WorldWideScience

Sample records for high-efficiency air cleaning

  1. High efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Conner, J.; Larsen, G.; Lopez, R.; Turner, C.; Vahla, G.; Violet, C.; Williams, K.

    1991-01-01

    The authors have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiently particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing steel filters, they first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, prototype filters were then built for venting compressed gases and evaluated in their automated filter tester

  2. The high efficiency steel filters for nuclear air cleaning

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs

  3. Nuclear air cleaning

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1994-01-01

    This report briefly describes the history of the use of high- efficiency particulate air filters for air cleaning at nuclear installations in the United States and discusses future uses of such filters

  4. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, Antonio; Romano, Matteo C.; Lozza, Giovanni

    2013-01-01

    Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H 2 S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO 2 -laden stream, which is successively treated in a wet scrubber. A thermodynamic analysis of two air-blown IGCC systems, the first with cold fuel gas clean-up and the second with hot fuel gas clean-up, both with a state-of-the-art combustion turbine as topping cycle, shows that it is possible to obtain a really attractive net efficiency (more than 51%) for the second system, with significant improvements in comparison with the first system. Nevertheless, higher efficiency is accomplished with a small reduction in the power output and no sensible efficiency improvements seem to be appreciated when the desulfurization temperature increases. Other IGCC systems, with an advanced 1500 °C-class combustion turbine as the result of technology improvements, are investigated as well, with efficiency as high as 53%. - Highlights: ► Hot fuel gas clean-up is a highly favorable technology for IGCC concepts. ► Significant IGCC efficiency improvements are possible with hot fuel gas clean-up. ► Size reductions of several IGCC components are possible. ► Higher desulfurization temperatures do not sensibly affect IGCC efficiency. ► IGCC efficiency as high as 53% is possible with a 1500°C-class combustion turbine

  5. Investigation of efficiency of air cleaning from acetone using a segmental construction biofilter

    Directory of Open Access Journals (Sweden)

    Denas Bacevičius

    2015-10-01

    Full Text Available Volatile organic compounds, e. g. acetone, have a direct impact on climate change, decrease of ozone in the air, and on the growth of greenhouse effect. One of the most popular air purifying methods from VOC is a biological air cleaning. Experimental investigations were conducted to determine the efficiency of the new structure of biofilter with polypropylene plates segments. During the investigations the efficiency of segmental construction biofilter of air purification at different initial concentrations of pollutants was determined. Different concentrations of pollutants were estimated during the acetone dilution with water. During the tests the efficiency of biofilter air purification from acetone vapor and its change under different concentrations of vapors was set. Based on test results, the maximum efficiency of biofilter air purification was up to 93%. Studies have shown that increasing the allowable pollutant concentration, the efficiency of air purification unit decreases. Increasing the concentration of supplied acetone vapor into the biofilter from 232 to 701 mg/m3, cleaning efficiency decreased from 92.8 to 82.3%. Since microorganisms fail to oxidize organic compounds, the filter works better at lower initial concentrations of pollutants.

  6. Air and gas cleaning technology for nuclear applications

    International Nuclear Information System (INIS)

    First, M.W.

    1986-01-01

    All large-scale uses of radioactive materials require rigid control of off-gases and generated aerosols. Nuclear air and gas cleaning technology has answered the need from the days of the Manhattan Project to the present with a variety of devices. The one with the longest and most noteworthy service is the HEPA (high efficiency particulate air) filter that originally was referred to as an absolute filter in recognition of its extraordinary particle retention characteristics. Activated-charcoal adsorbers have been employed worldwide for retention of volatile radioiodine in molecular and combined forms and, less frequently, for retention of radioactive noble gases. HEPA filters and activated -charcoal adsorbers are often used with auxiliary devices that serve to extend their effective service life or significantly improve collection efficiency under unfavorable operating conditions. Use of both air cleaning devices and their auxiliaries figure prominently in atomic energy, disposal of high- and low-level nuclear wastes, and in the production of fissile materials. The peaceful uses of nuclear energy would be impossible without these, or equivalent, air- and gas-cleaning devices

  7. Feasibility for the medium efficiency filter as a postfilter in the air cleaning unit

    International Nuclear Information System (INIS)

    Lim, H. S.; Jung, D. Y.; Byun, S. C.; Kim, S. H.

    2002-01-01

    The Air Cleaning Unit (ACU) is provided in a nuclear facility to filter the radioactive materials in gaseous effluents released from the facility during normal operation and during a postulated accident. The Air Cleaning Unit (ACU) consists of pre-HEPA filters, charcoal adsorber, post HEPA filters, fans, etc. The charcoal filters keep on-site dose and off-site effluents ALARA, consistent with regulatory requirements. The function of HEPA filter downstream of charcoal(carbon) adsorber in ACU is to catch potential radioactive carbon dust and to be a backup in the event of failure of upstream HEPA. Previous Regulatory Guide use only post HEPA filter of charcoal adsorber downstream but the Regulatory Guide of current revisions allows use of 95% dust spot efficiency filters in lieu of HEPA at the downstream of the carbon adsorber. In this paper is described that the background information of filters, Current Regulatory Guide of revised by the United States Nuclear Regulatory Commission and the feasibility for the medium efficiency filter as a carbon adsorber post filter in the Air Cleaning Unit

  8. Clean air strategy for Alberta: Background project reports

    International Nuclear Information System (INIS)

    1991-06-01

    As a background to the development of a clean air strategy for Alberta, reports are presented which cover the definition of what clean air is, the applicability of full cost accounting to this strategy, market-based approaches to managing Alberta air emissions, gas and electric utility incentives programs for energy efficiency, energy efficiency legislation in Alberta and other jurisdictions, initiatives which address emissions reduction in the transportation sector, coordination of science and technology relevant to clean air issues, and initiatives in energy and environmental education

  9. Experimental study on air cleaning effect of clean air heat pump and its impact on ventilation requirement

    DEFF Research Database (Denmark)

    Fang, Lei; Sheng, Ying; Nie, Jinzhe

    2017-01-01

    This study investigated air purification effect of a Clean-Air Heat Pump (CAHP) which combined a desiccant wheel with a heat pump for both air cleaning and HVAC of buildings. The experiment was conducted in a field lab at four different outdoor air supply rates with and without air cleaning by CAHP....... Both sensory assessments of perceived air quality and chemical measurements of TVOC concentrations were conducted for evaluating the air cleaning performance of the CAHP. The results of experiment showed that running the CAHP improved significantly perceived air quality. At 2 L/s per person of outdoor...... air supply rate with operating the CAHP, the air quality was equivalent to the value at the higher outdoor air supply rate of 10 L/s per person without running CAHP. The TVOC measurements observed over 92% of efficiency on removal of indoor air VOCs and no VOCs accumulation on the desiccant wheel...

  10. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor

    2014-01-01

    Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...... mixed with ammonia gas at a concentration of 20 ppm and velocities of 0.05, 0.15, 0.3 and 1.2 m/s. The activated carbon fibers treated with acid had a high deodorizing effect for ammonia (0.8) at a velocity of 0.05 m/s. The deodorizing effect of this material decreased with the increase in the velocity....... The porous activated carbon fiber fabric did not have a deodorant effect....

  11. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    much lower than the domestic price. For the extremely hot and humid climate, the clean air heat pump has the maximum ability of the energy saving for ventilation. The calculations showed that annual energy saving of using the clean air heat pump for ventilation in Sri Lanka is 62%. In general, the clean air heat pump system is suitable for ventilation in all kind of climates around the world except for the hot and dry climate. The annual energy saving is expected in the range between 30% and 60% depending on the climate. It is worth noting that the calculated energy reduction of a ventilation system using the clean air heat pump technology was an extra saving compared to a ventilation system that equipped with the high efficiency counter flow heat recovery equipment with a temperature efficiency of 80%. Based on this simulation, it can be concluded that the energy saving of the clean air heat pump for ventilation is remarkable. Therefore, the technology is highly recommended provided that this simulation results are further validated by experiments. (Author)

  12. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  13. Sizing of air cleaning systems for access to nuclear plant spaces

    International Nuclear Information System (INIS)

    Estreich, P.J.

    A mathematical basis is developed to provide the practicing engineer with a method for sizing air-cleaning systems for nuclear facilities. In particular, general formulas are provided to relate cleaning and contamination dynamics of an enclosure such that safe conditions are obtained when working crews enter. Included in these considerations is the sizing of an air-cleaning system to provide rapid decontamination of airborne radioactivity. Multiple-nuclide contamination sources, leak rate, direct radiation, contaminant mixing efficiency, filter efficiencies, air-cleaning-system operational modes, and criteria for maximum permissible concentrations are integrated into the procedure. (author)

  14. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  15. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  16. Can a Clean-Air Heat Pump (CAHP) maintain air purification capability when using polluted air for regeneration?

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei

    2018-01-01

    Clean Air Heat Pump (CAHP) was one type of rotary desiccant cooling system which combined a silica gel rotor with a heat pump to achieve air cleaning, dehumidifying and cooling in buildings. Using exhaust air from the conditioned room for regeneration of the silica gel rotor might have an advantage...... on reducing the regeneration air temperature and further improving the energy performance of the CAHP. However, the exhaust air carried a lot of indoor air pollutants. Whether using exhaust air for the regeneration of the silica gel rotor had an impact on the air cleaning performance of the CAHP...... was experimentally studied. The results showed that using the air contained acetone or toluene for regeneration reduced the pollutants removal capability of CAHP with a reduction of approx. 10% in air cleaning efficiency. The energy performance of the CAHP when using exhaust air for regeneration was also evaluated...

  17. An experimental evaluation on air purification performance of Clean-Air Heat Pump (CAHP) air cleaner

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Sun, Yuexia

    2018-01-01

    was 96.8%, which indicated that the most of gaseous pollutants were not accumulated in the CAHP. The regeneration temperature for the wheel could affect the air purification performance of CAHP. At 70 °C of regeneration temperature, the air-cleaning efficiency reached 96.7%. Up to 70% of the outdoor air......The escalation of energy consumption in buildings and heightened concerns about acceptable indoor air quality stimulate interest in the usage of air cleaner as an adjunct for indoor environmental conditioning. A regenerative desiccant wheel integrated into a ventilation system termed Clean-Air Heat...... Pump (CAHP) can improve the air quality during the process of dehumidification without using additional energy. An experimental study in a field lab was performed to investigate the air cleaning performance of CAHP. Photoacoustic gas analyzer-INNOVA was used to characterize chemical removal of indoor...

  18. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    International Nuclear Information System (INIS)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released

  19. Nuclear air cleaning activities in Germany

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1991-01-01

    The discussion is limited to nuclear air cleaning activities in the Federal Republic of Germany. Work is underway on containment venting with regard to filtration based on a combination of stainless steel roughing and fine filters with a decontamination factor similar to or better than that achieved with high-efficiency particulate air filters. The main point of interest is the development of relatively small filter units that can be located inside the containment. The concept of a new design for double containment having annular rooms between the steel containment and the concrete containment is discussed. Work related to the dismantling of decommissioned reactors and limited research for fuel reprocessing facilities are also noted

  20. Canada's Clean Air Act

    International Nuclear Information System (INIS)

    2006-01-01

    This paper provided an outline of Canada's Clean Air Act and examined some of the regulatory changes that will occur as a result of its implementation. The Act is being introduced to strengthen the legislative basis for taking action on reducing air pollution and GHGs, and will allow the government to regulate both indoor and outdoor air pollutants and GHGs. The Act will require the Ministers of the Environment and Health to establish national air quality objectives, as well as to monitor and report on their attainment. The Canadian Environmental Protection Act will be amended to enable the government to regulate the blending of fuels and their components. The Motor Vehicle Fuel Consumption Standards Act will also be amended to enhance the government's authority to regulate vehicle fuel efficiency. The Energy Efficiency Act will also be expanded to allow the government to set energy efficiency standards and labelling requirements for a wider range of consumer and commercial products. The Act will commit to short, medium and long-term industrial air pollution targets. Regulations will be proposed for emissions from industry; on-road and off-road vehicles and engines; and consumer and commercial products. It was concluded that the Government of Canada will continue to consult with provinces, territories, industries and Canadians to set and reach targets for the reduction of both indoor and outdoor air pollutants and GHG emissions. 6 figs

  1. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  2. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  3. Source terms in relation to air cleaning

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1985-01-01

    There are two sets of source terms for consideration in air cleaning, those for routine releases and those for accident releases. With about 1000 reactor years of commercial operating experience in the US done, there is an excellent data base for routine and expected transient releases. Specifications for air cleaning can be based on this body of experience with confidence. Specifications for air cleaning in accident situations is another matter. Recent investigations of severe accident behavior are offering a new basis for source terms and air cleaning specifications. Reports by many experts in the field describe an accident environment notably different from previous models. It is an atmosphere heavy with aerosols, both radioactive and inert. Temperatures are sometimes very high; radioiodine is typically in the form of cesium iodide aerosol particles; other nuclides, such as tellurium, are also important aerosols. Some of the present air cleaning requirements may be very important in light of these new accident behavior models. Others may be wasteful or even counterproductive. The use of the new data on accident behavior models to reevaluate requirements promptly is discussed

  4. Self-cleaning threaded rod spinneret for high-efficiency needleless electrospinning

    Science.gov (United States)

    Zheng, Gaofeng; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Zhong, Weizheng; Guo, Shumin

    2018-07-01

    High-efficiency production of nanofibers is the key to the application of electrospinning technology. This work focuses on multi-jet electrospinning, in which a threaded rod electrode is utilized as the needless spinneret to achieve high-efficiency production of nanofibers. A slipper block, which fits into and moves through the threaded rod, is designed to transfer polymer solution evenly to the surface of the rod spinneret. The relative motion between the slipper block and the threaded rod electrode promotes the instable fluctuation of the solution surface, thus the rotation of threaded rod electrode decreases the critical voltage for the initial multi-jet ejection and the diameter of nanofibers. The residual solution on the surface of threaded rod is cleaned up by the moving slipper block, showing a great self-cleaning ability, which ensures the stable multi-jet ejection and increases the productivity of nanofibers. Each thread of the threaded rod electrode serves as an independent spinneret, which enhances the electric field strength and constrains the position of the Taylor cone, resulting in high productivity of uniform nanofibers. The diameter of nanofibers decreases with the increase of threaded rod rotation speed, and the productivity increases with the solution flow rate. The rotation of electrode provides an excess force for the ejection of charged jets, which also contributes to the high-efficiency production of nanofibers. The maximum productivity of nanofibers from the threaded rod spinneret is 5-6 g/h, about 250-300 times as high as that from the single-needle spinneret. The self-cleaning threaded rod spinneret is an effective way to realize continuous multi-jet electrospinning, which promotes industrial applications of uniform nanofibrous membrane.

  5. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    DEFF Research Database (Denmark)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo

    2011-01-01

    America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two......Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some...... air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North...

  6. Air cleaning using regenerative silica gel wheel

    DEFF Research Database (Denmark)

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based...... on an experimental study, a technology called clean air heat pump is proposed as a practical approach for indoor air cleaning....

  7. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Containment air cleaning for LMFBRs

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Owen, R.K.; Postma, A.K.

    1979-01-01

    A variety of air cleaning concepts was evaluated for potential use in future sodium-cooled breeder reactors. A 3-stage aqueous scrubber system was selected for large-scale demonstration testing under conditions similar to those postulated for containment venting and purging during reactor melt-through accidents. Two tests were performed in the Containment Systems Test Facility using a quench tank, a jet venturi scrubber and a high efficiency fibrous scrubber in series. The results of two tests with Na/sub 2/O/sub 2/ and NaOH aerosol and NaI vapor are presented showing >99.9% removal of Na/sub 2/O/sub 2/ and NaOH and >99.7% for NaI. 7 refs

  9. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  10. Design of off-gas and air cleaning systems at nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    The primary purpose of this report is to describe the current design of air and process off-gas cleaning technologies used in nuclear power plants (NPPs). Because of the large inventory of fission products that are produced in the fuel (i.e. in the range of 5x10 19 Bq per GW(e)·a) and the highly restrictive airborne radionuclide release limits being established by Member States, air and process off-gas cleaning technologies are constantly being improved to provide higher airborne radionuclide recovery efficiencies and a smaller probability of malfunction. For various technologies considered an attempt has been made to provide the following information: (a) Process description in terms of principles of off-gas and air cleaning, operating parameters and system performance; (b) Design for normal and accident situations; (c) Design of components with regard to construction materials, size, shape and geometry of the system, resistance to chemical and physical degradation from the operational environment, safety and quality assurance requirements

  11. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  12. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  13. Air-cleaning systems for sodium-fire-aerosol control

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Muhlestein, L.D.

    1982-05-01

    A development program has been carried out at the Hanford Engineering Development Laboratory (HEDL) with the purpose of developing and proof testing air cleaning components and systems for use under severe sodium fire conditions, including those involving high levels of radioactivity. The air cleaning components tested can be classified as either dry filters or aqueous scrubbers. Test results are presented

  14. Clean air in the Anthropocene.

    Science.gov (United States)

    Lelieveld, Jos

    2017-08-24

    In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt "clean air" as a sustainable development goal.

  15. The Clean Air Act

    International Nuclear Information System (INIS)

    Coburn, L.L.

    1990-01-01

    The Clean Air Act amendments alter the complex laws affecting atmospheric pollution and at the same time have broad implications for energy. Specifically, the Clean Air Act amendments for the first time deal with the environmental problem of acid deposition in a way that minimizes energy and economic impacts. By relying upon a market-based system of emission trading, a least cost solution will be used to reduce sulfur dioxide (SO 2 ) emissions by almost 40 percent. The emission trading system is the centerpiece of the Clean Air Act (CAA) amendments effort to resolve energy and environmental interactions in a manner that will maximize environmental solutions while minimizing energy impacts. This paper will explore how the present CAA amendments deal with the emission trading system and the likely impact of the emission trading system and the CAA amendments upon the electric power industry

  16. Combining active chilled beams and air cleaning technologies to improve indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2012-01-01

    This project is part of a long-term research programme studying the possibilities of using efficient air cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project is to study energy-saving potential by combining cooling and cleaning of air in of....... Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 (h-1). However, the efficiency of the chilled beam in exchanging the heat reduced by 38%....

  17. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. 14 CFR 1260.34 - Clean air and water.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  19. Odor and the Clean Air Act

    International Nuclear Information System (INIS)

    Morse, H.N.

    1993-01-01

    The case described in this paper involves the interpretation of language contained in the Texas Clean Air Act Texas Health and Safety Code Ann. Sections 382.001-382.141. The State of Texas, on behalf of the Texas Air Control Board, brought suit in the District Court of Erath County, Texas against the F/R Cattle Company, Inc., alleging that, because of odors emanating from the company's cattle feeding facility, the company was violating the Clean Air Act. The Board is granted the power and duty to administer the Clean Air Act and is directed to accomplish the purposes of the Act through the control of air contaminants by all practical and economically feasible methods. Described here is the evidence presented at and proceedings of the trial

  20. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  1. Some impacts of the 1990 Clean Air Act and state clean-air regulations on the fertilizer industry

    International Nuclear Information System (INIS)

    Breed, C.E.; Kerns, O.S.

    1992-01-01

    The Clean Air Act amendments of 1990 will intensify national efforts to reduce air pollution. They will have major impacts on governmental agencies and on industrial and commercial facilities throughout the country. As with other industries, it is essential for fertilizer dealers and producers to understand how these changes to the Clean Air Act can significantly change the way they do business. This paper is proffered as an overview of ways in which the 1990 amendments to the Clean Air Act may impact the fertilizer industry. The nonattainment, toxics, and permit provisions of the amended act will be three areas of particular concern to the fertilizer industry. Implementation of the new regulatory requirements of this legislation promises to be a long and onerous process for all concerned. However, it appears that state and local regulations may have a much more profound impact on the fertilizer industry than the new Clean Air Act

  2. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  3. Netherlands export country for electricity? New developments in power plants and the impact on the Clean and Efficient programme

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Daniels, B.W.

    2008-07-01

    This report explores part of the effects of the Dutch Climate Programme 'Clean and Efficient - Opportunities for Tomorrow' on the emissions of air pollutants, as included in the National Emissions Ceilings. The starting point for the analysis is the ex ante evaluation of Clean and Efficient as published in September 2007. Specifically for the Netherlands, the role of the power generation sector is important. For the near future (up to 2015), about 11 to 15 GW of new fossil generation capacity is being planned. In combination with the Clean and Efficient Programme, this will have a large impact on the resulting national emissions of air pollutants. Strong climate policies and high CO2 prices are likely to result in a lower electricity demand than the original reference projection (the Global Economy High Oil Price scenario). In addition, more renewable electricity generation and more cogeneration are expected. These changes are likely to improve the international competitiveness of the Dutch electricity generation. As a result, electricity exports rise and part of the emission reductions materialize outside the Netherlands, rather than within its borders [nl

  4. Performance evaluation of air cleaning devices of an operating low level radioactive solid waste incinerator

    International Nuclear Information System (INIS)

    Subramanian, V.; Surya Narayana, D.S.; Sundararajan, A.R.; Satyasai, P.M.; Ahmed, Jaleel

    1997-01-01

    Particle removal efficiencies of a cyclone separator, baghouse filters and a high efficiency particulate activity (HEPA) filter bank of an incinerator have been determined during the incineration of combustible low level solid radioactive wastes with surface dose of 20 - 50 gy/h. Experimental runs have been carried out to collect the particulates in various aerodynamic size ranges using an eight stage Andersen sampler and a low pressure impactor (LPI) while the incinerator is in operation. The collection efficiencies of the cyclone, baghouse and HEPA filters have been found to be 100 per cent for particles of size greater than 4.7, 2.1 and 1.1 μm respectively. The results of our investigations indicate that the air cleaning devices of the incinerator are working according to their design criteria. The data will be useful in the design and operation of air cleaning devices for toxic gaseous effluents. (author). 3 refs., 2 figs., 1 tab

  5. Efficiency and Loading Evaluation of High Efficiency Mist Eliminators (HEME) - 12003

    Energy Technology Data Exchange (ETDEWEB)

    Giffin, Paxton K.; Parsons, Michael S.; Waggoner, Charles A. [Institute for Clean Energy Technology, Mississippi State University, 205 Research Blvd Starkville, MS 39759 (United States)

    2012-07-01

    High efficiency mist eliminators (HEME) are filters primarily used to remove moisture and/or liquid aerosols from an air stream. HEME elements are designed to reduce aerosol and particulate load on primary High Efficiency Particulate Air (HEPA) filters and to have a liquid particle removal efficiency of approximately 99.5% for aerosols down to sub-micron size particulates. The investigation presented here evaluates the loading capacity of the element in the absence of a water spray cleaning system. The theory is that without the cleaning system, the HEME element will suffer rapid buildup of solid aerosols, greatly reducing the particle loading capacity. Evaluation consists of challenging the element with a waste surrogate dry aerosol and di-octyl phthalate (DOP) at varying intervals of differential pressure to examine the filtering efficiency of three different element designs at three different media velocities. Also, the elements are challenged with a liquid waste surrogate using Laskin nozzles and large dispersion nozzles. These tests allow the loading capacity of the unit to be determined and the effectiveness of washing down the interior of the elements to be evaluated. (authors)

  6. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which...

  7. Effect of Air Cleaning Technologies in Conjunction With the Use of Rotary Heat Exchangers in Residential Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Bergsøe, Niels Christian; Ekberg, Lars

    2013-01-01

    This study is part of a research project concerning the possibilities of applying efficient air cleaning technologies using rotary heat exchanger in residential buildings. The purpose of this project was to identify and adapt new air-cleaning technologies for implementation in HVAC systems...... with rotary air-to-air heat exchangers. For this purpose, a mechanical filter with low pressure drop and a 4 cm thick activated carbon filter were selected for testing in a laboratory environment. The measurements included testing of the filters, separately and combined, in a ductwork to study the efficiency...

  8. Electric utilities and clean air

    International Nuclear Information System (INIS)

    Evans, J.E.

    1991-01-01

    This paper reports that electricity has become essential to American life. Approximately 70 percent of the nation's electricity is produced by burning fossil fuels, with coal, the most abundant, domestically-available, extracted natural resource, providing over 55 percent of the total electricity consumed. Emissions resulting from the burning of fossil fuels are regulated by both the federal and state governments. In 1970, Congress passed the comprehensive Clean Air Act which established a national program to protect the nation's air quality. In 1977, additional strict regulations were passed, which mandated even more stringent emission controls for factories, power plants and auto emissions. Prior to passage of the Clean Air Act of 1990, utilities were required to adhere to three major types of clean air regulations: National Ambient Air Quality Standards (NAAQS), New Source Performance Standards (NSPS), and Prevention of Significant Deterioration (PSD) review. NAAQS established limits for the maximum concentration levels of specific air pollutants in the ambient atmosphere. For example, for an area to be in compliance with the NAAQS for sulfur dioxide (SO 2 ), its annual average SO 2 concentration must not exceed 0.03 ppm of SO 2 and a peak 24 hour level of 0.14 ppm of SO 2 must not be exceeded more than once per year

  9. A brief history of the air cleaning conferences

    International Nuclear Information System (INIS)

    First, M.W.

    1995-01-01

    I have been asked to prepare a history of the air cleaning conferences. Undertaking such a task is, of course, a wonderful opportunity for reminiscences and a chance to retell old war stories. I must admit that it has taken much longer than I anticipated because I found myself so completely engrossed rereading the old records that time seemed to stop, although the hours passed. But a history of the nuclear air cleaning conferences means more than a stroll down memory lane. The 23 recorded air cleaning conference proceedings reflect an important aspect of the history of major nuclear developments, both military and civilian, because engineered safety features designed to prevent dispersion of radioactive products to the environment have always been a necessity for progress in this field. For this reason, I hope the history of the nuclear air cleaning conferences will not only be enjoyable, but also have meaning for young people entering this field. The air cleaning conferences were an outgrowth of the operations of the U.S. Atomic Energy Commission's (AEC) Stack Gas Working Group established in 1948 to review air cleaning operations at AEC installations. AEC's Division of Engineering sponsored and funded air cleaning research and development at Harvard University's School of Public Health, beginning about the same time. In addition to research and development, the Harvard contract called for consulting and educational services. The latter provided the opportunity for meetings devoted to information on air cleaning that could be applied to ongoing and anticipated nuclear operations

  10. A brief history of the air cleaning conferences

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W.

    1995-02-01

    I have been asked to prepare a history of the air cleaning conferences. Undertaking such a task is, of course, a wonderful opportunity for reminiscences and a chance to retell old war stories. I must admit that it has taken much longer than I anticipated because I found myself so completely engrossed rereading the old records that time seemed to stop, although the hours passed. But a history of the nuclear air cleaning conferences means more than a stroll down memory lane. The 23 recorded air cleaning conference proceedings reflect an important aspect of the history of major nuclear developments, both military and civilian, because engineered safety features designed to prevent dispersion of radioactive products to the environment have always been a necessity for progress in this field. For this reason, I hope the history of the nuclear air cleaning conferences will not only be enjoyable, but also have meaning for young people entering this field. The air cleaning conferences were an outgrowth of the operations of the U.S. Atomic Energy Commission`s (AEC) Stack Gas Working Group established in 1948 to review air cleaning operations at AEC installations. AEC`s Division of Engineering sponsored and funded air cleaning research and development at Harvard University`s School of Public Health, beginning about the same time. In addition to research and development, the Harvard contract called for consulting and educational services. The latter provided the opportunity for meetings devoted to information on air cleaning that could be applied to ongoing and anticipated nuclear operations.

  11. Development of filters for exhaust air or off-gas cleaning

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1988-01-01

    The activities of the 'Laboratorium fuer Aerosolphysik und Filtertechnik II' of the 'Kernforschungszentrum Karlsruhe' concentrate on the development of filters to be used for cleaning nuclear and conventional exhaust air and off-gas. Originally, these techniques were intended to be applied in nuclear facilities only. Their application for conventional gas purification, however, has led to a reorientation of research and development projects. By way of example, it is reported about the use of the multi-way sorption filter for radioiodine removal in nuclear power plants and following flue-gas purification in heating power plants as well as for off-gas cleaning in chemical industry. The improvement of HEPA filters and the development of metal fibre filters has led to components which can be used in the range of high humidity and moisture as well as at high temperatures and an increased differential pressure. The experience obtained in the field of high-efficiency filtering of nuclear airborne particles is made use of during the investigations concerning the removal of particles of conventional pollutants in the submicron range. A technique of radioiodine removal and an improved removal of airborne particles has been developed for use in the future reprocessing plant. Thus, a maximum removal efficiency can be achieved and an optimum waste management is made possible. It is reported about the components obtained as a result of these activities and their use for off-gas cleaning in the Wackersdorf reprocessing plant (WAW). (orig.) [de

  12. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  13. Canadian government motivators for clean air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J. [Transport Canada, Ottawa, ON (Canada)

    1999-07-01

    A slide presentation is included which covers: why support clean air vehicles, key areas of action including climate change and cleaner air and conclusions. Reasons for supporting clean air vehicles include: the environment is not a top of mind issue for Canadians but is a core issue, transportation contributes significantly to environmental problems, e.g., 40-50% of smog emissions, and 27% of greenhouse gas emissions, and clean air vehicles are part of the solution. The first area of action is that of climate change, and includes as elements: the Kyoto Protocol, First Ministers, and 15 Issue Tables. The second area of action is clean air. Action on climate change can have ancillary benefits, e.g., reduction in smog-related emissions. Government is taking action to address smog in concert with the provinces in the Federal Smog Management Plan. A key element in the Plan is that of ensuring that appropriate emissions standards are in place. Transport Canada supports clean air vehicles through research conducted at the Transporation Research and Development Centre. Further Transport Canada involvement includes: partnership in Montreal 2000, demonstration/conversion testing, development of advanced EV systems, and membership in the CEVEQ. In the longer term, new technologies hold the key to addressing many environmental challenges. This is particularly true with respect to climate change and air quality, and new vehicle technologies will play an important role.

  14. Allegheny County Clean Indoor Air Act Exemptions

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — List and location of all the businesses and social clubs who have received an exemption from the Pennsylvania Clean Indoor Air Act. “The Clean Indoor Air Act, Act...

  15. Continuing challenges in nuclear air cleaning

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1976-01-01

    The safe operation of nuclear facilities is heavily dependent upon the adequate performance of air cleaning systems. Although many problems have been solved, new questions and new challenges continue to arise. These are well illustrated by weaknesses in air cleaning and ventilating systems revealed by the Browns Ferry fire, and the need to develop additional data on the reliability of such systems, particularly under emergency conditions, as revealed by the Reactor Safety Study. Assessments of the degree to which engineered safety features can compensate for deficiencies in nuclear power plant sites continue to challenge those involved in risk/benefit evaluations. Additional challenges are being generated by the air cleaning requirements associated with the commercial development of the liquid metal fast breeder reactor

  16. Testing and operation of nuclear air-cleaning systems in Qinshan NPP

    International Nuclear Information System (INIS)

    Yang Lin

    1993-01-01

    The components of nuclear air-cleaning system, system function, operational mode and the performance of cleaning components in Qinshan Nuclear Power Plant are described. The items, purpose, methods and results of in-place testing after the installation are also described in detail. The in-place testing verifies that nuclear air-cleaning systems in Qinshan Nuclear Power Plant are reliable and high effective. It also describes the points of the operational management. It is shown that the good operational management is the key which developed prescription function of nuclear air-cleaning systems. At present, Qinshan Nuclear Power Plant will be in full power, the normal operation of the system is satisfied with the demand of safe operation in Qinshan Nuclear Power Company

  17. Nuclear air cleaning: the need for a change in emphasis

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1982-11-01

    The nuclear industry now has over 35 years of experience in nuclear air cleaning. This experience covers technology development, system design, operations, and maintenance. Much of the past experience has been directed towards technology development with particular emphasis on high efficiency particulate air (HEPA) filters. Implementation of this technology has lagged its development by a number of years. A recent study examines the cause and frequencies of HEPA filter changeouts and failures. These data lead to a conclusion that a shift in emphasis from technology development to the training of personnel and the designing and maintaining of such systems is needed. Some highlights of the data and a discussion of topics which should be addressed in training will be presented

  18. Nuclear air cleaning: the need for a change in emphasis

    International Nuclear Information System (INIS)

    Carbaugh, E.H.

    1983-01-01

    The nuclear industry now has over 35 years of experience in nuclear air cleaning. This experience covers technology development, system design, operations, and maintenance. Much of the past experience has been directed towards technology development with particular emphasis on high efficiency particulate air (HEPA) filters. Implementation of this technology has lagged its development by a number of years. A recent study examines the causes and frequencies of HEPA filter changeouts and failures. These data lead to a conclusion that a shift in emphasis from technology development to the training of personnel and the designing and maintaining of such systems is needed. Some highlights of the data and a discussion of topics which should be addressed in training will be presented. 7 references, 5 tables

  19. Development and evaluation of a cleanable high efficiency steel filter

    International Nuclear Information System (INIS)

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 x 6l0 x 292 mm aluminum frame and has 13.5 m 2 of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m 3 /hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO 2 aerosols. We used a 1,700 m 3 /hr slip stream from the 10,200 m 3 /hr exhaust system

  20. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  1. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas: treatment of offgases from chemical processing; aerosol; behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions; HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration; filter testing; and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  2. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas; treatment of offgases from chemical processing; aerosol behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions: HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration, filter testing, and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  3. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  4. Combining active chilled beams and air-cleaning technologies to improve the indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2013-01-01

    This project is part of a long-term research programme to study the possibilities of using efficient air-cleaning technologies to improve the indoor air quality in buildings. The purpose of this part of the project was to study the energy-saving potential of combining the cooling and cleaning of ...... than 5 Pa (0.104 Ibf /ft2). Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 h-1. However, the efficiency of the chilled beam in exchanging heat was reduced by 38%....

  5. New air cleaning technology in Japan

    International Nuclear Information System (INIS)

    Yoshida, Y.; Kitani, S.; Matsui, H.; Ikezawa, Y.

    1981-01-01

    Application of the new techniques and improvements in air cleaning systems have been made to reduce release of radioactive materials from nuclear facilities based on the ALARA concept. For example, the reduction of release of radioactive gaseous effluents has been made by installation of a charcoal gas hold-up system and a clean steam supply system for a turbine gland seal in a BWR and of a gas decay tank system in a PWR. In connection with the effort for reduction of releases in plants, research and development on air cleaning technology have also been made. Some activities mentioned in the present paper are: removal of particulates, airborne radioiodine, noble gases and tritium; penetration characteristics of submicron DOP aerosol for HEPA filters; radioiodine removal from air exhausts; and operational performance of the incineration plants using ceramic filters

  6. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  7. Benefits and Costs of the Clean Air Act

    Science.gov (United States)

    Congress added to the 1990 Clean Air Act Amendments a requirement under section 812 that EPA conduct periodic, scientifically reviewed studies to assess the benefits and the costs of the entire Clean Air Act.

  8. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Miller, R.L.

    1992-01-01

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  9. Preliminary field evaluation of high efficiency steel filters

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Larsen, G.; Lopez, R. [Lawrence Livermore National Laboratory, CA (United States)] [and others

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  10. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...... to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  11. Air toxics and the 1990 Clean Air Act: Managing trace element emissions

    International Nuclear Information System (INIS)

    Chow, W.; Levin, L.; Miller, M.J.

    1992-01-01

    The US Environmental Protection Agency (EPA) has historically regulated air toxics (hazardous air pollutants) under Section 112 of the Clean Air Act. To date, EPA has established emission standards for 8 hazardous air pollutants (arsenic, asbestos, benzene, beryllium, mercury, radionuclides, coke oven emissions and vinyl chloride). The US electric utility industry was not determined to be a source category requiring regulation for any of the eight chemicals. Of the eight, radionuclides were the last species for which EPA established hazardous emissions standards. In this instance, EPA determined that the risks associated with electric utility fossil fuel power plant emissions were sufficiently low that they should not be regulated. However, the 1990 Clean Air Act Amendments require a new evaluation of the electric utility industry emissions of hazardous air pollutants. This paper summarizes the key features of the air toxics provisions of the Clean Air Act Amendments, describes EPRI's activities on the subject, and provides some preliminary insights from EPRI's research to date

  12. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  13. Enlisting municipal governments in a national approach to clean air and climate change

    International Nuclear Information System (INIS)

    2006-01-01

    The Federation of Canadian Municipalities (FCM) and the Government of Canada have a shared commitment to improve environmental performance and protect the health of Canadians. Air pollution and climate change are also a shared responsibility among federal, municipal and provincial/territorial governments. Although they operate independently, their policies and programs tend to overlap. This is both costly and inefficient. In order to create synergies and leverage the role and potential of each level of government, the FCM proposed a national approach to clean air and climate change. The approach involves all levels of government in a nationally coordinated effort, with roles appropriate to their capacities. The municipal role in clean air and climate change action, roles and responsibilities of municipal governments, and guiding principles of a new Canadian approach were discussed in this document. Recommendations and next steps were also identified. They centred on the following themes: enhancing public transit, clean transportation and related infrastructure; improving commercial and residential building efficiency; stimulating ongoing productivity and pollution prevention within municipal operations through incentives and policies; enhancing clean energy; strengthened and enforceable air quality standards; emissions trading; climate change adaptation; public education and awareness; and demonstrating success and ensuring accountability. The document concluded that only a long-term intergovernmental partnership can meet the challenges posed by climate change and air pollution. FCM urged the Government of Canada to adopt an integrative and strategic approach to clean air and climate change by enlisting municipal governments as partners in both its development and implementation

  14. Clean air strategy for Alberta: Report to the ministers

    International Nuclear Information System (INIS)

    1991-11-01

    As a response to continuing discussions on the impact of fossil fuels on global warming, acid deposition, and smog, a clean air strategy consultation program was announced by Alberta's Ministers of Energy and Environment to encourage public discussion on air emissions resulting from the production and use of energy. The consultation program had three objectives: to help identify and clarify the most important issues associated with energy production and use which need to be addressed in developing a clean air strategy; to outline practical and achievable actions which can be taken to reduce emissions; and to develop program and policy recommendations to the provincial government. The consultation program included workshops and regional sessions, as well as background research. The discussions, findings, and conclusions from the program are summarized. Several air quality management challenges were identified, including the need for a more comprehensive system for managing air quality; the priority of local air quality issues and problems; the need to address cumulative regional emissions and impacts; and scientific and economic uncertainties. A number of goals have been developed to address these challenges, such as implementation of a comprehensive air quality management system, identification of cost-effective energy conservation and efficiency opportunities, development of innovative and targeted solutions to manage cumulative emissions, and improvement of the gathering and application of scientific and technical knowledge regarding atmospheric processes and effects. A glossary of terms is included. 12 figs., 17 tabs

  15. Utility view of the source term and air cleaning

    International Nuclear Information System (INIS)

    Littlefield, P.S.

    1985-01-01

    The utility view of the source term and air cleaning is discussed. The source term is made up of: (1) noble gases, which there has been a tendency to ignore in the past because it was thought there was nothing that could be done with them anyway, (2) the halogens, which have been dealt with in Air Cleaning Conferences in the past in terms of charcoal and other systems for removing them, and (3) the solid components of the source term which particulate filters are designed to handle. Air cleaning systems consist of filters, adsorbers, containment sprays, suppression pools in boiling water reactors and ice beds in ice condenser-equipped plants. The feasibility and cost of air cleaning systems are discussed

  16. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    Almerico, F.; Machiels, A.J.; Ornberg, S.C.; Lahti, G.P.

    1985-01-01

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  17. Clean Air Act amendments of 1991: Detailed summary of titles

    International Nuclear Information System (INIS)

    1990-01-01

    ;Contents: Provisions for Attainment and Maintenance of National Ambient Air Quality Standards; Provisions Relating to Mobile Sources; Hazardous Air Pollutants; Acid Deposition Control; Permits; Stratospheric Ozone Protection; Provisions Relating to Enforcement; Miscellaneous Provisions; Clean Air Research; Disadvantaged Business Concerns; Clean Air Employment Transition Assistance

  18. Removal of mercury vapor from ambient air of dental clinics using an air cleaning system based on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Chiman Saeidi

    2015-06-01

    Full Text Available Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury vapors in the dental clinic using a n a ir cleaning system based on silver nanoparticles. Methods: In this study, silver nanoparticles coated on the bed of foam and chemical and structural properties were determined using a number of methods such as UV-VIS-NIR spectroscopy and Scanning Electron Microscope (SEM connected the X-ray Emission Spectroscopy Energy (EDS. The a ir cleaning system efficiency to remove of the mercury vapor in simulated conditions in the laboratory and real conditions in the dental clinicwere measured by Cold Vapor Atomic Absorption Spectroscopy (CVAAS. Results: The images of SEM, showed that average sizeof silver nanoparticles in colloidal solution was ∼ 30nm and distribution of silver nanoparticles coated on foam was good. EDS spectrum confirmed associated the presence of silver nanoparticles coated on foam. The significantly difference observed between the concentration of mercury vapor in the off state (9.43 ± 0.342 μg.m-3 and on state (0.51 ± 0.031μg.m-3 of the a ir cleaning system. The mercury vapor removal efficiencyof the a ir cleaning system was calculated 95%. Conclusion : The air cleaning system based on foam coated by silver nanoparticles, undertaken to provide the advantages such as use facilitating, highly efficient operational capacity and cost effective, have highly sufficiency to remove mercury vapor from dental clinics.

  19. The Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Mosby, R.C.

    1991-01-01

    The natural gas liquids industry and specifically the gas processing business has not been rosy the last several years. processors have been faced with low NGL prices, high inventories and more regulations which have forced product margins to all time lows and have resulted in plant closings, mergers and a determined search for those processors that are left for ways to make ends meet until times get better. Whether a barometer for the future or merely a fluke in the economy, things got better in 1990. Last year represented a change for the positive in all the indicators characterizing the gas processing business. An early winter in 1989, propane distribution problems, overall increases in petrochemical demand for NGLs and the fear brought on by events in Kuwait all contributed to changes in the marketplace. For the gas processor, these events combined with relatively low natural gas prices to produce wider processing margins and a degree of prosperity. The biggest regulatory event in 1990 however was without a doubt the Clean Air Act Amendments. These sweeping changes to the 1970 Clean Air Act promise to affect the economy and public health well into the next century. The purpose of this paper is to examine first the major provisions of the Clean Air Act Amendments of 1990 and then relate those anticipated changes to the gas processing industry. As will be examined later, the Amendments will create both threats and opportunities for gas processors

  20. Emergency air cleaning system development for LMFBR containments

    International Nuclear Information System (INIS)

    McCormack, J.D.; Hilliard, R.K.; Postma, A.K.; Muhlestein, L.D.

    1975-01-01

    Criteria for evaluating the various types of Emergency Air Cleaning Systems which may be used in LMFBR plants have been established for both single containment and containment-confinement arrangements. These two plant arrangements have quite different air cleaning requirements for postulated design base accident conditions. Work is currently in progress to select from a list of candidate air cleaning systems those which best meet the criteria requirements. By means of a weighted rating system, areas of strength or weakness can be found and the conceptual system design then optimized. The final system arrangements will be ranked and several of the most promising systems selected for large-scale tests in the former CSE vessel at Hanford. 8 references. (U.S.)

  1. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  2. New Clean Air Act complicates power plant operation, design

    International Nuclear Information System (INIS)

    Smock, R.W.

    1991-01-01

    In November the president signed into law the new Clean Air Act, ushering in a new era in the power generation industry. This paper reviews the six important sections of the Clean Air Act and their impact on power plant operation and design

  3. Ductless personalized ventilation with local air cleaning

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equip......An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks...... was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...

  4. Household air pollution, health, and climate change: cleaning the air

    Science.gov (United States)

    Goldemberg, Jose; Martinez-Gomez, Javier; Sagar, Ambuj; Smith, Kirk R.

    2018-03-01

    Air pollution from the use of solid household fuels is now recognized to be a major health risk in developing countries. Accordingly, there has been some shift in development thinking and investment from previous efforts, which has focused only on improving the efficiency of household fuel use, to those that focus on reducing exposure to the air pollution that leads to health impact. Unfortunately, however, this is occurring just as the climate agenda has come to dominate much of the discourse and action on international sustainable development. Thus, instead of optimizing approaches that centrally focus on the large health impact, the household energy agenda has been hampered by the constraints imposed by a narrow definition of sustainability—one primarily driven by the desire to mitigate greenhouse emissions by relying on renewable biomass fueling so-called improved cookstoves. In reality, however, solid biomass is extremely difficult to burn sufficiently cleanly in household stoves to reach health goals. In comparison to the international development community, however, some large countries, notably Brazil historically and more recently, India have substantially expanded the use of liquefied petroleum gas (LPG) in their household energy mix, using their own resources, having a major impact on their national energy picture. The net climate impact of such approaches compared to current biomass stoves is minimal or non-existent, and the social and health benefits are, in contrast, potentially great. LPG can be seen as a transition fuel for clean household energy, with induction stoves powered by renewables as the holy grail (an approach already being adopted by Ecuador as also discussed here). The enormous human and social benefits of clean energy, rather than climate concerns, should dominate the household energy access agenda today.

  5. Nanomaterials for benign indoor environments: Electrochromics for 'smart windows', sensors for air quality, and photo-catalysts for air cleaning

    International Nuclear Information System (INIS)

    Granqvist, C.G.; Azens, A.; Heszler, P.; Kish, L.B.; OEsterlund, L.

    2007-01-01

    Nanomaterials can be used in a number of technologies in order to accomplish benign indoor environments. This paper takes a unified view on this problem from a solar-energy-based perspective and specifically considers electrochromics for achieving good day-lighting jointly with energy efficiency, sensors aimed at air quality assessment, and photocatalysis for air cleaning. Recent results, mainly from the authors' laboratories, are reported for all of these areas. (author)

  6. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference

    International Nuclear Information System (INIS)

    First, M.W.; Harvard Univ., Boston, MA

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  7. Air-cleaning philosophy in a nuclear-materials fabrication plant

    International Nuclear Information System (INIS)

    Ward, F.Y.; Yoder, R.E.

    1982-01-01

    At the Department of Energy's Rocky Flats Plant there is a major ventilation improvement project underway. To achieve the desired goals of ALARA regarding radioactivity and toxic material releases and natural phenomena insults, a comprehensive air-cleaning philosophy and policy statement was developed. Design of the upgraded systems were evaluated against these statements and we believe that upon completion of the projects that an efficient system will be demonstrated. the design permits reuse and heat recovery of ventilation air, the optimization of sampling points to reduce analytical laboratory services. This paper discusses the basis of the philosophy and the engineering features incorporated to meet this stated objective. Points of compromise are noted

  8. Interactions between energy efficiency and emission trading under the 1990 Clean Air Act Amendments

    International Nuclear Information System (INIS)

    Hillsman, E.L.; Alvic, D.R.

    1994-08-01

    The 1990 Clean Air Act Amendments affect electric utilities in numerous ways. The feature that probably has received the greatest attention is the provision to let utilities trade emissions of sulfur dioxide (SO 2 ), while at the same time requiring them to reduce S0 2 emissions in 2000 by an aggregate 43%. The emission trading system was welcomed by many as a way of reducing the cost of reducing emissions, by providing greater flexibility than past approaches. This report examines some of the potential interactions between trading emissions and increasing end-use energy efficiency. The analysis focuses on emission trading in the second phase of the trading program, which begins in 2000. The aggregate effects, calculated by an emission compliance and trading model, turn out to be rather small. Aggressive improvement of end-use efficiency by all utilities might reduce allowance prices by $22/ton (1990 dollars), which is small compared to the reduction that has occurred in the estimates of future allowance prices and when compared to the roughly $400/ton price we estimate as a base case. However, the changes in the allowance market that result are large enough to affect some compliance decisions. If utilities in only a few states improve end-use efficiency aggressively, their actions may not have a large effect on the price of an allowance, but they could alter the demand for allowances and thereby the compliance decisions of utilities in other states. The analysis shows how improving electricity end-use efficiency in some states can cause smaller emission reductions in other states, relative to what would have happened without the improvements. Such a result, while not surprising given the theory behind the emission trading system, is upsetting to people who view emissions, environmental protection, and energy efficiency in moral rather than strictly economic terms

  9. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  10. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  11. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  12. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  13. High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico.

    Science.gov (United States)

    Shanley, James B; Engle, Mark A; Scholl, Martha; Krabbenhoft, David P; Brunette, Robert; Olson, Mark L; Conroy, Mary E

    2015-10-20

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m(-2) yr(-1) wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr(-1). The volume-weighted mean Hg concentration was 9.8 ng L(-1), and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m(-3)). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this "clean air" site suggests that other tropical areas may be hotspots for Hg deposition as well.

  14. Evaluating impacts of Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    Shirer, D.A.; Evans, R.J.; Harrison, C.D.; Kehoe, D.B.

    1993-01-01

    The Clean Air Act Amendments of 1990 requires that by the year 2000, US SO 2 emissions must be reduced by 10 million tons. This requirement will have significant impact on coal-fired electric utilities. As a result, most utilities are currently evaluating numerous compliance options, including buying allowances, coal cleaning/blending/switching, and flue gas scrubbing. Moreover, each utility must address its own unique circumstances with regard to competition, efficiency, capital expenditures, reliability, etc. and many utilities may choose a combination of compliance options to simultaneously satisfy their environmental, performance, and financial objectives. The Coal Quality Expert, which is being developed under a clean coal technology project funded by US DOE and EPRI, will predict the economic, operational, and environmental benefits of using higher-quality coals and provides an assessment of the merits of various post-combustion control technologies for specific utility applications. This paper presents background on how utilities evaluate their compliance options, and it describes how the Coal Quality Expert could be used for such evaluations in the future to assure that each utility can select the best combination of coal specifications and emission control technologies to meet its compliance objectives

  15. Comparison between polluted and clean air masses over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Laulainen, N.S.

    1981-01-01

    Clean and polluted air masses, advected over Lake Michigan, were studied using instrumental aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The concentrations of sulfate, nitrate and trace metals in a clean air mass are more than an order of magnitude lower than those in polluted air masses. Furthermore, these concentrations are comparable with those measured in remote areas of the world. In clean air the ratio of the total light scattering to Rayleigh scattering is very close to one, indicating very low concentrations of particulates in the optically active size classes

  16. Evaluation of air cleaning technologies existing in the Danish market

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2014-01-01

    Five portable air cleaning technologies including one new technology were evaluated to find their effectiveness in removing ultrafine particles. Measurements were carried out both in a duct and in a test room. The results showed that the technologies that use/create ozone to clean air can increase...... the ozone level significantly in the room. Moreover, they can cause generation of ultrafine particles and consequently increase ultrafine particle concentration in the room. The study suggests using a mechanical filter with low pressure drop as a recommended air cleaning technology in order to remove...

  17. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  18. The 1990 Clean Air Act amendments

    International Nuclear Information System (INIS)

    Torrens, I.M.; Cichanowicz, J.E.; Platt, J.B.

    1992-01-01

    The impacts of the 1990 Clean Air Act Amendments on utilities are substantial, presenting a host of new technical challenges, introducing new business risks, changing costs of electric generation, creating new winners and losers, and calling for new organizational responses capable of dealing with the complexity and short time for decisions. The magnitude of costs and unknowns puts clean air compliance into a new league of energy issues, in which the decisions utilities must make are not simply technological or engineering economic choices, but rather are very complex business decisions with numerous stakeholders, pitfalls, and opportunities. This paper summarizes the key regulatory requirements of the CAAA, outlines compliance options and questions facing the utility industry, and addresses how utility strategic business decisions could be affected

  19. A comparative study on laser induced shock cleaning of radioactive contaminants in air and water

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.

    2018-03-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.

  20. The construction of a process line for high efficiency silicon solar cells under clean-room conditions

    International Nuclear Information System (INIS)

    Aberle, A.; Faller, C.; Grille, T.; Glunz, S.; Kamerewerd, F.J.; Kopp, J.; Knobloch, J.; Klussmann, S.; Lauby, E.; Noel, A.; Paul, O.; Schaeffer, E.; Schubert, U.; Seitz, S.; Sterk, S.; Voss, B.; Warta, W.; Wettling, W.

    1992-08-01

    The aim of this research project was to plan, construct and test a clean-room technology laboratory for the manufacturing of silicon solar cells with 20% efficiency (1.5AM). In addition to the establishment of the laboratory, there existed the case of establishing the material and technological fundamentals of high-efficiency solar cells, testing and optimizing all stages of production as well as constructing test stands for accompanying characterisation work. The following final report describes the construction of the laboratory and characterisation systems, the material elements of high-efficiency solar cells as well as the most important results of solar cell production and optimisation. (orig./BWI) [de

  1. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  2. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    Science.gov (United States)

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  3. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Science.gov (United States)

    2012-07-17

    .... Bill 658, requires the FAA to identify bleed air purification technology. Specifically, the FAA seeks... Administration 14 CFR Part 25 [Docket No. FAA-2012-0714] Bleed Air Cleaning and Monitoring Equipment and... developers, manufacturers, and the public related to effective air cleaning technology and sensor technology...

  4. Food-Growing, Air- And Water-Cleaning Module

    Science.gov (United States)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  5. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  6. Clean Air Markets - Allowances Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Allowances Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The Allowances...

  7. Clean Air Markets - Compliance Query Wizard

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Compliance Query Wizard is part of a suite of Clean Air Markets-related tools that are accessible at http://ampd.epa.gov/ampd/. The Compliance module provides...

  8. Fundamentals of air cleaning technology and its application in cleanrooms

    CERN Document Server

    Xu, Zhonglin

    2014-01-01

    Fundamentals of Air Cleaning Technology and Its Application in Cleanrooms sets up the theoretical framework for cleanrooms. New ideas and methods are presented, which include the characteristic index of cleanrooms, uniform and non-uniform distribution characteristics, the minimum sampling volume, a new concept of outdoor air conditioning and the fundamentals of leakage-preventing layers. Written by an author who can look back on major scientific achievements and 50 years of experience in this field, this book offers a concise and accessible introduction to the fundamentals of air cleaning technology and its application. The work is intended for researchers, college teachers, graduates, designers, technicians and corporate R&D personnel in the field of HVAC and air cleaning technology. Zhonglin Xu is a senior research fellow at China Academy of Building Research.

  9. Testing of nuclear air-cleaning systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A standard is presented which describes methods for field-testing nuclear power plant air cleaning systems. Included are specifications for visual inspection; duct and housing leak test; mounting frame pressure leak test; airflow capacity, distribution, and residence time tests; air-aerosol mixing uniformity test; in place leak test of HEPA filter banks; multiple sampling technique; in-place leak test of adsorber stage; laboratory testing of adsorbent; and duct heater performance test

  10. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  11. The community takes charge : story and success of Clean Air Hamilton

    International Nuclear Information System (INIS)

    McCarry, B.

    2004-01-01

    Clean Air Hamilton was established in 2001 to identify priority air quality issues, pollution sources, and evaluate impacts and solutions for air quality issues. Clean Air Hamilton also assesses the human health effects of ambient air exposures in Hamilton. A 1997 survey of Hamilton residents showed that most citizens were extremely concerned about health effects, black fallout, smog visibility, and odours. Clean Air Hamilton has established an air monitoring network which includes 19 member companies and 22 industrial sites. The objective is to determine recent contaminant trends in upwind/downwind air quality. The timeline for establishing the Hamilton air monitoring network was presented. The network, which serves as a model for Ontario and Canada, monitors the impact of vehicular and industrial emissions and establishes ten-year air quality trends for benzo(a)pyrene, sulphur, nitrogen dioxide, and ozone at industrial sites and the downtown core. Analysis of air quality trends shows that there has been improvement in levels of some locally-generated contaminants. The data has also been used for epidemiological studies to determine the health effects of industry on Hamiltonians. figs

  12. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  13. 60 years of Health Protection under the Clean Air Acts

    OpenAIRE

    Longhurst, J.

    2016-01-01

    2016 marks 60 years of UK Clean Air Acts. This presentation explores the challenges, opportunities and progress since the Clean Air Act, 1956. It reflects upon historical attempts to manage air pollution noting success factors and barriers to progress. Particular attention is given to the impact of the 1952 Great Smog and the role of National Smoke Abatement Society, the forerunner of Environmental Protection UK, in creating the momentum for the 1956 Act. The presentation concludes with a rev...

  14. Proceedings of the 24. DOE/NRC nuclear air cleaning and treatment conference

    International Nuclear Information System (INIS)

    First, M.W.

    1997-08-01

    This report contains the papers presented at the 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference and the associated discussions. Major topics are: (1) nuclear air cleaning issues, (2) waste management, (3) instrumentation and measurement, (4) testing air and gas cleaning systems, (5) progress and challenges in cleaning up Hanford, (6) international nuclear programs, (7) standardized test methods, (8) HVAC, (9) decommissioning, (10) computer modeling applications, (11) adsorption, (12) iodine treatment, (13) filters, and (14) codes and standards for filters and adsorbers. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  15. Proceedings of the 24. DOE/NRC nuclear air cleaning and treatment conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1997-08-01

    This report contains the papers presented at the 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference and the associated discussions. Major topics are: (1) nuclear air cleaning issues, (2) waste management, (3) instrumentation and measurement, (4) testing air and gas cleaning systems, (5) progress and challenges in cleaning up Hanford, (6) international nuclear programs, (7) standardized test methods, (8) HVAC, (9) decommissioning, (10) computer modeling applications, (11) adsorption, (12) iodine treatment, (13) filters, and (14) codes and standards for filters and adsorbers. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Clean air and energy: from conflict to reconciliation

    International Nuclear Information System (INIS)

    Kolstad, C.D.; Schulze, W.D.; Williams, M.D.

    1982-01-01

    Unconstrained energy resource development in the Rocky Mountain west is likely to threaten the environment and the health and well-being of the people. Impacts may be associated with visibility degradation, toxic concentrations of gases, and deposition of acidic or toxic substances. Because the possible benefits of energy development in the region are very large, there is great concern that constraints imposed by air quality regulation may preclude the use of important resources or make unduly expensive energy produced from the region. The conflict between energy and clean air in the region is exacerbated by non-energy sources, such as copper smelters and urban areas, that already pose significant environmental threats. The hard policy question is not how to preserve clean air resources or how to develop energy but how to achieve and balance both goals. The effects and regulatory costs and benefits of air pollution control are discussed, and policy directions to protect air quality while pursuing energy development are presented

  17. CARBON ADSORPTION FOR INDOOR AIR CLEANING

    Science.gov (United States)

    The paper discusses the use of carbon adsorption for indoor air cleaning, focusing on the removal of volatile organic compounds (VOCs) using granular activated carbon (GAC). It addresses GAC performance in two directions. Initially, it presents performance measurements for GAC at...

  18. Solution-derived photocatalytic films for environmental cleaning applications

    International Nuclear Information System (INIS)

    Štangar, U Lavrencic; Kete, M; Šuligoj, A; Tasbihi, M

    2012-01-01

    When photocatalytic water treatment is concerned, suspended catalyst in the aqueous phase is usually more efficient than immobilized on an inert support, but in the former case an undesirable separation/recycling step is needed. We have therefore concentrated on the preparation of immobilized catalysts in the form of films on glass and aluminium supports. The low-temperature sol-gel processing route to obtain transparent thin TiO 2 /SiO 2 films for self-cleaning purposes and thicker TiO 2 /SiO 2 coatings for efficient removal of pollutants in water and air are presented. The synthesis is based on a production of a nanocrystalline titania sol with a silica binder that after deposition does not require thermal treatment at high temperatures. Depending on the target application, some specific synthesis parameters and photocatalytic activity testing conditions are illustrated. For water-cleaning coatings fast kinetics is required, which was achieved by addition of a highly active titania powder into the sol. The same preparation procedure was used to prepare efficient air-cleaning coatings. On the other hand, self-cleaning films were thinner and transparent to keep the original appearance of the substrate and they solidified at ambient conditions. Advanced methodologies to evaluate photocatalytic activity of the films were applied.

  19. Meeting the clean air demand

    International Nuclear Information System (INIS)

    Hocker, C.

    1991-01-01

    This article addresses the impacts to the emissions control industry and the future of small independent projects of the Clean Air Act. Topics discussed include technological and market niche of pollution control companies, risk reduction by owning and operating the emission control portion of the plant as a separate entity, the diversity of technologies, and legislative effects

  20. Chapter 4: Assessing the Air Pollution, Greenhouse Gas, Air Quality, and Health Benefits of Clean Energy Initiatives

    Science.gov (United States)

    Chapter 4 of Assessing the Multiple Benefits of Clean Energy helps state states understand the methods, models, opportunities, and issues associated with assessing the GHG, air pollution, air quality, and human health benefits of clean energy options.

  1. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    International Nuclear Information System (INIS)

    First, M.W.

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier

  2. 17th DOE nuclear air cleaning conference: proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1983-02-01

    Volume 2 contains papers presented at the following sessions: adsorption; noble gas treatment; personnel education and training; filtration and filter testing; measurement and instrumentation; air cleaning equipment response to accident related stress; containment venting air cleaning; and an open end session. Twenty-eight papers were indexed separately for inclusion in the Energy Data Base. Ten papers had been entered earlier.

  3. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2011-01-01

    The use of portable air cleaners is becoming increasingly popular in many countries including Denmark. Portable air cleaners are known for not only removing but also generating particles and gases. To clarify this, three air cleaning technologies were evaluated. They were nonthermal plasma......, photochemical air purifier and corona discharge ionizer. The concentrations of ultrafine particles, ozone and total volatile organic compounds were measured both in a duct and in a clean room. It was found that the studied air cleaning technologies increased the ozone level in the clean room and the duct....... The increase of ozone level in the clean room was more than that was measured in the duct. Additionally, it was found that the number of ultrafine particles in the room increased due to the generated ozone. The number of generated particles changed with the season. The study leads to the recommendation...

  4. Learning from 25 years of experience with the United States clean air act

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, R.H. [Trinity Consultants Incorporated, Dallas, TX (United States)

    1995-12-31

    Twenty-five years ago, the United States embarked on a quest to attain clean air. President Nixon, in signing the Clean Air Act of 1970, defined clean air as the objective for the `70s. Although enormous progress has been made, much remains to be done. Newly constructed industry is quite clean, but many older facilities continue to operate with antiquated controls. Significant advances have been made in cleaning up the emissions from new automobiles, but two factors have impaired progress. First, cars last longer than they did in 1970, so the average age of the fleet has increased. Second, travel has increased as people have moved to the suburbs. Thus, the emission decreases from clean cars have not been as great as expected. This presentation will address some of the lessons learned from the efforts in the United States to implement clean air programs. In a large number of countries, excessively elaborate studies have been substituted for action programs. Since much is now known about air quality, fairly brief studies can define programs that should be undertaken. What may take longer is developing public support and enthusiasm for improved air quality. In most cases, it is desirable to reduce spending on studies and increase spending on devising and implementing plans, as well as effectively communicating the necessary changes to the public. Balanced spending on studies- and action programs is essential to a sound air quality control program. (author)

  5. Learning from 25 years of experience with the United States clean air act

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, R H [Trinity Consultants Incorporated, Dallas, TX (United States)

    1996-12-31

    Twenty-five years ago, the United States embarked on a quest to attain clean air. President Nixon, in signing the Clean Air Act of 1970, defined clean air as the objective for the `70s. Although enormous progress has been made, much remains to be done. Newly constructed industry is quite clean, but many older facilities continue to operate with antiquated controls. Significant advances have been made in cleaning up the emissions from new automobiles, but two factors have impaired progress. First, cars last longer than they did in 1970, so the average age of the fleet has increased. Second, travel has increased as people have moved to the suburbs. Thus, the emission decreases from clean cars have not been as great as expected. This presentation will address some of the lessons learned from the efforts in the United States to implement clean air programs. In a large number of countries, excessively elaborate studies have been substituted for action programs. Since much is now known about air quality, fairly brief studies can define programs that should be undertaken. What may take longer is developing public support and enthusiasm for improved air quality. In most cases, it is desirable to reduce spending on studies and increase spending on devising and implementing plans, as well as effectively communicating the necessary changes to the public. Balanced spending on studies- and action programs is essential to a sound air quality control program. (author)

  6. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    International Nuclear Information System (INIS)

    Gao Deli; Yang Xuechang; Zhou Fei; Wu Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  7. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    Science.gov (United States)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  8. Proceedings of the 23rd DOE/NRC nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1995-02-01

    The report contains the papers presented at the 23rd DOE/NRC Nuclear Air Cleaning Conference and the associated discussions. Major topics are: (1) nuclear air cleaning codes, (2) nuclear waste, (3) filters and filtration, (4) effluent stack monitoring, (5) gas processing, (6) adsorption, (7) air treatment systems, (8) source terms and accident analysis, and (9) fuel reprocessing. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Clean air: time for responsible reform

    International Nuclear Information System (INIS)

    Hart, G.

    1982-01-01

    An opinion concerning the renewal of the Clean Air Act by Gary Hart, the U.S. Senator from Colorado, is presented. Hart discusses how effective programs covered by the act can be preserved, how burdensome requirements can be streamlined, and how coverage can be expanded to unforeseen problems

  10. Clean Air Act. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-15

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  11. Clean Air Markets - Quick Facts and Trends

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Quick Facts and Trends module is part of a suite of Clean Air Markets-related tools that are accessible at http://camddataandmaps.epa.gov/gdm/index.cfm. The...

  12. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  13. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  14. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    Science.gov (United States)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  15. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2015-01-01

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  16. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2014-01-01

    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  17. Proceedings of the 19th DOE/NRC nuclear air cleaning conference

    International Nuclear Information System (INIS)

    First, M.W.

    1987-05-01

    This document contains the papers and the associated discussions of the 19 DOE/NRC Nuclear Air Cleaning Conference. Sessions were devoted to (1) fire, explosion and accident analysis, (2) adsorption and iodine retention, (3) filters and filter testing, (4) standards and regulation, (5) treatment of radon, krypton, tritium and carbon-14, (6) ventilation and air cleaning in reactor operations, (7) dissolver off-gas cleaning, (8) adsorber fires, (9) nuclear grade carbon testing, (10) sampling and monitoring, and (11) field test experience. Individual papers were processed separately for the data base

  18. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    Science.gov (United States)

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  19. Evaluation of air cleaning system concepts for emergency use in LMFBR plants

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1976-12-01

    Nineteen different air cleaning concepts are arranged into twenty-four systems and evaluated for use as accident mitigating systems in LMFBR plants. Both single, low-leakage containment plants and once-through operation applicable to containment/confinement plants are considered. Plant characteristics affecting air cleaning requirements are defined for 1000 MW(e) plants and a sodium and radiological release term is postulated. The accident conditions under which the emergency air cleaning system (EACS) must function is established by use of SOFIRE-II and HAA-3B computer codes. Criteria are developed for evaluating the various systems and for assigning comparative ratings. The numerical ratings are combined with information on cost and development potential to arrive at recommendations for the most promising systems. The conclusion is made that reliable and effective systems are feasible for use as engineered safety features for LMFBR plants, but that development effort is required for all the air cleaning concepts evaluated

  20. Testing on air cleaning systems: Testing of the components in-place tests

    International Nuclear Information System (INIS)

    Billard, F.; Brion, J.

    1967-01-01

    The reliability of air cleaning systems is dependent on testing they are submitted to. Although in-place tests are the most important as they act as final tests upon achieved plants, component tests are necessary too. They allow detection of defective units before they are installed, partition of unit defects from mounting defects and they are more sensitive. For similar reasons, material teats are most useful. The various tests are described, about aerosol filters for one part, iodine trap for the other. The checked features are: materials nature, units sizes, efficiency, air resistance, flammability, humidity resistance, temperature resistance, adsorbent friability, etc... On iodine trapping systems, small check traps, working by-pass with the main trap are periodically subjected to efficiency test. This control allow to cut down the in-place tests frequency, particularly when poisoning from organic vapours is to be feared. (authors) [fr

  1. Senate begins clean air legislation debate

    International Nuclear Information System (INIS)

    Yates, M.

    1990-01-01

    This article reports on Senate debate on the Clean Air Act Amendments of 1989. Topics include acid rain provisions, administration objections, costs of the bill including disparity of costs in different regions and cost-sharing proposals, and the effects the current energy policy will have on the bill. Presidential, Senate, and subcommittee views on the bill are presented

  2. Clean indoor air increases physical independence : a pilot study

    NARCIS (Netherlands)

    Snijders, M.C.L.; Koren, L.G.H.; Kort, H.S.M.; Bronswijk, van J.E.M.H.

    2001-01-01

    Clean indoor air enhances health. In a pilot study, we examined whether a good indoor air quality increases the activity potential of older persons with chronic lung disease. Five older persons were studied while performing kitchen activities. Body movement and heart rate were monitored.

  3. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  4. Users view of the reliability of air cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kovach, J.L.

    1975-01-01

    The state of the art of air cleaning systems has advanced, but a wealth of knowledge did not result in a commensurate increase in the improvement of the design, manufacture, and operation of air cleaning systems. Often the developed data is not available or known to the designer, equipment supplier or operator. There are still systems installed where the equipment will operate under the specified criteria only when it is new and little thought is given to the subsequent maintainance and operating problems. The dissemination of available information to all of those concerned with the design, construction, installation, and operation of air cleaning systems through relevant standards, guides, etc. is unsatisfactory at the present time. (U.S.)

  5. 77 FR 23278 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2012-04-18

    ... accept small appliances, motor vehicle air conditioners (``MVACs''), or MVAC- like appliances with cut... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act (``CAA'') against...

  6. Standard specification for high efficiency particulate air filters. Revision No. 2

    International Nuclear Information System (INIS)

    Porter, F.E.

    1976-01-01

    This specification covers the requirements for four types and four sizes of high efficiency particulate air filters, assembled with or without separators and gaskets. Types include Fire Resistant and Moisture Resistant; Hydrogen Fluoride Fume (HF) Resistant; Fire Resistant and Moisture Resistant and Chemical Resistant; and Fire Resistant and Moisture Resistant, High Temperature and High Humidity

  7. New Jersey: Clean Air Communities (A Former EPA CARE Project)

    Science.gov (United States)

    Clean Air Communities (CAC) is the recipient of a Level II CARE cooperative agreement to implement recommendations by the state’s Environmental Justice Task Force and the Air Toxics Pilot Project to reduce environmental risks.

  8. Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up

    International Nuclear Information System (INIS)

    Giuffrida, A.; Bonalumi, D.; Lozza, G.

    2013-01-01

    Highlights: • Hot fuel gas clean-up is a very favorable technology for IGCC concepts. • IGCC net efficiency reduces to 41.5% when realizing post-combustion CO 2 capture. • Complex IGCC layouts are necessary if exhaust gas recirculation is realized. • IGCC performance does not significantly vary with exhaust gas recirculation. - Abstract: This paper focuses on the thermodynamic performance of air-blown IGCC systems with post-combustion CO 2 capture by chemical absorption. Two IGCC technologies are investigated in order to evaluate two different strategies of coal-derived gas clean-up. After outlining the layouts of two power plants, the first with conventional cold gas clean-up and the second with hot gas clean-up, attention is paid to the CO 2 capture station and to issues related to exhaust gas recirculation in combined cycles. The results highlight that significant improvements in IGCC performance are possible if hot coal-derived gas clean-up is realized before the syngas fuels the combustion turbine, so the energy cost of CO 2 removal in an amine-based post-combustion mode is less strong. In particular, IGCC net efficiency as high as 41.5% is calculated, showing an interesting potential if compared to the one of IGCC systems with pre-combustion CO 2 capture. Thermodynamic effects of exhaust gas recirculation are investigated as well, even though IGCC performance does not significantly vary against a more complicated plant layout

  9. 76 FR 76762 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2011-12-08

    ... recovery at no additional cost; (2) no longer accept small appliances, motor vehicle air conditioners... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby.... Environmental Protection Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act...

  10. 76 FR 57764 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2011-09-16

    ... recovery at no additional cost; (2) no longer accept small appliances, motor vehicle air conditioners... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act (``CAA'') against...

  11. Evaluating performance of high efficiency mist eliminators

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, Charles A.; Parsons, Michael S.; Giffin, Paxton K. [Mississippi State University, Institute for Clean Energy Technology, 205 Research Blvd, Starkville, MS (United States)

    2013-07-01

    Processing liquid wastes frequently generates off gas streams with high humidity and liquid aerosols. Droplet laden air streams can be produced from tank mixing or sparging and processes such as reforming or evaporative volume reduction. Unfortunately these wet air streams represent a genuine threat to HEPA filters. High efficiency mist eliminators (HEME) are one option for removal of liquid aerosols with high dissolved or suspended solids content. HEMEs have been used extensively in industrial applications, however they have not seen widespread use in the nuclear industry. Filtering efficiency data along with loading curves are not readily available for these units and data that exist are not easily translated to operational parameters in liquid waste treatment plants. A specialized test stand has been developed to evaluate the performance of HEME elements under use conditions of a US DOE facility. HEME elements were tested at three volumetric flow rates using aerosols produced from an iron-rich waste surrogate. The challenge aerosol included submicron particles produced from Laskin nozzles and super micron particles produced from a hollow cone spray nozzle. Test conditions included ambient temperature and relative humidities greater than 95%. Data collected during testing HEME elements from three different manufacturers included volumetric flow rate, differential temperature across the filter housing, downstream relative humidity, and differential pressure (dP) across the filter element. Filter challenge was discontinued at three intermediate dPs and the filter to allow determining filter efficiency using dioctyl phthalate and then with dry surrogate aerosols. Filtering efficiencies of the clean HEME, the clean HEME loaded with water, and the HEME at maximum dP were also collected using the two test aerosols. Results of the testing included differential pressure vs. time loading curves for the nine elements tested along with the mass of moisture and solid

  12. Phase I Recommendations by the Air Quality Management Work Group to the Clean Air Act Advisory Committee

    Science.gov (United States)

    Recommendations to the Clean Air Act Advisory Committee by Air Quality Management Work Group addressing the recommendations made by the National Research Council to improve the U.S. air quality management system.

  13. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    Ishida, Seiji.

    1993-01-01

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  14. Review of failures in nuclear air cleaning systems (1975--1978)

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1979-01-01

    During the period from January 1, 1975 through June 30, 1978, over 9,000 Licensee Event Reports (LERs) pertaining to the operation of commercial light water nuclear power plants in the US were reported to the Nuclear Regulatory Commission. Of these reports, over 1,200 (approximately 13%) pertained to failures in air monitoring, ventilating and cleaning systems. For BWR installations, over half of the reported events related to failures in equipment for monitoring the performance of air cleaning systems as contrasted to failures in the systems themselves. In PWR installations, failures in monitoring equipment amounted to about 32% of the total. Reported problem areas in BWR installations included the primary containment and standby gas treatment and off-gas systems, as well as the High Pressure Coolant Injection and Reactor Core Isolation Systems. For PWR installations, reported problem areas included primary containment and associated spray systems and waste processing equipment. Although data on reported failures in power reactor installations can be interpreted in a variety of ways, one message is clear. There is a need for research on the development of more reliable equipment for sampling and monitoring air systems. Equipment that provides inaccurate data on the performance of such systems can lead to as many problems as inadequacies in the systems themselves

  15. Complying with Clean Air Act acid rain provisions: A case history of required air quality analyses

    International Nuclear Information System (INIS)

    McComb, G.G. Jr.; Naperkoski, G.J.; Rogers, F.A.

    1990-01-01

    Clean Air Act Amendments being considered by Congress require SO 2 emissions reductions from numerous large power generation sources nationwide. As currently written, these amendments also require that the affected sources must continue to comply with all provisions of the existing Clean Air Act while achieving the required reductions. United Engineers and Constructors is presently assisting utilities in the evaluation of compliance options for units totaling over 18,000 MW. The methods of achieving compliance with the probable requirements of the Act most often include the retrofit installation of SO 2 scrubbers. A study designed to determine permitting issues and the scope of air quality analyses required to demonstrate the regulatory acceptability of installation of wet scrubbing systems has been completed for units totaling a portion of the above-referenced 18,000 MW. The study results show that, under certain commonly occurring circumstances, there is a risk of creating National Ambient Air Quality Standards contraventions for SO 2 and NO 2 when scrubbers are installed at an existing facility. Any such contraventions subject the plant to state and/or federal enforcement actions. In addition, installation of materials handling equipment for lime stone can trigger Prevention of Significant Deterioration requirements as a major modification. This paper is divided into two major areas. The first deals with the air quality regulatory requirements imposed upon installation of pollution control equipment. The first section is further sub-divided into two sections: one covering requirements emanating from the 1977 Clean Air Act Amendments and its implementing regulations and the other the regulatory requirements of the new Clean Air Act Amendments. This section on regulatory requirements provides background information for the understanding of the second major section of the paper which gives the results of the hypothetical case study

  16. 77 FR 3386 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program

    Science.gov (United States)

    2012-01-24

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Clean Vehicles Program AGENCY: Environmental... vehicles (LEV II). The Clean Air Act (CAA) contains specific authority allowing any state to adopt new... CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...

  17. Proceedings of the 21st DOE/NRC nuclear air cleaning conference

    International Nuclear Information System (INIS)

    First, M.W.

    1991-02-01

    The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers

  18. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  19. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  20. AEC Regulatory view of the reliability of air cleaning systems in nuclear facilities

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Zavadoski, R.W.

    1975-01-01

    Air cleaning systems in nuclear facilities can be divided into three categories: ventilation exhaust systems, containment atmosphere cleanup systems, and process offgas systems. These systems have been the subject of numerous reports, regulatory guides, discussions, and meetings. Some of the analyses have been critical of the operation and design of these air cleaning systems--in particular, the engineered safety features containment atmosphere cleanup systems. Although for the most part the criticism is applicable, and recognizing that there are a number of unresolved issues pertaining to gaseous waste management systems, there are data to show that air cleaning systems in use in nuclear facilities are performing their intended function. (U.S.)

  1. Federal-state partnership: An overview of the Clean Air Act through the 1980s

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter examines the experience with Clean Air Act regulation over the past two decades as a means of understanding the multiple layers of regulatory requirements that now exist since the enactment of the 1990 Amendments to the Act. The efforts of Congress and the EPA to deal with the complexities of clean air regulation suggest several themes for the 1990s: more federal oversight, more complex regulatory issues, an emphasis on alternatives to traditional rulemaking proceedings, and a search for innovative ways to control the escalating costs of clean air regulation

  2. Proceedings of the clean air and climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  3. Proceedings of the clean air and climate change summit

    International Nuclear Information System (INIS)

    2010-01-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  4. Methods for air cleaning and protection of building occupants from airborne pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Bolashikov, Z.D.; Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Alle, building 402, 2800 Lyngby (Denmark)

    2009-07-15

    This article aims to draw the attention of the scientific community towards the elevated risks of airborne transmission of diseases and the associated risks of epidemics or pandemics. The complexity of the problem and the need for multidisciplinary research is highlighted. The airborne route of transmission, i.e. the generation of pathogen laden droplets originating in the respiratory tract of an infected individual, the survivability of the pathogens, their dispersal indoors and their transfer to a healthy person are reviewed. The advantages and the drawbacks of air dilution, filtration, ultraviolet germicidal irradiation (UVGI), photocatalytic oxidation (PCO), plasmacluster ions and other technologies for air disinfection and purification from pathogens are analyzed with respect to currently used air distribution principles. The importance of indoor air characteristics, such as temperature, relative humidity and velocity for the efficiency of each method is analyzed, taking into consideration the nature of the pathogens themselves. The applicability of the cleaning methods to the different types of total volume air distribution used at present indoors, i.e. mixing, displacement and underfloor ventilation, as well as advanced air distribution techniques (such as personalized ventilation) is discussed. (author)

  5. Proceedings of the 10th world clean air congress. Impacts and management

    Energy Technology Data Exchange (ETDEWEB)

    Kaemaeri, J.; Tolvanen, M.; Anttila, P.; Salonen, R.O. [eds.

    1995-12-31

    Rapid economical growth and expansion of human population have produced a number of environmental problems with varying geographic dimensions. While local problems remain near the pollution sources, the focus of the scientific community is more and more shifted towards regional, continental and global consequences of air pollutants. The theme of the 10th Clean Air Congress `Growing Challenges from Local to Global` reflects the growing demand from the scientific and professional community working in air pollution prevention and environmental protection - more and more complex mechanisms should be understood on a growing spatial scale. The 10th World Clean Air Congress addresses in its more than 400 presentations, documented in three Volumes of Proceedings, the history, the present and the potential futures of the air pollution problems. This volume includes all papers of paths C `Pollutant Impacts`, D `Pollution Management`, and E `Health Effects`. Path C includes numerous highly relevant papers dealing with climate change and greenhouse gases, as well as with environmental effects of air pollutants mostly on materials and vegetation. The most critical issues on air pollutant management throw light on national and regional abatement strategies and on the applicability of various tools for pollution management. The path on effects on human health includes a session on `Air pollution epidemiology` sponsored by the Economic Commission for Europe and a session on `Health effect control strategies` sponsored by the UN World Health Organization. In these sessions invited speakers describe the current understanding of human responses to air pollution exposure

  6. Proceedings of the 10th world clean air congress. Impacts and management

    Energy Technology Data Exchange (ETDEWEB)

    Kaemaeri, J; Tolvanen, M; Anttila, P; Salonen, R O [eds.

    1996-12-31

    Rapid economical growth and expansion of human population have produced a number of environmental problems with varying geographic dimensions. While local problems remain near the pollution sources, the focus of the scientific community is more and more shifted towards regional, continental and global consequences of air pollutants. The theme of the 10th Clean Air Congress `Growing Challenges from Local to Global` reflects the growing demand from the scientific and professional community working in air pollution prevention and environmental protection - more and more complex mechanisms should be understood on a growing spatial scale. The 10th World Clean Air Congress addresses in its more than 400 presentations, documented in three Volumes of Proceedings, the history, the present and the potential futures of the air pollution problems. This volume includes all papers of paths C `Pollutant Impacts`, D `Pollution Management`, and E `Health Effects`. Path C includes numerous highly relevant papers dealing with climate change and greenhouse gases, as well as with environmental effects of air pollutants mostly on materials and vegetation. The most critical issues on air pollutant management throw light on national and regional abatement strategies and on the applicability of various tools for pollution management. The path on effects on human health includes a session on `Air pollution epidemiology` sponsored by the Economic Commission for Europe and a session on `Health effect control strategies` sponsored by the UN World Health Organization. In these sessions invited speakers describe the current understanding of human responses to air pollution exposure

  7. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    International Nuclear Information System (INIS)

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    The ventilation and air cleaning system in the nuclear or radiological installations is one of the essential nuclear safety concerns. It is responsible for confining the radioactive materials involved behind suitable barriers during normal and abnormal conditions. It must be designed to prevent the release of harmful products (radioactive gases, or airborne radioactive materials) from the system or facility, impacting the public or workers, and doing environmental damage. There are two important safety functions common to all ventilation and air cleaning system in nuclear facilities. They are: a) the requirements to maintain the pressure of the ventilated volume below that of surrounding, relatively non-active areas, in order to inhibit the spread of contamination during normal and abnormal conditions, and b) the need to treat the ventilated gas so as to minimize the release of any radioactive or toxic materials. Keeping the two important safety functions is achieved by applying the fire protection for the ventilation system to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions.The main purpose of this research is to assist ventilation engineers and experts in nuclear installations for safe operation and maintaining ventilation and air cleaning system during fire accident in nuclear facilities. The research focuses on fire prevention and protection of the ventilation systems in nuclear facilities. High-Efficiency particulate air (HEPA) filters are extremely susceptible to damage when exposed to the effects of fire, smoke, and water; it is the intent of this research to provide the designer with the experience gained over the years from hard lessons learned in protecting HEPA filters from fire. It describes briefly and evaluates the design safety features, constituents and working conditions of ventilation and air cleaning system in nuclear and radioactive industry.This paper provides and

  8. The Political Economy of Clean Air Legislation. An Analysis of Voting in the U.S. Senate on Amendments to the 1990 Clean Air Act

    International Nuclear Information System (INIS)

    Burkey, M.L.; Durden, G.C.

    1998-01-01

    Much research in political science and economics has attempted to explain voting patterns among members of legislative bodies. In this paper we extend the existing analysis in three ways. First, we address the subject of voting on air quality regulation by the U.S. Senate. A subject of great importance and significance, such votes have not previously been the focus of much empirical investigation. Second, we develop an arguably more correct and effective methodology for measuring and understanding the ideological preferences of individual Senators, as revealed by their voting patterns on 1990 amendments to the Clean Air Act. Third, we apply the minimum chi-square methodology for estimating the determinants of Senator voting patterns on the issue. In Section 2, the economic theory of regulation is elaborated as it is specifically related to 1990 senate voting on amendments to the Clean Air Act. In Section 3, we provide a brief literature review, focusing on the principal-agent model and how voting patterns are influenced by campaign contributions, constituent socio-economic characteristics, and individual legislator ideology. In Section 4 we present a very simple model of the principal-agent relationship which underlies legislative voting behavior. In this section (supplemented by information in an appendix) we introduce a new methodology for creating a proxy variable to represent legislator ideology, comparing the new method with those previously used. Section 5 provides a chronological background on clean air legislation, and Section 6 discusses the data and proxy variables used for the empirical estimations. Section 7 contains a presentation and evaluation of three empirical techniques, including one not previously used, the minimum chi-square method which, we argue, is both appropriate and easily interpretable. This claim is based upon the fact that the dependent variable, SCORE, is neither continuous nor dichotomous, but ordered and categorical, constructed

  9. Motivations for self-regulation: The clean air action plan

    International Nuclear Information System (INIS)

    Giuliano, Genevieve; Linder, Alison

    2013-01-01

    In the fall of 2006 the Ports of Long Beach and Los Angeles announced the Clean Air Action Plan (CAAP). Its intent was to greatly accelerate emissions reductions from port activities. The CAAP was unprecedented in several ways: it was a voluntary agreement between two competing ports; it was achieved with the cooperation of local, state and federal agencies; it promised large particulate emissions reductions along with continued port growth, and it had a price tag of $2.1 billion. What explains the Ports’ decision to implement the CAAP? We conduct a case study to explore alternative explanations for the CAAP. Using data from interviews, media, and the history of events leading up to the CAAP, we find that the CAAP was a strategic response to social and political pressures that had built up over the previous decade. Its intent was to respond to local concerns and reduce opposition to port growth. The CAAP represents an example of the potential of voluntary efforts to solve environmental problems. - Highlights: • We conduct a case study of self-regulation for emissions reduction at seaports in Southern California. • We examine motivations for implementing the Clean Air Action Plan. • We find that social and political pressures were the main motivators, with regulatory threats a contributing factor. • The Clean Air Action Plan is a powerful example of the potential of voluntary strategies

  10. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  11. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    Science.gov (United States)

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  12. Affordable High Performance Electromagnetically Clean Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an Electromagnetically Clean Solar Array (ECSA) with enhanced performance, in Watts/kg and Watts/m2, using flight proven, high efficiency solar cells. For...

  13. Proceedings of the fifteenth DOE nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1979-02-01

    Papers presented are grouped under the following topics: noble gas separation, damage control, aerosols, test methods, new air cleaning technology from Europe, open-end, and filtration. A separate abstract was prepared for each paper.

  14. Research and development on air cleaning system of reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Naruki, K.

    1985-01-01

    Present status in Japan of R and D on air cleaning systems, especially of the fuel reprocessing plant is summarized. The description is centered on the R and D and experience of Tokai-reprocessing plant, which covers the plant air cleaning system, effort carried out for decreasing I 2 effluence in the actual vented off-gas, and R and D for recovery of Kr and 3 H. Some experimental results for the evaluation of HEPA filter are also described

  15. The actual practice of air cleaning in Belgian nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, W.R. [PEGO, Mol (Belgium)

    1995-02-01

    With 60% of its power generation from nuclear stations Belgium has 7 nuclear power stations in operation with a total capacity of 5.4 MWe. Enriched uranium is imported and converted to fuel assemblies. The actinides of reprocessed fuel are recycled as MOX fuel. A main waste conditioning operation has been performed in the PAMELA vitrifier. The actual practice of nuclear air cleaning in the Belgian PWR station DOEL-4 and in the PAMELA -vitrification plant for high level liquid waste is reviewed.

  16. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  17. Methods for air cleaning system design and accident analysis

    International Nuclear Information System (INIS)

    Gregory, W.S.; Nichols, B.D.

    1987-01-01

    This paper describes methods, in the form of a handbook and five computer codes, that can be used for nuclear facility air cleaning system design and accident analysis. Four of the codes were developed primarily at the Los Alamos National Laboratory, and one was developed in France. Tools such as these are used to design ventilation systems in the mining industry but do not seem to be commonly used in the nuclear industry. For example, the Nuclear Air Cleaning Handbook is an excellent design reference, but it fails to include information on computer codes that can be used to aid in the design process. These computer codes allow the analyst to use the handbook information to form all the elements of a complete system design. Because these analysis methods are in the form of computer codes they allow the analyst to investigate many alternative designs. In addition, the effects of many accident scenarios on the operation of the air cleaning system can be evaluated. These tools originally were intended for accident analysis, but they have been used mostly as design tools by several architect-engineering firms. The Cray, VAX, and personal computer versions of the codes, an accident analysis handbook, and the codes availability will be discussed. The application of these codes to several design operations of nuclear facilities will be illustrated, and their use to analyze the effect of several accident scenarios also will be described

  18. The diffusion and impact of clean indoor air laws.

    Science.gov (United States)

    Eriksen, Michael P; Cerak, Rebecca L

    2008-01-01

    Over the past quarter century, primarily as a result of scientific discovery, citizen advocacy, and legislative action, comprehensive clean indoor air laws have spread rapidly throughout the world. Laws that establish completely smoke-free indoor environments have many relative advantages including being low cost, safe, effective, and easy to implement. The diffusion of these laws has been associated with a dramatic and rapid reduction in population levels of serum cotinine among nonsmokers and has also contributed to a reduction in overall cigarette consumption among smokers, with no adverse economic impact, except to the tobacco industry. Currently, nearly half of the U.S. population lives in jurisdictions with some combination of completely smoke-free workplaces, restaurants, or bars. The diffusion of clean indoor air laws is spreading rapidly throughout the world, stimulated by the first global health treaty, the Framework Convention on Tobacco Control.

  19. Fossil fuels and air pollution in USA after the Clean Air Act

    International Nuclear Information System (INIS)

    Chuveliov, A.V.

    1990-01-01

    This paper addresses environmental issues in the USA after the Clean Air Act. Economic damage assessment to population and environment due to air pollution from stationary and mobile sources producing and utilizing fossil fuels in the USA for the period of 1970--1986 is determined and discussed. A comparison of environmental damage assessments for the USA and USSR is provided. The paper also addresses ecologo-economical aspects of hydrogen energy and technology. The effectiveness of hydrogen use in ferrous metallurgy and motor vehicles in the USA is determined and discussed

  20. 45 CFR 2543.86 - Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Clean Air Act and the Federal Water Pollution... Water Pollution Control Act. Contracts and subgrants of amounts in excess of $100,000 shall contain a... regulations issued pursuant to the Clean Air Act (42 U.S.C. 7401 et seq.) and the Federal Water Pollution...

  1. An introduction to the design, commissioning and operation of nuclear air cleaning systems for Qinshan Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Xinliang Chen; Jiangang Qu; Minqi Shi [Shanghai Nuclear Engineering Research and Design Institute (China)] [and others

    1995-02-01

    This paper introduces the design evolution, system schemes and design and construction of main nuclear air cleaning components such as HEPA filter, charcoal adsorber and concrete housing etc. for Qinshan 300MW PWR Nuclear Power Plant (QNPP), the first indigenously designed and constructed nuclear power plant in China. The field test results and in-service test results, since the air cleaning systems were put into operation 18 months ago, are presented and evaluated. These results demonstrate that the design and construction of the air cleaning systems and equipment manufacturing for QNPP are successful and the American codes and standards invoked in design, construction and testing of nuclear air cleaning systems for QNPP are applicable in China. The paper explains that the leakage rate of concrete air cleaning housings can also be assured if sealing measures are taken properly and embedded parts are designed carefully in the penetration areas of the housing and that the uniformity of the airflow distribution upstream the HEPA filters can be achieved generally no matter how inlet and outlet ducts of air cleaning unit are arranged.

  2. 78 FR 2333 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Asbestos...

    Science.gov (United States)

    2013-01-11

    ...] Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Asbestos Management... protection, Administrative practice and procedure, Air pollution control, Hazardous substances, Incorporation...-Sw 2100: Management and Control of Asbestos Disposal Sites Not Operated after July 9, 1981,'' and the...

  3. Proceedings of the fifteenth DOE nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1979-02-01

    Papers presented are grouped under the following topics: air cleaning; waste volume reduction and preparation for storage; tritium, carbon-14, ozone; containment of accidental releases; adsorbents and absorbents; and off-gas treatment. A separate abstract was prepared for each paper.

  4. Radioactivity in the furnace air-cleaning filter from a house with an unusually high level of airborne radon

    International Nuclear Information System (INIS)

    Rundo, J.; Essling, M.A.; Urnezis, P.W.

    1979-01-01

    The amounts of the three short-lived daughters of radon on the furnace air-cleaning filter from a house with a high level of radon were estimated to be 8.2, 33, and 38 kBq (0.22, 0.89, and 1.03 μCi) for 218 Po, 214 Pb, and 214 Bi, respectively, at the time of removal from the furnace. These data were used to calculate the airborne concentrations of the three, and the results indicated that about 70% of the daughters were lost to surfaces in the house and by impaction in the air ducts. The filter's content of 210 Pb was found to be 4.4 kBg (0.12 μCi); from this the average concentration of radon-producing filterable daughters during the time the furnace blower operated, was estimated to be 860 Bq m -3 . This indicated that there was no significant loss to surfaces or in air ducts. Possible reasons for the difference are given. The filter was also found to contain 1 kBq (27 nCi) of 212 Bi from the thorium series

  5. The Clean Air Act Amendments of 1990 - Implementation

    International Nuclear Information System (INIS)

    Radford, N.D. Jr.

    1991-01-01

    On November 15, 1991 the Clean Air Act Amendments of 1990 were signed into law. The Amendments include eleven titles. They are: Title I specifies the requirements for attainment and maintenance of the national ambient air quality standards; Title II provides for more stringent motor vehicle emission limits and cleaner vehicle fuels; Title III addresses the release of air toxics; Title IV creates an acid deposition control program; Title V imposes a new comprehensive operating permit system for stationary sources; Title VI provides for stratospheric ozone protection; Title VII imposes increased civil and criminal penalties and liability; Title VIII contains miscellaneous provisions. Title IX provides for air quality research projects; Title X directs the EPA to make ten percent of research funds available to disadvantaged businesses; and Title XI amends the Job Training Partnership Act

  6. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F., E-mail: zhoufeng@slac.stanford.edu; Sheppard, J.C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-21

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10{sup −5} can be routinely achieved in the RF gun with the cathodes of QE <1×10{sup −7} measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  7. Smogbusters: Grassroots Action for Clean Air and Sustainable Transport in Australia

    Science.gov (United States)

    Manners, Eric; Wake, David; Carlisle, Rachel

    2009-01-01

    Smogbusters was a national, community-based, government-funded community education program promoting clean air and sustainable transport in Australia from 1994 to 2002. Smogbusters aimed to improve air quality primarily by raising awareness about motor vehicle transport and its negative impacts on health, the environment and communities, and by…

  8. Sample and injection manifolds used to in-place test of nuclear air-cleaning system

    International Nuclear Information System (INIS)

    Qiu Dangui; Li Xinzhi; Hou Jianrong; Qiao Taifei; Wu Tao; Zhang Jirong; Han Lihong

    2012-01-01

    Objective: According to the regulations of nuclear safety rules and related standards, in-place test of the nuclear air-cleaning systems should be carried out before and during operation of the nuclear facilities, which ensure them to be in good condition. In some special conditions, the use of sample and injection manifolds is required to make the test tracer and ventilating duct air fully mixed, so as to get the on-spot typical sample. Methods: This paper introduces the technology and application of the sample and injection manifolds in nuclear air-cleaning system. Results: Multi point injection and multi point sampling technology as an effective experimental method, has been used in a of domestic and international nuclear facilities. Conclusion: The technology solved the problem of uniformly of on-spot injection and sampling,which plays an important role in objectively evaluating the function of nuclear air-cleaning system. (authors)

  9. Tools for Predicting Cleaning Efficiency in the LHC

    CERN Document Server

    Assmann, R W; Brugger, M; Hayes, M; Jeanneret, J B; Kain, V; Kaltchev, D I; Schmidt, F

    2003-01-01

    The computer codes SIXTRACK and DIMAD have been upgraded to include realistic models of proton scattering in collimator jaws, mechanical aperture restrictions, and time-dependent fields. These new tools complement long-existing simplified linear tracking programs used up to now for tracking with collimators. Scattering routines from STRUCT and K2 have been compared with one another and the results have been cross-checked to the FLUKA Monte Carlo package. A systematic error is assigned to the predictions of cleaning efficiency. Now, predictions of the cleaning efficiency are possible with a full LHC model, including chromatic effects, linear and nonlinear errors, beam-beam kicks and associated diffusion, and time-dependent fields. The beam loss can be predicted around the ring, both for regular and irregular beam losses. Examples are presented.

  10. UV and air stability of high-efficiency photoluminescent silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jihua, E-mail: yangj@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Liptak, Richard [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Ave, Terre Haute, IN 47803 (United States); Rowe, David; Wu, Jeslin [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Casey, James; Witker, David [Dow Corning Corporation, 2200 W. Salzburg Road, Midland, MI 48686 (United States); Campbell, Stephen A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Kortshagen, Uwe, E-mail: kortshagen@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-12-30

    The effects of UV light and air exposure on the photoluminescent properties of nonthermal plasma-synthesized silicon nanocrystals (Si NCs) were investigated. Si NCs with high-efficiency photoluminescence (PL) have been achieved via a post-synthesis hydrosilylation process. Photobleaching is observed within the first few hours of ultra-violet (UV) irradiation. Equilibrium is reached after ∼4 h of UV exposure wherein the Si NCs are able to retain 52% of the initially measured PL quantum yield (PLQY). UV-treated Si NCs showed recovery of PL with time. Gas-phase passivation of Si NCs by hydrogen afterglow injection improves PLQY and PL stability against UV and air exposure. Additionally, phosphorous doping can also improve UV stability of photoluminescent Si NCs.

  11. Citizen Science Air Sensor Project with Clean Air Carolina and the Eastern Band of Cherokee Indians Fact Sheet

    Science.gov (United States)

    EPA scientists are partnering with Clean Air Carolina (CAC) in Charlotte, N.C., and the Eastern Band of Cherokee Indians (EBCI) in Cherokee, N.C., to conduct a citizen science air quality project in these regions.

  12. Development of an emergency air-cleaning system for liquid-metal reactors

    International Nuclear Information System (INIS)

    Owen, R.K.

    1980-11-01

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter

  13. DESIGNING AND EFFICIENCY EFFECT OF AUTOMATIC BALL-CLEANING SYSTEM FOR CONDENSER 180-KTsS-1 OF TURBINE Т-180/210-130-1 LMZ. Part 1

    Directory of Open Access Journals (Sweden)

    Yu. A. Zenovich-Leshkevich-Ol’pinskiy

    2015-01-01

    Full Text Available In order to reduce losses in the cooling source (condenser and to increase effectiveness of fuel-and-power resources utilization, the authors present a modern automatic ball-cleaning system for the pipes of condenser 180-KTsS-1 of turbine unit Т-180/210-130-1 LMZ of Gomel CHP-2. The article examines exploitation challenges of the steam turbine condensers and methods of clearing them from sedimentations. Depending on the sedimentation character and composition, and the quality of cooling water at the power plant, they apply various methods of the condenser tubes clearing: heat drying, vacuum dehydration, acid-washing, pipes-shooting with water and water-air pistols, ablution with high-pressure water jet etc. All the applied cleaning methods are the periodical means to fight the sedimentations and require the turbine halting or unloading, predetermine the equipment operating between clearings with constantly smearing cooling surfaces of the condensers, i.e. with reduced efficiency of equipment operation.The installation of the ball-cleaning system practically excludes defects of the chemical and mechanical cleaning methods, which leads to the condenser pipes life-in-service increase, the full-flow condensate quality improvement, reliability and efficient performance enhancement of the steam turbines equipment. The authors consider developed algorithms of data processing and designed system control of the condenser cleaning that allowed realizing its operation in automatic mode.

  14. Will the US Clean Air Act come to Australia?

    International Nuclear Information System (INIS)

    Saxby, Bill

    1992-01-01

    This article examines the Clean Air Act and whether the emerging situation in Sydney and Melbourne is likely to require similar radical action to prevent a decline in public health of city dwellers. It is concluded that both Sydney and Melbourne are in the league of the world's polluted cities. The pollutants of concern are mainly carbon monoxide and ozone. Emissions reduction in these two cities during the 1980s has reduced photochemical smog formation to near the guidelines, but both these cities retain the potential to form high levels of photochemical smog under the right weather conditions, as shown by Sydney in 1990. 2 tabs., ills

  15. Market Initiatives for Clean Air Schools; Marktinitiatieven frisse scholen

    Energy Technology Data Exchange (ETDEWEB)

    Teeuwen, D. [Communication Concert, Weesp (Netherlands)

    2012-07-15

    Seven years ago, the Clean Air Schools Program was launched to encourage people to use less energy and improve the indoor environment. In 2012, the program Energy and Built Environment will no longer pay specific attention focused on school buildings. Therefore, the market needs to jump in. 'Market initiatives' refers to projects, products and services that contribute to the realization of Clean Air Schools and which are not initiated by the Dutch government [Dutch] Zeven jaar geleden is het Frisse Scholen Programma gestart om gemeenten en scholen te stimuleren om minder energie te gebruiken en het binnenmilieu te verbeteren. In 2012 biedt het programma Energie en Gebouwde Omgeving geen ruimte meer voor specifieke aandacht gericht op scholen. Daarom zal het stokje overgedragen moeten worden aan marktpartijen. Met 'marktinitiatieven' wordt gedoeld op projecten, producten en diensten die bijdragen aan de realisatie van Frisse Scholen en niet door de Rijksoverheid worden geinitieerd.

  16. Emission allowance trading under the Clean Air Act Amendments: An incentive mechanism for the adoption of Clean Coal Technologies

    International Nuclear Information System (INIS)

    South, D.W.; McDermott, K.A.

    1993-01-01

    Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) uses tradeable SO 2 allowances as a means of reducing acidic emissions from the electricity generating industry. The use of emission allowances generates two important results; first, utilities are given the flexibility to choose their optimal (least cost) compliance strategies and second, the use of emission allowances creates greater incentives for the development and commercialization of innovative emissions control technology. Clean Coal Technologies (CCTs) are able to generate electricity more efficiently, use a wide variety of coal grades and types, and dramatically reduce emissions of SO 2 , NO x , CO 2 , and PM per kWh. However, development and adoption of the technology is limited by a variety of regulatory and technological risks. The use of SO 2 emission allowances may be able to provide incentives for utility (and nonutility) adoption of this innovative technology. Emission allowances permit the utility to minimize costs on a systemwide basis and provides rewards for addition emission reductions. As CCTs are a more efficient and low emitting source of electricity, the development and implementation of this technology is desirable. This paper will explore the relationship between the incentives created by the SO 2 allowance market and CCT development. Regulatory hindrances and boons for the allowance market shall also be identified to analyze how market development, state mandates, and incentive regulation will effect the ability of allowances to prompt CCT adoption

  17. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification.

    Science.gov (United States)

    Bian, Xiaojun; Lan, Ying; Wang, Bing; Zhang, Yu Shrike; Liu, Baohong; Yang, Pengyuan; Zhang, Weijia; Qiao, Liang

    2016-12-06

    The early warning capability of the presence of biological aerosol threats is an urgent demand in ensuing civilian and military safety. Efficient and rapid air sample collection in relevant indoor or outdoor environment is a key step for subsequent analysis of airborne microorganisms. Herein, we report a portable battery-powered sampler that is capable of highly efficient bioaerosol collection. The essential module of the sampler is a polydimethylsiloxane (PDMS) microfluidic chip, which consisted of a 3-loop double-spiral microchannel featuring embedded herringbone and sawtooth wave-shaped structures. Vibrio parahemolyticus (V. parahemolyticus) as a model microorganism, was initially employed to validate the bioaerosol collection performance of the device. Results showed that the sampling efficacy reached as high as >99.9%. The microfluidic sampler showed greatly improved capturing efficiency compared with traditional plate sedimentation methods. The high performance of our device was attributed to the horizontal inertial centrifugal force and the vertical turbulence applied to airflow during sampling. The centrifugation field and turbulence were generated by the specially designed herringbone structures when air circulated in the double-spiral microchannel. The sawtooth wave-shaped microstructure created larger specific surface area for accommodating more aerosols. Furthermore, a mixture of bacterial aerosols formed by V. parahemolyticus, Listeria monocytogenes, and Escherichia coli was extracted by the microfluidic sampler. Subsequent integration with mass spectrometry conveniently identified the multiple bacterial species captured by the sampler. Our developed stand-alone and cable-free sampler shows clear advantages comparing with conventional strategies, including portability, easy-to-use, and low cost, indicating great potential in future field applications.

  18. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  19. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    International Nuclear Information System (INIS)

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-01-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  20. VOCs and formaldehyde emissions from cleaning products and air fresheners

    OpenAIRE

    Solal , Cécilia; Rousselle , Christophe; Mandin , Corinne; Manel , Jacques; Maupetit , François

    2008-01-01

    International audience; Human indoor exposure to Volatile Organic Compounds (VOCs) may be associated with the use of household products. However little is known about their emissions and to what extent they contribute to indoor air pollution. The French Agency for Environmental and Occupational Health Safety (Afsset) conducted tests in order to characterize VOCs emissions from 32 consumer products: air fresheners, glass cleaners, furniture polishes, toilet products, carpet and floor cleaning ...

  1. Agenda and Presentations from Circumpolar Workshop: Transport and Clean Air

    Science.gov (United States)

    EPA and its partners convened Transport and Clean Air, a Circumpolar Workshop held in December 2013. This seminar allowed leading experts to share best practices on reducing emissions of particulates and black carbon from diesel sources in the Arctic.

  2. The importance of damper drive performance for clean air

    International Nuclear Information System (INIS)

    Wistrom, K.

    2002-01-01

    Amendments to the U.S. Federal Clean Air Act require petroleum refineries and other industries to examine every aspects of their process heating operations in order to reduce cumulative nitrogen oxide emissions from their plants. It has been found that changing the final damper control elements to more reliable and accurate damper drives greatly improves the combustion of air and flue gases and reduces tramp air from entering furnaces. This paper discusses the increasing importance of precise damper drives in nitrogen oxides reduction efforts, and the challenges involved in effecting good damper control. It also provides some technical details about final control drives, manufactured by TYPE K Damper Drives, a division of Controls International Inc., that thrive in environments of extreme temperatures, heavy vibration and fly ash, while providing continuous duty service with smooth, accurate and repeatable damper positioning. Case history of an Ontario oil refinery installing several damper drives designed by TYPE K, indicating high level of nitrogen oxides reduction is described to illustrate the importance and the advantages of damper control drives designed by this firm. In addition to meeting regulatory requirements, additional benefits include improved product quality and safety levels, combined with lower maintenance expenses. photos

  3. CLEAN-ROADS project: air quality considerations after the application of a novel MDSS on winter road maintenance activities

    Science.gov (United States)

    Pretto, Ilaria; Malloci, Elisa; Tonidandel, Gabriele; Benedetti, Guido; Di Napoli, Claudia; Piazza, Andrea; Apolloni, Roberto; Cavaliere, Roberto

    2016-04-01

    With this poster we present the environmental benefit on air quality derived by the application of the CLEAN-ROADS pilot project. The CLEAN-ROADS project addresses the problem of the environmental pollution caused by de-icing salts during winter road maintenance activities in the Province of Trento (Italy). A demonstrative Maintenance Decision Support System (MDSS) has been developed in order to improve the intervention procedures of the road management service. Specifically it aims to optimize the efficiency of how available resources (e.g., salt consumption) are currently used while guaranteeing the current level of road safety. The CLEAN-ROADS project has been tested and validated on a test area located in a valley bottom (Adige Valley), where the highest optimization margins are to be expected. The project supports current road maintenance practices, which has proved to be reliable and accurate, with a new scalable and energy-efficient road monitoring system. This system is based on a network of road weather stations (road weather information system, RWIS) installed on the test route. It is capable to collect real-time data about the road conditions and to perform short-term and now-cast road weather forecasts, which actively integrate weather data and bulletins covering the target area [1]. This poster presents the results obtained from a three-year monitoring activity with the aim to (1) determine the impact of de-icing salts on air quality and (2) quantify the improvements obtained by the application of the CLEAN-ROADS project on air quality. The Ambient Air Quality and Cleaner Air for Europe Directive (2008/50/EC) states that contributions to exceedances of particulate matter PM10 limit values that are attributable to road winter salting may be subtracted when assessing compliance with air quality limit values, once provided that reasonable measures have been taken to lower concentrations [2]. As the de-icing salts used in road maintenance are mainly based

  4. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    Science.gov (United States)

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Notification: Background Investigation Services EPA’s Efforts to Incorporate Environmental Justice Into Clean Air Act Inspections for Air Toxics

    Science.gov (United States)

    Project #OPE-FY14-0017, March 7, 2014. The OIG plans to begin the preliminary research phase of an evaluation of the EPA's efforts to incorporate environmental justice into Clean Air Act (CAA) inspections for air toxics.

  6. 76 FR 68381 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean...

    Science.gov (United States)

    2011-11-04

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean Vehicles Program AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. This SIP revision contains Pennsylvania's Clean Vehicle Program, which adopts California's second generation low emission vehicle program...

  7. Nuclear air cleaning programs in progress in France

    International Nuclear Information System (INIS)

    Mulcey, P.

    1991-01-01

    A short presentation is given of the nuclear air cleaning programs in progress in France with respect to pressurized water reactors, fuel reprocessing plants, radioactive waste management facilities, and the dismantling of nuclear facilities. The effects of fires in rooms and ventilation ducts in all nuclear facilities is being studied and computer simulation codes are being developed. A brief review of filter development and filter testing is also presented

  8. Twenty-second DOE/NRC nuclear air cleaning and treatment conference

    International Nuclear Information System (INIS)

    Bellamy, R.R.; Moeller, D.W.; First, M.W.

    1992-01-01

    The Twenty-Second Department of Energy/Nuclear Regulatory Commission Nuclear Air Cleaning and Treatment Conference was held Aug. 24-27, 1992, in Denver, Colo. A total of 224 air-cleaning specialists attended the conference. The United States and 12 foreign countries were represented, and the specialists were affiliated with government agencies, educational institutions, and all aspects of the nuclear industry, including utilities, architect engineers, equipment suppliers, and consultants. Several major topics were discussed, similar to areas covered at previous conferences: chemical processing off-gas cleaning; particulate filler developments, including filter testing, performance, and response to physical stress,adsorber testing and performance, including laboratory and in-place testing; waste management; system operation; codes and standards; and advanced nuclear power plants. The conference continued to provide an effective forum for direct interchange of information of both a practical and theoretical nature. International participation and interest continues, as evidenced by over 40% of the papers being sponsored by foreign interests and almost 20% of the attendees being from outside the United States. The potential for new, safer nuclear plants of an advanced design was an optimistic note during the conference. Regulatory authorities are playing a major role in providing guidance in the development of safety goals and other technical criteria for these new installations

  9. 23 CFR 633.211 - Implementation of the Clean Air Act and the Federal Water Pollution Control Act.

    Science.gov (United States)

    2010-04-01

    ... Water Pollution Control Act. 633.211 Section 633.211 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT...) implementing requirements with respect to the Clean Air Act and the Federal Water Pollution Control Act are... Contracts (Appalachian Contracts) § 633.211 Implementation of the Clean Air Act and the Federal Water...

  10. Proceedings of the 10th world clean air congress. Emissions and control

    International Nuclear Information System (INIS)

    Tolvanen, M.; Anttila, P.; Kaemaeri, J.

    1995-01-01

    Rapid economical growth and expansion of human population have produced a number of environmental problems with varying geographic dimensions. While local problems remain near the pollution sources, the focus of the scientific community is more and more shifted towards regional, continental and global consequences of air pollutants. The theme of the 10th Clean Air Congress 'Growing Challenges from Local to Global' reflects the growing demand from the scientific and professional community working in air pollution prevention and environmental protection - more and more complex mechanisms should be understood on a growing spatial scale. The 10th World Clean Air Congress addresses in its more than 400 presentations, documented in three Volumes of Proceedings, the history, the present and the potential futures of the air pollution problems. Air has during different times always represented something valuable to people: the logo of the Congress, the octahedron sign, sympolizes the element of air in acient Greek philosophy. Today air quality is not only valued as important, it is a death serious matter. This Volume includes the presentations of the path A 'Emissions and Control' of the Congress. This path deals with issues related to measurement, monitoring and inventories of air pollutants from mobile and stationary sources, and the various ways to control the emissions of acidifying pollutants, air toxics and aerosols, volatile organic compounds, and odours. Integrated approaches to pollution prevention and non-waste technologies in various industrial sectors, have recently obtained special attention

  11. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  12. The impact of cost recovery on electric utilities' Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    Bensinger, D.L.

    1993-01-01

    By 1995, over 200 electric power plant units in twenty one states must comply with Phase I of the acid rain requirements in Title IV of the 1990 Clean Air Act Amendments (CAAA). By the year 2000, an additional 2200 units must comply with the Title IV. Compliance costs are expected to necessitate significant electricity rate increases. In order to recover their compliance costs, utilities must file rate increase requests with state public utility commissions (PUC's), and undergo a rate proceeding involving public heatings. Because of the magnitude of cost and the complexity of compliance options, including interaction with Titles I and III of the CAAA, extensive PUC reviews of compliance strategies are likely. These reviews could become as adversarial as the nuclear prudence reviews of the 1980's. A lack of understanding of air pollution and the CAA by much of the general public and the flexibility of compliance options creates an environment conducive to adverse public reaction to the cost of complying with the Clean Air Act. Public attitudes toward pollution control technologies will be greatly affected by these hearings, and the early plant hearings will shape the utility rate making process under the Clean Air Act. Inadequate cost recovery due to constrained compliance strategies or adverse hearings could significantly inhibit industry willingness to invest in certain control technologies or advanced combustion technologies. There are already signs that Clean Air Act compliance will be the prudence issue of the 1990's for utilities, even where state statutes mandate particular compliance approaches. Specific actions should be undertaken now by the utility industry to improve the probability of sound cost recovery decisions, preserve compliance options, including multimedia strategies, and avoid the social- and cost-acceptance problems of nuclear power

  13. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  14. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  15. Highly ordered and ultra-long carbon nanotube arrays as air cathodes for high-energy-efficiency Li-oxygen batteries

    Science.gov (United States)

    Yu, Ruimin; Fan, Wugang; Guo, Xiangxin; Dong, Shaoming

    2016-02-01

    Carbonaceous air cathodes with rational architecture are vital for the nonaqueous Li-O2 batteries to achieve large energy density, high energy efficiency and long cycle life. In this work, we report the cathodes made of highly ordered and vertically aligned carbon nanotubes grown on permeable Ta foil substrates (VACNTs-Ta) via thermal chemical vapour deposition. The VACNTs-Ta, composed of uniform carbon nanotubes with approximately 240 μm in superficial height, has the super large surface area. Meanwhile, the oriented carbon nanotubes provide extremely outstanding passageways for Li ions and oxygen species. Electrochemistry tests of VACNTs-Ta air cathodes show enhancement in discharge capacity and cycle life compared to those made from short-range oriented and disordered carbon nanotubes. By further combining with the LiI redox mediator that is dissolved in the tetraethylene dimethyl glycol based electrolytes, the batteries exhibit more than 200 cycles at the current density of 200 mA g-1 with a cut-off discharge capacity of 1000 mAh g-1, and their energy efficiencies increase from 50% to 82%. The results here demonstrate the importance of cathode construction for high-energy-efficiency and long-life Li-O2 batteries.

  16. Socio-economic considerations of cleaning Greater Vancouver's air

    International Nuclear Information System (INIS)

    2005-08-01

    Socio-economic considerations of better air quality on the Greater Vancouver population and economy were discussed. The purpose of the study was to provide socio-economic information to staff and stakeholders of the Greater Vancouver Regional District (GVRD) who are participating in an Air Quality Management Plan (AQMP) development process and the Sustainable Region Initiative (SRI) process. The study incorporated the following methodologies: identification and review of Canadian, American, and European quantitative socio-economic, cost-benefit, cost effectiveness, competitiveness and health analyses of changes in air quality and measures to improve air quality; interviews with industry representatives in Greater Vancouver on competitiveness impacts of air quality changes and ways to improve air quality; and a qualitative analysis and discussion of secondary quantitative information that identifies and evaluates socio-economic impacts arising from changes in Greater Vancouver air quality. The study concluded that for the Greater Vancouver area, the qualitative analysis of an improvement in Greater Vancouver air quality shows positive socio-economic outcomes, as high positive economic efficiency impacts are expected along with good social quality of life impacts. 149 refs., 30 tabs., 6 appendices

  17. A 14-year longitudinal study of the impact of clean indoor air legislation on state smoking prevalence, USA, 1997-2010.

    Science.gov (United States)

    Becker, Craig M; Lee, Joseph G L; Hudson, Suzanne; Hoover, Jeanne; Civils, Donald

    2017-06-01

    While clean indoor air legislation at the state level is an evidence-based recommendation, only limited evidence exists regarding the impact of clean indoor air policies on state smoking prevalence. Using state smoking prevalence data from 1997 to 2010, a repeated measures observational analysis assessed the association between clean indoor air policies (i.e., workplace, restaurant, and bar) and state smoking prevalence while controlling for state cigarette taxes and year. The impacts from the number of previous years with any clean indoor air policy, the number of policies in effect during the current year, and the number of policies in effect the previous year were analyzed. Findings indicate a smoking prevalence predicted decrease of 0.13 percentage points (p=0.03) for each additional year one or more clean indoor air policies were in effect, a predicted decrease of 0.12 percentage points (p=0.09) for each policy in effect in the current year, and a predicted decrease of 0.22 percentage points (p=0.01) for each policy in effect in the previous year on the subsequent year. Clean indoor air policies show measurable associations with reductions in smoking prevalence within a year of implementation above and beyond taxes and time trends. Further efforts are needed to diffuse clean indoor air policies across states and provinces that have not yet adopted such policies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. 76 FR 9609 - Notice of Proposed Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2011-02-18

    ... the Environmental Protection Agency and the San Joaquin Valley Unified Air Pollution Control District... related to emissions of pollutants; install and operate required pollution control technology; undertake... Clean Air Act, 42 U.S.C. 7413(b), for alleged environmental violations at defendant's biomass electric...

  19. 75 FR 24946 - Proposed Consent Decree, Clean Air Act Citizen Suit

    Science.gov (United States)

    2010-05-06

    ..., South Carolina, Wisconsin, Indiana, Michigan, Ohio, Louisiana, Kansas, Nebraska, Missouri, Colorado..., Wisconsin, Indiana, Michigan, Ohio, Louisiana, Kansas, Nebraska, Missouri, Colorado, Montana, South Dakota... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-3] Proposed Consent Decree, Clean Air Act Citizen Suit...

  20. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    Science.gov (United States)

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. OH and HO2 chemistry in clean marine air during SOAPEX-2

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2004-01-01

    Full Text Available Model-measurement comparisons of HOx in extremely clean air ([NO] The free-radical chemistry was studied using a zero-dimensional box-model based upon the Master Chemical Mechanism (MCM. Two versions of the model were used, with different levels of chemical complexity, to explore the role of hydrocarbons upon free-radical budgets under very clean conditions. The "detailed" model was constrained to measurements of CO, CH4 and 17 NMHCs, while the "simple" model contained only the CO and CH4 oxidation mechanisms, together with inorganic chemistry. The OH and HO2 (HOx concentrations predicted by the two models agreed to within 5–10%. The model results were compared with the HOx concentrations measured by the FAGE (Fluorescence Assay by Gas Expansion technique during four days of clean Southern Ocean marine boundary layer (MBL air. The models overestimated OH concentrations by about 10% on two days and about 20% on the other two days. HO2 concentrations were measured during two of these days and the models overestimated the measured concentrations by about 40%. Better agreement with measured HO2 was observed by using data from several MBL aerosol measurements to estimate the aerosol surface area and by increasing the HO2 uptake coefficient to unity. This reduced the modelled HO2 overestimate by ~40%, with little effect on OH, because of the poor HO2 to OH conversion at the low ambient NOx concentrations. Local sensitivity analysis and Morris One-At-A-Time analysis were performed on the "simple" model, and showed the importance of reliable measurements of j(O1D and [HCHO] and of the kinetic parameters that determine the efficiency of O(1D to OH and HCHO to HO2 conversion. A 2σ standard deviation of 30–40% for OH and 25–30% for HO2 was estimated for the model calculations using a Monte Carlo technique coupled with Latin Hypercube Sampling (LHS.

  2. Index to the AEC/ERDA/DOE Air Cleaning Conferences

    International Nuclear Information System (INIS)

    Burchsted, C.A.

    1980-01-01

    A comprehensive index to the papers in the second through sixteenth AEC/ERDA/DOE Nuclear Air Cleaning Conference is discussed. The index will be published in early 1981 and will be designated as Volume 3 of the proceeding of the sixteenth conference. The index has three parts, a straight numeric tabulation, an author index, and a key word in context (KWIC) index

  3. New Source Review and coal plant efficiency gains: How new and forthcoming air regulations affect outcomes

    International Nuclear Information System (INIS)

    Adair, Sarah K.; Hoppock, David C.; Monast, Jonas J.

    2014-01-01

    Forthcoming carbon dioxide (CO 2 ) regulations for existing power plants in the United States have heightened interest in thermal efficiency gains for coal-fired power plants. Plant modifications to improve thermal efficiency can trigger New Source Review (NSR), a Clean Air Act requirement to adopt of state-of-the-art pollution controls. This article explores whether existing coal plants would likely face additional pollution control requirements if they undertake modifications that trigger NSR. Despite emissions controls that are or will be installed under the Mercury and Air Toxics Standards (MATS) and Clean Air Interstate Rule (CAIR) or its replacement, 80% of coal units (76% of capacity) that are expected to remain in operation are not projected to meet the minimum NSR requirements for at least one pollutant: nitrogen oxides or sulfur dioxide. This is an important consideration for the U.S. Environmental Protection Agency and state policymakers as they determine the extent to which CO 2 regulation will rely on unit-by-unit thermal efficiency gains versus potential flexible compliance strategies such as averaging, trading, energy efficiency, and renewable energy. NSR would likely delay and add cost to thermal efficiency projects at a majority of coal units, including projects undertaken to comply with forthcoming CO 2 regulation. - Highlights: • We explore the status of the U.S. coal-fired fleet relative to New Source Review (NSR) requirements. • Modifications to improve thermal efficiency can trigger NSR. • Thermal efficiency gains may also be an important strategy for forthcoming CO 2 regulation. • 80% Of non-retiring coal-fired units are projected not to meet minimum NSR requirements. • NSR is an important consideration for the design of CO 2 regulations for existing plants

  4. Brushless Cleaning of Solar Panels and Windows

    Science.gov (United States)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  5. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Coffey, D. E.

    2002-01-01

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications. Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications

  6. Cleaning of porous filters in fossilized bed reactors

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Sancho Rod, J.

    1965-01-01

    In this report are established the optimum working conditions of a filter cleaning system by blow back. For this purpose it was determined in the first place the blow back air rate necessary to have a good cleaning. The reasons for which it was not possible until now to control the pressure in a fluidized bed calcination reactor are analyzed and a criteria is established to calculate the optimum floe necessary to clean efficiently a porous by this procedures. (Author)

  7. Development of ultra low dew-point clean air generator; Cho tei roten seijo kuki hassei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, H.; Okamura, N. [Takasago thermal Engineering Co., Ltd., Kanagawa (Japan)

    2000-05-10

    To reduce the manufacturing cost of semiconductors, some systems have been proposed that use a cheap and high purity Clean Dry Air (CDA). CDA can reduce process step such as wafer cleaning, because CDA flow in stocker prevents the wafer surface from adsorbing of moisture and organic impurities. We have already optimized a two-stage rotary dehumidifier and have conducted a study of methods for cheaply manufacturing air that has a low dew-point of -70 degree C to -50 degree C. We have further developed the method in which a dry dehumidifier is used, and developed an ultra low dew-point air generator. The air generator is a three-stage rotary dehumidifier in which a further stage is added to the two-stage rotary dehumidifier. The main component of the rotors is metal silicate. The air generator can supply dry air with a dew-point of -110 degree C. or less, in which the concentration in all gaseous contaminants is far below 1 ppb. We made a trial calculation of the manufacturing cost, and an average cost of 0.25 yen/m{sup 3} was obtained. (author)

  8. Alberta's clean energy future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This paper deals with the future of clean energy in Alberta. With the present economic growth of the oil sands industry in Alberta, it is expected that there will be very considerable increases in job opportunities and GDP in both Canada and US. The challenges include high-energy demand and reduction of the carbon footprint. Alberta has adopted certain approaches to developing renewable and alternate forms of energy as well as to increasing the efficiency of present energy use and raising environmental consciousness in energy production. Three areas where the effects of clean energy will be felt are energy systems, climate change, and regional impacts, for instance on land, water, and wildlife. Alberta's regulatory process is shown by means of a flow chart. Aspects of oil sands environmental management include greenhouse gas targets, air quality assurance, and water quality monitoring, among others. Steps taken by Alberta to monitor and improve air quality and water management are listed. In conclusion, the paper notes that significant amounts of money are being pumped into research and development for greenhouse gas and water management projects.

  9. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  10. Human breath measurements in a clean-air chamber to determine half-lives for volatile organic compounds

    Science.gov (United States)

    Gordon, Sydney M.; Wallace, Lance A.; Pelllzzari, Edo D.; O'Neill, Hugh J.

    The expired breath of four non-occupationally exposed subjects was monitored following exposure at near-normal environmental concentrations using a specially developed pulmonary clearance technique. The four were exposed to polluted air on a heavily trafficked freeway or at a local dry-cleaning establishment, then spent the next 10 h in a clean-air environmental chamber. Breath and chamber-air samples were collected at regular intervals throughout the 10-h period and analyzed for the presence of selected target compounds. The breath levels of two of the compounds were elevated and decreased slowly with time once the subjects began to breathe clean air. Nonlinear least-squares fitting of the decay-uptake curves permitted the calculation of biological half-lives. Several of the target compounds occurred, however, at very low levels, and the resultant experimental scatter limited the value of these measurements. Higher initial exposures to most of the target compounds would have improved the reliability of the estimates.

  11. Substantiation of basic scheme of grain cleaning machine for preparation of agricultural crops seeds

    Science.gov (United States)

    Giyevskiy, A. M.; Orobinsky, V. I.; Tarasenko, A. P.; Chernyshov, A. V.; Kurilov, D. O.

    2018-03-01

    The article presents data on the feasibility of the concept of a high-efficiency seed cleaner with the consistent use of the air flow in aspiration and the multi-tier placement of the sorting grids in grating mills. As a result of modeling, the directions for further improvement of air-screen seed cleaning machines have been identified: an increase in the proportion of sorting grids in the mills up to 70 ... 80% and an increase in the speed of the air flow in the channel of the pre-filter cleaning up to 8.0 m / s. Experiments have established the competence of using mathematical modeling of airflow in the pneumatic system with the use of a finite-volume method for solving hydrodynamic equations for substantiating the basic parameters of the pneumatic system.

  12. An Investigation on the Efficiency of Air Purification Using a Biofilter with Activated Bed of Different Origin

    Directory of Open Access Journals (Sweden)

    Zagorskis Alvydas

    2014-12-01

    Full Text Available Recent studies in the area of biological air treatment in filters have addressed fundamental key issues, such as a biofilter bed of different origin composed of natural zeolite granules, foam cubes and wood chips. When foam and zeolite are mixed with wood chips to remove volatile organic compounds from the air, not only biological but also adsorption air purification methods are accomplished. The use of complex purification technologies helps to improve the efficiency of a filter as well as the bed service life of the filter bed. Investigations revealed that microorganisms prevailing in biological purification, can also reproduce themselves in biofilter beds of inorganic and synthetic origin composed of natural zeolite and foam. By cultivating associations of spontaneous microorganisms in the filter bed the dependencies of the purification efficiency of filter on the origin, concentration and filtration time of injected pollutants were determined. The highest purification efficiency was obtained when air polluted with acetone vapour was supplied to the equipment at 0.1 m/s of superficial gas velocity. When cleaning air from volatile organic compounds (acetone, toluene and butanol, under the initial pollutant concentration of ~100 mg/m3, the filter efficiency reached 95 %.

  13. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater.

    Science.gov (United States)

    Lee, Siew Siang; Bai, Hongwei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    It is still a challenge to photocatalytically cogenerate clean water and energy from dye wastewater owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, novel-structured TiO2/CuO composite nanofibers were successfully fabricated via facile electrospinning. For the first time, the TiO2/CuO composite nanofibers demonstrated multifunctional ability for concurrent photocatalytic organic degradation and H2 generation from dye wastewater. The enhanced photocatalytic activity of TiO2/CuO composite nanofibers was ascribed to its excellent synergy of physicochemical properties: 1) mesoporosity and large specific surface area for efficient substrate adsorption, mass transfer and light harvesting; 2) red-shift of the absorbance spectra for enhanced light utilization; 3) long nanofibrous structure for efficient charge transfer and ease of recovery, 4) TiO2/CuO heterojunctions which enhance the separation of electrons and holes and 5) presence of CuO which serve as co-catalyst for the H2 production. The TiO2/CuO composite nanofibers also exhibited rapid settleability by gravity and uncompromised reusability. Thus, the as-synthesized TiO2/CuO composite nanofibers represent a promising candidate for highly efficient concurrent photocatalytic organic degradation and clean energy production from dye wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Efficiency of cleaning and disinfection of surfaces: correlation between assessment methods

    OpenAIRE

    Frota, Oleci Pereira; Ferreira, Adriano Menis; Guerra, Odanir Garcia; Rigotti, Marcelo Alessandro; Andrade, Denise de; Borges, Najla Moreira Amaral; Almeida, Margarete Teresa Gottardo de

    2017-01-01

    ABSTRACT Objective: to assess the correlation among the ATP-bioluminescence assay, visual inspection and microbiological culture in monitoring the efficiency of cleaning and disinfection (C&D) of high-touch clinical surfaces (HTCS) in a walk-in emergency care unit. Method: a prospective and comparative study was carried out from March to June 2015, in which five HTCS were sampled before and after C&D by means of the three methods. The HTCS were considered dirty when dust, waste, humidity an...

  15. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  16. Toronto 2001 Inter-governmental Declaration on Clean Air

    International Nuclear Information System (INIS)

    2001-01-01

    This formal declaration commits the municipalities in the Greater Toronto Area, the provincial government of Ontario, and the federal government in Ottawa to undertake certain specific actions to improve air quality in their respective areas of jurisdiction, recognizing the validity of claims made by experts in numerous studies, linking air pollution to premature deaths, illnesses and hospitalization in major Canadian cities. The declaration also recognizes the validity of scientific claims as to the relationship between solar radiation, ambient heat, ground level ozone and global climate change, and the role played in air pollution by fossil fuel combustion. The Declaration calls for cooperation of all governments operating in the Greater Toronto Area to take inter-governmental actions to improve air quality by following up on key issues identified at annual Summits and by supporting the planning of future Summits, by working together with the Toronto Organizing Committee for the Olympic Games to ensure that the 2008 Olympic Games will contribute to a legacy of clean air for the Toronto region, and by implementing a social marketing campaign to help householders reduce both home energy use and vehicle kilometres travelled by 20 per cent. Beyond these inter-governmental commitments, special commitments of individual municipalities, and the provincial and federal governments also form part of the Declaration

  17. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  18. 78 FR 43200 - Proposed Settlement Agreement, Clean Air Act Citizen Suit

    Science.gov (United States)

    2013-07-19

    ... Social Responsibility--Los Angeles v. EPA, No. 12-56175, upon receipt of written notice from EPA that the... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OGC-2013-0484; FRL-9835-6] Proposed Settlement Agreement, Clean Air Act Citizen Suit AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of proposed...

  19. Dry-cleaning of graphene

    International Nuclear Information System (INIS)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-01-01

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy

  20. Dry-cleaning of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  1. Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act_considered MAJOR permits

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Air emission points for facilities in Iowa with operating permits for Title V of the Federal Clean Air Act, considered "major" permits. Also includes emission points...

  2. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    Science.gov (United States)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  3. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    Energy Technology Data Exchange (ETDEWEB)

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  4. Is the perception of clean, humid air indeed affected by cooling the respiratory tract?

    Science.gov (United States)

    Burek, Rudolf; Polednik, Bernard; Guz, Łukasz

    2017-07-01

    The study aims at determining exposure-response relationships after short exposure to clean air and long exposure to air polluted by people. The impact of water vapor content in the indoor air on its acceptability (ACC) was assessed by the occupants after a short exposure to clean air and an hour-long exposure to increasingly polluted air. The study presents a critical analysis pertaining to the stimulation of olfactory sensations by the air enthalpy suggested in previous models and proposes a new model based on the Weber-Fechner law. Our assumption was that water vapor is the stimulus of olfactory sensations. The model was calibrated and verified in field conditions, in a mechanically ventilated and air conditioned auditorium. Measurements of the air temperature, relative humidity, velocity and CO2 content were carried out; the acceptability of air quality was assessed by 162 untrained students. The subjective assessments and the measurements of the environmental qualities allowed for determining the Weber coefficients and the threshold concentrations of water vapor, as well as for establishing the limitations of the model at short and long exposure to polluted indoor air. The results are in agreement with previous studies. The standard error equals 0.07 for immediate assessments and 0.17 for assessments after adaptation. Based on the model one can predict the ACC assessments of trained and untrained participants.

  5. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  6. Human Response to Ductless Personalized Ventilation with Local Air Cleaning: Air Quality and Prevalence of SBS Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Bivolarova, Maria; Fillon, Maelys

    2013-01-01

    The impact of local air cleaning and cooling of the head region by ductless personalized ventilation (DPV) on perceived air quality (PAQ) and Sick Building Syndrome (SBS) symptoms was studied. Thirty subjects participated in experiments performed in a test room with displacement ventilation (DV...... with air filter and 29 °C with DPV without filter. During the experiments the subjects simulated office work and answered on computerized questionnaires. At warm environment PAQ and air freshness significantly improved when DPV was used. Eye dryness increased significantly with time but was not influenced...... by air temperature and filtering. At 29 °C the facially applied air movement from DPV increased the eye dryness. The SBS symptoms increased with time and were higher (not significantly) at the warm conditions. Air movement did not have profound impact on the SBS symptoms, while filtering had only at 23...

  7. Technical development of nuclear air cleaning in the People's Republic of China

    International Nuclear Information System (INIS)

    Li Xue Qun; Liu Hui; Wang Tie Shen; Xin Song Niam; Guo Liang Tian.

    1985-01-01

    In the past 20 years, with the utilization of nuclear technology in China, air cleaning techniques were developed to prevent the environment from pollution caused by radioactive materials and to ensure the safety of occupational personnel. The technical developments involve many fields including the manufacture of filter media and adsorbents; the application of filters and iodine adsorbers and the testing of them; the improvement of instruments and methods for aerosol concentration measurement; the retention of radioactive noble gases; and others. As nuclear power stations are to be built in China, nuclear air cleaning will be advancing more rapidly. Many programs have been scheduled, such as producing other types of adsorbers, moisture separators, nuclear grade HEPA filters that have excellent performance to resist adverse circumstances, and in-place testing for units of ventilation systems in nuclear facilities. These programs are discussed

  8. Appalachian clean coal technology consortium

    International Nuclear Information System (INIS)

    Kutz, K.; Yoon, Roe-Hoan

    1995-01-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A ampersand E firms working in the Appalachian coal fields. This approach is consistent with President Clinton's initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force

  9. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kutz, K.; Yoon, Roe-Hoan [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  10. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  11. 75 FR 75463 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper...

    Science.gov (United States)

    2010-12-03

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9234-9] Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Luke Paper Company, Luke, MD AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final action. SUMMARY: Pursuant to section 505(b)(2) of the Clean Air Act (CAA), the...

  12. Pollution Law - Clean Air Act

    International Nuclear Information System (INIS)

    Schmitt Glaeser, W.; Meins, J.W.

    1982-01-01

    This volume deals with how the living space air is kept clean by means of the pollution law, focussing on the documentation of central problems of pollution law by means of selected articles and court decisions. The literature and jurisdiction available on this sector of which we can hardly keep track makes such a documentation look useful and necessary. It will make working easier for those who do not have direct access to large libraries. The only intention of the guide for the pollution law which preceeds the documentation is to outline basic problems. It is intended to provide basic information in this complex field of law. At the same time, it also constitutes a 'guide' for the documentation: By naming the documentation number in the margin of the respective passage reference is made to the documented publications which deal with the legal issues considered. Using this guide, the documentation can be easily tapped. (orig.) [de

  13. Air-cleaning devices for vented filtered LMFBR containment

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.

    1982-07-01

    An effort lasting several years is summarized which evaluated, developed and tested air cleaning devices for potential use in breeder reactor containment venting applications. State-of-technology evaluations were completed for both a hypothetical head release accident and a primary vessel melt-through accident. Commercially available systems or components were tested which included HEPA filters, sand and gravel beds, and aqueous scrubbers. Large-scale demonstration tests were completed and results are presented for two- and three-stage conventional aqueous scrubber systems; and for a newly developed passive, submerged gravel scrubber

  14. Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01

    The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

  15. Energy Efficient in-Sensor Data Cleaning for Mining Frequent Itemsets

    Directory of Open Access Journals (Sweden)

    Jacques M. BAHI

    2012-03-01

    Full Text Available Limited energy, storage, computational power represent the main constraint of sensor networks. Development of algorithms that take into consideration this extremely demanding and constrained environment of sensor networks became a major challenge. Communicating messages over a sensor network consume far more energy than processing it and mining sensors data should respect the characteristics of sensor networks in terms of energy and computation constraints, network dynamics, and faults. This lead us to think of a data cleaning pre processing phase to reduce the packet size transmitted and prepare the data for an efficient and scalable data mining. This paper introduces a tree-based bi-level periodic data cleaning approach implemented on both the source node and the aggregator levels. Our contribution in this paper is two folds. First we look on a periodic basis at each data measured and periodically clean it while taking into consideration the number of occurrences of the measures captured which we shall call weight. Then, a data cleaning is performed between groups of nodes on the level of the aggregator, which contains lists of measures along with their weights. The quality of the information should be preserved during the in-network transmission through the weight of each measure captured by the sensors. This weight will constitute the key optimization of the frequent pattern tree. The result set will constitute a perfect training set to mine without higher CPU consumption allowing us to send only the useful information to the sink. The experimental results show the effectiveness of this technique in terms of energy efficiency and quality of the information by focusing on a periodical data cleaning while taking into consideration the weight of the data captured.

  16. Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Carl-Jochen [International Association for Hydrogen Energy (IAHE), c/o ENERGON Carl-Jochen Winter e.K., Obere St.-Leonhardstr. 9, 88662 Ueberlingen (Germany)

    2009-07-15

    Both secondary energies, electricity and hydrogen, have much in common: they are technology driven; both are produced from any available primary energy; once produced both are environmentally and climatically clean over the entire length of their respective conversion chains, from production to utilization; they are electrochemically interchangeable via electrolyses and fuel cells; both rely on each other, e.g., when electrolyzers and liquefiers need electricity or when electricity-providing low temperature fuel cells need hydrogen; in cases of secondary energy transport over longer distances they compete with each other; in combined fossil fuel cycles both hydrogen and electricity are produced in parallel exergetically highly efficiently; hydrogen in addition to electricity helps exergizing the energy system and, thus, maximizing the available technical work. There are dissimilarities, too: electricity transports information, hydrogen does not; hydrogen stores and transports energy, electricity does not (in macroeconomic terms). The most obvious dissimilarity is their market presence, both in capacities and in availability: Electricity is globally ubiquitous (almost), whilst hydrogen energy is still used in only selected industrial areas and in much smaller capacities. The article describes in 15 chapters, 33 figures, 3 tables, and 2 Annexes the up-and-coming hydrogen energy economy, its environmental and climatic relevance, its exergizing influence on the energy system, its effect on decarbonizing fossil fueled power plants, the introduction of the novel non-heat-engine-related electrochemical energy converter fuel cell in portable electronics, in stationary and mobile applications. Hydrogen guarantees environmentally and climatically clean transportation on land, in air and space, and at sea. Hydrogen facilitates the electrification of vehicles with practically no range limits. (author)

  17. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the...

  18. 77 FR 39262 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2012-07-02

    ... Frozen Bakery Products, Inc. (collectively ``Cottage'') for violations of the federal Clean Air Act, 42 U... Joaquin Valley Unified Air Pollution Control District v. Cottage Bakery, Inc. and Ralcorp Frozen Bakery Products, Inc., case number 2:12-at-00895, was lodged with the United States District Court for the Eastern...

  19. Notification: Background Investigation Services New Assignment Notification: EPA’s Efforts to Incorporate Environmental Justice Into Clean Air Act Inspections for Air Toxics

    Science.gov (United States)

    The purpose of this memorandum is to notify you that the EPA OIG plans to begin the preliminary research phase of an evaluation of the U.S. EPA's efforts to incorporate environmental justice into Clean Air Act inspections for air toxics.

  20. The Clean Air Act Amendments of 1990: Opportunities for Promoting Renewable Energy; Final Report: December 11, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, D.R.; Morss, E.M. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC, Albany, New York)

    2001-01-08

    This report explores key aspects of the intersection between the nation's clean air and energy goals and proposes alternatives for encouraging renewable energy in the context of the federal Clean Air Act (CAA). As with most environmental statutes enacted in the early 1970s, the 1970 CAA embraced a somewhat rigid ''command-and-control'' approach to achieving its clean air goals. Although effective, this approach has been criticized for discouraging creative and cost-effective solutions to reducing air emissions. In response to this concern, Congress included the first significant market-based program to address an environmental problem-in this case, acid rain caused by sulfur dioxide (SO2) emissions from power plants-in the 1990 CAA Amendments. This program prompted the federal government and various state governments to pursue other market-based programs to address air pollution problems. Ten years have elapsed since the passage of the 1990 CAA Amendments, so the time is ripe to consider expanding opportunities for renewable energy development in the reform of clean air policies. A significant potential for renewables exists in conjunction with international efforts to reduce emissions of greenhouse gases (GHG), including CO2. Unfortunately, Congressional opposition to international GHG reduction agreements makes it difficult to develop GHG emission-reduction programs, including a cap-and-trade alternative, that would enable the renewables industry to harness this potential. The renewable industry can, however, track developments both nationally and internationally to ensure that the programs developed adequately address renewables.

  1. Implementation of the clean air strategy for Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, H.S.; Angle, R.P. [Alberta Dept. of Environmental Protection, Alberta (Canada); Kelly, M. [Clean Air Strategic Alliance, Alberta (Canada)

    1995-12-31

    Air quality and its effects on the environment and human health have received considerable attention during the last three decades in Alberta, Canada. Among the issues receiving a high priority are acid deposition, smog and global warming. There are various sources of emissions to Alberta`s atmosphere, many of which relate to the extraction, processing, and burning of fossil fuels; pulp and paper manufacture; and transportation. There are also natural sources of contaminants, such as particulates from forest fires and methane from bogs. The extraction, processing and combustion of fossil fuels play an important role in Alberta`s economy. The province produces over 80 % of the oil and natural gas in Canada, and nearly half the coal. Low sulphur coal is used in power plants to supply more than 90 % of the electricity used in this province by nearly three million people. As a result, Alberta is responsible for about 27 % of the CO{sub 2}, 23 % of the nitrogen oxides, and 16 % of the SO{sub 2} emissions generated in Canada. Alberta`s air quality is monitored by the Government of Alberta at nine continuous, eight intermittent, over 250 static, and 12 precipitation monitoring stations. Parameters such as carbon monoxide, oxides of nitrogen, sulphur dioxide, particulates, and ion-content of precipitation are measured. Industry operates a large number of ambient and static SO{sub 2} and H{sub 2}S monitoring stations across Alberta, with monitoring costs estimated at 56-80 million USD annually. The unique features of the Clean Air Strategy for Alberta (CASA) have already been published elsewhere. This presentation discusses the mechanism and progress on its implementation. (author)

  2. Implementation of the clean air strategy for Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, H S; Angle, R P [Alberta Dept. of Environmental Protection, Alberta (Canada); Kelly, M [Clean Air Strategic Alliance, Alberta (Canada)

    1996-12-31

    Air quality and its effects on the environment and human health have received considerable attention during the last three decades in Alberta, Canada. Among the issues receiving a high priority are acid deposition, smog and global warming. There are various sources of emissions to Alberta`s atmosphere, many of which relate to the extraction, processing, and burning of fossil fuels; pulp and paper manufacture; and transportation. There are also natural sources of contaminants, such as particulates from forest fires and methane from bogs. The extraction, processing and combustion of fossil fuels play an important role in Alberta`s economy. The province produces over 80 % of the oil and natural gas in Canada, and nearly half the coal. Low sulphur coal is used in power plants to supply more than 90 % of the electricity used in this province by nearly three million people. As a result, Alberta is responsible for about 27 % of the CO{sub 2}, 23 % of the nitrogen oxides, and 16 % of the SO{sub 2} emissions generated in Canada. Alberta`s air quality is monitored by the Government of Alberta at nine continuous, eight intermittent, over 250 static, and 12 precipitation monitoring stations. Parameters such as carbon monoxide, oxides of nitrogen, sulphur dioxide, particulates, and ion-content of precipitation are measured. Industry operates a large number of ambient and static SO{sub 2} and H{sub 2}S monitoring stations across Alberta, with monitoring costs estimated at 56-80 million USD annually. The unique features of the Clean Air Strategy for Alberta (CASA) have already been published elsewhere. This presentation discusses the mechanism and progress on its implementation. (author)

  3. Determination of the Clean Air Delivery Rate (CADR of Photocatalytic Oxidation (PCO Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations

    Directory of Open Access Journals (Sweden)

    Éric Dumont

    2017-03-01

    Full Text Available This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR of PhotoCatalytic Oxidation (PCO air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges.

  4. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  5. Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning

    Directory of Open Access Journals (Sweden)

    Gao Ruitao

    2016-01-01

    Full Text Available The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.

  6. Dynamics Analysis of Castor Hulling in the Process of Air-and-Screen Cleaning

    OpenAIRE

    Gao Ruitao; Cao Yuhua; Yao Liangliang; Jin Hong

    2016-01-01

    The air-and-screen cleaning mechanism of castor hulling is analyzed in this paper. And the numeric expression equations of the castor dynamics analysis are established. The correlation of floating speeds vp, air speeds w, the direction angle of airflow velocity β, the direction angle of vibration δ, the friction angle ϕ, the slip coefficient, the fell coefficient and the jumping coefficient are analyzed.

  7. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  8. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    International Nuclear Information System (INIS)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors

  9. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    Science.gov (United States)

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  10. Clean Air Act compliance issues/panel

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This morning, four panelists will discuss the birth of the free market allowance trading system, how it was formed, when it was formed, how it was sold, how allowance trading has worked, how it is expected to work, and how utilities are planning based on allowance trading. We will also hear from a utility commissioner who will make some of the final decisions on cost recovery. So we will have various perspectives today on allowance trading. Many of you are here to learn more about how to comply with the Clean Air Act Amendments of 1990. Allowance trading is the cornerstone of the entire Title 4, the acid deposition title of the amendments, in which SO 2 emission allowances are a tradeable right. Following the four presentations, we will entertain questions to the four participants from the audience

  11. Dependence of adsorption quality of carbon in NPP air cleaning systems

    International Nuclear Information System (INIS)

    Vujisic, Lj.

    1994-01-01

    A relationship which describes the influence of aging, relative humidity and organic poisons on the adsorption quality of coconut charcoal has been established. The relationship is rearranged for easy calculation of the reliable operation time of the adsorbent media in charcoal filters of any single nuclear air-cleaning system during accidental and incidental situation of NPP (author)

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  13. Emissions in 2001 conform the reference scenario (GE WLO with high oil price) and including Clean and Efficient

    International Nuclear Information System (INIS)

    Kroon, P.; Menkveld, M.

    2008-08-01

    This memo shows the calculation of an estimate for the total greenhouse gas emissions in 2011 in the reference scenario (GE WLO is the Dutch abbreviation for Global Economy and Welfare and Environment), including the impact of the Clean and Efficient programme from the assessment of ECN (Energy research Centre of the Netherlands) and MNP (Netherlands Environmental Assessment Agency) [nl

  14. Effect of design and technology on the efficiency of ultrasonic facilities for sheet cleaning

    International Nuclear Information System (INIS)

    Lubyanitskij, G.D.

    1977-01-01

    Various techniques are reviewed for enhancing the efficiency of ultrasonic cleaning of various items, such as sheets, and for lowering the energy consumption of the process. It is important to maintain a specified spacing between the item to be cleaned and the supersound projector, to remove the contaminants accumulating in the surface layer of the solution and to provide an adequate combination between the ultrasonic and the mechanical cleaning means. It is noted that the injection of the surfactants directly into the cleaning zone lowers the intensity of foaming without affecting the quality of cleaning. In some cases the cleaning is even speeded up due to an improvement in conditions for the transmission of acoustic waves in areas at some distance from the converter

  15. Compressor motor for air conditioners realizing high efficiency and low cost; Kokoritsu tei cost wo jitsugenshita eakonyo asshukuki motor

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Y.; Kawamura, K.; Imazawa, K. [Toshiba Corp., Tokyo (Japan)

    2000-01-01

    The compressor motor accounts for most of the consumption of electric power in an air conditioner. To promote energy-saving, Toshiba has been progressively changing the compressor motors in its air conditioners to high-efficiency brushless DC motors. We have now developed a new compressor motor in order to achieve even greater energy-saving. A concentrated winding system was adopted featuring direct winding on the teeth of the stator core, for the first time in the industry. As a result, it was possible to realize a high-efficiency, compact, lightweight, and low-cost motor. Moreover, by constructing a new system for production, we were able to improve productivity and quality. The newly developed motor is expected to contribute to the further diffusion of energy-saving air conditioners. (author)

  16. Section 112 hazardous air pollutants Clean Air Act Amendments of 1990; potential impact of fossil/NUC

    International Nuclear Information System (INIS)

    Cronmiller, R.E.

    1990-01-01

    Control of hazardous air pollutants under the Clean Air Act (CAA) goes back several decades. Section 112 of the 1970 CAA as amended in 1977 served as the national statutory basis for controlling hazardous air pollutants until the most recent 1990 Amendments. Following severe criticism of the effectiveness of the Act to address hazardous air pollutant issues and a pile of seemingly never ending lawsuits challenging the regulatory process, the U.S. Congress has substantially rewritten Section 112 in the 1990 CAA Amendments. Many provisions heretofore requiring findings or regulatory decisions by the Environmental Protection Agency (EPA) Administrator are now automatic in the sense that the decisions have already been made by the US Congress legislatively. Thus, the new Section 112 has eliminated many of the existing regulatory obstacles, or safeguards; this will likely result in sweeping new regulatory programs mandating extensive controls on many industrial activities. A much needed study program to address fossil fuel fired steam electric generating units' hazardous air emissions and to identify control alternatives to regulate these emissions, if regulation is required, was incorporated into new Section 112. Because of this study, the regulatory fate of these units under the new Section 112 remains highly uncertain. An extensive regulatory program addressing hazardous air pollutants of these utility units under Section 112 would dwarf electric utility costs associated with the new acid rain control program. First, this paper identifies major provisions of the old law and the resulting regulatory status for both coal and nuclear power facilities before addressing the new Section 112 under the 1990 CAA Amendments and potential implications for electric utilities specifically

  17. Clean/alternative fueled fleet programs - 1990 Amendments to the Clean Air Act, the Colorado Air Pollution Prevention and Control Act, and Denver City and County regulations

    International Nuclear Information System (INIS)

    Bowles, S.L.; Manderino, L.A.

    1993-01-01

    Despite substantial regulations for nearly two decades, attainment of this ambient standards for ozone and carbon monoxide (CO) remain difficult goals to achieve, Even with of ozone precursors and CO. The 1990 Amendments to the Clean Air Act (CAA90) prescribe further reductions of mobile source emissions. One such reduction strategy is using clean fuels, such as methanol, ethanol, or other alcohols (in blends of 85 percent or more alcohol with gasoline or other fuel), reformulated gasoline or diesel, natural gas, liquified petroleum gas, hydrogen, or electricity. There are regulatory measures involving special fuels which will be required in areas heavily polluted with ozone and CO. The state of Colorado recently passed the 1992 Air Pollution Prevention and Control Act which included provisions for the use of alternative fuels which will be implemented in 1994. In addition to adhering to the Colorado state regulations, the city and county of Denver also have regulations pertaining to the use of alternative fuels in fleets of 10 or more vehicles. Denver's program began in 1992. This paper will address the issue of fleet conversion and its impact on industry in Colorado, and Denver in particular

  18. 78 FR 69709 - Notice of Extension to Public Comment Period for Consent Decree Under the Clean Air Act and the...

    Science.gov (United States)

    2013-11-20

    ... Clean Air Act and the Emergency Planning and Community Right- To Know Act'' On September 30, 2013, the... lawsuit filed under the Clean Air Act and the Emergency Planning & Community Right to Know Act, the United... would receive comments concerning the settlement for a period of thirty (30) days from the date of...

  19. Efficiency of different protocols for enamel clean-up after bracket debonding: an in vitro study

    Directory of Open Access Journals (Sweden)

    Lara Carvalho Freitas Sigilião

    2015-10-01

    Full Text Available Objective: This study aimed to assess the efficiency of six protocols for cleaning-up tooth enamel after bracket debonding.Methods:A total of 60 premolars were divided into six groups, according to the tools used for clean-up: 12-blade bur at low speed (G12L, 12-blade bur at high speed (G12H, 30-blade bur at low speed (G30L, DU10CO ORTHO polisher (GDU, Renew System (GR and Diagloss polisher (GD. Mean roughness (Ra and mean roughness depth (Rz of enamel surface were analyzed with a profilometer. Paired t-test was used to assess Ra and Rz before and after enamel clean-up. ANOVA/Tukey tests were used for intergroup comparison. The duration of removal procedures was recorded. The association between time and variation in enamel roughness (∆Ra, ∆Rz were evaluated by Pearson's correlation test. Enamel topography was assessed by scanning electron microscopy (SEM.Results:In Groups G12L and G12H, original enamel roughness did not change significantly. In Groups G30L, GDU, GR and GD, a smoother surface (p < 0.05 was found after clean-up. In Groups G30L and GD, the protocols used were more time-consuming than those used in the other groups. Negative and moderate correlation was observed between time and (∆Ra, ∆Rz; Ra and (∆Ra, ∆Rz; Rz (r = - 0.445, r = - 0.475, p < 0.01.Conclusion:All enamel clean-up protocols were efficient because they did not result in increased surface roughness. The longer the time spent performing the protocol, the lower the surface roughness.

  20. Revised Clean Air Act - Consequent enforcement necessary

    International Nuclear Information System (INIS)

    Keel, A.

    2008-01-01

    This article discusses the stipulations of the Swiss Clean Air Act regarding wood-fired combustion systems. In particular, the regulations on fine-dust emissions from wood-fired systems are discussed and its influence on the market for wood-fired heating systems is examined. Conformity statements can be issued for heating systems with a power of less than 70 kW that are tested to meet EN standards by accredited testing facilities. The history of the Swiss Association for Wood Energy and its efforts to introduce quality labels in this area of business are discussed. The situation regarding equipment with a power of less than 70 kW is addressed, as are large-scale wood-fired furnaces with ratings up to over 1,000 kW.

  1. Air compressor efficiency in a Vietnamese enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming [3E and T International, Suite 1506, Building No. 10, Luo Ma Shi Street, Xuan Wu District, Beijing 100052 (China)

    2009-06-15

    Compressed air systems in a Vietnamese footwear manufacturing enterprise consume about 10% of enterprise's total electric power supply. Energy efficiency of these air compressor systems, either equipped with new and efficient compressors or old and inefficient ones, can only reach between 5% and 10%. In other words, regardless whatever air compressors were installed, energy loss from the compressor systems was over 80%. This study discovered that energy loss was due to non-optimized operations of the air compressor systems and air leakages. The objectives of the paper are to uncover energy saving potential in Vietnamese air compressor systems, demonstrate methodologies used in the auditing and assessment, share auditing and assessment results, and serve a guide on how to analyze energy efficiency in a compressed air system. This paper concludes that energy efficiency investment in air compressor systems in the Vietnamese enterprise could be extremely cost-effective. If the enterprise invests USD 84,000 in the air compressors to improve efficiency performance, the investment capital will be recovered in about six months. The net present value of the investment will be about USD 864,000 at a discount rate of 12%. (author)

  2. Air compressor efficiency in a Vietnamese enterprise

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ming [3E and T International, Suite 1506, Building No. 10, Luo Ma Shi Street, Xuan Wu District, Beijing 100052 (China)], E-mail: ming.yang7@gmail.com

    2009-06-15

    Compressed air systems in a Vietnamese footwear manufacturing enterprise consume about 10% of enterprise's total electric power supply. Energy efficiency of these air compressor systems, either equipped with new and efficient compressors or old and inefficient ones, can only reach between 5% and 10%. In other words, regardless whatever air compressors were installed, energy loss from the compressor systems was over 80%. This study discovered that energy loss was due to non-optimized operations of the air compressor systems and air leakages. The objectives of the paper are to uncover energy saving potential in Vietnamese air compressor systems, demonstrate methodologies used in the auditing and assessment, share auditing and assessment results, and serve a guide on how to analyze energy efficiency in a compressed air system. This paper concludes that energy efficiency investment in air compressor systems in the Vietnamese enterprise could be extremely cost-effective. If the enterprise invests USD 84,000 in the air compressors to improve efficiency performance, the investment capital will be recovered in about six months. The net present value of the investment will be about USD 864,000 at a discount rate of 12%.

  3. Air compressor efficiency in a Vietnamese enterprise

    International Nuclear Information System (INIS)

    Yang Ming

    2009-01-01

    Compressed air systems in a Vietnamese footwear manufacturing enterprise consume about 10% of enterprise's total electric power supply. Energy efficiency of these air compressor systems, either equipped with new and efficient compressors or old and inefficient ones, can only reach between 5% and 10%. In other words, regardless whatever air compressors were installed, energy loss from the compressor systems was over 80%. This study discovered that energy loss was due to non-optimized operations of the air compressor systems and air leakages. The objectives of the paper are to uncover energy saving potential in Vietnamese air compressor systems, demonstrate methodologies used in the auditing and assessment, share auditing and assessment results, and serve a guide on how to analyze energy efficiency in a compressed air system. This paper concludes that energy efficiency investment in air compressor systems in the Vietnamese enterprise could be extremely cost-effective. If the enterprise invests USD 84,000 in the air compressors to improve efficiency performance, the investment capital will be recovered in about six months. The net present value of the investment will be about USD 864,000 at a discount rate of 12%.

  4. Cleaning, abrasion, and polishing effect of novel perlite toothpaste abrasive.

    Science.gov (United States)

    Wang, Bo

    2013-01-01

    This study was intended to optimize perlite particle size and morphology for better tooth cleaning and lower tooth abrasion, and to evaluate the performance of a whitening toothpaste containing the optimized perlite abrasive for tooth cleaning, abrasion, and polishing. Perlite toothpaste abrasive samples were prepared by air classifying a commercial expanded perlite product. The tooth cleaning and abrasion properties for these classified perlite samples were reported via the pellicle cleaning ratio (PCR) and relative dentin abrasion (RDA). Performance of the whitening toothpaste containing the optimized perlite abrasive in tooth cleaning, polishing, and abrasion was evaluated against a widely used synthetic high-cleaning silica. Air classification removes large perlite particles and also physically changes perlite particle morphology from mostly three dimensional and angular particles to mainly two dimensional and platy particles. All the classified samples show good tooth cleaning effect, but tooth abrasion decreases significantly with decreasing particle size. Compared to high-cleaning silica whitening toothpaste, the whitening toothpaste containing the optimized perlite abrasive (PerlClean) is slightly better at tooth cleaning, lower in tooth abrasion, and significantly better at tooth polishing. Fine platy perlite particles are effective in tooth cleaning with low tooth abrasion. The enhanced performance of optimized perlite toothpaste abrasive compared to high-cleaning silica in a whitening toothpaste is attributed to the optimized particle size distribution and the unique platy particle geometry.

  5. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  6. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  7. Investigation of air cleaning system response to accident conditions

    International Nuclear Information System (INIS)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported

  8. Clean Air Act : historical information on EPA's process for reviewing California waiver requests and making waiver determinations

    Science.gov (United States)

    2009-01-01

    Emissions from mobile sources, such as automobiles and trucks, contribute to air quality degradation and can threaten public health and the environment. Under the Clean Air Act, the Environmental Protection Agency (EPA) regulates these emissions. The...

  9. A survey of the extent of compliance with Title V of the Clean Air Act Amendments of 1990

    Energy Technology Data Exchange (ETDEWEB)

    Goss, Carol; Sandhu, Ravinder [Department of Environmental Analysis and Management, Troy State University, Troy (United States)

    1999-04-01

    As public awareness of environmental issues increases, the federal government is faced with continually renewing and redesigning the air quality regulations for the betterment of air quality. This study was designed to survey the compliance of Title V of the 1990 Clean Air Act by industries in Alabama, California, Pennsylvania, and South Carolina. Forty survey forms per state were sent out to facilities selected at random. The maximum number of responses were obtained from South Carolina followed by Alabama, California, and Pennsylvania. The study showed that large industries, with an average annual revenue in excess of ?10 million and more than 300 employees, responded with higher frequency and these companies were more in compliance with Title V of the 1990 Clean Air Act

  10. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  11. Monitor Clean and Efficient. Current state of affairs 2010

    International Nuclear Information System (INIS)

    Gerdes, J.

    2010-04-01

    This is the second report of the annual Monitor of the Dutch Clean and Efficient programme. The monitoring focuses on the development of target variables, effects, results and progress of the process. Most of the data regarding the results and effects concern the period until the end of 2009. Some data are not yet available for 2009 and can therefore only be provided for the preceding years. [nl

  12. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Science.gov (United States)

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain...

  13. Cleaning metal filters by pulse-jet

    International Nuclear Information System (INIS)

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  14. The regulation of hazardous air pollutants under the Clean Air Act Amendments of 1990: Effects on the Portland cement industry

    International Nuclear Information System (INIS)

    Mikols, E.H.; Gill, A.S.; Dougherty, A.

    1996-01-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) addresses the control of hazardous air pollutants (HAPs) from major sources of air pollution in the US. In the CAAA, Congress defined 189 compounds as hazardous air pollutants in need of additional control by the Environmental Protection Agency (EPA). Congress directed EPA to identify the major source categories which emit HAPs and to prepare regulations that would reduce and control future HAP emissions. This paper outlines the activities undertaken by EPA to regulate HAP emissions from Portland cement plants and the program developed by the Portland cement manufacturing industry to cope with Title III

  15. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria

    2013-01-01

    environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film......The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...

  16. The ageing and poisoning of charcoal used in nuclear plant air cleaning systems

    International Nuclear Information System (INIS)

    Broadbent, D.

    1986-01-01

    Ageing and Poisoning are terms which are used to describe the in-service deterioration or weathering of activated charcoals used to remove radioiodine from air cleaning systems. This paper describes an investigation aimed at identifying the relative importance of the two effects and at comparing the resistance to weathering of potassium iodide (KI) impregnated charcoal with triethylene diamine (TEDA) impregnated charcoal. Some preliminary results are given on the rates of oxidative ageing of charcoals as a function of temperature and relative humidity. The effect on charcoal performance of organic poisons has been examined by measuring the index of performance (k-factor) of charcoals preloaded with a range of organic solvents. Finally the combined effect of oxidative ageing and organic poisoning has been measured using realistic operating conditions of temperature and relative humidity. The in-service deterioration of charcoal in air cleaning systems can be accounted for by a combination of oxidative ageing and poisoning by airborne organic solvents. (author)

  17. Efficiency of Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Brix, Wiebke

    2011-01-01

    The simplest type of a Compressed Air Energy Storage (CAES) facility would be an adiabatic process consisting only of a compressor, a storage and a turbine, compressing air into a container when storing and expanding when producing. This type of CAES would be adiabatic and would if the machines...... were reversible have a storage efficiency of 100%. However, due to the specific capacity of the storage and the construction materials the air is cooled during and after compression in practice, making the CAES process diabatic. The cooling involves exergy losses and thus lowers the efficiency...... of the storage significantly. The efficiency of CAES as an electricity storage may be defined in several ways, we discuss these and find that the exergetic efficiency of compression, storage and production together determine the efficiency of CAES. In the paper we find that the efficiency of the practical CAES...

  18. Risk Management Programs under Clean Air Act Section 112(r): Guidance for Implementing Agencies

    Science.gov (United States)

    Accidental release prevention programs under section 112(r) of the Clean Air Act (CAA) are related to and build on activities under the Emergency Planning and Community Right-to-Know Act, and Occupational Safety and Health Administration standards.

  19. Air filters for use at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Linder, P [Aktiebolaget Atomenergi, Studsvik, Nykoeping (Sweden)

    1970-12-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment.

  20. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  1. Advanced air distribution: Improving health and comfort while reducing energy use

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2015-01-01

    -quality indoor environments at the same time as low-energy consumption. Advanced air distribution, designed to supply clean air where, when, and as much as needed, makes it possible to efficiently achieve thermal comfort, control exposure to contaminants, provide high-quality air for breathing and minimizing......Indoor environment affects the health, comfort, and performance of building occupants. The energy used for heating, cooling, ventilating, and air conditioning of buildings is substantial. Ventilation based on total volume air distribution in spaces is not always an efficient way to provide high...... the risk of airborne cross-infection while reducing energy use. This study justifies the need for improving the present air distribution design in occupied spaces, and in general the need for a paradigm shift from the design of collective environments to the design of individually controlled environments...

  2. 75 FR 10794 - Clean Air Act Advisory Committee (CAAAC) Request for Nominations to the CAAAC

    Science.gov (United States)

    2010-03-09

    ... Clean Air Act Advisory Committee (CAAAC) on November 19, 1990, to provide independent advice and counsel... Nominations: The U.S. Environmental Protection Agency (EPA) invites nominations of qualified candidates to be...

  3. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A. [Laboratoire des Technologies de la Microélectronique, CNRS-UJF, 17 rue des Martyrs, 38054 Grenoble (France); Ferrah, D.; Renault, O. [CEA, LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble (France); Okuno, H. [CEA, INAC/SP2M/LEMMA, 17 rue des Martyrs, 38054 Grenoble (France); Kalita, D.; Bouchiat, V. [Institut Néel, CNRS-UJF-INP, BP 166, 38042 Grenoble Cedex 9 (France)

    2015-09-28

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here, we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.

  4. 75 FR 22400 - Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator...

    Science.gov (United States)

    2010-04-28

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9142-6] Clean Air Act Operating Permit Program; Petition To Object to Title V Permit for Wheelabrator Baltimore, L.P., Baltimore City, MD AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final action. SUMMARY: Pursuant to section 505(b)(2) of the Clean...

  5. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  6. USNRC regulatory guidance for engineered safety feature air cleaning systems

    International Nuclear Information System (INIS)

    Bellamy, R.R.

    1991-01-01

    The need for clear, technically appropriate, and easily implementable guidance for the design, testing, and maintenance of nuclear air cleaning systems has long been recognized. Numerous industry consensus standards have been issued and revised over the last 30 years. Guidance has also been published by the US Nuclear Regulatory Commission in the form of regulations, regulatory guides, standard review plans, NUREG documents, and information notices. This paper will summarize the latest revisions to these documents and emphasize Regulatory Guide 1.52, Design, Testing, and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants, which was last revised in 1978. The USNRC has undertaken a project to revise this regulatory guide, and the status of that revision is highlighted

  7. Efficiency of cleaning and disinfection of surfaces: correlation between assessment methods

    Directory of Open Access Journals (Sweden)

    Oleci Pereira Frota

    Full Text Available ABSTRACT Objective: to assess the correlation among the ATP-bioluminescence assay, visual inspection and microbiological culture in monitoring the efficiency of cleaning and disinfection (C&D of high-touch clinical surfaces (HTCS in a walk-in emergency care unit. Method: a prospective and comparative study was carried out from March to June 2015, in which five HTCS were sampled before and after C&D by means of the three methods. The HTCS were considered dirty when dust, waste, humidity and stains were detected in visual inspection; when ≥2.5 colony forming units per cm2 were found in culture; when ≥5 relative light units per cm2 were found at the ATP-bioluminescence assay. Results: 720 analyses were performed, 240 per method. The overall rates of clean surfaces per visual inspection, culture and ATP-bioluminescence assay were 8.3%, 20.8% and 44.2% before C&D, and 92.5%, 50% and 84.2% after C&D, respectively (p<0.001. There were only occasional statistically significant relationships between methods. Conclusion: the methods did not present a good correlation, neither quantitative nor qualitatively.

  8. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  9. Developing self-cleaning and air purifying transportation infrastructure components to minimize environmental impact of transportation.

    Science.gov (United States)

    2013-10-01

    Creating transportation infrastructure, which can clean up itself and contaminated air surrounding it, can be a : groundbreaking approach in addressing environmental challenges of our time. This project has explored a possibility of : depositing coat...

  10. Influence of wet chemical cleaning on quantum efficiency of GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Gao Pin; Wang Hong-Gang; Li Biao; Chang Ben-Kang

    2013-01-01

    GaN samples 1–3 are cleaned by a 2:2:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%) to de-ionized water; hydrochloric acid (37%); or a 4:1 solution of sulfuric acid (98%) to hydrogen peroxide (30%). The samples are activated by Cs/O after the same annealing process. X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows: sample 1 has the largest proportion of Ga, N, and O among the three samples, while its C content is the lowest. After activation the quantum efficiency curves show sample 1 has the best photocathode performance. We think the wet chemical cleaning method is a process which will mainly remove C contamination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  12. High-brightness electron beam evolution following laser-based cleaning of a photocathode

    Directory of Open Access Journals (Sweden)

    F. Zhou

    2012-09-01

    Full Text Available Laser-based techniques have been widely used for cleaning metal photocathodes to increase quantum efficiency (QE. However, the impact of laser cleaning on cathode uniformity and thereby on electron beam quality are less understood. We are evaluating whether this technique can be applied to revive photocathodes used for high-brightness electron sources in advanced x-ray free-electron laser (FEL facilities, such as the Linac Coherent Light Source (LCLS at the SLAC National Accelerator Laboratory. The laser-based cleaning was applied to two separate areas of the current LCLS photocathode on July 4 and July 26, 2011, respectively. The QE was increased by 8–10 times upon the laser cleaning. Since the cleaning, routine operation has exhibited a slow evolution of the QE improvement and comparatively rapid improvement of transverse emittance, with a factor of 3 QE enhancement over five months, and a significant emittance improvement over the initial 2–3 weeks following the cleaning. Currently, the QE of the LCLS photocathode is holding constant at about 1.2×10^{-4}, with a normalized injector emittance of about 0.3  μm for a 150-pC bunch charge. With the proper procedures, the laser-cleaning technique appears to be a viable tool to revive the LCLS photocathode. We present observations and analyses for the QE and emittance evolution in time following the laser-based cleaning of the LCLS photocathode, and comparison to the previous studies, the measured thermal emittance versus the QE and comparison to the theoretical model.

  13. Research review: Indoor air quality control techniques

    International Nuclear Information System (INIS)

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs

  14. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    OpenAIRE

    Hyo-Jun Kim; Min-Ho Shin; Joo-Suc Kim; Se-Eun Kim; Young-Joo Kim

    2017-01-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20?wt% co...

  15. Air purification in industrial plants producing automotive rubber components in terms of energy efficiency

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2017-04-01

    Full Text Available In automotive industry plants, which use injection molding machines for rubber processing, tar contaminates air to such an extent that air fails to enter standard heat recovery systems. Accumulated tar clogs ventilation heat recovery exchangers in just a few days. In the plant in which the research was conducted, tar contamination causes blockage of ventilation ducts. The effect of this phenomenon was that every half year channels had to be replaced with new ones, since the economic analysis has shown that cleaning them is not cost-efficient. Air temperature inside such plants is often, even in winter, higher than 30°C. The air, without any means of heat recovery, is discharged outside the buildings. The analyzed plant uses three types of media for production: hot water, cold water at 14°C (produced in a water chiller, and compressed air, generated in a unit with a rated power consumption of 180 kW. The aim of the study is to determine the energy efficiency improvement of this type of manufacturing plant. The main problem to solve is to provide an air purification process so that air can be used in heat recovery devices. The next problem to solve is to recover heat at such a temperature level that it would be possible to produce cold for technological purposes without air purification. Experimental studies have shown that air purification is feasible. By using one microjet head, a total of 75% of tar particles was removed from the air; by using 4 heads, a purification efficiency of 93% was obtained. This method of air purification causes air temperature to decrease from 35°C to 20°C, which significantly reduces the potential for heat recovery. The next step of the research was designing a cassette-plate heat exchanger to exchange heat without air purification. The economic analysis of such a solution revealed that replacing the heat exchanger with a new one even once a year was not cost-efficient. Another issue examined in the context of

  16. Clean Air for London (CLEARFLO) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Worsnop, D. R. [Aerodyne Research, Inc., Billerica, MA (United States); Williams, L. R. [Aerodyne Research, Inc., Billerica, MA (United States); Herndon, S. C. [Aerodyne Research, Inc., Billerica, MA (United States); Dubey, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ng, N. L. [Georgia Inst. of Technology, Atlanta, GA (United States); Thornton, J. [Univ. of Washington, Seattle, WA (United States); Knighton, B. [Montana State Univ., Bozeman, MT (United States); Coulter, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Prévôt, Ash [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2016-03-01

    This field campaign funded the participation of scientists from seven different research groups and operated over thirty instruments during the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign. The campaign took place at a rural site in Detling, UK, 45 kilometers southeast of central London. The primary science questions for the ClearfLo winter IOP (intensive operational periods) were: 1) “what is the urban increment of particulate matter (PM) and other pollutants in the greater London area?” and 2) “what is the contribution of solid fuel use for home heating to wintertime PM?” An additional motivation for the Detling measurements was the question of whether coatings on black carbon particles enhance absorption.

  17. Consistent approach to air-cleaning system duct design

    International Nuclear Information System (INIS)

    Miller, W.H.; Ornberg, S.C.; Rooney, K.L.

    1981-01-01

    Nuclear power plant air-cleaning system effectiveness is dependent on the capability of a duct system to safely convey contaminated gas to a filtration unit and subsequently to a point of discharge. This paper presents a logical and consistent design approach for selecting sheet metal ductwork construction to meet applicable criteria. The differences in design engineers' duct construction specifications are acknowledged. Typical duct construction details and suggestions for their effective use are presented. Improvements in duct design sections of ANSI/ASME N509-80 are highlighted. A detailed leakage analysis of a control room HVAC system is undertaken to illustrate the effects of conceptual design variations on duct construction requirements. Shortcomings of previously published analyses and interpretations of a current standard are included

  18. Seeing Through Smoke: Sorting through the Science and Politics in the Making of the 1956 British Clean Air Act (Invited)

    Science.gov (United States)

    Kenny, D. A.

    2010-12-01

    The 1952 “Killer Smog” left over 4000 citizens of Greater London dead in a single week. It was a highly visible environmental disaster, which pinned the British government with responsibility over factory and domestic coal smoke pollution. Within four years of the Smog, the British parliament passed the 1956 Clean Air Act, which was designed primarily to prevent the release of dark smoke from the chimneys of private dwellings and factories. This act is considered a significant turning point in the history of environmental regulation. Through the analysis of confidential documents from government ministries and Members of Parliament, my research has focused on how decisions were made following this man-made environmental catastrophe. The primary focus of this presentation will be to explore why the British government appeared lethargic in the face of its long-standing coal pollution problem and why it finally passed the first clean air act in the world. In this case, establishing responsibility and organizing research were the major time constraints on policy action. In the months following the 1952 Smog, government departments passed off responsibility and quarreled over jurisdiction in the smog matter. Ministries held responsible for air pollution jointly established the Committee on Air Pollution to find a solution to urban smog. In the years following, the Committee on Air Pollution compiled research on the health effects and economic impact of air pollution, deriving its information from a variety of sources. In its 1954 final report, the committee named smoke and sulfur dioxide the most likely culprits of the 1952 deaths, and it recommended the elimination of smoke-producing coal from the British market, a major change to how the British fueled their homes and factories. The resulting 1956 Clean Air Act was the product of numerous compromises over the economic, political, and social issues present in Great Britain at the time. The British government

  19. Bubble size distribution analysis and control in high frequency ultrasonic cleaning processes

    International Nuclear Information System (INIS)

    Hauptmann, M; Struyf, H; Mertens, P; Heyns, M; Gendt, S De; Brems, S; Glorieux, C

    2012-01-01

    In the semiconductor industry, the ongoing down-scaling of nanoelectronic elements has lead to an increasing complexity of their fabrication. Hence, the individual fabrication processes become increasingly difficult to handle. To minimize cross-contamination, intermediate surface cleaning and preparation steps are inevitable parts of the semiconductor process chain. Here, one major challenge is the removal of residual nano-particulate contamination resulting from abrasive processes such as polishing and etching. In the past, physical cleaning techniques such as megasonic cleaning have been proposed as suitable solutions. However, the soaring fragility of the smallest structures is constraining the forces of the involved physical removal mechanisms. In the case of 'megasonic' cleaningcleaning with ultrasound in the MHz-domain – the main cleaning action arises from strongly oscillating microbubbles which emerge from the periodically changing tensile strain in the cleaning liquid during sonication. These bubbles grow, oscillate and collapse due to a complex interplay of rectified diffusion, bubble coalescence, non-linear pulsation and the onset of shape instabilities. Hence, the resulting bubble size distribution does not remain static but alternates continuously. Only microbubbles in this distribution that show a high oscillatory response are responsible for the cleaning action. Therefore, the cleaning process efficiency can be improved by keeping the majority of bubbles around their resonance size. In this paper, we propose a method to control and characterize the bubble size distribution by means of 'pulsed' sonication and measurements of acoustic cavitation spectra, respectively. We show that the so-obtained bubble size distributions can be related to theoretical predictions of the oscillatory responses of and the onset of shape instabilities for the respective bubbles. We also propose a mechanism to explain the enhancement of both acoustic and cleaning

  20. Transparent Nanofibrous Mesh Self-Assembled from Molecular LEGOs for High Efficiency Air Filtration with New Functionalities.

    Science.gov (United States)

    Singh, Varun Kumar; Ravi, Sai Kishore; Sun, Wanxin; Tan, Swee Ching

    2017-02-01

    Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Partial pit exhaust improves indoor air quality and effectiveness of air cleaning in livestock housing

    DEFF Research Database (Denmark)

    Zhang, Guoqiang; Bjerg, B.; Zong, C.

    2017-01-01

    Ammonia and odor emissions from livestock production systems cause negative impact on atmospheric environment and local society. It is, therefore, important to develop cost-effective methods to reduce these emissions. Air cleaning technologies, including chemical and biological filters, have been...... and experimental investigations, to identify important factors that may affect the system performances for removal of ammonia and other pollutants from the animal housing and to address the extension work that may be needed to apply the method in actual production scales. It is shown that PPAE is an effective...

  2. Off-gas and air cleaning systems for accident conditions in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    This report surveys the design principles and strategies for mitigating the consequences of abnormal events in nuclear power plants by the use of air cleaning systems. Equipment intended for use in design basis accident and severe accident conditions is reviewed, with reference to designs used in IAEA Member States. 93 refs, 48 figs, 23 tabs

  3. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  4. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  5. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  6. Atmospheric plasma generation for LCD panel cleaning

    Science.gov (United States)

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  7. Design and construction of the clean room for proton beam accelerator assembly

    International Nuclear Information System (INIS)

    Park, J. S.; Song, I. T.

    2000-09-01

    The objective of this report is to design, construction and evaluation of clean room for proton beam accelerator assembly. The design conditions o Class : 1,000(1,000 ea ft 3 ), o Flow Rate : 200 m 3 /h m 2 , o Temperature : 22 deg C±2, o Humidity : 55%±5. The main design results are summarized as follows: o Air-handling unit : Cooling Capacity : 13,500 kcal/h, Heating Capacity : 10,300 kcal/h, Humidity Capacity : 4 kg/h, Flow Rate : 150 CMM o Air Shower : Flow Rate : 35 CMM, Size : 1500 x 1000 x 2200, Material : In-steel, Out-SUS304, Filter : PRE + HEPA, AIR Velocity : 25 m/s o Relief Damper : Size : Φ250, Casing : SS41, Blade : AL, Shaft : SUS304, Weight Ring : SS41, Grill : AL o HEPA Filter Box : Filter Box Size : 670 x 670 x 630, Filter Size : 610 x 610 x 150, Frame: Poly Wood, Media : Glass Fiber, Filter Efficiency : 0.3μm, 99.97%, Separator : AL, Flow Rate : 17 CMM, Damper Size : Φ300 Following this report will be used important data for the design, construction, operation and maintenance of the clean room, for high precision apparatus assembly laboratory

  8. 77 FR 20625 - Air Pollution Control: Proposed Action on Clean Air Act Grants to the Idaho Department of...

    Science.gov (United States)

    2012-04-05

    ...The U.S. EPA has made a proposed determination that reduction in expenditures of non-Federal funds for the Idaho Department of Environmental Quality (IDEQ) in support of its continuing air program under Clean Air Act (CAA) Section 105 for the period of calendar year 2010 was not selective relative to the expenditures of all other executive branch agencies in the State for the same period. This determination, when final, will reset IDEQ's required recipient maintenance of effort level for 2010 and 2011, retain its federal award for the 2010 and 2011 grant years, and allow IDEQ to remain eligible for a Sec. 105 grant for 2012 and beyond.

  9. Controlling the clean room atmosphere

    International Nuclear Information System (INIS)

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  10. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  11. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  12. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  13. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    Science.gov (United States)

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Development of a software and hardware system for monitoring the air cleaning process using a cyclone-separator

    Science.gov (United States)

    Nicolaeva, B. K.; Borisov, A. P.; Zlochevskiy, V. L.

    2017-08-01

    The article is devoted to the development of a hardware-software complex for monitoring and controlling the process of air purification by means of a cyclone-separator. The hardware of this complex is the Arduino platform, to which are connected pressure sensors, air velocities, dustmeters, which allow monitoring of the main parameters of the cyclone-separator. Also, a frequency converter was developed to regulate the rotation speed of an asynchronous motor necessary to correct the flow rate, the control signals of which come with Arduino. The program part of the complex is written in the form of a web application in the programming language JavaScript and inserts into CSS and HTML for the user interface. This program allows you to receive data from sensors, build dependencies in real time and control the speed of rotation of an asynchronous electric drive. The conducted experiment shows that the cleaning efficiency is 95-99.9%, while the airflow at the cyclone inlet is 16-18 m/s, and at the exit 50-70 m/s.

  15. 75 FR 62421 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2010-10-08

    ... States of America v. James Valley Ethanol, LLC, Northern Lights Ethanol, LLC, and Poet Plant Management... Ethanol, LLC (``James Valley''), Northern Lights Ethanol, LLC (``Northern Lights''), and POET Plant Management (``POET'') pursuant to Sections 111 and 502(a) of the Clean Air Act (the ``Act''), 42 U.S.C. 7411...

  16. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  17. L’Aquila Smart Clean Air City: The Italian Pilot Project for Healthy Urban Air

    Directory of Open Access Journals (Sweden)

    Alessandro Avveduto

    2017-11-01

    Full Text Available Exposure to atmospheric pollution is a major concern for urban populations. Currently, no effective strategy has been adopted to tackle the problem. The paper presents the Smart Clean Air City project, a pilot experiment concerning the improvement in urban air quality. Small wet scrubber systems will be operating in a network configuration in suitable urban areas of L’Aquila city (Italy. The purpose of this work is to describe the project and show the preliminary results obtained in the characterization of two urban sites before the remediation test; the main operating principles of the wet scrubber system will be discussed, as well as the design of the mobile treatment plant for the processing of wastewater resulting from scrubber operation. Measurements of particle size distributions in the range of 0.30–25 µm took place in the two sites of interest, an urban background and a traffic area in the city of L’Aquila. The mean number concentration detected was 2.4 × 107 and 4.5 × 107 particles/m3, respectively. Finally, theoretical assessments, performed by Computational Fluid Dynamics (CFD codes, will show the effects of the wet scrubber operation on air pollutants under different environmental conditions and in several urban usage patterns.

  18. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    Energy Technology Data Exchange (ETDEWEB)

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  19. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-09

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  20. Phase I aging assessment of nuclear air-treatment system high efficiency particulate air and adsorbers

    International Nuclear Information System (INIS)

    Winegardner, W.K.

    1996-01-01

    A phase I aging assessment of high efficiency particulate air filters and activated carbon gas adsorption units was performed by the Pacific Northwest Laboratory as part of the US Nuclear Regulatory Commission's Nuclear Plant Aging Research Program. Information was compiled concerning design features, failure experience, aging mechanisms, effects, and stressors, and monitoring methods. Over 1100 failures, or 12% of the filter installations, were reported as part of a US Department of energy survey. Investigators from other laboratories have suggested that aging could have contributed to over 80% of these failures. Several instances of impaired performance as the result of the premature aging of carbon were reported. Filter aging mechanisms range from those associated with particle loading to reactions that alter the properties of gaskets. Mechanisms that can lead to impaired adsorber performance include the loss of potentially available active sites as a result of the adsorption of moisture or pollutants. Stressors include heat, moisture, radiation, and airborne particles and contaminants. (orig.)

  1. Efficiency of deodorant materials for ammonia reduction in indoor air

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor

    2014-01-01

    A comparative study about the removability of ammonia gas in the air by activated carbon fiber (ACF) felt chemically treated with acid and a cotton fabric processed with iron phthalocyanine with copper (Cu) was performed in small-scale experiments. The test rig consisted of a heated plate and its...... proved activated carbon fiber felt with acid to be highly efficient in removing ammonia gas. Air temperature did not have profound effect on ACF performance. However, efficiency of the carbon fiber felt decreased when relative humidity was raised from 20 to 80%....

  2. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  3. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  4. Air Quality Case Studies Report

    Science.gov (United States)

    1995-08-01

    The Federal Highway Administration (FHWA) recognizes that many metropolitan areas are struggling with how to respond adequately to the 1990 Clean Air Act Amendments (CAAA) and the 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), particu...

  5. Clean conditions for the determination of ultra-low levels of mercury in ice and snow samples

    International Nuclear Information System (INIS)

    Ferrari, C.P.; Moreau, A.L.; Boutron, C.F.; Univ. Joseph Fourier de Grenoble

    2000-01-01

    Laboratory facilities and methods are presented for the determination of ultra-low levels of mercury (Hg) in ice and snow samples originating from polar ice caps or temperate regions. Special emphasis will be given to the presentation of the clean laboratory and the cleaning procedures. The laboratory is pressurized with air filtered through high efficiency particle filters. This first filtration is not enough to get rid of contamination by Hg in air. Experiments are conducted in a clean bench, especially built for Hg analysis, equipped with both particle filter and activated charcoal filter. It allows to obtain very low levels of atmospheric Hg contamination. Ultrapure water is produced for cleaning all the plastic containers that will be used for ice and snow samples and also for the dilution of the standards. Hg content in laboratory water is about 0.08 ± 0.02 pg/g. A Teflon system has been developed for the determination of Hg in ice and snow samples based on Hg(II) reduction to Hg(0) with a SnCl 2 /HNO 3 solution followed by the measurement of gaseous Hg(0) with a Hg analyzer GARDIS 1A+ based on the Cold Vapor Atomic Absorption Spectroscopy method. Blank determination is discussed. (orig.)

  6. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  7. An analysis of candidates for addition to the Clean Air Act list of hazardous air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Sonya Lunder; Tracey J. Woodruff; Daniel A. Axelrad [University of California, Berkeley, CA (United States). School of Public Health

    2004-02-01

    There are 188 air toxics listed as hazardous air pollutants (HAPs) in the Clean Air Act (CAA), based on their potential to adversely impact public health. This paper presents several analyses performed to screen potential candidates for addition to the HAPs list. We analyzed 1086 HAPs and potential HAPs, including chemicals regulated by the state of California or with emissions reported to the Toxics Release Inventory (TRI). HAPs and potential HAPs were ranked by their emissions to air, and by toxicity-weighted (tox-wtd) emissions for cancer and noncancer, using emissions information from the TRI and toxicity information from state and federal agencies. Separate consideration was given for persistent, bioaccumulative toxins (PBTs), reproductive or developmental toxins, and chemicals under evaluation for regulation as toxic air contaminants in California. Forty-four pollutants were identified as candidate HAPs based on three ranking analyses and whether they were a PBT or a reproductive or developmental toxin. Of these, nine qualified in two or three different rankings (ammonia (NH{sub 3}), copper (Cu), Cu compounds, nitric acid (HNO{sub 3}), N-methyl-2-pyrrolidone, sulfuric acid (H{sub 2}SO{sub 4}), vanadium (V) compounds, zinc (Zn), and Zn compounds). This analysis suggests further evaluation of several pollutants for possible addition to the CAA list of HAPs. 28 refs., 2 figs., 11 tabs.

  8. Comparative cost-efficiency of the EVOTECH endoscope cleaner and reprocessor versus manual cleaning plus automated endoscope reprocessing in a real-world Canadian hospital endoscopy setting

    Directory of Open Access Journals (Sweden)

    Shum Cynthia

    2011-10-01

    Full Text Available Abstract Background Reprocessing of endoscopes generally requires labour-intensive manual cleaning followed by high-level disinfection in an automated endoscope reprocessor (AER. EVOTECH Endoscope Cleaner and Reprocessor (ECR is approved for fully automated cleaning and disinfection whereas AERs require manual cleaning prior to the high-level disinfection procedure. The purpose of this economic evaluation was to determine the cost-efficiency of the ECR versus AER methods of endoscopy reprocessing in an actual practice setting. Methods A time and motion study was conducted at a Canadian hospital to collect data on the personnel resources and consumable supplies costs associated with the use of EVOTECH ECR versus manual cleaning followed by AER with Medivators DSD-201. Reprocessing of all endoscopes was observed and timed for both reprocessor types over three days. Laboratory staff members were interviewed regarding the consumption and cost of all disposable supplies and equipment. Exact Wilcoxon rank sum test was used for assessing differences in total cycle reprocessing time. Results Endoscope reprocessing was significantly shorter with the ECR than with manual cleaning followed by AER. The differences in median time were 12.46 minutes per colonoscope (p Conclusions The EVOTECH ECR was more efficient and less costly to use for the reprocessing of endoscopes than manual cleaning followed by AER disinfection. Although the cost of consumable supplies required to reprocess endoscopes with EVOTECH ECR was slightly higher, the value of the labour time saved with EVOTECH ECR more than offset the additional consumables cost. The increased efficiency with EVOTECH ECR could lead to even further cost-savings by shifting endoscopy laboratory personnel responsibilities but further study is required.

  9. 78 FR 51184 - Air Pollution Control: Proposed Actions on Clean Air Act Section 105 Grant to the Lane Regional...

    Science.gov (United States)

    2013-08-20

    ...The EPA has made a proposed determination that a reduction in recurring expenditures of non-Federal funds for the Lane Regional Air Protection Agency (LRAPA) in Eugene, Oregon is a result of agency wide non-selective reductions in expenditures. This determination, when final, will permit the LRAPA to continue to receive grant funding under Section 105 of the Clean Air Act for the state fiscal year (SFY) 2014. This determination will also reset the LRAPA required maintenance of effort level for SFY 2012 and 2013 to reflect the non-selective reductions made to address reductions in revenue due to adverse economic conditions in Lane County, Oregon.

  10. Forward osmosis membrane fouling and cleaning for wastewater reuse

    Directory of Open Access Journals (Sweden)

    Youngbeom Yu

    2017-06-01

    Full Text Available Membrane fouling properties and different physical cleaning methods for forward osmosis (FO and reverse osmosis (RO laboratory-scale filtration systems were investigated. The membrane fouling, with respect to flux reduction, was lower in FO than in RO when testing an activated sludge effluent. Cross-flow velocity, air-scouring, osmotic backwashing and effect of a spacer were compared to determine the most effective cleaning method for FO. After a long period of fouling with activated sludge, the flux was fully recovered in a short period of osmotic backwashing compared with cleaning by changing cross-flow velocity and air-scouring. In this study, the osmotic backwashing was found to be the most efficient way to clean the FO membrane. The amount of RNA recovered from FO membranes was about twice that for RO membranes; biofouling could be more significant in FO than in RO. However, the membrane fouling in FO was lower than that in RO. The spacer increased the flux in FO with activated sludge liquor suspended solids of 2,500 mg/L, and there were effects of spacer on performance of FO–MBR membrane fouling. However, further studies are required to determine how the spacer geometry influences on the performance of the FO membrane.

  11. Safety by design: effects of operating room floor marking on the position of surgical devices to promote clean air flow compliance and minimise infection risks

    NARCIS (Netherlands)

    de Korne, Dirk F.; van Wijngaarden, Jeroen D. H.; van Rooij, Jeroen; Wauben, Linda S. G. L.; Hiddema, U. Frans; Klazinga, Niek S.

    2012-01-01

    To evaluate the use of floor marking on the positioning of surgical devices within the clean air flow in an operating room (OR) to minimise infection risk. Laminar flow clean air systems are important in preventing infection in ORs but, for optimal results, surgical devices must be correctly

  12. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  13. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  14. Self-cleaning efficiency of artificial superhydrophobic surfaces.

    Science.gov (United States)

    Bhushan, Bharat; Jung, Yong Chae; Koch, Kerstin

    2009-03-03

    The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.

  15. Demonstrating practical application of soil and groundwater clean-up and recovery technologies at natural gas processing facilities: Bioventing, air sparging and wetlands remediation

    International Nuclear Information System (INIS)

    Moore, B.

    1996-01-01

    This issue of the project newsletter described the nature of bioventing, air sparging and wetland remediation. It reviewed their effectiveness in remediating hydrocarbon contaminated soil above the groundwater surface. Bioventing was described as an effective, low cost treatment in which air is pumped below ground to stimulate indigenous bacteria. The bacteria then use the oxygen to consume the hydrocarbons, converting them to CO 2 and water. Air sparging involves the injection of air below the groundwater surface. As the air rises, hydrocarbons are stripped from the contaminated soil and water. The advantage of air sparging is that it cleans contaminated soil and water from below the groundwater surface. Hydrocarbon contamination of wetlands was described as fairly common. Conventional remediation methods of excavation, trenching, and bellholes to remove contamination often cause extreme harm to the ecosystem. Recent experimental evidence suggests that wetlands may be capable of attenuating contaminated water through natural processes. Four hydrocarbon contaminated wetlands in Alberta are currently under study. Results to date show that peat's high organic content promotes sorption and biodegradation and that some crude oil spills can been resolved by natural processes. It was suggested that assuming peat is present, a good clean-up approach may be to contain the contaminant source, monitor the lateral and vertical extent of contamination, and wait for natural processes to resolve the problem. 3 figs

  16. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  17. Monitor Clean and Efficient. Background information. Methods and references as applied in the Monitor in April 2009

    International Nuclear Information System (INIS)

    Gerdes, J.; De Ligt, T.

    2010-01-01

    This report contains background information about the Monitor Clean and Efficient that was published in April 2009. The goal and approach of the Monitor are clarified, as well as the methods and data that are used. The structure of this report resembles the structure of the Monitor. Sources and dates of availability are mentioned along with the data, as are the parties collecting and processing the information. The results that were found using this methodology have been published in the Monitor Clean and Efficient. [nl

  18. New, clean handling process introduced to improve cable quality

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C G

    1990-05-01

    The clean room system introduced by Canada Wire and Cable Limited in its Toronto plant for its cable manufacturing operation is described. While clean room technology is common in the food processing industry, optical and aerospace manufacturing processes, this is the first time it has been applied to wire and cable extrusion in North America. The purpose of the clean compound handling system is to prevent particle contamination in the shielding and cable insulation materials, as part of an effort to prevent premature underground electric cable failures. Two rooms are dedicated to handling different types of insulation compound, two are dedicated to receiving semi-conducting shielding material, and the fifth room functions as an air lock for the two insulation rooms. The atmosphere is highly regulated with programmable logic control. The air supply filters capture 99.97% of all particles 0.3 microns or larger. The system also maintains air temperature, relative humidity and static pressure. The life variability of cross-linked polyethylene primary distribution cable is dependant on five factors: material purity, extra clean compound handling, cable design, manufacturing process, and installation and operation practices. The clean room system is expected to result in cable that is more resistant to water treeing failures. 2 figs.

  19. Research of Workflow Efficiency in HighEnthalpy Air Flow Compact Generators

    Directory of Open Access Journals (Sweden)

    V. Yu. Aleksandrov

    2015-01-01

    Full Text Available To test the combustion chambers (CC of high-speed ramjet engine (ramjet it is necessary to create the inlet conditions as realistic as possible, including the stagnation temperature T0, the Mach number M0, and the total airflow pressure p0. To achieve T0 = 1000 ... 2000 K is possible using a high-enthalpy airflow generator (HAG providing the fired air-heating and oxygen balance compensation.Due to strict weight and size restrictions imposed by the test conditions of the ramjet CC and bench equipment, there is a need to reduce HAG size and weight. For small HAG the relevant tasks are to organize effective workflow and ensure combustion stability, which can be solved directly at the developmental testing stage.The characteristic criterion of the workflow efficiency in HAG is the completed physicochemical combustion processes of the working fluid components. This is due to the fact that in the testing process a possible after-burning component of the working fluid in the flow path of the ramjet CC has a significant impact on the studied characteristics of the engine, thereby having a detrimental effect on the quality of the experiment.The examination of the workflow efficiency in HAG showed that the use of hydrogen as a fuel allows us to achieve a high degree of completing the physicochemical processes and reaching the specified conditions at the CC inlet to the ramjet under test. The use of hydrocarbon fuels reduces the completion degree of the workflow process in HAG and is accompanied by the development of pressure pulsations.The data obtained can be used when developing various HAGs, including those intended for testing the CC of ramjets for the prospective aircrafts.

  20. Design and construction of the clean room for proton beam accelerator assembly

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. S.; Song, I. T

    2000-09-01

    The objective of this report is to design, construction and evaluation of clean room for proton beam accelerator assembly. The design conditions o Class : 1,000(1,000 ea ft{sup 3}), o Flow Rate : 200 m{sup 3}/h m{sup 2}, o Temperature : 22 deg C{+-}2, o Humidity : 55%{+-}5. The main design results are summarized as follows: o Air-handling unit : Cooling Capacity : 13,500 kcal/h, Heating Capacity : 10,300 kcal/h, Humidity Capacity : 4 kg/h, Flow Rate : 150 CMM o Air Shower : Flow Rate : 35 CMM, Size : 1500 x 1000 x 2200, Material : In-steel, Out-SUS304, Filter : PRE + HEPA, AIR Velocity : 25 m/s o Relief Damper : Size : {phi}250, Casing : SS41, Blade : AL, Shaft : SUS304, Weight Ring : SS41, Grill : AL o HEPA Filter Box : Filter Box Size : 670 x 670 x 630, Filter Size : 610 x 610 x 150, Frame: Poly Wood, Media : Glass Fiber, Filter Efficiency : 0.3{mu}m, 99.97%, Separator : AL, Flow Rate : 17 CMM, Damper Size : {phi}300 Following this report will be used important data for the design, construction, operation and maintenance of the clean room, for high precision apparatus assembly laboratory.

  1. Air cleaning issues with contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.R. [Nuclear Regulatory Commission, King of Prussia, PA (United States)

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  2. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de, E-mail: tsbaptista@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  3. Efficiancy of hydrogen peroxide for cleaning production areas and equipments in the radiopharmaceutical production

    International Nuclear Information System (INIS)

    Baptista, Tatyana S.; Batista, Vanessa; Gomes, Antonio; Matsuda, Margareth; Fukumori, Neuza; Araujo, Elaine B. de

    2013-01-01

    A great challenge in the radiopharmaceuticals production is to fulfill the Good Manufacturing Practices (GMPs), involving the validation of process and of all supporting activities such as cleaning and sanitization. The increasingly strict requirements for quality assurance system, with several norms and normative resolutions has led to a constant concern with programs and cleaning validation in pharmaceutical production. The main goal of GMP is to reduce risks inherent to pharmaceutical production, that is to reduce product contamination with microorganisms and cross-contamination. The basic requirements to prevent contamination is the development and implementation of efficient cleaning programs. In the case of clean rooms for the production of injectable radiopharmaceuticals, the requirement for cleaning programs is evidently higher due to the characteristics of these areas with hot cells for radioactive materials, where sterile radiopharmaceuticals are manipulated and distributed before administration to patients just after minutes or hours of its preparation. In the Radiopharmacy Department at IPEN it was established a cleaning program for clean rooms and hot cells using a hydrogen peroxide solution (20% proxitane alfa). The objective of this work was to assess effectiveness of this cleaning agent in reducing and/or eliminating microbial load in the clean rooms and equipment to acceptable levels in accordance with the current legislation. The analysis was conducted using results of the environmental monitoring program with and settling contact plates in clean rooms after the cleaning procedures. Furthermore, it was possible to evaluate the action of the sanitizing agent on the microbial population on the surface of equipment and clean rooms. It was also evaluated the best way to accomplish the cleaning program considering the dosimetric factor in each production process, as the main concern of pharmaceutical companies is the microbiological contamination, in

  4. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for...

  6. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved

  7. 78 FR 38074 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2013-06-25

    ... manufacturing plants operating in as many states. The states of Arkansas, Idaho, Kansas, Montana, Nebraska... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Clean Air Act On June... Court for the District of Kansas in the lawsuit entitled United States et al. v. Ash Grove Cement...

  8. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.

    1996-02-01

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them.

  9. Interaction between Titles 2 and 3 of the Clean Air Act as amended, 1990

    International Nuclear Information System (INIS)

    Szpunar, C.B.

    1996-02-01

    This report examines Some issues that would I affect the refining industry if the requirements for hazardous air pollutants set out in Title III of the Clean Air Act Amendments were to impede the market entrance of oxygenated fuels, as me; required by Title II. It describes the mandate for reformulated gasoline; considers gasoline characteristics in light of component shifts in refining; examines the supply of, demand for, and cost of various feedstocks and blendstocks; and identifies the emissions and atmospheric impacts that might result from the production and use of reformulated gasoline. Attention is focused on methanol and MTBE, two potential blendstocks that are also hazardous air pollutants, and on maximum achievable control technology standards, which might be applied to the stationary sources that produce them

  10. XPS response in the corrosion products analysis for copper exposed at clean air environment

    International Nuclear Information System (INIS)

    Mariaca, L.; Morcillo, M.; Feliu Jr, S.; Gonzalez, J.A.

    1998-01-01

    In this work is presented the obtained response for superficial analysis technique by X-ray photoelectron spectroscopy (XPS or ESCA), to determine the corrosion products formed during the copper exposure at environment without pollutants (clean air) at 50, 70 and 90 % of relative humidity at 35 Centigrade. One of the copper corrosion products most knew is Cu 2 O. This oxide is formed instantly to be exposed the copper at air. However in function of the exposure time and the relative humidity at it is exposed, the Cu 2 O oxide is transformed at Cu O and Cu(OH) 2 (Author)

  11. Response of air cleaning system dampers and blowers to simulated tornado transients

    International Nuclear Information System (INIS)

    Gregory, W.; Idar, E.; Smith, P.; Hensel, E.; Smith, E.

    1985-01-01

    The effects of tornado-like pressure transients upon dampers and blowers in nuclear air cleaning systems were studied. For the dampers pressure drop as a function of flow rate was obtained and an empirical relationship developed. Transient response was examined for several types of dampers, as was structural integrity. Both centrifugal and axi-vane blowers were tested and transient characteristic curves were generated in outrunning and backflow situations. The transient characteristic curves do not necessarily match the quasi-steady characteristic curves

  12. Eastern States Harness Clean Energy to Promote Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    2007-10-01

    States on the East Coast are including renewable energy and energy efficiency projects into their air quality plans that they submit to the EPA to address nonattainment for nitrogen oxides and other pollutants.

  13. High-efficiency plasma catalytic removal of dilute benzene from air

    International Nuclear Information System (INIS)

    Fan, Hong-Yu; Shi, Chuan; Li, Xiao-Song; Zhao, De-Zhi; Xu, Yong; Zhu, Ai-Min

    2009-01-01

    Achieving complete oxidation, good humidity tolerance and low energy cost is the key issue that needs to be addressed in plasma catalytic volatile organic compounds removal from air. For this purpose, Ag/HZSM-5 catalyst-packed dielectric barrier discharge using a cycled system composed of a storage stage and a discharge stage was studied. For dilute benzene removal from simulated air, Ag/HZSM-5 catalysts exhibit not only preferential adsorption of benzene in humid air at the storage stage but also almost complete oxidation of adsorbed benzene at the discharge stage. Five 'storage-discharge' cycles were examined, which suggests that Ag/HZSM-5 catalysts are very stable during the cycled 'storage-discharge' (CSD) plasma catalytic process. High oxidation rate of absorbed benzene as well as low energy cost can be achieved at a moderate discharge power. In an example of the CSD plasma catalytic remedy of simulated air containing 4.7 ppm benzene with 50% RH and 600 ml min -1 flow rate, the energy cost was as low as 3.7 x 10 -3 kWh m -3 air. This extremely low energy cost to remove low-concentration pollutants from air undoubtedly makes the environmental applications of the plasma catalytic technique practical.

  14. Numerical and experimental study of pulse-jet cleaning in fabric filters

    DEFF Research Database (Denmark)

    O. Andersen, B.; Nielsen, N. F.; Walther, J. H.

    2016-01-01

    Pulse-jet cleaning and understanding of the complex physics are essential when designing fabric filters used for air pollution control. Today, low-pressure cleaning is of particular interest due to demand for reduced compressed air consumption. Pulse-jet cleaned fabric filters have been studied......-pressure fabric filters (2 bar) is studied using a full three-dimensional (3D) CFD model. Experimental results obtained in a pilot-scale test filter with 28 bags, in length of 10 m and in general full-scale dimensions of the cleaning system are used to verify the reliability of the present CFD model....... The validated CFD model reveals the strong compressible effects, a highly transient behaviour, the formation of compressible vortex rings and the shock cell phenomenon within the overexpanded supersonic jet. The cleaning nozzles and venturi design aid or oppose the pulse-pressure within the bags, and this plays...

  15. Evaluation of seasonal exergy efficiency of air handing unit

    Directory of Open Access Journals (Sweden)

    Kęstutis Genys

    2015-10-01

    Full Text Available The article deals with the air handling unit seasonal exergy efficiency. TRNSYS simulation tool is used to evaluate it. The object of research is air treatment device used to treat an air for the ventilation of laboratory. The mathematical model of air handling unit using TRNSYS simulation tool was developed when the technical parameters of air handling unit and energy exchange in it were analysed. The developed model according to the made observations during the warm and cold periods was tested and validation of elements was performed. The simulation of air handling unit operation after the verification of reliability and permitted tolerances was performed. The control mechanisim which allows simulating the operation of air handling unit during cold and warm periods of the year was made. The mathematical algorithm for calculation of air handling unit exergy efficiency coefficient applying the principles of exergy analysis was developed. The seasonal exergy efficiency of air handling unit equal to 3.94 percent during the simulation was obtained.

  16. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  17. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  18. High temperature gasification and gas cleaning – phase II of the HotVegas project

    OpenAIRE

    Meysel, P.; Halama, S.; Botteghi, F.; Steibel, M.; Nakonz, M.; Rück, R.; Kurowski, P.; Buttler, A.; Spliethoff, H.

    2016-01-01

    The primary objective of the research project HotVeGas is to lay the necessary foundations for the long-term development of future, highly efficient high-temperature gasification processes. This includes integrated hot gas cleaning and optional CO2 capture and storage for next generation IGCC power plants and processes for the development of synthetic fuels. The joint research project is funded by the German Federal Ministry of Economics and Technology and five industry partners. It is coordi...

  19. Extended-life nuclear air cleaning filters via dynamic exclusion prefilters

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.R.; Crouch, H.S.; Bond, J.H. [Micro Composite Materials Corp., Durham, NC (United States)

    1997-08-01

    The primary objective of this investigation was to ascertain if a dynamic, self-cleaning particulate exclusion precleaner, designed for relatively large dust removal (2 to 100+ {mu}m diameter particles) from helicopter turbine inlets, could be extended to submicron filtration. The improved device could be used as a prefilter for HEPA filtration systems, significantly increasing service life. In nuclear air cleaning, its use would reduce the amount of nuclear particulate matter that would otherwise be entrapped in the HEPA filter cartridge/panel, causing fouling and increased back pressure, as well as requiring subsequent disposal of the contaminated media at considerable expense. A unique (patent-pending) mechanical separation device has recently been developed to extract particulate matter from fluid process streams based on a proprietary concept called Boundary Layer Momentum Transfer (BLMT). The device creates multiple boundary layers that actively exclude particles from entering the perimeter of the device, while allowing air to traverse the boundaries relatively unimpeded. A modified two-dimensional (2-D) computerized flow simulation model was used to assist in the prototype design. Empirical results are presented from particle breakthrough and AP experiments obtained from a reduced-scale prototype filter. Particles larger than 0.23 {mu}m were actively excluded by the prototype, but at a higher pressure drop than anticipated. Experimental data collected indicates that the filter housing and the inlet flow configuration may contribute significantly to improvements in device particle separation capabilities. Furthermore, preliminary experiments have shown that other downstream pressure drop considerations (besides those just across the spinning filtration disks) must be included to accurately portray the AP across the device. Further detailed quantitative investigations on a larger scale (1,000 CFM) prototype are warranted. 3 refs., 5 figs., 2 tabs.

  20. Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation

    International Nuclear Information System (INIS)

    Kotowicz, Janusz; Michalski, Sebastian

    2014-01-01

    The supercritical power plant analyzed in this paper consists of the following elements: a steam turbine, a hard-coal-fired oxy-type pulverized fuel boiler, an air separation unit with a four-end-type high-temperature membrane and a carbon dioxide capture unit. The electrical power of the steam turbine is 600 MW, the live steam thermodynamic parameters are 650°C/30 MPa, and the reheated steam parameters are 670°C/6 MPa. First of all the net efficiency was calculated as functions of the oxygen recovery rate. The net efficiency was lower than the reference efficiency by 9–10.5 pp, and a series of actions were thus proposed to reduce the loss of net efficiency. A change in the boiler structure produced an increase in the boiler efficiency of 2.5–2.74 pp. The range of the optimal air compressor pressure ratio (19–23) due to the net efficiency was also determined. The integration of all installations with the steam turbine produced an increase in the gross electric power by up to 50.5 MW. This operation enabled the replacement of the steam regenerative heat exchangers with gas–water heat exchangers. As a result of these alterations, the net efficiency of the analyzed power plant was improved to 5.5 pp less than the reference efficiency. - Highlights: • Analysis of a power plant with a “four-end” HTM for oxygen production was made. • Reorganization of the flue gas recirculation increased the boiler efficiency. • Optimization of the air compressor pressure ratio decreased the auxiliary power. • Replacement of the regenerative heat exchangers increased the gross electric power. • Comparison of the net efficiency of the analyzed and reference plants were made

  1. Air and gas cleaning methods for reactor containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L.

    1963-11-15

    In this paper, a survey is made of the existing and some proposed new methods for the control and purification of air and gases which might be released from a reactor contained or confined for protection of the health and safety of the public from potential accidents. The difference between confinement and containment concepts must be considered. The problems involved and the need for decontamination, site selection, exclusion area, population density, distance, etc., have been discussed elsewhere. We propose to discuss here the safety measures necessary to control the release of radioactive materials to the environment. This requires special systems which must function effectively to minimize loss of fission products such as halogens and particulates. These can penetrate the confinement filters or the containment vessel to a limited extent even after cleaning.

  2. Clean and efficient energy conversion processes (Cecon-project). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  3. Postulated accident conditions for air cleaning systems and radiological dose assessments for containment options

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Postma, A.K.

    1975-01-01

    Ambient conditions and performance requirements for emergency air cleaning systems applicable to commercial LMFBR plants were studied. The focus of this study centered on aerosol removal under hypothetical core disruptive accident conditions. Effort completed includes a review of air cleaning systems related to LMFBR plants, selection of three reference containment system designs, postulation of the EACS design basis accident (EACS-DBA), analysis of thermal conditions resulting from the DBA, analysis of aerosol transport behavior following the DBA, and an estimate of bone dose at the site boundary for each of the reference plant designs. Reference plant concepts were a single containment system (e.g., FFTF), a double containment system (e.g., CRBRP with closed head compartment), and a containment-confinement design in which an inerted, sealed primary volume was located within a ventilated building whose exhaust was filtered. The reference design basis accident selected here involved release to the inner containment system of 1 percent of non-volatile solids and plutonium, 25 percent of core halogens, 25 percent of core volatile solids, 100 percent of core noble gases, 68 lbs of sodium vapor and 5000 lbs of liquid sodium. 13 references. (U.S.)

  4. 77 FR 44544 - Approval and Promulgation of Air Quality Implementation Plans; Utah; Determination of Clean Data...

    Science.gov (United States)

    2012-07-30

    ... further progress plans, reasonably available control measures, and contingency measures, no longer apply... Promulgation of Air Quality Implementation Plans; Utah; Determination of Clean Data for the 1987 PM 10 Standard... VI. Statutory and Executive Order Reviews Definitions For the purpose of this document, we are giving...

  5. 75 FR 34647 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Air...

    Science.gov (United States)

    2010-06-18

    ... Solvent NESHAP for cleaning or drying parts, except any cold cleaning machine that uses a solvent which... cleaning machines in which parts such as film, coils, wire, and metal strips are cleaned at speeds... requires each cleaning machine to have [[Page 34650

  6. What is Clean Cities? October 2011 (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    Brochure describes the Clean Cities program and includes the contact information for its 85 coalitions. Sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP), Clean Cities is a government-industry partnership that reduces petroleum consumption in the transportation sector. Clean Cities contributes to the energy, environmental, and economic security of the United States by supporting local decisions to reduce our dependence on imported petroleum. Established in 1993 in response to the Energy Policy Act (EPAct) of 1992, the partnership provides tools and resources for voluntary, community-centered programs to reduce consumption of petroleum-based fuels. In nearly 100 coalitions, government agencies and private companies voluntarily come together under the umbrella of Clean Cities. The partnership helps all parties identify mutual interests and meet the objectives of reducing the use of petroleum, developing regional economic opportunities, and improving air quality. Clean Cities deploys technologies and practices developed by VTP. These include idle-reduction equipment, electric-drive vehicles, fuel economy measures, and renewable and alternative fuels, such as natural gas, liquefied petroleum gas (propane), electricity, hydrogen, biofuels, and biogas. Idle-reduction equipment is targeted primarily to buses and heavy-duty trucks, which use more than 2 billion gallons of fuel every year in the United States while idling. Clean Cities fuel economy measures include public education on vehicle choice and fuel-efficient driving practices.

  7. Direct in-vessel applications experiments at Harvard Air Cleaning Laboratory. Annual report, October 1, 1975--January 31, 1977

    International Nuclear Information System (INIS)

    Mallove, E.; Hinds, W.; First, M.W.

    1977-02-01

    Prototypes of direct in-vessel emergency air cleaning systems were evaluated for possible application in an LMFBR containment vessel after a hypothetical core disruptive accident. These were turbulence enhanced sedimentation, powder dispersal scavenging, acoustic agglomeration enhanced sedimentation, and combinations of turbulence with powder dispersal. The effect of turbulent agglomeration in enhancing the sedimentation of a sodum pool fire aerosol was experimentally demonstrated in a 90 m 3 test chamber, 4 meters high. Two hour dose reduction factors (DRF(2 hr)) from 7 to 56 were achieved in the 4 meter high chamber using fan-induced turbulent agglomeration on aerosols that varied in initial mass concentration from 1 to 12 gm/m 3 . In the same chamber, a prototype limestone powder dispersal scavenging system was tested and achieved DRF(2 hr)'s up to 10. The beneficial effect of combining turbulence with powder dispersal in a single system was demonstrated in a test which yielded a DRF(2 hr) of 20. This was greater than for either mechanism separately applied when initial aerosol mass concentration was 2 gm/m3. Acoustic agglomeration of sodium pool fire aerosols was tested in a smaller 0.65 m 3 , 75 cm high settling chamber, using an electronic siren which produced a sound pressure level of 145 dB in the reverberant chamber. The DRF(2 hr) in the small chamber with the siren operating was found to be from 17 to 31, 2 to 3 times greater than the DRF(2 hr) for unperturbed settling. Pulse-jet engines were found to be unsuitable for generating high sound levels for this application. Scaling each of the systems tested to a 30 m high containment vessel indicated no reason why one or more of the systems investigated could not be applied successfully as an emergency air cleaning system

  8. Nuclear air cleaning handbook. Design, construction, and testing of high-efficiency air cleaning systems for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Burchsted, C.A.; Kahn, J.E.; Fuller, A.B.

    1976-01-01

    The handbook is a revision of ORNL/NSIC-65. The purposes of the handbook are to summarize available information in a manner that is useful to the designer, to point out shortcomings in design and construction practice, and to provide guides and recommendations for the design of future systems. (TFD)

  9. Nuclear air cleaning handbook. Design, construction, and testing of high-efficiency air cleaning systems for nuclear application

    International Nuclear Information System (INIS)

    Burchsted, C.A.; Kahn, J.E.; Fuller, A.B.

    1976-01-01

    The handbook is a revision of ORNL/NSIC-65. The purposes of the handbook are to summarize available information in a manner that is useful to the designer, to point out shortcomings in design and construction practice, and to provide guides and recommendations for the design of future systems

  10. California Clean Air Act: A compliance strategy for the City of San Diego`s non-emergency fleet

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Historically, parts of California have had the worst air quality in the nation. The California Energy Commission began experimenting with alternate fuels in the 1970`s in an effort to reduce harmful automobile emissions and hence, improve air quality. It is recognized that the costs to California which result from our air quality problems are immense. Ten to twenty billion dollars each year is the estimated damage in terms of health impacts, materials damages, lost agricultural crop output and forest damages. As the California population increases and health care costs escalate, the total monetary damages from air pollution will increase. The California Energy Commission goal to improve air quality became a mandate in 1988 with the passage of the California Clean Air Act (CCAA). The CCAA requires a revised air quality strategy for the San Diego district since we do not meet State air quality standards for smog, carbon monoxide and nitrogen dioxide. Smog remains San Diego`s major air quality problem, even though the annual number of days each year over the Federal standard has been reduced by 55 percent in the past ten years. Ten years ago about two-thirds of San Diego`s smog was transported from Los Angeles. Today more than 60 per cent of the days San Diego exceeds the State standard are from locally generated smog. It is estimated that 57% of the reactive hydrocarbon emissions (which react with nitrogen dioxide in the presence of sunlight to form smog) is from cars, trucks and buses. The Air Pollution Control District (part of the County of San Diego) is the office that the Air Resources Board has put in charge of creating regulations and designing strategy to reduce polluting emissions. The purpose of this project is to determine the full cost of acquiring and operating a municipal fleet which meets the mandates of the California Clean Air Act. With that information, a plan to meet the Clear Air Act (CCAA) requirements can be formulated by local government.

  11. Manual cleaning of hospital mattresses: an observational study comparing high- and low-resource settings.

    Science.gov (United States)

    Hopman, J; Hakizimana, B; Meintjes, W A J; Nillessen, M; de Both, E; Voss, A; Mehtar, S

    2016-01-01

    Hospital-associated infections (HAIs) are more frequently encountered in low- than in high-resource settings. There is a need to identify and implement feasible and sustainable approaches to strengthen HAI prevention in low-resource settings. To evaluate the biological contamination of routinely cleaned mattresses in both high- and low-resource settings. In this two-stage observational study, routine manual bed cleaning was evaluated at two university hospitals using adenosine triphosphate (ATP). Standardized training of cleaning personnel was achieved in both high- and low-resource settings. Qualitative analysis of the cleaning process was performed to identify predictors of cleaning outcome in low-resource settings. Mattresses in low-resource settings were highly contaminated prior to cleaning. Cleaning significantly reduced biological contamination of mattresses in low-resource settings (P cleaning in both the high- and low-resource settings seemed comparable. Cleaning with appropriate type of cleaning materials reduced the contamination of mattresses adequately. Predictors for mattresses that remained contaminated in a low-resource setting included: type of product used, type of ward, training, and the level of contamination prior to cleaning. In low-resource settings mattresses were highly contaminated as noted by ATP levels. Routine manual cleaning by trained staff can be as effective in a low-resource setting as in a high-resource setting. We recommend a multi-modal cleaning strategy that consists of training of domestic services staff, availability of adequate time to clean beds between patients, and application of the correct type of cleaning products. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation.

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p health.

  13. Indoor air quality handbook: for designers, builders, and users of energy efficient residences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this handbook is to assist designers, builders, and users of energy efficient residences to achieve the goals of energy efficiency and maintenance of high indoor air quality simultaneously. The handbook helps in identifying and controlling potential problems of indoor air quality. It identifies sources and discusses effective ways to decrease concentrations of air contaminants. It focuses on indoor air quality in both single and multifamily energy-efficient residences. Information about commercial structures such as hospitals and office buildings is presented when it also applies to residences. Basic concepts of contaminants and their concentrations, sources and removal mechanisms, contaminant distribution, heat transfer, and air exchange are discussed. The effects of the building system on indoor air quality are examined. The effects of the external environment, building envelope, environmental control systems, interior design, furnishings, and inhabitants on the emission, dispersion, and removal of indoor air contaminants as well as direct and indirect effects of energy-efficient features are discussed. The health effects of specific air contaminants and the health standards developed for them are examined. Available methods for predicting and measuring contaminants and for evaluating human responses are discussed. Methods and equipment available for the control of indoor air pollution once the contaminants have been identified are also evaluated. The potential legal aspects, including regulatory intervention and civil lawsuits, of failure to evaluate and control indoor air pollution are discussed. A list of references, a glossary, and an index are also included

  14. Energy Efficient Microlith-Based Catalytic Reactor and Recuperator for Air Quality Control Applications

    Science.gov (United States)

    Vilekar, Saurabh A.; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Precision Combustion, Inc. (PCI) and NASA’s Marshall Space Flight Center (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI’s patented Microlith technology to meet the requirements of future extended human spaceflight explorations. Previous efforts focused on integrating PCI’s HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight. Significant improvement was demonstrated over traditional approaches of integrating the HTCO with an external recuperative heat exchanger. While the critical target performance metrics were achieved, the thermal effectiveness of PCI’s recuperator remained a potential area of improvement to further reduce the energy requirements of the integrated system. Using the same material combinations and an improved recuperator design, the redesigned prototype has experimentally demonstrated 20 – 30% reduction (flow dependent) in steady state power consumption compared to the earlier prototype without compromising the destruction efficiency of methane and volatile organic compounds (VOCs). Moreover, design modifications and improvements allow our redesigned prototype to be more easily manufactured compared to traditional brazed plate-fin recuperator designs. The redesigned prototype was delivered to MSFC for validation testing. Here, we report and discuss the performance of the improved prototype HTCO unit with a high efficiency recuperative heat exchanger based on testing at PCI and MSFC. The device is expected to provide a reliable and robust means of disposing of trace levels of methane and VOCs by oxidizing them into carbon dioxide and water in order to maintain clean air in enclosed spaces, such as crewed spacecraft cabins.

  15. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  16. Design and operation of off-gas cleaning systems at high level liquid waste conditioning facilities

    International Nuclear Information System (INIS)

    1988-01-01

    The immobilization of high level liquid wastes from the reprocessing of irradiated nuclear fuels is of great interest and serious efforts are being undertaken to find a satisfactory technical solution. Volatilization of fission product elements during immobilization poses the potential for the release of radioactive substances to the environment and necessitates effective off-gas cleaning systems. This report describes typical off-gas cleaning systems used in the most advanced high level liquid waste immobilization plants and considers most of the equipment and components which can be used for the efficient retention of the aerosols and volatile contaminants. In the case of a nuclear facility consisting of several different facilities, release limits are generally prescribed for the nuclear facility as a whole. Since high level liquid waste conditioning (calcination, vitrification, etc.) facilities are usually located at fuel reprocessing sites (where the majority of the high level liquid wastes originates), the off-gas cleaning system should be designed so that the airborne radioactivity discharge of the whole site, including the emission of the waste conditioning facility, can be kept below the permitted limits. This report deals with the sources and composition of different kinds of high level liquid wastes and describes briefly the main high level liquid waste solidification processes examining the sources and characteristics of the off-gas contaminants to be retained by the off-gas cleaning system. The equipment and components of typical off-gas systems used in the most advanced (large pilot or industrial scale) high level liquid waste solidification plants are described. Safety considerations for the design and safe operation of the off-gas systems are discussed. 60 refs, 31 figs, 17 tabs

  17. Clean air plans and action plans: perspectives from the viewpoint of environmental and public health; Luftreinhalteplaene und Aktionsplaene - eine Bewertung aus umweltmedizinischer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Eikmann, T.; Herr, C. [Inst. fuer Hygiene und Umweltmedizin, Universitaetsklinikum Giessen und Marburg, Justus-Liebig-Univ. Giessen, Giessen (Germany); [Technische Univ. Dreden, Pirna (Germany). Inst. fuer Abfallwirtschaft und Altlasten; Koeckler, H. [Center for Environmental Systems Research (CESR), Univ. Kassel (Germany); [Mentec GmbH, Aue/Sa. (Germany); Nieden, A. zur [Inst. fuer Hygiene und Umweltmedizin, Universitaetsklinikum Giessen und Marburg, Justus-Liebig-Univ. Giessen, Giessen (Germany); FG Stadtklimatologie, Univ. Kassel (Germany); Katzschner, L. [FG Stadtklimatologie, Univ. Kassel (Germany); [INTECUS Dresden GmbH (Germany); Schimmelpfennig, M. [Gesundheitsamt der Stadt Kassel (Germany); Eikmann, S. [GUK - Gesellschaft fuer Umwelttoxikologie und Krankenhaushygiene mbH, Wetzlar (Germany)

    2005-07-01

    The present discussion on the health effects associated with airborne fine particulate matter has lead to an increased public interest in the general framework of compilation and evaluation of clean air plans and actions plans. While the surveys of the ''old'' clean air plans of the 80ies and 90ies of the last century relied on assessment of direct and indirect effects of air pollution on human health (and ecology), theses surveys are not part of the ''new'' clean air plans according to European law. This reduction of surveys and actions directed at threshold compliance only, abandons assessing, i.e., documentation and evaluation the health status and quality of life of populations. Assessment of individual and focus group specific sensibility and vulnerability becomes possible once health related, sociodemographic and environmental data are combined. By this, unequal life chance, i.e., unimpaired health as well as reasonable strategies towards minimizing environmental injustice can be identified. As of yet it is unclear, to what extend quality of life and quality of environment of populations living in air polluted areas are attributable to socioeconomic factors. Likewise, it is not known to which degree the environmental quality of individuals and families is self determined. This has to be considered especially for children, immigrants and women. These issues i.e., environmental justice/injustice should be considered in future projects on the development of clean air plans and especially actions plans derived thereof. Scientists, government officials and physicians working in field of preventive or environmental medicine cannot agree to a limitation of the cautionary principle to the bare compliance with thresholds. (orig.)

  18. Saving energy via high-efficiency fans.

    Science.gov (United States)

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  19. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  20. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  1. Experiments on high efficiency aerosol filtration

    International Nuclear Information System (INIS)

    Mazzini, M.; Cuccuru, A.; Kunz, P.

    1977-01-01

    Research on high efficiency aerosol filtration by the Nuclear Engineering Institute of Pisa University and by CAMEN in collaboration with CNEN is outlined. HEPA filter efficiency was studied as a function of the type and size of the test aerosol, and as a function of flowrate (+-50% of the nominal value), air temperature (up to 70 0 C), relative humidity (up to 100%), and durability in a corrosive atmosphere (up to 140 hours in NaCl mist). In the selected experimental conditions these influences were appreciable but are not sufficient to be significant in industrial HEPA filter applications. Planned future research is outlined: measurement of the efficiency of two HEPA filters in series using a fixed particle size; dependence of the efficiency on air, temperatures up to 300-500 0 C; performance when subject to smoke from burning organic materials (natural rubber, neoprene, miscellaneous plastics). Such studies are relevant to possible accidental fires in a plutonium laboratory

  2. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  3. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  4. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  5. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  6. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  7. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.

  8. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  9. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What...

  10. 77 FR 73459 - California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act...

    Science.gov (United States)

    2012-12-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9759-4] California State Motor Vehicle Pollution Control Standards; Notice of Waiver of Clean Air Act Preemption; California's 2010 Model Year Heavy-Duty Vehicle and... for CARB's own motor vehicle pollution control program based on lack of compelling and extraordinary...

  11. 78 FR 6817 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Science.gov (United States)

    2013-01-31

    ... Wisconsin Public Service Corporation--JP Pulliam Plant. Pursuant to section 505(b)(2) of the Act, a... ENVIRONMENTAL PROTECTION AGENCY [FRL 9774-6] Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for Wisconsin Public Service Corporation--JP Pulliam Plant AGENCY...

  12. Characterization of biogenic volatile organic compounds (BVOCs) in cleaning reagents and air fresheners in Hong Kong

    Science.gov (United States)

    Huang, Yu; Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Gao, Yuan; Cheng, Yan; Chan, C. S.

    2011-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. In this study, a solid phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (SPME-GC/MS) method was applied for the determination of BVOCs compositions in three categories of cleaning products including floor cleaners (FC), kitchen cleaners (KC) and dishwashing detergents (DD), and also air fresheners (AF). The analysis results demonstrated that chemical composition and concentration of individual BVOC varied broadly with household products in the view of their different functions and scents as indicated on the labels. The concentration of total BVOCs for sample FC1 was the highest up to 4146.0 μg g -1, followed by FC2 of 264.6 μg g -1, FC4 of 249.3 μg g -1 and FC3 of 139.2 μg g -1. D-limonene was the most abundant detected BVOCs in KC samples with the chemical composition varying from 19.6 ± 1.0 to 1513.0 ± 37.1 μg g -1. For dishwashing detergents, only D-limonene was detected and quantified. The BVOCs compositions of air freshener samples are much more complicated. It was estimated that the consumption of floor cleaners contributed 51% of the total BVOCs amount indoors in Hong Kong, followed by air fresheners 42%, kitchen cleaners 5% and dishwashing detergents 2%.

  13. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  14. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    Science.gov (United States)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  15. Cleaning of porous filters in fossilized bed reactors; Estudio de limpieza de filtros porosos en reactores de lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo Otero, A; Sancho Rod, J

    1965-07-01

    In this report are established the optimum working conditions of a filter cleaning system by blow back. For this purpose it was determined in the first place the blow back air rate necessary to have a good cleaning. The reasons for which it was not possible until now to control the pressure in a fluidized bed calcination reactor are analyzed and a criteria is established to calculate the optimum floe necessary to clean efficiently a porous by this procedures. (Author)

  16. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    Science.gov (United States)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Bär, Marcus; Sadewasser, Sascha

    2014-12-01

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for "realistic" surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is - apart from a slight change in surface composition - identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  17. Air pollution control systems in WtE units: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  18. Air pollution control systems in WtE units: An overview

    International Nuclear Information System (INIS)

    Vehlow, J.

    2015-01-01

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made

  19. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction

  20. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  1. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter.

    Science.gov (United States)

    Zhang, Shichao; Liu, Hui; Zuo, Fenglei; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA-6 nanonets layer with Steiner-tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple-like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple-like PA-6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa -1 ; using its superlight weight of 0.9 g m -2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Removal of NO2 and O3 generated from corona discharge in indoor air cleaning with MnO2 catalyst

    International Nuclear Information System (INIS)

    Ge, H; Yu, R; Zhu, Y M; Mi, D

    2013-01-01

    The production rules and removal efficiency of harmful byproducts such as NO 2 and O 3 generated from DC corona discharge in indoor air cleaning were investigated. The production behaviours of NO 2 and O 3 and the relationship between the amount of catalyst (MnO 2 ) and the removal rate of harmful byproducts were experimentally studied. Further, indoor application tests were carried out in a closed room with 90 m 3 . The results showed that the concentrations of NO 2 and O 3 produced by corona discharge linearly increased with discharge time. The NO 2 yield is larger than O 3 by almost one order of magnitude under the same discharge power. To satisfy the demand of Standard of Indoor Air Quality (GB/T18883-2002), the power consumption of unit volume should be less than 1 W m −3 and the catalyst MnO 2 consumptions in positive-negative corona discharge were 200 cm 3 W −1 and 100 cm 3 W −1 , respectively.

  3. High-resolution real-time optical studies of radiological air sample filtration processes in an environmental continuous air monitor

    Science.gov (United States)

    Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.

    1999-01-01

    The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.

  4. Impact of clean air legislation on the petroleum industry

    International Nuclear Information System (INIS)

    Driscoll, J.G.

    1991-01-01

    As the 1990s begin, the petroleum refining and marketing industry faces an unprecedented number of environmental issues that, combined, will bring major changes in the fundamentals of the business by the turn of the century. The following background on the history of environmentally driven change in the oil business provides a broad view of current environmental laws and regulations, while addressing timing and general impacts on the downstream segment. It will then focus on the Clean Air Act of 1990, providing information on the range of areas this comprehensive legislative initiative will regulate. Finally, the discussion narrows to the mobile source provisions of the act. It is through this section that the most foundational changes in our business will occur. In this paper the nature of those changes are discussed, and a short list of issues with potential for significant impact on a global basis are covered

  5. Factors influencing indoor air quality in an urban high rise apartment building (retitled as "Air Pollution and air exchange in an urban high rise apartment building")

    Science.gov (United States)

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  6. The impact of the US Clean Air Act - seven years after enactment

    Energy Technology Data Exchange (ETDEWEB)

    Aloe, A.; Ailor, D.

    2000-07-01

    The United States Clean Air Act Amendments of 1990 (CAAA) have added operating expenses, renewed interest in coke battery repair techniques, played a role in new battery technology choices and spurred investigation into non-traditional coke making technologies. United States coke producers have demonstrated compliance with the new standards. The ultimate impact of the CAAA requirements will be known as aging coke batteries in the United States are shut down. At that point the demand for coke coupled with the CAAA requirements will determine if new batteries are built, and if so, what technology will be used. 7 refs., 4 figs., 2 tabs.

  7. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Grieco, E.; Poggio, A. [Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10121 (Italy)

    2009-09-15

    Municipal solid waste incinerators are designed to enhance the electrical efficiency obtained by the plant as much as possible. For this reason strong integration between the flue gas cleaning system and the heat recovery system is required. To provide higher electrical efficiencies acid gas neutralization process has the major importance in flue gas cleaning system. At least four technologies are usually applied for acid gas removal: dry neutralization with Ca(OH){sub 2} or with NaHCO{sub 3}, semi-dry neutralization with milk of lime and wet scrubbing. Nowadays, wet scrubbers are rarely used as a result of the large amount of liquid effluents produced; wet scrubbing technology is often applied as a final treatment after a dry neutralization. Operating conditions of the plant were simulated by using Aspen Plus in order to investigate the influences of four different technologies on the electrical efficiency of the plant. The results of the simulations did not show a great influence of the gas cleaning system on the net electrical efficiency, as the difference between the most advantageous technology (neutralization with NaHCO{sub 3}) and the worst one, is about 1%. (author)

  8. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  9. Megasonic cleaning strategy for sub-10nm photomasks

    Science.gov (United States)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  10. Electrical efficiency losses occurred by the air compressor for PEMFC

    International Nuclear Information System (INIS)

    Haubrock, J.; Heideck, G.; Styczynski, Z.

    2006-01-01

    Fuel Cells are characterised by a high efficiency and comparatively small emissions. Depending on their partial load behaviour and their high efficiency, Fuel Cells are well suited for net connected or isolated autonomous energy generators for thermal and electricity power production. Proton Exchange Membrane (PEM) Fuel Cell systems need several external components to produce electricity and thermal power. However, the high theoretical degree of efficiency of 83% is decreased by these components. To reach higher fuel utilisation it is necessary to reduce the energy consumption of these components. In this study, the influence of the air supply compressor on the fuel utilisation is investigated and an optimization strategy was developed. The results were reviewed by a real test set up using an autonomous PEM Fuel Cell system. (authors)

  11. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  12. Report of the results of the fiscal 1997 survey. R and D of high efficiency clean energy vehicles; 1997 nendo chosa hokokusho. Kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing an automobile which keeps low pollution using petroleum substituting clean energy, decreases the running energy consumption to a half at least, and reduces the CO2 emission to less than a half of the conventional one at the same time, the R and D started in fiscal 1997. As to the study of a high efficiency hybrid power system, conducted were the prediction of fuel consumption performance of the system proposed, evaluation of element technology using hybrid simulator, evaluation experiment on a new hybrid vehicle, and grasp of overseas trends. In relation to the development of hybrid vehicles, the following were studied: methanol fuel cell loading hybrid vehicle, CNG engine loading hybrid vehicle, CNG ceramic engine loading hybrid truck, CNG lean burn engine loading hybrid truck, LNG engine loading hybrid bus, and DME engine loading hybrid bus. Besides, a survey on synthetic fuel and the related survey were carried out. 17 refs., 185 figs., 101 tabs.

  13. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.

  14. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  15. Companded total condensation loxboil air distillation

    International Nuclear Information System (INIS)

    Erickson, D.C.

    1989-01-01

    This patent describes a dual pressure cryogenic distillation process for producing gaseous oxygen from a supply of compressed and cleaned air, comprising: a. cooling a major fraction of the compressed and cleaned air; b. rectifying the major fraction in a high pressure rectifier to liquid nitrogen overhead product and kettle liquid bottom product; c. distilling the kettle liquid in a low pressure column to liquid oxygen bottom product and gaseous nitrogen overhead product; d. working expanding a compensating vapor comprised of at least 77% N/sub 2/ thereby producing refrigeration; and e. further compressing the remaining minor fraction comprising no more than about 30% of the compressed, cleaned warm air in a compressor powered by the expansion

  16. Modern efficient methods of steel vertical oil tanks clean-up

    Directory of Open Access Journals (Sweden)

    Nekrasov Vladimir

    2016-01-01

    Full Text Available The legislative base of the Russian Federation operating in the field of operation of tanks and tank parks is considered, and consecutive stages of technological process of cleaning of vertical steel tanks from oil ground deposits are presented. In work shortcomings of existing most widespread electromechanical mixers are described when using a hydraulic method of removal and prevention of formation of ground deposits in tanks with oil and oil products. For the purpose of increase of efficiency, reliability and decrease in power consumption of washout of oil ground deposits in tanks the new design of system of funneled washout and prevention of formation of deposits is offered.

  17. Risk in cleaning: chemical and physical exposure.

    Science.gov (United States)

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.

  18. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    Science.gov (United States)

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-07

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL).

  19. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  20. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  1. High-Tech Means High-Efficiency: The Business Case for EnergyManagement in High-Tech Industries

    Energy Technology Data Exchange (ETDEWEB)

    Shanshoian, Gary; Blazek, Michele; Naughton, Phil; Seese, RobertS.; Mills, Evan; Tschudi, William

    2005-11-15

    In the race to apply new technologies in ''high-tech'' facilities such as data centers, laboratories, and clean rooms, much emphasis has been placed on improving service, building capacity, and increasing speed. These facilities are socially and economically important, as part of the critical infrastructure for pharmaceuticals,electronics, communications, and many other sectors. With a singular focus on throughput, some important design issues can be overlooked, such as the energy efficiency of individual equipment (e.g., lasers, routers and switches) as well as the integration of high-tech equipment into the power distribution system and the building envelope. Among technology-based businesses, improving energy efficiency presents an often untapped opportunity to increase profits, enhance process control,maximize asset value, improve the work place environment, and manage a variety of business risks. Oddly enough, the adoption of energy efficiency improvements in this sector lags behind many others. As a result, millions of dollars are left on the table with each year ofoperation.

  2. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property.

  3. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    Additional Benefits ........................................................................................................ 3 1.2.6 Deliverables...inadequate latent cooling can lead building managers to restrict ventilation to minimal levels that further compromise both the comfort and health of...bulb temperatures for outdoor air and return air respectively per ANSI/AHRI Standard 210/240 “Performance Rating of Unitary Air-Conditioning and Air

  4. Evaluation of the combined betatron and momentum cleaning in point 3 in terms of cleaning efficiency and energy deposition for the LHC Collimation upgrade

    CERN Document Server

    Lari, L; Boccone, V; Brugger, M; Cerutti, F; Ferrari, A; Rossi, A; Versaci, R; Vlachoudis, V; Wollmann, D; Mereghetti, A; Faus-Golfe, A

    2011-01-01

    The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not sufficient shielded areas. The combined Betatron and Momentum Cleaning at Point 3 implies that new collimators have to be added as well as to implement a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region give indications about the effect of this new implementations not only on the collimators themselves but also on the other beam line elements as well as in the IR3 surrounding areas.

  5. Association between clean indoor air laws and voluntary smokefree rules in homes and cars.

    Science.gov (United States)

    Cheng, Kai-Wen; Okechukwu, Cassandra A; McMillen, Robert; Glantz, Stanton A

    2015-03-01

    This study examines the influence that smokefree workplaces, restaurants and bars have on the adoption of smokefree rules in homes and cars, and whether there is an association with adopting smokefree rules in homes and cars. Bivariate probit models were used to jointly estimate the likelihood of living in a smokefree home and having a smokefree car as a function of law coverage and other variables. Household data were obtained from the nationally representative Social Climate Survey of Tobacco Control 2001, 2002 and 2004-2009; clean indoor air law data were from the American Nonsmokers' Rights Foundation Tobacco Control Laws Database. 'Full coverage' and 'partial coverage' smokefree legislation is associated with an increased likelihood of having voluntary home and car smokefree rules compared with 'no coverage'. The association between 'full coverage' and smokefree rule in homes and cars is 5% and 4%, respectively, and the association between 'partial coverage' and smokefree rules in homes and cars is 3% and 4%, respectively. There is a positive association between the adoption of smokefree rules in homes and cars. Clean indoor air laws provide the additional benefit of encouraging voluntary adoption of smokefree rules in homes and cars. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Can environmental investment and expenditure enhance financial performance of US electric utility firms under the clean air act amendment of 1990?

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika

    2009-01-01

    This study investigates the causality from environmental investment (as a long-term effort) and expenditure (as a short-term effort) to financial performance in the US electric utility industry. The industry is one of the large air polluters in the United States. This empirical study finds that the environmental expenditure under the US Clean Air Act has had a negative impact from 1989 to 2001. The negative impact has become much effective after the implementation of the Title IV Program (1995) of the US Clean Air Act. This study cannot find the influence of environmental investment on financial performance by a statistical test although it indicates a positive impact. In the United States, fossil-fueled power plants such as coal-fired ones still produce a large portion of electricity. The generation structure is inconsistent with the betterment in the US environmental protection and imposes a financial burden to electric utility firms.

  7. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    inhaled by the manikin was measured and used to assess the clean air supply efficiency of the SHPV. The response of 35 subjects was collected to examine thermal comfort with the SHPV. The subjects participated in 3 experiments at personalized air temperature and room air temperature of 22/20 °C, 23/23 °C......The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... depending on design, shape, size and positioning of the ATD, flow rate and temperature of personalized air, room temperature, clothing thermal insulation of the manikin, etc. Tracer gas was mixed with the room air. The air supplied by the SHPV was free of tracer gas. Tracer gas concentration in the air...

  8. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  9. Fiscal 2000 achievement report on the development of energy conservation/environment purification system using cleaning effect of optical irradiation; 2000 nendo hikari clean gijutsu wo mochiita sho energy kankyo joka system no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The research aims to develop materials and apparatuses for the purification of atmosphere using titanium dioxide that exhibits a powerful oxidizing capability when irradiated with light. A study is conducted to find out an optimum composition for a photocatalytic fluorocarbon polymer sheet suitable for use in a denitration apparatus. A high density fluorocarbon polymer sheet composed of TiO{sub 2} modified with 0.3% of Pd/absorbent zeolite/fluorocarbon polymer PTFE (polytetrafluoroethylene) =48-63/24-36/10-20 is found to show high denitration efficiency, and this achieves the denitration efficiency goal. As for sheet thickness, 0.75mm is found to be enough. The sheet experiences some hardening in an accelerated exposure test, but does not change much in a surface gloss test or a chalking test. Although a slight reduction is observed in denitration efficiency, yet the durability goal is achieved. In the effort to develop an energy conservation type air cleaning apparatus, field tests and experiments are repeatedly conducted. As for photodenitration in the cleaning apparatus, the number of photodenitration stages and the magnitude of equimolar adsorption area necessary for achieving an 80% denitration rate is calculated from the relations of the NOx concentration profile and the denitration rate in the equimolar adsorption module to (gas flow rate/module surface), and the result shows that the initially intended goal is achieved. (NEDO)

  10. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  11. Current Situations and Suggestions for Air--Conditioning Cleaning Industrv in China%空调清洗行业现状分析及发展对策探讨

    Institute of Scientific and Technical Information of China (English)

    白艳中; 郑晨潇

    2012-01-01

    指出了空调运行与管理的不当可能造成室内空气的二次污染,探讨了空调系统可能产生的污染物,借鉴国外成熟空调清洗业的发展经验,分析了我国空调清洗存在的一些问题,针对我国空调清洗业的发展提出了相应的对策。%Air--conditioner has played an increasingly important role in daily life with the improvement of people's living standards. Improper operation and management of air--conditioning system could cause secondary pollution of indoor air. Reference to the mature experience of foreign air--conditoning cleaning industry, this paper analyses the pollutants which may be generated in the air--conditioning system, points out some problems of China's air--conditioning cleaning industry, and finally puts forward some suggests for the development of air--conditioning cleaning industry in China.

  12. Stabilization void-fill encapsulation high-efficiency particulate filters

    International Nuclear Information System (INIS)

    Alexander, R.G.; Stewart, W.E.; Phillips, S.J.; Serkowski, M.M.; England, J.L.; Boynton, H.C.

    1994-05-01

    This report discusses high-efficiency particulate air (HEPA) filter systems that which are contaminated with radionuclides are part of the nuclear fuel processing systems conducted by the US Department of Energy (DOE) and require replacement and safe and efficient disposal for plant safety. Two K-3 HEPA filters were removed from service, placed burial boxes, buried, and safely and efficiently stabilized remotely which reduced radiation exposure to personnel and the environment

  13. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    Science.gov (United States)

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  14. Health and efficiency in trimix versus air breathing in compressed air workers

    NARCIS (Netherlands)

    van Rees Vellinga, T. P.; Verhoeven, A. C.; van Dijk, F. J. H.; Sterk, W.

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to

  15. Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers

    Science.gov (United States)

    Kumari, Sangita

    This dissertation describes the finding that dissolved carbon dioxide is a potent inhibitor of sonoluminescence and describes the implications of the finding in the development of improved megasonic cleaning formulations. Megasonic cleaning, or the removal of contaminants particles from wafer surfaces using sound-irradiated cleaning fluids, has been traditionally used in the semiconductor industry for cleaning of wafers. A critical challenge in the field is to achieve removal of small particles (22 nm to 200 nm) without causing damage to fine wafer features. The work described here addresses this challenge by identifying sonoluminescence and solution pH as two key factors affecting damage and cleaning efficiency, respectively and establishing novel means to control them using CO2(aq) release compounds in the presence of acids and bases. Sonoluminescence (SL) behavior of the major dissolved gases such as Ar, Air, N2, O2 and CO2 was determined using a newly designed Cavitation Threshold Cell (CT Cell). SL, which is the phenomenon of release of light in sound-irradiated liquids, is a sensitive indicator of cavitation, primarily transient cavitation. It was found that all the tested dissolved gases such as Ar, Air, N2 and O2, generated SL signal efficiently. However, dissolved CO2 was found to be completely incapable of generating SL signal. Based on this interesting result, gradual suppression of SL signal was demonstrated using CO2(aq). It was further demonstrated that CO2(aq) is not only incapable but is also a potent inhibitor of SL. The inhibitory role of CO2(aq) was established using a novel method of controlled in-situ release of CO 2 from NH4HCO3. ~130 ppm CO2(aq) was shown to be necessary and sufficient for complete suppression of SL generation in air saturated DI water. The method however required acidification of solution for significant release of CO2, making it unsuitable for the design of cleaning solutions at high pH. Analysis of the underlying ionic

  16. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  17. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  18. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  19. Basic environmental principles for the promotion of clean and efficient energy

    International Nuclear Information System (INIS)

    Hanmer, R.; Connor-Lajambe, H.

    1994-01-01

    The purpose of this paper is to reiterate what might be considered basic principles for promoting clean and efficient energy. These principles have very important implications for the design of energy supply and transportation facilities, but they go far beyond that to unify such design with the design, use and maintenance of many other types of facilities and goods. These principles also affect the way we consider energy security in the context of sustainable development. In annex, this paper presents the recommendation of the Council, with a list of environmentally favourable energy options. (TEC). 2 refs., Annex

  20. 49 CFR 230.74 - Time of cleaning.

    Science.gov (United States)

    2010-10-01

    ... Tenders Brake and Signal Equipment § 230.74 Time of cleaning. All valves in the air brake system, including related dirt collectors and filters, shall be cleaned and tested in accordance with accepted brake...

  1. 76 FR 53452 - Clean Air Act Operating Permit Program; Response to Petition To Reopen the 2001 Title V Permit...

    Science.gov (United States)

    2011-08-26

    ... ENVIROMENTAL PROTECTION AGENCY [FRL-9457-3 ] Clean Air Act Operating Permit Program; Response to Petition To Reopen the 2001 Title V Permit for Reliant Portland Generating Station, Upper Mount Bethel Township, Northampton County, PA AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of action...

  2. Ontario's Clean Air Action Plan : protecting environmental and human health in Ontario

    International Nuclear Information System (INIS)

    2004-01-01

    Ontario's Clean Air Action Plan was launched in June 2000 in an effort to improve air quality and comply with the Canada-Wide Standards for Particulate Matter and Ozone. This paper describes Ontario's approach to reducing smog. Smog-related air pollution is linked to health problems such as premature death, respiratory and heart problems. Smog also contributes to environmental problems such as damage to forests, agricultural crops and natural vegetation. The two main ingredients of smog are ground level ozone and particulate matter. In order to reduce the incidence of smog, the following four key smog-causing pollutants must be reduced: nitrogen oxides, volatile organic compounds, sulphur dioxide and particular matter. This paper includes the 2001 estimates for Ontario's emissions inventory along with Ontario's smog reduction targets. It was noted that approximately half of all smog in Ontario comes from sources in the midwestern United States. The province of Ontario is committed to replacing coal-fired power plants with cleaner sources of energy. It is also considering emission caps for key industrial sectors. The key players in reducing smog include municipalities, industry, individuals, the federal government and programs that reduce emissions in the United States. 3 figs., 8 tabs., 1 appendix

  3. Combustion behaviour of ultra clean coal obtained by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    F. Rubiera; A. Arenillas; B. Arias; J.J. Pis; I. Suarez-Ruiz; K.M. Steel; J.W. Patrick [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-10-01

    The increasing environmental concern caused by the use of fossil fuels and the concomitant need for improved combustion efficiency is leading to the development of new coal cleaning and utilisation processes. However, the benefits achieved by the removal of most mineral matter from coal either by physical or chemical methods can be annulled if poor coal combustibility characteristics are attained. In this work a high volatile bituminous coal with 6% ash content was subjected to chemical demineralisation via hydrofluoric and nitric acid leaching, the ash content of the clean coal was reduced to 0.3%. The original and treated coals were devolatilised in a drop tube furnace and the structure and morphology of the resultant chars was analysed by optical and scanning electron microscopies. The reactivity characteristics of the chars were studied by isothermal combustion tests in air at different temperatures in a thermogravimetric system. Comparison of the combustion behaviour and pollutant emissions of both coals was conducted in a drop tube furnace operating at 1000{sup o}C. The results of this work indicate that the char obtained from the chemically treated coal presents very different structure, morphology and reactivity behaviour than the char from the original coal. The changes induced by the chemical treatment increased the combustion efficiency determined in the drop tube furnace, in fact higher burnout levels were obtained for the demineralised coal.

  4. Can environmental investment and expenditure enhance financial performance of US electric utility firms under the clean air act amendment of 1990?

    Energy Technology Data Exchange (ETDEWEB)

    Sueyoshi, Toshiyuki [New Mexico Institute of Mining and Technology, Department of Management, 801 Leroy Place, Socorro, NM 87801 (United States); National Cheng Kung University, College of Business, Department of Industrial and Information Management, Tainan (China); Goto, Mika [Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo, 201-8511 (Japan)

    2009-11-15

    This study investigates the causality from environmental investment (as a long-term effort) and expenditure (as a short-term effort) to financial performance in the US electric utility industry. The industry is one of the large air polluters in the United States. This empirical study finds that the environmental expenditure under the US Clean Air Act has had a negative impact from 1989 to 2001. The negative impact has become much effective after the implementation of the Title IV Program (1995) of the US Clean Air Act. This study cannot find the influence of environmental investment on financial performance by a statistical test although it indicates a positive impact. In the United States, fossil-fueled power plants such as coal-fired ones still produce a large portion of electricity. The generation structure is inconsistent with the betterment in the US environmental protection and imposes a financial burden to electric utility firms. (author)

  5. The impact of chemical cleaning on separation efficiency and properties of reverse osmosis membrane

    KAUST Repository

    Baatiyyah, Hani

    2018-04-01

    One of most major concerns from both cost-effective and technical point of view in membrane process industry is membrane cleaning. The aim of the project was to investigate the variations in membrane surface properties and separation efficiency of reverse osmosis membrane. Compativtive analysis have to be performed on four RO membrane before and after exposing the virgin membrane into chemical cleaning to identify and analysis the impact of the chemical cleaning on the performance of RO membrane. Commerical chemical cleaning used in this project were caustic and acidic cleaning agent. The project’s aim is the investigation of simulation software’s precision for the four membranes performance projection at different conditions of the feed water. The assessment of the membranes performance was done in the Innovation Cluster at pilot plant that was industrial in size. The main commercial elements used were the thin-film composite membranes with a spiral-wound of 8-inch polyamide. Ultrafiltration (UF) and seawater RO membrane pretreatment process was done for the red sea sourced feed water. A pressure vessel dimensioned at 8-inch was operated in conjunction with an individual element at 8 -20 m3/hr feed flow rate, with an 8 to 12 % recovery and an average 35,000-42,000 mg/L of total dissolved solids (TDS) composition for the feed water. To achieve the project’s aim in assessing the membranes, three phase experimental stages were completed. The membranes performance was assessed in terms of their water flux, salt rejection, boron rejection, bicarbonate rejection and permeate quality. In addition, the membrane surfaces were characterized after exposing the fresh membranes with a chemical cleaning reagent. The experimental results showed an increase in both permeate flow and salt passage for all studied elements. The changes in the membranes performance were systematically explained based on the changes in the charge density and chemical structure of the membranes

  6. Ontario's long-term energy plan, building our clean energy future

    International Nuclear Information System (INIS)

    2010-01-01

    The first energy priority of the plan is to provide all Ontarians with a clean, modern and reliable electricity system. It gives a summary of the means implemented to help families and businesses with increasing electricity costs. The plan is to shift the province from a coal-dependent system. Over the next 20 years, 15,000 MW (megawatt) of generating capacity will have to be rebuilt or constructed to replace older Ontario's energy infrastructures. In Ontario, an increase of about 3.5% per year in residential prices, resulting from the need to enjoy clean air, reliable generation and modernized transmission, is expected to occur over the next two decades. The expected electricity needs in Ontario and efficient means to satisfy them are described in this plan.

  7. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    Science.gov (United States)

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  8. Tobacco control policies are egalitarian: a vulnerabilities perspective on clean indoor air laws, cigarette prices, and tobacco use disparities.

    Science.gov (United States)

    Dinno, Alexis; Glantz, Stanton

    2009-04-01

    This study models independent associations of state or local strong clean indoor air laws and cigarette prices with current smoker status and consumption in a multilevel framework, including interactions with educational attainment, household income and race/ethnicity and the relationships of these policies to vulnerabilities in smoking behavior. Cross sectional survey data are employed from the February 2002 panel of the Tobacco Use Supplement of the Current Population Survey (54,024 individuals representing the US population aged 15-80). Non-linear relationships between both outcome variables and the predictors were modeled. Independent associations of strong clean indoor air laws were found for current smoker status (OR 0.66), and consumption among current smokers (-2.36 cigarettes/day). Cigarette price was found to have independent associations with both outcomes, an effect that saturated at higher prices. The odds ratio for smoking for the highest versus lowest price over the range where there was a price effect was 0.83. Average consumption declined (-1.16 cigarettes/day) over the range of effect of price on consumption. Neither policy varied in its effect by educational attainment, or household income. The association of cigarette price with reduced smoking participation and consumption was not found to vary with race/ethnicity. Population vulnerability in consumption appears to be structured by non-white race categories, but not at the state and county levels at which the policies we studied were enacted. Clean indoor air laws and price increases appear to benefit all socio-economic and race/ethnic groups in our study equally in terms of reducing smoking participation and consumption.

  9. High-Performance Carbon Aerogel Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-08-11

    Microbial fuel cells (MFCs) can generate electricity from the oxidation of organic substrates using anodic exoelectrogenic bacteria and have great potential for harvesting electric energy from wastewater. Improving oxygen reduction reaction (ORR) performance at a neutral pH is needed for efficient energy production. Here we show a nitrogen doped (≈4 wt%) ionothermal carbon aerogel (NDC) with a high surface area, large pore volume, and hierarchical porosity, with good electrocatalytic properties for ORR in MFCs. The MFCs using NDC air cathodes achieved a high maximum power density of 2300 mW m−2, which was 1.7 times higher than the most commonly used Pt/C air cathodes and also higher than most state-of-the-art ORR catalyst air cathodes. Rotating disk electrode measurements verified the superior electrocatalytic activity of NDC with an efficient four-electron transfer pathway (n=3.9). These findings highlight NDC as a better-performing and cost-efficient catalyst compared with Pt/C, making it highly viable for MFC applications.

  10. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  11. Testing Open-Air Storage of Stumps to Provide Clean Biomass for Energy Production

    Directory of Open Access Journals (Sweden)

    Luigi Pari

    2017-10-01

    Full Text Available When orchards reach the end of the productive cycle, the stumps removal becomes a mandatory operation to allow new soil preparation and to establish new cultivations. The exploitation of the removed stump biomass seems a valuable option, especially in the growing energy market of the biofuels; however, the scarce quality of the material obtained after the extraction compromises its marketability, making this product a costly waste to be disposed. In this regard, the identification of affordable strategies for the extraction and the cleaning of the material will be crucial in order to provide to plantation owners the chance to sell the biomass and offset the extraction costs. Mechanical extraction and cleaning technologies have been already tested on forest stumps, but these systems work on the singular piece and would be inefficient in the conditions of an intensive orchard, where stumps are small and numerous. The objective of this study was to test the possibility to exploit a natural stumps cleaning system through open-air storage. The tested stumps were obtained from two different vineyards, extracted with an innovative stump puller specifically designed for continuous stump removal in intensively-planted orchards. The effects of weathering were evaluated to determine the fuel quality immediately after the extraction and after a storage period of six months with respect to moisture content, ash content, and heating value. Results indicated interesting storage performance, showing also different dynamics depending on the stumps utilized.

  12. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    Science.gov (United States)

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification

  13. Negative pressure of the environmental air in the cleaning area of the materials and sterilization center: a systematic review

    Directory of Open Access Journals (Sweden)

    Caroline Lopes Ciofi-Silva

    Full Text Available ABSTRACT Objective: to analyze the scientific evidence on aerosols generated during cleaning activities of health products in the Central Service Department (CSD and the impact of the negative pressure of the ambient air in the cleaning area to control the dispersion of aerosols to adjacent areas. Method: for this literature systematic review the following searches were done: search guidelines, manuals or national and international technical standards given by experts; search in the portal and databases PubMed, Scopus, CINAHL and Web of Science; and a manual search of scientific articles. Results: the five technical documents reviewed recommend that the CSD cleaning area should have a negative differential ambient air pressure, but scientific articles on the impact of this intervention were not found. The four articles included talked about aerosols formed after the use of a ultrasonic cleaner (an increased in the contamination especially during use and pressurized water jet (formation of smaller aerosols 5μm. In a study, the aerosols formed from contaminated the hot tap water with Legionella pneumophila were evaluated. Conclusions: there is evidence of aerosol formation during cleanup activities in CSD. Studies on occupational diseases of respiratory origin of workers who work in CSD should be performed.

  14. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  15. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  16. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Guanghua Zong

    2008-11-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  17. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-06-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  18. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    International Nuclear Information System (INIS)

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  19. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  20. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  1. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se{sub 2} thin-film solar cell absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Jascha [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam (Germany); Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch. [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Bär, Marcus, E-mail: marcus.baer@helmholtz-berlin.de [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Sadewasser, Sascha, E-mail: sascha.sadewasser@inl.int [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga (Portugal)

    2014-12-21

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  2. Cleaning the air with renewable energy : briefing note

    International Nuclear Information System (INIS)

    2002-09-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. It acknowledges the effort that the Canadian government has taken to advance investment in renewable energy, but the Coalition is concerned that these investments alone will not achieve the desired objectives without additional policy development by federal, provincial and territorial governments. This report presents an overview of 7 proposals designed to promote and advance renewable energy in Canada. The benefits of these proposals include cleaner air, improved health, engaging public and industry participation in climate change initiatives, and fostering innovation and entrepreneurship in the sector. Brief details were presented for the following 7 proposals: (1) establish a national low-impact renewable energy target for Canada, (2) increase the Wind Power Production Incentive (WPPI) to 2.7 cent per kilowatt hour to ensure appropriate investment in wind energy and harmonization with the United States, (3) extend incentive programs similar to the WPPI to other renewable energy technologies, (4) work with other levels of government to implement policy mechanisms to meet the recommended national renewable energy target, (5) expand the Market Incentive Program (MIP) funding to 30 million dollars per year to 2012 and consult with the provinces and territories to develop a broad-based consumer green energy rebate and education program, (6) identify mechanisms to ensure a meaningful role for renewable energy to contribute to the country's climate change strategy, and (7) develop a Wind Energy Mapping and Wind Measurement Initiative. In a recent update, the Coalition states that low environmental impact renewable energy needs market recognition for its environmental and social benefits. In general, these benefits are not financially valued in energy market pricing. In addition, energy sources that impact significantly on the environment are not financially

  3. Cleaning the air with renewable energy : briefing note

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-09-01

    The Clean Air Renewable Energy Coalition promotes the development of the renewable energy industry in Canada. It acknowledges the effort that the Canadian government has taken to advance investment in renewable energy, but the Coalition is concerned that these investments alone will not achieve the desired objectives without additional policy development by federal, provincial and territorial governments. This report presents an overview of 7 proposals designed to promote and advance renewable energy in Canada. The benefits of these proposals include cleaner air, improved health, engaging public and industry participation in climate change initiatives, and fostering innovation and entrepreneurship in the sector. Brief details were presented for the following 7 proposals: (1) establish a national low-impact renewable energy target for Canada, (2) increase the Wind Power Production Incentive (WPPI) to 2.7 cent per kilowatt hour to ensure appropriate investment in wind energy and harmonization with the United States, (3) extend incentive programs similar to the WPPI to other renewable energy technologies, (4) work with other levels of government to implement policy mechanisms to meet the recommended national renewable energy target, (5) expand the Market Incentive Program (MIP) funding to 30 million dollars per year to 2012 and consult with the provinces and territories to develop a broad-based consumer green energy rebate and education program, (6) identify mechanisms to ensure a meaningful role for renewable energy to contribute to the country's climate change strategy, and (7) develop a Wind Energy Mapping and Wind Measurement Initiative. In a recent update, the Coalition states that low environmental impact renewable energy needs market recognition for its environmental and social benefits. In general, these benefits are not financially valued in energy market pricing. In addition, energy sources that impact significantly on the environment are not

  4. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  5. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  6. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  7. Self-cleaning effect in high quality percussion ablating of cooling hole by picosecond ultra-short pulse laser

    Science.gov (United States)

    Zhao, Wanqin; Yu, Zhishui

    2018-06-01

    Comparing with the trepanning technology, cooling hole could be processed based on the percussion drilling with higher processing efficiency. However, it is widely believed that the ablating precision of hole is lower for percussion drilling than for trepanning, wherein, the melting spatter materials around the hole surface and the recast layer inside the hole are the two main issues for reducing the ablating precision of hole, especially for the recast layer, it can't be eliminated completely even through the trepanning technology. In this paper, the self-cleaning effect which is a particular property just for percussion ablating of holes has been presented in detail. In addition, the reasons inducing the self-cleaning effect have been discussed. At last, based on the self-cleaning effect of percussion drilling, high quality cooling hole without the melting spatter materials around the hole surface and recast layer inside the hole could be ablated in nickel-based superalloy by picosecond ultra-short pulse laser.

  8. High efficiency particulate air filter technology from 1980 to 1985 in the Central Electricity Generating Board

    International Nuclear Information System (INIS)

    Skledon, R.; Taylor, S.; Fern, C.; Stead, M.

    1986-01-01

    This paper examines at the Central Electricity Generating Board's methods of High Efficiency Particulate Air (1,700 m 3 /hr) filter testing from conception to the present day. The choice of the test and the early results are looked at followed by the development using new test equipment for checking ladderframe systems. The need for the drawing up of the Central Electricity Generating Board 743401 Standard for filter manufacture and its effect on full implementation is looked into. The advantages and disadvantages of our test procedures are reflected upon and the future developments in test methods and filters for use by the C.E.G.B. in their power stations are discussed. (author)

  9. Radioisotope tracer technology for a hydraulic efficiency diagnosis of sludge digester after cleaning up

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim Jong Bum; Choi, Byung Jong

    2004-03-01

    Radiotracer experiments were carried out on a cylindrical 2-stage anaerobic sludge digester in order to investigate the improvement of its efficiency by means of RTD (Residence Time Distribution) measurements before and after cleaning up the inside of the digester. The tracer was Sc-46 in an EDTA solution which forms such a stable complex compound to keep the isotope from being absorbed onto the surface of the pipelines or the wall. It was injected into the digester by pressurized nitrogen gas and its movement was monitored by NaI(Tl) scintillation detectors installed around the digester and recorded for a month by a 24-channel data acquisition system specially developed for radiotracer experiments by the Korea Tracer Group of KAERI. The experimental data was analyzed for the MRT (Mean Residence Time) and other parameters characterizing the flow behavior. After the cleaning of the digesters the variance has been decreased and the sludge dynamics was activated as a result of the increase of the effective volume from 20% to 80% after cleaning up in the secondary digester. Particularly the MRT of the secondary digester which has no mixing mechanism has been increased by 3 times

  10. High efficiency mixed species radioiodine air sampling, readout, and dose assessment system

    International Nuclear Information System (INIS)

    Distenfeld, C.; Klemish, J.

    1976-05-01

    Reactor accidents require monitoring to assess the impact to persons in the environment. This implies methods and apparatus to accurately and economically sample and evaluate possible released activity. The development of a prototype iodine air sampling system that can differentiate against noble gas activity and be evaluated by standard Civil Defense instrumentation is reported. The apparatus can efficiently (95 percent) collect organic or inorganic, particulate or gaseous radioiodine in concentrations below stable atmospheric iodine, and under severe ambient conditions. Response to noble fission gases was reduced to less than 4 x 10 -4 of an equal iodine airborne activity by heating the collector to approximately 100 0 C. Reliable sample size, +-5 percent, was achieved by using a simple air flow regulator. Thyroid dose commitment was mathematically and graphically related to the iodine isotope distribution expected in the environment and to the response of the Civil Defense CDV-700 instrument used to evaluate the sample. Sensitivity of the method allows dose assessment of 1 to 2 rads to a child's thyroid

  11. Air filtration media from electrospun waste high-impact polystyrene fiber membrane

    Science.gov (United States)

    Zulfi, Akmal; Miftahul Munir, Muhammad; Hapidin, Dian Ahmad; Rajak, Abdul; Edikresnha, Dhewa; Iskandar, Ferry; Khairurrijal, Khairurrijal

    2018-03-01

    Nanofiber membranes were synthesized from waste high-impact polystyrene (HIPS) using electrospinning method and then applied as air filtration media. The waste HIPS precursor solution with the concentration of 20 wt.% was prepared by dissolving waste HIPS into the mixture of d-limonene and DMF solvents. Beaded or fine nanofibers could be achieved by adjusting the ratio of solvents mixture (d-limonene and DMF). Using the ratios of solvents (d-limonene: DMF) of 3:1, 1:1, and 1:3, it was obtained beaded HIPS nanofibers with the average diameter of 272 nm, beaded HIPS nanofibers with the average diameter of 937, and fine HIPS nanofibers with the average diameter of 621 nm, respectively. From the FTIR spectral analysis, it was found that the FTIR peaks of the HIPS nanofiber membranes are the same as those of the cleaned waste HIPS and there are no FTIR peaks of DMF and d-limonene solvents. These findings implied that the electrospinning process allows the recycling of waste HIPS into HIPS nanofibers without any trapped solvent phases or apparent degradation of the original material. From the contact angle measurement, it was confirmed that the HIPS nanofiber membranes are hydrophobic and the presence of the beads in the HIPS nanofiber membranes varies their contact angles. From the air-filtration test, it was shown that the fiber morphology (beaded or fine nanofibers) considerably affects the filtration performance of the membranes. The presence of beads increased the distance between the fibers so that the pressure drop decreased. Moreover, the basis weight of the membrane greatly affected the filtration efficiency. The HIPS nanofiber membrane with the basis weight of 12.22 g m‑2 had the efficiency greater than 99.999%, which was equivalent to that of the HEPA filter.

  12. An efficient mathematical model for air-breathing PEM fuel cells

    International Nuclear Information System (INIS)

    Ismail, M.S.; Ingham, D.B.; Hughes, K.J.; Ma, L.; Pourkashanian, M.

    2014-01-01

    Graphical abstract: The effects of the ambient humidity on the performance of air-breathing PEM fuel cells become more pronounced as the ambient temperature increases. The polarisation curves have been generated using the in-house developed MATLAB® application, Polarisation Curve Generator, which is available in the supplementary data. - Highlights: • An efficient mathematical model has been developed for an air-breathing PEM fuel cell. • The fuel cell performance is significantly over-predicted if the Joule and entropic heats are neglected. • The fuel cell performance is highly sensitive to the state of water at the thermodynamic equilibrium. • The cell potential dictates the favourable ambient conditions for the fuel cell. - Abstract: A simple and efficient mathematical model for air-breathing proton exchange membrane (PEM) fuel cells has been built. One of the major objectives of this study is to investigate the effects of the Joule and entropic heat sources, which are often neglected, on the performance of air-breathing PEM fuel cells. It is found that the fuel cell performance is significantly over-predicted if one or both of these heat sources is not incorporated into the model. Also, it is found that the performance of the fuel cell is highly sensitive to the state of the water at the thermodynamic equilibrium magnitude as both the entropic heat and the Nernst potential considerably increase if water is assumed to be produced in liquid form rather than in vapour form. Further, the heat of condensation is shown to be small and therefore, under single-phase modelling, has a negligible effect on the performance of the fuel cell. Finally, the favourable ambient conditions depend on the operating cell potential. At intermediate cell potentials, a mild ambient temperature and low humidity are favoured to maintain high membrane conductivity and mitigate water flooding. At low cell potentials, low ambient temperature and high humidity are favoured to

  13. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  14. FY 1999 report on the results of the R and D of high efficiency clean energy vehicles; 2000 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Kiban gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Using the petroleum substituting clean energy, the R and D were conducted with the aim of developing vehicles which reduce the consumption of travel energy to 1/2 and the CO2 emission to 1/2 or below of those of existing vehicles. The FY 1999 results were summed up. As to the R and D of the hybrid power system, carried out were the prediction of fuel consumption performance by numerical simulation, evaluation of performance of new hybrid electric vehicles, etc. Concerning the R and D of high efficiency clean energy vehicles, the R and D of the following were reported from each of the makers: hybrid passenger car loaded with methanol fuel cells, hybrid passenger car loaded with ANG engine, hybrid truck loaded with CNG ceramic engine, hybrid truck loaded with CNG engine, hybrid bus loaded with LNG engine, and hybrid bus loaded with DME engine. Further, in the survey of synthetic fuels, the paper reported on the results of the evaluation of synthetic light oil engines and evaluation of characteristics of synthetic light oil. (NEDO)

  15. Methods for air cleaning and protection of building occupants from airborne pathogens

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor

    2009-01-01

    germicidal irradiation (UVGI), photocatalytic oxidation (PCO), plasmacluster ions and other technologies for air disinfection and purification from pathogens are analyzed with respect to currently used air distribution principles. The importance of indoor air characteristics, such as temperature, relative...... of transmission, i.e. the generation of pathogen laden droplets originating in the respiratory tract of an infected individual, the survivability of the pathogens, their dispersal indoors and their transfer to a healthy person are reviewed. The advantages and the drawbacks of air dilution, filtration, ultraviolet...... humidity and velocity for the efficiency of each method is analyzed, taking into consideration the nature of the pathogens themselves. The applicability of the methods to the different types of total volume air distribution used at present indoors, i.e. mixing, displacement and underfloor ventilation...

  16. Experimental evaluation on energy performance of innovative clean air heat pump for indoor environment control in summer and winter seasons

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    Based on the air purification capacity of regenerative silica gel rotor, an innovative clean air heat pump (CAHP) was designed, developed and investigated through experimental studies. The CAHP integrated air purification, dehumidification and heating/cooling in one unit. A prototype of the CAHP...... was developed. Laboratory experimental studies were conducted to investigate its energy performance under different outdoor climates including cold, mild-cold, mild-hot and extremely hot and humid climates. The energy performance of the CAHP was then evaluated by comparing with a conventional air source heat...... pump. The results showed that to keep same indoor air quality, the CAHP could save substantial amount of energy. For example, compared to the conventional air source heat pump, the CAHP could save up to 59%, 40%, 30% of electricity for ventilation and air conditioning in a test room in summer...

  17. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  18. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  19. Residential air-conditioner usage in China and efficiency standardization

    International Nuclear Information System (INIS)

    Wu, Jianghong; Liu, Chaopeng; Li, Hongqi; Ouyang, Dong; Cheng, Jianhong; Wang, Yuanxia; You, Shaofang

    2017-01-01

    Determining the real energy consumption and usage pattern of a room air-conditioner (RAC) are important issues from the point of view of both RAC design and evaluation of its energy efficiency. An air-conditioner's running time is fundamental data for the calculation of SEER and APF values. Therefore, in 2010, a nationwide investigation of RAC usage was conducted and 400 selected air-conditioning-units were monitored for a full year to obtain data on their cooling and heating usage. Two running time curves (cooling and heating) were obtained for the air-conditioners as a function of outdoor air temperatures using statistical analysis. The results show that the 27–30 °C temperature range accounts for more than 52% of the cooling time. Conversely, the 0–8 °C temperature range is associated with more than 75% of the heating time. The research presented in this paper has significantly contributed to China's new variable-speed RAC efficiency standard (GB21455-2013). It also has far-reaching implications for both the air-conditioner industry and energy policy in China due to its different method of calculating energy efficiency. - Highlights: • A nationwide survey to realize China's residential air-conditions usage behaviors. • Air-conditioner running time-environment temperature curves are obtained. • The peak heating demand and peak cooling demand happen at 28 °C and 4 °C, respectively. • The temperature of 27 °C–30 °C accounts for over 52% refrigeration time. • The temperature of 0 °C–8 °C occupies more than 75% heating time.

  20. 高效率、低成本洁净钢“制造平台”集成技术及其动态运行%Integration Technology of High Efficiency and Low Cost Clean Steel "Production Platform" and Its Dynamic Operation

    Institute of Scientific and Technical Information of China (English)

    殷瑞钰

    2012-01-01

    The conception, definition, connotation, boundary of the high efficiency, low cost clean steel "production platform" and the rules, methods of its dynamic operation are studied and discussed. It is pointed out that, not only the connotations of quality and technology, but also the connotations of market and economy are embodied in the high efficiency, low cost clean steel "production platform". The construction of high efficiency, low cost clean steel "production platform" is one of the common key technologies concerning efficiency, quality and cost. It is the basic and universal technology, which not only applicable in the production of "high-end" steel products, but also in the production of bulk ordinary steel products. The "production platform" of high efficiency, low cost clean steel is the important direction of modern steel-making technology progress and has great significance on the competitiveness of the steel plants. The research of high efficiency, low cost "production platform" not only involves the production and management of the steel plants, but also the academic research field (process engineering and dynamic opera- tion) and innovation of engineering design(theory and method of dynamic-precision design). The integrated theory and method of high efficiency and low cost clean steel "production platform" is the binding point of metallurgical process engineering and material engineering.%研究并讨论了高效率、低成本洁净钢"制造平台"的概念、定义、内涵、边界和动态运行的规则和方法。指出高效率、低成本洁净钢"制造平台"不仅有质量含义、技术含义,而且有市场含义、经济含义。高效率、低成本洁净钢"制造平台"建设是钢厂今后技术进步过程中具有基础性、普适性并事关效率、质量、成本的共性关键技术之一,不仅适用在"高端产品"研发和生产,也