WorldWideScience

Sample records for high-dose thoracic radiation

  1. Radiation dose-reduction strategies in thoracic CT.

    Science.gov (United States)

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  2. Dose effect relationships in cervical and thoracic radiation myelopathies

    International Nuclear Information System (INIS)

    Holdorff, B.

    1980-01-01

    The course and prognosis of radiation myelopathies are determined by 3 factors: the segmental (vertical) location of the lesion, the extent of the transverse syndrome (complete or incomplete) and the radiation dose. The median spinal dose in cervical radiation myelopathies with fatal outcome was higher than in survivals with an incomplete transverse syndrome. In thoracic radiation myelopathies a dose difference between complete and incomplete transverse syndromes could be found as well. Incomplete transverse syndromes as submaximum radiation injuries are more suitable for the determination of the spinal tolerance dose than complete transverse syndromes. The lowest threshold could be stated for cases following high-volume irradiation of the lymphatic system. (Auth.)

  3. Securing safe and informative thoracic CT examinations—Progress of radiation dose reduction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Takeshi, E-mail: tkubo@kuhp.kyoto-u.ac.jp [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505 (Korea, Republic of); Yamashiro, Tsuneo [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, 207 Uehara, Nishinara, Okinawa 903-0215 (Japan); Kalender, Willi A. [Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen (Germany); Lee, Chang Hyun [Department of Radiology, Seoul National University Hospital, 28 Yeongeon-dong, Jongno-gu, Seoul (Korea, Republic of); Lynch, David A. [Department of Radiology, National Jewish Health, 1400 Jackson St, A330 Denver, Colorado 80206 (United States); Kauczor, Hans-Ulrich [Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 400, 69120 Heidelberg (Germany); Hatabu, Hiroto, E-mail: hhatabu@partners.org [Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)

    2017-01-15

    Highlights: • Various techniques have led to substantial radiation dose reduction of chest CT. • Automatic modulation of tube current has been shown to reduce radiation dose. • Iterative reconstruction makes significant radiation dose reduction possible. • Processing time is a limitation for full iterative reconstruction, currently. • Validation of diagnostic accuracy is desirable for routine use of low dose protocols. - Abstract: The increase in the radiation exposure from CT examinations prompted the investigation on the various dose-reduction techniques. Significant dose reduction has been achieved and the level of radiation exposure of thoracic CT is expected to reach the level equivalent to several chest X-ray examinations. With more scanners with advanced dose reduction capability deployed, knowledge on the radiation dose reduction methods has become essential to clinical practice as well as academic research. This article reviews the history of dose reduction techniques, ongoing changes brought by newer technologies and areas of further investigation.

  4. A Contralateral Esophagus-Sparing Technique to Limit Severe Esophagitis Associated With Concurrent High-Dose Radiation and Chemotherapy in Patients With Thoracic Malignancies

    International Nuclear Information System (INIS)

    Al-Halabi, Hani; Paetzold, Peter; Sharp, Gregory C.; Olsen, Christine; Willers, Henning

    2015-01-01

    Purpose: Severe (Radiation Therapy Oncology Group [RTOG] grade 3 or greater) esophagitis generally occurs in 15% to 25% of non–small cell lung cancer (NSCLC) patients undergoing concurrent chemotherapy and radiation therapy (CCRT), which may result in treatment breaks that compromise local tumor control and pose a barrier to dose escalation. Here, we report a novel contralateral esophagus-sparing technique (CEST) that uses intensity modulated radiation therapy (IMRT) to reduce the incidence of severe esophagitis. Methods and Materials: We reviewed consecutive patients with thoracic malignancies undergoing curative CCRT in whom CEST was used. The esophageal wall contralateral (CE) to the tumor was contoured as an avoidance structure, and IMRT was used to guide a rapid dose falloff gradient beyond the target volume in close proximity to the esophagus. Esophagitis was recorded based on the RTOG acute toxicity grading system. Results: We identified 20 consecutive patients treated with CCRT of at least 63 Gy in whom there was gross tumor within 1 cm of the esophagus. The median radiation dose was 70.2 Gy (range, 63-72.15 Gy). In all patients, ≥99% of the planning and internal target volumes was covered by ≥90% and 100% of prescription dose, respectively. Strikingly, no patient experienced grade ≥3 esophagitis (95% confidence limits, 0%-16%) despite the high total doses delivered. The median maximum dose, V45, and V55 of the CE were 60.7 Gy, 2.1 cc, and 0.4 cc, respectively, indicating effective esophagus cross-section sparing by CEST. Conclusion: We report a simple yet effective method to avoid exposing the entire esophagus cross-section to high doses. By using proposed CE dose constraints of V45 <2.5 cc and V55 <0.5 cc, CEST may improve the esophagus toxicity profile in thoracic cancer patients receiving CCRT even at doses above the standard 60- to 63-Gy levels. Prospective testing of CEST is warranted

  5. Incidence of radiation pneumonitis after thoracic irradiation: Dose-volume correlates

    International Nuclear Information System (INIS)

    Schallenkamp, John M.; Miller, Robert C.; Brinkmann, Debra H.; Foote, Tyler; Garces, Yolanda I.

    2007-01-01

    Purpose: To define clinical and dosimetric parameters correlated with the risk of clinically relevant radiation pneumonitis (RP) after thoracic radiotherapy. Methods and Materials: Records of consecutive patients treated with definitive thoracic radiotherapy were retrospectively reviewed for the incidence of RP of Grade 2 or greater by the Common Toxicity Criteria. Dose-volume histograms using total lung volume (TL) and TL minus gross tumor volume (TL-G) were created with and without heterogeneity corrections. Mean lung dose (MLD), effective lung volume (V eff ), and percentage of TL or TL-G receiving greater than or equal to 10, 13, 15, 20, and 30 Gy (V10-V30, respectively) were analyzed by logistic regression. Receiver operating characteristic (ROC) curves were generated to estimate RP predictive values. Results: Twelve cases of RP were identified in 92 eligible patients. Mean lung dose, V10, V13, V15, V20, and V eff were significantly correlated to RP. Combinations of MLD, V eff , V20, and V30 lost significance using TL-G and heterogeneity corrections. Receiver operating characteristic analysis determined V10 and V13 as the best predictors of RP risk, with a decrease in predictive value above those volumes. Conclusions: Intrathoracic radiotherapy should be planned with caution when using radiotherapy techniques delivering doses of 10 to 15 Gy to large lung volumes

  6. The reduction of image noise and streak artifact in the thoracic inlet during low dose and ultra-low dose thoracic CT

    International Nuclear Information System (INIS)

    Paul, N S; Prezelj, E; Burey, P; Menezes, R J; Blobel, J; Ursani, A; Kashani, H; Siewerdsen, J H

    2010-01-01

    Increased pixel noise and streak artifact reduce CT image quality and limit the potential for radiation dose reduction during CT of the thoracic inlet. We propose to quantify the pixel noise of mediastinal structures in the thoracic inlet, during low-dose (LDCT) and ultralow-dose (uLDCT) thoracic CT, and assess the utility of new software (quantum denoising system and BOOST3D) in addressing these limitations. Twelve patients had LDCT (120 kV, 25 mAs) and uLDCT (120 kV, 10 mAs) images reconstructed initially using standard mediastinal and lung filters followed by the quantum denoising system (QDS) to reduce pixel noise and BOOST3D (B3D) software to correct photon starvation noise as follows: group 1 no QDS, no B3D; group 2 B3D alone; group 3 QDS alone and group 4 both QDS and B3D. Nine regions of interest (ROIs) were replicated on mediastinal anatomy in the thoracic inlet, for each patient resulting in 3456 data points to calculate pixel noise and attenuation. QDS reduced pixel noise by 18.4% (lung images) and 15.8% (mediastinal images) at 25 mAs. B3D reduced pixel noise by ∼8% in the posterior thorax and in combination there was a 35.5% reduction in effective radiation dose (E) for LDCT (1.63-1.05 mSv) in lung images and 32.2% (1.55-1.05 mSv) in mediastinal images. The same combination produced 20.7% reduction (0.53-0.42 mSv) in E for uLDCT, for lung images and 17.3% (0.51-0.42) for mediastinal images. This quantitative analysis of image quality confirms the utility of dedicated processing software in targeting image noise and streak artifact in thoracic LDCT and uLDCT images taken in the thoracic inlet. This processing software potentiates substantial reductions in radiation dose during thoracic LDCT and uLDCT.

  7. Concomitant Imaging Dose and Cancer Risk in Image Guided Thoracic Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yibao; Wu, Hao [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Chen, Zhe [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Feng, Zhongsu [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital & Institute, Beijing (China); Bao, Shanglian [Beijing Key Laboratory of Medical Physics and Engineering, Peking University, Beijing (China); Deng, Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2015-11-01

    Purpose: Kilovoltage cone beam computed tomography (CT) (kVCBCT) imaging guidance improves the accuracy of radiation therapy but imposes an extra radiation dose to cancer patients. This study aimed to investigate concomitant imaging dose and associated cancer risk in image guided thoracic radiation therapy. Methods and Materials: The planning CT images and structure sets of 72 patients were converted to CT phantoms whose chest circumferences (C{sub chest}) were calculated retrospectively. A low-dose thorax protocol on a Varian kVCBCT scanner was simulated by a validated Monte Carlo code. Computed doses to organs and cardiac substructures (for 5 selected patients of various dimensions) were regressed as empirical functions of C{sub chest}, and associated cancer risk was calculated using the published models. The exposures to nonthoracic organs in children were also investigated. Results: The structural mean doses decreased monotonically with increasing C{sub chest}. For all 72 patients, the median doses to the heart, spinal cord, breasts, lungs, and involved chest were 1.68, 1.33, 1.64, 1.62, and 1.58 cGy/scan, respectively. Nonthoracic organs in children received 0.6 to 2.8 cGy/scan if they were directly irradiated. The mean doses to the descending aorta (1.43 ± 0.68 cGy), left atrium (1.55 ± 0.75 cGy), left ventricle (1.68 ± 0.81 cGy), and right ventricle (1.85 ± 0.84 cGy) were significantly different (P<.05) from the heart mean dose (1.73 ± 0.82 cGy). The blade shielding alleviated the exposure to nonthoracic organs in children by an order of magnitude. Conclusions: As functions of patient size, a series of models for personalized estimation of kVCBCT doses to thoracic organs and cardiac substructures have been proposed. Pediatric patients received much higher doses than did the adults, and some nonthoracic organs could be irradiated unexpectedly by the default scanning protocol. Increased cancer risks and disease adverse events in the

  8. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  9. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    International Nuclear Information System (INIS)

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A.

    2015-10-01

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  10. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Dinh, Tru-Khang T.; Fendler, Wojciech; Chałubińska-Fendler, Justyna; Acharya, Sanket S.; O’Leary, Colin; Deraska, Peter V.; D’Andrea, Alan D.; Chowdhury, Dipanjan; Kozono, David

    2016-01-01

    Risk of normal tissue toxicity limits the amount of thoracic radiation therapy (RT) that can be routinely prescribed to treat non-small cell lung cancer (NSCLC). An early biomarker of response to thoracic RT may provide a way to predict eventual toxicities—such as radiation pneumonitis—during treatment, thereby enabling dose adjustment before the symptomatic onset of late effects. MicroRNAs (miRNAs) were studied as potential serological biomarkers for thoracic RT. As a first step, we sought to identify miRNAs that correlate with delivered dose and standard dosimetric factors. We performed miRNA profiling of plasma samples obtained from five patients with Stage IIIA NSCLC at five dose-points each during radical thoracic RT. Candidate miRNAs were then assessed in samples from a separate cohort of 21 NSCLC patients receiving radical thoracic RT. To identify a cellular source of circulating miRNAs, we quantified in vitro miRNA expression intracellularly and within secreted exosomes in five NSCLC and stromal cell lines. miRNA profiling of the discovery cohort identified ten circulating miRNAs that correlated with delivered RT dose as well as other dosimetric parameters such as lung V20. In the validation cohort, miR-29a-3p and miR-150-5p were reproducibly shown to decrease with increasing radiation dose. Expression of miR-29a-3p and miR-150-5p in secreted exosomes decreased with radiation. This was concomitant with an increase in intracellular levels, suggesting that exosomal export of these miRNAs may be downregulated in both NSCLC and stromal cells in response to radiation. miR-29a-3p and miR-150-5p were identified as circulating biomarkers that correlated with delivered RT dose. miR-150 has been reported to decrease in the circulation of mammals exposed to radiation while miR-29a has been associated with fibrosis in the human heart, lungs, and kidneys. One may therefore hypothesize that outlier levels of circulating miR-29a-3p and miR-150-5p may eventually help

  11. Reduction of uterus dose in clinical thoracic computed tomography

    International Nuclear Information System (INIS)

    Danova, D.; Keil, B.; Kaestner, B.; Klose, K.J.; Heverhagen, J.T.; Wulff, J.; Fiebich, M.; Zink, K.

    2010-01-01

    Purpose: The aim of this study was to investigate the potential dose reduction in the uterus as a result of lead apron protection during thoracic CT scans. Moreover, the distribution of the radiation dose in the uterus was determined in order to obtain information about the ratio of internally and externally scattered radiation. Materials and Methods: The uterus doses during thoracic CT were determined by measuring organ doses using an Alderson-RANDO registered -Phantom and thermoluminescent dosimeters. A 0.25 mm lead equivalent protective apron was used to shield the abdominal area. Three measurement conditions were evaluated: without lead apron, covered with lead apron and wrapped with lead apron. The uterus dose with and without shielding describes the mean value and standard deviation of all examinations and all measurement points in the organ. Results: The uterus dose by thoracic CT was measured to be approximately 66.5 ± 3.1 μGy. If the abdomen is covered with a 0.25 mm Pb equivalent lead apron in the front area and on both sides, the uterus dose is reduced to 49.4 ± 2.8 μGy (26 % reduction, p < 0.001). If a lead apron is wrapped around the abdomen, providing 0.50 mm Pb shielding in the anterior section due to overlap, and 0.25 mm Pb in the posterior section and on both sides, the uterus dose is reduced even more to 43.8 ± 2.5 μGy (34 % reduction, p < 0.001). The dose distribution when the lead apron covers the abdomen shows that the shielding is effective for the scatter radiation that comes from the anterior part. Moreover, the wrapped apron protects the uterus from all directions and is even more effective for dose reduction than the covering apron. Conclusion: Our findings demonstrate that protective aprons are an effective dose reduction technique without additional costs and little effect on patient examination time. (orig.)

  12. Aortic dose constraints when reirradiating thoracic tumors

    International Nuclear Information System (INIS)

    Evans, Jaden D.; Gomez, Daniel R.; Amini, Arya; Rebueno, Neal; Allen, Pamela K.; Martel, Mary K.; Rineer, Justin M.; Ang, Kie Kian; McAvoy, Sarah; Cox, James D.; Komaki, Ritsuko; Welsh, James W.

    2013-01-01

    Background and purpose: Improved radiation delivery and planning has allowed, in some instances, for the retreatment of thoracic tumors. We investigated the dose limits of the aorta wherein grade 5 aortic toxicity was observed after reirradiation of lung tumors. Material and methods: In a retrospective analysis, 35 patients were identified, between 1993 and 2008, who received two rounds of external beam irradiation that included the aorta in the radiation fields of both the initial and retreatment plans. We determined the maximum cumulative dose to 1 cm 3 of the aorta (the composite dose) for each patient, normalized these doses to 1.8 Gy/fraction, and corrected them for long-term tissue recovery between treatments (NID R ). Results: The median time interval between treatments was 30 months (range, 1–185 months). The median follow-up of patients alive at analysis was 42 months (range, 14–70 months). Two of the 35 patients (6%) were identified as having grade 5 aortic toxicities. There was a 25% rate of grade 5 aortic toxicity for patients receiving composite doses ⩾120.0 Gy (vs. 0% for patients receiving R ⩾90.0 Gy) to 1 cm 3 of the aorta

  13. Pediatric thoracic CT angiography at 70 kV: a phantom study to investigate the effects on image quality and radiation dose

    International Nuclear Information System (INIS)

    MacDougall, Robert D.; Kleinman, Patricia L.; Lee, Edward Y.; Yu, Lifeng

    2016-01-01

    Studies have demonstrated that 70-kilovolt (kV) imaging enhances the contrast of iodine, potentially affording a reduction in radiation dose while maintaining the contrast-to-noise ratio (CNR). There is a maximum amount of image noise beyond which increased contrast does not improve structure visualization. Thus, noise should be constrained during protocol optimization. This phantom study investigated the effect of 70-kV imaging for pediatric thoracic CT angiography on image quality and radiation dose in a pediatric population when a noise constraint was considered. We measured contrast and noise using anthropomorphic thoracic phantoms ranging in size from newborn age equivalent to 10-year-old age equivalent. We inserted contrast rods into the phantoms to simulate injected contrast material used in a CT angiography study. The image-quality metric ''iodine CNR with a noise constraint'' was used to determine the relative dose factor for each phantom size, kV setting (70-140 kV) and noise constraint (1.00-1.20). A noise constraint of 1.20 indicates that noise should not increase by more than 20% of the noise level in images performed at the reference kV, selected to be 80 kV in this study. The relative dose factor can be applied to the original dose obtained at 80 kV in order to maintain iodine CNR with the noise constraint. A relative dose factor <1.0 indicates potential for dose reduction while a relative dose factor >1.0 indicates a dose penalty. Iodine contrast was highest for 70 kV and decreased with higher kV settings for all phantom sizes. The relative dose factor at 70 kV was <1.0 for all noise constraint >1.0, indicating potential for dose reduction, for the newborn, 1-year-old and 5-year-old age-equivalent phantom sizes. For the 10-year-old age-equivalent phantom, relative dose factor at 70 kV=1.22, 1.11, 1.01, 0.92 and 0.83 for noise constraint=1.00, 1.05, 1.10, 1.15, 1.20, respectively, indicating a dose penalty for noise constraint

  14. Possible radiation induced cancer of the thoracic esophagus after postoperative irradiation for the breast cancer

    International Nuclear Information System (INIS)

    Ueda, Mamoru; Matsubara, Toshiki; Kasumi, Fujio; Nishi, Mitsumasa; Kajitani, Tamaki

    1991-01-01

    We report 11 patients with cancer of the thoracic esophagus developing after postoperative irradiation therapy for breast cancer. Irradiation was done immediately after mastectomy in these patients and the irradiation field included the unilateral or bilateral parasternal region. They received a total dose ranging from 35 Gy to 60 Gy and the dose received to the thoracic esophagus was estimated from 10 Gy to 48 Gy. All cancer sites were involved in the irradiation field. The latent intervals of 10 patients from radiation to the manifest of cancer ranged from 10 to 19 years. Among 4777 women undergoing mastectomy for breast cancer between 1946 and 1980 in our hospital, 8 women (0.17%) developed cancer of the thoracic esophagus, whereas 5 (0.335%) out of 1534 women treated with mastectomy and radiotherapy with Linac between 1964 and 1980 developed cancer of the thoracic esophagus. Higher incidence of esophageal cancer in patients treated with surgery and radiation suggests that these cancers might be induced by radiation. Eight patients had esophagectomy and 4 patients of them received postoperative irradiation. They have survived from 9 months to 13 years. Two patients were controlled well by the irradiation alone. It is interesting that radiation therapy is sensitive to the possible radiation induced cancer of the thoracic esophagus. Follow up study should be directed to the possible development of second malignancy in patients who survive for a long time after radiation therapy. (author)

  15. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  16. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    International Nuclear Information System (INIS)

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L.; Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M.; Curtis, Rochelle E.; Aleman, Berthe M.P.; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M.

    2013-01-01

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were 60 Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses

  17. Radiation dose to the esophagus from breast cancer radiation therapy, 1943-1996: an international population-based study of 414 patients.

    Science.gov (United States)

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L; Smith, Susan A; Weathers, Rita E; Howell, Rebecca M; Curtis, Rochelle E; Aleman, Berthe M P; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M

    2013-07-15

    To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. We abstracted the radiation therapy treatment parameters from each patient's radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were (60)Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower doses. Published by Elsevier Inc.

  18. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lamart, Stephanie, E-mail: stephanie.lamart@nih.gov [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Stovall, Marilyn [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Simon, Steven L. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Curtis, Rochelle E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Aleman, Berthe M.P. [Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam (Netherlands); Travis, Lois [Rubin Center for Cancer Survivorship and Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York (United States); Kwon, Deukwoo [Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida (United States); Morton, Lindsay M. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower

  19. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  20. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  1. Comparison of dose distribution between 3DCRT and IMRT in middle thoracic and under thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Li Dingjie; Liu Hailong; Mao Ronghu; Liu Ru; Guo Xiaoqi; Lei Hongchang; Wang Jianhua

    2011-01-01

    Objective: To compare the dose distribution between three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) in treating esophageal carcinoma (middle thoracic section and under thoracic section) and to select reasonable treatment methods for esophagus cancer. Methods: Ten cases with cancer of the middle thoracic section and under thoracic section esophagus were chosen for a retrospective treatment-planning study. 3DCRT and IMRT plans were created for each patient: Some critical indicators were evolved in evaluating the treatment plans of IMRT (5B and 7B) and 3DCRT (3B), such as, PTV coverage and dose-volumes to irradiated normal structures. Evaluation indicators: prescription of 50 Gy. total lung volume (V5, V10, V20), mean lung dose (MLD), spinal cord (Dmax), heart (V40) and conformality index (CI). Each plan was evaluated with respect to dose distribution,dose-volume histograms (DVHs), and additional dosimetric endpoints described below. Results: There is no significance of CRT and IMRT technique in protection of total lung volume,mean lung dose, spinal cord (Dmax), target, CI and heart. Conclusion: As To radiotherapy of esophagus cancer of the middle thoracic section and under thoracic section, IMRT has no advantage compared with 3DCRT, the selection of plan should be adapted to the situations of every patient. (authors)

  2. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  3. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  4. Radiation therapy of thoracic and abdominal tumors

    International Nuclear Information System (INIS)

    LaRue, S.M.; Gillette, S.M.; Poulson, J.M.

    1995-01-01

    Until recently, radiotherapy of thoracic and abdominal tumors in animals has been limited. However, the availability of computerized tomography and other imaging techniques to aid in determining the extent of tumor, an increase in knowledge of dose tolerance of regional organs, the availability of isocentrically mounted megavoltage machines, and the willingness of patients to pursue more aggressive treatment is making radiation therapy of tumors in these regions far more common. Tumor remission has been reported after radiation therapy of thymomas. Radiation therapy has been used to treat mediastinal lymphoma refractory to chemotherapy, and may be beneficial as part of the initial treatment regimen for this disease. Chemodectomas are responsive to radiation therapy in human patients, and favorable response has also been reported in dogs. Although primary lung tumors in dogs are rare, in some cases radiation therapy could be a useful primary or adjunctive therapy. Lung is the dose-limiting organ in the thorax. Bladder and urethral tumors in dogs have been treated using intraoperative and external-beam radiation therapy combined with chemotherapy. These tumors are difficult to control locally with surgery alone, although the optimal method of combining treatment modalities has not been established. Local control of malignant perianal tumors is also difficult to achieve with surgery alone, and radiation therapy should be used. Intraoperative radiation therapy combined with external-beam radiation therapy has been used for the management of metastatic carcinoma to the sublumbar lymph nodes. Tolerance of retroperitoneal tissues may be decreased by disease or surgical manipulation

  5. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  6. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  7. Effect of staff training on radiation dose in pediatric CT

    Energy Technology Data Exchange (ETDEWEB)

    Hojreh, Azadeh, E-mail: azadeh.hojreh@meduniwien.ac.at [Medical University of Vienna, Department of Biological Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Weber, Michael, E-mail: michael.Weber@Meduniwien.Ac.At [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Waehringer Guertel 18–20, A-1090 Vienna (Austria); Homolka, Peter, E-mail: peter.Homolka@Meduniwien.Ac.At [Medical University of Vienna, Centre for Medical Physics and Biomedical Engineering, Waehringer Guertel 18–20, A-1090 Vienna (Austria)

    2015-08-15

    Highlights: • Pediatric patient CT doses were compared before and after staff training. • Staff training increasing dose awareness resulted in patient dose reduction. • Application of DRL reduced number of CT's with unusually high doses. • Continuous education and training are effective regarding dose optimization. - Abstract: Objective: To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Methods: Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen–pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. Results: A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p < 0.01). This trend could be demonstrated also for trunk scans, however, significance could not be established due to low patient frequencies (p > 0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal–pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen–pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs – available only for CCT and thorax CT – showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Conclusions: Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice.

  8. Breast internal dose measurements in a physical thoracic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S.D.; Oliveira, M.A.; Castro, A.L.S.; Dias, H.G.; Nogueira, L.B.; Campos, T.P.R., E-mail: sadonatosilva@hotmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Hospital das Clinicas de Uberlandia, MG (Brazil). Departamento de Oncologia; Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Anatomia e Departamento de Imagem

    2017-10-01

    Radiotherapy is a cancer treatment intended to deposit the entire prescribed dose homogeneously into a target volume in order to eliminate the tumor and to spare the surrounding healthy tissues. This paper aimed to provide a dosimetric comparison between the treatment planning system (TPS) ECLIPSE from Varian Medical Systems and the internal dosimetric measurements in a breast phantom. The methodology consisted in performing a 3D conformal radiotherapy planning with two tangential opposite parallel fields applied to the synthetic breast in a thoracic phantom. The irradiation was reproduced in the Varian Linear accelerator, model SL - 20 Precise, 6 MV energy. EBT2 Radiochromic films, placed into the glandular equivalent tissue of the breast, were used to measure the spatial dose distribution. The absorbed dose was compared to those values predicted by the treatment planning system; besides, the dosimetric uncertainties were analyzed. The modal absorbed dose was in agreement with the prescribed value of 180 cGy, although few high dose points between 180 and 220 cGy were detected. The findings suggested a non-uniform dose distribution in the glandular tissue of the synthetic breast, similar to those found in the TPS, associated with the irregular anatomic breast shape and presence of inhomogeneities next to the thoracic wall generated by the low lung density. (author)

  9. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  10. Effect of staff training on radiation dose in pediatric CT.

    Science.gov (United States)

    Hojreh, Azadeh; Weber, Michael; Homolka, Peter

    2015-08-01

    To evaluate the efficacy of staff training on radiation doses applied in pediatric CT scans. Pediatric patient doses from five CT scanners before (1426 scans) and after staff training (2566 scans) were compared statistically. Examinations included cranial CT (CCT), thoracic, abdomen-pelvis, and trunk scans. Dose length products (DLPs) per series were extracted from CT dose reports archived in the PACS. A pooled analysis of non-traumatic scans revealed a statistically significant reduction in the dose for cranial, thoracic, and abdomen/pelvis scans (p0.05). The percentage of scans performed with DLPs exceeding the German DRLs was reduced from 41% to 7% (CCT), 19% to 5% (thorax-CT), from 9% to zero (abdominal-pelvis CT), and 26% to zero (trunk; DRL taken as summed DRLs for thorax plus abdomen-pelvis, reduced by 20% accounting for overlap). Comparison with Austrian DRLs - available only for CCT and thorax CT - showed a reduction from 21% to 3% (CCT), and 15 to 2% (thorax CT). Staff training together with application of DRLs provide an efficient approach for optimizing radiation dose in pediatric CT practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Investigation on radiation doses to patients in digital radiography

    International Nuclear Information System (INIS)

    Qiu Zhengshuai; Deng Daping; Li Quantai; Song Gang; Su Xu

    2014-01-01

    Objective: To investigate the patients' radiation dose received in digital radiography(DR) and provide basic data for developing diagnostic reference levels. Methods: The patient's ESD was estimated using the TLDs and DAP was measured by the dose-area product meter. The E values were then calculated by the DAP using Monte Carlo data and RefDose software. Measurements were made for twelve types of examination: skull PA, skull LAT, chest PA, chest LAT, abdomen AP, pelvis AP, cervix spine PA, cervix spine LAT, thoracic spine PA, thoracic spine LAT, lumber spine PA and lumber spine LAT. Results: Both kV and mAs varied in the same type of examination for ESD, DAP and E(F = 33.47, 24.68, 43.19, P < 0.05). The dose each time for lumber spine LAT was the highest, reached 4.62 mGy in ESD and 2.26 Gy·cm 2 in DAP, respectively. The E of abdomen AP averaged as 0.59 mSv, higher than that of lumber spine LAT. Even for the same type of examination, the dose from each equipment was different. Conclusions: DR has the potential to reduce the patients' radiation doses. The guidance levels suitable for Chinese population should be established as soon as possible. (authors)

  12. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Thoracic radiation therapy before autologous bone marrow transplantation in relapsed or refractory Hodgkin's disease

    International Nuclear Information System (INIS)

    Tsang, R.W.; Gospodarowicz, M.K.; Sutcliffe, S.B.; Crump, M.; Keating, A.

    1999-01-01

    The aim of this study was to assess the relationship between radiation therapy (RT) and treatment-related mortality in patients receiving high-dose chemotherapy (HDCT) and autologous bone marrow transplantation (ABMT) for recurrent/refractory Hodgkin's disease (HD). Between December 1986 and December 1992, 59 patients previously treated at the Princess Margaret Hospital underwent HDCT (etoposide 60 mg/kg, melphalan 160 mg/m 2 ) and ABMT, performed for refractory (13 patients) or relapsed (46 patients) HD. RT was incorporated in the salvage treatment with the intent to achieve complete control of disease prior to ABMT. RT was given before ABMT in 33 patients, and after ABMT in 4 patients. Treatment-related (TR) mortality was defined as any death occurring within 100 days of ABMT. Autopsies were performed for all patients with TR deaths. With a median follow-up of 4.6 years (range 1.2-7.4 years), the actuarial overall survival was 41%±14% at 5 years. We observed 37 deaths, and 10 of these were TR deaths. Among the 24 patients who received thoracic RT before ABMT, there were 8 TR deaths, 3 of these solely attributable to radiation pneumonitis. The remaining 5 TR deaths all had respiratory failure with complicating sepsis as a major medical problem. The interval from RT to ABMT was shorter for 8 patients dying of TR death (mean 37 days; range 0-103 days), than for the 16 survivors (mean 105 days; range 0-263 days) (P=0.026). Among 9 patients with ABMT within 50 days of thoracic RT, 6 had TR death. In contrast, among the 35 patients without thoracic RT (26 no RT, 9 non-thoracic RT), there were only 2 TR deaths. The 4 patients treated with mantle RT post-ABMT had no serious pulmonary complications. The use of thoracic RT before HDCT and ABMT was associated with a high post-transplant mortality rate. It was most evident in patients who received thoracic RT within 50 days prior to ABMT, or when the target volume included large volume of lung. We recommend that the use of

  14. Radiation Therapy of a Chordoma of the Thoracic Vertebra-a Case Report and Review of Literatures-

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Young; Choi, Myung Sun [Korea University College of Medicine, Seoul (Korea, Republic of)

    1988-12-15

    Chordom is a malignant tumor arising from the primitive notochord involving the axial skeleton. It usually occurs at sacrococcygeal and basisphenoidal area but only rarely does at other vertebral areas, especially at the thoracic vertebrae. It has a slow growth rate and is locally aggressive with an extremely high rate of local recurrence. Either surgery or radiation alone often fails to cure the disease and the local failure is the main cause of treatment failure and death. Overall 5 year survival rate is less than 10%. Useful palliation or occasional cure can be obtained by the combination of surgery and radiotherapy. After incomplete resection, the tumor requires radiation dose of 7,000 cGy or more over 6-7 weeks for local control. Tumor regression is slow in response to irradiation and continuation of the regression for several months after completion of RT is not unusual. We report a case of chordoma of the thoracic vertebra, the site of extreme rarity, which showed good local control after partial resection and radiation therapy. He is well and alive without any evidence of recurrence after 13 months of treatment with near complete tumor regression.

  15. Radiation Therapy of a Chordoma of the Thoracic Vertebra-a Case Report and Review of Literatures-

    International Nuclear Information System (INIS)

    Kim, Joo Young; Choi, Myung Sun

    1988-01-01

    Chordom is a malignant tumor arising from the primitive notochord involving the axial skeleton. It usually occurs at sacrococcygeal and basisphenoidal area but only rarely does at other vertebral areas, especially at the thoracic vertebrae. It has a slow growth rate and is locally aggressive with an extremely high rate of local recurrence. Either surgery or radiation alone often fails to cure the disease and the local failure is the main cause of treatment failure and death. Overall 5 year survival rate is less than 10%. Useful palliation or occasional cure can be obtained by the combination of surgery and radiotherapy. After incomplete resection, the tumor requires radiation dose of 7,000 cGy or more over 6-7 weeks for local control. Tumor regression is slow in response to irradiation and continuation of the regression for several months after completion of RT is not unusual. We report a case of chordoma of the thoracic vertebra, the site of extreme rarity, which showed good local control after partial resection and radiation therapy. He is well and alive without any evidence of recurrence after 13 months of treatment with near complete tumor regression

  16. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Poonam, E-mail: yadav@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI (United States); Paliwal, Bhudatt R. [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Department of Medical Physics, University of Wisconsin, Madison, WI (United States); Kozak, Kevin [Department of Human Oncology, University of Wisconsin, Madison, WI (United States)

    2013-10-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.

  17. Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine

    International Nuclear Information System (INIS)

    Yadav, Poonam; Paliwal, Bhudatt R.; Kozak, Kevin

    2013-01-01

    Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison of target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine

  18. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Fu, Yuchuan; Deng, Min; Zhou, Xiaojuan; Lin, Qiang; Du, Bin; Tian, Xue; Xu, Yong; Wang, Jin; Lu, You; Gong, Youling

    2017-01-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V 5 , V 13 , V 20 , mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V 30 for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy with intensity

  19. Dosimetric effect of beam arrangement for intensity-modulated radiation therapy in the treatment of upper thoracic esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yuchuan [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Deng, Min; Zhou, Xiaojuan [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Lin, Qiang; Du, Bin [Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Tian, Xue; Xu, Yong; Wang, Jin; Lu, You [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Gong, Youling, E-mail: gongyouling@hotmail.com [Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu (China)

    2017-04-01

    To evaluate the lung sparing in intensity-modulated radiation therapy (IMRT) for patients with upper thoracic esophageal tumors extending inferiorly to the thorax by different beam arrangement. Overall, 15 patient cases with cancer of upper thoracic esophagus were selected for a retrospective treatment-planning study. Intensity-modulated radiation therapy plans using 4, 5, and 7 beams (4B, 5B, and 7B) were developed for each patient by direct machine parameter optimization (DMPO). All plans were evaluated with respect to dose volumes to irradiated targets and normal structures, with statistical comparisons made between 4B with 5B and 7B intensity-modulated radiation therapy plans. Differences among plans were evaluated using a two-tailed Friedman test at a statistical significance of p < 0.05. The maximum dose, average dose, and the conformity index (CI) of planning target volume 1 (PTV1) were similar for 3 plans for each case. No significant difference of coverage for planning target volume 1 and maximum dose for spinal cords were observed among 3 plans in present study (p > 0.05). The average V{sub 5}, V{sub 13}, V{sub 20}, mean lung dose, and generalized equivalent uniform dose (gEUD) for the total lung were significantly lower in 4B-plans than those data in 5B-plans and 7B-plans (p < 0.01). Although the average V{sub 30} for the total lung were significantly higher in 4B-plans than those in 5B-plans and 7B-plans (p < 0.05). In addition, when comparing with the 4B-plans, the conformity/heterogeneity index of the 5B- and 7B-plans were significantly superior (p < 0.05). The 4B-intensity-modulated radiation therapy plan has advantage to address the specialized problem of lung sparing to low- and intermediate-dose exposure in the thorax when dealing with relative long tumors extended inferiorly to the thoracic esophagus for upper esophageal carcinoma with the cost for less conformity. Studies are needed to compare the superiority of volumetric modulated arc therapy

  20. Interphase death and repair of radiation injuries to thoracic aorta endothelium of mammals

    International Nuclear Information System (INIS)

    Shcherbova, E.N.; Ivanov, Yu.V.

    1978-01-01

    Using the method of plane preparations injury to the thoracic aorta endothelium of guinea-pigs, rats and rabbits exposed to various doses of γ-rays ( 60 Co) has been studied. The value of the threshold dose, tested by diminution of the endothelial cell quantity, has been found to be 250 R for guinea-pigs, 830 R, for rats and 880 R, for rabbits. It has been shown by means of the fractionated irradiation model that the interphase endothelial cells of guinea-pigs and rats can recover from sublethal radiation injuries

  1. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  2. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  3. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  4. Effective dose to patients from thoracic spine examinations with tomosynthesis

    International Nuclear Information System (INIS)

    Svalkvist, Angelica; Baath, Magnus; Soederman, Christina

    2016-01-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm -2 was obtained. (authors)

  5. SU-F-T-106: A Dosimetric Study of Intensity Modulated Radiation Therapy to Decrease Radiation Dose to the Thoracic Vertebral Bodies in Patients Receiving Concurrent Chemoradiation for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    DiCostanzo, Dominic; Barney, Christian L.; Bazan, Jose G. [The Ohio State University, Columbus, Ohio (United States)

    2016-06-15

    Purpose: Recent clinical studies have shown a correlation between radiation dose to the thoracic vertebral bodies (TVB) and the development of hematologic toxicity (HT) in patients receiving chemoradiation (CRT) for lung cancer (LuCa). The feasibility of a bone-marrow sparing (BMS) approach in this group of patients is unknown. We hypothesized that radiation dose to the TVB can be reduced with an intensity modulated radiation therapy(IMRT)/volumetric modulated arc radiotherapy(VMAT) without affecting plan quality. Methods: We identified LuCa cases treated with curative intent CRT using IMRT/VMAT from 4/2009 to 2/2015. The TVBs from T1–T10 were retrospectively contoured. No constraints were placed on the TVB structure initially. A subset were re-planned with BMS-IMRT/VMAT with an objective or reducing the mean TVB dose to <23 Gy. The following data were collected on the initial and BMS plans: mean dose to planning target volume (PTV), lungs-PTV, esophagus, heart; lung V20; cord max dose. Pairwise comparisons were performed using the signed rank test. Results: 94 cases received CRT with IMRT/VMAT. We selected 11 cases (7 IMRT, 4 VMAT) with a range of initial mean TVB doses (median 35.7 Gy, range 18.9–41.4 Gy). Median prescription dose was 60 Gy. BMS-IMRT/VMAT significantly reduced the mean TVB dose by a median of 10.2 Gy (range, 1.0–16.7 Gy, p=0.001) and reduced the cord max dose by 2.9 Gy (p=0.014). BMS-IMRT/VMAT had no impact on lung mean (median +17 cGy, p=0.700), lung V20 (median +0.5%, p=0.898), esophagus mean (median +13 cGy, p=1.000) or heart mean (median +16 cGy, p=0.365). PTV-mean dose was not affected by BMS-IMRT/VMAT (median +13 cGy, p=0.653). Conclusion: BMS-IMRT/VMAT was able to significantly reduce radiation dose to the TVB without compromising plan quality. Prospective evaluation of BMS-IMRT/VMAT in patients receiving CRT for LuCa is warranted to determine if this approach results in clinically significant reductions in HT.

  6. Anticoagulation and high dose liver radiation. A preliminary report

    International Nuclear Information System (INIS)

    Lightdale, C.J.; Wasser, J.; Coleman, M.; Brower, M.; Tefft, M.; Pasmantier, M.

    1979-01-01

    Two groups of patients were observed for evidence of acute radiation hepatitis during high dose radiation to the liver. The first group of 18 patients with metastatic liver disease received an average of 4,050 rad to the whole liver. Half received anticoagulation with warfarin. One patient on anticoagulation developed evidence of acute radiation hepatitis while 2 patients did so without anticoagulation. Eleven patients with Hodgkin's disease received 4,000 rad to the left lobe of the liver during extended field radiation. Four of these 11 patients were anticoagulated to therapeutic range. Only one of the fully anticoagulated patients showed changes on liver scan consistent with radiation hepatitis whereas three did so without anticoagulation. No serious sequelae from anticoagulation occurred in either group. These preliminary data suggest that anticoagulation may be safely administered with high dose hepatic radiation and that further trials with anticoagulation are warranted

  7. Transperineal high-dose-rate interstitial radiation therapy in the management of gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itami, Jun; Hara, Ryuseke; Kozuka, Takuyou; Yamashita, Hideomi; Nakajima, Kaori; Shibata, Kouji; Abe, Yoshihisa; Fuse, Masashi; Ito, Masashi [International Medical Center of Japan, Tokyo (Japan). Dept. of Radiation Therapy and Oncology

    2003-11-01

    Background: High-dose-rate interstitial radiation therapy is a newly introduced modality, and its role in the management of gynecologic malignancies remains to be studied. Clinical experience in high-dose-rate interstitial radiation therapy was retrospectively investigated. Patients and Methods: Eight patients with primary and nine with recurrent gynecologic malignancies underwent high-dose-rate interstitial radiation therapy with/without external-beam irradiation. Fractional dose of the high-dose-rate interstitial radiation therapy ranged between 4 and 6 Gy with total doses of 15-54 Gy. Interstitial irradiation was performed twice daily with an interval of > 6 h. Results: 2-year local control rate was 75% for primary treatment and 47% for treatment of recurrence (p = 0.46). Maximum tumor size had a statistically significant impact on local control (p < 0.002). Grade 2 and 4 late complications were seen in five patients, and the incidence was significantly higher in patients with a larger volume enclosed by the prescribed fractional dose of high-dose-rate interstitial radiation therapy. The incidence of grade 2 and 4 complications at 18 months was 78% and 0% with a volume > 100 cm{sup 3} and {<=} 100 cm{sup 3}, respectively (p < 0.04). Conclusion: Although high-dose-rate interstitial radiation therapy is a promising modality, it must be applied cautiously to patients with bulky tumors because of the high incidence of serious complications. (orig.)

  8. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  9. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    Gant, G.J.; Saunders, M.; Banos, C.; Mo, L.; Davies, J.; Evans, O.

    2001-01-01

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  10. Trend of patient radiation doses in medical examination in Japan

    International Nuclear Information System (INIS)

    Suzuki, Shoichi

    2013-01-01

    We have investigated radiation doses to patients in selected types of examinations in Japan since 1974 and have analyzed the trend of patient radiation doses during a period of 37 years. This study covered regular plain X-ray scanning (including mammography) and computed tomography (CT) scanning. Dose evaluation was performed in terms of entrance skin dose (ESD) for regular plain X-ray scanning, average glandular dose (AGD) for mammography, and volume CT dose index (CTDIvol) for CT scanning. Evaluation was performed in 26 orientations at 21 sites for regular plain X-rays, and for cranial, thoracic, and abdominal scans of children and adults for CT scanning. With the exception of chest X-rays, the dose during regular plain X-ray scanning had decreased by approximately 50% compared with scans performed in 1974. The dose during mammography had decreased to less than 10% of its former level. In scans performed in 2011, dose at all sites were within International Atomic Energy Authority (IAEA) guidance levels. The increasing use of multiple detectors in CT scanning devices was evident in CT scanning. A comparison of doses from cranial non-helical scans performed in 2007 and 2011 found that the latter were higher. An examination of changes in doses between 1997 and 2011 revealed that doses had tended to increase in cranial scans of adults, but had hardly changed at all in abdominal scans. Doses during CT scanning of children were around half those for adults in cranial, thoracic, and abdominal scans. We have ascertained changes in the doses to which patients have been exposed during X-ray scanning in Japan. (author)

  11. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  12. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    Science.gov (United States)

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    Science.gov (United States)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  14. measurement of high dose radiation using yellow perspex dosimeter

    International Nuclear Information System (INIS)

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its equation was ODc exp. [Bo + In(dose).Bi] Value of Bo = -0.215 and Bi=0.5020. From the experiment it was suggested that routine dosimeter (yellow perspex) should be calibrated formerly against standard dosemeters

  15. Treatment outcomes of extended-field radiation therapy for thoracic superficial esophageal cancer

    International Nuclear Information System (INIS)

    Lee, Doo Yeul; Moon, Sung Ho; Cho, Kwan Ho; Kim, Tae Hyun; Kim, Moon Soo; Lee, Jong Yeul; Suh, Yang Gun

    2017-01-01

    To evaluate the efficacy and safety of extended-field radiation therapy for patients with thoracic superficial esophageal cancer (SEC). From May 2007 to October 2016, a total of 24 patients with thoracic SEC (T1a and T1b) who underwent definitive radiotherapy and were analyzed retrospectively. The median total radiotherapy dose was 64 Gy (range, 54 to 66 Gy) in conventional fractionation. All 24 patients received radiotherapy to whole thoracic esophagus and 23 patients received elective nodal irradiation. The supraclavicular lymph nodes, the celiac lymph nodes, and both of those nodal areas were included in 11, 3, and 9 patients, respectively. The median follow-up duration was 28.7 months (range 7.9 to 108.0 months). The 3-year overall survival, local control, and progression-free survival rates were 95.2%, 89.7%, and 78.7%, respectively. There were 5 patients (20.8%) with progression of disease, 2 local failures (8.3%) and 3 (12.5%) regional failures. Three patients also experienced distant metastasis and had died of disease progression. There were no treatment-related toxicities of grade 3 or higher. Definitive extended-field radiotherapy for thoracic SEC showed durable disease control rates in medically inoperable and endoscopically unfit patients. Even extended-field radiotherapy with elective nodal irradiation was safe without grade 3 or 4 toxicities

  16. Treatment outcomes of extended-field radiation therapy for thoracic superficial esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yeul; Moon, Sung Ho; Cho, Kwan Ho; Kim, Tae Hyun; Kim, Moon Soo; Lee, Jong Yeul; Suh, Yang Gun [Research Institute and Hospital, National Cancer Center, Goyang (Korea, Republic of)

    2017-09-15

    To evaluate the efficacy and safety of extended-field radiation therapy for patients with thoracic superficial esophageal cancer (SEC). From May 2007 to October 2016, a total of 24 patients with thoracic SEC (T1a and T1b) who underwent definitive radiotherapy and were analyzed retrospectively. The median total radiotherapy dose was 64 Gy (range, 54 to 66 Gy) in conventional fractionation. All 24 patients received radiotherapy to whole thoracic esophagus and 23 patients received elective nodal irradiation. The supraclavicular lymph nodes, the celiac lymph nodes, and both of those nodal areas were included in 11, 3, and 9 patients, respectively. The median follow-up duration was 28.7 months (range 7.9 to 108.0 months). The 3-year overall survival, local control, and progression-free survival rates were 95.2%, 89.7%, and 78.7%, respectively. There were 5 patients (20.8%) with progression of disease, 2 local failures (8.3%) and 3 (12.5%) regional failures. Three patients also experienced distant metastasis and had died of disease progression. There were no treatment-related toxicities of grade 3 or higher. Definitive extended-field radiotherapy for thoracic SEC showed durable disease control rates in medically inoperable and endoscopically unfit patients. Even extended-field radiotherapy with elective nodal irradiation was safe without grade 3 or 4 toxicities.

  17. Radiation exposure for 'caregivers' during high-dose outpatient radioiodine therapy

    International Nuclear Information System (INIS)

    Marriott, C. J.; Webber, C. E.; Gulenchyn, K. Y.

    2007-01-01

    On 27 occasions, radiation doses were measured for a family member designated as the 'caregiver' for a patient receiving high-dose radioiodine outpatient therapy for differentiated thyroid carcinoma. For 25 of the administrations, patients received 3.7 GBq of 131 I. Radiation doses for the designated caregivers were monitored on an hourly basis for 1 week using electronic personal dosemeters. The average penetrating dose was 98±64 μSv. The maximum penetrating dose was 283 μSv. Measured dose rate profiles showed that, on average, one-third of the caregiver dose was received during the journey home from hospital. The mean dose rate profile showed rapid clearance of 131 I with three distinct phases. The corresponding clearance half-times were 131 I contaminating the home. (authors)

  18. Comparing the radiosensitivity of cervical and thoracic spinal cord using the relative seriality model

    International Nuclear Information System (INIS)

    Adamus-Gorka, M.; Lind, B.K.; Brahme, A.

    2003-01-01

    Spinal cord is one of the most important normal tissues that are aimed to be spared during radiation therapy of cancer. This organ has been known for its strongly serial character and its high sensitivity to radiation. In order to compare the sensitivity of different parts of spinal cord, the early data (1970's) for radiation myelopathy available in the literature could be used. In the present study the relative seriality model (Kallman et al. 1992) has been fitted to two different sets of clinical data for spinal cord irradiation: radiation myelitis of cervical spinal cord after treating 248 patients for malignant disease of head and neck (Abbatucci et al. 1978) and radiation myelitis of thoracic spinal cord after radiation treating 43 patients with lung carcinoma (Reinhold et al. 1976). The maximum likelihood method was applied for the fitting and the corresponding parameters together with their 68% confidence intervals calculated for each of the datasets respectively. The alpha-beta ratio for the thoracic survival was also obtained. On the basis of the present study the following conclusions can be drawn: 1. radiation myelopathy is a strongly serial endpoint, 2. it appears to be differences in radiosensitivity between the cervical and thoracic region of spinal cord, 3. thoracic spinal cord revealed very serial characteristic of dose response, while the cervical myelopathy seems to be a bit less serial endpoint, 4. the dose-response curve is much steeper in case of myelopathy of cervical spinal cord, due to the much higher gamma value for this region. This work compares the fitting of NTCP model to the cervical and thoracic regions of the spinal cord and shows quite different responses. In the future more data should be tested for better understanding the mechanism of spinal cord sensitivity to radiation

  19. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  20. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  1. Dose reduction to normal tissues as compared to the gross tumor by using intensity modulated radiotherapy in thoracic malignancies

    Directory of Open Access Journals (Sweden)

    Bhalla NK

    2006-08-01

    Full Text Available Abstract Background and purpose Intensity modulated radiotherapy (IMRT is a powerful tool, which might go a long way in reducing radiation doses to critical structures and thereby reduce long term morbidities. The purpose of this paper is to evaluate the impact of IMRT in reducing the dose to the critical normal tissues while maintaining the desired dose to the volume of interest for thoracic malignancies. Materials and methods During the period January 2002 to March 2004, 12 patients of various sites of malignancies in the thoracic region were treated using physical intensity modulator based IMRT. Plans of these patients treated with IMRT were analyzed using dose volume histograms. Results An average dose reduction of the mean values by 73% to the heart, 69% to the right lung and 74% to the left lung, with respect to the GTV could be achieved with IMRT. The 2 year disease free survival was 59% and 2 year overall survival was 59%. The average number of IMRT fields used was 6. Conclusion IMRT with inverse planning enabled us to achieve desired dose distribution, due to its ability to provide sharp dose gradients at the junction of tumor and the adjacent critical organs.

  2. Homologous tracheal transplantation with grafts previously exposed to high doses of gamma radiation in dogs without immunosuppressive agents

    International Nuclear Information System (INIS)

    Yokomise, Hiroyasu; Inui, Kenji; Kure, Toshio; Wada, Hiromi; Itomi, Shigeki

    1993-01-01

    The study was designed to determine whether previous high doses irradiation of gamma radiation would contribute to tracheal transplantation with no use of immunosuppressive agents. Twenty mongrel dogs were used as experimental animals. Five rings of thoracic tracheas, which were extracted from recipients, were exposed to 20000, 50000, or 100000 cGy in each 5 dogs. Five other non-irradiated dogs served as controls. Irradiated tracheal grafts were transplanted and covered with pedicled omentum. After transplantation, no immunosuppressive agents were given to dogs. All dogs in the control group died of tracheal stenosis due to graft-host rejection within one month. All but one long-term survivor died of tracheal stenosis, as well, in both the 20000 cGy and 50000 cGy groups. In the 100000 cGy group, grafts became viable in 4 dogs, and three of these survived one year or more. In conclusion, previous irradiation with high doses of 100000 cGy allowed homologous tracheal transplantation even when no immunosuppressive agents are given. (N.K.)

  3. Monitoring of high-radiation areas for the assessment of operational and body doses

    International Nuclear Information System (INIS)

    Chen, T.J.; Tung, C.J.; Yeh, W.W.; Liao, R.Y.

    2004-01-01

    The International Commission on Radiological Protection (ICRP) recommended a system of dose limits for the protection of ionizing radiation. This system was established based on the effective dose, E, and the equivalent dose to an organ or tissue, H T , to assess stochastic and deterministic effects. In radiation protection monitoring for external radiation, operational doses such as the deep dose equivalent index, H I,d , shallow dose equivalent index, H I,s , ambient dose equivalent [1,4-6], H*, directional dose equivalent, H', individual dose equivalent-penetrating, H p , and individual dose equivalent-superficial, H s , are implemented. These quantities are defined in an International Commission on Radiation Units and Measurements (ICRU) sphere and in an anthropomorphic phantom under simplified irradiation conditions. They are useful when equivalent doses are below the corresponding limits. In the case of equivalent doses far below the limits, the exposure or air kerma is commonly applied. For workers exposed to high levels of radiation, accurate assessments of effective doses and equivalent doses may be needed in order to acquire legal and health information. In the general principles of monitoring for radiation protection of workers, ICRP recommended that: 'A graduated response is advocated for the monitoring of the workplace and for individual monitoring - graduated in the sense that a greater degree of monitoring is deemed to be necessary as doses increase of as unpredictability increases. Gradually more complex or realistic procedures should be adopted as doses become higher. Thus, at low dose equivalents (corresponding say to those within Working Condition B) dosimetric quantities might be used directly to assess exposure, since accuracy is not crucial. At intermediate dose equivalents (corresponding say to Working Condition A and slight overexposures) somewhat greater accuracy is warranted, and the conversion coefficients from dosimetric to radiation

  4. Physiological Interaction of Heart and Lung in Thoracic Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghobadi, Ghazaleh; Veen, Sonja van der [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Bartelds, Beatrijs [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Boer, Rudolf A. de [Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Dickinson, Michael G. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Jong, Johan R. de [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Faber, Hette; Niemantsverdriet, Maarten [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [Kernfysisch Versneller Instituut, University of Groningen, Groningen (Netherlands); Berger, Rolf M.F. [Center for Congenital Heart Disease, Beatrix Children Hospital, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-12-01

    Introduction: The risk of early radiation-induced lung toxicity (RILT) limits the dose and efficacy of radiation therapy of thoracic tumors. In addition to lung dose, coirradiation of the heart is a known risk factor in the development RILT. The aim of this study was to identify the underlying physiology of the interaction between lung and heart in thoracic irradiation. Methods and Materials: Rat hearts, lungs, or both were irradiated to 20 Gy using high-precision proton beams. Cardiopulmonary performance was assessed using breathing rate measurements and F{sup 18}-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG-PET) scans biweekly and left- and right-sided cardiac hemodynamic measurements and histopathology analysis at 8 weeks postirradiation. Results: Two to 12 weeks after heart irradiation, a pronounced defect in the uptake of {sup 18}F-FDG in the left ventricle (LV) was observed. At 8 weeks postirradiation, this coincided with LV perivascular fibrosis, an increase in LV end-diastolic pressure, and pulmonary edema in the shielded lungs. Lung irradiation alone not only increased pulmonary artery pressure and perivascular edema but also induced an increased LV relaxation time. Combined irradiation of lung and heart induced pronounced increases in LV end-diastolic pressure and relaxation time, in addition to an increase in right ventricle end-diastolic pressure, indicative of biventricular diastolic dysfunction. Moreover, enhanced pulmonary edema, inflammation and fibrosis were also observed. Conclusions: Both lung and heart irradiation cause cardiac and pulmonary toxicity via different mechanisms. Thus, when combined, the loss of cardiopulmonary performance is intensified further, explaining the deleterious effects of heart and lung coirradiation. Our findings show for the first time the physiological mechanism underlying the development of a multiorgan complication, RILT. Reduction of dose to either of these organs offers new opportunities to

  5. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio [University Hospital ' ' S.Orsola' ' , Cardio-Thoracic-Vascular Department, Cardio-Thoracic Radiology Unit, Bologna (Italy)

    2016-02-15

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  6. 128-slice CT angiography of the aorta without ECG-gating: efficacy of faster gantry rotation time and iterative reconstruction in terms of image quality and radiation dose

    International Nuclear Information System (INIS)

    Russo, Vincenzo; Garattoni, Monica; Buia, Francesco; Attina, Domenico; Lovato, Luigi; Zompatori, Maurizio

    2016-01-01

    To evaluate image quality and radiation dose of non ECG-gated 128-slice CT angiography of the aorta (CTAA) with fast gantry rotation time and iterative reconstruction. Four hundred and eighty patients underwent non ECG-gated CTAA. Qualitative and quantitative image quality assessments were performed. Radiation dose was assessed and compared with the dose of patients who underwent ECG-gated CTAA (n = 126) and the dose of previous CTAA performed with another CT (n = 339). Image quality (aortic root-ascending portion) was average-to-excellent in more than 94 % of cases, without any non-diagnostic scan. For proximal coronaries, image quality was average-to-excellent in more than 50 %, with only 21.5 % of non-diagnostic cases. Quantitative analysis results were also good. Mean radiation dose for thoracic CTAA was 5.6 mSv versus 20.6 mSv of ECG-gated protocol and 20.6 mSv of 16-slice CTAA scans, with an average dose reduction of 72.8 % (p < 0.001). Mean radiation dose for thoracic-abdominal CTAA was 9.7 mSv, versus 20.9 mSv of 16-slice CTAA scans, with an average dose reduction of 53.6 % (p < 0.001). Non ECG-gated 128-slice CTAA is feasible and able to provide high quality visualization of the entire aorta without significant motion artefacts, together with a considerable dose and contrast media volume reduction. (orig.)

  7. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.; Hayes, John K.; Hsu, I-Chow J.; Morris, David E.; Rabinovitch, Rachel A.; Tward, Jonathan D.; Rosenthal, Seth A.

    2011-01-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  8. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    International Nuclear Information System (INIS)

    Liu Hui; Zhang Xu; Vinogradskiy, Yevgeniy Y.; Swisher, Stephen G.; Komaki, Ritsuko; Chang, Joe Y.

    2012-01-01

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T 10 and mean lung dose (MLD) of the previous plan and the V 10 -V 40 and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 ≤65% before SABR (P=.012), V 20 ≥30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 ≤65%, a previous PTV spanning the bilateral mediastinum, and V 20 ≥30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  9. Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images

    Science.gov (United States)

    Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.

  10. Systematic review of dose-volume parameters in the prediction of esophagitis in thoracic radiotherapy

    International Nuclear Information System (INIS)

    Rose, Jim; Rodrigues, George; Yaremko, Brian; Lock, Michael; D'Souza, David

    2009-01-01

    Purpose: With dose escalation and increasing use of concurrent chemoradiotherapy, radiation esophagitis (RE) remains a common treatment-limiting acute side effect in the treatment of thoracic malignancies. The advent of 3DCT planning has enabled investigators to study esophageal dose-volume histogram (DVH) parameters as predictors of RE. The purpose of this study was to assess published dosimetric parameters and toxicity data systematically in order to define reproducible predictors of RE, both for potential clinical use, and to provide recommendations for future research in the field. Materials and methods: We performed a systematic literature review of published studies addressing RE in the treatment of lung cancer and thymoma. Our search strategy included a variety of electronic medical databases, textbooks and bibliographies. Both prospective and retrospective clinical studies were included. Information relating to the relationship among measured dosimetric parameters, patient demographics, tumor characteristics, chemotherapy and RE was extracted and analyzed. Results: Eighteen published studies were suitable for analysis. Eleven of these assessed acute RE, while the remainder assessed both acute and chronic RE together. Heterogeneity of esophageal contouring practices, individual differences in information reporting and variability of RE outcome definitions were assessed. Well-described clinical and logistic modeling directly related V 35Gy , V 60Gy and SA 55Gy to clinically significant RE. Conclusions: Several reproducible dosimetric parameters exist in the literature, and these may be potentially relevant in the prediction of RE in the radiotherapy of thoracic malignancies. Further clarification of the predictive relationship between such standardized dosimetric parameters and observed RE outcomes is essential to develop efficient radiation treatment planning in locally advanced NSCLC in the modern concurrent chemotherapy and image-guided IMRT era.

  11. Consideration of Dose Limits for Organs at Risk of Thoracic Radiotherapy: Atlas for Lung, Proximal Bronchial Tree, Esophagus, Spinal Cord, Ribs, and Brachial Plexus

    International Nuclear Information System (INIS)

    Kong, Feng-Ming; Ritter, Timothy; Quint, Douglas J.; Senan, Suresh; Gaspar, Laurie E.; Komaki, Ritsuko U.; Hurkmans, Coen W.; Timmerman, Robert; Bezjak, Andrea; Bradley, Jeffrey D.; Movsas, Benjamin; Marsh, Lon; Okunieff, Paul; Choy, Hak; Curran, Walter J.

    2011-01-01

    Purpose: To review the dose limits and standardize the three-dimenional (3D) radiographic definition for the organs at risk (OARs) for thoracic radiotherapy (RT), including the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Methods and Materials: The present study was performed by representatives from the Radiation Therapy Oncology Group, European Organization for Research and Treatment of Cancer, and Soutwestern Oncology Group lung cancer committees. The dosimetric constraints of major multicenter trials of 3D-conformal RT and stereotactic body RT were reviewed and the challenges of 3D delineation of these OARs described. Using knowledge of the human anatomy and 3D radiographic correlation, draft atlases were generated by a radiation oncologist, medical physicist, dosimetrist, and radiologist from the United States and reviewed by a radiation oncologist and medical physicist from Europe. The atlases were then critically reviewed, discussed, and edited by another 10 radiation oncologists. Results: Three-dimensional descriptions of the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus are presented. Two computed tomography atlases were developed: one for the middle and lower thoracic OARs (except for the heart) and one focusing on the brachial plexus for a patient positioned supine with their arms up for thoracic RT. The dosimetric limits of the key OARs are discussed. Conclusions: We believe these atlases will allow us to define OARs with less variation and generate dosimetric data in a more consistent manner. This could help us study the effect of radiation on these OARs and guide high-quality clinical trials and individualized practice in 3D-conformal RT and stereotactic body RT.

  12. Efficacy of Low-Dose Protocol in Follow-Up of Lymphoproliferative Disorders - Preliminary Results

    International Nuclear Information System (INIS)

    Popic-Ramac, J.; Brnic, Z.; Klasic, B.; Hebrang, A.; Knezevic, Z.

    2011-01-01

    Most medically-related radiation is caused by diagnostic examinations, in particular by computed tomography (CT). The purpose of this research is to reduce radiation doses faced by the population frequently exposed to such procedures-those with lymphoproliferative disorders. The research was conducted comparing radiation-exposition doses received by the radiosensitive organs (thyroid, lens, breast and gonad) using the standard thoracic CT protocol with the radiation received using the low-dose protocol, while maintaining display quality. The standard-dose thoracic protocol implies 120 kV and 150 mAs. The low-dose protocol was conducted on the same device using 120 kV and 30 mAs. We confirmed the hypothesis that the use of the low-dose thoracic CT protocol leads to a reduction in radiation dose without compromising display quality. It is further expected that a reduction in doses will reduce the risk of radiation-related mutations. (author)

  13. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Franziska M.; Johnson, Thorsten R.C.; Sommer, Wieland H.; Thierfelder, Kolja M.; Meinel, Felix G. [University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-06-01

    To determine the radiation dose, image quality, and clinical utility of non-enhanced chest CT with spectral filtration. We retrospectively analysed 25 non-contrast chest CT examinations acquired with spectral filtration (tin-filtered Sn100 kVp spectrum) compared to 25 examinations acquired without spectral filtration (120 kV). Radiation metrics were compared. Image noise was measured. Contrast-to-noise-ratio (CNR) and figure-of-merit (FOM) were calculated. Diagnostic confidence for the assessment of various thoracic pathologies was rated by two independent readers. Effective chest diameters were comparable between groups (P = 0.613). In spectral filtration CT, median CTDI{sub vol}, DLP, and size-specific dose estimate (SSDE) were reduced (0.46 vs. 4.3 mGy, 16 vs. 141 mGy*cm, and 0.65 vs. 5.9 mGy, all P < 0.001). Spectral filtration CT had higher image noise (21.3 vs. 13.2 HU, P < 0.001) and lower CNR (47.2 vs. 75.3, P < 0.001), but was more dose-efficient (FOM 10,659 vs. 2,231/mSv, P < 0.001). Diagnostic confidence for parenchymal lung disease and osseous pathologies was lower with spectral filtration CT, but no significant difference was found for pleural pathologies, pulmonary nodules, or pneumonia. Non-contrast chest CT using spectral filtration appears to be sufficient for the assessment of a considerable spectrum of thoracic pathologies, while providing superior dose efficiency, allowing for substantial radiation dose reduction. (orig.)

  14. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  15. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  16. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  17. The Radiation Dose-Response of the Human Spinal Cord

    International Nuclear Information System (INIS)

    Schultheiss, Timothy E.

    2008-01-01

    Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and α/β ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The α/β = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of α/β is smaller than usually quoted, but values this small were found in some studies. Using α/β = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation

  18. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  19. Assessment of female breast dose for thoracic cone-beam CT using MOSFET dosimeters.

    Science.gov (United States)

    Sun, Wenzhao; Wang, Bin; Qiu, Bo; Liang, Jian; Xie, Weihao; Deng, Xiaowu; Qi, Zhenyu

    2017-03-21

    To assess the breast dose during a routine thoracic cone-beam CT (CBCT) check with the efforts to explore the possible dose reduction strategy. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were used to measure breast surface doses during a thorax kV CBCT scan in an anthropomorphic phantom. Breast doses for different scanning protocols and breast sizes were compared. Dose reduction was attempted by using partial arc CBCT scan with bowtie filter. The impact of this dose reduction strategy on image registration accuracy was investigated. The average breast surface doses were 20.02 mGy and 11.65 mGy for thoracic CBCT without filtration and with filtration, respectively. This indicates a dose reduction of 41.8% by use of bowtie filter. It was found 220° partial arc scanning significantly reduced the dose to contralateral breast (44.4% lower than ipsilateral breast), while the image registration accuracy was not compromised. Breast dose reduction can be achieved by using ipsilateral 220° partial arc scan with bowtie filter. This strategy also provides sufficient image quality for thorax image registration in daily patient positioning verification.

  20. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Schmid, Kurt W.; Richter, Klaus D.; Wessel, Jan; Schuck, Andreas; Willich, Norman; Ruebe, Christian

    2000-01-01

    Purpose: The lung is the major dose-limiting organ for radiotherapy of cancer in the thoracic region. The pathogenesis of radiation-induced lung injury at the molecular level is still unclear. Immediate cellular damage after irradiation is supposed to result in cytokine-mediated multicellular interactions with induction and progression of fibrotic tissue reactions. The purpose of this investigation was to evaluate the acute and long-term effects of radiation on the gene expression of transforming growth factor beta (TGF-β) in a model of lung injury using fibrosis-sensitive C57BL/6 mice. Methods and Materials: The thoraces of C57BL/6 mice were irradiated with 6 and 12 Gy, respectively. Treated and sham-irradiated control mice were sacrificed at times corresponding to the latent period (1, 3, 6, 12, 24, 48, 72 hours and 1 week postirradiation), the pneumonic phase (2, 4, 8, and 16 weeks postirradiation), and the beginning of the fibrotic phase (24 weeks postirradiation). The lung tissue from three different mice per dosage and time point was analyzed by a combination of polymerase chain reaction (PCR), immunohistochemistry, and light microscopy. The mRNA expression of TGF-β was quantified by competitive reverse transcriptase/polymerase chain reaction (RT-PCR); the cellular origin of the TGF-β protein was identified by immunohistochemical staining (alkaline phosphatase-anti-alkaline phosphatase [APAAP]). The cytokine expression on mRNA and protein level was correlated with the histopathological alterations. Results: Following thoracic irradiation with a single dose of 12 Gy, radiation-induced TGF-β release in lung tissue was appreciable already within the first hours (1, 3, and 6 hours postirradiation) and reached a significant increase after 12 hours; subsequently (48 hours, 72 hours, and 1 week postirradiation) the TGF-β expression declined to basal levels. At the beginning of the pneumonic phase, irradiation-mediated stimulation of TGF-β release reached

  1. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  2. Embolization for Thoracic Duct Collateral Leakage in High-Output Chylothorax After Thoracic Surgery

    International Nuclear Information System (INIS)

    Kariya, Shuji; Nakatani, Miyuki; Yoshida, Rie; Ueno, Yutaka; Komemushi, Atsushi; Tanigawa, Noboru

    2017-01-01

    PurposeThis study was designed to investigate thoracic duct collateral leakage and the supply route of lymphatic fluid by lymphangiography and transcatheter thoracic ductography and to evaluate the results of embolization for thoracic duct collateral leakage performed to cut off this supply route.MethodsData were retrospectively collected from five patients who underwent embolization for thoracic duct collateral leakage in persistent high-output chylothorax after thoracic surgery. Extravasation of lipiodol at the ruptured thoracic duct collaterals was confirmed in all patients on lymphangiography. Transcatheter thoracic ductography was used to identify extravasation of iodinated contrast agent and to identify communication between the thoracic duct and leakage site. Thoracic duct embolization (TDE) was performed using the percutaneous transabdominal approach to cut off the supply route using N-butyl cyanoacrylate (NBCA) mixed with lipiodol (1:5–1:20).ResultsClinical success (drainage volume ≤10 mL/kg/day within 7 days after TDE) was achieved in all patients. The collateral routes developed as consequence of surgical thoracic duct ligation. In three patients, NBCA-Lipiodol reached the leakage site through direct communication between the thoracic duct and the ruptured lymphatic duct. In the other two patients, direct communication and extravasation was not detected on thoracic ductography, and NBCA-Lipiodol did not reach the leakage site. However, NBCA-Lipiodol did reach the cisterna chyli, lumbar trunks, and some collateral routes via the cisterna chyli or lumbar lymphatics. As a result, leakage was stopped.ConclusionsTDE was effective for the management of leakage of the collaterals in high-output chylothorax after thoracic surgery.

  3. Embolization for Thoracic Duct Collateral Leakage in High-Output Chylothorax After Thoracic Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kariya, Shuji, E-mail: kariyas@hirakata.kmu.ac.jp; Nakatani, Miyuki, E-mail: nakatanm@hirakata.kmu.ac.jp; Yoshida, Rie, E-mail: yagir@hirakata.kmu.ac.jp; Ueno, Yutaka, E-mail: uenoyut@hirakata.kmu.ac.jp; Komemushi, Atsushi, E-mail: komemush@takii.kmu.ac.jp; Tanigawa, Noboru, E-mail: tanigano@hirakata.kmu.ac.jp [Kansai Medical University, Department of Radiology (Japan)

    2017-01-15

    PurposeThis study was designed to investigate thoracic duct collateral leakage and the supply route of lymphatic fluid by lymphangiography and transcatheter thoracic ductography and to evaluate the results of embolization for thoracic duct collateral leakage performed to cut off this supply route.MethodsData were retrospectively collected from five patients who underwent embolization for thoracic duct collateral leakage in persistent high-output chylothorax after thoracic surgery. Extravasation of lipiodol at the ruptured thoracic duct collaterals was confirmed in all patients on lymphangiography. Transcatheter thoracic ductography was used to identify extravasation of iodinated contrast agent and to identify communication between the thoracic duct and leakage site. Thoracic duct embolization (TDE) was performed using the percutaneous transabdominal approach to cut off the supply route using N-butyl cyanoacrylate (NBCA) mixed with lipiodol (1:5–1:20).ResultsClinical success (drainage volume ≤10 mL/kg/day within 7 days after TDE) was achieved in all patients. The collateral routes developed as consequence of surgical thoracic duct ligation. In three patients, NBCA-Lipiodol reached the leakage site through direct communication between the thoracic duct and the ruptured lymphatic duct. In the other two patients, direct communication and extravasation was not detected on thoracic ductography, and NBCA-Lipiodol did not reach the leakage site. However, NBCA-Lipiodol did reach the cisterna chyli, lumbar trunks, and some collateral routes via the cisterna chyli or lumbar lymphatics. As a result, leakage was stopped.ConclusionsTDE was effective for the management of leakage of the collaterals in high-output chylothorax after thoracic surgery.

  4. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige [Kinki Univ., Atomic Energy Research Institute, Osaka (Japan); Tatsumi, Kusuo [Kinki Univ., Life Science Research Institute, Osaka (Japan); Nakai, Sayaka; Sugahara, Tsutomu [Health Research Foundation, Kyoto (Japan); Yuan Yongling [Labor Hygiene Institute of Hunan Prov. (China); Wei Luxin [Laboratory of Industorial Hygiene, Ministry of Health (China)

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: (1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. (2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  5. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    International Nuclear Information System (INIS)

    Koga, Taeko; Morishima, Hiroshige; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: 1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. 2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  6. A novel theory of radiation damage at high doses

    International Nuclear Information System (INIS)

    Seeger, A.; Stuttgart Univ.

    1989-01-01

    Deviations of radiation damage (in the case of metals usually monitored by the residual electrical resistivity) from proportionality with the irradiation dose have so far been analysed almost exclusively in terms of extensions of models originally developed for small doses. The present theory considers the opposite limit i.e. the quasi-saturated state. It is argued that at high doses the Lueck-Sizmann effect may result in a self-organization of clusters of vacancies and self-interstitials, forming a heterogeneous froth. Possible structures of this froth and its effect on the electrical resistivity of metals are discussed. The model is shown to account for the dependence of the ''saturation resistivity'' on the nature of the irradiation as well as for several other hitherto poorly explained observations. Among them are the electrical-resistivity variation induced by high-dose irradiation with heavy ions, the amorphization of certain alloys by high-dose electron irradiation, and the occurrence of ordered arrays of stacking-fault tetrahedra after in-situ irradiations in high-voltage electron microscopes. (author)

  7. Intraoperative use of low-dose recombinant activated factor VII during thoracic aortic operations.

    Science.gov (United States)

    Andersen, Nicholas D; Bhattacharya, Syamal D; Williams, Judson B; Fosbol, Emil L; Lockhart, Evelyn L; Patel, Mayur B; Gaca, Jeffrey G; Welsby, Ian J; Hughes, G Chad

    2012-06-01

    Numerous studies have supported the effectiveness of recombinant activated factor VII (rFVIIa) for the control of bleeding after cardiac procedures; however safety concerns persist. Here we report the novel use of intraoperative low-dose rFVIIa in thoracic aortic operations, a strategy intended to improve safety by minimizing rFVIIa exposure. Between July 2005 and December 2010, 425 consecutive patients at a single referral center underwent thoracic aortic operations with cardiopulmonary bypass (CPB); 77 of these patients received intraoperative low-dose rFVIIa (≤60 μg/kg) for severe coagulopathy after CPB. Propensity matching produced a cohort of 88 patients (44 received intraoperative low-dose rFVIIa and 44 controls) for comparison. Matched patients receiving intraoperative low-dose rFVIIa got an initial median dose of 32 μg/kg (interquartile range [IQR], 16-43 μg/kg) rFVIIa given 51 minutes (42-67 minutes) after separation from CPB. Patients receiving intraoperative low-dose rFVIIa demonstrated improved postoperative coagulation measurements (partial thromboplastin time 28.6 versus 31.5 seconds; p=0.05; international normalized ratio, 0.8 versus 1.2; pproduct transfusions (2.5 versus 5.0 units; p=0.05) compared with control patients. No patient receiving intraoperative low-dose rFVIIa required postoperative rFVIIa administration or reexploration for bleeding. Rates of stroke, thromboembolism, myocardial infarction, and other adverse events were equivalent between groups. Intraoperative low-dose rFVIIa led to improved postoperative hemostasis with no apparent increase in adverse events. Intraoperative rFVIIa administration in appropriately selected patients may correct coagulopathy early in the course of refractory blood loss and lead to improved safety through the use of smaller rFVIIa doses. Appropriately powered randomized studies are necessary to confirm the safety and efficacy of this approach. Copyright © 2012 The Society of Thoracic Surgeons

  8. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  9. Obesity Increases the Risk of Chest Wall Pain From Thoracic Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Welsh, James; Thomas, Jimmy; Shah, Deep; Allen, Pamela K.; Wei, Xiong; Mitchell, Kevin; Gao, Song; Balter, Peter; Komaki, Ritsuko; Chang, Joe Y.

    2011-01-01

    Purpose: Stereotactic body radiation therapy (SBRT) is increasingly being used to treat thoracic tumors. We attempted here to identify dose-volume parameters that predict chest wall toxicity (pain and skin reactions) in patients receiving thoracic SBRT. Patients and Methods: We screened a database of patients treated with SBRT between August 2004 and August 2008 to find patients with pulmonary tumors within 2.5 cm of the chest wall. All patients received a total dose of 50 Gy in four daily 12.5-Gy fractions. Toxicity was scored according to the NCI-CTCAE V3.0. Results: Of 360 patients in the database, 265 (268 tumors) had tumors within 30 , or volume of the chest wall receiving 30 Gy. Body mass index (BMI) was also strongly associated with the development of chest pain: patients with BMI ≥29 had almost twice the risk of chronic pain (p = 0.03). Among patients with BMI >29, diabetes mellitus was a significant contributing factor to the development of chest pain. Conclusion: Safe use of SBRT with 50 Gy in four fractions for lesions close to the chest wall requires consideration of the chest wall volume receiving 30 Gy and the patient's BMI and diabetic state.

  10. Biological effects of low-dose radiation on human population living in high-background radiation areas of Kerala coast

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2016-01-01

    High-level natural radiation areas (HLNRA) of Kerala coast is densely populated and known for its wide variation in background radiation dose levels due to uneven distribution of monazite in the beach sand. The background radiation dose varies from 1 to 45 mGv/y. The areas with >1.5mGy/y is considered as HLNRA. Human population inhabiting in this area are exposed to low-dose chronic radiation since generations. Hence, this population provides an ideal situation to study dose response and adaptive response, if any, due to natural chronic low-dose exposure. It has been investigated extensively to study the biological and health effects of long-term low-dose/low-dose radiation exposure. So far over 150, 000 newborns monitored from hospital-based study did not reveal any significant difference in the incidence of any of the malformations and stillbirth between HLNRA and adjacent control areas. A case-control study on cleft lip/palate and mental retardation did not show any association with background radiation dose. Cytogenetic investigation of over 27,000 newborns did not show any significant increase in the frequency of chromosome aberrations and karyotype anomalies. DNA damage endpoints, such as micronuclei, telomere length and DNA strand breaks, did not reveal any significant difference between control and exposed population. Studies on DNA damage and repair revealed efficient repair of DNA strand breaks in HLNRA individuals. Molecular studies using high throughput microarray analysis indicated a large number of genes involved in various molecular and cellular pathways. Indications of in vivo radioadaptive response due to natural chronic low-dose exposure in this population have important implications to human health. (author)

  11. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  12. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  13. Thoracic radiation therapy (RT) before autologous bone marrow transplantation (ABMT) in relapsed or refractory Hodgkin's disease (HD)

    International Nuclear Information System (INIS)

    Tsang, Richard W.; Gospodarowicz, Mary K.; Sutcliffe, Simon B.; Crump, Michael; Keating, Armand

    1997-01-01

    Purpose: To assess the relationship between peri-ABMT RT and treatment-related mortality in patients receiving high-dose chemotherapy (HDCT) and ABMT for recurrent/refractory HD. Materials and Methods: Between 12/1986 and 12/1992, 90 patients (pts) with HD were treated with HDCT (etoposide 60 mg/kg, melphalan 160 mg/m 2 ) +ABMT in Toronto. Fifty-nine of these had all or part of their treatment (RT and/or CT) at the PMH, and they form the basis of this report. HDCT + ABMT was performed for refractory (11 pts) or relapsed (48 pts) HD. The median age at ABMT was 29 (range 16-47), F:M ratio was 1:1.2. Salvage chemotherapy consisted of DHAP (36), mini-BEAM (7), both (8), other chemotherapy (5), and no chemotherapy (3). RT have been incorporated in the salvage treatment with the intent to achieve complete disease control of active disease at relapse or disease progression. RT was given pre-ABMT in 33 pts (3 mantle, 8 mantle with lung, 7 modified mantle excluding axillae, 4 involved field, 1 mantle with TBI, 1 TBI, and 9 non-thoracic), and post-ABMT in 4 pts (2 mantle, 2 modified mantle). Planned RT tumor dose was 35 Gy over 4 weeks (median 35 Gy, range 25-40 Gy), lower doses were used for lung RT (15-17.5 Gy). Treatment-related (TR) mortality was defined as any death occurring within 100 days of ABMT. Autopsies were performed for all patients with TR deaths. Results: We observed 36 deaths, and 10 of these were treatment-related (TR) deaths. With an average follow-up of 4.9 years (range 1.2-7.4 years), the actuarial overall survival was 52% ± 13% at 3 years, and 41% ± 14% at 5 years. Among the 24 patients who received thoracic RT before ABMT, there were 8 TR deaths, with 3 solely attributable to radiation pneumonitis. The remaining 5 TR deaths all had respiratory failure as a major medical problem with complicating sepsis and pancytopenia. The interval from RT to ABMT was shorter for 8 patients dying of TR death (mean 37 days; range 0-103 days), than for the 16 pts with

  14. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  15. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  16. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  17. Study report by the Committee of Actual Surbey for Radiation Doses in Digital Imaging

    International Nuclear Information System (INIS)

    Katakura, Toshihiko; Yasuhiko, Shigeru; Abe, Yoshihiro

    1995-01-01

    The aim of this questionnaire survey was to assess the reasonable radiation doses in computed radiography (CR). Questionnaires were sent to 430 facilities having CR apparatus, and 221 of these (51.3%) answered them. The conventional screen/film analog (S/F) imaging serves as control. Radiation doses of CR were smaller than or equal to those of S/F imaging. Estimated radiation doses were obtained from the skull, thoracic vertebrae, lumbar vertebrae, hip joint, leg joint, chest, abdomen, pediatric chest, pediatric hip joint, pediatric abdomen, salivary gland, renal pelvis, uterus, ovaries, and mammary glands. Exposure doses to the chest, which requires resolution, were increased. Reliability of S value was examined. S value varied greatly among CR systems. It was, however, considered to become an indicator for radiation doses in individual systems. Furthermore, image quality of CR imaging was compared with basic characteristics of S/F imaging (such as MTF, Wiener spectral value, and photographic density). MTF in CR was extremely low, as compared with HR-4/HR-S with moderate sensitivity. Wiener spectral value in CR was almost equal to that in S/F imaging at the same doses. (N.K.)

  18. Assessment of an organ-based tube current modulation in thoracic computed tomography.

    Science.gov (United States)

    Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu

    2012-03-08

    Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.

  19. Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice

    International Nuclear Information System (INIS)

    Christofidou-Solomidou, Melpo; Cengel, Keith A; Tyagi, Sonia; Tan, Kay-See; Hagan, Sarah; Pietrofesa, Ralph; Dukes, Floyd; Arguiri, Evguenia; Heitjan, Daniel F; Solomides, Charalambos C

    2011-01-01

    Flaxseed (FS) is a dietary supplement known for its antioxidant and anti-inflammatory properties. Radiation exposure of lung tissues occurs either when given therapeutically to treat intrathoracic malignancies or incidentally, such as in the case of exposure from inhaled radioisotopes released after the detonation of a radiological dispersion devise (RDD). Such exposure is associated with pulmonary inflammation, oxidative tissue damage and irreversible lung fibrosis. We previously reported that dietary FS prevents pneumonopathy in a rodent model of thoracic X-ray radiation therapy (XRT). However, flaxseed's therapeutic usefulness in mitigating radiation effects post-exposure has never been evaluated. We evaluated the effects of a 10%FS or isocaloric control diet given to mice (C57/BL6) in 2 separate experiments (n = 15-25 mice/group) on 0, 2, 4, 6 weeks post a single dose 13.5 Gy thoracic XRT and compared it to an established radiation-protective diet given preventively, starting at 3 weeks prior to XRT. Lungs were evaluated four months post-XRT for blood oxygenation levels, inflammation and fibrosis. Irradiated mice fed a 0%FS diet had a 4-month survival rate of 40% as compared to 70-88% survival in irradiated FS-fed mouse groups. Additionally, all irradiated FS-fed mice had decreased fibrosis compared to those fed 0%FS. Lung OH-Proline content ranged from 96.5 ± 7.1 to 110.2 ± 7.7 μg/ml (Mean ± SEM) in all irradiated FS-fed mouse groups, as compared to 138 ± 10.8 μg/ml for mice on 0%FS. Concomitantly, bronchoalveolar lavage (BAL) protein and weight loss associated with radiation cachexia was significantly decreased in all FS-fed groups. Inflammatory cell influx to lungs also decreased significantly except when FS diet was delayed by 4 and 6 weeks post XRT. All FS-fed mice (irradiated or not), maintained a higher blood oxygenation level as compared to mice on 0%FS. Similarly, multiplex cytokine analysis in the BAL fluid revealed a significant decrease

  20. Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice

    Directory of Open Access Journals (Sweden)

    Arguiri Evguenia

    2011-06-01

    Full Text Available Abstract Background Flaxseed (FS is a dietary supplement known for its antioxidant and anti-inflammatory properties. Radiation exposure of lung tissues occurs either when given therapeutically to treat intrathoracic malignancies or incidentally, such as in the case of exposure from inhaled radioisotopes released after the detonation of a radiological dispersion devise (RDD. Such exposure is associated with pulmonary inflammation, oxidative tissue damage and irreversible lung fibrosis. We previously reported that dietary FS prevents pneumonopathy in a rodent model of thoracic X-ray radiation therapy (XRT. However, flaxseed's therapeutic usefulness in mitigating radiation effects post-exposure has never been evaluated. Methods We evaluated the effects of a 10%FS or isocaloric control diet given to mice (C57/BL6 in 2 separate experiments (n = 15-25 mice/group on 0, 2, 4, 6 weeks post a single dose 13.5 Gy thoracic XRT and compared it to an established radiation-protective diet given preventively, starting at 3 weeks prior to XRT. Lungs were evaluated four months post-XRT for blood oxygenation levels, inflammation and fibrosis. Results Irradiated mice fed a 0%FS diet had a 4-month survival rate of 40% as compared to 70-88% survival in irradiated FS-fed mouse groups. Additionally, all irradiated FS-fed mice had decreased fibrosis compared to those fed 0%FS. Lung OH-Proline content ranged from 96.5 ± 7.1 to 110.2 ± 7.7 μg/ml (Mean ± SEM in all irradiated FS-fed mouse groups, as compared to 138 ± 10.8 μg/ml for mice on 0%FS. Concomitantly, bronchoalveolar lavage (BAL protein and weight loss associated with radiation cachexia was significantly decreased in all FS-fed groups. Inflammatory cell influx to lungs also decreased significantly except when FS diet was delayed by 4 and 6 weeks post XRT. All FS-fed mice (irradiated or not, maintained a higher blood oxygenation level as compared to mice on 0%FS. Similarly, multiplex cytokine analysis in the

  1. Dietary flaxseed administered post thoracic radiation treatment improves survival and mitigates radiation-induced pneumonopathy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Christofidou-Solomidou, Melpo [Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Cengel, Keith A [Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Tyagi, Sonia [Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Tan, Kay-See [Biostatistics & Epidemiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Hagan, Sarah [Radiation Oncology, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Pietrofesa, Ralph; Dukes, Floyd; Arguiri, Evguenia [Department of Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Heitjan, Daniel F [Biostatistics & Epidemiology, University of Pennsylvania Medical Center, Philadelphia, PA 19104 (United States); Solomides, Charalambos C [Department of Pathology, Jefferson University Hospital, Philadelphia, PA 19140 (United States)

    2011-06-24

    Flaxseed (FS) is a dietary supplement known for its antioxidant and anti-inflammatory properties. Radiation exposure of lung tissues occurs either when given therapeutically to treat intrathoracic malignancies or incidentally, such as in the case of exposure from inhaled radioisotopes released after the detonation of a radiological dispersion devise (RDD). Such exposure is associated with pulmonary inflammation, oxidative tissue damage and irreversible lung fibrosis. We previously reported that dietary FS prevents pneumonopathy in a rodent model of thoracic X-ray radiation therapy (XRT). However, flaxseed's therapeutic usefulness in mitigating radiation effects post-exposure has never been evaluated. We evaluated the effects of a 10%FS or isocaloric control diet given to mice (C57/BL6) in 2 separate experiments (n = 15-25 mice/group) on 0, 2, 4, 6 weeks post a single dose 13.5 Gy thoracic XRT and compared it to an established radiation-protective diet given preventively, starting at 3 weeks prior to XRT. Lungs were evaluated four months post-XRT for blood oxygenation levels, inflammation and fibrosis. Irradiated mice fed a 0%FS diet had a 4-month survival rate of 40% as compared to 70-88% survival in irradiated FS-fed mouse groups. Additionally, all irradiated FS-fed mice had decreased fibrosis compared to those fed 0%FS. Lung OH-Proline content ranged from 96.5 ± 7.1 to 110.2 ± 7.7 μg/ml (Mean ± SEM) in all irradiated FS-fed mouse groups, as compared to 138 ± 10.8 μg/ml for mice on 0%FS. Concomitantly, bronchoalveolar lavage (BAL) protein and weight loss associated with radiation cachexia was significantly decreased in all FS-fed groups. Inflammatory cell influx to lungs also decreased significantly except when FS diet was delayed by 4 and 6 weeks post XRT. All FS-fed mice (irradiated or not), maintained a higher blood oxygenation level as compared to mice on 0%FS. Similarly, multiplex cytokine analysis in the BAL fluid revealed a significant decrease of

  2. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    International Nuclear Information System (INIS)

    Mastora, I.; Remy-Jardin, M.; Remy, J.; Suess, C.; Scherf, C.; Guillot, J.P.

    2001-01-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  3. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastora, I.; Remy-Jardin, M.; Remy, J. [Dept. of Radiology, University Center Hospital Calmette, Lille (France); Medical Research Group, Lille (France); Suess, C.; Scherf, C. [Siemens Medical Systems, Forcheim (Germany); Guillot, J.P. [Dept. of Radiology, University Center Hospital Calmette, Lille (France)

    2001-04-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  4. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-01-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  5. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-10-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  6. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  7. Dose measurement techniques for high-energy photon and electron radiation

    International Nuclear Information System (INIS)

    Hohlfeld, K.; Roos, M.

    1992-08-01

    By law the Federal Institute of Physics and Technology (PTB) has been assigned the tasks of representing, preserving and passing on dose units. The analogous continuation of these tasks consists in improving, at the user level, dosimetry techniques in radiation therapy for the benefit of patients. The PTB had an essential share in working out the scientific foundations of dosimetry for high-energy radiation, and the corresponding DIN standards were established with the PTB playing a prominent part. The seminar aimed at presenting the measuring techniques fixed in the new DIN standard 6800 part 2 'Dose measurement techniques according to the probe method - ionization dosimetry', to discuss their physical background and practical implications resulting from them. (orig.) [de

  8. Radiation doses in alternative commercial high-level waste management systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility

  9. Association of oesophageal radiation dose volume metrics, neutropenia and acute radiation oesophagitis in patients receiving chemoradiotherapy for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Duffy, Mary; Bressel, Mathias; McInnes, Belinda; Russell, Christine; Sevitt, Tim; Ball, David

    2016-01-01

    The relationship between oesophageal radiation dose volume metrics and dysphagia in patients having chemoradiation (CRT) for non-small cell lung cancer (NSCLC) is well established. There is also some evidence that neutropenia is a factor contributing to the severity of oesophagitis. We retrospectively analysed acute radiation oesophagitis (ARO) rates and severity in patients with NSCLC who received concurrent chemotherapy and high dose radiation therapy (CRT). We investigated if there was an association between grade of ARO, neutropenia and radiation dose volume metrics. Patients with NSCLC having concurrent CRT who had RT dose and toxicity data available were eligible. Exclusion criteria included previous thoracic RT, treatment interruptions and non-standard dose regimens. RT dosimetrics included maximum and mean oesophageal dose, oesophagus dose volume and length data. Fifty four patients were eligible for analysis. 42 (78 %) patients received 60 Gy. Forty four (81 %) patients received carboplatin based chemotherapy. Forty eight (89 %) patients experienced ARO ≥ grade 1 (95 % CI: 78 % to 95 %). ARO grade was associated with mean dose (r s = 0.27, p = 0.049), V20 (r s = 0.31, p = 0.024) and whole oesophageal circumference receiving 20 Gy (r s = 0.32 p = 0.019). In patients who received these doses, V20 (n = 51, r s = 0.36, p = 0.011), V35 (n = 43, r s = 0.34, p = 0.027) and V60 (n = 25, r s = 0.59, P = 0.002) were associated with RO grade. Eleven of 25 (44 %) patients with ARO ≥ grade 2 also had ≥ grade 2 acute neutropenia compared with 5 of 29 (17 %) patients with RO grade 0 or 1 (p = 0.035). In addition to oesophageal dose-volume metrics, neutropenia may also be a risk factor for higher grades of ARO

  10. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  11. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  12. Use of glasses as radiation detectors for high doses

    International Nuclear Information System (INIS)

    Caldas, L.

    1989-08-01

    Glass samples were tested in relation to the possibility of use in high dose dosimetry in medical and industrial areas. The main characteristics were determined: detection threshold, reproducibility, response to gamma radiation of 137 Cs and 6 Co and thermal decay at ambient temperature, with the use of optical absorption and thermoluminesce techniques. (author) [pt

  13. Preliminary analysis of the risk factors for radiation pneumonitis in patients with non- small-cell lung cancer treated with concurrent erlotinib and thoracic radiotherapy

    Directory of Open Access Journals (Sweden)

    Zhuang H

    2014-05-01

    Full Text Available Hongqing Zhuang,* Hailing Hou,* Zhiyong Yuan, Jun Wang, Qingsong Pang, Lujun Zhao, Ping WangDepartment of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People's Republic of China*These authors contributed equally to this workPurpose: The aim of this study was to investigate radiation pneumonitis and its associated risk factors in patients with non-small-cell lung cancer treated with concurrent erlotinib and thoracic radiotherapy.Materials and methods: We conducted an analysis of patients with nonoperable stage IIIA–IV non-small-cell lung cancer who were treated with concurrent thoracic radiotherapy and erlotinib (ClinicalTrials.gov identifier: NCT00973310. The Common Terminology Criteria for Adverse Events version 3.0 grading system was applied to evaluate the incidence of radiation pneumonitis. The lung dosimetric parameters were recorded in accordance with the treatment plan, and the study endpoint was radiation pneumonitis at grade 2 or more.Results: Among the 24 selected clinical cases, nine were identified with radiation pneumonitis of grade 2 or above (37.5%. This included four cases with grade 2 (16.7%, two cases with grade 3 (8.3%, and three cases with grade 5 (12.5%. The results showed that the planning target volume was a significant factor affecting the incidence of radiation pneumonitis. All lung dosimetric parameters exhibited statistically significant differences between patients with pneumonitis and patients without pneumonitis. The receiver operating characteristic (ROC curve analysis showed that all lung dosimetric parameters were useful in predicting the incidence of radiation pneumonitis. In addition, the threshold values of V5, V10, V15, V20, V30, and mean lung dose were >4%, >29%, >27%, >22%, >17% and >1,027 cGy, respectively.Conclusion: Special attention

  14. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  15. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  16. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  17. Problems Concerning Dose Assessments in Epidemiology of High Background Radiation Areas of Yangjiang, China (invited paper)

    International Nuclear Information System (INIS)

    Wei, L.X.; Yuan, Y.L.

    1998-01-01

    The purpose of this study on radiation levels and dose assessments in the epidemiology of a high background radiation area (HBRA) and the control area (CA) is to respond to the needs of epidemiology in these areas, where the inhabitants are continuously exposed to low dose, low dose rate ionising radiation. A brief description is given of how the research group evaluated the feasibility of the investigation by analysing the population size and the radiation levels, how simple reliable methods were used to get the individual annual dose for every cohort member, and how the cohort members were classified into various dose groups for dose-effect relationship analysis. Finally, the use of dose group classification for cancer mortality studies is described. (author)

  18. Assessment of an organ‐based tube current modulation in thoracic computed tomography

    Science.gov (United States)

    Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu

    2012-01-01

    Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390

  19. Patient's quality of life after high-dose radiation therapy for thoracic carcinomas. Changes over time and influence on clinical outcome

    International Nuclear Information System (INIS)

    Schroeder, Christina; Engenhart-Cabillic, Rita; Vorwerk, Hilke; Schmidt, Michael; Huhnt, Winfried; Blank, Eyck; Sidow, Dietrich; Buchali, Andre

    2017-01-01

    Quality of life (QoL) is an important factor in patient care. This analysis is focused on QoL before and after radio(chemo)therapy in patients with thoracic carcinomas, as well as on its influence on clinical follow-up and survival, and the correlation with treatment-related toxicities. The analysis included 81 patients with intrathoracic carcinoma receiving radio(chemo)therapy. For analysis of QoL, the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and the lung cancer-specific supplement (EORTC QLQ-LC13) were used. QoL data were collected before radiation treatment (RT), and 6 weeks, 12 weeks, 6 months, and 12 months after RT. Other factors were additionally analyzed, including clinical outcome, survival, and side effects. The functional scales showed maximum values or at least a recovery 12 weeks after RT. Symptoms with a high mean symptom score (> 40) at all appointments were fatigue, dyspnea, and coughing. Insomnia, peripheral neuropathy, appetite loss, dyspnea (from QLQ-LC13), and all pain parameters had an intermediate mean score (10-40). There were low mean scores of < 10 for nausea and vomiting, diarrhea, sore mouth, and hemoptysis. There was a significant correlation between clinical dysphagia and radiation pneumonitis with the associated symptom scales. None of the QoL scores had a significant influence on local and distant control or survival. 12 weeks after RT the QLQ-C30 functional scales show the highest scores or at least a temporary recovery. The symptom scales accurately reflect the common symptoms and treatment-related toxicities. QoL did not prove to be a significant predictor for local and distant control or survival. (orig.) [de

  20. Effect of radiation dose level on accuracy and precision of manual size measurements in chest tomosynthesis evaluated using simulated pulmonary nodules

    International Nuclear Information System (INIS)

    Soederman, Christina; Allansdotter Johnsson, Aase; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Svalkvist, Angelica; Maansson, Lars Gunnar; Baath, Magnus

    2016-01-01

    The aim of the present study was to investigate the dependency of the accuracy and precision of nodule diameter measurements on the radiation dose level in chest tomosynthesis. Artificial ellipsoid-shaped nodules with known dimensions were inserted in clinical chest tomosynthesis images. Noise was added to the images in order to simulate radiation dose levels corresponding to effective doses for a standard-sized patient of 0.06 and 0.04 mSv. These levels were compared with the original dose level, corresponding to an effective dose of 0.12 mSv for a standard-sized patient. Four thoracic radiologists measured the longest diameter of the nodules. The study was restricted to nodules located in high-dose areas of the tomosynthesis projection radiographs. A significant decrease of the measurement accuracy and intra-observer variability was seen for the lowest dose level for a subset of the observers. No significant effect of dose level on the interobserver variability was found. The number of non-measurable small nodules (≤5 mm) was higher for the two lowest dose levels compared with the original dose level. In conclusion, for pulmonary nodules at positions in the lung corresponding to locations in high-dose areas of the projection radiographs, using a radiation dose level resulting in an effective dose of 0.06 mSv to a standard-sized patient may be possible in chest tomosynthesis without affecting the accuracy and precision of nodule diameter measurements to any large extent. However, an increasing number of non-measurable small nodules (≤5 mm) with decreasing radiation dose may raise some concerns regarding an applied general dose reduction for chest tomosynthesis examinations in the clinical praxis. (authors)

  1. High background radiation area: an important source of exploring the health effects of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Wei Luxin

    1997-01-01

    Objective: For obtaining more effective data from epidemiological investigation in high background radiation areas, it is necessary to analyze the advantages, disadvantages, weak points and problems of this kind of radiation research. Methods: For epidemiological investigation of population health effects of high background radiation, the author selected high background radiation areas of Yangjiang (HBRA) and a nearby control area (CA) as an instance for analysis. The investigation included classification of dose groups, comparison of the confounding factors in the incidence of mutation related diseases, cancer mortalities and the frequencies of chromosomal aberrations between HBRA and CA. This research program has become a China-Japan cooperative research since 1991. Results: The confounding factors above-mentioned were comparable between HBRA and CA, and within the dose groups in HBRA, based on a systematic study for many years. The frequencies of chromosomal aberrations increased with the increase of cumulative dose, but not for children around or below 10 years of age. The relative risks (RR) of total and site-specific cancer mortalities for HBRA were lower or around 1.00, compared with CA. The incidence of hereditary diseases and congenital deformities in HBRA were in normal range. The results were interpreted preliminarily by the modified 'dual radiation action' theory and the 'benefit-detriment competition' hypothesis. Conclusions: The author emphasizes the necessity for continuing epidemiological research in HBRA, especially for international cooperation. He also emphasizes the importance of combination of epidemiology and radiobiology

  2. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  3. Mutation process at low or high radiation doses

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wisconsin Univ., Madison

    1976-01-01

    A concise review is given of the status of research on the genetic effects of low-level radiation in general. The term ''low dose'' is defined and current theories on low dose are set out. Problems and their solutions are discussed. (author)

  4. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  5. Dosimetric Factors and Toxicity in Highly Conformal Thoracic Reirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Binkley, Michael S.; Hiniker, Susan M.; Chaudhuri, Aadel [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Maxim, Peter G. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Diehn, Maximilian [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California (United States); Loo, Billy W., E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California (United States); Shultz, David Benjamin, E-mail: David.Shultz@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2016-03-15

    Purpose: We determined cumulative dose to critical structures, rates of toxicity, and outcomes following thoracic reirradiation. Methods and Materials: We retrospectively reviewed our institutional database for patients treated between 2008 and 2014, who received thoracic reirradiation with overlap of 25% prescribed isodose lines. Patients received courses of hyperfractionated (n=5), hypofractionated (n=5), conventionally fractionated (n=21), or stereotactic ablative radiation therapy (n=51). Doses to critical structures were converted to biologically effective dose, expressed as 2 Gy per fraction equivalent dose (EQD2; α/β = 2 for spinal cord; α/β = 3 for other critical structures). Results: We identified 82 courses (44 for retreatment) in 38 patients reirradiated at a median 16 months (range: 1-71 months) following initial RT. Median follow-up was 17 months (range: 3-57 months). Twelve- and 24-month overall survival rates were 79.6% and 57.3%, respectively. Eighteen patients received reirradiation for locoregionally recurrent non-small cell lung cancer with 12-month rates of local failure and regional recurrence and distant metastases rates of 13.5%, 8.1%, and 15.6%, respectively. Critical structures receiving ≥75 Gy EQD2 included spinal cord (1 cm{sup 3}; n=1), esophagus (1 cm{sup 3}; n=10), trachea (1 cm{sup 3}; n=11), heart (1 cm{sup 3}; n=9), aorta (1 cm{sup 3}; n=16), superior vena cava (1 cm{sup 3}; n=12), brachial plexus (0.2 cm{sup 3}; n=2), vagus nerve (0.2 cm{sup 3}; n=7), sympathetic trunk (0.2 cm{sup 3}; n=4), chest wall (30 cm{sup 3}; n=12), and proximal bronchial tree (1 cm{sup 3}; n=17). Cumulative dose-volume (D cm{sup 3}) toxicity following reirradiation data included esophagitis grade ≥2 (n=3, D1 cm{sup 3} range: 41.0-100.6 Gy), chest wall grade ≥2 (n=4; D30 cm{sup 3} range: 35.0-117.2 Gy), lung grade 2 (n=7; V20{sub combined-lung} range: 4.7%-21.7%), vocal cord paralysis (n=2; vagus nerve D0.2 cm{sup 3

  6. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  7. Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy

    International Nuclear Information System (INIS)

    Chu, Sung Sil; Suh, Chang Ok; Kim, Gwi Eon

    2002-01-01

    High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of As Low As Reasonably Achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons . This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients are treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Polo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions 30cm x 30cm x 20cm. The anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is

  8. Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Sung Sil; Suh, Chang Ok; Kim, Gwi Eon [Yonsei Univ., Seoul (Korea, Republic of)

    2002-03-15

    High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of As Low As Reasonably Achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons . This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients are treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Polo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions 30cm x 30cm x 20cm. The anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is

  9. Effects of low dose radiation and epigenetic regulation

    International Nuclear Information System (INIS)

    Jiao Benzheng; Ma Shumei; Yi Heqing; Kong Dejuan; Zhao Guangtong; Gao Lin; Liu Xiaodong

    2010-01-01

    Purpose: To conclude the relationship between epigenetics regulation and radiation responses, especially in low-dose area. Methods: The literature was examined for papers related to the topics of DNA methylation, histone modifications, chromatin remodeling and non-coding RNA modulation in low-dose radiation responses. Results: DNA methylation and radiation can regulate reciprocally, especially in low-dose radiation responses. The relationship between histone methylation and radiation mainly exists in the high-dose radiation area; histone deacetylase (HDAC) inhibitors show a promising application to enhance radiation sensitivity, no matter whether in low-dose or high-dose areas; the connection between γ-H2AX and LDR has been remained unknown, although γ-H2AX has been shown no radiation sensitivities with 1-15 Gy irradiation; histone ubiquitination play an important role in DNA damage repair mechanism. Moreover, chromatin remodeling has an integral role in DSB repair and the chromatin response, in general, may be precede DNA end resection. Finally, the effect of radiation on miRNA expression seems to vary according to cell type, radiation dose, and post-irradiation time point. Conclusion: Although the advance of epigenetic regulation on radiation responses, which we are managing to elucidate in this review, has been concluded, there are many questions and blind blots deserved to investigated, especially in low-dose radiation area. However, as progress on epigenetics, we believe that many new elements will be identified in the low-dose radiation responses which may put new sights into the mechanisms of radiation responses and radiotherapy. (authors)

  10. Study of the Radiochromic Film for High Dose Measurement in Radiation Processing

    Directory of Open Access Journals (Sweden)

    CHEN Yi-zhen

    2016-02-01

    Full Text Available To establish the radiochromic film dosimeter for high dose level measurement during radiation processing, By corresponding formula and its preparation process research, batches of radiochromic film dosimeters were prepared using nylon as substrate and pararosaniline cyanide as dye. In Co-60 gamma reference radiation field, dosimetry response performance of radiochromic film was studied and results showed that the repeatability was good to 1.0%. The response curves demonstrated good linearity in the dose range of 5-210 kGy, and the signal of radiochromic film dosimeters after irradiation under the condition of low temperature storage within 2 weeks was stable. In addition, the radiochromic film dosimeters were not found to have noticeable dose rate dependence in the range of this experiment. In the linear dose range, radiochromic film dosimeter measures the absorbed dose, with extended uncertainty 4.2% (k=2 for Co-60 gamma rays. The film was suitable as dosimeters for the parameters measurement of the electron beam on the accelerator.

  11. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    Energy Technology Data Exchange (ETDEWEB)

    Geijer, Mats [Oerebro University, Department of Radiology, Oerebro (Sweden); Lund University, Department of Clinical Sciences, Lund (Sweden); Gunnlaugsson, Eirikur; Goetestrand, Simon [Lund University and Skaane University Hospital, Department of Medical Imaging and Physiology, Lund (Sweden); Weber, Lars [Lund University, Department of Clinical Sciences, Lund (Sweden); Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Geijer, Haakan [Oerebro University, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-02-15

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm{sup 2}) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  12. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly

    International Nuclear Information System (INIS)

    Geijer, Mats; Gunnlaugsson, Eirikur; Goetestrand, Simon; Weber, Lars; Geijer, Haakan

    2017-01-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P < 0.001) as well as significantly more fractures (mean 0.9/0.7, P = 0.017). The image quality score for tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. (orig.)

  13. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors

    International Nuclear Information System (INIS)

    Glosser, Guila; McManus, Pat; Munzenrider, John; Austin-Seymour, Mary; Fullerton, Barbara; Adams, Judy; Urie, Marcia M.

    1997-01-01

    Purpose: To evaluate the long term effects of high dose fractionated radiation therapy on brain functioning prospectively in adults without primary brain tumors. Methods and Materials: Seventeen patients with histologically confirmed chordomas and low grade chondrosarcomas of the skull base were evaluated with neuropsychological measures of intelligence, language, memory, attention, motor function and mood following surgical resection/biopsy of the tumor prior to irradiation, and then at about 6 months, 2 years and 4 years following completion of treatment. None received chemotherapy. Results: In the patients without tumor recurrence or radiation necrosis, there were no indications of adverse effects on cognitive functioning in the post-acute through the late stages after brain irradiation. Even in patients who received doses of radiation up to 66 Cobalt Gy equivalent through nondiseased (temporal lobe) brain tissue, memory and cognitive functioning remained stable for up to 5 years after treatment. A mild decline in psycho-motor speed was seen in more than half of the patients, and motor slowing was related to higher radiation doses in midline and temporal lobe brain structures. Conclusion: Results suggest that in adults, tolerance for focused radiation is relatively high in cortical brain structures

  14. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Bodelle, Boris, E-mail: bbodelle@googlemail.com; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-04-15

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  15. Free-breathing high-pitch 80 kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose

    International Nuclear Information System (INIS)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J.; Scholtz, Jan-Erik

    2017-01-01

    Objectives: To investigate image quality, presence of motion artifacts and effects on radiation dose of 80 kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). Materials and methods: The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1 ± 4.9 years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n = 31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n = 56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Results: Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p > 0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (p < 0.01). Motion artifacts were reduced significantly (p = 0.001) with DSCT. DSCT with ADMIRE showed the highest overall IQ (p < 0.0001). Radiation dose was lower for DSCT compared to SSCT (median SSDE: 0.82 mGy vs. 0.92 mGy, p < 0.02; median ED: 0.4 mSv vs. 0.48 mSv, p = 0.02). Conclusions: High-pitch 80 kVp chest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation.

  16. Tomosynthesis of the thoracic spine: added value in diagnosing vertebral fractures in the elderly.

    Science.gov (United States)

    Geijer, Mats; Gunnlaugsson, Eirikur; Götestrand, Simon; Weber, Lars; Geijer, Håkan

    2017-02-01

    Thoracic spine radiography becomes more difficult with age. Tomosynthesis is a low-dose tomographic extension of radiography which may facilitate thoracic spine evaluation. This study assessed the added value of tomosynthesis in imaging of the thoracic spine in the elderly. Four observers compared the image quality of 50 consecutive thoracic spine radiography and tomosynthesis data sets from 48 patients (median age 67 years, range 55-92 years) on a number of image quality criteria. Observer variation was determined by free-marginal multirater kappa. The conversion factor and effective dose were determined from the dose-area product values. For all observers significantly more vertebrae were seen with tomosynthesis than with radiography (mean 12.4/9.3, P tomosynthesis was significantly higher than for radiography, for all evaluated structures. Tomosynthesis took longer to evaluate than radiography. Despite this, all observers scored a clear preference for tomosynthesis. Observer agreement was substantial (mean κ = 0.73, range 0.51-0.94). The calibration or conversion factor was 0.11 mSv/(Gy cm 2 ) for the combined examination. The resulting effective dose was 0.87 mSv. Tomosynthesis can increase the detection rate of thoracic vertebral fractures in the elderly, at low added radiation dose. • Tomosynthesis helps evaluate the thoracic spine in the elderly. • Observer agreement for thoracic spine tomosynthesis was substantial (mean κ = 0.73). • Significantly more vertebrae and significantly more fractures were seen with tomosynthesis. • Tomosynthesis took longer to evaluate than radiography. • There was a clear preference among all observers for tomosynthesis over radiography.

  17. Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images

    Science.gov (United States)

    Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.

    2006-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  18. The influence of high doses of radiation in citrine stones

    International Nuclear Information System (INIS)

    Teixeira, M. I.; Caldas, L. V. E.

    2014-08-01

    The possibility of using samples of Brazilian stones as quartz, amethyst, topaz, jasper, etc. for high-dose dosimetry has been studied in recent years at IPEN, using the techniques of optical absorption (Oa), thermoluminescent (Tl), optically stimulated luminescence (OSL) and resonance paramagnetic electron (EPR). In this work, the Tl properties of citrine samples were studied. They were exposed to different doses of gamma radiation ( 60 Co). The natural citrine stone was extracted from a mine in Minas Gerais state, Brazil; it is a tecto silicate ranked as one of three-dimensional structure, showing clear yellow to golden brown color. The natural citrine stone is classified as quartz (SiO 2 ), and it has a lower symmetry and more compact reticulum. The Tl emission curve showed two peaks at 160 grades C and 220 grades C. To remove the Tl peak (160 grades C) of the sintered citrine pellet glow curves, different thermal treatments were tested during several time intervals. The Tl dose-response curve between 50 Gy and 100 kGy, the reproducibility of Tl response and the lower detection dose were obtained. The results show that citrine may be useful as high-dose detectors. (Author)

  19. The influence of high doses of radiation in citrine stones

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, M. I. [Universidade Nove de Julho - UNINOVE, Rua Vergueiro 235/249, 01504-001 Sao Paulo (Brazil); Caldas, L. V. E., E-mail: miteixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    The possibility of using samples of Brazilian stones as quartz, amethyst, topaz, jasper, etc. for high-dose dosimetry has been studied in recent years at IPEN, using the techniques of optical absorption (Oa), thermoluminescent (Tl), optically stimulated luminescence (OSL) and resonance paramagnetic electron (EPR). In this work, the Tl properties of citrine samples were studied. They were exposed to different doses of gamma radiation ({sup 60}Co). The natural citrine stone was extracted from a mine in Minas Gerais state, Brazil; it is a tecto silicate ranked as one of three-dimensional structure, showing clear yellow to golden brown color. The natural citrine stone is classified as quartz (SiO{sub 2}), and it has a lower symmetry and more compact reticulum. The Tl emission curve showed two peaks at 160 grades C and 220 grades C. To remove the Tl peak (160 grades C) of the sintered citrine pellet glow curves, different thermal treatments were tested during several time intervals. The Tl dose-response curve between 50 Gy and 100 kGy, the reproducibility of Tl response and the lower detection dose were obtained. The results show that citrine may be useful as high-dose detectors. (Author)

  20. Phantom examination for reduction of radiation dose using new needle screen storage phosphor radiography and add beam filter in digital thoracic radiography on adolescents and larger children

    International Nuclear Information System (INIS)

    Heyne, J.P.; Mentzel, H.J.; Neumann, R.; Lopatta, E.; Zimmermann, U.; Kaiser, W.A.

    2008-01-01

    Purpose: how much can the radiation dose be reduced in thoracic radiography on adolescents and larger children by using needle screen storage phosphor (NIP) radiography and add beam filtration? Materials and methods: a chest phantom with typical anatomical structures, pathological findings, added catheters, and simulated nodules, tumors, and calcifications was X-rayed digitally (DX-S, Agfa Healthcare) in posterior-anterior (p.a.) orientation with and without add beam filter. While keeping the voltage constant, the tube current time product was reduced gradually. In addition to LgM, the surface entrance dose (ED) and the dose area product (DAP) were measured by the Dosimax sensor and Kerma X-plus (both Wellhoefer). Five investigators evaluated the images for characteristics and critical features, pathological findings, and catheter recognizability. Results: the ED of the digital chest radiogram p.a. with 115 kV and 0.71 mAs was 27 μGy, the DAP 3.6 μGy x m 2 , the LgM value 1.56. This initial radiogram was able to be evaluated very well and conforms to the quality guidelines. The dose-reduced chest radiograms with the add beam filter Al 1.0 mm/Cu 0.1 mm were evaluated as sufficiently reduced to a dose of 63% of the initial dose, with the add beam filter Al 1.0 mm/Cu 0.2 mm reduced to 50% (0.52 mAs, DAP 1.82 μGy x m 2 , LgM 1.35). P.a. radiograms were able to be X-rayed on 115 kV with 0.52 mAs. (orig.)

  1. CT-guided biopsy of thoracic lesions with a novel wire-based needle guide device - initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Kroepil, Patric; Bilk, Philip; Quentin, Michael; Miese, Falk R; Lanzman, Rotem S; Scherer, Axel (Dept. of Radiology, Medical Faculty, Univ. Duesseldorf, Duesseldorf (Germany)), email: Patric.Kroepil@med.uni-duesseldorf.de

    2011-10-15

    Background Biopsies guided by computed tomography (CT) play an important role in clinical practice. A short duration, minimal radiation dose and complication rate are of particular interest. Purpose To evaluate the potential of a novel self-manufactured wire-based needle guide device for CT-guided thoracic biopsies with respect to radiation dose, intervention time and complication rate. Material and Methods Forty patients that underwent CT-guided biopsies of thoracic lesions were included in this study and assigned to two groups. Patients in group A (n = 20, mean age 69 +- 8.4 years) underwent biopsies with a novel wire-based needle guide device, while patients in group B (n = 20, mean age 68.4 +- 10.1 years) were biopsied without a needle guide device. The novel self-manufactured needle guide device consists of an iron/zinc wire modelled to a ring with a flexible arm and an eye at the end of the arm to stabilize the biopsy needle in the optimal position during intervention. Predefined parameters (radiation dose, number of acquired CT-slices, duration of intervention, complications) were compared between both groups. Results Mean radiation dose (CTDIvol 192 mGy versus 541 mGy; P = 0.001) and the number of acquired slices during intervention (n = 49 +- 33 vs. n = 126 +- 78; P = 0.001) were significantly lower in group A compared with group B. Intervention time in group A (13.1 min) was significantly lower than in group B (18.5 min, P < 0.01). A pneumothorax as peri-interventional complication was observed less frequent after device assisted biopsies (n = 4 vs. n = 8, n.s.). Conclusion The novel wire-based needle guide device is a promising tool to facilitate CT-guided thoracic biopsies reducing radiation dose, intervention time, and related complications. Further studies are mandatory to confirm these initial results

  2. CT-guided biopsy of thoracic lesions with a novel wire-based needle guide device - initial experiences

    International Nuclear Information System (INIS)

    Kroepil, Patric; Bilk, Philip; Quentin, Michael; Miese, Falk R; Lanzman, Rotem S; Scherer, Axel

    2011-01-01

    Background Biopsies guided by computed tomography (CT) play an important role in clinical practice. A short duration, minimal radiation dose and complication rate are of particular interest. Purpose To evaluate the potential of a novel self-manufactured wire-based needle guide device for CT-guided thoracic biopsies with respect to radiation dose, intervention time and complication rate. Material and Methods Forty patients that underwent CT-guided biopsies of thoracic lesions were included in this study and assigned to two groups. Patients in group A (n = 20, mean age 69 ± 8.4 years) underwent biopsies with a novel wire-based needle guide device, while patients in group B (n = 20, mean age 68.4 ± 10.1 years) were biopsied without a needle guide device. The novel self-manufactured needle guide device consists of an iron/zinc wire modelled to a ring with a flexible arm and an eye at the end of the arm to stabilize the biopsy needle in the optimal position during intervention. Predefined parameters (radiation dose, number of acquired CT-slices, duration of intervention, complications) were compared between both groups. Results Mean radiation dose (CTDIvol 192 mGy versus 541 mGy; P = 0.001) and the number of acquired slices during intervention (n = 49 ± 33 vs. n = 126 ± 78; P = 0.001) were significantly lower in group A compared with group B. Intervention time in group A (13.1 min) was significantly lower than in group B (18.5 min, P < 0.01). A pneumothorax as peri-interventional complication was observed less frequent after device assisted biopsies (n = 4 vs. n = 8, n.s.). Conclusion The novel wire-based needle guide device is a promising tool to facilitate CT-guided thoracic biopsies reducing radiation dose, intervention time, and related complications. Further studies are mandatory to confirm these initial results

  3. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  4. Variation in radiation sensitivity and repair kinetics in different parts of the spinal cord

    International Nuclear Information System (INIS)

    Adamus-Gorka, Magdalena; Brahme, Anders; Mavroidis, Panayiotis; Lind, Bengt K.

    2008-01-01

    Background. The spinal cord, known for its strongly serial character and high sensitivity to radiation even when a small segment is irradiated, is one of the most critical organs at risk to be spared during radiation therapy. To compare the sensitivity of different parts of the spinal cord, data for radiation myelopathy have been used. Material and methods. In the present study, the relative seriality model was fitted to two different datasets of clinical radiation myelitis concerning cervical spinal cord after treating 248 patients for head and neck cancer and thoracic spinal cord after treating 43 patients with lung carcinoma. The maximum likelihood method was applied to fit the clinical data. The model parameters and their 68% confidence intervals were calculated for each dataset. The α/β ratio for the thoracic cord was also was also found to be 0.9 (0-3.0) Gy. Results. The dose-response curve for the more sensitive cervical myelopathy is well described by the parameters D 50 =55.9 (54.8-57.1) Gy, γ=6.9 (5.0-9.2), s=0.13 (0.07-0.24), whereas the thoracic myelopathy is described by the parameters D 50 =75.5 (70.5-80.8) Gy, γ=1.1 (0.6-1.6), s=36 (3.3-8). Discussion and conclusions. Large differences in radiation response between the cervical and thoracic region of spinal cord are thus observed: cervical myelopathy seems to be characterized by medium seriality, while thoracic spinal cord is characterized by a highly serial dose-response. The much steeper dose-response curve for cervical spinal cord myelopathy can be interpreted as a higher number of functional subunits consistent with a higher amount of white matter close to the brain

  5. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Science.gov (United States)

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Collection of radiation resistant characteristics reports for instruments and materials in high dose rate environment

    International Nuclear Information System (INIS)

    Kusano, Joichi

    2008-03-01

    This document presents the collected official reports of radiation irradiation study for the candidate materials to be used in high dose rate environment as J-PARC facility. The effect of radiation damage by loss-beam or secondary particle beam of the accelerators influences the performance and the reliability of various instruments. The knowledge on the radiation resistivity of the materials is important to estimate the life of the equipments, the maintenance interval and dose evaluation for the personnel at the maintenance period. The radiation damage consists with mechanical property, electrical property and gas-evolution property. (author)

  7. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  8. Imaging after radiation therapy of thoracic tumors

    International Nuclear Information System (INIS)

    Ghaye, B.; Wanet, M.; El Hajjam, M.

    2016-01-01

    Radiation-induced lung disease (RILD) is frequent after therapeutic irradiation of thoracic malignancies. Many technique-, treatment-, tumor- and patient-related factors influence the degree of injury sustained by the lung after irradiation. Based on the time interval after the completion of the treatment RILD presents as early and late features characterized by inflammatory and fibrotic changes, respectively. They are usually confined to the radiation port. Though the typical pattern of RILD is easily recognized after conventional two-dimensional radiation therapy (RT), RILD may present with atypical patterns after more recent types of three or four-dimensional RT treatment. Three atypical patterns are reported: the modified conventional, the mass-like and the scar-like patterns. Knowledge of the various features and patterns of RILD is important for correct diagnosis and appropriate treatment. RILD should be differentiated from recurrent tumoral disease, infection and radiation-induced tumors. Due to RILD, the follow-up after RT may be difficult as response evaluation criteria in solid tumours (RECIST) criteria may be unreliable to assess tumor control particularly after stereotactic ablation RT (SABR). Long-term follow-up should be based on clinical examination and morphological and/or functional investigations including CT, PET-CT, pulmonary functional tests, MRI and PET-MRI. (authors)

  9. A Paradigm Shift in Low Dose Radiation Biology

    Directory of Open Access Journals (Sweden)

    Z. Alatas

    2015-08-01

    Full Text Available When ionizing radiation traverses biological material, some energy depositions occur and ionize directly deoxyribonucleic acid (DNA molecules, the critical target. A classical paradigm in radiobiology is that the deposition of energy in the cell nucleus and the resulting damage to DNA are responsible for the detrimental biological effects of radiation. It is presumed that no radiation effect would be expected in cells that receive no direct radiation exposure through nucleus. The risks of exposure to low dose ionizing radiation are estimated by extrapolating from data obtained after exposure to high dose radiation. However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose radiation than they do to high dose radiation. Moreover, recent experimental evidences from many laboratories reveal the fact that radiation effects also occur in cells that were not exposed to radiation and in the progeny of irradiated cells at delayed times after radiation exposure where cells do not encounter direct DNA damage. Recently, the classical paradigm in radiobiology has been shifted from the nucleus, specifically the DNA, as the principal target for the biological effects of radiation to cells. The universality of target theory has been challenged by phenomena of radiation-induced genomic instability, bystander effect and adaptive response. The new radiation biology paradigm would cover both targeted and non-targeted effects of ionizing radiation. The mechanisms underlying these responses involve biochemical/molecular signals that respond to targeted and non-targeted events. These results brought in understanding that the biological response to low dose radiation at tissue or organism level is a complex process of integrated response of cellular targets as well as extra-cellular factors. Biological understanding of

  10. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  11. Combined low- and high-dose irradiation and its interpretation from the point of view of radiation protection

    International Nuclear Information System (INIS)

    Beno, M.

    1996-01-01

    During the last decade some 'stimulating' or 'hormetic' effects have been ascribed to low-levels of radiation. The adaptive response was a phenomenon recently used as an argument among others advertising such hormetic effects of low dose irradiation. Human peripheral blood lymphocytes may show a decrease of chromosomal aberrations (CA) after high doses of ionizing radiation if they have been previously irradiated by small doses of internally deposited tritium from labelled thymidine, or by small doses of X-rays. This response looks as if some adaptation would take place to the low-dose irradiation and was called 'adaptive response' (AR). It was attributed to repair mechanisms elicited by damaging the lymphocyte DNA by small doses of radiation so that after the high dose, delivered at times when higher levels of repair proteins and other molecules are still present in cells, a lower damaging effect may be expressed. Our work was aimed at gaining information about the frequency distribution of the responses to a combination of low-dose irradiation with tritium and high-dose irradiation with gamma rays and at comparing two endpoints: counts of CA with counts of micronuclei (M) in lymphocytes from the same donors in a human population sample

  12. Neoadjuvant concurrent chemoradiotherapy followed by definitive high-dose radiotherapy or surgery for operable thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Masao, Murakami; Yasumasa, Kuroda; Yosiaki, Okamoto; Koichi, Kono; Eisaku, Yoden; Fusako, Kusumi; Kiyoshi, Hajiro; Satoru, Matsusue; Hiroshi, Takeda

    1997-01-01

    Purpose: A prospective clinical trial was undertaken to investigate the feasibility of concurrent chemoradiotherapy for the esophageal carcinoma. Materials and Methods: Between June 1989 and May 1996, forty patients with operable squamous cell carcinoma of the thoracic esophagus (stage 0 to III: UICC 1987), aged 45 to 78 (mean:64), were enrolled in a study of neoadjuvant concurrent chemoradiotherapy followed by definitive high-dose radiotherapy (CRT group) or surgery (CRT-S group). Neoadjuvant chemoradiotherapy consisted of 44Gy in 40 fractions for 4 weeks (2.2Gy/2Fr./day) through 10MVX rays, with one or two courses of cisplatin (80-150mg/body, mean:90mg/m 2 , day 1, bolus injection) and 5-fluorouracil (500-1500mg/body/day, mean:600mg/m 2 , day 1-4, continuous infusion). After completion of neoadjuvant chemoradiotherapy, clinical complete response (CR) was observed in 16 patients, partial response (PR) in 22, and no change (NC) in 2. Thirty responding patients (CR:16, PR:14) entered in CRT group, and 10 non-responding patients (PR:8, NC:2) followed by surgery (CRT-S group). A cumulative median dose of 66Gy for Tis,T1 and 71Gy for T2-T4 tumor with/without high-dose-rate intraluminal brachytherapy, and one to three courses of chemotherapy were delivered in CRT group. Intraoperative radiotherapy for abdominal lymphatic system and postoperative supraclavicular irradiation were added in CRT-S group. Results: Clinical CR rate at the completion of treatment showed 90% in CRT group, and pathological CR rate 10% in CRT-S group. The overall median survival was 45 months, survival at 1, 2, 3 years being 100%, 72%, 56%, respectively. Loco-regional failure was observed in 7 patients (all in CRT group), distant failure in 6 (3 in CRT group, 3 in CRT-S group) and loco-regional with distant failure in 1 (CRT group). Four patients of loco-regional recurrence in CRT group were salvaged by surgery. Overall survival at 2-, 3-years for CRT vs. CRT-S group was 72%, 64% vs. (1(1)); 100

  13. Radiation tolerance of the cervical spinal cord: incidence and dose-volume relationship of symptomatic and asymptomatic late effects following high dose irradiation of paraspinal tumors

    International Nuclear Information System (INIS)

    Liu, Mitchell C.C.; Munzenrider, John E.; Finkelstein, Dianne; Liebsch, Norbert; Adams, Judy; Hug, Eugen B.

    1997-01-01

    Purpose: Low grade chordomas and chondrosarcomas require high radiation doses for effective, lasting tumor control. Fractionated, 3-D planned, conformal proton radiation therapy has been used for lesions along the base of skull and spine to deliver high target doses, while respecting constraints of critical, normal tissues. In this study, we sought to determine the incidence of myelopathy after high dose radiotherapy to the cervical spine and investigated the influence of various treatment parameters, including dose-volume relationship. Methods and Materials: Between December 1980 and March 1996, 78 patients were treated at the Massachusetts General Hospital and Harvard Cyclotron Laboratory for primary or recurrent chordomas and chondrosarcomas of the cervical spine using combined proton and photon radiation therapy. In general, the tumor dose given was between 64.5 to 79.2 CGE (Cobalt Gray Equivalent). The guidelines for maximum permissible doses to spinal cord were: ≤ 64 CGE to the spinal cord surface and ≤ 53 CGE to the spinal cord center. Dose volume histograms of the spinal cord were analyzed to investigate a possible dose and volume relationship. Results: With a mean follow-up period of 46.6 months (range: 3 - 157 months), 4 of 78 patients (5.1%) developed high-grade (RTOG Grade 3 and 4) late toxicity: 3 patients (3.8%) experienced sensory deficits without motor deficits, none had any limitations of daily activities. One patient (1.2%) developed motor deficit with loss of motor function of one upper extremity. The only patient, who developed permanent motor damage had received additional prior radiation treatment and therefore received a cumulative spinal cord dose higher than the treatment guidelines. No patient treated within the guidelines experienced any motor impairment. Six patients (7.7%) experienced transient Lhermitt's syndrome and 1 patient (1.2%) developed asymptomatic radiographic MR findings only. Time to onset of symptoms of radiographic

  14. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  15. The effects of high dose and highly fractionated radiation on distraction osteogenesis in the murine mandible

    International Nuclear Information System (INIS)

    Monson, Laura A; Cavaliere, Christi M; Deshpande, Sagar S; Ayzengart, Alexander L; Buchman, Steven R

    2012-01-01

    The ability of irradiated tissue to support bony growth remains poorly defined, although there are anecdotal cases reported showing mixed results for the use of mandibular distraction osteogenesis after radiation for head and neck cancer. Many of these reports lack objective measures that would allow adequate analysis of outcomes or efficacy. The purpose of this experiment was to utilize a rat model of mandibular distraction osteogenesis after high dose and highly fractionated radiation therapy and to evaluate and quantify distracted bone formation under these conditions. Male Sprague–Dawley rats underwent 12 fractions of external beam radiation (48 Gray) of the left mandible. Following a two week recovery period, an external frame distractor was applied and gradual distraction of the mandible was performed. Tissue was harvested after a twenty-eight day consolidation period. Gross, radiologic and histological evaluations were undertaken. Those animals subjected to pre-operative radiation showed severe attenuation of bone formation including bone atrophy, incomplete bridging of the distraction gap, and gross bony defects or non-union. Although physical lengthening was achieved, the irradiated bone consistently demonstrated marked damaging effects on the normal process of distraction osteogenesis. This murine model has provided reliable evidence of the injurious effects of high dose radiation on bone repair and regeneration in distraction osteogenesis utilizing accurate and reproducible metrics. These results can now be used to assist in the development of therapies directed at mitigating the adverse consequences of radiation on the regeneration of bone and to optimize distraction osteogenesis so it can be successfully applied to post-oncologic reconstruction

  16. Mobile C-arm cone-beam CT for guidance of spine surgery: Image quality, radiation dose, and integration with interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, S.; Nithiananthan, S.; Mirota, D. J.; Uneri, A.; Stayman, J. W.; Zbijewski, W.; Schmidgunst, C.; Kleinszig, G.; Khanna, A. J.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen (Germany); Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland 21239 (United States); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2011-08-15

    , and {approx}3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from {approx}21 {mu}Sv/mGy on average at tableside to {approx}0.1 {mu}Sv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting {approx}zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was {approx}11.5 mGy for CBCT-guided thoracic vertebroplasty and {approx}23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to {approx}1 min of fluoroscopy time ({approx}40-60 {mu}Sv), compared to 5-11 min for the conventional approach. Conclusions: Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.

  17. Tumour induction by small doses of ionised radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1980-01-01

    The effect of low doses of ionised radiation on tumour induction in animals is discussed. It is hypothesised that high doses of radiation can strongly advance tumour induction from the combination of a stimulated cell growth, as a reaction to massive cell killing, and damage to DNA in the cell nuclei. This effect has a limit below which the radiation dose causes a non-significant amount of dead cells. However in animals where through other reasons, a chronic growth stimulation already exists, only one effect, the damage of DNA, is necessary to induce tumours. A linear dose effect without a threshold level applies in these cases. Applying this hypothesis to man indicates that calculating low dose effects by linear extrapolation of high dose effects is nothing more than a reasonable approximation. (C.F.)

  18. Dose levels from thoracic and pelvic examinations in two pediatric radiological departments in Norway - a comparison study of dose-area product and radiographic technique

    International Nuclear Information System (INIS)

    Kjernlie Saether, Hilde; Traegde Martinsen, Anne Catrine; Lagesen, Bente; Platou Holsen, Eva; Oevreboe, Kirsti Marie

    2010-01-01

    Background: Pediatric doses expressed in dose-area product (DAP) can be retrieved from only a few publications; most of which correlate DAP to patient size or large age spans. In clinical practice age is often the only available parameter describing the patient, and thus, evaluation of dose levels in pediatric radiology on the basis of DAP related to age alone would be useful in optimization work. Purpose: To provide comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, and evaluate the usefulness of comparing age-related DAP and radiographic technique between systems to identify areas with potential for optimization. Material and Methods: DAP, age, and radiographic technique were registered for 575 thoracic examinations and 371 pelvic examinations of children from newborn up to 14 years of age in groups with an age span of 1 year, performed with two digital flat-panel systems and one computed radiography system. Results: DAP varies from 2.2 to 54.0 mGycm2 for thoracic examinations, and from 4.6 to 532.5 mGycm2 for pelvic examinations. There are significant differences in DAP between systems and departments due to differences in technique, equipment, and staff. Conclusion: This study provides comparable data on age-related DAP from thoracic and pelvic radiological examinations of children, which could be used as an input to estimate diagnostic reference levels. The comparison between systems of DAP and radiographic technique has proven useful in identifying areas where there may be a potential for optimization.

  19. ALARA review of the maintenance and repair jobs of repetitive high radiation dose at Kori Unit 3 and 4

    International Nuclear Information System (INIS)

    Cho, Y.H.; Moon, J.H.; Kang, C.S.; Lee, J.S.; Lee, D.H.

    2003-01-01

    The policy of maintaining occupational radiation dose (ORD) as low as reasonably achievable (ALARA) requires the effective reduction of ORD in the phases of design as well as operation of nuclear power plants. It has been identified that a predominant portion of ORD arises during maintenance and repair operations at nuclear power plants. The cost-effective reduction of ORD cannot be achieved without a comprehensive analysis of accumulated ORD data of existing nuclear power plants. To identify the jobs of repetitive high ORD, the ORD data of Kori Units 3 and 4 over 10-year period from 1986 to 1995 were compiled into the PC-based ORD database program. As the radiation job classification structure, 26 main jobs are considered, most of which are further subdivided into detailed jobs. According to the order of the collective dose values for 26 main jobs, 10 jobs of high collective dose are identified. As an ALARA review, then, top 10 jobs of high collective dose are statistically analyzed with regard to 1) dose rate, 2) crew number and 3) job frequency that are the factors determining the collective dose for the radiation job of interest. Through the ALARA review, main reasons causing to high collective dose values are identified as follows. The high collective dose of RCP maintenance job is mainly due to the large crew number and the high job frequency. The characteristics of refueling job are similar to those of RCP maintenance job. However, the high collective doses of SG-related jobs such as S/G nozzle dam job, S/G man-way job and S/G tube maintenance job are mainly due to high radiation dose rate. (author)

  20. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  1. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  2. High-let radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Powers-Risius, P.; Alpen, E.L.; Ainsworth, E.J.; Ullrich, R.L.

    1982-01-01

    Recent results for neutron radiation-induced tumors are presented to illustrate the complexities of the dose-response curves for high-LET radiation. It is suggested that in order to derive an appropriate model for dose-response curves for the induction of tumors by high-LET radiation it is necessary to take into account dose distribution, cell killing and the susceptibility of the tissue under study. Preliminary results for the induction of Harderian gland tumors in mice exposed to various heavy ion beams are presented. The results suggest that the effectiveness of the heavy ion beams increases with increasing LET. The slopes of the dose-response curves for the different high-LET radiations decrease between 20 and 40 rads and therefore comparisons of the relative effectiveness should be made from data obtained at doses below about 20 to 30 rads

  3. Feasibility and radiation dose of high-pitch acquisition protocols in patients undergoing dual-source cardiac CT.

    Science.gov (United States)

    Sommer, Wieland H; Albrecht, Edda; Bamberg, Fabian; Schenzle, Jan C; Johnson, Thorsten R; Neumaier, Klement; Reiser, Maximilian F; Nikolaou, Konstatin

    2010-12-01

    The objective of this study was to compare image quality and radiation dose between high-pitch and established retrospectively and prospectively gated cardiac CT protocols using an Alderson-Rando phantom and a set of patients. An anthropomorphic Alderson-Rando phantom equipped with thermoluminiscent detectors and a set of clinical patients underwent the following cardiac CT protocols: high-pitch acquisition (pitch 3.4), prospectively triggered acquisition, and retrospectively gated acquisition (pitch 0.2). For patients with sinus rhythm below 65 beats per minute (bpm), high-pitch protocol was used, whereas for patients in sinus rhythm between 65 and 100 bpm, prospective triggering was used. Patients with irregular heart rates or heart rates of ≥ 100 bpm, were examined using retrospectively gated acquisition. Evaluability of coronary artery segments was determined, and effective radiation dose was derived from the phantom study. In the phantom study, the effective radiation dose as determined with thermoluminescent detector (TLD) measurements was lowest in the high-pitch acquisition (1.21, 3.12, and 11.81 mSv, for the high-pitch, the prospectively triggered, and the retrospectively gated acquisition, respectively). There was a significant difference with respect to the percentage of motion-free coronary artery segments (99%, 87%, and 92% for high-pitch, prospectively triggered, and retrospectively gated, respectively (p pitch protocol (p pitch scans have the potential to reduce radiation dose up to 61.2% and 89.8% compared with prospectively triggered and retrospectively gated scans. High-pitch protocols lead to excellent image quality when used in patients with stable heart rates below 65 bpm.

  4. Impact of radiation technique, radiation fraction dose, and total cisplatin dose on hearing. Retrospective analysis of 29 medulloblastoma patients

    International Nuclear Information System (INIS)

    Scobioala, Sergiu; Kittel, Christopher; Ebrahimi, Fatemeh; Wolters, Heidi; Eich, Hans Theodor; Parfitt, Ross; Matulat, Peter; Am Zehnhoff-Dinnesen, Antoinette

    2017-01-01

    To analyze the incidence and degree of sensorineural hearing loss (SNHL) resulting from different radiation techniques, fractionation dose, mean cochlear radiation dose (D mean ), and total cisplatin dose. In all, 29 children with medulloblastoma (58 ears) with subclinical pretreatment hearing thresholds participated. Radiotherapy (RT) and cisplatin had been applied sequentially according to the HIT MED Guidance. Audiological outcomes up to the latest follow-up (median 2.6 years) were compared. Bilateral high-frequency SNHL was observed in 26 patients (90%). No significant differences were found in mean hearing threshold between left and right ears at any frequency. A significantly better audiological outcome (p < 0.05) was found after tomotherapy at the 6 kHz bone-conduction threshold (BCT) and left-sided 8 kHz air-conduction threshold (ACT) than after a combined radiotherapy technique (CT). Fraction dose was not found to have any impact on the incidence, degree, and time-to-onset of SNHL. Patients treated with CT had a greater risk of SNHL at high frequencies than tomotherapy patients even though D mean was similar. Increase in severity of SNHL was seen when the total cisplatin dose reached above 210 mg/m 2 , with the highest abnormal level found 8-12 months after RT regardless of radiation technique or fraction dose. The cochlear radiation dose should be kept as low as possible in patients who receive simultaneous cisplatin-based chemotherapy. The risk of clinically relevant HL was shown when D mean exceeds 45 Gy independent of radiation technique or radiation regime. Cisplatin ototoxicity was shown to have a dose-dependent effect on bilateral SNHL, which was more pronounced in higher frequencies. (orig.) [de

  5. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  6. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  7. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  8. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  9. Free-breathing high-pitch 80kVp dual-source computed tomography of the pediatric chest: Image quality, presence of motion artifacts and radiation dose.

    Science.gov (United States)

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik

    2017-04-01

    To investigate image quality, presence of motion artifacts and effects on radiation dose of 80kVp high-pitch dual-source CT (DSCT) in combination with an advanced modeled iterative reconstruction algorithm (ADMIRE) of the pediatric chest compared to single-source CT (SSCT). The study was approved by the institutional review board. Eighty-seven consecutive pediatric patients (mean age 9.1±4.9years) received either free-breathing high-pitch (pitch 3.2) chest 192-slice DSCT (group 1, n=31) or standard-pitch (pitch 1.2) 128-slice SSCT (group 2, n=56) with breathing-instructions by random assignment. Tube settings were similar in both groups with 80 kVp and 74 ref. mAs. Images were reconstructed using FBP for both groups. Additionally, ADMIRE was used in group 1. Effective thorax diameter, image noise, and signal-to-noise ratio (SNR) of the pectoralis major muscle and the thoracic aorta were calculated. Motion artifacts were measured as doubling boarders of the diaphragm and the heart. Images were rated by two blinded readers for overall image quality and presence of motion artifacts on 5-point-scales. Size specific dose estimates (SSDE, mGy) and effective dose (ED, mSv) were calculated. Age and effective thorax diameter showed no statistically significant differences in both groups. Image noise and SNR were comparable (p>0.64) for SSCT and DSCT with ADMIRE, while DSCT with FBP showed inferior results (pchest DSCT in combination with ADMIRE reduces motion artifacts and increases image quality while lowering radiation exposure in free-breathing pediatric patients without sedation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Radiation dose control in the mining of high grade uranium ores

    International Nuclear Information System (INIS)

    Webster, S.T.; Brown, L.D.

    1996-01-01

    The control of radiation doses received by uranium miners is an unusually complex procedure, as three separate components of their total effective dose may be significant and may have to be evaluated separately. Apart from external and internal doses evaluated in the usual way, it is also necessary to evaluate the inhalation dose from radon progeny separately. Although this essentially forms part of the internal dose received, it is not evaluated in the conventional way since the associated dose equivalent must be derived from conversion factors based on epidemiological studies, instead of by the usual approach of calculating the dose to tissue from the inhaled activity and multiplying this by a recognized conversion factor to derive a whole body effective dose. Historically the traditional unit used for monitoring the concentration of radon progeny in a workplace is the Working Level (WL), this is now defined as a concentration such that the potential alpha emission from all the short lived progeny present in the sample will total 1.3 x 108 MeV per m 3 . The corresponding unit of exposure is the Working Level Month (WLM) and is the exposure that would be received by a reference man working in such an atmosphere for a standard working month lasting 170 hours. Unfortunately the relationship between exposures, measured in WLM, and the conventional radiation dose to the target tissues is complex and calculated values depend greatly upon the assumptions made in the lung model that must be used. Risks are therefore still controlled by limiting exposures in WLM on the basis of epidemiological studies of lung cancer incidence among miners employed at a time when the magnitude of the risk was not fully appreciated, and cancer incidence was high enough to permit reasonably accurate risk estimates to be derived directly from exposures in WLM. (author)

  11. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    International Nuclear Information System (INIS)

    Deva Jayanthi, D.; Maniyan, C.G.; Perumal, S.

    2011-01-01

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: → The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. → The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. → As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. → Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. → These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  12. Assessment of indoor radiation dose received by the residents of natural high background radiation areas of coastal villages of Kanyakumari district, Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Deva Jayanthi, D., E-mail: d.devajayanthi@gmail.co [Department of Physics, Women' s Christian College, Nagercoil 629001 (India); Maniyan, C.G. [Environmental Assessment Division, BARC, Mumbai 400085 (India); Perumal, S. [Department of Physics and Research Centre, S.T.Hindu College, Nagercoil 629002 (India)

    2011-07-15

    Radiation exposure and effective dose received through two routes of exposure, viz. external and internal, via inhalation, by residents of 10 villages belonging to Natural High Background Radiation Areas (NHBRA) of coastal regions of Kanyakumari District and Tamil Nadu in India were studied. While the indoor gamma radiation levels were monitored using Thermo Luminescent Dosimeters (TLDs), the indoor radon and thoron gas concentrations were measured using twin chamber dosimeters employing Solid State Nuclear Track Detectors (SSNTDs, LR-115-II). The average total annual effective dose was estimated and found to be varying from 2.59 to 8.76 mSv. -- Highlights: {yields} The effective dose received by the villages of Natural High Background Area (NHBRA) such as Enayam, Midalam and Mel Midalam is high when compared with other study areas. {yields} The high dose indicates higher concentration of radioactive nuclides like Thorium and Uranium in the soil. {yields} As radiation is harmful to human life, the external and internal doses can be reduced by removing the monazite content present in the soil by mineral separation. {yields} Contribution from vegetables, fruits, fish and other non vegetarian items are also being examined. {yields} These results along with other socio-economic factors can throw considerable light on the epidemiological impacts due to low levels of chronic exposure.

  13. Retrospective estimation of patient dose-area product in thoracic spine tomosynthesis performed using VolumeRAD

    International Nuclear Information System (INIS)

    Baath, Magnus; Svalkvist, Angelica; Soederman, Christina

    2016-01-01

    The aim of this study was to evaluate the use of a recently developed method of retrospectively estimating the patient dose-area product (DAP) of a chest tomosynthesis examination, performed using VolumeRAD, in thoracic spine tomosynthesis and to determine the necessary field-size correction factor. Digital imaging and communications in medicine (DICOM) data for the projection radiographs acquired during a thoracic spine tomosynthesis examination were retrieved directly from the modality for 17 patients. Using the previously developed method, an estimated DAP for the tomosynthesis examination was determined from DICOM data in the scout image. By comparing the estimated DAP with the actual DAP registered for the projection radiographs, a field-size correction factor was determined. The field-size correction factor for thoracic spine tomosynthesis was determined to 0.92. Applying this factor to the DAP estimated retrospectively, the maximum difference between the estimated DAP and the actual DAP was <3 %. In conclusion, the previously developed method of retrospectively estimating the DAP in chest tomosynthesis can be applied to thoracic spine tomosynthesis. (authors)

  14. Registration of radiation doses

    International Nuclear Information System (INIS)

    2000-02-01

    In Finland the Radiation and Nuclear Safety Authority (STUK) is maintaining the register (called Dose Register) of the radiation exposure of occupationally exposed workers in order to ensure compliance with the principles of optimisation and individual protection. The guide contains a description of the Dose Register and specifies the responsibilities of the party running a radiation practice to report the relevant information to the Dose Register

  15. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases

    International Nuclear Information System (INIS)

    Yang, Jun; Ma, Lin; Wang, Xiao-Shen; Xu, Wei Xu; Cong, Xiao-Hu; Xu, Shou-Ping; Ju, Zhong-Jian; Du, Lei; Cai, Bo-Ning; Yang, Jack

    2016-01-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV), correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the

  16. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun [Department of Radiation Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Department of Oncology, First Affiliated Hospital of Xinxiang Medical University, 88 Jiankang Road, Weihui, Henan, 453100 (China); Ma, Lin [Department of Radiation Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Haitang Bay, Sanya, 572000 (China); Wang, Xiao-Shen; Xu, Wei Xu; Cong, Xiao-Hu; Xu, Shou-Ping; Ju, Zhong-Jian [Department of Radiation Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Du, Lei [Department of Radiation Oncology, Hainan Branch of Chinese PLA General Hospital, Haitang Bay, Sanya, 572000 (China); Cai, Bo-Ning [Department of Radiation Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 (China); Yang, Jack [Department of Radiation Oncology, Monmouth Medical Center, 300 2nd Avenue, Long Branch, NJ 07740 (United States)

    2016-07-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33 Gy in 3 fractions (3F) or 40 Gy in 5F to cover at least 90% of the planning target volume (PTV), correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the

  17. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.

    Science.gov (United States)

    Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C

    2017-01-01

    Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either

  18. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  19. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  20. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography.

    Science.gov (United States)

    Lell, Michael M; May, Matthias; Deak, Paul; Alibek, Sedat; Kuefner, Michael; Kuettner, Axel; Köhler, Henrik; Achenbach, Stephan; Uder, Michael; Radkow, Tanja

    2011-02-01

    computed tomography (CT) is considered the method of choice in thoracic imaging for a variety of indications. Sedation is usually necessary to enable CT and to avoid deterioration of image quality because of patient movement in small children. We evaluated a new, subsecond high-pitch scan mode (HPM), which obviates the need of sedation and to hold the breath. a total of 60 patients were included in this study. 30 patients (mean age, 14 ± 17 month; range, 0-55 month) were examined with a dual source CT system in an HPM. Scan parameters were as follows: pitch = 3.0, 128 × 0.6 mm slice acquisition, 0.28 seconds gantry rotation time, ref. mAs adapted to the body weight (50-100 mAs) at 80 kV. Images were reconstructed with a slice thickness of 0.75 mm. None of the children was sedated for the CT examination and no breathing instructions were given. Image quality was assessed focusing on motion artifacts and delineation of the vascular structures and lung parenchyma. Thirty patients (mean age, 15 ± 17 month; range, 0-55 month) were examined under sedation on 2 different CT systems (10-slice CT, n = 18; 64-slice CT, n = 13 patients) in conventional pitch mode (CPM). Dose values were calculated from the dose length product provided in the patient protocol/dose reports, Monte Carlo simulations were performed to assess dose distribution for CPM and HPM. all scans were performed without complications. Image quality was superior with HPM, because of a significant reduction in motion artifacts, as compared to CPM with 10- and 64-slice CT. In the control group, artifacts were encountered at the level of the diaphragm (n = 30; 100%), the borders of the heart (n = 30; 100%), and the ribs (n = 20; 67%) and spine (n = 6; 20%), whereas motion artifacts were detected in the HPM-group only in 6 patients in the lung parenchyma next to the diaphragm or the heart (P detector width and pitch-value. high-pitch chest CT is a robust method to provide highest image quality making sedation

  1. Share of erythema dose of solar radiation in high mountains

    International Nuclear Information System (INIS)

    Blumthaler, M.; Ambach, W.

    1987-01-01

    The erythema dose was measured using a Robertson-Berger Sunburn Meter. The spectral sensitivity of the detector is adapted to an erythema action spectrum with the optical center at about 300 nm. The erythema dose is expressed in the biologically relevant Sunburn Units (SU). The Robertson-Berger Sunburn Meter has been recommended by the WMO for global monitoring of solar UV-B erythema dose. UV-A radiation was measured with a UV-radiometer. The spectral sensitivity of the detector has a flat maximum at 345 nm and a half band width of +- 25 nm. Global radiation was measured using a pyranometer. All detectors were placed horizontally and calibrated several times. Readings were taken in intervals of one minute

  2. Secondary radiation dose during high-energy total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, M.; Raczkowski, M. [Lower Silesian Oncology Center, Medical Physics Department, Wroclaw (Poland); Polaczek-Grelik, K. [University of Silesia, Medical Physics Department, Katowice (Poland); Szafron, B.; Konefal, A.; Zipper, W. [University of Silesia, Department of Nuclear Physics and Its Applications, Katowice (Poland)

    2014-05-15

    The goal of this work was to assess the additional dose from secondary neutrons and γ-rays generated during total body irradiation (TBI) using a medical linac X-ray beam. Nuclear reactions that occur in the accelerator construction during emission of high-energy beams in teleradiotherapy are the source of secondary radiation. Induced activity is dependent on the half-lives of the generated radionuclides, whereas neutron flux accompanies the treatment process only. The TBI procedure using a 18 MV beam (Clinac 2100) was considered. Lateral and anterior-posterior/posterior-anterior fractions were investigated during delivery of 2 Gy of therapeutic dose. Neutron and photon flux densities were measured using neutron activation analysis (NAA) and semiconductor spectrometry. The secondary dose was estimated applying the fluence-to-dose conversion coefficients. The main contribution to the secondary dose is associated with fast neutrons. The main sources of γ-radiation are the following: {sup 56}Mn in the stainless steel and {sup 187}W of the collimation system as well as positron emitters, activated via (n,γ) and (γ,n) processes, respectively. In addition to 12 Gy of therapeutic dose, the patient could receive 57.43 mSv in the studied conditions, including 4.63 μSv from activated radionuclides. Neutron dose is mainly influenced by the time of beam emission. However, it is moderated by long source-surface distances (SSD) and application of plexiglass plates covering the patient body during treatment. Secondary radiation gives the whole body a dose, which should be taken into consideration especially when one fraction of irradiation does not cover the whole body at once. (orig.) [German] Die zusaetzliche Dosis durch sekundaere Neutronen- und γ-Strahlung waehrend der Ganzkoerperbestrahlung mit Roentgenstrahlung aus medizinischen Linearbeschleunigern wurde abgeschaetzt. Bei der Emission hochenergetischer Strahlen zur Teletherapie finden hauptsaechlich im Beschleuniger

  3. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  4. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  5. Development of Plant Application Technique of Low Dose Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek (and others)

    2007-07-15

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources.

  6. Development of Plant Application Technique of Low Dose Radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jae Sung; Lim, Yong Taek

    2007-07-01

    The project was carried out to achieve three aims. First, development of application techniques of cell-stimulating effects by low-dose radiation. Following irradiation with gamma-rays of low doses, beneficial effects in crop germination, early growth, and yield were investigated using various plant species and experimental approaches. For the actual field application, corroborative studies were also carried out with a few concerned experimental stations and farmers. Moreover, we attempted to establish a new technique of cell cultivation for industrial mass-production of shikonin, a medicinal compound from Lithospermum erythrorhizon and thereby suggested new application fields for application techniques of low-dose radiation. Second, elucidation of action mechanisms of ionizing radiation in plants. By investigating changes in plant photosynthesis and physiological metabolism, we attempted to elucidate physiological activity-stimulating effects of low-dose radiation and to search for radiation-adaptive cellular components. Besides, analyses of biochemical and molecular biological mechanisms for stimulus-stimulating effects of low-dose radiation were accomplished by examining genes and proteins inducible by low-dose radiation. Third, development of functional crop plants using radiation-resistant factors. Changes in stress-tolerance of plants against environmental stress factors such as light, temperature, salinity and UV-B stress after exposed to low-dose gamma-rays were investigated. Concerned reactive oxygen species, antioxidative enzymes, and antioxidants were also analyzed to develop high value-added and environment-friendly functional plants using radiation-resistant factors. These researches are important to elucidate biological activities increased by low-dose radiation and help to provide leading technologies for improvement of domestic productivity in agriculture and development of high value-added genetic resources

  7. Dose distribution following selective internal radiation therapy

    International Nuclear Information System (INIS)

    Fox, R.A.; Klemp, P.F.; Egan, G.; Mina, L.L.; Burton, M.A.; Gray, B.N.

    1991-01-01

    Selective Internal Radiation Therapy is the intrahepatic arterial injection of microspheres labelled with 90Y. The microspheres lodge in the precapillary circulation of tumor resulting in internal radiation therapy. The activity of the 90Y injected is managed by successive administrations of labelled microspheres and after each injection probing the liver with a calibrated beta probe to assess the dose to the superficial layers of normal tissue. Predicted doses of 75 Gy have been delivered without subsequent evidence of radiation damage to normal cells. This contrasts with the complications resulting from doses in excess of 30 Gy delivered from external beam radiotherapy. Detailed analysis of microsphere distribution in a cubic centimeter of normal liver and the calculation of dose to a 3-dimensional fine grid has shown that the radiation distribution created by the finite size and distribution of the microspheres results in an highly heterogeneous dose pattern. It has been shown that a third of normal liver will receive less than 33.7% of the dose predicted by assuming an homogeneous distribution of 90Y

  8. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  9. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study

    International Nuclear Information System (INIS)

    Kong, F.-M.; Haken, Randall K. ten; Schipper, Matthew J.; Sullivan, Molly A.; Chen, Ming; Lopez, Carlos; Kalemkerian, Gregory P.; Hayman, James A.

    2005-01-01

    Purpose: To determine whether high-dose radiation leads to improved outcomes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included 106 patients with newly diagnosed or recurrent Stages I-III NSCLC, treated with 63-103 Gy in 2.1-Gy fractions, using three-dimensional conformal radiation therapy (3D-CRT) per a dose escalation trial. Targets included the primary tumor and any lymph nodes ≥1 cm, without intentionally including negative nodal regions. Nineteen percent of patients (20/106) received neoadjuvant chemotherapy. Patient, tumor, and treatment factors were evaluated for association with outcomes. Estimated median follow-up was 8.5 years. Results: Median survival was 19 months, and 5-year overall survival (OS) was 13%. Multivariate analysis revealed weight loss (p = 0.011) and radiation dose (p = 0.0006) were significant predictors for OS. The 5-year OS was 4%, 22%, and 28% for patients receiving 63-69, 74-84, and 92-103 Gy, respectively. Although presence of nodal disease was negatively associated with locoregional control under univariate analysis, radiation dose was the only significant predictor when multiple variables were included (p = 0.015). The 5-year control rate was 12%, 35%, and 49% for 63-69, 74-84, and 92-103 Gy, respectively. Conclusions: Higher dose radiation is associated with improved outcomes in patients with NSCLC treated in the range of 63-103 Gy

  10. The use of caffeine to assess high dose exposures to ionising radiation by dicentric analysis

    International Nuclear Information System (INIS)

    Pujol, M.; Puig, R.; Caballin, M. R.; Barrios, L.; Barquinero, J. F.

    2012-01-01

    Dicentric analysis is considered as a 'gold standard' method for biological dosimetry. However, due to the radiation-induced mitotic delay or inability to reach mitosis of heavily damaged cells, the analysis of dicentrics is restricted to doses up to 4-5 Gy. For higher doses, the analysis by premature chromosome condensation technique has been proposed. Here, it is presented a preliminary study is presented in which an alternative method to analyse dicentrics after high dose exposures to ionising radiation (IR) is evaluated. The method is based on the effect of caffeine in preventing the G2/M checkpoint allowing damaged cells to reach mitosis. The results obtained indicate that the co-treatment with Colcemide and caffeine increases significantly increases the mitotic index, and hence allows a more feasible analysis of dicentrics. Moreover in the dose range analysed, from 0 to 15 Gy, the dicentric cell distribution followed the Poisson distribution, and a simulated partial-body exposure has been clearly detected. Overall, the results presented here suggest that caffeine has a great potential to be used for dose-assessment after high dose exposure to IR. (authors)

  11. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [DCH Reg. Medical Center, Tuscaloosa, AL (United States)

    2016-06-15

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. The margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.

  12. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose

  13. Ultraviolet Radiation Dose National Standard of México

    Science.gov (United States)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  14. Carcinoma of the thoracic esophagus

    International Nuclear Information System (INIS)

    Herskovic, A.M.; Leichman, L.; Lattin, P.B.

    1987-01-01

    The authors analyzed all cases of thoracic esophagel carcinoma seen from 1980 to 1984 inclusive, plus an additional 22 cases from a pilot study at Wayne State University. Most patients received preoperative combination radiation and chemotherapy. Eighty-nine patients completed treatment (5-fluorouracil, cisplatin, and radiation therapy) as in both the RTOG and SWOG national studies. Of these 89, 39 refused or were not offered planned surgery. Four patients are still alive and well. Fifty patients underwent esophagectomy; 12 patients were free of tumor at esophagectomy, and four of these are alive and well. One patient with a tumor in the resected esophagus alone is still alive. Twenty-two patients were enrolled in the pilot study in which surgery was reserved for salvage, the initial radiation volume was increased, the tumor dose was increased to 5,000 rad give continuously, and chemotherapy was increased to four courses

  15. The estimation of doses to the inhabitants arising from natural radiation source in the high background radiation area of Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Morishima, H.; Wei Lvxin; Jian Yuannu

    2004-01-01

    Objective: The purposes is to estimate the average annual effective dose of the inhabitants and absorbed dose in some human tissues and organs arising from natural radiation sources in the High Background Radiation Area (HBRA) of Yangjiang and in the neighboring Control Area (CA). In order to provide more effective evidence for analyzing the dose-effect relationships among the cohort members in the investigated areas, authors divided the local inhabitant into different dose-groups. Methods: The authors measured the environmental gamma external radiation levels and individual accumulated doses of 5293 people in the investigated areas. The concentrations for 222 Rn, 220 Rn and their decay products in air were also surveyed. The authors estimated the internal doses of natural radionuclides based on the results obtained from measurements in food, in drinking water, in human teeth, in several human tissues, in human placenta, and in activity concentration of exhaled 222 Rn and 220 Rn of the residents living in the investigated areas. Results: The estimation of average annual effective doses in HBRA and CA based on the data of environmental measurements of radiation level respectively are 2.12 ± 0.29 mSv a -1 and 0.69 ± 0.09 mSv a -1 . The sources of higher background radiation in HBRA are mainly contributed from terrestrial gamma radiation. The estimation of average annual effective doses to the residents arising from inhalation of 222 Rn, 220 Rn and their decay products was 3.28 mSv a -1 in HBRA, while that in CA was 1.03 mSv a -1 . The values of the absorbed dose of the residents in their trachea-bronchial tree and lung in HBRA arising from inhalation of 222 Rn, 220 Rn and their decay products are 5.40 mGy a -1 and 1.08 mGy a -1 respectively, which are about four times of the values of the absorbed dose in CA. The estimation of average annual effective doses to the inhabitants caused by 226 Ra and 228 Ra in HBRA and CA were 281.88 μSv a -1 and 84.54 μSv a -1

  16. Radiophotoluminescence light scope for high-dose dosimetry

    International Nuclear Information System (INIS)

    Sato, Fuminobu; Zushi, Naoki; Sakiyama, Tomoki; Kato, Yushi; Murata, Isao; Shimizu, Kikuo; Yamamoto, Takayoshi; Iida, Toshiyuki

    2015-01-01

    A radiophotoluminescence (RPL) light scope is a remote-sensing technique for measuring in situ the radiation dose in an RPL detector placed at a distance. The RPL light scope is mainly composed of an ultraviolet (UV) pulse laser, telescopic lenses, a photomultiplier tube, and camera modules. In a performance test, some RPL detectors were placed at distances up to 30 m and were illuminated with a pulsed UV laser beam. The photoluminescence responses of the RPL detectors were analyzed using this scope. Their radiation doses were determined from the amplitude of the given component of the photoluminescence responses. The RPL readout could be repeated without fading, and its amplitude exhibited good linearity at a dose ranging from 0.1 to 60 Gy. Furthermore, a two-dimensional distribution of radiation dose was obtained by laser scanning on an RPL detector. It was confirmed that the RPL light scope was a useful remote-sensing tool for high-dose dosimetry. - Highlights: • A radiophotoluminescence (RPL) light scope was developed for high-dose dosimetry. • The RPL light scope has high sensitivity and accuracy in high-dose dosimetry. • Two-dimensional radiation dose distribution was obtained by the RPL light scope.

  17. Radiation dose monitoring in the clinical routine

    Energy Technology Data Exchange (ETDEWEB)

    Guberina, Nika [UK Essen (Germany). Radiology

    2017-04-15

    Here we describe the first clinical experiences regarding the use of an automated radiation dose management software to monitor the radiation dose of patients during routine examinations. Many software solutions for monitoring radiation dose have emerged in the last decade. The continuous progress in radiological techniques, new scan features, scanner generations and protocols are the primary challenge for radiation dose monitoring software systems. To simulate valid dose calculations, radiation dose monitoring systems have to follow current trends and stay constantly up-to-date. The dose management software is connected to all devices at our institute and conducts automatic data acquisition and radiation dose calculation. The system incorporates 18 virtual phantoms based on the Cristy phantom family, estimating doses in newborns to adults. Dose calculation relies on a Monte Carlo simulation engine. Our first practical experiences demonstrate that the software is capable of dose estimation in the clinical routine. Its implementation and use have some limitations that can be overcome. The software is promising and allows assessment of radiation doses, like organ and effective doses according to ICRP 60 and ICRP 103, patient radiation dose history and cumulative radiation doses. Furthermore, we are able to determine local diagnostic reference doses. The radiation dose monitoring software systems can facilitate networking between hospitals and radiological departments, thus refining radiation doses and implementing reference doses at substantially lower levels.

  18. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  19. Analysis of T101 outage radiation dose

    International Nuclear Information System (INIS)

    Li, Zhonghua

    2008-01-01

    Full text: Collective radiation dose during outage is about 80% of annual collective radiation dose at nuclear power plants (NPPs). T 101 Outage is the first four-year outage of Unit 1 at Tianwan Nuclear Power Station (TNPS) and thorough overhaul was undergone for the 105-day's duration. Therefore, T 101 Outage has significant reference meaning to reducing collective radiation dose at TNPS. This paper collects the radiation dose statistics during T 101 Outage and analyses the radiation dose distribution according to tasks, work kinds and varying trend of the collective radiation dose etc., comparing with other similar PWRs in the world. Based on the analysis this paper attempts to find out the major factors in collective radiation dose during T 101 Outage. The major positive factor is low radiation level at workplace, which profits from low content of Co in reactor construction materials, optimised high-temperature p H value of the primary circuit coolant within the tight range and reactor operation without trips within the first fuel cycle. One of the most negative factors is long outage duration and many person-hours spent in the radiological controlled zone, caused by too many tasks and inefficient work. So besides keeping good performance of reducing radioactive sources, it should be focused on how to improve implementation of work management including work selection, planning and scheduling, work preparation, work implementation, work assessment and feedback, which can lead to reduced numbers of workers needed to perform a task, of person-hours spent in the radiological controlled zone. Moreover, this leads to reduce occupational exposures in an ALARA fashion. (author)

  20. Radiation doses in interventional neuroradiology

    International Nuclear Information System (INIS)

    Theodorakou, C.; Butler, P.; Horrocks, J.A.

    2001-01-01

    Patient radiation doses during interventional radiology (IR) procedures may reach the thresholds for radiation-induced skin and eye lens injuries. This study investigates the radiation doses received by patients undergoing cerebral embolization. Measurements were conducted using thermoluminescent dosimeters. Radiotherapy verification films were used in order to visualise the radiation field. For each procedure the fluoroscopic and digital dose-area product, the fluoroscopic time, the total number of acquired images and entrance-skin dose calculated by the angiographic unit were recorded. In this paper, the skin, eye and thyroid glands doses on a sample of patients are presented. From a preliminary study of 13 patients having undergone cerebral embolization, it was deduced that six of them have received a dose above 1 Gy. Detailed dose data from patients undergoing IR procedures will be collected in the future with the aim of developing a model to allow estimation of the dose prior to the procedure as well as to look at techniques of dose reduction. (author)

  1. Labour cost of radiation dose

    International Nuclear Information System (INIS)

    Cook, A.; Lockett, L.E.

    1978-01-01

    In order to optimise capital expenditure on measures to protect workers against radiation it would be useful to have a means to measure radiation dose in money terms. Because labour has to be employed to perform radiation work there must be some relationship between the wages paid and the doses received. Where the next increment of radiation dose requires additional labour to be recruited the cost will at least equal the cost of the extra labour employed. This paper examines some of the factors which affect the variability of the labour cost of radiation dose and notes that for 'in-plant' exposures the current cost per rem appears to be significantly higher than values quoted in ICRP Publication 22. An example is given showing how this concept may be used to determine the capital it is worth spending on installed plant to prevent regular increments of radiation dose to workers. (author)

  2. Radiation dose in dental radiology

    International Nuclear Information System (INIS)

    Cohnen, M.; Kemper, J.; Moedder, U.; Moebes, O.; Pawelzik, J.

    2002-01-01

    The aim of this study was to compare radiation exposure in panoramic radiography (PR), dental CT, and digital volume tomography (DVT). An anthropomorphic Alderson-Rando phantom and two anatomical head phantoms with thermoluminescent dosimeters fixed at appropriate locations were exposed as in a dental examination. In PR and DVT, standard parameters were used while variables in CT included mA, pitch, and rotation time. Image noise was assessed in dental CT and DVT. Radiation doses to the skin and internal organs within the primary beam and resulting from scatter radiation were measured and expressed as maximum doses in mGy. For PR, DVT, and CT, these maximum doses were 0.65, 4.2, and 23 mGy. In dose-reduced CT protocols, radiation doses ranged from 10.9 to 6.1 mGy. Effective doses calculated on this basis showed values below 0.1 mSv for PR, DVT, and dose-reduced CT. Image noise was similar in DVT and low-dose CT. As radiation exposure and image noise of DVT is similar to low-dose CT, this imaging technique cannot be recommended as a general alternative to replace PR in dental radiology. (orig.)

  3. A method for radiobiological investigations in radiation fields with different LET and high dose rates

    International Nuclear Information System (INIS)

    Grundler, W.

    1976-01-01

    For investigations: 1. Performed in the field of radiobiology with different LET-radiation and a relatively high background dose rate of one component (e.g. investigations with fast and intermediate reactor neutrons) 2. Concerning radiation risk studies within a wide range 3. Of irradiations, covering a long time period (up to 100 days) a test system is necessary which on the one hand makes it possible to analyze the influence of different LET radiation and secondly shows a relative radiation resistant behaviour and allows a simple cell cycle regulation. A survey is given upon the installed device of a simple cell observation method, the biological test system used and the analysis of effects caused by dose, repair and LET. It is possible to analyze the behaviour of the nonsurvival cells and to demonstrate different reactions of the test parameters to the radiation of different LET. (author)

  4. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  5. Dose-reduction techniques for high-dose worker groups in nuclear power plants

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.; Dionne, B.J.

    1991-03-01

    This report summarizes the main findings of a study of the extent of radiation dose received by special work groups in the nuclear power industry. Work groups which chronically get large doses were investigated, using information provided by the industry. The tasks that give high doses to these work groups were examined and techniques described that were found to be particularly successful in reducing dose. Quantitative information on the extent of radiation doses to various work groups shows that significant numbers of workers in several critical groups receive doses greater than 1 and even 2 rem per year, particularly contract personnel and workers at BWR-type plants. The number of radiation workers whose lifetime dose is greater than their age is much less. Although the techniques presented would go some way in reducing dose, it is likely that a sizeable reduction to the high-dose work groups may require development of new dose-reduction techniques as well as major changes in procedures. 10 refs., 26 tabs

  6. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    Science.gov (United States)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  7. High-dose mode of mortality in Tribolium: A model system for study of radiation injury and repair in non-proliferative tissues

    International Nuclear Information System (INIS)

    Cheng, Chihing Christina.

    1989-01-01

    With appropriate doses of ionizing radiation, both the acute, or lethal-midlethal, dose-independent pattern of mortality, and the hyperacute, dose-dependent pattern, were demonstrated within a single insect genus (Tribolium). This demonstration provides resolution of apparently contradictory reports of insect radiation responses in terms of doses required to cause lethality and those based on survival time as a function of dose. A dose-dependent mortality pattern was elicited in adult Tribolium receiving high doses, viz., 300 Gy or greater; its time course was complete in 10 days, before the dose-independent pattern of mortality began. Visual observations of heavily-irradiated Tribolium suggested neural and/or neuromuscular damage, as had been previously proposed by others for lethally-irradiated wasps, flies, and mosquitoes. Results of experiments using fractionated high doses supported the suggestion that the hyperacute or high-dose mode of death is the result of damage to nonproliferative tissues. Relative resistance of a strain to the hyperacute or high-dose mode of death was not correlated with resistance to the midlethal mode, which is believed to be the result of damage to the proliferative cells of the midgut. Using the high-dose mode of death as a model of radiation damage to nonproliferative tissues, the effects of age, and of a moderate priming dose were assessed. Beetles showed age-related increase in sensitivity to the high-dose mode of death, suggesting a decline in capacity to repair radiation damage to postmitotic tissue. This correlated with a decrease (50%) in the amount of repair reflected in the sparing effect of dose-fractionation (SDF) between the age of 1 to 3 months. The age related increase in radiosensitivity was reduced by a moderate priming dose (40 or 65 Gy) given at a young age

  8. Gynogenesis with high doses of gamma radiation in tomatoes -Lycopersicum esculentum Mill. (L.)

    International Nuclear Information System (INIS)

    Dryanovska, O.A.

    1983-01-01

    The behaviour of male chromatin at the germination of gamma irradiated pollen from the stigma to the embrio sac in tomatoes was investigated in connection with the induced gynogenesis and the transfer of genetic information from one species to another. Two male-sterile longistil varieties of Deva and Hera were used as mothers, while mixed pollen from cultivated varieties and Lycopersicum peruvianum (L.) was irradiated at doses of 1, 5, 10 and 200 Kr with a dose rate of up to 1500 R/min. The experiment was carried out in 6 replications, with between 3 and 15 flowers for each variant and variety. The irradiated male chromatin of L. peruvianum remains in the pollen tube that has grown close to the embryo sac and stimulates the development of the embryo and endosperm. The absense of anthocyanin and the normal diploid chromosome count were the two markers for characterizing the plants obtained at high doses of gamma radiation as secondarily diploidized gynogenetic diplo-haploids during embryogenesis. It is assumed that the highly damaged male chromatin and the cytoplasm of the pollen tube retain their stimulating function under the influence of the high doses. A decisive role may be placed by certain fragments with genes from the male chromatin. The mitochondria which retain their respirative capacity and are promptly restored even after irradiation may have a stimmulating influence at the induced haploidy. The secondary diploidization normalizes the development of the organism of haploid origin and makes it possible to overcome the poor viability and the higher sterility. The genes responsible for the synthesis of anthocyanin in the irradiated male chromatin are restroyed by the high radiation doses, and this is the reason for the absence of anthocyanin in the diplo-haploid plants

  9. Multilevel mechanisms of stimulatory effect of low dose radiation on immunity

    International Nuclear Information System (INIS)

    Shu-Zeng Liu

    1992-01-01

    Attention is paid to the effects of low level ionizing radiation on humans. The conference is devoted to low dose radiation and defense mechanisms of the body. Due to the importance of the immune system in body resistance, special attention has been given to host defense mechanisms following exposure to different doses of ionizing radiation. The immune system has long been known to be highly sensitive to moderate to high doses of ionizing radiation with immuno-depression as one of the most important causes of death in acute radiation syndrome. However, the dose-effect relationship of immune functions has been found to be quite different in the low dose range, especially with doses within 0.1 Gy. With doses above 0.5 Gy most immunologic parameters show a dose dependent depression. With doses between 0.1-0.5 Gy there may be no definite changes in immune functions. Doses within 0.1 Gy, given in single or chronic exposures, have been found to stimulate many immune responses. (author). 16 refs., 2 figs., 7 tabs

  10. Experimental RBE values of high LET radiations at low doses and the implications for quality factor assignment

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1985-01-01

    RBE determinations of special relevance to the quality factor assigned for radiation protection purposes are those relating to the effects of special importance at low doses, namely carcinogenesis and mutagenesis. Measurements of RBE that enable the maximum value of RBE, namely RBEsub(M), to be determined at low doses require data points as low as 0.1 Gy or even 0.01 Gy or high LET radiation. Corresponding data points as low as 0.5 Gy to 0.25 Gy or less of low LET radiation are also needed. Relatively few such measurements have been made, but many more are available now than formerly. A review of recent RBEs for tumour induction, life shortening, transformation, cytogenetics and genetic endpoints, which updated an earlier review, indicates a broad range of results. The principle findings are that X rays are more effective than hard γ rays at low doses by a factor of about 2, and that fission neutrons, alpha particles and heavy ions may be 30-50 times more effective, on the average, (some endpoints give higher, some lower values) than hard γ rays. The data would seem to indicate that in order to provide approximately equal protection against the risks at low doses from all radiations, adjustments upward in the quality factors for high LET radiations need to be considered. (author)

  11. Dose reconstruction modeling for medical radiation workers

    International Nuclear Information System (INIS)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin

    2017-01-01

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  12. Dose reconstruction modeling for medical radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeong Chull; Cha, Eun Shil; Lee, Won Jin [Dept. of Preventive Medicine, Korea University, Seoul (Korea, Republic of)

    2017-04-15

    Exposure information is a crucial element for the assessment of health risk due to radiation. Radiation doses received by medical radiation workers have been collected and maintained by public registry since 1996. Since exposure levels in the remote past are greater concern, it is essential to reconstruct unmeasured doses in the past using known information. We developed retrodiction models for different groups of medical radiation workers and estimate individual past doses before 1996. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure. Reconstruction models for past radiation doses received by medical radiation workers were developed, and the past doses were estimated. Using these estimates, organ doses should be calculated which, in turn, will be used to explore a wide range of health risks of medical occupational radiation exposure.

  13. Ultra-low dose dual-source high-pitch computed tomography of the paranasal sinus: diagnostic sensitivity and radiation dose

    International Nuclear Information System (INIS)

    Schulz, Boris; Zangos, Stefan; Friedrichs, Ingke; Bauer, Ralf W.; Kerl, Matthias; Vogl, Thomas J.; Martin M Mack, Martin M.; Potente, Stefan

    2012-01-01

    Background: Today's gold standard for diagnostic imaging of inflammatory diseases of the paranasal sinus is computed tomography (CT). Purpose: To evaluate diagnostic sensitivity and radiation dose of an ultra-low dose dual-source CT technique. Material and Methods: Paranasal sinuses of 14 cadaveric heads were independently evaluated by two readers using a modern dual-source CT with lowest reasonable dosage in high-pitch mode (100 kV, 10 mAs, collimation 0.6 mm, pitch value 3.0). Additionally the head part of an anthropomorphic Alderson-Rando phantom was equipped with thermoluminescent detectors to measure radiation exposure to the eye lenses and thyroid gland. Results: Diagnostic accuracy regarding sinusoidal fluid, nasal septum deviation, and mucosal swelling was 100%. Mastoid fluid was detected in 76% and 92%, respectively. In the phantom study, average measured eye lens dosage was 0.64 mGy; radiation exposure of the thyroid gland was 0.085 mGy. Conclusion: Regarding evaluation of inflammatory diseases of the paranasal sinus this study indicates sufficient accuracy of the proposed CT protocol at a very low dosage level

  14. Annual individual doses for personnel dealing with ionizing radiation sources

    International Nuclear Information System (INIS)

    Poplavskij, K.K.

    1982-01-01

    Data on annual individual doses for personnel of national economy enterprises, research institutes, high schools, medical establishments dealing with ionizing radiation sources are presented. It is shown that radiation dose for the personnel constitutes only shares of standards established by sanitary legislation. Numeral values of individual doses of the personnel are determined by the type, character and scope of using ionizing radiation sources

  15. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  16. Cumulative radiation dose of multiple trauma patients during their hospitalization

    International Nuclear Information System (INIS)

    Wang Zhikang; Sun Jianzhong; Zhao Zudan

    2012-01-01

    Objective: To study the cumulative radiation dose of multiple trauma patients during their hospitalization and to analyze the dose influence factors. Methods: The DLP for CT and DR were retrospectively collected from the patients during June, 2009 and April, 2011 at a university affiliated hospital. The cumulative radiation doses were calculated by summing typical effective doses of the anatomic regions scanned. Results: The cumulative radiation doses of 113 patients were collected. The maximum,minimum and the mean values of cumulative effective doses were 153.3, 16.48 mSv and (52.3 ± 26.6) mSv. Conclusions: Multiple trauma patients have high cumulative radiation exposure. Therefore, the management of cumulative radiation doses should be enhanced. To establish the individualized radiation exposure archives will be helpful for the clinicians and technicians to make decision whether to image again and how to select the imaging parameters. (authors)

  17. Development of radiation dose assessment system for radiation accident (RADARAC)

    International Nuclear Information System (INIS)

    Takahashi, Fumiaki; Shigemori, Yuji; Seki, Akiyuki

    2009-07-01

    The possibility of radiation accident is very rare, but cannot be regarded as zero. Medical treatments are quite essential for a heavily exposed person in an occurrence of a radiation accident. Radiation dose distribution in a human body is useful information to carry out effectively the medical treatments. A radiation transport calculation utilizing the Monte Carlo method has an advantageous in the analysis of radiation dose inside of the body, which cannot be measured. An input file, which describes models for the accident condition and quantities of interest, should be prepared to execute the radiation transport calculation. Since the accident situation, however, cannot be prospected, many complicated procedures are needed to make effectively the input file soon after the occurrence of the accident. In addition, the calculated doses are to be given in output files, which usually include much information concerning the radiation transport calculation. Thus, Radiation Dose Assessment system for Radiation Accident (RADARAC) was developed to derive effectively radiation dose by using the MCNPX or MCNP code. RADARAC mainly consists of two parts. One part is RADARAC - INPUT, which involves three programs. A user can interactively set up necessary resources to make input files for the codes, with graphical user interfaces in a personnel computer. The input file includes information concerning the geometric structure of the radiation source and the exposed person, emission of radiations during the accident, physical quantities of interest and so on. The other part is RADARAC - DOSE, which has one program. The results of radiation doses can be effectively indicated with numerical tables, graphs and color figures visibly depicting dose distribution by using this program. These results are obtained from the outputs of the radiation transport calculations. It is confirmed that the system can effectively make input files with a few thousand lines and indicate more than 20

  18. Experimental dosimetric evaluation of inhomogeneity effects caused by thoracic vertebrae; Avaliacao dosimetrica experimental de efeitos de inomogeneidade causados por vertebras toracicas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Andre L.S.; Thompson, Larissa; Campos, Tarcisio P.R., E-mail: radioterapia.andre@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto de Radioterapia Sao Francisco, Belo Horizonte, MG (Brazil); Centro de Tratamento em Radioterapia, Betim, MG (Brazil)

    2017-11-01

    The presence of tissue inhomogeneities alters the absorbed dose distribution, which magnitude depends on the physical properties of these tissues and the quality of the radiation. Incorrect assessment of dose distribution may affect local tumor control or increase the normal tissue complication probabilities. The aim of this study was to investigate the influence of the thoracic vertebrae inhomogeneous effects on the dose absorbed by the surrounding soft tissue. The values predicted by the treatment planning system (TPS) were compared to the experimental measurements with EBT-2 radiochromic films positioned on a simulator consisting of only water and inserted axially into a thoracic phantom made of synthetic bone and water. There was a significant change in the dose distribution pattern, increased absorbed dose at the bone-soft tissue interface and high point doses adjacent to the bone compared to the results obtained for the films in homogeneous medium and TPS. The experimental measurements in the water agreed with the TPS within 1.0% with respect to the modal dose whereas the biggest difference found for the medium containing the vertebrae was of 4.6%, however, both values are within the experimental uncertainty. (author)

  19. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    International Nuclear Information System (INIS)

    Feizi, Shazad; Nuclear Science and Technology Research Institute, Tehran; Ziaie, Farhood; Ghandi, Mehdi

    2015-01-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under 60 Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  20. Evaluation of Partial Breast Reirradiation with Intraoperative Radiotherapy after Prior Thoracic Radiation: A Single-Institution Report of Outcomes and Toxicity

    Directory of Open Access Journals (Sweden)

    Christine Chin

    2017-08-01

    Full Text Available IntroductionMastectomy is the current standard of care for ipsilateral breast tumor recurrences after prior whole breast irradiation (WBI. We report our single-institution experience with breast-conserving surgery (BCS followed by intraoperative radiotherapy (IORT as an alternative to salvage mastectomy for new or recurrent breast cancers that develop in the setting of prior thoracic radiation.MethodsWe performed an IRB-approved retrospective review of patients treated with breast IORT between September 2013 and November 2016. We identified 12 patients who declined salvage mastectomy for their breast cancer after prior thoracic radiation. IORT was delivered using the Intrabeam™ device (Carl Zeiss, Germany. A dose of 20 Gy was prescribed to the lumpectomy cavity surface using 50 kV X-rays. We graded both acute and late treatment-related breast toxicities using the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Local control, mastectomy-free survival, distant metastasis, and overall survival were determined.ResultsOur study included nine patients who developed a new or recurrent ipsilateral breast cancer after prior WBI for early-stage breast cancer, two patients with primary breast cancer after mantle-field radiation for Hodgkin’s lymphoma, and one patient with a synchronous stage III non-small cell lung cancer treated with definitive radiation to the ipsilateral lung and mediastinum. The median time from prior radiation to presentation was 18 years (range: 2 months to 46 years. All patients successfully underwent partial breast reirradiation with IORT and were able to preserve their breast. At a median follow-up of 14 months (4–25 months, there were no local or distant recurrences. There was a single non-cancer-related death. In the acute setting, we observed grade 1 toxicity in 58% (n = 7, grade 2 toxicity in 17% (n = 2, and no grade 3 or higher toxicity. In the late setting, at

  1. The clinical characteristics of the radiation pneumonia

    International Nuclear Information System (INIS)

    Zhang Fuzheng; Wang Mingzhi; Chen Jianjiang; Wang Zhongxiang; Mao Yongjie

    2000-01-01

    Objective: To analyse the clinical characteristics of the radiation pneumonia, sum the experience and the basis of the radiation pneumonia for its prevention and treatment. Method: Twenty three cases with radiation pneumonia from 1991 to 1998 were retrospectively analysed. Its clinical manifestation, chest X-ray, thoracic CT and blood routine were evaluated. Result: The acute manifestation was fever, cough, dyspnea, and the chronic manifestation was cough and insufficiency of pulmonary function. Conclusion: The prevention of radiation pneumonia is more important, high dose cortical steroids and antibiotics were prescribed during the acute stage and the chronic radiation pneumonia is irreversible

  2. Biological evidence of low ionizing radiation doses

    International Nuclear Information System (INIS)

    Mirsch, Johanna

    2017-01-01

    Throughout life, every person is constantly exposed to different types of ionising radiation, without even noticing the exposure. The mean radiation exposure for people living in Germany amounts to approximately 4 mSv per year and encompasses the exposure from natural and man-made sources. The risks associated with exposure to low doses of radiation are still the subject of intense and highly controversial discussions, emphasizing the social relevance of studies investigating the effects of low radiation doses. In this thesis, DNA double-strand breaks (DSBs) were analyzed within three projects covering different aspects. DSBs are among the most hazardous DNA lesions induced by ionizing radiation, because this type of damage can easily lead to the loss of genetic information. Consequently, the DSB presents a high risk for the genetic integrity of the cell. In the first project, extensive results uncovered the track structure of charged particles in a biological model tissue. This provided the first biological data that could be used for comparison with data that were measured or predicted using theoretical physical dosimetry methods and mathematical simulations. Charged particles contribute significantly to the natural radiation exposure and are used increasingly in cancer radiotherapy because they are more efficient in tumor cell killing than X- or γ-rays. The difference in the biological effects of high energy charged particles compared with X- or γ-rays is largely determined by the spatial distribution of their energy deposition and the track structure inducing a three-dimensional damage pattern in living cells. This damage pattern consists of cells directly hit by the particle receiving a high dose and neighboring cells not directly hit by primary particles but exposed to far-reaching secondary electrons (δ-electrons). These cells receive a much lower dose deposition in the order of a few mGy. The radial dose distribution of single particle tracks was

  3. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  4. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  5. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilities over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.

  6. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  7. Polycarbonate-based benzo-δ-sultam films for high-dose dosimetry in radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Feizi, Shazad [University of Tehran, Tehran (India). School of Chemistry; Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ziaie, Farhood [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School; Ghandi, Mehdi [University of Tehran, Tehran (India). School of Chemistry

    2015-05-01

    In this work characteristics of the polycarbonate films with 20 μm in thickness containing different weight percentage of Benzo-δ-sultam were studied for use as a high dose dosimetry system in radiation processing facilities. The sensitivity of the dosimeters and the linearity of dose-response curves were investigated under {sup 60}Co γ-rays in a dose range of 0-100 kGy, and obtained results were compared with the commercial CTA and FWT film dosimeters. The results show that the absorbance at 348 nm depends linearly on the dose in the investigated dose range. The effects of pre-irradiation (shelf-life) and post-irradiation storage in dark and in indirect sunlight are also discussed. The results show that the dosimeters characteristics are stable within 1% at 25 C, 3 months after the irradiation.

  8. Spinal penetration index assessment in adolescent idiopathic scoliosis using EOS low-dose biplanar stereoradiography.

    Science.gov (United States)

    Ilharreborde, Brice; Dubousset, Jean; Skalli, Wafa; Mazda, Keyvan

    2013-11-01

    The spinal penetration index (SPI) quantifies the portion of the rib cage occupied by vertebrae. When measured by computed tomography (CT) or magnetic resonance imaging, SPI can only be determined in the reclining position, which modifies spinal and thoracic morphology. CT results in high radiation exposure. The authors studied rib cage and spinal morphology using low-dose biplanar stereoradiography and their impact on respiratory function in adolescent idiopathic scoliosis (AIS). In eighty thoracic AIS patients, a slot-scanning radiologic device allowing simultaneous acquisition of orthogonal images and 3D reconstructions with low exposure to radiation (EOS) was used to determine thoracic volume, mean spinal penetration index (SPIm), apical spinal penetration index (SPIa), main thoracic (MT) curve Cobb angle, T4-T12 kyphosis, and apical vertebral rotation (AVR). Thoracic volume was correlated with thoracic kyphosis (r = 0.31, p = 0.006), but not with SPI, MT Cobb angle, or AVR. SPIm and SPIa were negatively correlated with thoracic kyphosis. Forced vital capacity and forced expiratory volume in 1 s were significantly lower in the hypokyphotic patients (p = 0.04, p = 0.03, respectively) and correlated with thoracic volume and T4-T12 kyphosis. No correlation was found between spinal penetration indices and pulmonary function tests, but SPIm was significantly greater in patients with obstructive syndrome (p = 0.01). With little radiation exposure, EOS biplanar stereoradiography permits routine imaging is a functional standing position. Hypokyphotic patients had significantly decreased FEV1 and FVC. SPIm was significantly higher in patients with obstructive syndrome.

  9. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  10. The study on the dose-effect relationship of radiation from α particles of plutonium on certain lung cells (in vivo and in vitro)

    International Nuclear Information System (INIS)

    Wu Dechang; Ye Changqing; Gong Yifen; Yan Xiaoshan; Xie Guoliang; Liu Guolian; Chen Winchung; Hu Lianping; Shen Zhiyuan

    1993-01-01

    It is well known that plutonium is one of the most toxic radionuclides and its carcinogenic risk has been seriously concerned. In this study, the dose effect relationship of radiation from α particles of plutonium on certain lung cells (in vivo and in vitro) were investigated. The topics of study are as following: In vivo: deposition and clearance of Pu in respiratory tract, dose-effect relationship of lung cancer induced, histopathological type of lung cancer, primary hemangiosarcoma occurred in thoracic lumph node, radiation effects on Alveolar Macrophage (AM), radiation effect on Natural Killer Cell (NK) and radiation effect on Alveolar Type II (AT-II). In vitro: radiation effect on the immunological functions of AM, radiation effect on the membrane of AM, possible relationship between cytotoxicity and membranes of AM, effects of radiation (X, α) on the transformation of Wistar rat lung fibroblast cell line (WAL-F1) and protective effect of Se 4+ against transformation

  11. A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning

    Science.gov (United States)

    Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong

    2018-04-01

    We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.

  12. Duodenal ulcers as an abscopal effect of thoracic irradiation in mice

    International Nuclear Information System (INIS)

    Michalowski, A.; Burgin, J.

    1982-01-01

    Female CFLP mice irradiated to their thorax with either x-rays or fast neutrons developed peptic ulcers within 8 days of exposure. The steep x-ray dose/response curve for induction of duodenal ulcer gave an ED 50 of approximately 14.5 Gu. As little as 6 Gy of fast neutrons was effective in some cases, but the neutron ED 50 exceeded that for x-rays. The ulcers represented an abscopal effect of thoracic irradiation. Scattered radiation as simulated by whole-body x-ray treatment (1 to 5 Gy) caused a dose-dependent decrease in the frequency of duodenal lesions, possibly by decreasing gastric secretion. The greater amount of scattered radiation accompanying fast neutron exposure of the thorax was presumably responsible for the shallower dose/response curve of ulcer induction than that seen with x-rays

  13. Gamma dosimetry of high doses

    International Nuclear Information System (INIS)

    Martinez C, T.; Galvan G, A.; Canizal, G.

    1991-01-01

    The gamma dosimetry of high doses is problematic in almost all the classic dosemeters either based on the thermoluminescence, electric, chemical properties, etc., because they are saturated to very high dose and they are no longer useful. This work carries out an investigation in the interval of high doses. The solid system of heptahydrate ferrous sulfate, can be used as solid dosemeter of routine for high doses of radiation. The proposed method is simple, cheap and it doesn't require sophisticated spectrophotometers or spectrometers but expensive and not common in some laboratories

  14. Dose to radiation therapists from activation at high-energy accelerators used for conventional and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Rawlinson, J. Alan; Islam, Mohammad K.; Galbraith, Duncan M.

    2002-01-01

    The increased beam-on times which characterize intensity-modulated radiation therapy (IMRT) could lead to an increase in the dose received by radiation therapists due to induced activity. To examine this, gamma ray spectrometry was used to identify the major isotopes responsible for activation at a representative location in the treatment room of an 18 MV accelerator (Varian Clinac 21EX). These were found to be 28 Al, 56 Mn, and 24 Na. The decay of the dose rate measured at this location following irradiation was analyzed in terms of the known half-lives to yield saturation dose rates of 9.6, 12.4, and 6.2 μSv/h, respectively. A formalism was developed to estimate activation dose (μSv/week) due to successive patient irradiation cycles, characterized by the number of 18 MV fractions per week, F, the number of MU per fraction, M, the in-room time between fractions, t d (min), and the treatment delivery time t r ' (min). The results are represented by the sum of two formulas, one for the dose from 28 Al≅1.8x10 -3 F M (1-e -0.3t r ' )/t r ' and one for the dose from the other isotopes ≅1.1x10 -6 F 1.7 Mt d . For conventional therapy doses are about 60 μ Sv/week for an 18 MV workload of 60 000 MU/week. Irradiation for QA purposes can significantly increase the dose. For IMRT as currently practiced, lengthy treatment delivery times limit the number of fractions that can be delivered per week and hence limit the dose to values similar to those in conventional therapy. However for an IMRT regime designed to maximize patient throughput, doses up to 330 μSv/week could be expected. To reduce dose it is recommended that IMRT treatments should be delivered at energies lower than 18 MV, that in multienergy IMRT, high-energy treatments should be scheduled in the latter part of the day, and that equipment manufacturers should strive to minimize activation in the design of high-energy accelerators

  15. Spiral CT and radiation dose

    International Nuclear Information System (INIS)

    Imhof, H.; Schibany, N.; Ba-Ssalamah, A.; Czerny, C.; Hojreh, A.; Kainberger, F.; Krestan, C.; Kudler, H.; Noebauer, I.; Nowotny, R.

    2003-01-01

    Recent studies in the USA and Europe state that computed tomography (CT) scans compromise only 3-5% of all radiological exams, but they contribute 35-45% of total radiation dose to the patient population. These studies lead to concern by several public authorities. Basis of CT-dose measurements is the computed tomography dose index (CTDI), which was established 1981. Nowadays there are several modifications of the CTDI values, which may lead to confusion. It is suggested to use the standardized CTDI-100 w. value together with the dose length product in all CT-examinations. These values should be printed on all CT-images and allows an evaluation of the individualized patient dose. Nowadays, radiologist's aim must be to work at the lowest maximal diagnostic acceptable signal to noise ratio. To decrease radiation dose radiologist should use low kV and mA, but high pitches. Newly developed CT-dose-reduction soft-wares and filters should be installed in all CT-machines. We should critically compare the average dose used for a specific examination with the reference dose used in this country and/or Europe. Greater differences should caution the radiologist. Finally, we as radiologists must check very carefully all indications and recommend alternative imaging methods. But we have also to teach our customers--patients and medical doctors who are non-radiologists--that a 'good' image is not that which show all possible information, but that which visualize 'only' the diagnostic necessary information

  16. Radiation dose in cone-beam computed tomography: myth or reality

    International Nuclear Information System (INIS)

    Madi, Medhini

    2013-01-01

    In the growing inventory of clinical computed tomography technologies, cone-beam X-ray computed tomography is a relatively recent instalment. It is an advancement in computed tomography imaging which is designed to provide relatively low-dose high-spatial-resolution visualization of high contrast structures in the head and neck and other anatomic areas. Comparatively low dosing requirements and relatively compact design has led to intense interest in surgical planning and intra-operative cone-beam computed tomography applications, particularly in head and neck, and also in spinal, thoracic, abdominal and orthopaedic procedures. The use of this emerging imaging technology, which has potential applications for imaging of high-contrast structures in the head and neck as well as dentomaxillofacial regions, has been the subject of criticism as well as acclaim. This paper envisages to discuss the state-of-the-art of the technique. (author)

  17. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  18. Dose conformation to the spine during palliative treatments using dynamic wedges

    Energy Technology Data Exchange (ETDEWEB)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States); Herndon, R. Craig; Kaczor, Joseph G. [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States)

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  19. Estimation of individual doses from external exposures and dose-group classification of cohort members in high background radiation area in Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Sun Quanfu; Wei Luxin

    1999-01-01

    Objective: In order to estimate annual effective doses from external exposures in the high background radiation area (HBRA) and in the control area (CA) , the authors measured absorbed dose rates in air from terrestrial gamma radiation with different dosimeters. A dose group classification was an important step for analyzing the dose effects relationship among the cohort members in the investigated areas. The authors used the hamlet specific average annual effective doses of all the 526 hamlets in the investigated areas. A classification of four dose groups was made for the cohort members (high, moderate, low and control) . Methods: For the purpose of studying the dose effect relationships among the cohort members in HBRA and CA, it would be ideal that each subject has his own record of individual accumulated doses received before the evaluation. However, rt is difficult to realize it in practice (each of 106517 persons should wear TLD for a long time) . Thus the authors planned two sets of measurements. Firstly, to measure the environmental dose rates (outdoor, indoor, over the bed) in every hamlet of the investigated area (526 hamlets) , considering the occupancy factors for males and females of different age groups to convert to the annual effective dose from the data of dose rates. Secondly, to measure the individual cumulative dose with TLD for part of the subjects in the investigated areas. Results: Based on the two sets of measurements, the estimates of average annual effective doses in HBRA were 211.86 and 206.75 x 10 -5 Sv/a, respectively, 68.60 and 67.11 x 10 -5 Sv/a, respectively(gamma radiation only) . The intercomparison between these two sets of measurement showed that they were in good correlation. Thus the authors are able to yield the equations of linear regression: Y = 0.9937 + 6.0444, r = 0.9949. Conclusions: The authors took the value obtained from direct measurement as 'standard' , and 15 % for uncertainty of measurement. Since the estimates of

  20. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  1. Radiation Dose-Response Relationships and Risk Assessment

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2005-01-01

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  2. Effect of low dose radiation on apoptosis in mouse spleen

    International Nuclear Information System (INIS)

    Chen Dong; Liu Jiamei; Chen Aijun; Liu Shuzheng

    1999-01-01

    Objective: To study the effect of whole body irradiation (WBI) with different doses of X-ray on apoptosis in mouse spleen. Methods: Time course changes and dose-effect relationship of apoptosis in mouse spleen induced by WBI were observed with transmission electron microscopy (TEM) qualitatively and TUNEL method semi-quantitatively. Results: Many typical apoptotic lymphocytes were found by TEM in mouse spleen after WBI with 2 Gy. No marked alterations of ultrastructure were found following WBI with 0.075 Gy. It was observed by TUNEL that the apoptosis of splenocytes increased after high dose radiation and decreased following low dose radiation (LDR). The dose-effect relationship of radiation-induced apoptosis showed a J-shaped curve. Conclusion: The effect of different doses of ionizing radiation on apoptosis in mouse spleen was distinct. And the decrease of apoptosis after LDR is considered a manifestation of radiation hormesis

  3. Intracranial meningiomas after high-dose irradiation

    International Nuclear Information System (INIS)

    Soffer, D.; Gomori, J.M.; Siegal, T.; Shalit, M.N.

    1989-01-01

    Three patients who presented with intracranial meningiomas 12, 15, and 20 years, respectively, after therapeutic high-dose irradiation of a primary brain tumor are described. Analysis of these cases and similar documented cases suggests that meningiomas after high-dose irradiation constitute a recognizable entity. Patients with such tumors received radiation therapy at a young age (mean age, 9.4 years). After a latent period of 2 to 47 years (mean, 19.8 years) they developed meningiomas at the site of irradiation, at a much younger age than patients with ''spontaneous'' meningiomas. Similar to the situation with meningiomas after low-dose irradiation, a relatively high proportion of meningiomas induced by high-dose irradiation tend to be malignant and biologically aggressive. A very young age at the time of irradiation seems to predispose to the induction of malignant meningiomas, rather than benign tumors. These unusual features provide indirect evidence that high-dose radiation may play a role in the pathogenesis of meningiomas.41 references

  4. Online Radiation Dose Measurement System for ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  5. Reduced radiation exposure to the mammary glands in thoracic computed tomography using organ-based tube-current modulation

    International Nuclear Information System (INIS)

    Munechika, Jiro; Ohgiya, Yoshimitsu; Gokan, Takehiko; Hashimoto, Toshi; Iwai, Tsugunori

    2013-01-01

    Organ-based tube-current modulation has been used to reduce radiation exposure to specific organs. However, there are no reports yet published on reducing radiation exposure in clinical cases. In this study, we assessed the reduction in radiation exposure to the mammary glands during thoracic computed tomography (CT) using X-CARE. In a phantom experiment, the use of X-CARE reduced radiation exposure at the midline of the precordial region by a maximum of 45.1%. In our corresponding clinical study, CT was performed using X-CARE in 15 patients, and without X-CARE in another 15. Compared to the non-X-CARE group, radiation exposure was reduced in the X-CARE group at the midline of the precordial region by 22.3% (P 0.05). X-CARE thus reduced radiation exposure at the midline of the precordial region and allowed us to obtain consistent CT values without increasing noise. However, this study revealed increases in radiation exposure at the lateral sides of the breasts. It is conceivable that patients' breasts were laterally displaced by gravity under the standard thoracic imaging conditions. Further studies that consider factors such as body size and adjustment of imaging conditions may be needed in the future. (author)

  6. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  7. Radiation dose during angiographic procedures

    International Nuclear Information System (INIS)

    Lavoie, Ch.; Rasuli, P.

    2001-01-01

    The use of angiographic procedures is becoming more prevalent as new techniques and equipment are developed. There have been concerns in the scientific community about the level of radiation doses received by patients, and indirectly by staff, during some of these radiological procedures. The purpose of this study was to assess the level of radiation dose from angiographic procedures to patient at the Ottawa Hospital, General Campus. Radiation dose measurements, using Thermo-Luminescent Dosimeters (TLDs), were performed on more than 100 patients on various procedures. The results show that while the patient dose from the great majority of angiographic procedures is less than 2 Gy, a significant number of procedures, especially interventional procedures may have doses greater than 2 Gy and may lead to deterministic effects. (author)

  8. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho

    2008-01-01

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response

  9. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

  10. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  11. [Animal experiment study of anastomosis healing after partial resection of the pre-irradiated thoracic esophagus].

    Science.gov (United States)

    Engel, C; Nilles-Schendera, A; Frommhold, H

    2000-01-01

    Multimodal therapeutic concepts in cases of neoplasms of the intestinal tract entail the risk of undesirable complications with respect to healing of wounds and anastomoses. The separate steps of a combined treatment consisting radiation therapy and partial resection of the thoracic esophagus were performed in animal experiments to study the effect of radiation therapy on the healing of anastomoses. Adult non-purebred dogs were irradiated in a defined thoracic field with a Betatron (42 MeV) and subsequently underwent esophagectomy. After resection of a 2 cm segment of the esophagus end-to-end anastomosis was performed. Different methods of irradiation and postoperative observation times resulted in a total of 8 groups of 3 animals each. Fractionated irradiation was definitely better tolerated than irradiation with a high single doses. The temporary delay of the anastomotic healing was documented histologically. Only one case of anastomotic leakage occurred, and impaired wound healing was observed in only one animal. The mode of irradiation must be regarded as important for the clinical course. Fractionated preoperative irradiation in the area of the thoracic esophagus does not lead to any relevant disturbance of wound and anastomotic healing with meticulous surgical technique and adequate intensive postoperative care. The basic feasibility of surgical therapy combined with preoperative radiotherapy in tumors of the upper digestive tract was confirmed by our experimental work.

  12. Online radiation dose measurement system for ATLAS experiment

    International Nuclear Information System (INIS)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  13. Radiation dose in vertebroplasty

    International Nuclear Information System (INIS)

    Mehdizade, A.; Lovblad, K.O.; Wilhelm, K.E.; Somon, T.; Wetzel, S.G.; Kelekis, A.D.; Yilmaz, H.; Abdo, G.; Martin, J.B.; Viera, J.M.; Ruefenacht, D.A.

    2004-01-01

    We wished to measure the absorbed radiation dose during fluoroscopically controlled vertebroplasty and to assess the possibility of deterministic radiation effects to the operator. The dose was measured in 11 consecutive procedures using thermoluminescent ring dosimeters on the hand of the operator and electronic dosimeters inside and outside of the operator's lead apron. We found doses of 0.022-3.256 mGy outside and 0.01-0.47 mGy inside the lead apron. Doses on the hand were higher, 0.5-8.5 mGy. This preliminary study indicates greater exposure to the operator's hands than expected from traditional apron measurements. (orig.)

  14. ALARA-based strengthening of radiation protection in a high dose rate nuclear power plant: A practical overview

    International Nuclear Information System (INIS)

    Lips, Marcel

    2008-01-01

    In the first years of operation the dose rates at Goesgen nuclear power plant increased more strongly than expected. Co-60 has been the main radiation contributor from the beginning. As an immediate step, investigations were initiated to find and remove unknown cobalt sources. System modifications and optimization in water chemistry were carried out to reduce material and activity transport within the primary system. As a result the dose rates were stabilized after a couple of years -unfortunately on a high level. To reduce the dose rate levels and the occupational radiation exposure, further long term measures were implemented. System decontamination and source replacement were considered as well as the implementation of enhanced shielding procedures and a more source oriented chemistry. As a result the dose rates have reduced significantly and the occupational radiation exposure has been decreased by more than a factor of 2 over the last two decades. The reduction of the mean individual dose turned out even better and was cut by a factor of 5. On terms of plant and personal safety, Goesgen nuclear power plant decided to improve radiation protection using a smooth step by step action plan and has been very successful with it. Currently the technical possibilities have been developed to a high standard. Further improvements will be selective only. In future the focus will be set to personal behavior and human performance, using enhanced target settings, briefings, debriefings, experience feedback and (international) experience exchange. Nevertheless it will be essential to avoid unnecessary administrative and counterproductive short term hurdles. Strengthening of radiation protection is and will be a long term and continuous process. Goesgen nuclear power plant will continue to introduce further actions one by one. (author)

  15. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  16. [Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].

    Science.gov (United States)

    Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M

    2017-10-01

    Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. Professional exposure of medical workers: radiation levels, radiation risk and personal dose monitoring

    International Nuclear Information System (INIS)

    Bai Guang

    2005-01-01

    The application of radiation in the field of medicine is the most active area. Due to the rapid and strong development of intervention radiology at present near 20 years, particularly, the medical workers become a popularize group which most rapid increasing and also receiving the must high of professional exposure dose. Because, inter alias, radiation protection management nag training have not fully follow up, the aware of radioactive protection and appropriate approach have tot fully meet the development and need, the professional exposure dose received by medical workers, especially those being engaged in intervention radiology, are more higher, as well as have not yet fully receiving the complete personal dose monitoring, the medical workers become the population group which should be paid the most attention to. The writer would advice in this paper that all medical workers who being received a professional radiation exposure should pay more attention to the safety and healthy they by is strengthening radiation protection and receiving complete personal dose monitoring. (authors)

  18. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  19. Follow up on a workloaded interventional radiologist's occupational radiation doses - a study case

    International Nuclear Information System (INIS)

    Ketner, D.; Ofer, A.; Engel, A.

    2004-01-01

    During many interventional procedures, patients' radiation doses are high, affecting radiologist's radiation doses. We checked occupational doses of a workloaded interventional radiologist during seven years

  20. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  1. Are low radiation doses Dangerous?

    International Nuclear Information System (INIS)

    Garcia Lima, O.; Cornejo, N.

    1996-01-01

    In the last few years the answers to this questions has been affirmative as well as negative from a radiation protection point of view low doses of ionizing radiation potentially constitute an agent causing stochasting effects. A lineal relation without threshold is assumed between dose and probability of occurrence of these effects . Arguments against the danger of probability of occurrence of these effects. Arguments again the danger of low dose radiation are reflected in concepts such as Hormesis and adaptive response, which are phenomena that being studied at present

  2. Analysis of CT radiation dose based on radiation-dose-structured reports

    International Nuclear Information System (INIS)

    Wang Weipeng; Zhang Yi; Zhang Menglong; Zhang Dapeng; Song Shaojuan

    2014-01-01

    Objective: To analyse the CT radiation dose statistically using the standardized radiation-dose-structured report (RDSR) of digital imaging and communications in medicine (DICOM). Methods: Using the self-designed software, 1230 RDSR files about CT examination were obtained searching on the picture archiving and communication system (PACS). The patient dose database was established by combination of the extracted relevant information with the scanned sites. The patients were divided into adult group (over 10 years) and child groups (0-1 year, 1-5 years, 5-10 years) according to the age. The average volume CT dose index (CTDI vol ) and dose length product (DLP) of all scans were recorded respectively, and then the effective dose (E) was estimated. The DLP value at 75% quantile was calculated and compared with the diagnostic reference level (DRL). Results: In adult group, CTDI vol and DLP values were moderately and positively correlated (r = 0.41), the highest E was observed in upper abdominal enhanced scan, and the DLP value at 75% quantile was 60% higher than DRL. In child group, their CTDI vol in group of 5-10 years was greater than that in groups of 0-1 and 1-5 years (t = 2.42, 2.04, P < 0.05); the DLP value was slightly and positively correlated with the age (r = 0.16), while E was moderately and negatively correlated with the age (r = -0.48). Conclusions: It is a simple and efficient method to use RDSR to obtain the radiation doses of patients. With the popularization of the new equipment and the application of regionalized medical platform, RDSR would become the main tool for the dosimetric level surveying and individual dose recording. (authors)

  3. High-dose superselective intra-arterial cisplatin and concomitant radiation therapy for carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Suzuki, Gen; Tanaka, Norimitsu; Ogo, Etuyo

    2007-01-01

    The purpose of this study was to evaluate the effect of high-dose superselective intra-arterial cisplatin and concomitant radiation therapy for carcinoma of the oral cavities. The subjects consisted of 18 patients with carcinoma of the oral, and cavity treated with superselective intra-arterial infusion of high dose cisplatin (100 mg/body) concomitant with delivery of external beam radiotherapy (median total dose, 60.8 Gy) between 2001 and 2004. Sodium thiosulfate was administered intravenously to provide effective cisplatin neutlization. They were International Union Against Cancer (UICC)1997 stage II-IV (stage II: 4 patients, stage III: 4 patients, stage IV: 10 patients). Patients ranged from 43-81 years of age, with a median of 60 years, and included 14 men and 4 women. A follow-up period was 6 months minimum from the atart of the radiation therapy, the median follow up period at 28 months. The three-year overall survival rate was 71%. The three-year disease free rate and local control rate were 60% and 65%, respectively. Three-year local control rate of the T2-3 was achieved at 83%, and that for T4 at 50%. There was borderline significant difference in local control rate between T2-3 and T4 (p=0.05). We conclude that the high-dose superselective intra-arterial cisplatin and concomitant radiation therapy provides effective results in organ preservation for cancer of oral cavities. Further studies are also required to determine the validity of this method. (author)

  4. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  5. Dose-dependent hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to sublethal doses of gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Song, You, E-mail: you.song@niva.no [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway); Salbu, Brit; Teien, Hans-Christian; Heier, Lene Sørlie [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Rosseland, Bjørn Olav [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432 Ås (Norway); Tollefsen, Knut Erik [Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity - CERAD, P.O. Box 5003, N-1432 Ås (Norway); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo (Norway)

    2014-11-15

    Highlights: • First study on early stress responses in salmon exposed to low-dose gamma radiation. • Dramatic dose-dependent transcriptional responses characterized. • Multiple modes of action proposed for gamma radiation. - Abstract: Due to the production of free radicals, gamma radiation may pose a hazard to living organisms. The high-dose radiation effects have been extensively studied, whereas the ecotoxicity data on low-dose gamma radiation is still limited. The present study was therefore performed using Atlantic salmon (Salmo salar) to characterize effects of low-dose (15, 70 and 280 mGy) gamma radiation after short-term (48 h) exposure. Global transcriptional changes were studied using a combination of high-density oligonucleotide microarrays and quantitative real-time reverse transcription polymerase chain reaction (qPCR). Differentially expressed genes (DEGs; in this article the phrase gene expression is taken as a synonym of gene transcription, although it is acknowledged that gene expression can also be regulated, e.g., at protein stability and translational level) were determined and linked to their biological meanings predicted using both Gene Ontology (GO) and mammalian ortholog-based functional analyses. The plasma glucose level was also measured as a general stress biomarker at the organism level. Results from the microarray analysis revealed a dose-dependent pattern of global transcriptional responses, with 222, 495 and 909 DEGs regulated by 15, 70 and 280 mGy gamma radiation, respectively. Among these DEGs, only 34 were commonly regulated by all radiation doses, whereas the majority of differences were dose-specific. No GO functions were identified at low or medium doses, but repression of DEGs associated with GO functions such as DNA replication, cell cycle regulation and response to reactive oxygen species (ROS) were observed after 280 mGy gamma exposure. Ortholog-based toxicity pathway analysis further showed that 15 mGy radiation

  6. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  7. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  8. Late effects of low-dose ionizing radiation on man

    International Nuclear Information System (INIS)

    Brilliant, M.D.; Vorob'ev, A.I.; Gogin, E.E.

    1987-01-01

    One of the most important problems, being stated before the medicine by the accident, which took place in Chernobyl in 1986- the problem of the so-called ionizing radiation low dose effect on a man's organism, is considered because a lot of people were subjected to low dose action. The concept of low doses of radiaion action and specificity of its immediate action in comparison with high dose action is considered. One of the most important poit while studying low dose action is the necessity to develop a system including all irradiated people and dosimetry, and espicially to study frequencies and periods of tumor appearance in different irradiated tissues. The results obtained when examining people who survived the atomic explosion in Japan and on the Marshall islands are analyzed. They testify to the fact that radiation affets more tissues than the clinical picture about the acute radiation sickness tells, and that tumors developing in them many years after radiation action tell about radiosensitivity in some tissues

  9. IMRT treatment plans and functional planning with functional lung imaging from 4D-CT for thoracic cancer patients

    Directory of Open Access Journals (Sweden)

    Huang Tzung-Chi

    2013-01-01

    Full Text Available Abstract Background and purpose Currently, the inhomogeneity of the pulmonary function is not considered when treatment plans are generated in thoracic cancer radiotherapy. This study evaluates the dose of treatment plans on highly-functional volumes and performs functional treatment planning by incorporation of ventilation data from 4D-CT. Materials and methods Eleven patients were included in this retrospective study. Ventilation was calculated using 4D-CT. Two treatment plans were generated for each case, the first one without the incorporation of the ventilation and the second with it. The dose of the first plans was overlapped with the ventilation and analyzed. Highly-functional regions were avoided in the second treatment plans. Results For small targets in the first plans (PTV  Conclusion Radiation treatments affect functional lung more seriously in large tumor cases. With compromise of dose to other critical organs, functional treatment planning to reduce dose in highly-functional lung volumes can be achieved

  10. Radiation response of industrial materials: Dose-rate and morphology implications

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2007-01-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 x 10 -3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing

  11. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Roy, A; Nohadani, O [Northwestern University, Evanston, IL (United States); Refaat, T; Bacchus, I; Cutright, D; Sathiaseelan, V; Mittal, B [Northwestern University, Chicago, IL (United States)

    2015-06-15

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia and dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target

  12. SU-E-T-72: A Retrospective Correlation Analysis On Dose-Volume Control Points and Treatment Outcomes

    International Nuclear Information System (INIS)

    Roy, A; Nohadani, O; Refaat, T; Bacchus, I; Cutright, D; Sathiaseelan, V; Mittal, B

    2015-01-01

    Purpose: To quantify correlation between dose-volume control points and treatment outcomes. Specifically, two outcomes are analyzed: occurrence of radiation induced dysphagia and target complications. The results inform the treatment planning process when competing dose-volume criteria requires relaxations. Methods: 32 patients, treated with whole-field sequential intensity modulated radiation therapy during 2009–2010 period, are considered for this study. Acute dysphagia that is categorized into 3 grades is observed on all patients. 3 patients are observed in grade 1, 17 patients in grade 2, and 12 patients in grade 3. Ordinal logistic regression is employed to establish correlations between grades of dysphagia and dose to cervico-thoracic esophagus. Particularly, minimum (Dmin), mean (Dmean), and maximum (Dmax) dose control points are analyzed. Additionally, target complication, which includes local-regional recurrence and/or distant metastasis, is observed on 4 patients. Binary logistic regression is used to quantify correlation between target complication and four dose control points. Namely, ICRU recommended dose control points, D2, D50, D95, and D98 are analyzed. Results: For correlation with dysphagia, Dmin on cervico-thoracic esophagus is statistically significant (p-value = 0.005). Additionally, Dmean on cervico-thoracic esophagus is also significant in association with dysphagia (p-value = 0.012). However, no correlation was observed between Dmax and dysphagia (p-value = 0.263). For target complications, D50 on the target is a statistically significant dose control point (p-value = 0.032). No correlations were observed between treatment complications and D2 (p-value = 0.866), D95 (p-value = 0.750), and D98 (p-value = 0.710) on the target. Conclusion: Significant correlations are observed between radiation induced dysphagia and Dmean (and Dmin) to cervico-thoracic esophagus. Additionally, correlation between target complications and median dose to target

  13. Effect of ionizing radiation on tissue proteins of the desert locust, Schistocerca gregaria Forskal

    International Nuclear Information System (INIS)

    Rao, P.J.; Singh, Y.; Mehrotra, K.N.

    1981-01-01

    Effect of gamma radiation on the protein concentration of thoracic and mandibular muscles and midgut of adult male desert locust, Schistocerca gregaria Forskal at 2.5, 5.0 and 7.5 Krad doses was studied. The protein concentration of thoracic muscles was the highest on a μg/mg wet tissue basis, followed by the mandibular muscles and midgut. Considerable increase in protein concentration of the tissues on 5th and 9th day and depletion on 7th day suggests the existence of a circadian rhythm like phenomenon in tissue proteins. The effect of radiation on protein concentration of thoracic and mandibular muscles was comparatively more pronounced than midgut tissue and was generally dose dependent. (author)

  14. Investigations on commercial semiconductor diodes as possible high dose rate radiation detectors

    International Nuclear Information System (INIS)

    Breitenhuber, L.; Kindl, P.; Obenaus, B.

    1992-12-01

    Investigations concerning the relevant properties of commercial semiconductor diodes such as their sensitivity and its dependence on accumulated dose, dose rate, energy, temperature and direction have been made in order to obtain their usefullness as radiation detectors. (authors)

  15. Impact of Dose to the Bladder Trigone on Long-Term Urinary Function After High-Dose Intensity Modulated Radiation Therapy for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus; Zelefsky, Michael J.; Spratt, Daniel E. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Munck af Rosenschöld, Per; Oh, Jung Hun; Hunt, Margie [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Kollmeier, Marisa [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Happersett, Laura; Yorke, Ellen; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Jackson, Andrew, E-mail: jacksona@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-02-01

    Purpose: To determine the potential association between genitourinary (GU) toxicity and planning dose–volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. Methods and Materials: A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose–volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ≥10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. Results: Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ≥10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ≥10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ≥10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ≥10 (P=.001; odds ratio 5.19). Conclusions: The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the

  16. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  17. Do dose area product meter measurements reflect radiation doses ...

    African Journals Online (AJOL)

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  18. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  19. Phase I North Central Cancer Treatment Group Trial-N9923 of escalating doses of twice-daily thoracic radiation therapy with amifostine and with alternating chemotherapy in limited stage small-cell lung cancer

    International Nuclear Information System (INIS)

    Garces, Yolanda I.; Okuno, Scott H.; Schild, Steven E.; Mandrekar, Sumithra J.; Bot, Brian M.; Martens, John M.; Wender, Donald B.; Soori, Gamini S.; Moore, Dennis F.; Kozelsky, Timothy F.; Jett, James R.

    2007-01-01

    Purpose: The primary goal was to identify the maximum tolerable dose (MTD) of thoracic radiation therapy (TRT) that can be given with chemotherapy and amifostine for patients with limited-stage small-cell lung cancer (LSCLC). Methods and Materials: Treatment began with two cycles of topotecan (1 mg/m 2 ) Days 1 to 5 and paclitaxel (175 mg/m 2 ) Day 5 (every 3 weeks) given before and after TRT. The TRT began at 6 weeks. The TRT was given in 120 cGy fractions b.i.d. and the dose escalation (from 4,800 cGy, dose level 1, to 6,600 cGy, dose level 4) followed the standard 'cohorts of 3' design. The etoposide (E) (50 mg/day) and cisplatin (C) (3 mg/m 2 ) were given i.v. before the morning TRT and amifostine (500 mg/day) was given before the afternoon RT. This was followed by prophylactic cranial irradiation (PCI). The dose-limiting toxicities (DLTs) were defined as Grade ≥4 hematologic, febrile neutropenia, esophagitis, or other nonhematologic toxicity, Grade ≥3 dyspnea, or Grade ≥2 pneumonitis. Results: Fifteen patients were evaluable for the Phase I portion of the trial. No DLTs were seen at dose levels 1 and 2. Two patients on dose level 4 experienced DLTs: 1 patient had a Grade 4 pneumonitis, dyspnea, fatigue, hypokalemia, and anorexia, and 1 patient had a Grade 5 hypoxia attributable to TRT. One of 6 patients on dose level 3 had a DLT, Grade 3 esophagitis. The Grade ≥3 toxicities seen in at least 10% of patients during TRT were esophagitis (53%), leukopenia (33%), dehydration (20%), neutropenia (13%), and fatigue (13%). The median survival was 14.5 months. Conclusion: The MTD of b.i.d. TRT was 6000 cGy (120 cGy b.i.d.) with EP and amifostine

  20. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  1. The Effect of High Dose Radioiodine Therapy on Formation of Radiation Retinopathy During Thyroid Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tülay Kaçar Güvel

    2014-10-01

    Full Text Available Objective: Non-thyroidal complication of high-dose radioiodine therapy for thyroid carcinoma might cause salivary and lacrimal gland dysfunction, which may be transient or permanent in a dose-dependent manner. However, radiation retinopathy complicating 131I therapy, has not been previously well characterized. The aim of this study was to evaluate the extent of retinal damage among patients who had received high doses of radioiodine treatment. Methods: Forty eyes of 20 patients (3 male, 17 female who received 250-1000 mCi during 131I therapy and on ophthalmological follow up for a year after the last treatment were included in the study. Mean age of the study group was 50 years (range 25-70 years. In ophthalmologic examination, visual acuity was measured in order to determine visual loss. Intraocular pressure was measured in all the patients. Then lens examination was carried out with slit lamp biomicroscopy in order to investigate cataract or partial lens opacities. Fundus observation was carried out through the dilated pupil with slit lamp biomicroscopy using 90 D noncontact lens. Result: The best corrected visual aquity with Snellen chart was found as 1.0 in 36 eyes (90% and between 0.6 and 0.9 (10% in 4 eyes (10%. At the biomicroscopic fundus examination, retinal hemorrhage consistent with radiation retinopathy, microaneurysm, microinfarction, edema or exudation, vitreus hemorrhage, partial or total optical disc pallor indicating papillopathy in the optic disc were not observed in any of the eyes. Conclusion: This result indicates that there is not any significant correlation between repeated high-dose radioiodine therapy and radiation retinopathy in differentiated thyroid carcinomas. Even though there is not a significant restriction in use of higher doses of radioiodine therapy in differentiated thyroid carcinoma, more extensive studies are needed in order to obtain more accurate data on possible occurrence of retinopathy.

  2. Occurrence of chronic esophageal ulcer after high dose rate intraluminal radiation therapy for esophageal cancer

    International Nuclear Information System (INIS)

    Soejima, Toshinori; Hirota, Saeko; Okamoto, Yoshiaki; Obayashi, Kayoko; Takada, Yoshiki

    1995-01-01

    Ninety-eight patients with esophageal cancer were treated by high dose rate intraluminal radiation therapy at the Department of Radiology of the Hyogo Medical Center for Adults between January 1982 and December 1993. Twenty patients with complete response after intraluminal radiation therapy, who were followed up with esophageal fiberscopy in our institute, were reviewed. The one-year cumulative rate of occurrence of esophageal ulcers was 81%, and in 69% of the cases the ulcers occurred from 4 to 8 months after completion of intraluminal radiation therapy. We graded esophageal ulcer by fiberscopic findings. Grade 0 was defined as no ulcer, grade 1 as superficial ulcer, grade 2 as deep ulcer, grade 3 as circumferencial ulcer, and severe stenosis. Factors related to grade were studied, and shorter distances from the source to the surface of the mucosa and lower surface doses of intraluminal radiation therapy appear to reduce the severity as graded on the above scale, of the esophageal ulcer. Four of the five 2-year recurrence-free patients suffered esophageal ulcers, which were cured from 15 to 22 months after intraluminal radiation therapy. However ulcers recurred in two patients, ong term care was thought to be necessary. (author)

  3. Comparison of occupational radiation dose exposures in nuclear medicine and PET

    International Nuclear Information System (INIS)

    White, S.A.; Binns, D.S.; Johnston, V.K.; Fawcett, M.F.; Greer, B.; Hicks, R.J.

    1999-01-01

    Full text: With the increasing use of high-dose 64 Ga, 201 TI and 18 F-fluorodeoxyglucose (FDG) PET for scanning in oncology in our centre, a radiation dose survey was performed to determine the impact on staff exposure in a multi-modality department. This study was set up in part to counter 'radio-phobia' (the fear of working with radioactive patients) in allied health professionals. The patients were measured using a hand-held radiation monitor at various distances and times which replicate typical patient contact scenarios in the Diagnostic Imaging Department. An average exposure rate per hour was calculated and thus the relative radiation hazard was determined for staff who will interact with the patient outside of the hot laboratory. We present our findings from the survey and the implications these have on staff radiation exposure. In conclusion, these data suggest that emerging oncologic techniques such as PET, high-dose 67 Ga and high-dose 201 Tl do not represent a significantly greater occupational radiation hazard than conventional nuclear medicine procedures

  4. Low dose ionizing radiation exposure and cardiovascular disease mortality: cohort study based on Canadian national dose registry of radiation workers

    International Nuclear Information System (INIS)

    Zielinski, J. M.; Band, P. R.; Ashmore, P. J.; Jiang, H.; Shilnikova, N. S.; Tait, V. K.; Krewski, D.

    2009-01-01

    The purpose of our study was to assess the risk of cardiovascular disease (CVD) mortality in a Canadian cohort of 337 397 individuals (169 256 men and 168 141 women) occupationally exposed to ionizing radiation and included in the National Dose Registry (NDR) of Canada. Material and Methods: Exposure to high doses of ionizing radiation, such as those received during radiotherapy, leads to increased risk of cardiovascular diseases. The emerging evidence of excess risk of CVDs after exposure to doses well below those previously considered as safe warrants epidemiological studies of populations exposed to low levels of ionizing radiation. In the present study, the cohort consisted of employees at nuclear power stations (nuclear workers) as well as medical, dental and industrial workers. The mean whole body radiation dose was 8.6 mSv for men and 1.2 mSv for women. Results: During the study period (1951 - 1995), as many as 3 533 deaths from cardiovascular diseases have been identified (3 018 among men and 515 among women). In the cohort, CVD mortality was significantly lower than in the general population of Canada. The cohort showed a significant dose response both among men and women. Risk estimates of CVD mortality in the NDR cohort, when expressed as excess relative risk per unit dose, were higher than those in most other occupational cohorts and higher than in the studies of Japanese atomic bomb survivors. Conclusions: The study has demonstrated a strong positive association between radiation dose and the risk of CVD mortality. Caution needs to be exercised when interpreting these results, due to the potential bias introduced by dosimetry uncertainties, the possible record linkage errors, and especially by the lack of adjustment for non-radiation risk factors. (authors)

  5. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  6. Hit-size effectiveness theory applied to high doses of low LET radiation for pink mutations in Tradescantia

    International Nuclear Information System (INIS)

    Varma, M.N.; Bond, V.P.; Matthews, G.

    1985-01-01

    A hit-size effectiveness function which represents the probability of inducing a pink mutation in Tradescantia as a function of lineal energy density has been obtained (1) using observed pink mutation data for seven different radiation qualities and their respective single event microdosimetric spectra. In obtaining this function only the linear portions of dose-response curves were used. A significant improvement of the concepts embodied in the proposed hit-size effectiveness theory would be the demonstration of its applicability at high doses (where multiple hits are produced) and high dose rates (at which no significant biological repair takes place). In this article details are given on preliminary calculations of the pink mutation frequency in Tradescantia at 1, 5, 10, 20, and 60 rads for 250 kVp x rays, using the multi-hit spectra and the hit-size effectiveness function obtained on the basis of single hit microdosimetric spectra as outline in (1). A comparison of the calculated and observed pink mutation frequencies indicate excellent agreement and suggests the possibility of obtaining the hit-size effectiveness function from high dose biological-effect data obtained using low-LET radiations. 6 refs., 3 figs., 3 tabs

  7. Annual radiation dose in thermoluminescence dating

    International Nuclear Information System (INIS)

    Li Huhou

    1988-01-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned

  8. Annual radiation dose in thermoluminescence dating

    Energy Technology Data Exchange (ETDEWEB)

    Huhou, Li [Chinese Academy of Social Sciences, Beijing, BJ (China). Inst. of Archaeology

    1988-11-01

    The annual radiation dose in thermoluminescence dating has been discussed. The autor gives an entirely new concept of the enviromental radiation in the thermoluminescence dating. Methods of annual dose detemination used by author are dating. Methods of annual dose determination used by author are summed up, and the results of different methods are compared. The emanium escapiug of three radioactive decay serieses in nature has been considered, and several determination methods are described. The contribution of cosmic rays for the annual radiation dose has been mentioned.

  9. The Dose Response Relationship for Radiation Carcinogenesis

    Science.gov (United States)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  10. Online radiation dose measurement system for ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  11. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  12. Patterns of failure after complete resection of thoracic esophageal squamous cell carcinoma: implications for postoperative radiation therapy volumes

    International Nuclear Information System (INIS)

    Zhang Wencheng; Wang Qifeng; Xiao Zefen; Yang Longhai; Liu Xiangyang

    2012-01-01

    Objective: To analyze intrathoracic or extrathoracic recurrence pattern after surgical resection of thoracic esophageal squamous cell carcinoma (TESCC) and its help for further modify and improvement on the target of postoperative radiation therapy. Methods: One hundred and ninety-five patients who had undergone resection of TESCC at the Cancer Hospital, Chinese Academy of Medical Sciences enrolled from April 1999 to July 2007. Sites of failure on different primary location of esophageal cancer were documented. Results: Patients with upper or middle thoracic esophageal cancer had higher proportion of intrathoracic recurrence. Patients with lower thoracic esophageal cancer had more intrathoracic recurrence and abdominal lymph node metastatic recurrence. Histological lymph node status has nothing to do with intrathoracic recurrence, supraclavicular lymph node (SLN) metastasis or distant metastasis (χ 2 =1.58, 0.06, 0.04, P =0.134, 0.467, 0.489, respectively), whereas the chance of abdominal lymph node metastases in N positive patients was significantly higher than that in N 0 patients (28.7%: 10.6%, χ 2 =9.94, P =0.001), and so did in middle thoracic esophageal cancer (20.0%: 5.6%, χ 2 =5.67, P =0.015). Anatomic recurrence rate of patients with proximal resection margin no more than 3 cm was significantly higher compared to those more than 3 cm (25.0%: 11.3%, χ 2 =5.65, P=0.019). Conclusions: Mediastinum is the most common recurrence site.According to recurrence site, the following radiation targets are recommended: when tumor was located at the upper or middle thoracic esophagus with negative N status, the mediastinum, the tumor bed and the supraclavicular region should be included as postoperative RT target; when tumor was located at the middle thoracic esophagus with positive N or located at the lower thoracic esophagus, the abdominal lymph node should be added.If the proximal resection margin was no more than 3 cm, the anastomotic-stoma should be included

  13. Brachial Plexus-Associated Neuropathy After High-Dose Radiation Therapy for Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Hall, William H.; Li, Judy; Beckett, Laurel; Farwell, D. Gregory; Lau, Derick H.; Purdy, James A.

    2012-01-01

    Purpose: To identify clinical and treatment-related predictors of brachial plexus–associated neuropathies after radiation therapy for head-and-neck cancer. Methods and Materials: Three hundred thirty patients who had previously completed radiation therapy for head-and-neck cancer were prospectively screened using a standardized instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from completion of radiation therapy was 56 months (range, 6–135 months). One-hundred fifty-five patients (47%) were treated by definitive radiation therapy, and 175 (53%) were treated postoperatively. Radiation doses ranged from 50 to 74 Gy (median, 66 Gy). Intensity-modulated radiation therapy was used in 62% of cases, and 133 patients (40%) received concurrent chemotherapy. Results: Forty patients (12%) reported neuropathic symptoms, with the most common being ipsilateral pain (50%), numbness/tingling (40%), motor weakness, and/or muscle atrophy (25%). When patients with <5 years of follow-up were excluded, the rate of positive symptoms increased to 22%. On univariate analysis, the following factors were significantly associated with brachial plexus symptoms: prior neck dissection (p = 0.01), concurrent chemotherapy (p = 0.01), and radiation maximum dose (p < 0.001). Cox regression analysis confirmed that both neck dissection (p < 0.001) and radiation maximum dose (p < 0.001) were independently predictive of symptoms. Conclusion: The incidence of brachial plexus–associated neuropathies after radiation therapy for head-and-neck cancer may be underreported. In view of the dose–response relationship identified, limiting radiation dose to the brachial plexus should be considered when possible.

  14. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Kleiman, Norman Jay [Columbia University

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  15. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  16. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  17. Radiation absorbed doses in cephalography

    International Nuclear Information System (INIS)

    Eliasson, S.; Julin, P.; Richter, S.; Stenstroem, B.

    1984-01-01

    Radiation absorbed doses to different organs in the head and neck region in lateral (LAT) and postero-anterior (PA) cephalography were investigated. The doses were measured by thermoluminescence dosimeters (TLD) on a tissue equivalent phantom head. Lanthanide screens in speed group 4 were used at 90 and 85 k Vp. A near-focus aluminium dodger was used and the radiation beam was collimated strictly to the face. The maximum entrance dose from LAT was 0.25 mGy and 0.42 mGy from a PA exposure. The doses to the salivary glands ranged between 0.2 and 0.02 mGy at LAT and between 0.15 and 0.04 mGy at PA exposures. The average thyroid gland dose without any shielding was 0.11 mGy (LAT) and 0.06 mGy (PA). When a dodger was used the dose was reduced to 0.07 mGy (LAT). If the thyroid gland was sheilded off, the dose was further reduced to 0.01 mGy and if the thyroid region was collimated out of the primary radiation field the dose was reduced to only 0.005 mGy. (authors)

  18. Radiation dose estimates for radiopharmaceuticals

    International Nuclear Information System (INIS)

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms

  19. Validation of radiation dose estimations in VRdose: comparing estimated radiation doses with observed radiation doses

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia; Meyer, Geir

    2004-04-01

    The Halden Virtual Reality Centre has developed work-planning software that predicts the radiation exposure of workers in contaminated areas. To validate the accuracy of the predicted radiation dosages, it is necessary to compare predicted doses to actual dosages. During an experimental study conducted at the Halden Boiling Water Reactor (HBWR) hall, the radiation exposure was measured for all participants throughout the test session, ref. HWR-681 [3]. Data from this experimental study have also been used to model tasks in the work-planning software and gather data for predicted radiation exposure. Two different methods were used to predict radiation dosages; one method used all radiation data from all the floor levels in the HBWR (all-data method). The other used only data from the floor level where the task was conducted (isolated data method). The study showed that the all-data method gave predictions that were on average 2.3 times higher than the actual radiation dosages. The isolated-data method gave predictions on average 0.9 times the actual dosages. (Author)

  20. Prenatal radiation doses from radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rojo, A.M.; Gomez Parada, I.M.; Di Trano, J.L.

    1998-01-01

    The radiopharmaceutical administration with diagnostic or therapeutic purpose during pregnancy implies a prenatal radiation dose. The dose assessment and the evaluation of the radiological risks become relevant due to the great radiosensitivity of the fetal tissues in development. This paper is a revision of the available data for estimating fetal doses in the cases of the more frequently used radiopharmaceuticals in nuclear medicine, taking into account recent investigation in placental crossover. The more frequent diagnostic and therapeutic procedures were analyzed according to the radiation doses implied. (author) [es

  1. A unique experiment. Measurement of radiation doses at Vinca

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    For the first time in the history of the peaceful applications of atomic energy, an experiment was conducted to determine the exact levels of radiation exposure resulting from a reactor incident. The experiment was made at Vinca, Yugoslavia, wherein October 1958 six persons had been subjected to high doses of neutron and gamma radiation during a brief uncontrolled run of a zero-power reactor. One of them died but the other five were successfully treated at the Curie Hospital in Paris. In the case of four of them, the treatment involved the grafting of healthy bone marrow to counteract the effects of radiation on blood-forming tissues. It was recognized that if the effects produced on the irradiated persons could be related to the exact doses of radiation they had received, it would be possible to gain immensely valuable knowledge about the biological consequences of acute and high level radiation exposure on a quantitative basis. It was suggested to the Yugoslav authorities that a dosimetry experiment be conducted at Vinca. The most accurate modern techniques of dosimetry developed at the Oak Ridge National Laboratory were employed during the experiment. Simultaneous measurements of the neutron and gamma doses were made at points where the people had been located. At these points the effects of the radiation on the salt solution in the phantoms were studied. In particular, the energy distribution of the radiation was investigated.It was the ratio between the various components of the radiation that was of special interest in these measurements because this ratio itself would help in determining the exact doses. The dose of one of the components, viz. slow neutrons, had already been determined during the treatment of the patients. If the ratio of the components could be ascertained, the doses of the fast neutrons and gamma rays could also be established because the ratio would not be affected by the power level at which the reactor was operated

  2. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  3. Normal tissue tolerance to external beam radiation therapy: Esophagus; Dose de tolerance a l'irradiation des tissus sains: l'oesophage

    Energy Technology Data Exchange (ETDEWEB)

    Bera, G.; Pointreau, Y. [Clinique d' oncologie-radiotherapie, centre Henry-S.-Kaplan, hopital Bretonneau, CHU de Tours, 37 - Tours (France); Denis, F.; Dupuis, O. [Centre Jean-Bernard, clinique Victor-Hugo, 72 - Le-Mans (France); Orain, I. [Service d' anatomie et cytologie pathologiques, hopital Trousseau, CHU de Tours, 37 - Tours (France); Crehange, G. [Departement de radiotherapie, centre Georges-Francois-Leclerc, 21 - Dijon (France)

    2010-07-15

    The esophagus is a musculo-membranous tube through which food passes from the pharynx to the stomach. Due to its anatomical location, it can be exposed to ionizing radiation in many external radiotherapy indications. Radiation-induced esophageal mucositis is clinically revealed by dysphagia and odynophagia, and usually begins 3 to 4 weeks after the start of radiation treatment. With the rise of multimodality treatments (e.g., concurrent chemoradiotherapy, dose escalation and accelerated fractionation schemes), esophageal toxicity has become a significant dose-limiting issue. Understanding the predictive factors of esophageal injury may improve the optimal delivery of treatment plans. It may help to minimize the risks, hence increasing the therapeutic ratio. Based on a large literature review, our study describes both early and late radiation-induced esophageal injuries and highlights some of the predictive factors for cervical and thoracic esophagus toxicity. These clinical and dosimetric parameters are numerous but none is consensual. The large number of dosimetric parameters strengthens the need of an overall analysis of the dose/volume histograms. The data provided is insufficient to recommend their routine use to prevent radiation-induced esophagitis. Defining guidelines for the tolerance of the esophagus to ionizing radiation remains essential for a safe and efficient treatment. (authors)

  4. Determination of the radiation dose to the body due to external radiation

    International Nuclear Information System (INIS)

    Drexler, G.; Eckerl, H.

    1985-01-01

    Section 63 of the Radiation Protection Ordinance defines the basic requirement, determination of radiation dose to the body. The determination of dose equivalents for the body is the basic step in practical monitoring of dose equivalents or dose limits with regard to individuals or population groups, both for constant or varying conditions of exposure. The main field of monitoring activities is the protection of persons occupationally exposed to ionizing radiation. Conversion factors between body doses and radiation quantities are explained. (DG) [de

  5. Simultaneous adjuvant radiation therapy and chemotherapy in high-risk breast cancer--toxicity and dose modification: a trans-tasman radiation oncology group multi-institution study

    International Nuclear Information System (INIS)

    Denham, James W.; Hamilton, Christopher S.; Christie, David; O'Brien, Maree; Bonaventura, Antonino; Stewart, John F.; Ackland, Stephen P.; Lamb, David S.; Spry, Nigel A.; Dady, Peter; Atkinson, Christopher H.; Wynne, Christopher; Joseph, David J.

    1995-01-01

    Purpose: To establish the toxicity profile of simultaneously administered postoperative radiation therapy and CMF chemotherapy as a prelude to a randomized controlled study addressing the sequencing of the two modalities. Methods and Materials: One hundred and thirty eight breast cancer patients at high risk of locoregional, as well as systemic relapse, who were referred to three centers in Australia and New Zealand were treated with postoperative radiation therapy and chemotherapy simultaneously. Acute toxicity and dose modifications in these patients were compared with 83 patients treated over the same time frame with chemotherapy alone. In a separate study the long-term radiation and surgical effects in 24 patients treated simultaneously with radiation therapy and chemotherapy at Newcastle (Australia) following conservative surgery were compared with 23 matched patients treated at Newcastle with radiation therapy alone. Results: Myelotoxicity was increased in patients treated simultaneously with radiation therapy and chemotherapy. The effect was not great, but may have contributed to chemotherapy dose reductions. Lymphopenia was observed to be the largest factor in total white cell depressions caused by the simultaneous administration of radiation therapy. Postsurgical appearances were found to so dominate long-term treatment effects on the treated breast that the effect of radiation therapy dose and additional chemotherapy was difficult to detect. Conclusion: Studies addressing the sequencing of radiation therapy and chemotherapy will necessarily be large because adverse effects from administering the two modalities simultaneously are not great. The present study has endorsed the importance in future studies of stratification according to the extent and type of surgery and adherence to a single strict policy of chemotherapy dose modification

  6. Impact of Bone Marrow Radiation Dose on Acute Hematologic Toxicity in Cervical Cancer: Principal Component Analysis on High Dimensional Data

    International Nuclear Information System (INIS)

    Yun Liang; Messer, Karen; Rose, Brent S.; Lewis, John H.; Jiang, Steve B.; Yashar, Catheryn M.; Mundt, Arno J.; Mell, Loren K.

    2010-01-01

    Purpose: To study the effects of increasing pelvic bone marrow (BM) radiation dose on acute hematologic toxicity in patients undergoing chemoradiotherapy, using a novel modeling approach to preserve the local spatial dose information. Methods and Materials: The study included 37 cervical cancer patients treated with concurrent weekly cisplatin and pelvic radiation therapy. The white blood cell count nadir during treatment was used as the indicator for acute hematologic toxicity. Pelvic BM radiation dose distributions were standardized across patients by registering the pelvic BM volumes to a common template, followed by dose remapping using deformable image registration, resulting in a dose array. Principal component (PC) analysis was applied to the dose array, and the significant eigenvectors were identified by linear regression on the PCs. The coefficients for PC regression and significant eigenvectors were represented in three dimensions to identify critical BM subregions where dose accumulation is associated with hematologic toxicity. Results: We identified five PCs associated with acute hematologic toxicity. PC analysis regression modeling explained a high proportion of the variation in acute hematologicity (adjusted R 2 , 0.49). Three-dimensional rendering of a linear combination of the significant eigenvectors revealed patterns consistent with anatomical distributions of hematopoietically active BM. Conclusions: We have developed a novel approach that preserves spatial dose information to model effects of radiation dose on toxicity, which may be useful in optimizing radiation techniques to avoid critical subregions of normal tissues. Further validation of this approach in a large cohort is ongoing.

  7. Endolymphatic Thoracic Duct Stent-Graft Reconstruction for Chylothorax: Approach, Technical Success, Safety, and Short-term Outcomes.

    Science.gov (United States)

    Srinivasa, Rajiv N; Chick, Jeffrey Forris Beecham; Hage, Anthony N; Gemmete, Joseph J; Murrey, Douglas C; Srinivasa, Ravi N

    2018-04-01

    To report approach, technical success, safety, and short-term outcomes of thoracic duct stent-graft reconstruction for the treatment of chylothorax. Two patients, 1 (50%) male and 1 (50%) female, with mean age of 38 years (range: 16-59 years) underwent endolymphatic thoracic duct stent-graft reconstruction between September 2016 and July 2017. Patients had radiographic left-sided chylothoraces (n = 2) from idiopathic causes (n = 1) and heart transplantation (n = 1). In both (100%) patients, antegrade lymphatic access was used to opacify the thoracic duct after which retrograde access was used for thoracic duct stent-graft placement. Pelvic lymphangiography technical success, antegrade cisterna chyli cannulation technical success, thoracic duct opacification technical success, retrograde thoracic duct access technical success, thoracic duct stent-graft reconstruction technical success, ethiodized oil volume, contrast volume, estimated blood loss, procedure time, fluoroscopy time, radiation dose, clinical success, complications, deaths, and follow-up were recorded. Pelvic lymphangiography, antegrade cisterna chyli cannulation, thoracic duct opacification, retrograde thoracic duct access, and thoracic duct stent-graft reconstruction were technically successful in both (100%) patients. Mean ethiodized oil volume was 8 mL (range: 5-10 mL). Mean contrast volume was 13 mL (range: 5-20 mL). Mean estimated blood loss was 13 mL (range: 10-15 mL). Mean fluoroscopy time was 50.4 min (range: 31.2-69.7 min). Mean dose area product and reference air kerma were 954.4 μGmy 2 (range: 701-1,208 μGmy 2 ) and 83.5 mGy (range: 59-108 mGy), respectively. Chylothorax resolved in both (100%) patients. There were no minor or major complications directly related to the procedure. Thoracic duct stent-graft reconstruction may be a technically successful and safe alternative to thoracic duct embolization, disruption, and surgical ligation for the treatment of chylothorax

  8. Study of External Radiation Expose Dose on Hands of Nuclear Medicine Workers

    International Nuclear Information System (INIS)

    Park, Jun Chul; Pyo, Sung Jae

    2012-01-01

    The aims of this study are to assess external radiation exposed doses of body and hands of nuclear medicine workers who handle radiation sources, and to measure radiation exposed doses of the hands induced by a whole body bone scan with high frequency and handling a radioactive sources like 99m Tc-HDP and 18 F-FDG in the PET/CT examination. Skillful workers, who directly dispense and inject from radiation sources, were asked to wear a TLD on the chest and ring finger. Then, radiation exposed dose and duration exposed from daily radiation sources for each section were measured by using a pocket dosimeter for the accumulated external doses and the absorbed dose to the hands. In the survey of four medical institutions in Incheon Metropolitan City, only one of four institutions has a radiation dosimeter for local area like hands. Most of institutions uses radiation shielding devices for the purpose of protecting the body trunk, not local area. Even some institutions were revealed not to use such a shielding device. The exposed doses on the hands of nuclear medicine workers who directly handles radioactive sources were approximately twice as much as those on the body. The radiation exposure level for each section of the whole body bone scan with high frequency and that of the PET/CT examination showed that radiation doses were revealed in decreasing order of synthesis of radioactive medicine and installation to a dispensing container, dispensing, administering and transferring. Furthermore, there were statistically significant differences of radiation exposure doses of the hands before and after wearing a syringe shielder in administration of a radioactive sources. In this study, although it did not reach the permissible effective dose for nuclear medicine, the occupational workers were exposed by relatively higher dose level than the non-occupational workers. Therefore, the workers, who closely exposed to radioactive sources should be in compliance with safety

  9. Visual indicator of absorbed radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Generalova, V V; Krasovitskii, B M; Vainshtok, B A; Gurskii, M N

    1968-10-15

    A visual indicator of the absorbed doses of ionizing radiation is proposed. The indicator has a polymer base with the addition of a dye. A distinctive feature of the indicator consists of the use of polystyrene as its polymer base with the addition of halogen-containing hydrocarbon and the light-proof dye. Such combination of the radiation-resistant polymer of polystyrene and the light-proof dyestuff makes the proposed indicator highly stable.

  10. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  11. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  12. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    International Nuclear Information System (INIS)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young

    2016-01-01

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety

  13. Evaluation of radiation dose to patients in intraoral dental radiography using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Il; Kim, Kyeong Ho; Oh, Seung Chul; Song, Ji Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2016-11-15

    The use of dental radiographic examinations is common although radiation dose resulting from the dental radiography is relatively small. Therefore, it is required to evaluate radiation dose from the dental radiography for radiation safety purpose. The objectives of the present study were to develop dosimetry method for intraoral dental radiography using a Monte Carlo method based radiation transport code and to calculate organ doses and effective doses of patients from different types of intraoral radiographies. Radiological properties of dental radiography equipment were characterized for the evaluation of patient radiation dose. The properties including x-ray energy spectrum were simulated using MCNP code. Organ doses and effective doses to patients were calculated by MCNP simulation with computational adult phantoms. At the typical equipment settings (60 kVp, 7 mA, and 0.12 sec), the entrance air kerma was 1.79 mGy and the measured half value layer was 1.82 mm. The half value layer calculated by MCNP simulation was well agreed with the measurement values. Effective doses from intraoral radiographies ranged from 1 μSv for maxilla premolar to 3 μSv for maxilla incisor. Oral cavity layer (23⁓82 μSv) and salivary glands (10⁓68 μSv) received relatively high radiation dose. Thyroid also received high radiation dose (3⁓47 μSv) for examinations. The developed dosimetry method and evaluated radiation doses in this study can be utilized for policy making, patient dose management, and development of low-dose equipment. In addition, this study can ultimately contribute to decrease radiation dose to patients for radiation safety.

  14. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy. Effect of prolonged delivery time and applicability of the linear-quadratic model

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Otsuka, Shinya; Iwata, Hiromitsu; Sugie, Chikao; Ogino, Hiroyuki; Tomita, Natsuo

    2012-01-01

    Since the dose delivery pattern in high-precision radiotherapy is different from that in conventional radiation, radiobiological assessment of the physical dose used in stereotactic irradiation and intensity-modulated radiotherapy has become necessary. In these treatments, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. This phenomenon is almost universarily observed in vitro. In in vivo tumors, however, this decrease in effect can be counterbalanced by rapid reoxygenation, which has been demonstrated in a laboratory study. Studies on reoxygenation in human tumors are warranted to better evaluate the influence of prolonged radiation delivery. Another issue related to radiosurgery and hypofractionated stereotactic radiotherapy is the mathematical model for dose evaluation and conversion. Many clinicians use the linear-quadratic (LQ) model and biologically effective dose (BED) to estimate the effects of various radiation schedules, but it has been suggested that the LQ model is not applicable to high doses per fraction. Recent experimental studies verified the inadequacy of the LQ model in converting hypofractionated doses into single doses. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when it is used for tumor responses in vivo, since it does not take reoxygenation into account. For normal tissue responses, improved models have been proposed, but, for in vivo tumor responses, the currently available models are not satisfactory, and better ones should be proposed in future studies. (author)

  15. CANCER RISKS ATTRIBUTABLE TO LOW DOSES OF IONIZING RADIATION - ASSESSING WHAT WE REALLY KNOW?

    Science.gov (United States)

    Cancer Risks Attributable to Low Doses of Ionizing Radiation - What Do We Really Know?AbstractHigh doses of ionizing radiation clearly produce deleterious consequences in humans including, but not exclusively, cancer induction. At very low radiation doses the situatio...

  16. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  17. Radiation therapy for the cervical and upper thoracic esophageal cancer

    International Nuclear Information System (INIS)

    Chatani, Masashi; Teshima, Teruki; Inoue, Toshihiko

    1990-01-01

    This is a retrospective analysis of 19 patients with carcinoma of the cervical esophagus (Ce) and 36 of the upper thoracic esophagus (Iu) treated with radiotherapy between September 1977 and December 1987. Three-year survival rates by Kaplan-Meier method were 18% in Ce cancer and 7% in Iu cancer. Two-year local tumor control was obtained in 3 Ce and 4 Iu cancer. Concerning the treatment methods for the above 7 patients, 3 patients with carcinoma of the Ce were treated with double wedged technique and 4 of Iu were treated with box-technique (2 patients), rotation technique (1) and double wedge technique (1). There were no 2-year local tumor control in patients who received less than 60 Gy of the tumor dose or whose tumor exceeded more than 10 cm in length. Double wedge technique is suitable for radiotherapy of Ce cancer, while further investigation of dose and compensation is necessary for Iu cancer. (author)

  18. Recent trend of radiation doses of medical workers

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, I [Tokyo Univ. (Japan). Faculty of Medicine; Tanaka, M; Nakamura, S; Nawa, H; Nukazawa, A

    1981-10-01

    Radiation doses of medical workers in Japan between 1976 and 1979 were analysed based on the data provided by a film badge servicing company. Average annual radiation doses between April, 1978 and March, 1979 were 129 mrems for 2556 doctors, 108 mrems for 2074 radiographers, and 60 mrems for 1915 nurses. It was also suggested that the log-normal distribution could provide a good fit to the frequency distribution of radiation doses of these medical staffs. Time series data of monthly average doses during the period between April, 1976 and March, 1979 were analysed using a computer code named EPA that had been developed by the Japanese Economic Planning Agency. The EPA code separated the original time series data into three components, i.e., the trend and cycle factor, the seasonal factor and the irregular factor based on a multiplicative model. The results of analyses strongly suggested that there existed a significant common pattern among the trend factors of doctors, radiographers and nurses. The similar phenomenon was also observed about the seasonal factors. Some specific cases of medical workers who received considerably high radiation doses were studied, and it was pointed out that, in order to lower the doses of medical workers, the factors which are peculiar to each medical facility must be precisely examined in addition to the strengthening of general radiological protective measures.

  19. Dose specification for radiation therapy: dose to water or dose to medium?

    International Nuclear Information System (INIS)

    Ma, C-M; Li Jinsheng

    2011-01-01

    The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.

  20. Pulmonary endothelial dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats

    International Nuclear Information System (INIS)

    Ward, W.F.; Molteni, A.; Ts'Ao, C.H.; Solliday, N.H.

    1987-01-01

    Rats were sacrificed 2 months after a single dose of 10-30 Gy of 60 Co gamma rays delivered to either a right unilateral or a bilateral thoracic port. Four indices of lung endothelial function were measured: the activities of angiotensin-converting enzyme (ACE) and plasminogen activator (PLA) and the production of prostacyclin (PGI2) and thromboxane (TXA2). The number of macrophages recovered by bronchoalveolar lavage (BAL) and the degree of right ventricular hypertrophy (an index of pulmonary hypertension) also were determined. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. The response curves for right unilateral and bilateral thoracic irradiation were not significantly different. In contrast, bilateral irradiation was more toxic than unilateral, since rats exposed to the former exhibited decreased body weight, an increased incidence of pleural effusions, an increase in the number of macrophages recovered by BAL, and right ventricular hypertrophy. These data demonstrate that pulmonary endothelial dysfunction induced by hemithorax irradiation represents a direct response of the endothelium to radiation injury and is not secondary to other phenomena such as shunting of function to the shielded lung

  1. Optimization and audit of radiation dose during percutaneous transluminal coronary angioplasty

    International Nuclear Information System (INIS)

    Livingstone, Roshan S.; Timothy Peace, B.S.; Chandy, Sunil; Gorge, Paul V.; Pati, Purendra

    2007-01-01

    The percutaneous transluminal coronary angioplasty (PTCA) is one of the interventional procedures which impart high radiation doses to patients compared to the other cardiologic procedures. This study intends to audit and optimize radiation dose imparted to patients undergoing PTCA. Forty-four patients who underwent PTCA involving single or multiple stent placement guided under cardiovascular X-ray machine were included in the study. Radiation doses were measured using dose area product (DAP) meter for patients undergoing single and multiple stent placements during PTCA. A dose reduction of 27-47% was achieved using copper filters and optimal exposure parameters. The mean DAP values before optimization were 66.16 and 122.68 Gy cm 2 for single and multiple stent placement respectively. These values were 48.67 and 65.44 Gy cm 2 respectively after optimization. In the present scenario, due to the increase in the number of PTCAs performed and the associated risk from radiation, periodical audit of radiation doses for interventional procedures are recommended. (author)

  2. Estimation of radiation dose received by the radiation workers during radiographic testing

    International Nuclear Information System (INIS)

    Mohammed, N. A. H. O.

    2013-08-01

    This study was conducted primarily to evaluate occupational radiation dose in industrial radiography during radiographic testing at Balil-Hadida, with the aim of building up baseline data on radiation exposure in the industrial radiography practice in Sudan. Dose measurements during radiographic testing were performed and compared with IAEA reference dose. In this research the doses measured by using hand held radiation survey meter and personal monitoring dosimeter. The results showed that radiation doses ranged between minimum (0.448 mSv/ 3 month) , and maximum (1.838 mSv / 3 month), with an average value (0.778 mSv/ 3 month), and the standard deviation 0.292 for the workers used gamma mat camera. The analysis of data showed that the radiation dose for all radiation worker are receives less than annual limit for exposed workers 20 mSv/ year and compare with other study found that the dose received while body doses ranging from 0.1 to 9.4 mSv/ year, work area design in all the radiography site followed the three standard rules namely putting radiation signs, reducing access to control area and making of boundaries. Thus the accidents arising from design faults not likely to occur at these site. Results suggest that adequate fundamental training of radiation workers in general radiography prior to industrial radiography work will further improve the standard of personnel radiation protection. (Author)

  3. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  4. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  5. IAEA advisory group meeting on dosimetry for high doses employed in industrial radiation processing, Vienna, 17-21 November 1980

    International Nuclear Information System (INIS)

    Chadwick, K.H.

    1981-01-01

    In 1977 the IAEA established a programme on High-Dose Standardization and Intercomparison with the aim of developing a world-wide service for dosimetry assurance in Industrial and Research Radiation Processing Facilities. The complete proceedings of the first Advisory Group meeting held within this programme have recently been published in the IAEA Technical Reports Series (No. 205) under the title ''High-Dose Measurement in Industrial Radiation Processing''. This report of the second Advisory Group meeting provides a brief review of the state of the programme at the present time. (The full proceedings of the meeting will not be published)

  6. Values of dose and individual of a individual thermoluminescent dosimeter submitted to x and gamma radiations

    International Nuclear Information System (INIS)

    Moraes, Cassiana Viccari de; Pela, Carlos Alberto

    2001-01-01

    The individual monitoring provides information for the control of exposures, and estimates the dose received by individuals. This is an essential tool in personal dosimetry. It's based on a radiation protection concept, allowing an individual exposure control, besides guaranteeing that the dose restrictions will not be exceeded. Usually, the dose monitoring is performed by using an individual dosemeter placed on a representative position of the most exposed point on the thoracic surface. The dosemeter, which is analyzed in the present work, is made of three CaSO 4 -Dy thermoluminescent detectors, plastic filters, copper and copper-lead, mounted in an acrylic support. The dose received by on each detector, which forms the dosemeter, is related according to their energetic curve dependence. The dose amount is calculated from these curves by using an algorithm, and it was taken in to consideration the detector calibration and thermoluminescent responses, due to the x and g radiation exposure. That algorithm has the capacity to determine the energies that were irradiated the detector. Therefore, to aid the service in the moment of evaluate the dose received by the individual and where it is coming from. The algorithm has provided individual dose value H x , defined as operational quantity for photons adopted in the Brazilian Metric System. The algorithm can determine two dose values and such values have been analyzed according to the kind of irradiated energy on the dosimeter and it has shown that both values are within established limits by Instituto de Radioprotecao e Dosimetria (IRD). (author)

  7. Research on low radiation doses - A better understanding of low doses

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation doses below 100 mSv are called low doses. Epidemiological research on the health hazards of low doses are difficult to do because numerous pathologies, particularly cancer, appear lifelong for genetical or environmental causes without any link with irradiation and it is very difficult to identify the real cause of a cancer. Another concern is that the impact on human health is weak and are observed only after a long period after irradiation. These features make epidemiological studies cumbersome to implement since they require vast cohorts and a very long-term follow-up. The extrapolation of the effects of higher doses to the domain of low doses does not meet reality and it is why the European Union takes part into the financing of such research. In order to gain efficiency, scientists work together through various European networks among them: HLEG (High Level Expert Group On European Low Dose Risk Research) or MELODI (Multidisciplinary European Low Dose Initiative). Several programs are underway or have been recently launched: -) the impact of Cesium contamination on children's health (Epice program), -) the study of the impact of medical imaging on children, -) the study of the health of children living near nuclear facilities, -) the relationship between radon and lung cancer, -) the effect of occupational low radiation doses, -) the effect of uranium dissolved in water on living organisms (Envirhom program). (A.C.)

  8. High energy radiation effects on the human body

    International Nuclear Information System (INIS)

    Kato, Kazuaki

    1977-01-01

    High-energy radiation injuries and their risks were recognized, information on low-energy radiation injuries was also arranged, and with these backgrounds, countermeasures against prevention of radiation injuries were considered. Redintegration of DNA and mutation by radiation were described, and relationship between radiation injuries and dose was considered. Interaction of high-energy radiation and substances in the living body and injuries by the interaction were also considered. Expression method of risk was considered, and a concept of protection dose was suggested. Protection dose is dose equivalent which is worthy of value at the point where the ratio to permissible dose distributed among each part of the body is at its maximum in the distribution of dose equivalent formed within the body when standard human body is placed at a certain radiation field for a certain time. Significance and countermeasures of health examination which is under an abligation to make radiation workers receive health check were thought, and problems were proposed on compensation when radiation injuries should appear actually. (Tsunoda, M.)

  9. Radiochromic film for dosimetric measurements in radiation shielding composites synthesized for applied in radiology procedures of high dose

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C. C. P. [Universidade Federal de Minas Gerais, Departamento de Engenharia Nuclear, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Baptista N, A. T.; Faria, L. O., E-mail: crissia@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Full text: Medical radiology offers great benefit to patients. However, although specifics procedures of high dose, as fluoroscopy, Interventional Radiology, Computed Tomography (CT) make up a small percent of the imaging procedures, they contribute to significantly increase dose to population. The patients may suffer tissue damage. The probability of deterministic effects incidence depends on the type of procedure performed, exposure time, and the amount of applied dose at the irradiated area. Calibrated radiochromic films can identify size and distribution of the radiated fields and measure intensities of doses. Radiochromic films are sensitive for doses ranging from 0.1 to 20 c Gy and they have the same response for X-rays effective energies ranging from 20 to 100 keV. New radiation attenuators materials have been widely investigated resulting in dose reduction entrance skin dose. In this work, Bi{sub 2}O{sub 3} and ZrO{sub 2}:8 % Y{sub 2}O{sub 3} composites were obtained by mixing them with P(VDF-Tr Fe) copolymers matrix from casting method and then characterized by Ftir. Dosimetric measurements were obtained with Xr-Q A2 Gafchromic radiochromic films. In this setup, one radiochromic film is directly exposed to the X-rays beam and another one measures the attenuated beam were exposed to an absorbed dose of 10 mGy of RQR5 beam quality (70 kV X-ray beam). Under the same conditions, irradiated Xr-Q A2 films were stored and scanned measurement in order to obtain a more reliable result. The attenuation factors, evaluated by Xr-Q A2 radiochromic films, indicate that both composites are good candidates for use as patient radiation shielding in high dose medical procedures. (Author)

  10. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo

    2005-01-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  11. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo [National Hospital Organization Osaka Minami Medical Center, Kawachinagano (Japan)

    2005-03-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  12. The clinical demand for information and the radiation dose in pelvimetry and amniography

    International Nuclear Information System (INIS)

    Wilbrand, H.F.; Lindmark, G.; Ytterbergh, C.

    1982-01-01

    Radiographic measurements are an important part of antenatal care and are in fact used to a great extent in nulliparous women. In view of this clinical background and also for ethical reasons, reduction of the radiation doses is mandatory. As radiographic pelvimetry is used in so many pregnant women, it is of importance that no higher radiation doses are applied than are absolutely needed to guarantee correct and necessary information. Dose reduction is afforded in two different ways - by optimizing the imaging techniques and by closing a suitable film-screen combination. Measurement of absorbed doses in patients was carried out with highly sensitive lithium fluoride thermoluminiscence dosimeters (TLD) with a dimension of 3x3x0.9 mm (Harshaw type TLD-100). All TLD probes were calibrated with Co60 radiation between the measurement series. Absorbed radiation doses were measured in the rectum for different film-screen combinations. Depending on the position of the fetus in relation to the maternal pelvis, it is obvious that in any individual case varying parts of the fetus will lie directly in the radiation beam. In amniography the absorbed radiation doses will vary from case to case depending on the number of exposures, which should not exceed six, and the duration of fluoroscopy, which should be no longer than 1 min. With the use of lanex Regular screens and highly coned images the radiation dose will not exceed 3.0 mGy. Since a high image quality is mandatory for evaluation of disorders in the fetal skeleton, measurements were not performed with other high-speed screens. The MR 800 screen appears to provide further reduction of the radiation dose in this type of examination. (orig./MG)

  13. Radiation myelopathy

    International Nuclear Information System (INIS)

    Berlit, P.

    1987-01-01

    After a review of the world literature, the case histories of 43 patients with radiation myelopathy are analyzed. In 1 patient there was a radiation injury of the medulla oblongata, in 2, cervical, in 28, thoracic, and in 12, lumbosacral. In the medulla oblongata lesion an alternans syndrome resulted. The patients with cervical and thoracic radiation myelopathies presented with a Brown-Sequard syndrome, a spinalis anterior syndrome or a transversal syndrome with pyramidal and spinothalamic tract involvement as the most prominent signs. For this group the term 'pyramidal-spinothalamic radiation myelopathy' is proposed. In lumbosacral radiation lesions a pure anterior horn syndrome may lead to spinothalamic tract involvement and the development of a cauda conus syndrome. The clinical presentation of these cases suggests that the location of the radiation lesion is most likely the region of the conus medullaris. The most frequent initial symptom was dysesthesia; the patients complained of burning pain or a feeling of coldness. Usually the neurological deficits were progressive, in pyramidal-spinothalamic radiation myelopathy over 12 months in average, in lumbosacral radiation lesions up to 10 years. The latent period between the finish of radiation therapy and the first neurological signs was 8 months (median) in cervical and thoracic myelopathy and 33 months in lumbosacral lesions. For the entire group of 43 patients there was an inverse relationship between the radiation dose (ret) and the latent period. A positive relation could be demonstrated between the age of patients at the time of radiation therapy and the latent period. Patients simultaneously receiving cytostatic drugs presented after a longer latent period than the remaining group. (orig./MG)

  14. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  15. Occupational radiation doses during interventional procedures

    International Nuclear Information System (INIS)

    Nuraeni, N; Hiswara, E; Kartikasari, D; Waris, A; Haryanto, F

    2016-01-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits. (paper)

  16. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    International Nuclear Information System (INIS)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha

    2016-01-01

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  17. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha, E-mail: haqnawaz@bzu.edu.pk [Bahauddin Zakariya University, Multan (Pakistan)

    2016-10-15

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  18. Evaluation of occupational and patient radiation doses in orthopedic surgery

    International Nuclear Information System (INIS)

    Sulieman, A.; Habiballah, B.; Abdelaziz, I.; Alzimami, K.; Osman, H.; Omer, H.; Sassi, S. A.

    2014-08-01

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  19. Evaluation of occupational and patient radiation doses in orthopedic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Sulieman, A. [Salman bin Abdulaziz University, College of Applied Medical Sciences, Radiology and Medical Imaging Department, P.O. Box 422, Alkharj (Saudi Arabia); Habiballah, B.; Abdelaziz, I. [Sudan Univesity of Science and Technology, College of Medical Radiologic Sciences, P.O. Box 1908, Khartoum (Sudan); Alzimami, K. [King Saud University, College of Applied Medical Sciences, Radiological Sciences Department, P.O. Box 10219, 11433 Riyadh (Saudi Arabia); Osman, H. [Taif University, College of Applied Medical Science, Radiology Department, Taif (Saudi Arabia); Omer, H. [University of Dammam, Faculty of Medicine, Dammam (Saudi Arabia); Sassi, S. A., E-mail: Abdelmoneim_a@yahoo.com [Prince Sultan Medical City, Department of Medical Physics, Riyadh (Saudi Arabia)

    2014-08-15

    Orthopedists are exposed to considerable radiation dose during orthopedic surgeries procedures. The staff is not well trained in radiation protection aspects and its related risks. In Sudan, regular monitoring services are not provided for all staff in radiology or interventional personnel. It is mandatory to measure staff and patient exposure in order to radiology departments. The main objectives of this study are: to measure the radiation dose to patients and staff during (i) Dynamic Hip Screw (Dhs) and (i i) Dynamic Cannula Screw (Dcs); to estimate the risk of the aforementioned procedures and to evaluate entrance surface dose (ESD) and organ dose to specific radiosensitive patients organs. The measurements were performed in Medical Corps Hospital, Sudan. The dose was measured for unprotected organs of staff and patient as well as scattering radiation. Calibrated Thermoluminescence dosimeters (TLD-Gr-200) of lithium fluoride (LiF:Mg, Cu,P) were used for ESD measurements. TLD signal are obtained using automatic TLD Reader model (Plc-3). The mean patients doses were 0.46 mGy and 0.07 for Dhs and Dcs procedures, respectively. The mean staff doses at the thyroid and chest were 4.69 mGy and 1.21 mGy per procedure. The mean radiation dose for staff was higher in Dhs compared to Dcs. This can be attributed to the long fluoroscopic exposures due to the complication of the procedures. Efforts should be made to reduce radiation exposure to orthopedic patients, and operating surgeons especially those with high work load. Staff training and regular monitoring will reduce the radiation dose for both patients and staff. (Author)

  20. Low doses of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C.; Arthur, Valter; Arthur, Paula B.; Franco, Caio H.

    2017-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  1. Low doses of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, José G.; Franco, Suely S.H.; Villavicencio, Anna L.C., E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio H. [Universidade Federal de São Paulo (UNIFESP), SP (Brazil). Departamento de Microbiologia, Imunologia e Parasitologia

    2017-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Dry soya seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.210 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. A treatment with four radiation doses was applied as follows: 0 (control); 12.5; 25.0 and 50.0 Gy. Seed germination and harvested of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds number and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were the doses of 12.5 and 50.0 Gy. The results show that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  2. Recovery and permanent radiation damage of plastic scintillators at different dose rates

    International Nuclear Information System (INIS)

    Bicken, B.; Holm, U.; Marckmann, T.; Wick, K.; Rhode, M.

    1990-01-01

    This paper reports on the radiation stability of plastic scintillators and wavelength shifters for the calorimeter of the ZEUS detector by irradiating them with protons, a 60 Co-source, and depleted uranium. Changes in light yield, absorption length and absorption coefficient have been measured for storage in inert and oxygen atmospheres during and after irradiation. Radiation doses up to 40 kGy with dose rates of 30 up to 2000 Gy/h have been applied. The polystyrene based scintillator SCSN-38 and the wavelength shifters Y-7 and K-27 in PMMA show an additional absorption but a recovery in air to a low permanent damage (at 10 kGy) which is proportional to the applied dose. Series investigations on samples of all production cycles of the ZEUS scintillators with high dose rates show only minor differences in radiation hardness. The recovery is described by a simple oxygen diffusion model for high and medium dose rates down to 30 Gy/h. During long term irradiations at low dose rates (<100 Gy/h) of 3 mm thick SCSN-38 in air the radiation damage recovers to a permanent damage which does not depend on the dose rate. On the other hand the radiation damage at very low dose rates (17 Gy/a) seems to be higher than expected for the accumulated dose

  3. Hormesis of Low Doses of Ionizing Radiation Exposure on Immune System

    International Nuclear Information System (INIS)

    Ragab, M.H.; Abbas, M.O.; El-Asady, R.S.; Amer, H.A.; El-Khouly, W.A.; Shabon, M.H.

    2015-01-01

    The effect of low doses of ionizing radiation on the immune system has been a controversial subject. To evaluate the effect of low-doses γ-irradiation exposure on immune system. An animal model, using Rattus Rattus rats was used. The rats were divided into groups exposed to either continuous or fractionated 100, 200, 300, 400 and 500 mSv of radiation and compared to control rats that did not receive radiation. All groups were exposed to a total white blood count (Wcs), lymphocyte count and serum IgG level measurement, as indicators of the function of the cell-mediated (T lymphocytes) and the humoral (B lymphocytes) immune system. The results of the current study revealed that the counts of total leukocytes (WBCs) and lymphocytes, as well as the serum level of IgG were increased significantly in rats receiving low dose radiation, indicating enhancement of immune system. The data suggests that low-dose gamma-radiation improved hematological parameters and significantly enhances immune response indices of the exposed rats. These findings are similar to the radiation adaptive responses in which a small dose of pre irradiation would induce certain radiation resistance and enhances the cell response after exposure to further irradiation doses The applied low doses used in the present study may appear effective inducing the radio adaptive response. Farooqi and Kesavan (1993) and Bravard et al. (1999) reported that the adaptive response to ionizing radiation refers to the phenomenon by which cells irradiated with low (cGy) or sublethal doses (conditioning doses) become less susceptible to genotoxic effects of a subsequent high dose (challenge dose, several Gy).

  4. Study of teflon pads as high doses dosemeters

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines; Caldas, Linda V.E.

    2013-01-01

    The aim of this work is to study the Teflon, which is used as a binder in the manufacture of dosimetric tablets, for the feasibility of this material as high dose dosemeter. In this paper we used the technique of thermally stimulated luminescence (OSL) to characterize the dosimetric properties of Teflon. Teflon samples were exposed to different doses of radiation, using a source of gamma radiation ( 60 Co). It was obtained dose-response curve between 100 Gy to 50 kGy and reproducibility of OSL response. The preliminary results show that Teflon is a useful material to high dose dosimetry

  5. Problems linked to effects of ionizing radiations low doses

    International Nuclear Information System (INIS)

    Anon.

    1995-10-01

    The question of exposure to ionizing radiations low doses and risks existing for professional and populations has been asked again, with the recommendations of the International Commission of Radiation Protection (ICRP) to lower the previous standards and agreed as guides to organize radiation protection, by concerned countries and big international organisms. The sciences academy presents an analysis which concerned on epidemiological and dosimetric aspects in risk estimation, on cellular and molecular aspects of response mechanism to irradiation. The observation of absence of carcinogen effects for doses inferior to 200 milli-sieverts and a re-evaluation of data coming from Nagasaki and Hiroshima, lead to revise the methodology of studies to pursue, to appreciate more exactly the effects of low doses, in taking in part, particularly, the dose rate. The progress of molecular and cellular biology showed that the extrapolation from high doses to low doses is not in accordance with actual data. The acknowledge of DNA repair and carcinogenesis should make clearer the debate. (N.C.). 61 refs., 9 annexes

  6. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  7. Radiation therapy of malignant melanoma: Experience with high individual treatment doses

    International Nuclear Information System (INIS)

    Habermalz, H.J.; Fischer, J.J.

    1984-01-01

    Melanoma is a complex tumor, metastasizes early both by lymphatic and blood vessels, and which may invoke a significant host ''immune,'' response. One can imagine a number of potentially useful roles for an effective radiation therapy regimen: 1. Treatment of the primary lesion. For small lesions located on the extremities, surgery may be simpler and obviate the risk of radiation failure. In other areas, e.g., head and neck, which may require more cosmetically or functionally debilitating surgery, a trial of radiation therapy may be worthwhile. 2. Preoperative radiation to the primary lesion before surgical resection in the hope of preventing tumor dissemination. 3. Prophylactic, local and regional lymph node radiation therapy. It has been popular in the past to remove malignant melanoma with wide local excision and dissection of adjacent node areas. It is still an open question whether some or any additional patients will be cured by the more vigorous local and extended treatment. Generally, those procedures have fallen into disfavor because of the associated morbidity. Presumably subclinical amounts of malignant melanoma could be sterilized with doses of radiation smaller than those necessary for bulk tumor. Wide field irradiation to the areas surrounding the primary lesion and the adjacent lymph nodes, to doses causing little morbidity, may well be worth clinical trial. 4. In combination with other forms of therapy, e.g., chemotherapy, immunotherapy, hyperthermia, to reduce the number of malignant cells in localized areas known to contain diseases. This may be particularly important prior to initiation of immunotherapy which may be much more effective in the absence of gross disease

  8. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  9. Identification of Differential Gene Expression Patterns after Acute Exposure to High and Low Doses of Low-LET Ionizing Radiation in a Reconstituted Human Skin Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer; Taylor, Ronald C.; Stenoien, David L.

    2016-11-01

    Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. A total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.

  10. Tumor induction by small doses ionising radiation

    International Nuclear Information System (INIS)

    Putten, L.M. van

    1981-01-01

    Tumour induction by low radiation doses is in general a non-linear process. However, two exceptions are well known: myeloid leukemia in Rf mice and mamma tumours in Sprague-Dawley rats. The hypothesis that radiation is highly oncogenic in combination with cell growth stimuli, as reaction to massive cell death after damage of nuclear DNA, is applied to man and the consequences are discussed. (Auth.)

  11. An engagement factor for caregiver radiation dose assessment with radioiodine treatment

    International Nuclear Information System (INIS)

    Lee, Hyun Kuk; Hong, Seong Jong; Jeong, Kyu Hwan; Jung, Jae Won; Kim, Seong Min; Kang, Yun-Hee; Han, Man Seok

    2015-01-01

    This study aims to suggest ways to better manage thyroid cancer patients treated with high- and low-activity radioiodine ( 131 I) by assessing external radiation doses to family members and caregivers and the level of radiation in the surrounding environment. The radiation doses to caregivers of 33 inpatients (who were quarantined in the hospital for 2-3 d after treatment) and 31 outpatients who received radioiodine treatment after thyroidectomy were measured using passive thermoluminescence dosemeters. In this study, 33 inpatients were administered high-activity (100-200 mCi) 131 I, and 31 outpatients were administered low-activity (30 mCi) 131 I. The average doses to caregivers were measured at 0.61 mSv for outpatients and 0.16 mSv for inpatients. The total integrated dose of the recovery (recuperation) rooms where the patients stayed after release from hospital was measured to be 0.83 mSv for outpatients and 0.23 mSv for inpatients. To reflect the degree of engagement between the caregiver and the patient, considering the duration and distance between two during exposure, the authors used the engagement factor introduced by Jeong et al. (Estimation of external radiation dose to caregivers of patients treated with radioiodine after thyroidectomy. Health Phys 2014;106:466-474.). This study presents a new engagement factor (K-value) of 0.82 obtained from the radiation doses to caregivers of both in- and out-patients treated with high- and low-activity radioiodine, and based on this new value, this study presented a new predicted dose for caregivers. A patient treated with high-activity radioiodine can be released after 24 h of isolation, whereas outpatients treated with low-activity radioiodine should be isolated for at least 12 h. (authors)

  12. Radiation effects on the immiscible polymer blend of nylon1010 and high-impact polystyrene (HIPS) I: Gel/dose curves, mathematical expectation theorem and thermal behaviour

    International Nuclear Information System (INIS)

    Dong, W.; Zhang, W.; Chen, G.; Liu, J.

    2000-01-01

    This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (author)

  13. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  14. Doses from Medical Radiation Sources

    Science.gov (United States)

    ... Medical Radiation Sources Michael G. Stabin, PhD, CHP Introduction Radiation exposures from diagnostic medical examinations are generally ... of exposure annually to natural background radiation. Plain Film X Rays Single Radiographs Effective Dose, mSv Skull ( ...

  15. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  16. Evaluation of the Entrance Surface Dose (ESD and Radiation Dose to the Radiosensitive Organs in Pediatric Pelvic Radiography

    Directory of Open Access Journals (Sweden)

    Vahid Karami

    2017-06-01

    Full Text Available Background Patients' dosimetry is crucial in order to enhance radiation protection optimization and to deliver low radiation dose to the patients in a radiological procedure. The aim of this study was to assess the entrance surface dose (ESD and radiation dose to the radiosensitive organs in pediatric pelvic radiography. Materials and Methods The studied population included 98 pediatric patients of both genders referred to anteroposterior (AP projection of pelvic radiography. The radiation dose was directly measured using high radiosensitive cylindrical lithium fluoride thermo-luminescent dosimeters (TLD-GR200. Two TLDs were placed at the center point of the radiation field to measure the ESD of pelvis. Moreover for each patient, 2 TLDs were placed upon each eyelid, 2 TLDs upon each breast, 2 TLDs upon the surface anatomical position of the thyroid gland and finally 2 TLDs at the surface anatomical position of the gonads to measure the received dose. Results The ESD ± standard deviation for AP pelvic radiography was obtained 591.7±76 µGy. Statistically significant difference was obtained between organs located outside and inside of the radiation field with respect to dose received (P

  17. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Chandna, S.

    2003-01-01

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  18. Radiation dose and cancer risk among pediatric patients undergoing interventional neuroradiology procedures

    International Nuclear Information System (INIS)

    Thierry-Chef, Isabelle; Simon, Steven L.; Miller, Donald L.

    2006-01-01

    During interventional neuroradiology procedures, patients can be exposed to moderate to high levels of radiation. Special considerations are required to protect children, who are generally more sensitive to the short- and long-term detrimental effects of radiation exposure. Estimates of dose to the skin of children from certain interventional procedures have been published elsewhere, but we are not aware of data on dose to the brain or on the long-term risk of cancer from brain radiation. Our goals were to estimate radiation doses to the brain in 50 pediatric patients who had undergone cerebral embolization and to assess their lifetime risks of developing radiation-related brain cancer. Entrance-peak skin dose and various assumptions on conditions of exposure were used as input for dosimetric calculations to estimate the spatial pattern of dose within the brain and the average dose to the whole brain for each child. The average dose and the age of the child at time of exposure were used to estimate the lifetime risk of developing radiation-related brain cancer. Among the 50 patients, average radiation doses to the brain were estimated to vary from 100 mGy to 1,300 mGy if exposed to non-collimated fields and from 20 mGy to 160 mGy for collimated, moving fields. The lifetime risk of developing brain cancer was estimated to be increased by 2% to 80% as a result of the exposure. Given the very small lifetime background risk of brain tumor, the excess number of cases will be small even though the relative increase might be as high as 80%. ALARA principles of collimation and dose optimization are the most effective means to minimize the risk of future radiation-related cancer. (orig.)

  19. Energies, health, medicine. Low radiation doses

    International Nuclear Information System (INIS)

    2004-01-01

    This file concerns the biological radiation effects with a special mention for low radiation doses. The situation of knowledge in this area and the mechanisms of carcinogenesis are detailed, the different directions of researches are given. The radiation doses coming from medical examinations are given and compared with natural radioactivity. It constitutes a state of the situation on ionizing radiations, known effects, levels, natural radioactivity and the case of radon, medicine with diagnosis and radiotherapy. (N.C.)

  20. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  1. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  2. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  3. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P S; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will cause damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 and fluences of 1-MeV(Si) equivalent neutrons and thermal neutrons at several locations in ATLAS detector. In this paper measurements collected during two years of ATLAS data taking are presented and compared to predictions from radiation background simulations.

  4. Comparison of prospective electrocardiography-gating high-pitch mode and without electrocardiography-synchronization high-pitch mode acquisition for the image quality and radiation doses of the aortic using dual-source CT

    International Nuclear Information System (INIS)

    Li Jian; Huan Yi; Zhao Hongliang; Wang Ying; Liu Ying; Wei Mengqi; Shi Mingguo; Zheng Minwen

    2013-01-01

    Objective: To evaluate the application of prospective ECG-gating Flash spiral scan mode dual-source CT in aortography, and compare it's image quality and radiation dose with without ECG-synchronization high-pitch spiral scanning mode. Methods: Fifty consecutive patients (Group A) with suspected aortic dissection or after operations for the aortic dissection were scanned with prospective ECG-gated high-pitch scan and another 50 consecutive patients (Group B) were analyzed by non-ECG-gated high-pitch scan. Image quality of the aortic was assessed by two independent readers. Image noise was measured, radiation dose estimates were calculated. The imaging quality of the aortic and the radiation dose were compared with Mann-whitney U and t test. Results: The average image quality score [(1.18 ± 0.40) in group A and (1.23 ± 0.31) in group B] showed no significant difference between group A and group B (U = 1.20, P = 0.23). The mean radiation dose of group A was lower than that of group B [(1.49 ± 0.38) mSv in group A, (2.79 ± 0.54) mSv in group B, t = 13.677, P < 0.05]. Conclusion: Prospective ECG-gated dual source CT Flash spiral scanning with low radiation dose and good image quality in the aortic dissection with high value of clinical application. (authors)

  5. Ultraviolet and infrared spectral analysis of poly(vinyl)butyral films: correlation and possible application for high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ebraheem, S.; El-Kelany, M.; Beshir, W.; Abdel-Fattah, A.A.

    1999-01-01

    A detailed study was performed to develop the dosimetric characteristics of poly(vinyl)butyral film (PVB), to be used as a film dosimeter for high-dose gamma radiation dosimetry. The useful dose range of this polymeric film extends up to 350 kGy. Correlations were established between the absorbed dose of gamma radiation and the radiation-induced changes in PVB measured by means of ultraviolet (UV) and Fourier Transform Infrared (FTIR) spectrophotometry. The results showed a significant dependence of the response on the selected readout tool of measurements whether FTIR (at 1738 and 3400 cm -1 ) or UV (at 275 and 230 nm), as well as on the quantity used for calculation. The effect of relative humidity during irradiation on dosimeter performance as well as the post-irradiation stability at different storage conditions are also discussed. (author)

  6. Investigation of radiation skin dose in interventional cardiology

    International Nuclear Information System (INIS)

    Webster, C.M.; Horrocks, J.; Hayes, D.

    2001-01-01

    Background - The study investigated the radiation skin doses for interventional patients in cardiology; two procedures which have the highest radiation dose are Radiofrequency Catheter Ablation (RFCA) and Percutaneous Transluminal Coronary Angioplasty (PTCA). Methods and Results - 56 patients were randomly selected and investigated; 23 patients in the RFCA group and 33 in the PTCA group. Skin and effective dose were calculated from Dose Area Product (DAP). Thermoluminescent Dosimetry was the second method of dose measurement used. Patients were followed-up for a three month period to check for possible skin reactions resulting from the radiation dose during the procedure. Radiation skin doses in 14 patients were calculated to be more than 1 Gy, including three patients who received more than 2 Gy, the threshold dose for deterministic effects of radiation. 7 patients (12.5%) reported skin reactions as a result of the radiation received to their backs during the procedure. Mean DAP and estimated effective doses were 105 Gycm 2 and 22.5 mSv for RFCA, and 32 Gycm 2 and 6.2 mSv for PTCA procedures respectively. Conclusion - Complex procedures in Interventional Cardiology can exceed the threshold level for deterministic effects in the skin. (author)

  7. Radiation doses to neonates and issues of radiation protection in a special care baby unit

    International Nuclear Information System (INIS)

    Armpilia, C.I.; Fife, I.A.J.; Croasdale, P.L.

    2001-01-01

    Radiographs are most commonly taken in the neonatal period to assist in the diagnosis and management of respiratory difficulties. Frequent accurate radiographic assessment is required and a knowledge of the radiation dose is necessary to make the justification of such exposures. A survey of radiation doses to neonates from diagnostic X-ray examinations (chest and abdomen) has been carried out in the special care baby unit (SCBU) of the Royal Free Hospital. Entrance surface dose (ESD) was calculated from Quality Control measurements on the X-ray set itself. Direct measurement of radiation doses was also performed using highly sensitive thermoluminescence dosimeters (LiF:Mg,Cu,P), calibrated and tested for consistency in sensitivity. The mean ESD per radiograph was calculated to be 36μGy (with a standard deviation of 6μGy), averaged over 95 X-ray examinations. The ESD's as derived from the TLD crystals, ranged from 18μGy to 60μGy. The mean energy imparted (EI) and the mean whole body dose per radiograph were estimated to be 14μJ and 10μGy respectively. Assuming that neonates and foetuses are equally susceptible to carcinogenic effects of radiation (it involves an overestimation of risk), the radiation risk of childhood cancer from a single radiograph was estimated to be of the order (0.3-1.3)x10 -6 . Radiation doses compared favourably with the reference value of 80μGy ESD published by CEC in 1996. (author)

  8. Population doses from naturally occurring radiation in Norway

    International Nuclear Information System (INIS)

    Stranden, E.

    The main purpose of this work was to study the radiological consequences of the introduction of building materials with high concentrations of radioactivity and to analyse the impact of a reduction of the ventilation rates in houses on the population dose from inhalation of natural airborne radioactivity. The general problems of radioactivity in building materials are discussed. Measurements of radioactivity in building materials from different parts of the country are reported, together with theoretical calculations of the gamma doses in houses. These calculations are compared with experimental results and earlier measurements of the indoor gamma radiation in Norway. Measurements of the outdoor gamma radiation in different parts of Norway are presented. These results are used together with earlier measurements of the gamma radiation inside houses to calculate the average, and variations of population dose from this radiation. An experimental study on the radon concentrations inside different types of dwellings, and a discussion of the respiratory dose received by the inhalation of radon daughters is presented. Some factors that may have influence upon the radon concentrations are also discussed. A method for measurement of radon and thoron daughters in air is discussed. The possible radiological effects of an increased radon concentration in houses are discussed. (Auth.)

  9. Long-Term Outcomes After High-Dose Postprostatectomy Salvage Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goenka, Anuj; Magsanoc, Juan Martin; Pei Xin; Schechter, Michael; Kollmeier, Marisa; Cox, Brett [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Scardino, Peter T.; Eastham, James A. [Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-09-01

    Purpose: To review the impact of high-dose radiotherapy (RT) in the postprostatectomy salvage setting on long-term biochemical control and distant metastases-free survival, and to identify clinical and pathologic predictors of outcomes. Methods and Materials: During 1988-2007, 285 consecutive patients were treated with salvage RT (SRT) after radical prostatectomy. All patients were treated with either three-dimensional conformal RT or intensity-modulated RT. Two hundred seventy patients (95%) were treated to a dose {>=}66 Gy, of whom 205 (72%) received doses {>=}70 Gy. Eighty-seven patients (31%) received androgen-deprivation therapy as a component of their salvage treatment. All clinical and pathologic records were reviewed to identify treatment risk factors and response. Results: The median follow-up time after SRT was 60 months. Seven-year actuarial prostate-specific antigen (PSA) relapse-free survival and distant metastases-free survival were 37% and 77%, respectively. Independent predictors of biochemical recurrence were vascular invasion (p < 0.01), negative surgical margins (p < 0.01), presalvage PSA level >0.4 ng/mL (p < 0.01), androgen-deprivation therapy (p = 0.03), Gleason score {>=}7 (p = 0.02), and seminal vesicle involvement (p = 0.05). Salvage RT dose {>=}70 Gy was not associated with improvement in biochemical control. A doubling time <3 months was the only independent predictor of metastatic disease (p < 0.01). There was a trend suggesting benefit of SRT dose {>=}70 Gy in preventing clinical local failure in patients with radiographically visible local disease at time of SRT (7 years: 90% vs. 79.1%, p = 0.07). Conclusion: Salvage RT provides effective long-term biochemical control and freedom from metastasis in selected patients presenting with detectable PSA after prostatectomy. Androgen-deprivation therapy was associated with improvement in biochemical progression-free survival. Clinical local failures were rare but occurred most commonly in

  10. Transatlantic Comparison of CT Radiation Doses in the Era of Radiation Dose-Tracking Software.

    Science.gov (United States)

    Parakh, Anushri; Euler, Andre; Szucs-Farkas, Zsolt; Schindera, Sebastian T

    2017-12-01

    The purpose of this study is to compare diagnostic reference levels from a local European CT dose registry, using radiation-tracking software from a large patient sample, with preexisting European and North American diagnostic reference levels. Data (n = 43,761 CT scans obtained over the course of 2 years) for the European local CT dose registry were obtained from eight CT scanners at six institutions. Means, medians, and interquartile ranges of volumetric CT dose index (CTDI vol ), dose-length product (DLP), size-specific dose estimate, and effective dose values for CT examinations of the head, paranasal sinuses, thorax, pulmonary angiogram, abdomen-pelvis, renal-colic, thorax-abdomen-pelvis, and thoracoabdominal angiogram were obtained using radiation-tracking software. Metrics from this registry were compared with diagnostic reference levels from Canada and California (published in 2015), the American College of Radiology (ACR) dose index registry (2015), and national diagnostic reference levels from local CT dose registries in Switzerland (2010), the United Kingdom (2011), and Portugal (2015). Our local registry had a lower 75th percentile CTDI vol for all protocols than did the individual internationally sourced data. Compared with our study, the ACR dose index registry had higher 75th percentile CTDI vol values by 55% for head, 240% for thorax, 28% for abdomen-pelvis, 42% for thorax-abdomen-pelvis, 128% for pulmonary angiogram, 138% for renal-colic, and 58% for paranasal sinus studies. Our local registry had lower diagnostic reference level values than did existing European and North American diagnostic reference levels. Automated radiation-tracking software could be used to establish and update existing diagnostic reference levels because they are capable of analyzing large datasets meaningfully.

  11. Radiation Dose Measurement Using Chemical Dosimeters

    International Nuclear Information System (INIS)

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  12. Prenatal radiation exposure. Dose calculation

    International Nuclear Information System (INIS)

    Scharwaechter, C.; Schwartz, C.A.; Haage, P.; Roeser, A.

    2015-01-01

    The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.

  13. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    Science.gov (United States)

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  14. NIST high-dose calibration services

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1989-01-01

    There is a need for the standardization of high-dose measurements used in the radiation-processing industry in order to provide assured traceability to national standards. NIST provides dosimetry calibration services to this industry. One of these services involves administration of known absorbed doses of gamma rays to customer-supplied dosimeters. The dosimeters are packaged to provide electron equilibrium conditions and are irradiated in a standard 60 Co calibration facility; this provides a calibration of that batch of dosimeters. Another service consists of supplying to a customer calibrated transfer dosimeters for irradiation with the customer's radiation source. The irradiated transfer dosimeters are then returned to NIST for analysis; the results are reported to the customer, providing a calibration of the dose rate of the customer's source. (orig.)

  15. Intraesophageal administratio (JP4-039) and p53/MDM2/MDM4 Inhibitor (BEB55) ameliorates radiation esophagitisn of GS-Nitroxide

    NARCIS (Netherlands)

    Kim, H.; Bernard, M.; Epperly, M.W.; Shen, H.; Dixon, T.M.; Amoscato, A.A.; Doemling, A.S.; Li, S.; Gao, X.; Wipf, P.

    2011-01-01

    Purpose/Objective(s): To evaluate the esophageal radiation dose modification properties of the GS-nitroxide (JP4-039) and the p53/MDM2/MDM4 inhibitor (BEB55). Materials/Methods: Esophagitis is a significant toxicity of radiation therapy of thoracic cancers. We evaluated radiation dose modification

  16. Assessment of dose level of ionizing radiation in army scrap

    International Nuclear Information System (INIS)

    Abdel Hamid, S. M.

    2010-12-01

    Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy radiation. Ionizing radiation is widely used in industry and medicine. Any human activity of nuclear technologies should be linked to the foundation of scientific methodology and baseline radiation culture to avoid risk of radiation and should be working with radioactive materials and expertise to understand, control practices in order to avoid risks that could cause harm to human and environment. The study was conducted in warehouses and building of Sudan air force Khartoum basic air force during September 2010. The goal of this study to estimate the radiation dose and measurement of radioactive contamination of aircraft scrap equipment and increase the culture of radiological safety as well as the concept of radiation protection. The results showed that there is no pollution observed in the contents of the aircraft and the spire part stores outside, levels of radiation dose for the all contents of the aircraft and spire part within the excitable level, except temperature sensors estimated radiation dose about 43 μSv/h outside of the shielding and 12 μSv/h inside the shielding that exceeded the internationally recommended dose level. One of the most important of the identification of eighteen (18) radiation sources used in temperature and fuel level sensors. These are separated from the scrap, collected and stored in safe place. (Author)

  17. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  18. Radical surgical resection and high-dose intraoperative radiation therapy (HDR-IORT) in patients with recurrent gynecologic cancers

    International Nuclear Information System (INIS)

    Gemignani, Mary L.; Alektiar, Kaled M.; Leitao, Mario; Mychalczak, Boris; Chi, Dennis; Venkatraman, Ennapadam; Barakat, Richard R.; Curtin, John P.

    2001-01-01

    Objective: To determine the outcome for patients with recurrent gynecologic tumors treated with radical resection and combined high-dose intraoperative radiation therapy (HDR-IORT). Methods and Materials: Between November 1993 and June 1998, 17 patients with recurrent gynecologic malignancies underwent radical surgical resection and high-dose-rate brachytherapy. The mean age of the study group was 49 years (range 28-72 years). The site of the primary tumor was the cervix in 9 (53%) patients, the uterus in 7 (41%) patients, and the vagina in 1 (6%) patient. The treatment for the primary disease was surgery with or without adjuvant radiation in 14 (82%) patients and definitive radiation in 3 (18%) patients. The current surgery consisted of exenterative surgery in 10 (59%) patients and tumor resection in 7 (41%) patients. Complete gross resection was achieved in 13 (76%) patients. The mean HDR-IORT dose was 14 Gy (range 12-15). Additional radiation in the form of permanent Iodine-125 implant was given to 3 of 4 patients with gross residual disease. The median peripheral dose was 140 Gy. Results: With a median follow-up of 20 months (range 3-65 months), the 3-year actuarial local control (LC) rate was 67%. In patients with complete gross resection, the 3-year LC rate was 83%, compared to 25% in patients with gross residual disease, p<0.01. The 3-year distant metastasis disease-free and overall survival rates were 54% and 54%, respectively. The complications were as follows: gastrointestinal obstruction, 4 (24%); wound complications, 4 (24%); abscesses, 3 (18%); peripheral neuropathy, 3 (18%); rectovaginal fistula, 2 (12%); and ureteral obstruction, 2 (12%). Conclusion: Radical surgical resection and combined IORT for patients with recurrent gynecologic tumors seems to provide a reasonable local-control rate in patients who have failed prior surgery and/or definitive radiation. Patient selection is very important, however, as only those patients with complete gross

  19. Dosimetry of high energy radiation

    CERN Document Server

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  20. Postoperative Radiation Therapy for Non-Small Cell Lung Cancer and Thymic Malignancies

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Komaki, Ritsuko

    2012-01-01

    For many thoracic malignancies, surgery, when feasible, is the preferred upfront modality for local control. However, adjuvant radiation plays an important role in minimizing the risk of locoregional recurrence. Tumors in the thoracic category include certain subgroups of non-small cell lung cancer (NSCLC) as well as thymic malignancies. The indications, radiation doses, and treatment fields vary amongst subtypes of thoracic tumors, as does the level of data supporting the use of radiation. For example, in the setting of NSCLC, postoperative radiation is typically reserved for close/positive margins or N2/N3 disease, although such diseases as superior sulcus tumors present unique cases in which the role of neoadjuvant vs. adjuvant treatment is still being elucidated. In contrast, for thymic malignancies, postoperative radiation therapy is often used for initially resected Masaoka stage III or higher disease, with its use for stage II disease remaining controversial. This review provides an overview of postoperative radiation therapy for thoracic tumors, with a separate focus on superior sulcus tumors and thymoma, including a discussion of acceptable radiation approaches and an assessment of the current controversies involved in its use

  1. Radiation doses from dental radiography at private practioneers

    Energy Technology Data Exchange (ETDEWEB)

    Hylthen, J A

    1975-10-01

    This investigation was made in January 1975 together with a seminar group from the faculty of odontology in Stockholm. Every four private practising dentists in Stockholm and its environs were selected by haphazard to get an enquiry equipment etc. Every forty private practising dentists were then selected by haphazard to get a visit. 32 x-ray plants were investigated. The radiation doses showed a great spreading. The mean value of the radiation doses to the irradiated organs had been reduced about 5 times compared to a similar investigation, which was made in 1960. The use of long metal tubes and high-speed film gave the lowest dose values, while a short cone of bakelite and a low-speed film gave the highest dose values. Fluctuations in the dose values seemed also to depend on the technique. The reasons for this may be variations in the settings of the instruments and in the dark room technique.

  2. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  3. Normal tissue tolerance to external beam radiation therapy: Cardiac structures; Dose de tolerance des tissus sains: le coeur

    Energy Technology Data Exchange (ETDEWEB)

    Doyen, J. [Service d' oncologie-radiotherapie, centre Antoine-Lacassagne, 06 - Nice (France); Giraud, P. [Universite Rene-Descartes Paris 5, 75 - Paris (France); Service d' oncologie-radiotherapie, hopital europeen Georges-Pompidou, 75 - Paris (France); Belkacemi, Y. [Faculte de medecine de Creteil, universite Paris 12, 94 - Creteil (France); Service d' oncologie-radiotherapie, CHU Henri-Mondor, 94 - Creteil (France)

    2010-07-15

    Radiation thoracic tumors may be associated with cardiac toxicity because of the central position of the heart in the thorax. The present review aims to describe the cardiotoxicity during radiotherapy of different tumor sites most associated with this complication and the risk factors of cardiotoxicity during radiation therapy. Medline literature searches were performed using the following cardiac - heart - radiotherapy - toxicity - cardiotoxicity - breast cancer - lymphoma. Cardiac toxicity after breast cancer and mediastinal lymphoma is the most reported radiation-induced complication. The most frequent clinical complications are pericarditis, congestive heart failure, and heart infarction. These events are mostly asymptomatic. Thus clinicians have to give particular attention to these complications. Anthracycline treatment is a major risk factor for additional cardiotoxicity during radiotherapy with a synergistic effect. Correction of cardiovascular risk is an important point of the prevention of heart complications. Total dose delivered to the planned target volume (PTV), the dose per fraction and the irradiated volume were correlated to the risk of cardiotoxicity. Volume of heart receiving 35 Gy must be inferior to 30% and dose per fraction should not exceed 2 Gy when dose of prescription exceeds 30 Gy. Maximum heart distance (maximal thickness of heart irradiated) must be less than 1 cm during irradiation of breast cancer. Modern irradiation techniques seem to be associated with a limited risk of heart complication. The use of anthracycline, other cardio-toxic chemotherapies and targeted therapies should incite for great caution by performing a careful treatment planning and optimisation. (authors)

  4. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  5. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  6. Personal radiation monitoring and assessment of doses received by radiation workers (1991)

    International Nuclear Information System (INIS)

    Morris, N.D.

    1992-06-01

    The Australian Radiation Laboratory has operated a Personal Radiation Monitoring Service since the early 1930's so that people working with radiation can determine the radiation doses that they receive due to their occupation. Since late 1986, all persons monitored by the Service have been registered on a data base which maintains records of the doses received by each individual wearer. Ultimately, this data base will become a National Register of the doses received within Australia. At present, the Service regularly monitors approximately 20,000 persons, which is roughly 70 percent of those monitored in Australia, and maintains dose histories of over 35,000 people. The skin dose for occupationally exposed workers can be measured by using one of the four types of monitor issued by the Service: 1. Thermoluminescent Dosemeter (TLD monitor) 2. Finger TLD 3. Neutron Monitor 4. Special TLD. The technical description of the monitors is provided along with the method for calculating the radiation dose. 5 refs., 7 tabs., 4 figs

  7. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  8. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  9. Radiation dose to the patient in radionuclide studies

    International Nuclear Information System (INIS)

    Roedler, H.D.

    1981-01-01

    In medical radionuclide studies, the radiation risk has to be considered in addition to the general risk of administering a pharmaceutical. As radiation exposure is an essential factor in radiation risk estimation, some aspects of internal dose calculation, including radiation risk assessments, are treated. The formalism of current internal dose calculation is presented. The input data, especially the residence time and the absorbed dose per transformation, their origin and accuracy are discussed. Results of internal dose calculations for the ten most frequently used radionuclide studies are presented as somatically effective dose equivalents. The accuracy of internal dose calculation is treated in detail by considering the biokinetics of the radiopharmaceutical, the phantoms used for dose calculations, the absorbed dose per transformation, the administered activity, and the transfer of the dose, calculated for a phantom, to the patient. The internal dose calculated for a reference phantom may be assumed to be in accordance with the actual patient dose within a range described by a factor of about two to three. Finally, risk estimates for nuclear medicine procedures are quantified, being generally of sixth order. The radiation risk from the radioiodine test is comparably higher, but probably lower than calculated according to the UNSCEAR risk coefficients. However, further studies are needed to confirm these preliminary results and to improve the quantification of the radiation risk from the medical use of radionuclides. (author)

  10. Background radiation dose of dumpsites in Ota and Environs

    Science.gov (United States)

    Usikalu, M. R.; Ola, O. O.; Achuka, J. A.; Babarimisa, I. O.; Ayara, W. A.

    2017-05-01

    In-situ measurement of background radiation dose from selected dumpsites in Ota and its environs was done using Radialert Nuclear Radiation Monitor (Digilert 200). Ten measurements were taken from each dumpsite. The measured background radiation range between 0.015 mRhr-1 for AOD and 0.028 mRhr-1 for SUS dumpsites. The calculated annual equivalent doses vary between 1.31 mSvyr-1 for AOD and 2.28 mSv/yr for SUS dumpsites. The air absorbed dose calculated ranged from 150 nGyhr-1 to 280 nGy/hr for AOD and SUS dumpsites respectively with an average value of 217 nGyhr-1 for all the locations. All the estimated parameters were higher than permissible limit set for background radiation for the general public. Conclusively, the associated challenge and radiation burden posed by the wastes on the studied locations and scavengers is high. Therefore, there is need by the regulatory authorities to look into the way and how waste can be properly managed so as to alleviate the effects on the populace leaving and working in the dumpsites vicinity.

  11. Estimates of radiation doses from various sources of exposure

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter provides an overview of radiation doses to individuals and to the collective US population from various sources of ionizing radiation. Summary tables present doses from various sources of ionizing radiation. Summary tables present doses from occupational exposures and annual per capita doses from natural background, the healing arts, nuclear weapons, nuclear energy and consumer products. Although doses from non-ionizing radiation are not as yet readily available in a concise form, the major sources of non-ionizing radiation are listed

  12. Echocardiographic evaluation of global left ventricular function during high thoracic epidural anesthesia.

    Science.gov (United States)

    Niimi, Y; Ichinose, F; Saegusa, H; Nakata, Y; Morita, S

    1997-03-01

    To assess the effects of high thoracic epidural anesthesia on left ventricular (LV) diastolic filling and systolic function in patients without heart disease. Prospective study. University hospital. 24 ASA physical status I and II patients scheduled for elective noncardiac surgery. Patients received high thoracic (HTE; n = 12) or low thoracic (LTE; n = 12) epidural anesthesia. Left ventricular diastolic filling was noninvasively determined by precordial echocardiography using a pulsed Doppler technique and with a newly developed acoustic quantification (AQ) method that automatically detects endocardial borders and measures cavity area. All measurements were performed in awake premedicated patients. In the HTE group, the extent of sensory blockade of T1-T5, at the least, was induced with 2% lidocaine 5 ml. During HTE, systolic blood pressure (119 +/- 16 vs. 108 +/- 14 mmHg, p LTE group, no significant differences were noted in all systolic and diastolic indices obtained by pulsed Doppler and AQ method. High thoracic epidural anesthesia causes a decrease in CO without changing LV ejection and diastolic filling performance in healthy subjects.

  13. First Results from the Online Radiation Dose Monitoring System in ATLAS experiment

    CERN Document Server

    Mandić, I; The ATLAS collaboration; Deliyergiyev, M; Gorišek, A; Kramberger, G; Mikuž, M; Franz, S; Hartert, J; Dawson, I; Miyagawa, P; Nicolas, L

    2011-01-01

    High radiation doses which will accumulate in components of ATLAS experiment during data taking will causes damage to detectors and readout electronics. It is therefore important to continuously monitor the doses to estimate the level of degradation caused by radiation. Online radiation monitoring system measures ionizing dose in SiO2 , displacement damage in silicon in terms of 1-MeV(Si) equivalent neutron fluence and fluence of thermal neutrons at several locations in ATLAS detector. In this paper design of the system, results of measurements and comparison of measured integrated doses and fluences with predictions from FLUKA simulation will be shown.

  14. Radiation dose assessment in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, M.G.

    2002-01-01

    In any application involving the use of ionizing radiation in humans, risks and benefits must be properly evaluated and balanced. Radionuclides are used in nuclear medicine in a variety of diagnostic and therapeutic procedures. Recently, interest has grown in therapeutic agents for a number of applications in nuclear medicine, particularly in the treatment of hematologic and non-hematologic malignancies. This has heightened interest in the need for radiation dose calculations and challenged the scientific community to develop more patient-specific and relevant dose models. Consideration of radiation dose in such studies is central to efforts to maximize dose to tumor while sparing normal tissues. In many applications, a significant absorbed dose may be received by some radiosensitive organs, particularly the active marrow. This talk will review the methods and models used in internal dosimetry in nuclear medicine, and discuss some current trends and challenges in this field

  15. Local dose enhancement in radiation therapy: Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Silva, Laura E. da; Nicolucci, Patricia

    2014-01-01

    The development of nanotechnology has boosted the use of nanoparticles in radiation therapy in order to achieve greater therapeutic ratio between tumor and healthy tissues. Gold has been shown to be most suitable to this task due to the high biocompatibility and high atomic number, which contributes to a better in vivo distribution and for the local energy deposition. As a result, this study proposes to study, nanoparticle in the tumor cell. At a range of 11 nm from the nanoparticle surface, results have shown an absorbed dose 141 times higher for the medium with the gold nanoparticle compared to the water for an incident energy spectrum with maximum photon energy of 50 keV. It was also noted that when only scattered radiation is interacting with the gold nanoparticles, the dose was 134 times higher compared to enhanced local dose that remained significant even for scattered radiation. (author)

  16. Tissue responses to low protracted doses of high LET radiations or photons: Early and late damage relevant to radio-protective countermeasures

    Science.gov (United States)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency

  17. Calculation of the dose caused by internal radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    For the purposes of monitoring radiation exposure it is necessary to determine or to estimate the dose caused by both external and internal radiation. When comparing the value of exposure to the dose limits, account must be taken of the total dose incurred from different sources. This guide explains how to calculate the committed effective dose caused by internal radiation and gives the conversion factors required for the calculation. Application of the maximum values for radiation exposure is dealt with in ST guide 7.2, which also sets out the definitions of the quantities and concepts most commonly used in the monitoring of radiation exposure. The monitoring of exposure and recording of doses are dealt with in ST Guides 7.1 and 7.4.

  18. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    International Nuclear Information System (INIS)

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  19. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    International Nuclear Information System (INIS)

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  20. Epidemiological studies in high background radiation areas

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2012-01-01

    Below the doses of 100-200 mSv of radiation exposure, no acute health effect is observed, and the late health effects such as cancer are yet unclear. The problems making the risk evaluation of low dose radiation exposure difficult are the fact that the magnitude of expected health effects are small even if the risk is assumed to increase in proportion to radiation doses. As a result, studies need to be large particular when dealing with rare disease such as cancer. In addition, the expected health effects are so small that they can easily be masked by lifestyles and environmental factors including smoking. This paper will discuss cancer risk possibly associated with low-dose and low-dose rate radiation exposure, describing epidemiological studies on the residents in the high-background radiation areas. (author)

  1. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  2. Performance of thermoluminescent materials for high dose dosimetry

    International Nuclear Information System (INIS)

    Texeira, Maria I.; Cecatti, Sonia G.P.; Caldas, Linda V.E.

    2008-01-01

    Cases involving high-doses of ionizing radiation are becoming increasingly common.The objective of this work was to characterize thermoluminescent materials for the dosimetry of workers exposed to high doses. Samples of TLD-200, TLD-400 and TLD-800 pellets from Thermo Electron Corporation were studied in gamma high-doses. Dose-response curves were obtained for doses between 100 mGy and 100 Gy. The reproducibility, the lower detection limits and dose-response curves were obtained for all three materials. The different kinds of detectors show usefulness for dosimetry of workers exposed accidentally to high doses. (author)

  3. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  4. Cancer Control Related to Stimulation of Immunity by Low-Dose Radiation

    OpenAIRE

    Liu, Shu-Zheng

    2006-01-01

    Previous studies showed that low dose radiation (LDR) could stimulate the immune system in both animal and human populations. This paper reviews the present status of relevant research as support to the use of LDR in clinical practice for cancer prevention and treatment. It has been demonstrated that radiation-induced changes in immune activity follows an inverse J-shaped curve, i.e., low dose stimulation and high dose suppression. The stimulation of immunity by LDR concerns most anticancer p...

  5. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  6. Radiation Dose to Post-Chernobyl Cleanup Workers

    Science.gov (United States)

    Radiation dose calculation for post-Chernobyl Cleanup Workers in Ukraine - both external radiation exposure due to fallout and internal doses due to inhalation (I131 intake) or ingestion of contaminated foodstuffs.

  7. Whole body exposure to low-dose γ-radiation enhances the antioxidant defense system

    International Nuclear Information System (INIS)

    Pathak, C.M.; Avti, P.K.; Khanduja, K.L.; Sharma, S.C.

    2008-01-01

    It is believed that the extent of cellular damage by low- radiation dose is proportional to the effects observed at high radiation dose as per the Linear-No-Threshold (LNT) hypothesis. However, this notion may not be true at low-dose radiation exposure in the living system. Recent evidence suggest that the living organisms do not respond to ionizing radiations in a linear manner in the low dose range 0.01-0.5Gy and rather restore the homeostasis both in vivo and in vitro by normal physiological mechanisms such as cellular and DNA repair processes, immune reactions, antioxidant defense, adaptive responses, activation of immune functions, stimulation of growth etc. In this study, we have attempted to find the critical radiation dose range and the post irradiation period during which the antioxidant defense systems in the lungs, liver and kidneys remain stimulated in these organs after whole body exposure of the animals to low-dose radiation

  8. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children

    International Nuclear Information System (INIS)

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-01-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children. (orig.)

  9. A case of central type early stage lung cancer receiving 60Co high dose-rate postoperative endobronchial radiation

    International Nuclear Information System (INIS)

    Nakamori, Syouji; Kodama, Ken; Kurokawa, Eiji; Doi, Osamu; Terasawa, Toshio; Chatani, Masashi; Inoue, Toshihiko; Tateishi, Ryuhei

    1985-01-01

    Right middle-lower lobectomy and mediastinal lymph node dissection were performed for a case of central type early stage lung cancer. Tumor extended very closely to the line of incision margin of the resected specimen, appearing as carcinoma in situ. To inprove curativity, postoperative radiation therapy was performed with 60 Co high dose-rate endobronchial radiation by a remote afterloading system. A total dose of 40Gy was administered to the target area without any severe side effects. The patient is healthy and has no evidence of metastasis. This procedure is considered to be an effective treatment for postoperative lung cancer with possible residual malignancy. (author)

  10. Radiation dose and late failures in prostate cancer

    International Nuclear Information System (INIS)

    Morgan, Peter B.; Hanlon, Alexandra L.; Horwitz, Eric M.; Buyyounouski, Mark K.; Uzzo, Robert G.; Pollack, Alan

    2007-01-01

    Purpose: To quantify the impact of radiation dose escalation on the timing of biochemical failure (BF) and distant metastasis (DM) for prostate cancer treated with radiotherapy (RT) alone. Methods: The data from 667 men with clinically localized intermediate- and high-risk prostate cancer treated with three-dimensional conformal RT alone were retrospectively analyzed. The interval hazard rates of DM and BF, using the American Society for Therapeutic Radiology and Oncology (ASTRO) and Phoenix (nadir + 2) definitions, were determined. The median follow-up was 77 months. Results: Multivariate analysis showed that increasing radiation dose was independently associated with decreased ASTRO BF (p < 0.0001), nadir + 2 BF (p = 0.001), and DM (p = 0.006). The preponderance (85%) of ASTRO BF occurred at ≤4 years after RT, and nadir + 2 BF was more evenly spread throughout Years 1-10, with 55% of BF in ≤4 years. Radiation dose escalation caused a shift in the BF from earlier to later years. The interval hazard function for DM appeared to be biphasic (early and late peaks) overall and for the <74-Gy group. In patients receiving ≥74 Gy, a reduction occurred in the risk of DM in the early and late waves, although the late wave appeared reduced to a greater degree. Conclusion: The ASTRO definition of BF systematically underestimated late BF because of backdating. Radiation dose escalation diminished and delayed BF; the delay suggested that local persistence may still be present in some patients. For DM, a greater radiation dose reduced the early and late waves, suggesting that persistence of local disease contributed to both

  11. Studies of health effects of low dose radiation and its application to medicare

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Ishida, Kenji; Iwasaki, Toshiyasu; Koana, Takao; Magae, Junji; Watanabe, Masami; Sakamoto, Kiyohiko

    2008-01-01

    The articles contain following 7 topics of low dose radiation effects. Studies of Health Effects of Low dose Radiation and Its Application to Medicare'', describes the indication of Rn therapy and investigations of its usefulness mechanism mainly in Misasa Spa, Okayama Pref. ''Challenges for the Paradigm Shift (CRIEPI Studies)'', introduces studies against the paradigm that radiation dose is linearly and proportionally hazardous. ''Studies of High Background Radiation Area (CRIEPI Studies)'', describes global HBRA studies on chromosome affection and effect of smoking in HBRA. ''Is the Radiation Effect on Man Proportional to Dose? (CRIEPI Studies)'', describes studies of immature sperm irradiated at low dose against Linear-Non-threshold Theory (LNT) hypothesis. ''Induction of Radiation Resistance by Low Dose Radiation and Assessment of Its Effect in Models of Human Diseases (CRIEPI Studies)'', explains the adoptive response in radiation effect, suppression of carcinogenesis and immune regulation by previous low dose radiation in the mouse, and improvement of diabetes in the db/db mouse. ''Modulation of Biological Effects of Low Dose Radiation: Adoptive Response, Bystander Effect, Genetic Instability and Radiation Hormesis'', summarizes findings of each item. ''Cancer Treatment with Low dose Radiation to the Whole Body'', describes basic studies in the mouse tumor in relation to suppression of carcinogenesis and metastasis, immune activation and treatment, and successful clinical studies in patients with ovary, colon cancers and malignant lymphoma where survival has been significantly improved: a base of recent European Organization for Research and Treatment of Cancer (EORTC) clinical trials. The mechanism is essentially based on immune activation of patients to cure the disease. (R.T.)

  12. Attributability of health effects at low radiation doses

    International Nuclear Information System (INIS)

    Gonzalez, Abel

    2008-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose-response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: 1) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either. In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  13. Attributability of Health Effects at Low Radiation Doses

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    2011-01-01

    Full text: A controversy still persists on whether health effects can be alleged from radiation exposure situations involving low radiation doses (e.g. below the international dose limits for the public). Arguments have evolved around the validity of the dose response representation that is internationally used for radiation protection purposes, namely the so-called linear-non-threshold (LNT) model. The debate has been masked by the intrinsic randomness of radiation interaction at the cellular level and also by gaps in the relevant scientific knowledge on the development and expression of health effects. There has also been a vague use, abuse, and misuse of radiation-related risk concepts and quantities and their associated uncertainties. As a result, there is some ambiguity in the interpretation of the phenomena and a general lack of awareness of the implications for a number of risk-causation qualities, namely its attributes and characteristics. In particular, the LNT model has been used not only for protection purposes but also for blindly attributing actual effects to specific exposure situations. The latter has been discouraged as being a misuse of the model, but the supposed incorrectness has not been clearly proven. The paper will endeavour to demonstrate unambiguously the following thesis in relation to health effects due to low radiation doses: (i) Their existence is highly plausible. A number of epidemiological statistical assessments of sufficiently large exposed populations show that, under certain conditions, the prevalence of the effects increases with dose. From these assessments, it can be hypothesized that the occurrence of the effects at any dose, however small, appears decidedly worthy of belief. While strictly the evidence does not allow to conclude that a threshold dose level does not exist either In fact, a formal quantitative uncertainty analysis, combining the different uncertain components of estimated radiation-related risk, with and

  14. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  15. Human evidence on the shape of the dose-response curves for radiation carcinogenesis

    International Nuclear Information System (INIS)

    Burkart, W.

    1981-09-01

    The carcinogenic effects of high levels of ionizing radiation are better understood than those of any other environmental agent. However, the somatic risk from low doses is highly disputed. The uncertainties stem from the fact that a direct estimation of small risks requires impracticably large samples. Therefore, risk estimates for low doses have to be derived indirectly by extrapolation from high exposure data and are heavily dependent on assumptions about the form of the dose-response curve. Although radiobiological theories tested on in vitro systems predict a quadratic term in the dose-response equation which should, at least for sparsely ionizing radiation, dominate the shape of the curve, the epidemiological data available cannot exclude the possibility of a pure linear relationship. In some cases, apparent thresholds may result from latent periods inversely related to dose. Besides depending on the quality of the radiation, the shape seems also to differ with the type of cancer induced. Studies on uranium miners, atomic bomb survivors and on irradiated patients are reviewed with emphasis on the shape of the dose-response. The credibility of the most publicized reports claiming a large cancer risk from low levels of radiation is assessed. The feasibility of a new study in an area of high natural background is explored. Finally, the influence of the uncertainties concerning the effect of low level radiation on future exposure limits set by regulatory bodies is discussed. (Auth.)

  16. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  17. Radiation-induced heart disease due to intrathonacic tumor radiotherapy of a single dose to the rabbits' heart

    International Nuclear Information System (INIS)

    Zhou Weibing; Feng Yan; Chen Jiayi; Luo Quanyong

    2007-01-01

    Objective: To observe the changes of radiation-induced heart disease (RIHD) in the rabbits irradiated in clinical related dose, and to evaluate the apoptosis and hypoxia in the irradiated heart by the new scintigraphic agents of 99 Tc m -HL91 and 99 Tc m -Annexin V of heart SPECT. Methods: Tenty-four New Zealand white rabbits 4-month old and 2-3 kg by weight were divided into two groups. Group 1 (clinical related dose group): 16 irradiated by a single close from 0 to 18 Gy. Group 2 (high dose group): 8 irradiated dose from 22 to 80 Gy. The serum cTnI/CKMB, ECG, and heart SPECT(using 99 Tc m -MIBI, 99 Tc m -HL91 and 99 Tc m -Annexin V as agents) were detected before and after irradiation. The animals were followed for 5 months. Then biopsy of rabbit heart was performed and pathologic examination was made by H.E. stain. Results: In the 16 rabbits of clinical related dose group, none died of RIHD. Whereas 2 rabbits died of RIHD in the high dose group. One died of myocardial infarction and the other of congestive heart failure. According to the Stewart introduced heart lesion grading system, of the clinical close ann, there were moderate in 1 rabbit, minimal in 14; and of the high dose ann, it was severe in 2, marked in 1, moderate in 5. The parallel relation was observed between the ECG results and the pathological changes (χ 2 =0.08, P=0.771). Serum value of cTnI, was elevated at the 12th hour after irradiation reaching the peak and maintained for 4 months. However, it came down in the 5th month. The difference of serum cTnI value before and after radiation was statistically significant. Myocardial perfusion scintigraphy tested by heart SPECT ( 99 Tc m -MIBI) showed defects was present in all irradiated rabbits. The relationship between the defects and radiation dose or between the defects and the real RIHD was uncertain. The SPECT images displayed that 99 Tc m -HL91 and 99m Tc-Annexin V did not accumulate in the irradiated heart. Conclusions: No serious damage is

  18. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  19. Occupational radiation doses among diagnostic radiation workers in South Korea, 1996-2006

    International Nuclear Information System (INIS)

    Lee, W. J.; Cha, E. S.; Ha, M.; Jin, Y. W.; Hwang, S. S.; Kong, K. A.; Lee, S. W.; Lee, H. K.; Lee, K. Y.; Kim, H. J.

    2009-01-01

    This study details the distribution and trends of doses of occupational radiation among diagnostic radiation workers by using the national dose registry between 1996 and 2006 by the Korea Food and Drug Administration. Dose measurements were collected quarterly by the use of thermoluminescent dosemeter personal monitors. A total of 61 732 workers were monitored, including 18 376 radiologic technologists (30%), 13 762 physicians (22%), 9858 dentists (16%) and 6114 dental hygienists (9.9%). The average annual effective doses of all monitored workers decreased from 1.75 to 0.80 mSv over the study period. Among all diagnostic radiation workers, radiologic technologists received both the highest effective and collective doses. Male radiologic technologists aged 30-49 y composed the majority of workers receiving more than 5 mSv in a quarter. More intensive monitoring of occupational radiation exposure and investigation into its health effects on diagnostic radiation workers are required in South Korea. (authors)

  20. In vivo variation of micronuclei in BALB/c mice after low and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Strain, D.; Allen, B.J.

    1996-01-01

    Full text: An adaptive response to ionising radiation exists if a low level or priming dose reduces the effect of a subsequent high or challenge dose. This has been demonstrated in vitro using the frequency of micronuclei formation as a measure of radiation-induced DNA damage. The objective of this project was to use the same approach with an animal model to investigate the existence of an in vivo adaptive response. The experimental design involved priming doses of 0.005 or 0.01 Gy and a challenge dose of 4 Gy administered 1, 2, 4, 8 or 16 hours after the priming dose. Ten mice at a time were housed in a perspex animal cage and irradiated using Co-60 gamma radiation. For every time point (1, 2, 4, 8 or 16 hours), there were four treatment groups of 5 mice for statistical analysis. The first group acted as a non-irradiated control (0 Gy). The second group of mice received only the priming dose (0.005 Gy), while the third group of mice received only the challenge dose (4 Gy). The fourth group of mice received both the priming and challenge doses 0.005 Gy + 4 Gy). The process was repeated for the second priming dose of 0.01 Gy. A total of 200 mice were used. The animals were sacrificed by cervical dislocation 24 hours after receiving the challenge dose. Both femora were removed and cleared of adhering muscle tissue. The bone marrow cells of five mice were collected and the nucleated cells removed using filtration through a mixed cellulose column incorporating a self-locking filter. The cell suspension was placed onto microscope slides using a cytocentrifuge, air-dried and then stained for the micronuclei. Then the slides were coded, and reticulocytes were scored for the presence or absence of micronuclei. Approximately 2500 cells were scored for each treatment point, and the number of micronuclei counted ranged from 3 to 125 in this sample size. While it appears that the adaptive response may be present in 2 of 9 groups of mice pre-exposed to 0.005 or 0.01 Gy, this

  1. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  2. Patient's quality of life after high-dose radiation therapy for thoracic carcinomas. Changes over time and influence on clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christina [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany); Engenhart-Cabillic, Rita; Vorwerk, Hilke [University Clinic Giessen and Marburg, Clinic for Radiotherapy and Radiation Oncology, Marburg (Germany); Schmidt, Michael; Huhnt, Winfried; Blank, Eyck; Sidow, Dietrich; Buchali, Andre [Ruppiner Kliniken GmbH, Clinic for Radiotherapy and Radiation Oncology, Neuruppin (Germany)

    2017-02-15

    Quality of life (QoL) is an important factor in patient care. This analysis is focused on QoL before and after radio(chemo)therapy in patients with thoracic carcinomas, as well as on its influence on clinical follow-up and survival, and the correlation with treatment-related toxicities. The analysis included 81 patients with intrathoracic carcinoma receiving radio(chemo)therapy. For analysis of QoL, the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and the lung cancer-specific supplement (EORTC QLQ-LC13) were used. QoL data were collected before radiation treatment (RT), and 6 weeks, 12 weeks, 6 months, and 12 months after RT. Other factors were additionally analyzed, including clinical outcome, survival, and side effects. The functional scales showed maximum values or at least a recovery 12 weeks after RT. Symptoms with a high mean symptom score (> 40) at all appointments were fatigue, dyspnea, and coughing. Insomnia, peripheral neuropathy, appetite loss, dyspnea (from QLQ-LC13), and all pain parameters had an intermediate mean score (10-40). There were low mean scores of < 10 for nausea and vomiting, diarrhea, sore mouth, and hemoptysis. There was a significant correlation between clinical dysphagia and radiation pneumonitis with the associated symptom scales. None of the QoL scores had a significant influence on local and distant control or survival. 12 weeks after RT the QLQ-C30 functional scales show the highest scores or at least a temporary recovery. The symptom scales accurately reflect the common symptoms and treatment-related toxicities. QoL did not prove to be a significant predictor for local and distant control or survival. (orig.) [German] Die Lebensqualitaet (QoL) ist ein entscheidender Faktor in der Patientenversorgung. In der vorliegenden Untersuchung lag der Fokus auf der QoL vor und nach Radio(chemo)therapie von Patienten mit thorakalen Tumoren sowie deren Einfluss auf das klinische

  3. Trends in doses to some UK radiation workers

    International Nuclear Information System (INIS)

    Best, R.J.; Kendall, G.M.; Pook, E.A.; Saunders, P.J.

    1990-01-01

    The NRPB runs a Personal Monitoring Service which issues dosemeters and keeps radiation dose records for over 10 000 workers. This database is a valuable source of information on occupational exposure to radiation though it is likely that in future the Central Index of Dose Information (CIDI) will provide more comprehensive statistics, albeit restricted to radiation workers in the sense of Ionising Radiation Regulations. This note describes doses incurred to the end of 1987 with some preliminary figures for 1988. It does not cover the same ground as earlier reports but gives more details of the structure of the monitored population by age and sex and examines evidence that mean radiation doses are decreasing with time. (author)

  4. Brachytherapy radiation doses to the neurovascular bundles

    International Nuclear Information System (INIS)

    Di Biase, Steven J.; Wallner, Kent; Tralins, Kevin; Sutlief, Steven

    2000-01-01

    Purpose: To investigate the role of radiation dose to the neurovascular bundles (NVB) in brachytherapy-related impotence. Methods and Materials: Fourteen Pd-103 or I-125 implant patients were studied. For patients treated with implant alone, the prostate and margin (clinical target volume [CTV]) received a prescription dose of 144 Gy for I-125 or 115 Gy for Pd-103. Two patients received Pd-103 (90 Gy) with 46 Gy supplemental external beam radiation (EBRT). Axial CT images were acquired 2 to 4 hours postoperatively for postimplant dosimetry. Because the NVBs cannot be visualized on CT, NVB calculation points were determined according to previously published anatomic descriptions. Bilateral NVB points were considered to lie posterior-laterally, approximately 2 mm from the prostatic capsule. NVB doses were recorded bilaterally, at 0.5-cm intervals from the prostatic base. Results: For Pd-103, the average NVB doses ranged from 150 Gy to 260 Gy, or 130% to 226% of the prescription dose. For I-125, the average NVB dose ranged from 200 Gy to 325 Gy, or 140% to 225% of the prescription dose. These was no consistent relationship between the NVB dose and the distance from the prostatic base. To examine the possible effect of minor deviations of our calculation points from the true NVB location, we performed NVB calculations at points 2 mm medial or lateral from the NVB calculation point in 8 patients. Doses at these alternate calculation points were comparable, although there was greater variability with small changes in the calculation point if sources were located outside the capsule, near the NVB calculation point. Three patients who developed early postimplant impotence had maximal NVB doses that far exceeded the average values. Conclusions: In the next few years, we hope to clarify the role of high NVB radiation doses on potency, by correlating NVB dose calculations with a large number of patients enrolled in an ongoing I-125 versus Pd-103 trial for early-stage patients

  5. Fractures of the thoracic spine in patients with minor trauma: Comparison of diagnostic accuracy and dose of biplane radiography and MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Karul, M., E-mail: m.karul@uke.de [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Bannas, P.; Schoennagel, B.P.; Hoffmann, A.; Wedegaertner, U.; Adam, G.; Yamamura, J. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany)

    2013-08-15

    Objectives: To investigate the accuracy of biplane radiography in the detection of fractures of the thoracic spine in patients with minor trauma using multidetector computed tomography (MDCT) as the reference and to compare the dose of both techniques. Methods: 107 consecutive trauma patients with suspected fractures of the thoracic spine on physical examination were included. All had undergone biplane radiography first, followed by a MDCT scan between October 2008 and October 2012. A fourfold table was used for the classification of the screening test results. Both the Chi-square test (χ{sup 2}) and the mean dose-length product (DLP) were used to compare the diagnostic methods. Results: MDCT revealed 77 fractures in 65/107 patients (60.7%). Biplane radiography was true positive in 32/107 patients (29.9%), false positive in 19/107 patients (17.8%), true negative in 23/107 (21.5%) and false negative in 33/107 patients (30.8%), showing a sensitivity of 49.2%, a specificity of 54.7%, a positive predictive value (PPV) of 62.7%, a negative predictive value (NPV) of 41.1%, and an accuracy of 51.4%. The presence of a fracture on biplane radiography was highly statistical significant, if this was simultaneously proven by MDCT (χ{sup 2} = 7.6; p = 0.01). None of the fractures missed on biplane radiography was unstable. The mean DLP on biplane radiography was 14.5 mGy cm (range 1.9–97.8) and on MDCT 374.6 mGy cm (range 80.2–871). Conclusions: The sensitivity and the specificity of biplane radiography in the diagnosis of fractures of the thoracic spine in patients with minor trauma are low. Considering the wide availability of MDCT that is usually necessary for taking significant therapeutic steps, the indication for biplane radiography should be very restrictive.

  6. Health effects of low-dose radiation: Molecular, cellular, and biosystem response

    International Nuclear Information System (INIS)

    Pollycove, M.; Paperiello, C.J.

    1997-01-01

    Since the fifties, the prime concern of radiation protection has been protecting DNA from damage. UNSCEAR initiated a focus on biosystem response to damage with its 1994 report, ''Adaptive Responses to Radiation of Cells and Organisms''. The DNA damage-control biosystem is physiologically operative on both metabolic and radiation induced damage, both effected predominantly by free radicals. These adaptive responses are suppressed by high-dose and stimulated by low dose radiation. Increased biosystem efficiently reduces the number of mutations that accumulate during a lifetime and decrease DNA damage-control with resultant aging and malignancy. Several statistically significant epidemiologic studies have shown risk decrements of cancer mortality and mortality from all causes in populations exposed to low-dose radiation. Further biologic and epidemiologic research is needed to establish a valid threshold below which risk decrements occur. (author)

  7. Assessment of radiation dose awareness among pediatricians

    International Nuclear Information System (INIS)

    Thomas, Karen E.; Parnell-Parmley, June E.; Charkot, Ellen; BenDavid, Guila; Krajewski, Connie; Haidar, Salwa; Moineddin, Rahim

    2006-01-01

    There is increasing awareness among pediatric radiologists of the potential risks associated with ionizing radiation in medical imaging. However, it is not known whether there has been a corresponding increase in awareness among pediatricians. To establish the level of awareness among pediatricians of the recent publicity on radiation risks in children, knowledge of the relative doses of radiological investigations, current practice regarding parent/patient discussions, and the sources of educational input. Multiple-choice survey. Of 220 respondents, 105 (48%) were aware of the 2001 American Journal of Roentgenology articles on pediatric CT and radiation, though only 6% were correct in their estimate of the quoted lifetime excess cancer risk associated with radiation doses equivalent to pediatric CT. A sustained or transient increase in parent questioning regarding radiation doses had been noticed by 31%. When estimating the effective doses of various pediatric radiological investigations in chest radiograph (CXR) equivalents, 87% of all responses (and 94% of CT estimates) were underestimates. Only 15% of respondents were familiar with the ALARA principle. Only 14% of pediatricians recalled any relevant formal teaching during their specialty training. The survey response rate was 40%. Awareness of radiation protection issues among pediatricians is generally low, with widespread underestimation of relative doses and risks. (orig.)

  8. Profiles of doses to the population living in the high background radiation areas in Kerala, India

    Energy Technology Data Exchange (ETDEWEB)

    Chougaonkar, M.P. E-mail: mpckar@hotmail.com; Eappen, K.P.; Ramachandran, T.V.; Shetty, P.G.; Mayya, Y.S.; Sadasivan, S.; Venkat Raj, V

    2004-07-01

    A sample study of the profiles of radiation exposures to the populations living in the high background radiation areas (HBRAs) of the monazite-bearing region in Kerala, India, has been conducted by monitoring 200 dwellings selected from two villages in this region. Each of these dwellings was monitored for 1 year and the study lasted for a period of 2 years. The indoor gamma ray dose measurements were carried out using thermo luminescent dosimeters (TLDs) and the inhalation doses due to radon, thoron and their progenies were monitored using solid-state nuclear track detector (SSNTD) based twin-cup dosimeters. Outdoor gamma ray dose measurements were carried out using Geiger Muller (GM) tube based survey meters. Annual effective doses were computed, using occupancy factors of 0.8 and 0.2, respectively, for indoor and outdoor, by adding the three components. Occupants of 41.6% of the houses surveyed were observed to receive the annual effective doses ranging between 0.5 and 5 mSv/a, 41.6% between 5 and 10 mSv/a, 10.2% between 10 and 15 mSv/a and 6.6% greater than 15 mSv/a. The inhalation component was generally smaller than the external gamma ray component and on an average it was found to constitute about 30% of the total dose. The paper presents the details of the methodology adopted and the analysis of the results.

  9. High-pitch computed tomography coronary angiography-a new dose-saving algorithm: estimation of radiation exposure.

    Science.gov (United States)

    Ketelsen, Dominik; Buchgeister, Markus; Korn, Andreas; Fenchel, Michael; Schmidt, Bernhard; Flohr, Thomas G; Thomas, Christoph; Schabel, Christoph; Tsiflikas, Ilias; Syha, Roland; Claussen, Claus D; Heuschmid, Martin

    2012-01-01

    Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable.

  10. Pretreatment of low dose radiation reduces radiation-induced apoptosis in mouse lymphoma (EL4) cells.

    Science.gov (United States)

    Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y

    1997-06-01

    Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.

  11. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  12. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  13. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    International Nuclear Information System (INIS)

    Johnston, Peter J.; Wilson, George D.

    2003-01-01

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program

  14. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    Science.gov (United States)

    Wang, Chu

    Patients undergoing cardiac catheterization are potentially at risk of radiation-induced health effects from the interventional fluoroscopic X-ray imaging used throughout the clinical procedure. The amount of radiation exposure is highly dependent on the complexity of the procedure and the level of optimization in imaging parameters applied by the clinician. For cardiac catheterization, patient radiation dosimetry, for key organs as well as whole-body effective, is challenging due to the lack of fixed imaging protocols, unlike other common X-ray based imaging modalities. Pediatric patients are at a greater risk compared to adults due to their greater cellular radio-sensitivities as well as longer remaining life-expectancy following the radiation exposure. In terms of radiation dosimetry, they are often more challenging due to greater variation in body size, which often triggers a wider range of imaging parameters in modern imaging systems with automatic dose rate modulation. The overall objective of this dissertation was to develop a comprehensive method of radiation dose estimation for pediatric patients undergoing cardiac catheterization. In this dissertation, the research is divided into two main parts: the Physics Component and the Clinical Component. A proof-of-principle study focused on two patient age groups (Newborn and Five-year-old), one popular biplane imaging system, and the clinical practice of two pediatric cardiologists at one large academic medical center. The Physics Component includes experiments relevant to the physical measurement of patient organ dose using high-sensitivity MOSFET dosimeters placed in anthropomorphic pediatric phantoms. First, the three-dimensional angular dependence of MOSFET detectors in scatter medium under fluoroscopic irradiation was characterized. A custom-made spherical scatter phantom was used to measure response variations in three-dimensional angular orientations. The results were to be used as angular dependence

  15. Proposal of a dosemeter for skin beta radiation dose assessment

    International Nuclear Information System (INIS)

    Rosa, L.A.R. da; Caldas, L.V.E.

    1987-08-01

    Beta radiation is, undoubtedly, less penetrating than X or gamma radiation. Thus, beta radiation sources external to the human body do not cause a significant irradiation of its deeper tissues. However, in some cases, they may contribute in a very important way to the irradiation of the lens of the eyes and, mainly, of the skin. Specially, the hands and finger tips may receive a high dose. In this work some relevant aspects of the individual monitoring in beta radiation fields are discussed and the importance of monitoring this kind of radiation in some activities where the skin absorbed dose may be a limiting factor is evidenced. The main characteristics of the thermoluminescent (TL) response of ultra-thin CaSO 4 : Dy detectors (UT-CaSO 4 : Dy) in the detection of this kind of radiation are also studied. The irradiation are performed with 90 Sr 90 Y, 204 TI and 147 Pm sources. The reproducibility, linearity, dependence on the absorbed dose rate, optical fading, energy and angular dependences of the detector TL responce are investigated. Transmission factors for different thicknesses of tissue equivalent material are obtained for the TL detectors using the three available beta sources. Based on the results obtained, a dosemeter for skin beta radiation absorbed dose assessment with an energy dependence better than 12% is proposed. (Author) [pt

  16. Radiation dose of CT coronary angiography in clinical practice: Objective evaluation of strategies for dose optimization

    International Nuclear Information System (INIS)

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-01-01

    Background: CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. Objectives: To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Methods: Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Results: Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (−47%; 95% CI, −44% to −50%), prospective gating (−35%; 95% CI, −29% to −40%) and ECG controlled tube current modulation (−23%; 95% CI, −9% to −34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Conclusion: Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality.

  17. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  18. Cumulative radiation exposure in children with cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Reilly, R

    2010-02-01

    This retrospective study calculated the cumulative radiation dose for children with cystic fibrosis (CF) attending a tertiary CF centre. Information on 77 children with a mean age of 9.5 years, a follow up time of 658 person years and 1757 studies including 1485 chest radiographs, 215 abdominal radiographs and 57 computed tomography (CT) scans, of which 51 were thoracic CT scans, were analysed. The average cumulative radiation dose was 6.2 (0.04-25) mSv per CF patient. Cumulative radiation dose increased with increasing age and number of CT scans and was greater in children who presented with meconium ileus. No correlation was identified between cumulative radiation dose and either lung function or patient microbiology cultures. Radiation carries a risk of malignancy and children are particularly susceptible. Every effort must be made to avoid unnecessary radiation exposure in these patients whose life expectancy is increasing.

  19. Crystal growth and thermoluminescence response of NaZr2(PO4)3 at high gamma radiation doses

    International Nuclear Information System (INIS)

    Ordóñez-Regil, E.; Contreras-Ramírez, A.; Fernández-Valverde, S.M.; González-Martínez, P.R.; Carrasco-Ábrego, H.

    2013-01-01

    Graphical abstract: -- Highlights: •NaZr 2 (PO 4 ) 3 exposed to gamma doses of 10, 30 and 50 MGy. •Gamma radiation produced growth of the crystal size of the NZP. •Morphology changes were reversible by heating. •Linear relationship between the thermoluminescence and the applied gamma dose. •This property could be useful for high-level gamma dosimetry. -- Abstract: This work describes the synthesis and characterization of NaZr 2 (PO 4 ) 3 . The stability of this material under high doses of gamma radiation was investigated in the range of 10–50 MGy. Samples of unaltered and gamma irradiated NaZr 2 (PO 4 ) 3 were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermoluminescence. The results showed that while functional groups were not affected by the gamma irradiation, morphology changes were observed with increasing doses of gamma irradiation. The morphology of the non-irradiated compound is agglomerated flakes; however, irradiation at 10 MGy splits the flakes inducing the formation of well-defined cubes. Gamma irradiation induced the crystal size of the NaZr 2 (PO 4 ) 3 to grow. The heat treatment (973 K) of samples irradiated at 50 MGy resulted in the recovery of the original morphology. Furthermore, the thermoluminescence analysis of the irradiated compound is reported

  20. Dose-volume considerations in stereotaxic brain radiation therapy

    International Nuclear Information System (INIS)

    Houdek, P.V.; Schwade, J.G.; Pisciotta, V.J.; Medina, A.J.; Lewin, A.A.; Abitbol, A.A.; Serago, C.F.

    1988-01-01

    Although brain radiation therapy experience suggests that a gain in the therapeutic ratio may be achieved by optimizing the dose-volume relationship, no practical system for quantitative assessment of dose-volume data has been developed. This presentation describes the rationale for using the integral dose function for this purpose and demonstrates that with the use of a conventional treatment planning computer and a series of computed tomographic scans, first-order optimization of the dose-volume function can be accomplished in two steps: first, high-dose volume is minimized by selecting an appropriate treatment technique and tumor margin, and then dosage is maximized by calculating the brain tolerance dose as a function of the irradiated volume

  1. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    Energy Technology Data Exchange (ETDEWEB)

    Almen, A J

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs.

  2. Radiation dose to children in diagnostic radiology. Measurements and methods for clinical optimisation studies

    International Nuclear Information System (INIS)

    Almen, A.J.

    1995-09-01

    A method for estimating mean absorbed dose to different organs and tissues was developed for paediatric patients undergoing X-ray investigations. The absorbed dose distribution in water was measured for the specific X-ray beam used. Clinical images were studied to determine X-ray beam positions and field sizes. Size and position of organs in the patient were estimated using ORNL phantoms and complementary clinical information. Conversion factors between the mean absorbed dose to various organs and entrance surface dose for five different body sizes were calculated. Direct measurements on patients estimating entrance surface dose and energy imparted for common X-ray investigations were performed. The examination technique for a number of paediatric X-ray investigations used in 19 Swedish hospitals was studied. For a simulated pelvis investigation of a 1-year old child the entrance surface dose was measured and image quality was estimated using a contrast-detail phantom. Mean absorbed doses to organs and tissues in urography, lung, pelvis, thoracic spine, lumbar spine and scoliosis investigations was calculated. Calculations of effective dose were supplemented with risk calculations for special organs e g the female breast. The work shows that the examination technique in paediatric radiology is not yet optimised, and that the non-optimised procedures contribute to a considerable variation in radiation dose. In order to optimise paediatric radiology there is a need for more standardised methods in patient dosimetry. It is especially important to relate measured quantities to the size of the patient, using e g the patient weight and length. 91 refs, 17 figs, 8 tabs

  3. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  4. Dose evaluation for external exposure in radiation accidents

    International Nuclear Information System (INIS)

    Maruyama, Takashi

    1989-01-01

    Abnormal exposures including emergency and accidental are categorized into external exposure and internal contamination, although both of these may be associated with external contamination. From a point of view of lifesaving in the abnormal exposures, it is primarily important to evaluate radiation dose of exposed persons as soon as possible. This report reviews the status of early dosimetry in the accidental exposures and discusses the optimum methodology of the early dose determination for external exposures in abnormal exposures. Personal monitors generally give an indication of dose to an exposed person only at a single part of the body. The data obtained from the personal monitors should be interpreted with care and in the light of information about the circumstances of exposure. In most cases, the records of environmental monitors or the survey with area monitors provide valuable information on the radiation fields. In the some cases, the reconstruction of the abnormal exposure is required for the dose evaluation by means of phantom experiments. In the case of neutron exposures, activation products in the body or its components or personnel possession can be useful for the early dosimetry. If the dose received by the whole body is evaluated as being very high, clinical observations and biological investigations may be more important guide to initial medical treatment than the early dosimetry. For the dose evaluation of general public, depending on the size of abnormal exposure, information that could be valuable in the assessment of abnormal exposures will come from the early dose estimates with environmental monitors and radiation survey meters. (author)

  5. Chronic low dose radiation exposure and oxidative stress in radiation workers

    International Nuclear Information System (INIS)

    Ali, S.S.; Bhatt, M.B.; Kulkarni, MM.; Rajan, R.; Singh, B.B.; Venkataraman, G.

    1996-01-01

    Free radicals have been implicated in the pathogenesis of several human diseases. In this study free radical stress due to low dose chronic radiation exposures of radiation workers was examined as a possible atherogenic risk factor. Data on lipid profiles, lipid peroxidation and reduced glutathione content in blood indicated an absence of correlation with radiation doses up to 125 mSv. (author). 13 refs., 1 fig

  6. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  7. Fallout, radiation doses near Dounreay, and childhood leukaemia

    International Nuclear Information System (INIS)

    Darby, S.C.; Doll, Richard

    1987-01-01

    Possible explanations for the recently reported increased incidence of childhood leukaemia around Dounreay were examined in the light of changes in the national incidence of leukaemia that occurred during the period of exposure to fallout from international testing of nuclear weapons in the atmosphere. It was concluded that the increase could not be accounted for by underestimate of the risk of leukaemia per unit dose of radiation at low doses and low dose rates, nor by underestimate of the relative biological efficiency of high compared with low linear energy transfer radiation. One possible explanation was underestimation of doses to the red bone marrow due to the discharges at Dounreay relative to dose from fallout, though investigation of ways in which this might have occurred did not suggest anything definite. Other explanations included a misconception of the site of origin of childhood leukaemia, outbreaks of an infectious disease and exposure to other, unidentified environmental agents. These findings weigh against the hypothesis that the recent increase in childhood leukaemia near Dounreay might be accounted for by radioactive discharges from nuclear plants, unless the doses to the stem cells from which childhood leukaemia originates have been grossly underestimated. (author)

  8. Levels of external natural radiation and doses to population in Heilongjiang province

    International Nuclear Information System (INIS)

    Liang Yicheng; He Yongjiang; Wang Lu

    1985-01-01

    The external natural radiation level in Heilongjiang Province was measured by using China-made FD-71 scintillation radiometers and RSS-111 high pressure ionization chambers. The doses of external radiation to population were also calculated. The population-weighted average value of the absorbed dose rate from terrestrial γ-radiation was 7.2 x 10 -8 Gy.h -1 for outdoors, and 10.8 x 10 -8 Gy.h -1 for indoors. The population-weighted average absorbed dose rate in air from cosmic rays was 3.3 x 10 -8 Gy.h -1 . The annual population-weighted average effective dose equivalent and the annual collective effective dose equivalent from the environmental γ-radiation were 620 μSv and 20.1 x 10 3 man.Sv, respectively. The corresponding figures from cosmic rays were 260 μSv and 8.7 x 10 3 man.Sv, respectively

  9. Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases.

    Science.gov (United States)

    Frey, Benjamin; Hehlgans, Stephanie; Rödel, Franz; Gaipl, Udo S

    2015-11-28

    Inflammation is a homeostatic mechanism aiming to maintain tissue integrity. The underlying immunological mechanisms and the interrelationship between ionizing radiation and inflammation are complex and multifactorial on cellular and chemical levels. On the one hand, radiation with single doses exceeding 1 Gy might initiate inflammatory reactions and thereby impact on tumor development. On the other hand, radiation is capable of attenuating an established inflammatory process, which is clinically used for the treatment of inflammatory and degenerative diseases with low-dose radiotherapy (single dose modulates inflammatory events in benign inflammatory and in malign diseases. A special focus is set on the role of tumor infiltrating lymphocytes and macrophages as biomarkers to predict treatment response and anti-tumor immunity and on mechanisms implicated in the anti-inflammatory effects of low-dose radiation therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Non-linear dose response of a few plant taxa to acute gamma radiation

    International Nuclear Information System (INIS)

    George, J.T.; Patel, B.B.; Pius, J.; Narula, B.; Shankhadarwar, S.; Rane, V.A.; Venu-Babu, P.; Eapen, S.; Singhal, R.K.

    2014-01-01

    Micronuclei induction serves as an essential biomarker of radiation stress in a living system, and the simplicity of its detection technique has made it a widely used indicator of radiation damage. The present study was conducted to reveal the cytological dose-response of a few plant taxa, viz., Allium cepa var. aggregatum Linn., Allium sativum Linn., Chlorophytum comosum (Thunb.) Jacques and Eichhornia crassipes (Mart.) Solms, to low LET gamma radiation with special emphasis on the pattern of micronuclei induced across low and high dose regimes. A tri-phasic non-linear dose-response pattern was observed in the four taxa studied, characterized by a low dose linear segment, a plateau and a high dose linear segment. Despite a similar response trend, the critical doses where the phase transitions occurred varied amongst the plant taxa, giving an indication to their relative radiosensitivities. E. crassipes and A. sativum, with their lower critical doses for slope modifications of phase transitions, were concluded as being more radiosensitive as compared to C. comosum and A. cepa, which had relatively higher critical doses. (author)

  11. Effect of low dose radiation on somatic intrachromosomal recombination in vivo and in vitro

    International Nuclear Information System (INIS)

    Hooker, A.M.; Cormack, J.; Morley, A.A.; Sykes, P.J.; Bhat, M.

    2003-01-01

    Full text: High doses of ionising radiation are mutagenic in a wide range of mutation assays. The majority of radiation exposure studies in in vivo mouse mutation assays have been performed at high doses, eg greater than 1 Gy. However, these doses are not relevant to the low doses of ionising radiation that the majority of the population might likely come into contact with. Radiation protection levels tend to be based on a simple linear no-threshold model which suggests that any radiation above zero is potentially harmful. The pKZ1 recombination mutagenesis mouse model has proven to be a sensitive assay for the detection of mutations caused by low doses of chemical agents. In pKZ1 mice, somatic intrachromosomal recombination (SICR) inversion events can be detected in cells using histochemistry for the E. coli LacZ transgene. We exposed pKZ1 mice to a single radiation dose ranging from 0.001 to 2 Gy. A significant increase in SICR was observed in spleen at the two highest doses of 0.1 and 2 Gy and a significant reduction in SICR below the endogenous frequency was observed at the two lowest doses of 0.01 and 0.001 Gy. After exposing a pKZ1 cell line to the same dose range, a similar J curve response was observed with significant increases in SICR observed at the 3 highest doses and a significant decrease below the endogenous frequency at the lowest dose (0.001 Gy). The next experiments will be to determine the dose where the SICR frequency returns to the endogenous level. The important question posed by these results is 'Is a reduction below the endogenous SICR level caused by low doses of ionising radiation anti-mutagenic?' Studies now need to be performed to investigate the effect of low doses of radiation on other mutation end-points, and the mechanism for the reduction in SICR

  12. Evaluation of radiation doses from radioactive drugs

    International Nuclear Information System (INIS)

    Halperin, J.A.; Grove, G.R.

    1977-01-01

    Radioactive new drugs are regulated by the Food and Drug Administration (FDA) in the United States. Before a new drug can be marketed it must have an approved New Drug Application (NDA). Clinical investigations of a radioactive new drug are carried out under a Notice of Claimed Investigational Exemption for a New Drug (IND), submitted to the FDA. In the review of the IND, radiation doses are projected on the basis of experimental data from animal models and from calculations based upon radiation characteristics, predicted biodistribution of the drug in humans, and activity to be administered. FDA physicians review anticipated doses and prevent clinical investigations in humans when the potential risk of the use of a radioactive substance outweighs the prospect of achieving beneficial results from the administration of the drug. In the evaluation of an NDA, FDA staff attempt to assure that the intended diagnostic or therapeutic effect is achievable with the lowest practicable radiation dose. Radiation doses from radioactive new drugs are evaluated by physicians within the FDA. Important radioactive new drugs are also evaluated by the Radiopharmaceuticals Advisory Committee. FDA also supports the Center for Internal Radiation Dosimetry at Oak Ridge, to provide information regarding in vivo distribution and dosimetry to critical organs and the whole body from radioactive new drugs. The process for evaluation of radiation doses from radioactive new drugs for protection against use of unnecessary radiation exposure by patients in nuclear medicine procedures, a

  13. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses.

    Science.gov (United States)

    Guberina, Nika; Forsting, Michael; Ringelstein, Adrian; Suntharalingam, Saravanabavaan; Nassenstein, Kai; Theysohn, Jens; Wetter, Axel

    2018-03-28

    To examine radiation dose levels of CT-guided interventional procedures of chest, abdomen, spine and extremities on different CT-scanner generations at a large multicentre institute. 1,219 CT-guided interventional biopsies of different organ regions ((A) abdomen (n=516), (B) chest (n=528), (C) spine (n=134) and (D) extremities (n=41)) on different CT-scanners ((I) SOMATOM-Definition-AS+, (II) Volume-Zoom, (III) Emotion6) were included from 2013-2016. Important CT-parameters and standard dose-descriptors were retrospectively examined. Additionally, effective dose and organ doses were calculated using Monte-Carlo simulation, following ICRP103. Overall, radiation doses for CT interventions are highly dependent on CT-scanner generation: the newer the CT scanner, the lower the radiation dose imparted to patients. Mean effective doses for each of four procedures on available scanners are: (A) (I) 9.3mSv versus (II) 13.9mSv (B) (I) 7.3mSv versus (III) 11.4mSv (C) (I) 6.3mSv versus (II) 7.4mSv (D) (I) 4.3mSv versus (II) 10.8mSv. Standard dose descriptors [standard deviation (SD); CT dose index vol (CTDI vol ); dose-length product (DLP body ); size-specific dose estimate (SSDE)] were also compared. Effective dose, organ doses and SSDE for various CT-guided interventional biopsies on different CT-scanner generations following recommendations of the ICRP103 are provided. New CT-scanner generations involve markedly lower radiation doses versus older devices. • Effective dose, organ dose and SSDE are provided for CT-guided interventional examinations. • These data allow identifying organs at risk of higher radiation dose. • Detailed knowledge of radiation dose may contribute to a better individual risk-stratification. • New CT-scanner generations involve markedly lower radiation doses compared to older devices.

  14. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  15. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  16. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  17. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  18. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    International Nuclear Information System (INIS)

    Gridley, Daila S.

    2008-01-01

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of 'dirty bombs' by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  19. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Miller, Arne; Fidan, S.

    1977-01-01

    of dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and electron...

  20. Problems Associated with the Use of the Radiochromic Dye Film as a Radiation Dose Meter

    DEFF Research Database (Denmark)

    Hansen, Johnny; Wille, Mads; Olsen, Kjeld J.

    1984-01-01

    of coloration. The dose response has been found to depend strongly on: the time span between irradiation and measurement; the irradiation temperature; and the dose rate at doses above 50 kGy for low-LET radiation. Irradiation in vacuum (right-pointing angle bracket1 Pa) and in air produced the same dose......A thorough investigation has been made of the problems involved in using a dye film dose meter for precision dosimetry at high doses, using both low- and high-LET radiation. The study includes: time course of coloration following irradiation at various dose levels; dose response after irradiation...

  1. Dose received by radiation workers in Australia, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Morris, N D

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs.

  2. Dose received by radiation workers in Australia, 1991

    International Nuclear Information System (INIS)

    Morris, N.D.

    1994-07-01

    Exposure to radiation can cause genetic defects or cancer. People who use sources of radiation as part of their employment are potentially at a greater risk than others owing to the possibility of their being continually exposed to small radiation doses over a long period. In Australia, the National Health and Medical Research Council has established radiation protection standards and set annual effective dose limits for radiation workers in order to minimise the chance of adverse effects occurring. These standards are based on the the recommendations of the International Commission on Radiological Protection (ICRP 1990). In order to ensure that the prescribed limits are not exceeded and to ensure that doses are kept to a minimum, some sort of monitoring is necessary. The primary purpose of this report is to provide data on the distribution of effective doses for different occupational categories of radiation worker in Australia. The total collective effective dose was found to be of the order of 4.9 Sv for a total of 34750 workers. 9 refs., 16 tabs., 6 figs

  3. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  4. Causes of Mortality After Dose-Escalated Radiation Therapy and Androgen Deprivation for High-Risk Prostate Cancer

    International Nuclear Information System (INIS)

    Tendulkar, Rahul D.; Hunter, Grant K.; Reddy, Chandana A.; Stephans, Kevin L.; Ciezki, Jay P.; Abdel-Wahab, May; Stephenson, Andrew J.; Klein, Eric A.; Mahadevan, Arul; Kupelian, Patrick A.

    2013-01-01

    Purpose: Men with high-risk prostate cancer have other competing causes of mortality; however, current risk stratification schema do not account for comorbidities. We aim to identify the causes of death and factors predictive for mortality in this population. Methods and Materials: A total of 660 patients with high-risk prostate cancer were treated with definitive high-dose external beam radiation therapy (≥74 Gy) and androgen deprivation (AD) between 1996 and 2009 at a single institution. Cox proportional hazards regression analysis was conducted to determine factors predictive of survival. Results: The median radiation dose was 78 Gy, median duration of AD was 6 months, and median follow-up was 74 months. The 10-year overall survival (OS) was 60.6%. Prostate cancer was the leading single cause of death, with 10-year mortality of 14.1% (95% CI 10.7-17.6), compared with other cancers (8.4%, 95% CI 5.7-11.1), cardiovascular disease (7.3%, 95% CI 4.7-9.9), and all other causes (10.4%, 95% CI 7.2-13.6). On multivariate analysis, older age (HR 1.55, P=.002) and Charlson comorbidity index score (CS) ≥1 (HR 2.20, P<.0001) were significant factors predictive of OS, whereas Gleason score, T stage, prostate-specific antigen, duration of AD, radiation dose, smoking history, and body mass index were not. Men younger than 70 years of age with CS = 0 were more likely to die of prostate cancer than any other cause, whereas older men or those with CS ≥1 more commonly suffered non-prostate cancer death. The cumulative incidences of prostate cancer-specific mortality were similar regardless of age or comorbidities (P=.60). Conclusions: Men with high-risk prostate cancer are more likely to die of causes other than prostate cancer, except for the subgroup of men younger than 70 years of age without comorbidities. Only older age and presence of comorbidities significantly predicted for OS, whereas prostate cancer- and treatment-related factors did not

  5. Evaluation of Patient Radiation Dose during Orthopedic Surgery

    International Nuclear Information System (INIS)

    Osman, H; Elzaki, A.; Sam, A.K.; Sulieman, A.

    2013-01-01

    The number of orthopedic procedures requiring the use of the fluoroscopic guidance has increased over the recent years. Consequently the patient exposed to un avoidable radiation doses. The aim of the current study was to evaluate patient radiation dose during these procedures.37 patients under went dynamic hip screw (DHS) and dynamic cannulated screw (DCS) were evaluated using calibrated Thermolumincent Dosimeters (TLDs), under carm fluoroscopic machines ,in three centers in Khartoum-Sudan. The mean Entrance Skin Dose (ESD) was 7.9 m Gy per procedure. The bone marrow and gonad organ exposed to significant doses. No correlation was found between ESD and Body Mass Index (BMI), or patient weight. Well correlation was found between kilo voltage applied and ESD. Orthopedic surgeries delivered lower radiation dose to patients than cardiac catheterization or hysterosalpingraphy (HSG) procedures. More study should be implemented to follow radiation dose before surgery and after surgery

  6. Influence of environmental factors on some high dose dosimeter responses in Yazd Radiation Processing Center

    International Nuclear Information System (INIS)

    Ziaie, F.; Tahami, S.M.; Zareshahi, H.; Lanjanian, H.; Durrani, S.A.

    2008-01-01

    In this paper attempt has been made to study the influence of temperature and UV light (exist in laboratory due to the fluorescent light or diffused sunlight) on some high dose dosimetry responses that are being used in Yazd Radiation Processing Center (YRPC). The CTA, FWT and B3 film dosimeters were used for this investigation. The correction of the read response of the dosimeters to the real absorbed dose values is very important especially while we need to measure the precise dose values in the medical devices and in foodstuff materials. Yazd city is near to the desert, and so temperature and UV light due to the sun are very different in compare to other cities. Therefore, we tried to investigate the temperature and UV light effects on the dosimeter response in different doses and obtain its variation as a function of temperature (up to ∼60 0 C) and exposure time (up to ∼1 year), respectively

  7. Dosimetry for radiation processing. Final report of the co-ordinated research project on characterization and evaluation of high dose dosimetry techniques for quality assurance in radiation processing

    International Nuclear Information System (INIS)

    2000-06-01

    In many Member States the use of large cobalt-60 gamma ray facilities and electron beam accelerators with beam energies from about 0.1 to 10 MeV for industrial processing continues to increase. For these processes, quality assurance relies on the application of well established dosimetry systems and procedures. This is especially the case for health regulated processes, such as the radiation sterilization of health care products, and the irradiation of food to eliminate pathogenic organisms or to control insect pests. A co-ordinated research project (CRP) was initiated by the IAEA in June 1995. Research contracts and research agreements in areas of high dose dosimetry were initiated to meet these challenges. The major goals of this CRP were to investigate the parameters that influence the response of dosimeters and to develop reference and transfer dosimetry techniques, especially for electron beams of energy less than 4 MeV and for high energy X ray sources (up to 5 MV). These will help to unify the radiation measurements performed by different radiation processing facilities and other high dose dosimetry users in Member States and encourage efforts to obtain traceability to primary and secondary standards laboratories. It will also aim to strengthen and expand the present International Dose Assurance Service (IDAS) provided by the IAEA

  8. General aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Kitabatake, T [Niigata Univ. (Japan). School of Medicine

    1974-12-01

    Radiation injury in living organisms was discussed. Physical effects of nuclear irradiation fell into two categories: early effects and late effects. The former occurred invariably by nuclear irradiation above a certain dose, but the latter occurred according to the probability based on the exposure dosage. Late effects included cancer and leukemia which had no specific pathology as compared with non-irradiation induced or leukemia, and their latent periods were long. Because of difficulty in clarifying the cause-and-effect relationship, etiological studies such as McKenzie's or Myrden's, were required. In their studies on the relationship between fluoroscopy and thoracic malignant tumors, prognoses of pulmonary tuberculosis patients who had or had not received multiple fluoroscopies during artificial pneumothorax treatment were followed. The results showed no significant difference between the two groups of patients. Nuclear radiation induced leukemia corresponded to the exposure dose. According to that, exposure dosage of radiological workers was reduced yearly. The latent period of people having low exposure was comparatively prolonged. Medical exposure in radiation therapy was confined to the affected areas and to a small number of patients, although the exposure dose was high. On the other hand, exposure for medical diagnosis was criticized because in spite of its low exposure dose, the exposed population was extremely large.

  9. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  10. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  11. Radiation dose measurements in intravenous pyelography

    International Nuclear Information System (INIS)

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  12. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Murzin, Vyacheslav [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Nguyen, Tanya T. [Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Moiseenko, Vitali [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Brewer, James B. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); McDonald, Carrie R. [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Dale, Anders M. [Department of Radiology, University of California, San Diego, La Jolla, California (United States); Department of Psychiatry, University of California, San Diego, La Jolla, California (United States); Department of Neurosciences, University of California, San Diego, La Jolla, California (United States); Hattangadi-Gluth, Jona A., E-mail: jhattangadi@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California (United States)

    2017-04-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  13. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy

    International Nuclear Information System (INIS)

    Seibert, Tyler M.; Karunamuni, Roshan; Kaifi, Samar; Burkeen, Jeffrey; Connor, Michael; Krishnan, Anitha Priya; White, Nathan S.; Farid, Nikdokht; Bartsch, Hauke; Murzin, Vyacheslav; Nguyen, Tanya T.; Moiseenko, Vitali; Brewer, James B.; McDonald, Carrie R.; Dale, Anders M.; Hattangadi-Gluth, Jona A.

    2017-01-01

    Purpose and Objectives: Neurologic deficits after brain radiation therapy (RT) typically involve decline in higher-order cognitive functions such as attention and memory rather than sensory defects or paralysis. We sought to determine whether areas of the cortex critical to cognition are selectively vulnerable to radiation dose-dependent atrophy. Methods and Materials: We measured change in cortical thickness in 54 primary brain tumor patients who underwent fractionated, partial brain RT. The study patients underwent high-resolution, volumetric magnetic resonance imaging (T1-weighted; T2 fluid-attenuated inversion recovery, FLAIR) before RT and 1 year afterward. Semiautomated software was used to segment anatomic regions of the cerebral cortex for each patient. Cortical thickness was measured for each region before RT and 1 year afterward. Two higher-order cortical regions of interest (ROIs) were tested for association between radiation dose and cortical thinning: entorhinal (memory) and inferior parietal (attention/memory). For comparison, 2 primary cortex ROIs were also tested: pericalcarine (vision) and paracentral lobule (somatosensory/motor). Linear mixed-effects analyses were used to test all other cortical regions for significant radiation dose-dependent thickness change. Statistical significance was set at α = 0.05 using 2-tailed tests. Results: Cortical atrophy was significantly associated with radiation dose in the entorhinal (P=.01) and inferior parietal ROIs (P=.02). By contrast, no significant radiation dose-dependent effect was found in the primary cortex ROIs (pericalcarine and paracentral lobule). In the whole-cortex analysis, 9 regions showed significant radiation dose-dependent atrophy, including areas responsible for memory, attention, and executive function (P≤.002). Conclusions: Areas of cerebral cortex important for higher-order cognition may be most vulnerable to radiation-related atrophy. This is consistent with clinical observations

  14. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    Science.gov (United States)

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  15. Bio-indicators for radiation dose assessment

    International Nuclear Information System (INIS)

    Trivedi, A.

    1990-12-01

    In nuclear facilities, such as Chalk River Laboratories, dose to the atomic radiation workers (ARWs) is assessed routinely by using physical dosimeters and bioassay procedures in accordance with regulatory recommendations. However, these procedures may be insufficient in some circumstances, e.g., in cases where the reading of the physical dosimeters is questioned, in cases of radiation accidents where the person(s) in question was not wearing a dosimeter, or in the event of a radiation emergency when an exposure above the dose limits is possible. The desirability of being able to assess radiation dose on the basis of radio-biological effects has prompted the Dosimetric Research Branch to investigate the suitability of biological devices and techniques that could be used for this purpose. Current biological dosimetry concepts suggest that there does not appear to be any bio-indicator that could reliably measure the very low doses that are routinely measured by the physical devices presently in use. Nonetheless, bio-indicators may be useful in providing valuable supplementary information in cases of unusual radiation exposures, such as when the estimated body doses are doubtful because of lack of proper physical measurements, or in cases where available results need to be confirmed for medical treatment plannings. This report evaluates the present state of biological dosimetry and, in particular, assesses the efficiency and limits of individual indicators. This has led to the recommendation of a few promising research areas that may result in the development of appropriate biological dosimeters for operational and emergency needs at Chalk River

  16. Do we need a new cost/benefit assessment for low radiation doses?

    International Nuclear Information System (INIS)

    Becker, K.

    1997-01-01

    Current cost/benefit estimates related to radiation protection, e.g. regarding the consequences of population exposures after accidents, decommissioning and waste management programs, etc., are based on the linear-no-threshold hypothesis and the related collective dose concept, as recommended in ICRP 60, the Basic Safety Standards (BSS), and EU directives. However, the extrapolation from very high to very low doses is increasingly questioned by radiation scientists for fundamental radiobiological reasons, as well as by epidemiological studies with exposed populations. Moreover, if also applied to natural radiation (e.g. in mining or high natural radiation areas, or radon in buildings), the resulting high costs justify, for ethical as well as socio-economical reasons, a careful analysis of the actual benefits of such measures, to be compared with demonstrable health detriments and the cost/benefit ratio in other public health and risk reduction programs in modern industrial societies. Some aspects of these problems will be discussed briefly, and summarized in questions addressed to the advisory bodies on whose recommendations current regulations are based. As a first step, abolishment of the use of the collective dose concept below about 100 mSv total of ''artificial'' radiation per person of the public, and below 50 mSv p.a. for radiation workers, appears advisable. (author)

  17. Do we need a new cost/benefit assessment for low radiation doses?

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K [DIN German Standards Inst., Berlin (Germany)

    1997-11-01

    Current cost/benefit estimates related to radiation protection, e.g. regarding the consequences of population exposures after accidents, decommissioning and waste management programs, etc., are based on the linear-no-threshold hypothesis and the related collective dose concept, as recommended in ICRP 60, the Basic Safety Standards (BSS), and EU directives. However, the extrapolation from very high to very low doses is increasingly questioned by radiation scientists for fundamental radiobiological reasons, as well as by epidemiological studies with exposed populations. Moreover, if also applied to natural radiation (e.g. in mining or high natural radiation areas, or radon in buildings), the resulting high costs justify, for ethical as well as socio-economical reasons, a careful analysis of the actual benefits of such measures, to be compared with demonstrable health detriments and the cost/benefit ratio in other public health and risk reduction programs in modern industrial societies. Some aspects of these problems will be discussed briefly, and summarized in questions addressed to the advisory bodies on whose recommendations current regulations are based. As a first step, abolishment of the use of the collective dose concept below about 100 mSv total of ``artificial`` radiation per person of the public, and below 50 mSv p.a. for radiation workers, appears advisable. (author). 16 refs.

  18. Plastic for indicating a radiation dose

    International Nuclear Information System (INIS)

    Hori, Y.; Yoshikawa, N.; Ohmori, S.

    1975-01-01

    A plastic film suitable for indicating radiation dose contains a chlorine polymer, at least one acid sensitive coloring agent and a plasticizer. The film undergoes a distinct change of color in response to a given radiation dose, the degree of change proportional to the total change. These films may be stored for a long period without loss of sensitivity, and have good color stability after irradiation. (auth)

  19. Study on the evaluation method of radiation dose rate around spent fuel shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    This study aims at developing a simple calculation method which can evaluate radiation dose rate around casks with high accuracy in a short time. The method is based on a concept of the radiation shielding characteristics of cask walls. The concept was introduced to replace for ordinary radiation shielding calculation which requires a long calculation time and a large memory capacity of a computer in the matrix calculation. For the purpose of verifying the accuracy and reliability of the new method, it was applied to the analysis of the dose rate distribution around actual casks, which had been measured. The results of the analysis revealed that the newly proposed method was excellent for the forecast of radiation dose rate distribution around casks in view of the accuracy and calculation time. The short calculation time and high accuracy by the proposed method were attained by dividing the whole procedure of ordinary fine radiation shielding calculation into the calculation of radiation dose rate on a cask surface by the matrix expression of the characteristic function and the calculation of dose rate distribution using the simple analytical expression of dose rate distribution around casks. The effect of the heterogeneous array of spent fuel in different burnup state on dose rate distribution around casks was evaluated by this method. (Kako, I.)

  20. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose xray examinations performed with significant consequences for individual patient doses ...

  1. Thoracic re-irradiation using stereotactic body radiotherapy (SBRT) techniques as first or second course of treatment

    International Nuclear Information System (INIS)

    Kilburn, Jeremy M.; Kuremsky, Jeffrey G.; Blackstock, A. William; Munley, Michael T.; Kearns, William T.; Hinson, William H.; Lovato, James F.; Miller, Antonius A.; Petty, William J.; Urbanic, James J.

    2014-01-01

    Background and purpose: Management for in-field failures after thoracic radiation is poorly defined. We evaluated SBRT as an initial or second course of treatment re-irradiating in a prior high dose region. Materials and methods: Thirty-three patients were treated with re-irradiation defined by the prior 30 Gy isodose line. Kaplan–Meier estimates were performed for local (LC), regional (RC), distant control (DC), and overall survival (OS). The plans when available were summed to evaluate doses to critical structures. Patient and treatment variables were analyzed on UVA for the impact on control and survival measures. Results: Median follow-up was 17 months. Treatment for sequential courses was as follows: (course1:course2) EBRT:SBRT (24 patients), SBRT:SBRT (7 patients), and SBRT:EBRT (3 patients). Median re-irradiation dose and fractionation was 50 Gy and 10 fractions (fx), with a median of 18 months (6–61) between treatments. Median OS was 21 months and 2 year LC 67%, yet LC for >1 fraction was 88% (p = 0.006 for single vs. multiple). 10 patients suffered chronic grade 2–3 toxicity (6 chest wall pain, 3 dyspnea, 1 esophagitis) and 1 grade 5 toxicity with aorta-esophageal fistula after 54 Gy in 3 fx for a central tumor with an estimated EQD2 to the aorta of 200 Gy. Conclusion: Tumor control can be established with re-irradiation using SBRT techniques for in-field thoracic failures at the cost of manageable toxicity

  2. Level of terrestrial gamma radiation and doses to population in Jiangsu province

    International Nuclear Information System (INIS)

    1985-01-01

    In this paper the results of investigation of terrestrial gamma radiation level in Jiangsu Province are reported and the population doses due to this radiation are estimated. The sketch map of the geographical distribution of the terrestrial gamma radiation level is given. In this investigation FD-71 portable scintillation counters and RSS-111 high pressure ionization chambers were used. The results showed that the terrestrial gamma absorbed dose rates in air for indoors and outdoors were 10.7 x 10 -8 Gy/h and 6.5 x 10 -8 Gy/h (weighted values) respectively. The indoors-to-outdoors ratio was 1.65. The total (indoor plus outdoor) annual effective dose equivalent from terrestrial gamma radiation, averaged over the population in this province, was 6.0 x 10 -4 Sv. The collective annual effective dose equivalent was 3.6 x 10 4 man.Sv. Therefore, the absorbed dose to population in Jiangsu Province is in the range of the normal background

  3. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  4. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  5. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou (China); Hong, Ling-Zhi [Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Cai, Xu-Wei; Zhu, Zheng-Fei; Liu, Qi; Zhao, Kuai-Le; Fan, Min; Mao, Jing-Fang; Yang, Huan-Jun; Wu, Kai-Liang [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Fu, Xiao-Long, E-mail: xlfu1964@hotmail.com [Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai (China)

    2015-03-01

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.

  6. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Physics, University of Western Australia, Perth, Western Australia (Australia); Foo, Kerwyn [Sydney Medical School, University of Sydney, Sydney, New South Wales (Australia); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria (Australia); Gulliford, Sarah L. [Joint Department of Physics, Institute of Cancer Research and Royal Marsden National Health Service Foundation Trust, Sutton, Surrey (United Kingdom); Kennedy, Angel [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); Joseph, David J. [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia (Australia); School of Surgery, University of Western Australia, Perth, Western Australia (Australia); Denham, James W. [School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales (Australia)

    2015-03-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  7. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    International Nuclear Information System (INIS)

    Ebert, Martin A.; Foo, Kerwyn; Haworth, Annette; Gulliford, Sarah L.; Kennedy, Angel; Joseph, David J.; Denham, James W.

    2015-01-01

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with a comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for

  8. The ferrous ammonium sulfate solid system, as dosemeter for processes at low temperatures and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Juarez C, J.M.; Ramos B, S.; Negron M, A.

    2005-01-01

    This paper presents the results obtained from a study of the radiation induced oxidation of crystalline ferrous ammonium sulfate with gamma rays at 295 K, 263 K and 77 K and dose from 0 to 300 kGy. The radiation induced decomposition of ferrous ammonium sulfate has been studied by the dissolution of the irradiated salt in 0,8 N sulfuric acid. The main product is Fe 3+ and molar concentration of ferric ion was determined spectrophotometrically in the UV region at 304 nm. The optical density values showed a linear dependence with dose, indicating that the data obtained might be used to create a calibrating curve. Color in irradiated salt changes from blue to green, yellow and orange according to the absorbed dose. The accuracy and the reproducibility of the system were tested. In addition, some other characteristics make possible the use of this system as a dosimeter, similar to Fricke chemical dosemeter, at low temperatures and high dose. (Author)

  9. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  10. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, T. [Radiation Education Forum, Minato-ku, Tokyo (Japan)

    1997-10-01

    The widespread feeling of `radiophobia` by the general public has its basis on the ICRP`s `linear no-threshold` hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the `safety culture` of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as `adaptive response`, and a new concept, `radiation hormesis`, has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter`s repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable `de minimis` level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix 50 refs., 2 tabs., 4 figs.

  11. How to understand the radiation effects of small dose - some critical comments on ICRP recommendations

    International Nuclear Information System (INIS)

    Matsuura, T.

    1997-01-01

    The widespread feeling of 'radiophobia' by the general public has its basis on the ICRP's 'linear no-threshold' hypothesis in dose-response relationship for low dose radiation from the standpoint of radiation protection. Although this common feeling served as a merit for constructing the 'safety culture' of society, it has now become a large obstacle for the development of peaceful uses of nuclear technology as a demerit. Recently many data have been accumulated for the radiation effects of low dose, both epidemiologically and experimentally. Although in general it is very difficult to obtain clear evidence of presence or absence of threshold, it seems to be true that the risk by radiation exposure at low level (the definition of which is below 0.2 Gy) is not so large as that of extrapolation from the high or medium dose range. In fact, many data suggest that some quite different mechanisms are working in low dose from high dose, such as 'adaptive response', and a new concept, 'radiation hormesis', has emerged, that the low level radiation is not only quite harmless but is rather necessary for living cells or beneficial for human health. In this paper, some critical comments on ICRP recommendations are given as a personal view by the author. These include: (1) a question of exact assessment of exposed dose by A-bomb survivors used for the epidemiological data, which are regarded to be the most authentic and important; (2) a brief summary of effects at the natural radiation level, including the high background area data; (3) the importance of dose rate effect, which reflects the living matter's repairability from radiation injury, and (4) the proposal of new paradigm by adopting the reasonable 'de minimis' level (below which there is no harm) both for low dose and at low dose rate. A simple mathematical analysis for representative data of dose rate effect was shown as an appendix

  12. Radiation Dose-Response Model for Locally Advanced Rectal Cancer After Preoperative Chemoradiation Therapy

    DEFF Research Database (Denmark)

    Appelt, A. L.; Ploen, J.; Vogelius, I. R.

    2013-01-01

    estimated radiation dose-response curves for various grades of tumor regression after preoperative CRT. Methods and Materials: A total of 222 patients, treated with consistent chemotherapy and radiation therapy techniques, were considered for the analysis. Radiation therapy consisted of a combination...... of external-beam radiation therapy and brachytherapy. Response at the time of operation was evaluated from the histopathologic specimen and graded on a 5-point scale (TRG1-5). The probability of achieving complete, major, and partial response was analyzed by ordinal logistic regression, and the effect...... of including clinical parameters in the model was examined. The radiation dose-response relationship for a specific grade of histopathologic tumor regression was parameterized in terms of the dose required for 50% response, D-50,D-i, and the normalized dose-response gradient, gamma(50,i). Results: A highly...

  13. Structural stability of PAN fiber under high electron beam radiation doses

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Machado, Luci D.B.; Arruda, Clarissa P. Zelinschi de; Carvalho, Alvaro A. Silva de; Giovedi, Claudia

    2009-01-01

    Fiber-reinforced composite are an important class of engineering material. A relevant task of composite technology in order to produce materials for structures of high mechanical performance is to obtain the best carbon fiber. One of the main ways to produce carbon fibers of high Young's modulus and tensile strength is to use as starting material polyacrylonitrile (PAN) fibers which after a rigorous and carefully thermal process become carbon fibers. Since some chemical modifications produced in the thermal treatment can be induced by ionizing radiation, the aim of this paper is to evaluate the effect of high electron beam (EB) doses on a commercial PAN fiber in order to evaluate the use of this technology as an alternative treatment to improve the properties and characteristics of the produced carbon fiber. The doses applied were: 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 MGy. The irradiation effects induced on the PAN fiber were evaluated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TG). FTIR obtained data have shown that the main functional groups remain practically unchanged in the non-irradiated and irradiated samples. The single DSC exothermic peak obtained for non-irradiated sample, becomes a double peak after the irradiation, presenting lower initial and higher final temperatures for exothermic DSC curves. The enthalpy involved in the chemical reaction decreases for irradiated samples as compared with the non-irradiated PAN fiber. TG data have shown that irradiated samples start a decomposition process at lower temperatures compared to the non-irradiated sample. (author)

  14. Mortality from diseases other than cancer following low doses of ionizing radiation

    DEFF Research Database (Denmark)

    Vrijheid, M; Cardis, E; Ashmore, P

    2007-01-01

    BACKGROUND: Ionizing radiation at very high (radio-therapeutic) dose levels can cause diseases other than cancer, particularly heart diseases. There is increasing evidence that doses of the order of a few sievert (Sv) may also increase the risk of non-cancer diseases. It is not known, however......, whether such effects also occur following the lower doses and dose rates of public health concern. METHODS: We used data from an international (15-country) nuclear workers cohort study to evaluate whether mortality from diseases other than cancer is related to low doses of external ionizing radiation....... Analyses included 275 312 workers with adequate information on socioeconomic status, over 4 million person-years of follow-up and an average cumulative radiation dose of 20.7 mSv; 11 255 workers had died of non-cancer diseases. RESULTS: The excess relative risk (ERR) per Sv was 0.24 [95% CI (confidence...

  15. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  16. Synthesis and degradation of cyclic nucleotides in brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.

    1981-01-01

    Previous data from our laboratory have indicated that a high dose of ionizing radiation can deplete the cyclic nucleotides guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) on several areas of the rat brain. cGMP is more sensitive to radiation than cAMP and does not recover for at least 24 h after irradiation. The response of cAMP is transient and recovery occurs within 4 h. The purpose of the present paper is to determine whether alternations in the activity of the synthetic and degradative enzymes that regulate cyclic nucleotide levels could account for the observed effects. Guanylate and adenylate cyclase and cGMP and cAMP phosphodiesterase activities were determined 10 min after irradiation with 10,000 rad of high-energy electrons. No alteration was detected under these experimental conditions. The data suggest that the reduction in cyclic nucleotides is not a direct effect on their metabolic enzymes and is probably secondary to some as yet-undefined action of radiation on the brain

  17. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  18. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  19. Is argon plasma coagulation an effective and safe treatment option for patients with chronic radiation proctitis after high doses of radiotherapy?

    Directory of Open Access Journals (Sweden)

    Eduardo Hortelano

    Full Text Available Introduction: In severe cases refractory to medical treatment, APC appears to be the preferred alternative to control persistent rectal bleeding of patients with chronic radiation proctitis. Although successful outcomes have been demonstrated in patients previously treated with moderate doses of radiotherapy, there is reluctance towards its indication due to the concern of severe adverse events in patients treated with high doses of radiation. Objectives: The aim of this study was to assess the efficacy and toxicity of APC in the management of bleeding radiation-induced proctitis in patients treated with high doses of radiation for prostate cancer. Methods and materials: Data from 30 patients were treated with APC due to chronic radiation proctitis, were reviewed retrospectively. All cases had prostate cancer and 9 of them (30 % underwent previous radical prostatectomy. The median dose of conformal 3D External Beam Radiotherapy (EBRT delivered was 74 Gy (range 46-76. Median rectal D1cc and D2cc was 72.5 and 72.4 Gy respectively. Median rectal V70, V60 and V40 was 12, 39.5 and 80 %. Cardiovascular and digestive disease, diabetes, smoking behaviour, lowest haemoglobin and transfusion requirements were recorded. Indications for treatment with APC were anemia and persistent bleeding despite medical treatment. Argon gas flow was set at 1.8 l/min with an electrical power setting of 50 W. Results: Median age of all patients was 69.6 years. The median lowest haemoglobin level was 9.6 g/dL. Median time between completion of radiotherapy and first session of APC was 13 months. Ninety-four therapeutic sessions were performed (median 3 sessions. Median time follow-up was 14.5 months (range 2-61. Complete response with resolved rectal bleeding was achieved in 23 patients (77 %, partial response in 5 (16 % and no control in 2 (6 %. No patients required transfusion following therapy. Two patients developed long-term (> 6 weeks grade 2 rectal ulceration and

  20. Human health effects of low doses of ionizing radiation: the BEIR III controversy

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    Controversy in the BEIR III Subcommittee on Somatic Effects concerning human health effects of low doses of low-LET radiation has centered on (a) the appropriate dose-response relationship by which extrapolation to low doses of data obtained at relatively high doses should be governed, and (b) the appropriate human evidence which should be the basis of estimation of lifetime cancer risk from radiation exposure. It is shown that the use of the linear no-threshold dose-response relationship for extrapolation purposes is an excellent approximation that is in agreement with widely accepted fundamental radiobiological principles. The appropriate human data for derivation of cancer risks are the composite age-specific risks derived from all epidemiologic studies of human cancer resulting from partial-body and whole-body radiation exposure; this composite is in good agreement with the currently available cancer incidence dose-response data obtained from the Nagasaki Tumor Registry. The current version of BEIR III significantly underestimates the radiation-induced cancer risk because it ignores the effect of high-dose-rate, low-LET radiation on cell survival in relation to cancer induction probability, and because it emphasizes cancer mortality rather than cancer incidence. The controversy and the way in which it was resolved raises important questions about how the public and its representatives can in the future obtain objective scientific evaluations of issues that may have significant economic, social, and political implications