from the shore, and under realistic conditions. Data from 7 photomultiplier tubes disposed along the detector line were transmitted through 37 km of optical fiber to the shore, where they were used to reconstruct tracks due to atmospheric muons, thus validating the detection principles and methods. (author)

  13. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (FR); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 Rue du Grillenbreit, BP 50568, 68008 Colmar (FR); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (FR); Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164, CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris, 10, Rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille (FR); Carloganu, C.; Gay, P. [Lab. de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, Clermont-Ferrand (FR); Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R. [Geoazur - Universite de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Universite Pierre et Marie Curie, BP 48, F-06235 Villefranche-sur-mer (FR); Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette (FR)

    2010-07-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of {sup 40}K and the bioluminescence in the sea water. The {sup 40}K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  14. A combined cosmic ray muon spectrometer and high energy air shower array

    International Nuclear Information System (INIS)

    Cherry, M.L.; Ayres, D.S.; Halzen, F.

    1986-01-01

    Cosmic rays have been detected at energies in excess of 10 20 eV, and individual sources have been conclusively identified as intense emitters of gamma rays at energies up to 10 16 eV. There is clearly a great deal of exciting astrophysics to be learned from such studies, but it has been suggested that there may be particle physics to be learned from the cosmic beam as well. Based in particular on the reports of surprisingly high fluxes of underground muons from the direction of Cygnus X-3 modulated by the known orbital period, there have been several suggestions recently invoking stable supersymmetric particles produced at Cygnus X-3, enhanced muon production from high energy photons, quark matter, and ''cygnets.'' Although the underground muon results have been questioned, it may still be worthwhile to consider the possibility of new physics beyond the standard model with energy scale (G/sub F/)/sup -1/2/ ≥ 0.25 TeV. For example, there have been recent discussions on the experimental signatures to be observed from new high energy photon couplings to matter, exchanges between constituent quarks and leptons, and stable gluinos and photinos mixed in with the cosmic gamma ray flux. We describe here a possible detector to search for such effects. We utilize the possibility that point sources like Cygnus X-3 can be used to provide a directional time-modulated ''tagged'' high energy photon beam

  15. γ ray astronomy with muons

    International Nuclear Information System (INIS)

    Halzen, F.; Stanev, T.; Yodh, G.B.

    1997-01-01

    Although γ ray showers are muon poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard γ ray spectra there is a relative open-quotes enhancementclose quotes of muons from γ ray primaries as compared to that from nucleon primaries. All shower γ rays above the photoproduction threshold contribute to the number of muons N μ , which is thus proportional to the primary γ ray energy. With γ ray energy 50 times higher than the muon energy and a probability of muon production by the γ close-quote s of about 1%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by 10 4 . The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal, and by γ ray detectors such as MILAGRO. TeV muons from γ ray primaries, on the other hand, are rare because they are only produced by higher energy γ rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal, and MILAGRO detectors. copyright 1997 The American Physical Society

  16. Status report on the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Vallage, B

    2008-01-01

    After a long and fruitful R and D phase to validate its detector concept, the ANTARES collaboration will complete by 2008 the deployment of its 12-string underwater detector at a depth of 2500 m in the Mediterranean Sea, 40 km south-east of the French town of Toulon The 3D array of 900 photomultiplier tubes (PMT) will allow high energy neutrino astronomy with a pointing accuracy better than 1 degree. The detector size grew by steps from 1 line in March 2006, to 5 lines in January 2007, sketching a real 3D detector. Data recorded continuously provide a precise calibration of the charge and arrival time of Cerenkov photons coming from muon tracks. The position and orientation of individual detectors are measured frequently by compasses, tiltmeters and external acoustic triangulation. The data from the 3D detector allow the reconstruction of downward going cosmic ray muons and the search for the first upward going neutrino induced muons. Preliminary results of these analysis are presented

  17. Neutrino geophysics - a future possibility

    International Nuclear Information System (INIS)

    Kiss, Dezsoe

    1988-01-01

    The history and basic properties of the neutrinos are reviewed. A new idea: neutrino tomography of the Earth interior is discussed in detail. The main contradiction: the high pervasivity of neutrinos, which makes possible the transillumination of the Earth, and the gigantic technical problems of detection caused by the small cross section is pointed out. The proposed possibilities of detection (radiowaves, sound, muons and Cherenkov light emitted by neutrinos) are described. Proposed futuristic technical ideas (mobile muon detectors aboard trucks, floating proton accelerators of 100 km circumference, moving in the ocean) and supposed geological aims (Earth's core, internal density anomalies, quarries of minerals and crude oil) are discussed. (D.Gy.) 5 figs

  18. A time-dependent search for high-energy neutrinos from bright GRBs with ANTARES

    Directory of Open Access Journals (Sweden)

    Celli Silvia

    2017-01-01

    Full Text Available Astrophysical point-like neutrino sources, like Gamma-Ray Bursts (GRBs, are one of the main targets for neutrino telescopes, since they are among the best candidates for Ultra-High-Energy Cosmic Ray (UHECR acceleration. From the interaction between the accelerated protons and the intense radiation fields of the source jet, charged mesons are produced, which then decay into neutrinos. The methods and the results of a search for high-energy neutrinos in spatial and temporal correlation with the detected gamma-ray emission are presented for four bright GRBs observed between 2008 and 2013: a time-dependent analysis, optimised for each flare of the selected bursts, is performed to predict detailed neutrino spectra. The internal shock scenario of the fireball model is investigated, relying on the neutrino spectra computed through the numerical code NeuCosmA. The analysis is optimized on a per burst basis, through the maximization of the signal discovery probability. Since no events in ANTARES data passed the optimised cuts, 90% C.L. upper limits are derived on the expected neutrino fluences.

  19. Cosmic rays at ultra high energies (Neutrinos.)

    International Nuclear Information System (INIS)

    Ahlers, M.; Ringwald, A.; Tu, H.

    2005-06-01

    Resonant photopion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen-Zatsepin-Kuzmin cutoff at about E GZK ∼ 5 x 10 10 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino-nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino-nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino-nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around E GZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach. (orig.)

  20. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  1. T2K neutrino flux prediction

    CERN Document Server

    Abe, K.

    2013-01-02

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the J-PARC accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector -- Super-Kamiokande (SK) -- located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3 based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is re-weighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA...

  2. Beam Dynamics in a Muon Ionisation Cooling Channel

    International Nuclear Information System (INIS)

    Rogers, Chris

    2008-01-01

    The Neutrino Factory has been proposed as a facility to provide an intense source of neutrinos suitable for the measurement of neutrino oscillation parameters and a possible CP violating phase to unprecedented precision. In the Neutrino Factory, neutrinos are produced by the decay of a muon beam with 20-50 GeV per muon. Initially, the muon beam occupies a large volume in phase space, which must be reduced before the beam can be accelerated. The proposed method to achieve this is to use a solenoidal ionisation colling channel.

  3. RECENT DEVELOPMENTS IN ULTRA-HIGH ENERGY NEUTRINO ASTRONOMY

    Directory of Open Access Journals (Sweden)

    Peter K. F. Grieder

    2013-12-01

    Full Text Available We outline the current situation in ultrahigh energy (UHE cosmic ray physics, pointing out the remaining problems, in particular the puzzle concerning the origin of the primary radiation and the role of neutrino astronomy for locating the sources. Various methods for the detection of UHE neutrinos are briefly described and their merits compared. We give an account of the achievements of the existing optical Cherenkov neutrino telescopes, outline the possibility of using air fluorescence and particle properties of air showers to identify neutrino induced events, and discuss various pioneering experiments employing radio and acoustic detection of extremely energetic neutrinos. The next generation of space, ground and sea based neutrino telescopes now under construction or in the planning phase are listed.

  4. Obscured flat spectrum radio active galactic nuclei as sources of high-energy neutrinos

    NARCIS (Netherlands)

    Maggi, G.; Buitink, S.; Correa, P.; de Vries, K. D.; Gentile, G.; Tavares, J. León; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active galactic nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no

  5. [Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    1991-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract FG02-91ER40641 during the period from March 1991 to December 1991. Our group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, we are also members of the SDC collaboration at the SSC

  6. Probing Neutrino Properties with Long-Baseline Neutrino Beams

    International Nuclear Information System (INIS)

    Marino, Alysia

    2015-01-01

    This final report on an Early Career Award grant began in April 15, 2010 and concluded on April 14, 2015. Alysia Marino's research is focussed on making precise measurements of neutrino properties using intense accelerator-generated neutrino beams. As a part of this grant, she is collaborating on the Tokai-to-Kamioka (T2K) long-baseline neutrino experiment, currently taking data in Japan, and on the Deep Underground Neutrino Experiment (DUNE) design effort for a future Long-Baseline Neutrino Facility (LBNF) in the US. She is also a member of the NA61/SHINE particle production experiment at CERN, but as that effort is supported by other funds, it will not be discussed further here. T2K was designed to search for the disappearance of muon neutrinos (?_?) and the appearance of electron neutrinos (?_e), using a beam of muon neutrino beam that travels 295 km across Japan towards the Super-Kamiokande detector. In 2011 T2K first reported indications of ?_e appearance, a previously unobserved mode of neutrino oscillations. In the past year, T2K has published a combined analysis of ?_? disappearance and ?_e appearance, and began collecting taking data with a beam of anti-neutrinos, instead of neutrinos, to search for hints of violation of the CP symmetry of the universe. The proposed DUNE experiment has similar physics goals to T2K, but will be much more sensitive due to its more massive detectors and new higher-intensity neutrino beam. This effort will be very high-priority particle physics project in the US over the next decade.

  7. Is the neutrino as changeable as a weather vane?

    CERN Multimedia

    2003-01-01

    We conclude the first part of our feature on the CNGS project with a sneak preview of next week's articles. The neutrino is something of a headache for physicists, who have come to wonder whether the muon neutrino is capable of changing into a tau neutrino. This hypothesis would explain the deficit of muon neutrinos in the atmosphere. When cosmic rays interact with the nuclei of atoms from the upper atmosphere, two kinds of neutrino are produced: muon neutrinos and electron neutrinos. Measurements have shown that there are fewer muon neutrinos than would normally have been expected. In 1998, the Super Kamiokande experiment in Japan revealed that the oscillation (or transformation) of muon neutrinos into tau neutrinos could be responsible for this shortfall, an idea which was supported, shortly afterwards, by the K2K (KEK to Kamioka) experiment. The main purpose of the experiments at the CNGS (CERN Neutrinos to Gran Sasso) project is to demonstrate this oscillation, which is thought to occur over long distan...

  8. Neutrinos from Stored Muons nuSTORM: Expression of Interest

    CERN Document Server

    Adey, D.; Ankenbrandt, C.M.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; Blondel, A.; Bogacz, S.A.; Booth, C.; Boyd, S.B.; Bravar, A.; Brice, S.J.; Bross, A.D.; Cadoux, F.; Cease, H.; Cervera, A.; Cobb, J.; Colling, D.; Coney, L.; Dobbs, A.; Dobson, J.; Donini, A.; Dornan, P.J.; Dracos, M.; Dufour, F.; Edgecock, R.; Evans, J.; Geelhoed, M.; George, M.A.; Ghosh, T.; de Gouvea, A.; Gomez-Cadenas, J.J.; Haesler, A.; Hanson, G.; Harrison, P.F.; Hartz, M.; Hernandez, P.; Hernando-Morata, J.A.; Hodgson, P.J.; Huber, P.; Izmaylov, A.; Karadhzov, Y.; Kobilarcik, T.; Kopp, J.; Kormos, L.; Korzenev, A.; Kurup, A.; Kuno, Y.; Kyberd, P.; Lagrange, J.B.; Laing, A.M.; Link, J.; Liu, A.; Long, K.R.; McCauley, N.; McDonald, K.T.; Mahn, K.; Martin, C.; Martin, J.; Mena, O.; Mishra, S.R.; Mokhov, N.; Morfin, J.; Mori, Y.; Murray, W.; Neuffer, D.; Nichol, R.; Noah, E.; Palmer, M.A.; Parke, S.; Pascoli, S.; Pasternak, J.; Popovic, M.; Ratoff, P.; Ravonel, M.; Rayner, M.; Ricciardi, S.; Rogers, C.; Rubinov, P.; Santos, E.; Sato, A.; Scantamburlo, E.; Sedgbeer, J.K.; Smith, D.R.; Smith, P.J.; Sobczyk, J.T.; Soldner-Rembold, S.; Soler, F.J.P.; Sorel, M.; Stahl, A.; Stanco, L.; Stamoulis, P.; Striganov, S.; Tanaka, H.; Taylor, I.J.; Touramanis, C.; Tunnell, C.D.; Uchida, Y.; Vassilopoulos, N.; Wascko, M.O.; Wilking, M.J.; Weber, A.; Wildner, E.; Winter, W.; Yang, U.K.; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2013-01-01

    The $ u$STORM facility has been designed to deliver beams of $ u_e$ and $ u_mu$ from the decay of a stored $mu^pm$ beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of $ u_e N$ and $ u_mu N$ scattering cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount $ u$STORM. In view of the fact that no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how $ u$STORM could be implemented at CERN; and develop options for decisive European...

  9. Golden measurements at a neutrino factory

    International Nuclear Information System (INIS)

    Cervera, A.; Donini, A.; Gavela, M.B.; Gomez Cadenas, J.J.; Hernandez, P.; Mena, O.; Rigolin, S.

    2000-01-01

    The precision and discovery potential of a neutrino factory based on muon storage rings is studied. For three-family neutrino oscillations, we analyse how to measure or severely constraint the angle θ 13 , CP-violation, MSW effects and the sign of the atmospheric mass difference Δm 2 23 . We present a simple analytical formula for the oscillation probabilities in matter, with all neutrino mass differences non-vanishing, which clarifies the subtleties involved in disentangling the unknown parameters. The appearance of 'wrong-sign muons' at three reference baselines is considered: 732 km, 3500 km, and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be O (3000 km). Analyses combining the information from different baselines are also presented

  10. Personal dosimetry in a mixed field of high energy muons and neutrons

    International Nuclear Information System (INIS)

    Cossairt, J.D.; Elwyn, A.J.

    1986-11-01

    High energy accelerators quite often emit muons. These particles behave in matter as would heavy electrons and are thus difficult to attenuate with shielding in many situations. Hence, these muons can be a source of radiation exposure to personnel and suitable methods of measuring the absorbed dose received to these people is obviously required. In practical situations, such muon radiation fields are often mixed with neutrons, well-known to be an even more troublesome particle species with respect to dosimetry. In this paper, we report on fluence measurements made in such a mixed radiation field and a comparison of dosimeter responses. We conclude that commercial self-reading dosimeters and film badges provided an adequate measure of the absorbed dose due to muons

  11. IceCube constraints on fast-spinning pulsars as high-energy neutrino sources

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ke [Department of Astronomy, University of Maryland, College Park, MD, 20742 (United States); Kotera, Kumiko [Institut d' Astrophysique de Paris, UMR 7095 – CNRS, Université Pierre $ and $ Marie Curie, 98 bis boulevard Arago, 75014, Paris (France); Murase, Kohta [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle and Gravitational Astrophysics, The Pennsylvania State University, PA 16802 (United States); Olinto, Angela V., E-mail: kefang@umd.edu, E-mail: kotera@iap.fr, E-mail: murase@psu.edu, E-mail: olinto@kicp.uchicago.edu [Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)

    2016-04-01

    Relativistic winds of fast-spinning pulsars have been proposed as a potential site for cosmic-ray acceleration from very high energies (VHE) to ultrahigh energies (UHE). We re-examine conditions for high-energy neutrino production, considering the interaction of accelerated particles with baryons of the expanding supernova ejecta and the radiation fields in the wind nebula. We make use of the current IceCube sensitivity in diffusive high-energy neutrino background, in order to constrain the parameter space of the most extreme neutron stars as sources of VHE and UHE cosmic rays. We demonstrate that the current non-observation of 10{sup 18} eV neutrinos put stringent constraints on the pulsar scenario. For a given model, birthrates, ejecta mass and acceleration efficiency of the magnetar sources can be constrained. When we assume a proton cosmic ray composition and spherical supernovae ejecta, we find that the IceCube limits almost exclude their significant contribution to the observed UHE cosmic-ray flux. Furthermore, we consider scenarios where a fraction of cosmic rays can escape from jet-like structures piercing the ejecta, without significant interactions. Such scenarios would enable the production of UHE cosmic rays and help remove the tension between their EeV neutrino production and the observational data.

  12. Ratio of νe/νμ in atmospheric neutrinos

    International Nuclear Information System (INIS)

    Barr, S.; Gaisser, T.K.; Tilav, S.

    1988-01-01

    When the effect of muon polarization is included, the calculated ratio ν e /ν μ for atmospheric neutrinos with energies above ≅ 200 MeV is increased by 10-20% compared to the result when polarization is neglected. We give an analytic derivation of this ratio for the artificial case of a power law differential spectrum of parent pions propagating in an atmosphere in which all pions and muons decay. This is sufficient to estimate the effect on the calculated ratio of electron-like to muon-like events induced by neutrino interactions in large underground detectors. (orig.)

  13. Search for neutrino-induced particle showers with IceCube-40

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2014-01-01

    optimized for different energy regimes. The analysis with the lowest energy threshold (2 TeV) targeted atmospheric neutrinos. A total of 67 events were found, consistent with the expectation of 41 atmospheric muons and 30 atmospheric neutrino events. The two other analyses targeted a harder, astrophysical...

  14. Neutrino factory and muon collider collaboration R and D activities

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaborat

    2001-01-01

    The Neutrino Factory and Muon Collider Collaboration (MC) comprises about 140 U.S. and non-U.S. accelerator and particle physicists. The MC is carrying out an R and D program aimed at validating the critical design concepts required for the construction of such machines. We are committed to encouraging international cooperation and coordination of the R and D effort. Main activities of the MC include a Targetry program, a MUCOOL program, a component development program, and a theory and simulation effort. Moreover, the MC has participated in several feasibility studies for a complete Neutrino Factory facility, with the aim of identifying any additional R and D activities needed to prepare a Zeroth-order Design Report (ZDR) in about two years and a Conceptual Design report (CDR) about two years thereafter. In this paper, the R and D goals in each area will be indicated, and the present status and future plans of the R and D program will be described

  15. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    Science.gov (United States)

    Bogacz, S. A.

    2018-02-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H- and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.

  16. Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, P.; et al.

    2017-10-17

    A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 km and 735 km, using a combined MINOS and MINOS+ exposure of $16.36\\times10^{20}$ protons-on-target. A simultaneous fit to the charged-current muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3+1 model. The most stringent limit to date is set on the mixing parameter $\\sin^2\\theta_{24}$ for most values of the sterile neutrino mass-splitting $\\Delta m^2_{41} > 10^{-4}$ eV$^2$.

  17. A research program in experimental high energy physics: Task B, Progress report for contract period January 1, 1987 to December 31, 1987

    International Nuclear Information System (INIS)

    Widgoff, M.

    1987-01-01

    The group at Brown has joined a collaboration to carry out experiments in high energy physics using astrophysical sources, in the new underground laboratory being prepared at Gran Sasso. We are building a detector (LVD) which includes a large volume of liquid scintillator together with a multilayered omnidirectional tracking system of high spatial and angular resolution, in order to study particle physics in a domain beyond the range of accelerators now or soon to be available. Among the physics questions we will be able to address very effectively are neutrino oscillations, discrete sources of high energy radiation including muons and neutrinos, dark matter and exotic particles, neutrinos from stellar collapse, and monopoles. During the past year, analysis has continued on the data of SLAC experiments BC72/73/75, studying the interactions in hydrogen of 20 GeV polarized photons. Inclusive γp interactions are being studied in detail in this high statistics sample. The hybrid detector built by the Tau Neutrino Collaboration, with the Tohoku one-meter holographic freon bubble chamber as target, has a successful first run at the Tevatron (E745), and data obtained on muon neutrino interactions at high energies are being analyzed. The system has been upgraded for a second run in the Tevatron muon neutrino beam during the summer and fall of 1987. Meanwhile, analysis of data on some aspects of interactions of hadrons with protons and heavier nuclei is continuing (Fermilab E565, E570, E299, E154). Monte Carlo studies of various calorimeter designs have been carried out, with a view to finding ways to employ absorber materials other than uranium effectively, by making use of a software technique to substitute for the compensating effect of uranium. The technique has been found to be useful in improving the energy resolution obtainable with Pb or Cu absorbers

  18. Scrutinizing supergravity models through neutrino telescopes

    CERN Document Server

    Gandhi, R; Nanopoulos, Dimitri V; Yuan, K; Zichichi, Antonino; Gandhi, Raj; Lopez, Jorge L.; Yuan, Kajia

    1994-01-01

    Galactic halo neutralinos ($\\chi$) captured by the Sun or Earth produce high-energy neutrinos as end-products of various annihilation modes. These neutrinos can travel from the Sun or Earth cores to the neighborhood of underground detectors (``neutrino telescopes") where they can interact and produce upwardly-moving muons. We compute these muon fluxes in the context of the minimal $SU(5)$ supergravity model, and the no-scale and dilaton $SU(5)\\times U(1)$ supergravity models. At present, with the Kamiokande 90\\% C.L. upper limits on the flux, only a small fraction of the parameter space of the $SU(5)\\times U(1)$ models is accessible for $m_\\chi\\sim m_{\\rm Fe}$, which in turn implies constraints for the lightest chargino mass around 100 GeV for a range of $\\tan\\beta$ values. We also delineate the regions of parameter space that would be accessible with the improvements of experimental sensitivity expected in the near future at Gran Sasso, Super-Kamiokande, and other facilities such as DUMAND and AMANDA, curren...

  19. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  20. IceVeto: Extended PeV neutrino astronomy in the Southern Hemisphere with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan [Physikalisches Institut IIIB RWTH Aachen D-52056, Aachen (Germany); Collaboration: IceCube Collaboration

    2014-11-18

    IceCube, the world's largest high-energy neutrino observatory, built at the South Pole, recently reported evidence of an astrophysical neutrino flux extending to PeV energies in the Southern Hemisphere. This observation raises the question of how the sensitivity in this energy range could be further increased. In the down-going sector, in IceCube's case the Southern Hemisphere, backgrounds from atmospheric muons and neutrinos pose a challenge to the identification of an astrophysical neutrino flux. The IceCube analysis, that led to the evidence for astrophysical neutrinos, is based on an in-ice veto strategy for background rejection. One possibility available to IceCube is the concept of an extended surface detector, IceVeto, which could allow the rejection of a large fraction of atmospheric backgrounds, primarily for muons from cosmic ray (CR) air showers as well as from neutrinos in the same air showers. Building on the experience of IceTop/IceCube, possibly the most cost-effective and sensitive way to build IceVeto is as an extension of the IceTop detector, with simple photomultiplier based detector modules for CR air shower detection. Initial simulations and estimates indicate that such a veto detector will significantly increase the sensitivity to an astrophysical flux of ν{sub μ} induced muon tracks in the Southern Hemisphere compared to current analyses. Here we present the motivation and capabilities based on initial simulations. Conceptual ideas for a simplified surface array will be discussed briefly.

  1. IceVeto. An extension of IceTop to veto air showers for neutrino astronomy with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Kemp, Julian; Raedel, Leif; Rongen, Martin; Schaufel, Merlin; Stahlberg, Martin; Hansmann, Bengt; Wiebusch, Christopher [RWTH Aachen University, Physikalische Institut III b (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube is the world's largest high-energy neutrino observatory, built at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the southern hemisphere. This motivates a significant extension of IceTop. First estimates indicate that such a veto detector will more than double the discovery potential of current point source analyses. Here, we present the motivation and capabilities of different technologies based on simulations and measurements.

  2. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Kiuchi, Kenta [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)

    2017-10-10

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

  3. Computation with Inverse States in a Finite Field FPα: The Muon Neutrino Mass, the Unified Strong-Electroweak Coupling Constant, and the Higgs Mass

    International Nuclear Information System (INIS)

    Dai, Yang; Borisov, Alexey B.; Boyer, Keith; Rhodes, Charles K.

    2000-01-01

    The construction of inverse states in a finite field F P α enables the organization of the mass scale with fundamental octets in an eight-dimensional index space that identifies particle states with residue class designations. Conformance with both CPT invariance and the concept of supersymmetry follows as a direct consequence of this formulation. Based on two parameters (P α and g α ) that are anchored on a concordance of physical data, this treatment leads to (1) a prospective mass for the muon neutrino of approximately27.68 meV, (2) a value of the unified strong-electroweak coupling constant α* = (34.26) -1 that is physically defined by the ratio of the electron neutrino and muon neutrino masses, and (3) a see-saw congruence connecting the Higgs, the electron neutrino, and the muon neutrino masses. Specific evaluation of the masses of the corresponding supersymmetric Higgs pair reveals that both particles are superheavy (> 10 18 GeV). No renormalization of the Higgs masses is introduced, since the calculational procedure yielding their magnitudes is intrinsically divergence-free. Further, the Higgs fulfills its conjectured role through the see-saw relation as the particle defining the origin of all particle masses, since the electron and muon neutrino systems, together with their supersymmetric partners, are the generators of the mass scale and establish the corresponding index space. Finally, since the computation of the Higgs masses is entirely determined by the modulus of the field P α , which is fully defined by the large-scale parameters of the universe through the value of the universal gravitational constant G and the requirement for perfect flatness (Omega = 1.0), the see-saw congruence fuses the concepts of mass and space and creates a new unified archetype

  4. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  5. Latest results from the IceCube neutrino observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schukraft, Anne [RWTH Aachen Univ. (Germany). III. Physikalisches Inst.; Collaboration: IceCube-Collaboration

    2013-07-01

    The IceCube Neutrino Observatory is the world's largest neutrino detector with a broad physics program covering the neutrino spectrum from several tens of GeV up to EeV energies. With its completion in 2010 it has reached its full sensitivity and analyses with unprecedented statistics are performed. One of the major research efforts is the search for extraterrestrial neutrino sources, which have not yet been discovered but would be a smoking gun for hadronic acceleration and could allow to identify the sources of high-energy cosmic rays. Such include steady galactic and extragalactic source candidates, e.g. Supernova Remnants and Active Galactic Nuclei, as well as transient phenomena like flaring objects and Gamma Ray Bursts. With its searches for diffuse neutrino fluxes in different energy ranges, IceCube is sensitive to fluxes of prompt atmospheric neutrinos, extragalactic neutrinos and cosmogenic neutrinos. In the low-energy range below 100 GeV, IceCube supplements classical neutrino oscillation experiments with its sensitivity to the deficit of atmospheric muon neutrinos at 25 GeV and searches for neutrinos from the annihilation of dark matter. The IceCube physics program is complemented by the surface array IceTop, which together with the detector part inside the ice serves for cosmic ray anisotropy, spectrum and composition measurements around the knee. The presentation summarizes ongoing IceCube physics analyses and recent results.

  6. Neutrino anomaly and -nucleus interactions

    Indian Academy of Sciences (India)

    experiments [3]. These experimental results on electron and muon type neutrinos are not ... and experimentally. This is one of the major activities .... experiments. While this approach is expected to give reliable results at higher energies,.

  7. Studies of high energy phenomena using muons. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract DE-FG02-91ER40641.A000 during the period from 1992 to 1995, and is the final report for this award. The group had three main efforts. The first was the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, the authors were members of the SDC collaboration at the SSC. The group consisted of four faculty members, three research associates, and undergraduate and graduate students. The D0 experiment at Fermilab is one of two (the other is CDF) general purpose experiments operating at the Tevatron proton-antiproton collider. Starting in the Fall of 1992, the first data collection occurred at D0. Physics publications are tabulated in the Appendix, with the discovery of the top quark in 1995 being the most prominent. Members of the NIU group worked on a variety of physics topics: Hedin on B-physics and the top-quark search, Fortner on Drell-Yan and other QCD topics, Green on di-Boson production, and Markeloff on excited-quark states. Hedin was also co-coordinator of the B-physics group during this period. The primary emphasis of the NIU D0 group was the muon system. NIU had particular responsibilities for data acquisition; chamber calibration; the Level-2 trigger; and the reconstruction. Hedin also was coordinator of muon software and had the responsibility for muon identification. Work on these items is summarized in a series of D0 Notes listed in the Appendix. Willis, Sirotenko, Hedin and Fortener were also members of the SDC collaboration at the SSC. NIU was a key participant in the calculation of low-energy neutron and photon backgrounds in the SDC experiment, and in designing shielding for the proposed muon system

  8. Energy loss of muons in the energy range 1-10000 GeV

    International Nuclear Information System (INIS)

    Lohmann, W.; Kopp, R.; Voss, R.

    1985-01-01

    A summary is given of the most recent formulae for the cross-sections contributing to the energy loss of muons in matter, notably due to electro-magnetic interactions (ionization, bremsstrahlung and electron-pair production) and nuclear interactions. Computed energy losses dE/dx are tabulated for muons with energy between 1 GeV and 10,000 GeV in a number of materials commonly used in high-energy physics experiments. In comparison with earlier tables, these show deviations that grow with energy and amount to several per cent at 200 GeV muon energy. (orig.)

  9. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  10. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope,

  11. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data

    International Nuclear Information System (INIS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.; Sanuki, T.

    2007-01-01

    Using the 'modified DPMJET-III' model explained in the previous paper [T. Sanuki et al., preceding Article, Phys. Rev. D 75, 043005 (2007).], we calculate the atmospheric neutrino flux. The calculation scheme is almost the same as HKKM04 [M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 70, 043008 (2004).], but the usage of the 'virtual detector' is improved to reduce the error due to it. Then we study the uncertainty of the calculated atmospheric neutrino flux summarizing the uncertainties of individual components of the simulation. The uncertainty of K-production in the interaction model is estimated using other interaction models: FLUKA'97 and FRITIOF 7.02, and modifying them so that they also reproduce the atmospheric muon flux data correctly. The uncertainties of the flux ratio and zenith angle dependence of the atmospheric neutrino flux are also studied

  12. Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Stratakis, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Palmer, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Delahaye, J.-P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Ryne, R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cummings, M. A. [Muons, Inc., Batavia, IL(United States)

    2017-05-01

    The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν$\\bar{e}$) and ν$\\bar{μ}$) (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent

  13. Properties and interactions of neutrino (1977-1980) beam dump experiments

    International Nuclear Information System (INIS)

    Tsukerman, I.S.

    1981-01-01

    Data on search of instantaneous muon and electron neutrinos in experiments of beam dump type are presented in the review. Neutrino is formed in decays of particles rusulted from pN interactions. First experiments of the dump beam type have been realized at the CERN/SPS accelerator in 1975 and Serpukhov accelerator by the ITEF-IFVE group in 1977 with proton energies of 26 and 70 GeV, respectively. The results of beam dump experiments of the second generation in 1979 in CERN are considered in detail. These experiments have been intended for measuring the effect of instantaneous neutrino. The conclusion is drawn on the presence of instantaneous muon neutrinos in the above experiments [ru

  14. Correlations between muons and low energy pulses at LSD of the Mont Blanc laboratory near the time of SN1987A explosion

    International Nuclear Information System (INIS)

    Dadykin, V.L.; Khalchukov, F.F.; Korchagin, P.V.; Korolkova, E.V.; Kudryavtsev, V.A.; Mal'gin, A.S.; Ryasny, V.G.; Ryazhskaya, O.G.; Yakushev, V.F.; Zatsepin, G.T.; Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Fulgione, W.; Galeotti, P.; Saavedra, O.; Trinchero, G.; Vernetto, S.; Turin Univ.

    1989-01-01

    We have analysed the data of LSD from February 10, 1987, to March 7, 1987, in order to search for autocorrelations between all pulses detected by LSD with energy higher than 5 MeV like those occurred at ∼ 3:00 UT on February 23, 1987, between the pulses detected by 3 neutrino telescopes and 2 gravitational wave antennae. We have found 9 pairs of correlated pulses (muon + low energy pulse) from 5:42 UT to 10:13 UT on February 23, 1987. The time differences of pulses in the pairs are less than 2 s, the first pulse in the pair being either muon or low energy pulse. The frequency of such random poissonian fluctuations is ∼1/(10 years). There are no correlations outside statistics between low energy, low energy pulses and muon, muon pulses detected by LSD during the whole time period

  15. The pion (muon) energy production cost in muon catalyzed fusion

    International Nuclear Information System (INIS)

    Fadeev, N.G.; Solov'ev, M.I.

    1995-01-01

    The article presents the main steps in the history of the study on the muon catalysis of nuclear fusion. The practical application of the muon catalysis phenomenon to obtain the energy gain is briefly discussed. The details of the problem to produce pion (muon) yield with minimal energy expenses have been considered. 31 refs., 4 tabs

  16. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  17. Measurement of neutrino oscillations in atmospheric neutrinos with the IceCube DeepCore detector

    Energy Technology Data Exchange (ETDEWEB)

    Yanez Garza, Juan Pablo

    2014-06-02

    The study of neutrino oscillations is an active field of research. During the last couple of decades many experiments have measured the effects of oscillations, pushing the field from the discovery stage towards an era of precision and deeper understanding of the phenomenon. The IceCube Neutrino Observatory, with its low energy subarray, DeepCore, has the possibility of contributing to this field. IceCube is a 1 km{sup 3} ice Cherenkov neutrino telescope buried deep in the Antarctic glacier. DeepCore, a region of denser instrumentation in the lower center of IceCube, permits the detection of neutrinos with energies as low as 10 GeV. Every year, thousands of atmospheric neutrinos around these energies leave a strong signature in DeepCore. Due to their energy and the distance they travel before being detected, these neutrinos can be used to measure the phenomenon of oscillations. This work starts with a study of the potential of IceCube DeepCore to measure neutrino oscillations in different channels, from which the disappearance of ν{sub μ} is chosen to move forward. It continues by describing a novel method for identifying Cherenkov photons that traveled without being scattered until detected direct photons. These photons are used to reconstruct the incoming zenith angle of muon neutrinos. The total energy of the interacting neutrino is also estimated. In data taken in 343 days during 2011-2012, 1487 neutrino candidates with an energy between 7 GeV and 100 GeV are found inside the DeepCore volume. Compared to the expectation from the atmospheric neutrino flux without oscillations, this corresponds to a deficit of about 500 muon neutrino events. The oscillation parameters that describe the data best are sin{sup 2}(2θ{sub 23})=1(>0.94 at 68 % C.L.) and vertical stroke Δm{sup 2}{sub 32} vertical stroke =2.4{sub -0.4}{sup +0.6}.10{sup -3} eV{sup 2}, which are in agreement with the results reported by other experiments. The simulation follows the data closely

  18. Fiber based hydrophones for ultra-high energy neutrino detection

    NARCIS (Netherlands)

    Buis, E.J.; Doppenberg, E.J.J.; Eijk, D. van; Lahmann, R.; Nieuwland, R.A.; Toet, P.M.

    2014-01-01

    It is a well studied process [1, 2] that energy deposition of cosmic ray particles in water that generate thermo-acoustic signals. Hydrophones of sufficient sensitivity could measure this signal and provide a means of detecting ultra-high energetic cosmic neutrinos. We investigate optical

  19. SEARCH FOR NEUTRINOS IN SUPER-KAMIOKANDE ASSOCIATED WITH GRAVITATIONAL-WAVE EVENTS GW150914 AND GW151226

    International Nuclear Information System (INIS)

    Abe, K.; Haga, K.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tasaka, S.; Tomura, T.

    2016-01-01

    We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational-wave events, GW150914 and GW151226, as well as LVT151012, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutrino events within a time window of ±500 s around the gravitational-wave detection time. Four neutrino candidates are found for GW150914, and no candidates are found for GW151226. The remaining neutrino candidates are consistent with the expected background events. We calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational-wave events, which depends on event energy and topologies. Considering the upward-going muon data set (1.6 GeV–100 PeV), the neutrino fluence limit for each gravitational-wave event is 14–37 (19–50) cm"−"2 for muon neutrinos (muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits for both gravitational-wave events range from 2.4 × 10"4 to 7.0 × 10"9 cm"−"2.

  20. Interpreting OPERA results on superluminal neutrino

    CERN Document Server

    Giudice, Gian F; Strumia, Alessandro

    2012-01-01

    OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. The superluminal limit velocity of neutrinos must be nearly flavor independent, must decrease steeply in the low-energy domain, and its energy dependence must depart from a simple power law. We construct illustrative models that satisfy these conditions, by introducing Lorentz violation in a sector with light sterile neutrinos. We point out that, quite generically, electroweak quantum corrections transfer the information of superluminal neutrino properties into Lorentz violations in the electron and muon sector, in apparent conflict with experimental data.

  1. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is

  2. Ultrahigh energy cosmic ray fluxes and cosmogenic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor

    2013-04-15

    We discuss the possible origin of the two neutrino shower events reported by the IceCube Collaboration at the Neutrino 2012 conference in Kyoto, Japan. The suspicion early on was that these two events are due to cosmogenic neutrinos and possibly by electron antineutrinos generating the Glashow resonance. The difference of the energy of the W{sup −} in the resonance and the energy estimates of the detected cascade events makes this assumption unlikely. The conclusion then may be that these high energy neutrinos are produced at sources of high energy cosmic rays such as Active Galactic Nuclei.

  3. Studying High pT muons in Cosmic-Ray Air Showers

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    Most cosmic-ray air shower arrays have focused on detecting electromagnetic shower particles and low energy muons. A few groups (most notably MACRO + EASTOP and SPASE + AMANDA) have studied the high energy muon component of showers. However, these experiments had small solid angles, and did not study muons far from the core. The IceTop + IceCube combination, with its 1 km 2 muon detection area can study muons far from the shower core. IceCube can measure their energy loss (dE/dx), and hence their energy. With the energy, and the known distribution of production heights, the transverse momentum (p T ) spectrum of high p T muons can be determined. The production of the semuons is calculable in perturbative QCD, so the measured muon spectra can be used to probe the composition of incident cosmic-rays

  4. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  5. AMANDA Observations Constrain the Ultrahigh Energy Neutrino Flux

    Energy Technology Data Exchange (ETDEWEB)

    Halzen, Francis; /Wisconsin U., Madison; Hooper, Dan; /Fermilab

    2006-05-01

    A number of experimental techniques are currently being deployed in an effort to make the first detection of ultra-high energy cosmic neutrinos. To accomplish this goal, techniques using radio and acoustic detectors are being developed, which are optimally designed for studying neutrinos with energies in the PeV-EeV range and above. Data from the AMANDA experiment, in contrast, has been used to place limits on the cosmic neutrino flux at less extreme energies (up to {approx}10 PeV). In this letter, we show that by adopting a different analysis strategy, optimized for much higher energy neutrinos, the same AMANDA data can be used to place a limit competitive with radio techniques at EeV energies. We also discuss the sensitivity of the IceCube experiment, in various stages of deployment, to ultra-high energy neutrinos.

  6. Neutrinos at CERN

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    CERN's long and distinguished neutrino tradition began in 1958 at the then new 500 MeV synchrocyclotron (SC) with the first observation of the decay of a charged pion into an electron and a neutrino. At that time, the first ideas on the special (vector/axial vector) structure of the weak interactions had been put forward by Feynman and Gell-Mann and by Marshak and Sudarshan, but the continual non-observation of that charged pion decay was holding up progress. This decay is only one part in ten thousand, and is masked by the dominant muon-neutrino channel. A special telescope was built to pick up the high energy electrons from the pion decay. In 1962 came another SC neutrino success, with the first measurement of the decay of a charged pion into a neutral one, with emission of an electron and a neutrino. Meanwhile the main thrust of CERN's neutrino effort was taking shape at the PS. By the close of 1960, CERN had decided to attack neutrino physics using several detectors - a 1m heavy liquid bubble chamber from Andre Lagarrigue's team in Paris, a CERN 1 m heavy liquid bubble chamber, and a hybrid chamber/counter from a group led by Helmut Faissner

  7. An algorithm for the reconstruction of neutrino-induced showers in the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Brânzas, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; El Moursli, R.C.; Chiarusi, T.; Circella, M.; Coelho, J.A.B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A.F.; Deschamps, A.; de Boris, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L.A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Garcia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, J.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    Muons created by nm charged current (CC) interactions in the water surrounding the ANTARES neutrino telescopehave been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highlyenergetic muons inducing Cherenkov radiation in the water are reconstructed

  8. Precise measurement of neutrino and anti-neutrino differential cross sections on iron

    Energy Technology Data Exchange (ETDEWEB)

    Tzanov, Martin Mihaylov [Pittsburgh U.

    2005-11-01

    This thesis will present a precise measurement of the differential cross section for charged current neutrino and anti-neutrino scattering from iron. The NuTeV experiment took data during 1996-97 and collected 8.6 10 º and 2.4 10 º charged-current (CC) interactions. The experiment combines sign-selected neutrino and antineutrino beams and the upgraded CCFR iron-scintillator neutrino detector. A precision continuous calibration beam was used to determine the muon and hadron energy scales to a precision of about a factor of two better than previous experiments. The structure functions F (x,Q2) and xF3(x,Q2) are extracted and compared with theory and previous measurements.

  9. A deep sea telescope for high energy neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Aslanides, E.; Aubert, J.J.; Basa, S. [and others

    1999-05-01

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km{sup 2}, along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  10. A deep sea telescope for high energy neutrinos

    International Nuclear Information System (INIS)

    Aslanides, E.; Aubert, J.J.; Basa, S.

    1999-05-01

    This document presents the scientific motivation for building a high energy neutrino undersea detector, with an effective area of 0.1 km 2 , along with a review of the technical issues involved in its design and construction. It contents: the scientific program, the detection principles, the research and development program, the detector design and performances and complementary technique. (A.L.B.)

  11. Optimized Neutrino Factory for small and large θ13

    International Nuclear Information System (INIS)

    Agarwalla, Sanjib Kumar

    2013-01-01

    Recent results from long baseline neutrino oscillation experiments point towards a non-zero value of θ 13 at around 3σ confidence level. In the coming years, further ratification of this result with high significance will have crucial impact on the planning of the future long baseline Neutrino Factory setup aimed to explore leptonic CP violation and the neutrino mass ordering. In this talk, we discuss the baseline and energy optimization of the Neutrino Factory including the latest simulation results on the magnetized iron neutrino detector (MIND) in the light of both small and large θ 13 . We find that in case of small θ 13 , baselines of about 2500 to 5000 km is the optimal choice for the CP violation measurement with E μ as low as 12 GeV can be considered. However, for large θ 13 , we show that the lower threshold and the backgrounds reconstructed at lower energies allow in fact for muon energies as low as 5 to 8 GeV at considerably shorter baselines, such as Fermilab to Homestake. This suggests that with the latest MIND simulation, low- and high-energy versions of the Neutrino Factory are just two different forms of the same experiment optimized for different regions of the parameter space.

  12. Studies of scintillator optical properties, electronics simulation and data analysis for the BOREXINO neutrino experiment

    International Nuclear Information System (INIS)

    Lewke, Timo

    2013-01-01

    Borexino is a state-of-the-art low-energy neutrino detector. Many results, like the first real-time measurement of 7 Be neutrinos and the detection of pep neutrinos, could be reported. However, still some parts of the solar neutrino spectrum remain unseen. With a better detector understanding and monitoring these unexploited regions could be investigated. The results achieved in course of the present thesis account for accomplishing these improvements. First, the ionization quenching for electrons in liquid scintillators is investigated using a specially designed and build experiment. This effect is especially interesting for low-energy events and, therefore, has a direct influence on the possibility to detect CNO and pp neutrinos. With a coincidence circuit and the properties of Compton scattering the quenching is analysed. Further, the so-called Birks factor kB is measured for the scintillator used in the running Borexino experiment. As the Birks factor is also an important input parameter to simulations of the future large scale neutrino experiment LENA, the Birks factor of LENA's most probable scintillator is determined as well. Second, as muons are responsible for a large amount of background, an excellent working muon veto is essential. During this thesis, it was achieved to monitor the muon tagging stability and efficiency for a long period of time. Further, to verify the muon track reconstruction Monte Carlo simulations are needed. For the Inner Detector of Borexino the simulation is fully operable. In course of this thesis the complete electronics system of the Outer Detector is included into the simulation tool. In this way, a functioning simulation mimicking real physical events is generated. In addition, the output of the simulation can now be accessed and evaluated by the normal data handling system of Borexino. A comparison to real data and, therefore, validating the muon track reconstruction is now possible. Last, to check the neutron tagging, CNGS

  13. Studies of scintillator optical properties, electronics simulation and data analysis for the BOREXINO neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewke, Timo

    2013-10-18

    Borexino is a state-of-the-art low-energy neutrino detector. Many results, like the first real-time measurement of {sup 7}Be neutrinos and the detection of pep neutrinos, could be reported. However, still some parts of the solar neutrino spectrum remain unseen. With a better detector understanding and monitoring these unexploited regions could be investigated. The results achieved in course of the present thesis account for accomplishing these improvements. First, the ionization quenching for electrons in liquid scintillators is investigated using a specially designed and build experiment. This effect is especially interesting for low-energy events and, therefore, has a direct influence on the possibility to detect CNO and pp neutrinos. With a coincidence circuit and the properties of Compton scattering the quenching is analysed. Further, the so-called Birks factor kB is measured for the scintillator used in the running Borexino experiment. As the Birks factor is also an important input parameter to simulations of the future large scale neutrino experiment LENA, the Birks factor of LENA's most probable scintillator is determined as well. Second, as muons are responsible for a large amount of background, an excellent working muon veto is essential. During this thesis, it was achieved to monitor the muon tagging stability and efficiency for a long period of time. Further, to verify the muon track reconstruction Monte Carlo simulations are needed. For the Inner Detector of Borexino the simulation is fully operable. In course of this thesis the complete electronics system of the Outer Detector is included into the simulation tool. In this way, a functioning simulation mimicking real physical events is generated. In addition, the output of the simulation can now be accessed and evaluated by the normal data handling system of Borexino. A comparison to real data and, therefore, validating the muon track reconstruction is now possible. Last, to check the neutron

  14. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; Caracciolo, V.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, P.O. Box 918/3, Beijing (China); D' Angelo, A.; Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Rome (Italy); INFN, sez. Roma, Rome (Italy); Montecchia, F. [INFN, sez. Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipt. di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy of Sciences, Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, P.O. Box 918/3, Beijing (China); University of Jing Gangshan, Ji' an, Jiangxi (China)

    2014-12-01

    This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individual papers; they are recalled here together with few simple considerations which demonstrate the incorrectness of the claim reported in Davis (PRL 113:081302, 2014). (orig.)

  15. No role for neutrons, muons and solar neutrinos in the DAMA annual modulation results

    International Nuclear Information System (INIS)

    Bernabei, R.; D'Angelo, S.; Di Marco, A.; Belli, P.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; D'Angelo, A.; Incicchitti, A.; Montecchia, F.; Ye, Z.P.

    2014-01-01

    This paper summarizes in a simple and intuitive way why the neutrons, the muons and the solar neutrinos cannot give any significant contribution to the DAMA annual modulation results. A number of these elements have already been presented in individual papers; they are recalled here together with few simple considerations which demonstrate the incorrectness of the claim reported in Davis (PRL 113:081302, 2014). (orig.)

  16. IceCube Gen2. The next-generation neutrino observatory for the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Santen, Jakob van [DESY, Zeuthen (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    The IceCube Neutrino Observatory is a cubic-kilometer Cherenkov telescope buried in the ice sheet at the South Pole that detects neutrinos of all flavors with energies from tens of GeV to several PeV. The instrument provided the first measurement of the flux of high-energy astrophysical neutrinos, opening a new window to the TeV universe. At the other end of its sensitivity range, IceCube has provided precision measurements of neutrino oscillation parameters that are competitive with dedicated accelerator-based experiments. Here we present design studies for IceCube Gen2, the next-generation neutrino observatory for the South Pole. Instrumenting a volume of more that 5 km{sup 3} with over 100 new strings, IceCube Gen2 will have substantially greater sensitivity to high-energy neutrinos than current-generation instruments. PINGU, a dense infill array, will lower the energy threshold of the inner detector region to 4 GeV, allowing a determination of the neutrino mass hierarchy. On the surface, a large air shower detector will veto high-energy atmospheric muons and neutrinos from the southern hemisphere, enhancing the reach of astrophysical neutrino searches. With its versatile instrumentation, the IceCube Gen2 facility will allow us to explore the neutrino sky with unprecedented sensitivity, providing new constraints on the sources of the highest-energy cosmic rays, and yield precision data on the mixing and mass ordering of neutrinos.

  17. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a Muon

  18. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  19. Measurement of neutrino flux from neutrino-electron elastic scattering

    Science.gov (United States)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  20. Search for nonstandard neutrino interactions with IceCube DeepCore

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration

    2018-04-01

    As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.

  1. Indirect detection of dark matter with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Lambard, G.

    2008-01-01

    The ANTANARES telescope is composed of an array of 900 photomultipliers (12 lines) that will be immersed in the Mediterranean sea at a depth of 2500 m. The photomultipliers are sensitive to the Cherenkov light emitted by high energy muons produced in the interactions of neutrinos with matter. My work consisted in the calibration of the detector, in time and charge in order to extract the crucial data for the reconstruction of the particle tracks and the ability of the detector to distinguish the atmospheric neutrinos from astrophysical neutrinos. The first part of this work is dedicated to the today understanding of the universe and of its models and of the importance of the neutrinos as the messengers of what occurs in the remote parts of the universe. The detection of neutrinos through the Cerenkov effect is detailed and the ANTANARES detector is presented. The second part deals with the study of the background radiation due to atmospheric muons and neutrinos. A simulation is the only tool to assess the background radiation level and to be able to extract the signal due to solar neutrinos. The third part shows how the solar neutrino flux might be influenced by the interaction of dark matter with baryonic matter. A Monte-Carlo simulation has allowed us to quantify this interaction and measure its impact on the number of events detected by ANTANARES. (A.C.)

  2. The history of neutrinos, 1930–1985. What have we learned about neutrinos? What have we learned using neutrinos?

    International Nuclear Information System (INIS)

    Steinberger, J.

    2012-01-01

    An attempt to remember some of the main events which highlight the evolution of our knowledge of the neutrinos and their properties, the “families” of particles, a few of the very interesting persons who contributed to this progress, as well as the contribution of neutrino beam experiments to the validation of the electro-weak and quantum-chromo-dynamic theories, and the structure of the nucleon. - Highlights: ► Early history: continuity of β-spectrum, Pauli letter, universal Fermi interaction. ► Neutrino beams and the discovery of the muon neutrino. ► Gargamelle, the discovery of the neutral current and the verification of the quark–gluon nature of the parton. ► Deep inelastic scattering at higher energies: scaling, quantitative verification of QCD, structure functions.

  3. Studies of high energy phenomena using muons

    International Nuclear Information System (INIS)

    Hedin, D.; Kaplan, D.; Green, J.

    1993-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from July of 1990 to June of 1991 and from February to March 1992. Our group has three main efforts which will be discussed in this paper. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789 which involved detection of meson decays. Finally, we discuss our work with the SDC collaboration at the SSC

  4. Bookshelf (Neutrino Interactions with Electrons and Protons - Edited by Alfred K. Mann)

    International Nuclear Information System (INIS)

    Luigi Di Lella

    1994-01-01

    Subtitled 'an account of an Experimental Program in Particle Physics in the 1980s', this book is a collection of 13 reprinted papers presenting experimental results from experiment E-734 originally proposed in 1978 to measure the elastic scattering of neutrinos and antineutrinos from electrons and protons using the neutrino beam at the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory. This experiment took data during the 1980s and the apparatus was dismantled in 1990. Its main results cover measurements of the weak mixing angle, and some measurements which were not in the original proposal, such as limits on the electromagnetic properties of the muon neutrino and on the mixing between electron- and muon-neutri-nos. The collaboration, with 35 physicists participating, included Osaka and KEK and was the earliest formal collaboration in high energy physics between American and Japanese institutions. This book gives only a very partial account of neutrino physics in the 1980s. Because of the relatively low neutrino energy of only few GeV, E- 734 physics did not include the study of deep inelastic scattering which has greatly contributed to the understanding of the nucleon structure in terms of quarks, antiquarks and gluons. Furthermore, because of the low event rate at the low neutrino energy, most of the E-734 results have been superseded by the more precise results obtained by higher energy neutrino experiments at CERN and Fermilab, however with the exceptions of the limits on neutrino mixing and of the measurement of the neutral current cross-section for neutrino and antineutrino elastic scattering. It is not clear to me why the American Institute of Physics has chosen to publish this book in a series 'Key Papers in Physics'.

  5. 1020 eV cosmic-ray and particle physics with kilometer-scale neutrino telescopes

    International Nuclear Information System (INIS)

    Alvarez-Muniz, J.; Halzen, F.

    2001-01-01

    We show that a kilometer-scale neutrino observatory, though optimized for TeV to PeV energy, is sensitive to the neutrinos associated with super-EeV sources. These include super-heavy relics, neutrinos associated with the Greisen cutoff, and topological defects which are remnant cosmic structures associated with phase transitions in grand unified gauge theories. It is a misconception that new instruments optimized to EeV energy are required to do this important science, although this is not their primary goal. Because kilometer-scale neutrino telescopes can reject atmospheric backgrounds by establishing the very high energy of the signal events, they have sensitivity over the full solid angle, including the horizon where most of the signal is concentrated. This is important because up-going neutrino-induced muons, routinely considered in previous calculations, are absorbed by the Earth

  6. Heavy neutrinos and lepton number violation in lp colliders

    International Nuclear Information System (INIS)

    Blaksley, Carl; Blennow, Mattias; Bonnet, Florian; Coloma, Pilar; Fernandez-Martinez, Enrique

    2011-01-01

    We discuss the prospects of studying lepton number violating processes in order to identify Majorana neutrinos from low scale seesaw mechanisms at lepton-proton colliders. In particular, we consider the scenarios of colliding electrons with LHC energy protons and, motivated by the efforts towards the construction of a muon collider, the prospects of muon-proton collisions. We find that present constraints on the mixing of the Majorana neutrinos still allow for a detectable signal at these kind of facilities given the smallness of the Standard Model background. We discuss possible cuts in order to further increase the signal over background ratio and the prospects of reconstructing the neutrino mass from the kinematics of the final state particles.

  7. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    International Nuclear Information System (INIS)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, B.D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.

    2004-01-01

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R G =1.01±0.05(stat) +0.09 -0.06 (sys) fm and for the chaoticity parameter the value λ=0.40±0.03(stat) +0.01 -0.06 (sys). Using the Kopylov-Podgoretskii parametrization yields R KP =2.07±0.04(stat) +0.01 -0.14 (sys) fm and λ KP =0.29±0.06(stat) +0.01 -0.04 (sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found

  8. Search for sterile neutrinos at a new short-baseline CERN neutrino beam

    International Nuclear Information System (INIS)

    Mauri, N.

    2014-01-01

    In the last few years the experimental results on neutrino/anti-neutrino oscillations at Short-Baseline (SBL) showed a tension with several phenomenological models. The recent and carefully recomputed anti-neutrino fluxes from nuclear reactors have further increased this tension drawing a picture not fully compatible with the 3 neutrino oscillation scenario. A sterile neutrino is a neutral lepton which does not couple with W/Z bosons. it is not an exotic particle, its existence being a natural consequence of neutrinos having a non-zero mass. Sterile neutrinos can mix with the active ones through additional mass eigenstates, with no necessary mass scale. We will present an experimental search for sterile neutrinos with a new CERN-SPS neutrino beam using muon spectrometers and large LAr detectors. To definitely clarify the physics issue, the proposed experiment will study oscillations in a muon neutrino / antineutrino beam both in appearance and disappearance modes, exploring the Δm 2 ∼ 1 eV 2 range

  9. The liquid scintillator neutrino detector and LAMPF neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Athanassopoulos, C.; Auerbach, L.B.; Bauer, D.; Bolton, R.D.; Burman, R.L.; Cohen, I.; Caldwell, D.O.; Dieterle, B.D.; Donahue, J.B.; Eisner, A.M.; Fazely, A.; Federspiel, F.J.; Garvey, G.T.; Gray, M.; Gunasingha, R.M.; Highland, V.; Imlay, R.; Johnston, K.; Kim, H.J.; Louis, W.C.; Lu, A.; Margulies, J.; Mills, G.B.; McIlhany, K.; Metcalf, W.; Reeder, R.A.; Sandberg, V.; Schillaci, M.; Smith, D.; Stancu, I.; Strossman, W.; Tayloe, R.; VanDalen, G.J.; Vernon, W.; Wang, Y.-X.; White, D.H.; Whitehouse, D.; Works, D.; Xiao, Y.; Yellin, S. [California Univ., Riverside, CA (United States)]|[University of California, San Diego, CA 92093 (United States)]|[University of California, Santa Barbara, CA 93106 (United States)]|[University of California, Intercampus Institute for Research at Particle Accelerators, Stanford, CA 94309 (United States)]|[Embry Riddle Aeronautical University, Prescott, AZ 86301 (United States)]|[Linfield College, McMinnville, OR 97128 (United States)]|[Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]|[Louisiana State University, Baton Rouge, LA 70803 (United States)]|[Louisiana Tech University, Ruston, LA 71272 (United States)]|[University of New Mexico, Albuquerque, NM 87131 (United States)]|[Southern University, Baton Rouge, LA 70813 (United States)]|[Temple University, Philadelphia, PA 19122 (United States)

    1997-03-21

    A search for neutrino oscillations of the type {nu}{sub {mu}}{yields}{nu}{sub e} has been conducted at the Los Alamos Meson Physics Facility using {nu}{sub {mu}} from muon decay at rest. Evidence for this transition has been reported previously. This paper discusses in detail the experimental setup, detector operation and neutrino source, including aspects relevant to oscillation searches in the muon decay-at-rest and pion decay in flight channels. (orig.).

  10. Towards a Muon Collider

    International Nuclear Information System (INIS)

    Eichten, E.

    2011-01-01

    A multi TeV Muon Collider is required for the full coverage of Terascale physics. The physics potential for a Muon Collider at ∼3 TeV and integrated luminosity of 1 ab -1 is outstanding. Particularly strong cases can be made if the new physics is SUSY or new strong dynamics. Furthermore, a staged Muon Collider can provide a Neutrino Factory to fully disentangle neutrino physics. If a narrow s-channel resonance state exists in the multi-TeV region, the physics program at a Muon Collider could begin with less than 10 31 cm -2 s -1 luminosity. Detailed studies of the physics case for a 1.5-4 TeV Muon Collider are just beginning. The goals of such studies are to: (1) identify benchmark physics processes; (2) study the physics dependence on beam parameters; (3) estimate detector backgrounds; and (4) compare the physics potential of a Muon Collider with those of the ILC, CLIC and upgrades to the LHC.

  11. Measurement of Muon Neutrino Charged Current Single $\\pi^0$ Production on Hydrocarbon using MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Ozgur [Tufts Univ., Medford, MA (United States)

    2017-01-01

    A sample of charged-current single pion production events for the semi- exclusive channel νµ + CH → µ-π0 + nucleon(s) has been obtained using neutrino exposures of the MINERvA detector. Differential cross sections for muon momentum, muon production angle, pion momentum, pion production angle, and four-momentum transfer square Q2 are reported and are compared to a GENIE-based simulation. The cross section versus neutrino energy is also re- ported. The effects of pion final-state interactions on these cross sections are investigated. The effect of baryon resonance suppression at low Q2 is examined and an event re-weight used by two previous experiments is shown to improve the data versus simulation agreement. The differential cross sections for Q2 for Eν < 4.0 GeV and Eν ≥ 4.0 GeV are examined and the shapes of these distributions are compared to those from the experiment’s $\\bar{v}$µ-CC (π0) measurement. The polarization of the pπ0 system is measured and compared to the simulation predictions. The hadronic invariant mass W distribution is examined for evidence of resonance content, and a search is reported for evidence of a two-particle two-hole (2p2h) contribution. All of the differential cross-section measurements of this Thesis are compared with published MINERvA measurements for νµ-CC (π+) and \\bar{v}$µ-CC (π0) processes.

  12. Neutrino Physics at Drexel

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles [Drexel Univ., Philadelphia, PA (United States); Dolinski, Michelle [Drexel Univ., Philadelphia, PA (United States); Neilson, Russell [Drexel Univ., Philadelphia, PA (United States)

    2017-07-11

    Our primary goal is to improve the understanding of the properties and interactions of neutrinos. We are pursuing this by means of the DUNE long-baseline and PROSPECT short-baseline neutrino experiments. For DUNE, a neutrino beam from Fermilab will be detected at the SURF facility in South Dakota, with the aim of determining the neutrino mass hierarchy (the mass ordering of neutrino flavors), and a measurement or limit on CP-violation via neutrinos. Our near-term experimental goal is to improve the characterization of the neutrino beam by measurements of muons produced as a byproduct of neutrino beam generation, to quantify the beam composition and flux. The short-range neutrino program has the aim of using the HFIR reactor at Oak Ridge as a neutrino source, with a detector placed nearby to find if there are short-distance oscillations to sterile neutrino flavors, and to resolve the 'reactor neutrino spectral anomaly' which has shown up as an unexplained 'bump' in the neutrino energy spectrum in recent experiments.

  13. The solar neutrinos epopee; L'epopee des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Lasserre, Th. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, Service de Physique des Particules, 91- Gif sur Yvette (France)

    2003-06-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos {nu}{sub e} emitted by the sun are converted into muon neutrinos ({nu}{sub {mu}}) and tau neutrinos ({nu}{sub {tau}}), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  14. Search for a W' boson decaying to a muon and a neutrino in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Dyulendarova, Milena; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Marinova, Evelina; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chanon, Nicolas; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Falkiewicz, Anna; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Megrelidze, Luka; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Tonutti, Manfred; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heindl, Stefan Michael; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Karafasoulis, Konstantinos; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Shilpi; Jain, Sandhya; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Giacomelli, Paolo; Giunta, Marina; Grandi, Claudio; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malberti, Martina; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Noli, Pasquale; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Trocino, Daniele; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Andrey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Brona, Grzegorz; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stöckli, Fabian; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, E Augustine; Chen, Kuan-Hsin; Chen, Wan-Ting; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Ming-Hsiung; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bell, Peter; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Huckvale, Benedickt; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Pakhotin, Yuriy; Prescott, Craig; Remington, Ronald; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cole, Perrie; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Buehler, Marc; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2013-07-16

    A new heavy gauge boson, W', decaying to a muon and a neutrino, is searched for in pp collisions at a centre-of-mass of 7 TeV. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 36 inverse picobarns. No significant excess of events above the standard model expectation is found in the transverse mass distribution of the muon-neutrino system. Masses below 1.40 TeV are excluded at the 95% confidence level for a sequential standard-model-like W'. The W' mass lower limit increases to 1.58 TeV when the present analysis is combined with the CMS result for the electron channel.

  15. High-energy electroweak neutrino-nucleon deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Machado, Magno V. T.

    2007-01-01

    In this work we estimate the differential and total cross sections for the high-energy deeply virtual Compton scattering in the weak sector. In the weak neutral sector one considers neutrino scattering off an unpolarized proton target through the exchange of Z 0 . We numerically compute the process Z*p→γp within the QCD color dipole formalism, which successfully describes the current high-energy electromagnetic DVCS experimental data. We also discuss possible applications for the weak charged sector and perform predictions for scattering on nuclear targets

  16. Quasi-isochronous muon collection channels

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, Charles M. [Muons, Inc., Batavia, IL (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2015-04-26

    neutrino factories, and muon colliders as Higgs factories or energy-frontier discovery machines.

  17. Possibility of observing high energy neutrinos from gamma bursts, with the Antanares telescope, feasibility study; Possibilite d'observation, par le telescope antares, de neutrinos de haute energie associes aux sursauts gamma et validation des techniques de detection a l'aide d'un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kouchner, A

    2001-04-01

    The European Antares collaboration intends to build a deep-sea neutrino telescope with a detection surface of about 1/10 km{sup 2} in the Mediterranean sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature and origin of cosmic rays and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (E>TeV) for observation of the universe. The first part of the thesis is dedicated to a study of the possibility of using the future telescope to look for correlations between gamma-ray bursts and high-energy neutrinos. It is based, on one hand, on the predictions of neutrino fluxes from gamma-ray bursts in the framework of the theoretical model of 'fireballs', and, on the other hand, on the temporal properties of the gamma-ray bursts in the 4. BATSE catalogue. The second part of the thesis presents the results obtained with a prototype detector line deployed, at the end of 1999, some forty km south-west off Marseilles. The objective was to operate a complete apparatus, similar to the future detector lines, from the shore, and under realistic conditions. Data from 7 photomultiplier tubes disposed along the detector line were transmitted through 37 km of optical fiber to the shore, where they were used to reconstruct tracks due to atmospheric muons, thus validating the detection principles and methods. (author)

  18. Angular correlation between IceCube high-energy starting events and starburst sources

    Energy Technology Data Exchange (ETDEWEB)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: moharana.reetanjali@mail.huji.ac.il, E-mail: srazzaque@uj.ac.za [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa)

    2016-12-01

    Starburst galaxies and star-forming regions in the Milkyway, with high rate of supernova activities, are candidate sources of high-energy neutrinos. Using a gamma-ray selected sample of these sources we perform statistical analysis of their angular correlation with the four-year sample of high-energy starting events (HESE), detected by the IceCube Neutrino Observatory. We find that the two samples (starburst galaxies and local star-forming regions) are correlated with cosmic neutrinos at ∼ (2–3)σ (pre-trial) significance level, when the full HESE sample with deposited energy ∼> 20 TeV is considered. However when we consider the HESE sample with deposited energy ∼> 60 TeV, which is almost free of atmospheric neutrino and muon backgrounds, the significance of correlation decreased drastically. We perform a similar study for Galactic sources in the 2nd Catalog of Hard Fermi -LAT Sources (2FHL, >50 GeV) catalog as well, obtaining ∼ (2–3)σ (pre-trial) correlation, however the significance of correlation increases with higher cutoff energy in the HESE sample for this case. We also fit available gamma-ray data from these sources using a pp interaction model and calculate expected neutrino fluxes. We find that the expected neutrino fluxes for most of the sources are at least an order of magnitude lower than the fluxes required to produce the HESE neutrinos from these sources. This puts the starburst sources being the origin of the IceCube HESE neutrinos in question.

  19. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    Science.gov (United States)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  20. The NESSiE concept for sterile neutrinos

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2014-01-01

    The NESSiE (Neutrino Experiment with SpectrometerS in Europe) experimental proposal is a project to combine two liquid argon (LAr) image detectors (Time Projection Chambers, TPC) and two magnetic spectrometers; for the observation of electron and muon neutrino events at different distances. At the near (400 m) and far (1600 m) positions from the neutrino beam origin. The experiment aims to definitively clarify the present neutrino oscillation scenarios and to explore (or to refute) the possibility of the existence of sterile neutrinos. The main characteristics of the spectrometers are described here. Spectrometers will employ a bipolar magnetic field with iron slabs, and a new concept air-core magnet, to perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (> 50m 2 ). The performances of the spectrometers as stand-alone detectors are summarized in terms the ν μ disappearance sensitivity plot for an exposure of two years with ‐ν μ plus one year with ν μ .

  1. Photomultiplier characteristics considerations for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-01-01

    The results of an investigation of the characteristics of photomultipliers for the Deep Underwater Muon and Neutrino Detection (DUMAND) System are discussed. The pulse-height resolution, the afterpulsing phenomena and the gain sensitivity to the ambient magnetic field have been determined for large photocathode area photomultipliers. Furthermore, the transient time difference, the single photoelectron time spread, and the collection and photocathode quantum efficiency uniformity as a function of the position of the photocathode sensing area have been reviewed. Finally, an attempt has been made to estimate the photomultiplier reliability and its lifetime

  2. Additive versus multiplicative muon conservation

    International Nuclear Information System (INIS)

    Nemethy, P.

    1981-01-01

    Experimental elucidation of the question of muon conservation is reviewed. It is shown that neutral-current experiments have not yet yielded information about muonium-antimuonium conversion at the weak-interaction level and that all the charged-current experiments agree that there is no evidence for a multiplicative law. The best limits, from the muon-decay neutrino experiment at LAMPF and from the inverse muon-decay experiment in the CERN neutrino beam, definitely exclude multiplicative law schemes with a branching ratio R approximately 1/2. It is concluded that unless the dynamics conspire to make a multiplicative law with very small R it would appear that muon conservation obeys conserved additive lepton flavor law. (U.K.)

  3. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Weak interactions: muon decay

    International Nuclear Information System (INIS)

    Sachs, A.M.; Sirlin, A.

    1975-01-01

    The traditional theory of the dominant mode of muon decay is presented, a survey of the experiments which have measured the observable features of the decay is given, and those things which can be learned about the parameters and nature of the theory from the experimental results are indicated. The following aspects of the theory of muon decay are presented first: general four-fermion theory, two-component theory of the neutrino, V--A theory, two-component and V--A theories vs general four-fermion theory, intermediate-boson hypothesis, radiative corrections, radiative corrections in the intermediate-boson theory, and endpoint singularities and corrections of order α 2 . Experiments on muon lifetime, isotropic electron spectrum, total asymmetry and energy dependence of asymmetry of electrons from polarized muons, and electron polarization are described, and a summary of experimental results is given. 7 figures, 2 tables, 109 references

  5. Future Accelerator Challenges in Support of High-Energy Physics

    International Nuclear Information System (INIS)

    Zisman, Michael S.; Zisman, M.S.

    2008-01-01

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision

  6. Future Accelerator Challenges in Support of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.; Zisman, M.S.

    2008-05-03

    Historically, progress in high-energy physics has largely been determined by development of more capable particle accelerators. This trend continues today with the imminent commissioning of the Large Hadron Collider at CERN, and the worldwide development effort toward the International Linear Collider. Looking ahead, there are two scientific areas ripe for further exploration--the energy frontier and the precision frontier. To explore the energy frontier, two approaches toward multi-TeV beams are being studied, an electron-positron linear collider based on a novel two-beam powering system (CLIC), and a Muon Collider. Work on the precision frontier involves accelerators with very high intensity, including a Super-BFactory and a muon-based Neutrino Factory. Without question, one of the most promising approaches is the development of muon-beam accelerators. Such machines have very high scientific potential, and would substantially advance the state-of-the-art in accelerator design. The challenges of the new generation of accelerators, and how these can be accommodated in the accelerator design, are described. To reap their scientific benefits, all of these frontier accelerators will require sophisticated instrumentation to characterize the beam and control it with unprecedented precision.

  7. Do muons oscillate?

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Morozov, A.Yu.; Okun, L.B.; Schepkin, M.G.

    1997-01-01

    We develop a theory of the EPR-like effects due to neutrino oscillations in the π→μν decays. Its experimental implications are space-time correlations of the neutrino and muon when they are both detected, while the pion decay point is not fixed. However, the more radical possibility of μ-oscillations in experiments where only muons are detected (as suggested in hep-ph/9509261), is ruled out. We start by discussing decays of monochromatic pions, and point out a few ''paradoxes''. Then we consider pion wave packets, solve the ''paradoxes'', and show that the formulas for μν correlations can be transformed into the usual expressions, describing neutrino oscillations, as soon as the pion decay point is fixed. (orig.)

  8. Effects of fermionic singlet neutrinos on high- and low-energy observables

    International Nuclear Information System (INIS)

    Weiland, C.

    2013-01-01

    In this doctoral thesis, we study both low- and high-energy observables related to massive neutrinos. Neutrino oscillations have provided indisputable evidence in favour of non-zero neutrino masses and mixings. However, the original formulation of the standard model cannot account for these observations, which calls for the introduction of new physics. Among many possibilities, we focus here on the inverse seesaw, a neutrino mass generation mechanism in which the standard model is extended with fermionic gauge singlets. This model offers an attractive alternative to the usual seesaw realisations since it can potentially have natural Yukawa couplings (O(1)) while keeping the new physics scale at energies within the reach of the LHC. Among the many possible effects, this scenario can lead to deviations from lepton flavour universality. We have investigated these signatures and found that the ratios R K and R π provide new, additional constraints on the inverse seesaw. We have also considered the embedding of the inverse seesaw in supersymmetric models. This leads to increased rates for various lepton flavour violating processes, due to enhanced contributions from penguin diagrams mediated by the Higgs and Z 0 bosons. Finally, we also found that the new invisible decay channels associated with the sterile neutrinos present in the super-symmetric inverse seesaw could significantly weaken the constraints on the mass and couplings of a light CP-odd Higgs boson. (author)

  9. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  10. Study of multimuon-final states in deep inelastic neutrino scattering

    International Nuclear Information System (INIS)

    Renk, B.

    1984-01-01

    In this thesis the measurement of the momentum spectra, angular correlations, and transverse momentum distributions of the secondary muons produced in deep inelastic neutrino scattering at the CERN 300 GeV narrow band neutrino beam is described. From the experimental results conclusions are drawn about neutrino oscillations and the quantum numbers of charm-violating neutral currents. Furthermore upper limits for the momentum part of the c quark in the nucleon, and the fragmentation function for c quarks at high energies were determined. The prompt μ - μ - events are interpreted as pair production of charmed particles. Finally dimuon events induced by axions were looked for. (HSI) [de

  11. Neutrino physics-the link between the microcosmos and the macrocosmos, a study in two parts: (1) Theoretical-a look at the tau neutrino mass and other quantum electrodynamical effects in third family lepton interactions and (2) Experimental-underwater astronomy in Hawai'i, the short prototype string of the Deep Underwater Muon and Neutrino Detector project

    International Nuclear Information System (INIS)

    Babson, J.F.

    1989-01-01

    The nineteen eighties has been a time in which Cosmology and Particle Physics have come together. This dissertation reflects that trend. It does so in two ways. First, in Chapters 1 through 3, there is a theoretical investigation into some aspects of generational universality. The consequences of a third lepton, namely the tauon, and an associated tau neutrino, are explored in terms of phenomenology (mass and V-A consistency) that may shed insight into questions of neutrino mass and increased symmetry at higher energies. Second, in Chapters 4 through 11, there is an experimental investigation in the form of constructing and operating the first stage of the DUMAND (Deep Underwater Muon and Neutrino Detection) project which was a ship suspended muon and neutrino telescope called the SPS (Short Prototype String). This detector is of the water Cherenkov type and is the first time such an instrument has been successfully built and tested for use in the ocean. Chapters 6 through 10 are devoted to the detailed documentation of the parts of the SPS and its technology integration that I designed, prototyped, and debugged. In particular, a complete description is given to the command and control communications system of the string, the digital control electronics and associated software for the Optical, Calibration, and Power modules as well as the fast digitizing electronics or String Bottom Controller (SBC). This includes the development of a microcontroller language UHPS (Underwater Hawai'i Programming System). Finally, Chapter 11 is an analysis of SPS data in terms of ascertaining a purely statistically based downward traveling muon rate at a depth of 4.0 Km yielding (2.06 ± 0.68) x 10 -2 Hz

  12. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Science.gov (United States)

    Medinaceli, E.; NESSiE Collaboration

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the "Near" (600 m) and "Far" (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼ 100 MeV to few GeV over a large transverse area (> 50m2).

  13. Status of the international Muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Palladino, V.; Bonesini, M.

    2009-01-01

    Muon ionization cooling provides the only practical solution to prepare high brilliance beams necessary for a neutrino factory or muon colliders. The muon ionization cooling experiment (MICE) is under development at the Rutherford Appleton Laboratory (UK). It comprises a dedicated beam line to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen and RF acceleration. A second spectrometer identical to the first one and a particle identification system provide a measurement of the outgoing emittance. By July 2009 it is expected that the beam and first set of detectors will have been commissioned and a first measurement of input beam emittance may be reported. Along with the steps in the measurement of emittance reduction (cooling) that will follow later and in 2010. (authors)

  14. nuSTORM - Neutrinos from STORed Muons: Proposal to the Fermilab PAC

    Energy Technology Data Exchange (ETDEWEB)

    Adey, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2013-07-31

    The nuSTORM facility has been designed to deliver beams of $\\vec{v}$e and $\\vec{v}$μ from the decay of a stored μ± beam with a central momentum of 3.8 GeV/c and a momentum acceptance of 10%. In his paper, Neu er studied muon decay rings with Eμ of 8, 4.5 and 1.5 GeV. With his 4.5 GeV ring design, he achieved a figure of merit of ≃6 x 109 useful neutrinos per 3 x 1013 protons on target.

  15. Higgs boson production by very high energy neutrinos

    International Nuclear Information System (INIS)

    Mikaelian, K.O.; Oakes, R.J.

    1978-11-01

    Higgs bosons may be produced by bremsstrahlung off a virtual W/sup +-/ or a Z 0 exchanged in a charged or neutral current neutrino interaction. The production cross sections are calculated, and it is pointed out that they cannot grow quadratically with E/sub nu/ as had been suggested earlier, and it is argued that at best they can increase like the square of ln s/M 2 /sub W,Z/ at very high energies. Using a simple approximation for the propagator effect, numerical results in the high energy regime 1 TeV less than or equal to E/sub nu/ less than or equal to 1000 TeV appropriate for DUMAND. 9 references

  16. Neutrino mixing, oscillations and decoherence in astrophysics and cosmology

    Science.gov (United States)

    Ho, Chiu Man

    2007-08-01

    This thesis focuses on a finite-temperature field-theoretical treatment of neutrino oscillations in hot and dense media. By implementing the methods of real-time non-equilibrium field theory, we study the dynamics of neutrino mixing, oscillations, decoherence and relaxation in astrophysical and cosmological environments. We first study neutrino oscillations in the early universe in the temperature regime prior to the epoch of Big Bang Nucleosynthesis (BBN). The dispersion relations and mixing angles in the medium are found to be helicity-dependent, and a resonance like the Mikheyev-Smirnov- Wolfenstein (MSW) effect is realized. The oscillation time scales are found to be longer near a resonance and shorter for off-resonance high-energy neutrinos. We then investigate the space-time propagation of neutrino wave-packets just before BBN. A phenomenon of " frozen coherence " is found to occur if the longitudinal dispersion catches up with the progressive separation between the mass eigenstates, before the coherence time limit has been reached. However, the transverse dispersion occurs at a much shorter scale than all other possible time scales in the medium, resulting in a large suppression in the transition probabilities from electron-neutrino to muon-neutrino. We also explore the possibility of charged lepton mixing as a consequence of neutrino mixing in the early Universe. We find that charged leptons, like electrons and muons, can mix and oscillate resonantly if there is a large lepton asymmetry in the neutrino sector. We study sterile neutrino production in the early Universe via active-sterile oscillations. We provide a quantum field theoretical reassessment of the quantum Zeno suppression on the active-to-sterile transition probability and its time average. We determine the complete conditions for quantum Zeno suppression. Finally, we examine the interplay between neutrino mixing, oscillations and equilibration in a thermal medium, and the corresponding non

  17. HIGH-ENERGY NEUTRINOS FROM RECENT BLAZAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Halzen, Francis; Kheirandish, Ali [Wisconsin IceCube Particle Astrophysics Center and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2016-11-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In 2015 June, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of 40 for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  18. Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2013-01-01

    originate from cosmogenic neutrinos produced in the interactions of ultrahigh energy cosmic rays with ambient photons while propagating through intergalactic space. Exploiting IceCube’s large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out...

  19. Determination of the Antares sensitivity to the cosmic neutrinos diffuse flux using contained showers; Determination de la sensibilite d'Antares au flux diffus de neutrinos cosmiques en utilisant les gerbes contenues

    Energy Technology Data Exchange (ETDEWEB)

    Denans, D

    2006-12-15

    The Antares collaboration has chosen to build an underwater telescope in the Mediterranean sea, at a depth of 2500 m, to detect high energy (> 100 GeV) cosmic neutrinos. This detector is composed of 12 vertical lines with 900 photomultipliers. Neutrinos are detected thanks to the Cherenkov light produced in water by charged particles created in neutrino interactions near the detector. The aim of this work is the study of Antares performance for the detection of the electronic neutrino interaction in the instrumented volume using a Monte-Carlo simulation. The method allows the determination of the incident energy with an excellent resolution (20 %) which is much smaller than what is obtained from muons induced by muonic neutrino interactions at several kilometers below the detector. This work has consisted in studying the reconstruction of contained showers of particles in the detector resulting from charged current interactions of electronic neutrinos. This mode of detection has been used for the study of the diffuse neutrino flux, resulting from the neutrino emission of unresolved sources and that can be isolated from the atmospheric neutrino background at high energy. The Antares sensitivity is found to be 5.10{sup -7} GeV.cm{sup -2}.s{sup -1}.sr{sup -1} after 1 year of data recording for energies above 3 TeV and for a model with an E{sup -2} energy spectrum. (author)

  20. J-PARC Press Release: Electron neutrino oscillation detected at T2K

    CERN Multimedia

    T2K Press Office

    2011-01-01

    Tsukuba, Japan, June 15, 2011. The T2K experiment, whose primary purpose is to study neutrino interactions at a large distance from their source, has detected 6 electron neutrino candidate events based on the data collected before March 11, 2011. For the first time, it was possible to observe an indication that muon neutrinos are able to transform into electron neutrinos over a distance of 295 km through the quantum mechanical phenomena of neutrino flavor oscillations.   The Super-Kamiokande detector, in Japan. © 2011, High Energy Accelerator Research Organization, KEK. The T2K experiment is searching for the neutrino oscillation phenomena, where particular types of neutrinos transform into other types of neutrinos. These observations help determine neutrino masses, as well elucidating the uncharted nature of neutrinos, such as the relationship among three neutrino generations (types). T2K aims at the world’s best sensitivity by detecting neutrinos with the Super-Kamiokande d...

  1. Exploring new features of neutrino oscillations with very low energy monoenergetic neutrinos

    CERN Document Server

    Vergados, J D

    2010-01-01

    In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L23, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to theta13, one can measure or set a better limit on the unknown parameter theta13. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energ...

  2. Measurement of the nucleon structure function using high energy muons

    International Nuclear Information System (INIS)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm 2 of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4√nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F 2 (x,Q 2 ) with a typical precision of 2% over the range 5 2 2 /c 2 . We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter Λ/sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references

  3. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  4. MUON ACCELERATION WITH THE RACETRACK FFAG

    International Nuclear Information System (INIS)

    TRBOJEVIC, D.; EBERHARD, K.; SESSLER, A.

    2007-01-01

    Muon acceleration for muon collider or neutrino factory is still in a stage where further improvements are likely as a result of further study. This report presents a design of the racetrack non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator to allow fast muon acceleration in small number of turns. The racetrack design is made of four arcs: two arcs at opposite sides have a smaller radius and are made of closely packed combined function magnets, while two additional arcs, with a very large radii, are used for muon extraction, injection, and RF accelerating cavities. The ends of the large radii arcs are geometrically matched at the connections to the arcs with smaller radii. The dispersion and both horizontal and vertical amplitude fictions are matched at the central energy

  5. Superconducting magnets for induction linac phase-rotation in a neutrino factory

    International Nuclear Information System (INIS)

    Green, M.A.; Yu, S.

    2001-01-01

    The neutrino factory[1-3] consists of a target section where pions are produced and captured in a solenoidal magnetic field. Pions in a range of energies from 100 Mev to 400 MeV decay into muons in an 18-meter long channel of 1.25 T superconducting solenoids. The warm bore diameter of these solenoids is about 600 mm. The phase rotation section slows down the high-energy muon and speeds up the low energy muons to an average momentum of 200 MeV/c. The phase-rotation channel consists of three induction linac channels with a short cooling section and a magnetic flux reversal section between the first and second induction linacs and a drift space between the second and third induction linacs. The length of the phase rotation channel will be about 320 meters. The superconducting coils in the channel are 0.36 m long with a gap of 0.14 m between the coils. The magnetic induction within the channel will be 1.25. For 260 meters of the 320-meter long channel, the solenoids are inside the induction linac. This paper discusses the design parameters for the superconducting solenoids in the neutrino factory phase-rotation channel

  6. Determination of the Antares sensitivity to the cosmic neutrinos diffuse flux using contained showers

    International Nuclear Information System (INIS)

    Denans, D.

    2006-12-01

    The Antares collaboration has chosen to build an underwater telescope in the Mediterranean sea, at a depth of 2500 m, to detect high energy (> 100 GeV) cosmic neutrinos. This detector is composed of 12 vertical lines with 900 photomultipliers. Neutrinos are detected thanks to the Cherenkov light produced in water by charged particles created in neutrino interactions near the detector. The aim of this work is the study of Antares performance for the detection of the electronic neutrino interaction in the instrumented volume using a Monte-Carlo simulation. The method allows the determination of the incident energy with an excellent resolution (20 %) which is much smaller than what is obtained from muons induced by muonic neutrino interactions at several kilometers below the detector. This work has consisted in studying the reconstruction of contained showers of particles in the detector resulting from charged current interactions of electronic neutrinos. This mode of detection has been used for the study of the diffuse neutrino flux, resulting from the neutrino emission of unresolved sources and that can be isolated from the atmospheric neutrino background at high energy. The Antares sensitivity is found to be 5.10 -7 GeV.cm -2 .s -1 .sr -1 after 1 year of data recording for energies above 3 TeV and for a model with an E -2 energy spectrum. (author)

  7. Search for Quarks in High-Energy Neutrino Interactions

    CERN Document Server

    2002-01-01

    This experiment is a search for quarks produced in high energy neutrino interactions. Neutrino interactions take place in a 23-ton lead target and are recognized by one or more particles crossing the counter hodoscopes S1 and S2, together with the absence of an incident particle signal in the initial veto counter V^0.\\\\ \\\\ The lead is viewed by an avalanche chamber to measure the specific ionization of the charged secondaries produced in the @n-interaction with high accuracy even in jet-like events, and by a series of two pairs of scintillation counter hodoscopes (ST1, ST2). The latter provide time-of-flight measurements and dE/dx measurements for a fast analysis in low and medium multiplicity provide a trigger for the chamber. \\\\ \\\\ In order to reduce the background in the set-up, very low momentum particles (mainly due to cascading processes in the target) are separated out by a @= 1 T.m magnet placed behind the target. \\\\ \\\\ A system of wire chambers W1, W2, which register both the position and the time at...

  8. Search for Astrophysical Sources of Neutrinos Using Cascade Events in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [Department of Physics, University of Adelaide, Adelaide, 5005 (Australia); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J.; Bagherpour, H. [Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A.; Ansseau, I. [Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels (Belgium); Ahlers, M. [Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Ahrens, M. [Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Al Samarai, I. [Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Altmann, D.; Anton, G. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Andeen, K. [Department of Physics, Marquette University, Milwaukee, WI, 53201 (United States); Anderson, T. [Dept. of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Argüelles, C.; Axani, S. [Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Dept. of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Collaboration: IceCube Collaboration; and others

    2017-09-10

    The IceCube neutrino observatory has established the existence of a flux of high-energy astrophysical neutrinos, which is inconsistent with the expectation from atmospheric backgrounds at a significance greater than 5 σ . This flux has been observed in analyses of both track events from muon neutrino interactions and cascade events from interactions of all neutrino flavors. Searches for astrophysical neutrino sources have focused on track events due to the significantly better angular resolution of track reconstructions. To date, no such sources have been confirmed. Here we present the first search for astrophysical neutrino sources using cascades interacting in IceCube with deposited energies as small as 1 TeV. No significant clustering was observed in a selection of 263 cascades collected from 2010 May to 2012 May. We show that compared to the classic approach using tracks, this statistically independent search offers improved sensitivity to sources in the southern sky, especially if the emission is spatially extended or follows a soft energy spectrum. This enhancement is due to the low background from atmospheric neutrinos forming cascade events and the additional veto of atmospheric neutrinos at declinations ≲−30°.

  9. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  10. Detection and reconstruction of short-lived particles produced by neutrino interactions in emulsion

    CERN Document Server

    Uiterwijk, J W E

    2007-01-01

    In this dissertation, several different topics related to the chorus experiment are pre- sented. The chorus experiment has been used to study neutrino oscillations using the neutrino beam at cern. The neutrino oscillation hypothesis provided an explanation for the lower than expected fluxes of solar and atmospheric neutrinos. There are three neutrino species in nature corresponding to different weak eigenstates, namely, the elec- tron neutrino (νe ), the muon neutrino (νμ ), and the tau neutrino (ντ ). The lower fluxes could be interpreted as spontaneous oscillations between electron and muon neutrinos and between muon and tau neutrinos. The chorus experiment was designed to detect oscillation of muon neutrinos into tau neutrinos with small mixing probability down to 2 · 10−4 and a mass difference square between νμ and ντ larger than 0.5 eV2 . In the last decade, several disappearance experiments have confirmed the neutrino oscillation hypothesis and showed that oscillations occur between mass eig...

  11. A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007

    Science.gov (United States)

    Adrian-Martinez, S.; Samarai, Al; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M; Astraatmadja, T.; Aubert, J.-J.; hide

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  12. Search for small-scale angular correlations of neutrino arrival directions in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Schimp, Michael; Glagla, Martin; Haack, Christian; Leuermann, Martin; Raedel, Leif; Reimann, Rene; Schoenen, Sebastian; Wiebusch, Christopher [III. Physikalisches Institut, RWTH Aachen University, 52056 Aachen (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    Recently, the IceCube Neutrino Observatory discovered a diffuse flux of extra-terrestrial high-energy neutrinos. The identification of their astrophysical sources is one of the goals of current investigations. This analysis is based on the expansion of muon neutrino arrival directions in spherical harmonics, which is sensitive to angular correlations. A large number of point sources distributed over the sky would leave an imprint on the spectrum of observed expansion coefficients, even if the sources are too weak to be detected individually. We present the analysis method and discuss possible astrophysical interpretations for the observation or non-observation of such a correlation.

  13. New detection technologies for ultra-high energy cosmic rays and neutrinos

    Directory of Open Access Journals (Sweden)

    Böser Sebastian

    2013-06-01

    in dense media provides another promising approachfor the identification of the sources of cosmic rays. The low event rates and large required target volumes limit the experimental methods to far-ranging signatures .from the cascade, such as acoustic emission from the quasi-instantaneous energy deposit or Cherenkov emission from the charged particles in the cascade. Searching for optical Cherenkov photons in a cubic-kilometer of Antarctic ice, the IceCube experiment has recently found an excess of high-energy neutrinos in the TeV-PeV range.Yet its effective volume is too small to detect the GZK flux predicted from interaction of the highest-energy cosmic rays with the ambient cosmic microwave background. Seeking to increase the observed target volume, radio observations of the rim of the moon have energy thresholds well beyond the EeV scale and thus are more likely to find interactions of charged cosmic rays than GZK neutrinos. The currently best sensitivity to this flux is provided from searches for GHz radio emission of neutrino-induced cascades in the antarctic ice from the ANITA ballon experiment. While no high-energy neutrinos have been found, a geomagnetic emission component from air-showers

  14. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Medinaceli, E.

    2013-01-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m 2 )

  15. NESSiE: An experimental search for sterile neutrinos with the CERN-SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Medinaceli, E., E-mail: medinaceli@pd.infn.it [INFN and University of Padova (Italy)

    2013-08-01

    NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment dedicated to the search for sterile neutrinos beyond the Standard Model with the CERN-SPS neutrino beam. The experiment is based on two identical LAr-TPC's followed by magnetized spectrometers, observing the electron and muon neutrino events at the “Near” (600 m) and “Far” (1300 m) positions from the proton target. The main characteristics of the spectrometers are described here. Spectrometers will exploit a classical dipole magnetic field with iron slabs, and a new concept air-core magnet will perform charge identification and muon momentum measurements in the energy range from ∼100MeV to few GeV over a large transverse area (>50m{sup 2})

  16. Measurement of CP violation at a Neutrino Factory

    CERN Document Server

    Gómez-Cadenas, J J

    2001-01-01

    The prospects of measuring CP violation in the leptonic sector using the intense neutrino beams arising from muon decay in the straight sections of a muon accumulator ring (the so-called neutrino factory) are discussed.

  17. NESSiE: an experimental search for sterile neutrinos with the CERN-SPS beam

    International Nuclear Information System (INIS)

    Sirri, G.

    2013-01-01

    Anomalies observed in neutrino oscillation experiments show a tension with the standard three-flavor neutrino framework and seem to require at least an additional sterile neutrino with a mass at the eV scale. NESSiE (Neutrino Experiment with SpectrometerS in Europe) is an experiment at a new CERN Short- Baseline neutrino beam proposed to definitely address the sterile neutrino issue. The experiment is composed by two magnetic spectrometers at different distances from the proton target. Their design allows to measure the charge and momentum of the muons in a wide energy range, from few hundred MeV, using a magnetic field in air, up to several GeV measuring the bending and range of the muon in a large iron dipolar magnet. The spectrometers will complement large LAr detectors used as a target. The time scale foresees to start taking data by 2016.

  18. Measurement of the nucleon structure function using high energy muons

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P.D.

    1983-12-01

    We have measured the inclusive deep inelastic scattering of muons on nucleons in iron using beams of 93 and 215 GeV muons. To perform this measurement, we have built and operated the Multimuon Spectrometer (MMS) in the muon beam at Fermilab. The MMS is a magnetized iron target/spectrometer/calorimeter which provides 5.61 kg/cm/sup 2/ of target, 9% momentum resolution on scattered muons, and a direct measure of total hadronic energy with resolution sigma/sub nu/ = 1.4..sqrt..nu(GeV). In the distributed target, the average beam energies at the interaction are 88.0 and 209 GeV. Using the known form of the radiatively-corrected electromagnetic cross section, we extract the structure function F/sub 2/(x,Q/sup 2/) with a typical precision of 2% over the range 5 < Q/sup 2/ < 200 GeV/sup 2//c/sup 2/. We compare our measurements to the predictions of lowest order quantum chromodynamics (QCD) and find a best fit value of the QCD scale parameter ..lambda../sub LO/ = 230 +- 40/sup stat/ +- 80/sup syst/ MeV/c, assuming R = 0 and without applying Fermi motion corrections. Comparing the cross sections at the two beam energies, we measure R = -0.06 +- 0.06/sup stat/ +- 0.11/sup syst/. Our measurements show qualitative agreement with QCD, but quantitative comparison is hampered by phenomenological uncertainties. The experimental situation is quite good, with substantial agreement between our measurements and those of others. 86 references.

  19. A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography

    Science.gov (United States)

    Chatzidakis, Stylianos; Liu, Zhengzhi; Hayward, Jason P.; Scaglione, John M.

    2018-03-01

    This work presents a generalized muon trajectory estimation algorithm to estimate the path of a muon in either uniform or nonuniform media. The use of cosmic ray muons in nuclear nonproliferation and safeguard verification applications has recently gained attention due to the non-intrusive and passive nature of the inspection, penetrating capabilities, as well as recent advances in detectors that measure position and direction of the individual muons before and after traversing the imaged object. However, muon image reconstruction techniques are limited in resolution due to low muon flux and the effects of multiple Coulomb scattering (MCS). Current reconstruction algorithms, e.g., point of closest approach (PoCA) or straight-line path (SLP), rely on overly simple assumptions for muon path estimation through the imaged object. For robust muon tomography, efficient and flexible physics-based algorithms are needed to model the MCS process and accurately estimate the most probable trajectory of a muon as it traverses an object. In the present work, the use of a Bayesian framework and a Gaussian approximation of MCS is explored for estimation of the most likely path of a cosmic ray muon traversing uniform or nonuniform media and undergoing MCS. The algorithm's precision is compared to Monte Carlo simulated muon trajectories. It was found that the algorithm is expected to be able to predict muon tracks to less than 1.5 mm root mean square (RMS) for 0.5 GeV muons and 0.25 mm RMS for 3 GeV muons, a 50% improvement compared to SLP and 15% improvement when compared to PoCA. Further, a 30% increase in useful muon flux was observed relative to PoCA. Muon track prediction improved for higher muon energies or smaller penetration depth where energy loss is not significant. The effect of energy loss due to ionization is investigated, and a linear energy loss relation that is easy to use is proposed.

  20. Particle Identification in the T2K TPCs and study of the electron neutrino component in the T2K neutrino beam

    International Nuclear Information System (INIS)

    Giganti, Claudio

    2010-01-01

    This thesis describes the work done on the TPCs of the Near Detector of the T2K experiment. T2K is an experiment installed in Japan and its main purpose is the measurement of the last angle of the neutrino mixing matrix, Θ 13 . The other two angles of the matrix have already been measured in the last years, through the phenomenon of the neutrino oscillations, showing that the neutrinos have masses different from zero. The measurement of the missing angle Θ 13 is of fundamental importance for the neutrino physics as, if this angle is different from zero, CP violation in the lepton sector can occur. Up to now only upper limits on the value of Θ 13 exist: the aim of T2K is to measure this angle or to put upper limits on it with a sensitivity 20 times better than the current limit. This measurement will be done measuring the appearance at the far detector, SuperKamiokande, of electron neutrinos in the muon neutrino beam produced at JPARC. The main background to the measurement of Θ 13 is the electron neutrinos produced together with the muon neutrinos in the beam: this component, expected to be of the order of 1% of the total neutrino flux, has to be measured at the T2K Near Detector, before the oscillations. This can be done selecting neutrino interactions in the Near Detector tracker and using the TPC particle identification capabilities to distinguish electrons from muons. This allows to select a sample of electron neutrino interactions and to measure their spectrum at the Near Detector. During this thesis I have developed the methods to perform the particle identification in the TPCs: the method is based on the measurement of the truncated mean of the energy deposited by the charged particles in the gas: at the typical energy of the T2K neutrinos the difference in the deposited energy between muons and electrons is of the order of 40% and for this reason a resolution better than 10% is needed to distinguish the two particles: as we will show in the thesis, with

  1. Towards a large scale high energy cosmic neutrino undersea detector

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, R.; Berthier, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; Arpesella, C. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France). Centre de Physique Theorique] [and others

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.) 50 refs.

  2. Towards a large scale high energy cosmic neutrino undersea detector

    International Nuclear Information System (INIS)

    Azoulay, R.; Berthier, R.; Arpesella, C.

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.)

  3. The Measurement of Neutrino Induced Quasi-Elastic Cross Section In NOMAD

    CERN Document Server

    Kim, Jae Jun

    2010-01-01

    NOMAD (Neutrino Oscillation MAgnetic Detector) was a short baseline neutrino experiment conducted at CERN (the European Laboratory for Particle physics) West Area Neutrino Facility (WANF) with a neutrino beam provided by the super proton synchrotron (SPS) accelerator. In this dissertation, we present a measurement of muon-neutrino induced quasi-elastic cross section and its axial-mass off an isoscalar target in the NOMAD detector. The incident neutrino energy in NOMAD experiment spans from 2.5 to 300 GeV. The measurement of cross-section is conducted in two seperate kinematic-based topology, two-track and one-track topologies, where a proton is not properly reconstructed. The QEL cross-section as a function of the incoming neutrino energy is consistent for the two different topologies, and within errors , constant as a function of the neutrino energy. We determine the energy-averaged cross-section. From the shape-comparisons of kinematics of QEL-like events, the parameter of QEL axial mass is estimated. It i...

  4. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    International Nuclear Information System (INIS)

    Bick, Daniel

    2011-04-01

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced 11 C background. Finally, first results are presented. (orig.)

  5. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-09-01

    Full Text Available A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Γ are set. For Γ=2.4 the 90% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to Φ01f(100 TeV=2.0⋅10−17 GeV−1cm−2s−1sr−1. Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90% confidence level.

  6. Physics at a future Neutrino Factory and super-beam facility

    International Nuclear Information System (INIS)

    Bandyopadhyay, A; Choubey, S; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umasankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, S; Geer, S; Campagne, J E; Rolinec, M; Blondel, A

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams, Laboratori Nazionali di Frascati, Rome, 21-26 June 2005) and NuFact06 (Ivine, CA, 24-30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second-generation super-beam experiments, beta-beam facilities and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide extremely intense muon beams and the physics potential of such beams is discussed in the final section of the report.

  7. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, M.A.; Andre, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J-J.; Avgitas, T.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, J.R.; Brunner, J; Busto, J.A.A.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.K.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsaesser, D.; Enzenhoefer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galata, S.; Gay, P.; Geisselsoeder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hoessl, J.; Hofestaedt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, E.M.M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, AW; Martinez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C. L.; Nezri, E.; Pavalas, G. E.; Pellegrino, A.C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldana, M.; Samtleben, D. F. E.; Sanchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.A.; Schuessler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Toennis, C.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms-Schopman, F.J.; Zornoza, J. D.; Zuniga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D.J.; Bohm, C.K.; Boerner, M.; Bos, M.F.; Bose, D.; Boeser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H-P.; Buzinsky, N.; Casey, B.J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Silva, A. H. Cruz; Daughhetee, J.; Davis, J.C.; Day, B.M.; de Andre, J. P. A. M.; le Clercq, C.M.C.; Rosendo, E. del Pino; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, L.M.; DeYoung, T.; Diaz-Velez, J. C.; De Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Foesig, C-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.M.S.; Ghorbani, K.; de Gier, L.; Gladstone, L.; Glagla, M.; Gluesenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez-Macias, J.; Gora, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hansen, B.E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Schulte in den Baumen, T.; Ishihara, A.; Jacobi, C.E.; Japaridze, G. S.; Jeong, M.H.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Koepke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.L.; Krings, K.; Kroll, G.; Kroll, M.; Krueckl, G.; Kunnen, S.J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Luenemann, J.D.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher-Villemure, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; de los Heros, C. Perez; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Raedel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H-G.; Sandrock, A.W.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schoeneberg, S.; Schoenwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, Michael; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stoessl, A.; Stroem, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tesic, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.P.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.M.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, Idelmis G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toeyrae, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible

  8. Searches for Sterile Neutrinos with the IceCube Detector

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Burgman, A.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rameez, M.; Rawlins, K.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Salvado, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Veenkamp, J.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous νμ or ν¯μ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 +1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin22 θ24≤0.02 at Δ m2˜0.3 eV2 at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |Ue 4 |2 .

  9. A search for flaring Very-High-Energy cosmic-ray sources with the L3+C muon spectrometer

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Van den Akker, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Bähr, J; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, G J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, M; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiarusi, T; Chiefari, G; Cifarelli, L; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; De Asmundis, R; Dglon, P; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Ding, L K; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Durán, I; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Faber, G; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, K; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, H; Grabosch, G; Grimm, O; Groenstege, H; Grünewald, M W; Guida, M; Guo, Y N; Gupta, S K; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Haller, C; Hatzifotiadou, D; Hayashi, Y; He, Z X; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Huo, A X; Ito, N; Jin, B N; Jindal, P; Jing, C L; Jones, L W; de Jong, P; Josa-Mutuberría, M I; Kantserov, V A; Kaur, i; Kawakami, S; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, W; Klimentov, A; König, A C; Kok, E; Korn, A; Kopal, M; Koutsenko, V F; Kräber, M; Kuang, H H; Krämer, R W; Krüger, A; Kuijpers, J; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Lei, Y; Leich, H; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Li, L; Li, Z C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma, W G; Ma, X H; Ma, Y Q; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Meng, X W; Merola, L; Meschini, M; Metzger, W J; Mihul, A; van Mil, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Monteleoni, B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Nahnhauer, R; Naumov, V A; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Parriaud, J F; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, F; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Qing, C R; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Ravindran, K C; Razis, P; Ren, D; Rescigno, M; Reucroft, S; Rewiersma, P A M; Riemann, S; Riles, K; Roe, B P; Rojkov, A; Romero, L; Rosca, A; Rosemann, C; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Saidi, R; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schmitt, V; Schöneich, B; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shen, C Q; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sulanke, H; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, L; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Trowitzsch, G; Tully, C; Tung, K L; Ulbricht, J; Unger, M; Valente, E; Verkooijen, H; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, G; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, R G; Wang, Q; Wang, X L; Wang, X W; Wang, Z M; Weber, M; Van Wijk, R F; Wijnen, T A M; Wilkens, H; Wynhoff, S; Xia, L; Xu, Y P; Xu, J S; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J

    2006-01-01

    The L3+C muon detector at the Cern electron-position collider, LEP, is used for the detection of very-high-energy cosmic \\gamma-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known \\gamma-ray sources. No statistically significant excess is observed for any direction or any particular source.

  10. Detecting ultra high energy neutrinos with LOFAR

    International Nuclear Information System (INIS)

    Mevius, M.; Buitink, S.; Falcke, H.; Hörandel, J.; James, C.W.; McFadden, R.; Scholten, O.; Singh, K.; Stappers, B.; Veen, S. ter

    2012-01-01

    The NuMoon project aims to detect signals of Ultra High Energy (UHE) Cosmic Rays with radio telescopes on Earth using the Lunar Cherenkov technique at low frequencies (∼150MHz). The advantage of using low frequencies is the much larger effective detecting volume, with as trade-off the cut-off in sensitivity at lower energies. A first upper limit on the UHE neutrino flux from data of the Westerbork Radio Telescope (WSRT) has been published, while a second experiment, using the new LOFAR telescope, is in preparation. The advantages of LOFAR over WSRT are the larger collecting area, the better pointing accuracy and the use of ring buffers, which allow the implementation of a sophisticated self-trigger algorithm. The expected sensitivity of LOFAR reaches flux limits within the range of some theoretical production models.

  11. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    International Nuclear Information System (INIS)

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; Fisher, Peter H.; Formaggio, Joseph Angelo; Karagiorgi, Georgia S.; )

    2009-01-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics

  12. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.; ANTARES Collaboration; IceCube Collaboration; Ligo Scientific Collaboration; Virgo Collaboration

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the ?rst gravitational wave tran-sient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search forcoincident neutrino candidates within the data recorded by the IceCube and Antares neutrino de-tectors. A possible

  13. Observation of high-energy cosmic rays by very inclined muon bundles in the NEVOD-DECOR experiment

    Directory of Open Access Journals (Sweden)

    Saavedra O.

    2017-01-01

    Full Text Available The Russian-Italian NEVOD-DECOR experiment on measurements of the local muon density spectra at various zenith angles gave the possibility to obtain important information on the primary cosmic ray flux and interaction characteristics in a wide energy range from 1015 to more than 1018 eV. At large zenith angles and high muon densities, a considerable excess of muon bundles has been found in comparison with expectation. In this paper, an update of these investigations is presented and some new results obtained by the collaboration are discussed.

  14. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  15. Measurement of neutrino induced charged current neutral pion production cross section at SciBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Catala-Perez, Juan [Univ. of Valencia (Spain)

    2014-01-01

    SciBooNE is a neutrino scattering experiment located in the Booster Neutrino Beam at Fermilab. It collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon around 1 GeV neutrino energy. In this thesis we present the results on the measurement of the muon neutrino cross section resulting in a μ- plus a single π0 final state (CC- π0 channel). The present work will show the steps taken to achieve this result: from the reconstruction improvements to the background extraction. The flux-averaged CC - π0 production cross section measurement obtained in this thesis < σCC- π0 > Φ = (5.6 ± 1.9fit ± 0.7beam ± 0.5int - 0.7det) × 10-40 cm2/N at an average energy of 0.89 GeV is found to agree well both with the expectation from the Monte Ca

  16. A combined muon-neutrino and electron-neutrino oscillation search at MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, Jocelyn Rebecca [Columbia Univ., New York, NY (United States)

    2006-01-01

    MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from the LSND experiment. If correct, the result implies that a new kind of massive neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE searches for vμ → ve oscillations with the Fermi National Accelerator Laboratory 8 GeV beam line, which produces a vμ beam with an average energy of ~ 0.8 GeV and an intrinsic ve content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with CH2, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the source. This work focuses on the estimation of systematic errors associated with the neutrino flux and neutrino interaction cross section predictions, and in particular, on constraining these uncertainties using in-situ MiniBooNE vμ charged current quasielastic (CCQE) scattering data. A data set with ~ 100,000 events is identified, with 91% CCQE purity. This data set is used to measure several parameters of the CCQE cross section: the axial mass, the Fermi momentum, the binding energy, and the functional dependence of the axial form factor on four-momentum transfer squared. Constraints on the vμ and ve fluxes are derived using the vμ CCQE data set. A Monte Carlo study of a combined vμ disappearance and ve appearance oscillation fit is presented, which improves the vμ → ve oscillation sensitivity of MiniBooNE with respect to a ve appearance-only fit by 1.2-1.5σ, depending on the value of Δm2.

  17. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2010-01-01

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (Beta Beams), one based on decays of stored muon beams (Neutrino Factory), and one based on the decays of an intense pion beam (Superbeam). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  18. Simulations of Muon Flux in Slanic Salt Mine

    Directory of Open Access Journals (Sweden)

    Mehmet Bektasoglu

    2012-01-01

    Full Text Available Geant4 simulation package was used to simulate muon fluxes at different locations, the floor of UNIREA mine and two levels of CANTACUZINO mine, of Slanic Prahova site in Romania. This site is specially important since it is one of the seven sites in Europe that are under consideration of housing large detector components of Large Apparatus studying Grand Unification and Neutrino Astrophysics (LAGUNA project. Simulations were performed for vertical muons and for muons with a zenith angle θ≤60°. Primary muon flux and energies at ground level were obtained from previous measurements. Results of the simulations are in general agreement with previous simulations made using MUSIC simulation program and with the measurements made using a mobile detector.

  19. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  20. Homestake result, sterile neutrinos, and low energy solar neutrino experiments

    Science.gov (United States)

    de Holanda, P. C.; Smirnov, A. Yu.

    2004-06-01

    The Homestake result is about ˜2σ lower than the Ar-production rate, QAr, predicted by the large mixing angle (LMA) Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem. Also there is no apparent upturn of the energy spectrum (R≡Nobs/NSSM) at low energies in SNO and Super-Kamiokande. Both these facts can be explained if a light, Δm201˜(0.2 2)×10-5 eV2, sterile neutrino exists which mixes very weakly with active neutrinos: sin2 2α˜(10-5 10-3). We perform both the analytical and numerical study of the conversion effects in the system of two active neutrinos with the LMA parameters and one weakly mixed sterile neutrino. The presence of sterile neutrino leads to a dip in the survival probability in the intermediate energy range E=(0.5 5) MeV thus suppressing the Be, or/and pep, CNO, as well as B electron neutrino fluxes. Apart from diminishing QAr it leads to decrease of the Ge-production rate and may lead to the decrease of the BOREXINO signal as well as the CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO, and KamLAND as well as by the new low energy experiments will allow us to check this possibility.

  1. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    Science.gov (United States)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  2. High-gradient normal-conducting RF structures for muon cooling channels

    International Nuclear Information System (INIS)

    Corlett, J.N.; Green, M.A.; Hartman, N.; Ladran, A.; Li, D.; MacGill, R.; Rimmer, R.; Moretti, A.; Jurgens, T.; Holtkamp, N.; Black, E.; Summers, D.; Booke, M.

    2001-01-01

    We present a status report on the research and development of high-gradient normal-conducting RF structures for the ionization cooling of muons in a neutrino factory or muon collider. High-gradient RF structures are required in regions enclosed in strong focusing solenoidal magnets, precluding the application of superconducting RF technology [1]. We propose using linear accelerating structures, with individual cells electromagnetically isolated, to achieve the required gradients of over 15 MV/m at 201 MHz and 30 MV/m at 805 MHz. Each cell will be powered independently, and cell length and drive phase adjusted to optimize shunt impedance of the assembled structure. This efficient design allows for relatively small field enhancement on the structure walls, and an accelerating field approximately 1.7 times greater than the peak surface field. The electromagnetic boundary of each cell may be provided by a thin Be sheet, or an assembly of thin-walled metal tubes. Use of thin, low-Z materials will allow passage of the muon beams without significant deterioration in beam quality due to scattering. R and D in design and analysis of robust structures that will operate under large electric and magnetic fields and RF current heating are discussed, including the experimental program based in a high-power test laboratory developed for this purpose

  3. Search for Sterile Neutrinos Using the MiniBooNE Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sorel, Michel [Columbia Univ., New York, NY (United States)

    2005-01-01

    The possible existence of light sterile neutrinos in Nature is motivated, and the prospects to extend sterile neutrino searches beyond current limits is substantiated, using the MiniBooNE neutrino beam and detector at Fermilab. We report on the neutrino flux predictions for the MiniBooNE experiment, on the characterization of the charged-current, quasi-elastic interactions of muon neutrinos ({nu}{sub {mu}}n {yields} {mu}{sup -}p) observed, and on the experiment's sensitivity to sterile neutrinos via muon neutrino disappearance.

  4. Acoustic detection of high energy neutrinos in sea water: status and prospects

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2017-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade – resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties – leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the “first generation” of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  5. Setup of a drift tube muon tracker and calibration of muon tracking in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Daniel

    2011-04-15

    In this work the setup and commissioning of a drift tube based 3D muon tracking detector are described and its use for the solar neutrino experiment Borexino is presented. After a brief introduction to neutrino physics, the general layout of the detector is presented. It is followed by the description of the reconstruction and calibration algorithms. The performance of the muon tracker is presented and results from the commissioning in Hamburg are shown. The detector is currently operated in the LNGS underground laboratory in Italy at the Borexino experiment. After an introduction to Borexino, the modifications of the muon tracker for its setup at LNGS are described. The setup is used as a reference system to determine the resolution of the Borexino muon tracking which is essential for the tagging of cosmogenic induced {sup 11}C background. Finally, first results are presented. (orig.)

  6. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    NARCIS (Netherlands)

    Adrián-Martínez, S.; et al., [Unknown; Decowski, M.P.; Kooijman, P.; Lim, G.; Palioselitis, D.; Presani, E.; de Wolf, E.

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the

  7. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Capone, A.; Arloganu, C. C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Kavatsyuk, O.; Loehner, H.

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the

  8. Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2011-01-01

    The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)

  9. Movable detector to search for neutrino oscillations in the BNL neutrino beam

    International Nuclear Information System (INIS)

    Bozoki, G.; Fainberg, A.; Weygand, D.; Fagg, L.; Uberall, H.; Goldberg, M.; Meadows, B.; Saenz, A.W.; Seeman, N.

    1980-01-01

    A simple, straightforward, and economic experiment utilizing a set of water Cherenkov counters is proposed to search for neutrino oscillations in the AGS neutrino beam. The detector will be movable and will be able to provide reasonable counting rates up to 2 km downstream of the pion decay tunnel. Whereas previous accelerator experiments have sought to increase the ratio l/p (with l the neutrino path length and p its momentum) by decreasing p, increasing l is suggested instead. Further, by making measurements at several different values of l with the same apparatus, many sources of systematic error are eliminated. The experiment will measure beam-associated muon- and electron-type events at each position. A change in the ratio of muon- to electron-type events as a function of position would be evidence for ν/sub μ/ + ν/sub e/ oscillations. Sensitivity in terms of (Δm) 2 (the square of the mass difference in the mass eigenstates) can be as low as 0.1 eV 2 , for full mixing, which is below the most probable value found by Reines et al for Δm 2 in their electron neutrino reactor experiment. This experiment would be parasitic, running behind the usual neutrino beam experiments, assuming the nominal beam energy (peaked at 1 GeV), and would thus make a minimal demand on AGS support. It is suggested that the first two measurements be made inside the Isabelle tunnel at the points of intersection with the AGS neutrino beam. No further excavations would be required, and the data could be taken before ISA equipment is installed

  10. CERN Neutrinos search for sunshine in Italy!

    CERN Document Server

    Wednesday, 18th June 2008. The CNGS (CERN Neutrinos to Gran Sasso) beam has re-started, shooting muon neutrinos towards Italy. The neutrino beam should run this year until mid November.The aim of CNGS is to understand the oscillation of neutrinos, for example their transformation from muon into tau neutrinos over long distances.Edda Gschwendtner, the liaison physicist of the CNGS beam, describes the progress of the project, “We did a lot of modifications this year to CNGS, which was a huge amount of work, with many groups and services involved. In parallel the OPERA detector in Italy made an enormous progress in completing their detector and we are looking forward to seeing tau neutrinos soon.”

  11. New measurements and analysis of high-energy muons in cosmic ray extensive air showers

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Ghose, B.; Murkherjee, N.; Sanyal, S.; Chaudhuri, N.; Chhetri, R.; Basak, D.K.

    1991-01-01

    Cosmic ray air shower structure measurements and measurement of density and energy of air shower muons of a wide energy range simultaneously in individual air showers by two magnet spectrographs are presented. The measured muon densities have been used to compare with some of the previous measurements on muon densities in air showers of nearly the same size. The measured muon densities have also been applied for distinguishing between various interaction models and between light and heavier air shower primaries. In the air shower size range 10 4 -10 6 particles the present measurements do not provide evidence for iron primaries and the different interaction models seem not to be distinguishable by air shower observations. (Author)

  12. Muon background studies for shallow depth Double - Chooz near detector

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, H. [Laboratoire Astroparticule et Cosmologie (APC) - Université Paris 7. Paris (France)

    2015-08-17

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.

  13. Muon background studies for shallow depth Double - Chooz near detector

    International Nuclear Information System (INIS)

    Gómez, H.

    2015-01-01

    Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector

  14. Case for neutrino oscillations

    International Nuclear Information System (INIS)

    Ramond, P.

    1982-01-01

    The building of a machine capable of producing an intense, well-calibrated beam of muon neutrinos is regarded by particle physicists with keen interest because of its ability of studying neutrino oscillations. The possibility of neutrino oscillations has long been recognized, but it was not made necessary on theoretical or experimental grounds; one knew that oscillations could be avoided if neutrinos were massless, and this was easily done by the conservation of lepton number. The idea of grand unification has led physicists to question the existence (at higher energies) of global conservation laws. The prime examples are baryon-number conservation, which prevents proton decay, and lepton-number conservation, which keeps neutrinos massless, and therefore free of oscillations. The detection of proton decay and neutrino oscillations would therefore be an indirect indication of the idea of Grand Unification, and therefore of paramount importance. Neutrino oscillations occur when neutrinos acquire mass in such a way that the neutrino mass eigenstates do not match the (neutrino) eigenstates produced by the weak interactions. We shall study the ways in which neutrinos can get mass, first at the level of the standard SU 2 x U 1 model, then at the level of its Grand Unification Generalizations

  15. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed

  16. On the importance of low-energy beta-beams for supernova neutrino physics

    International Nuclear Information System (INIS)

    Jachowicz, N.; McLaughlin, G.C.

    2005-01-01

    Beta beams, which are neutrino beams produced by the beta decay of nuclei that have been accelerated to high gamma factor, were original proposed for high energy applications, such as the measurement of the third neutrino mixing angle θ 13 . Volpe suggested that a beta beam run at lower gamma factor, would be useful for neutrino measurements in the tens of MeV range. We suggest to exploit the flexibility these beta beam facilities offer, combined with the fact that beta-beam neutrino energies overlap with supernova-neutrino energies, to construct 'synthetic' spectra that approximate an incoming supernova-neutrino energy-distribution. Using these constructed spectra we are able to reproduce total and differential folded supernova-neutrino cross-sections very accurately. We illustrate this technique using Deuterium, 16 O, and 208 Pb. This technique provides an easy and straightforward way to apply the results of a beta-beam neutrino-nucleus measurement to the corresponding supernova-neutrino detector, virtually eliminating potential uncertainties due to nuclear-structure calculations. (author)

  17. Multimuon final states in high energy muon interactions

    International Nuclear Information System (INIS)

    Chen, K.W.

    1977-01-01

    Multimuon final states observed in the MSU-Fermilab deep inelastic muon scattering apparatus are presented. These events, observed at both 150 and 275-GeV, are more numerous and the extra muons have qualitative different production characteristics than muons expected from conventional sources. Origin of these events are examined. The implication of the data on the understanding of scaling violation observed in muon scattering is discussed. (orig.) [de

  18. Muon and cosmogenic neutron detection in Borexino

    International Nuclear Information System (INIS)

    Bellini, G; Bonetti, S; Avanzini, M Buizza; Caccianiga, B; D'Angelo, D; Benziger, J; Bick, D; Cadonati, L; Calaprice, F; Chavarria, A; Galbiati, C; Carraro, C; Davini, S; Chepurnov, A; Derbin, A; Etenko, A; Feilitzsch, F von; Fomenko, K; Franco, D; Gazzana, S

    2011-01-01

    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992 % or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is ∼ 3 0 -5 0 and the lateral resolution is ∼ 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.

  19. Catching the Highest Energy Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2011-08-15

    We briefly discuss the possible sources of ultrahigh energy neutrinos and the methods for their detection. Then we present the results obtained by different experiments for detection of the highest energy neutrinos.

  20. High-energy photons and neutrinos from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dar, A.

    1998-01-01

    The Hubble Space Telescope has recently discovered thousands of gigantic cometlike objects in a ring around the central star in the nearest planetary nebula. It is assumed that such circumstellar rings exist around the majority of stars. Collisions of relativistic debris from gamma-ray bursts (GRB) in dense stellar regions with such gigantic cometlike objects, which have been stripped off from the circumstellar rings by gravitational perturbations, produce detectable fluxes of high energy γ rays and neutrinos from GRBs