WorldWideScience

Sample records for high-dose particle radiotherapy

  1. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  2. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  3. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  4. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    International Nuclear Information System (INIS)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.

    1985-01-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons

  5. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  6. Management of hilar bile duct carcinoma with high-dose radiotherapy and expandable metallic stent placement

    International Nuclear Information System (INIS)

    Saito, Hiroya; Takamura, Akio

    2000-01-01

    This article describes our experience with high-dose radiotherapy in combination with the placement of expandable metallic stents (EMS) in the management of hilar bile duct carcinoma. Between 1988 and 1999, 107 consecutive patients with hilar bile duct carcinoma were treated with EMS placement either alone or in combination with high-dose radiotherapy. External beam radiotherapy (EBRT) was indicated in 101 patients, and in 86 this was combined with intraluminal 192 Ir irradiation (ILRT, 59-98 Gy) EMS were placed after the completion of radiotherapy. The 1-, 2-, 3-, and 5-year actuarial survival rates for the radiotherapy group were 66.4%, 23.4%, 15.6%, 7.8%, respectively, and the 1- and 2-year actuarial survival rates for the nonradiotherapy group were 66.4% and 0%, respectively. The placement of EMS was useful for the early establishment of an internal bile passage in radically irradiated patients and the 1-, 2-, 3-, and 5-year actuarial patency rates for the radiotherapy group were 56.3%, 45.3%, 35.2%, and 23.4%, respectively, and the 1- and 2-year actuarial patency rates for the non radiotherapy group were 50.0% and 0% respectively. High-dose radiotherapy, consisting of ILRT and EBRT, appears to be feasible in the management of hilar bile duct carcinoma, and it offers a survival advantage for patients no suited for surgical resection. The placement of EMS assists the internal bile flow and lengthens survival after high-dose radiotherapy. (author)

  7. Human reliability in high dose rate afterloading radiotherapy based on FMECA

    International Nuclear Information System (INIS)

    Deng Jun; Fan Yaohua; Yue Baorong; Wei Kedao; Ren Fuli

    2012-01-01

    Objective: To put forward reasonable and feasible recommendations against the procedure with relative high risk during the high dose rate (HDR) afterloading radiotherapy, so as to enhance its clinical application safety, through studying the human reliability in the process of carrying out the HDR afterloading radiotherapy. Methods: Basic data were collected by on-site investigation and process analysis as well as expert evaluation. Failure mode, effect and criticality analysis (FMECA) employed to study the human reliability in the execution of HDR afterloading radiotherapy. Results: The FMECA model of human reliability for HDR afterloading radiotherapy was established, through which 25 procedures with relative high risk index were found,accounting for 14.1% of total 177 procedures. Conclusions: FMECA method in human reliability study for HDR afterloading radiotherapy is feasible. The countermeasures are put forward to reduce the human error, so as to provide important basis for enhancing clinical application safety of HDR afterloading radiotherapy. (authors)

  8. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  9. Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Senan, Suresh; De Ruysscher, Dirk; Giraud, Philippe; Mirimanoff, Rene; Budach, Volker

    2004-01-01

    Background and purpose: To review the literature on techniques used in high-dose radiotherapy of lung cancer in order to develop recommendations for clinical practice and for use in research protocols. Patients and methods: A literature search was performed for articles and abstracts that were considered both clinically relevant and practical to use. The relevant information was arbitrarily categorized under the following headings: patient positioning, CT scanning, incorporating tumour mobility, definition of target volumes, radiotherapy planning, treatment delivery, and scoring of response and toxicity. Results: Recommendations were made for each of the above steps from the published literature. Although most of the recommended techniques have yet to be evaluated in multicenter clinical trials, their use in high-dose radiotherapy to the thorax appears to be rational on the basis of current evidence. Conclusions: Recommendations for the clinical implementation of high-dose conformal radiotherapy for lung tumours were identified in the literature. Procedures that are still considered to be investigational were also highlighted

  10. A Medical Application of Nuclear Physics: Particle Radiotherapy with Protons

    Science.gov (United States)

    Farr, Jonathan B.

    2006-10-01

    Since the discovery of radiation, applications have been made to medicine. The advent of higher energy particle accelerators in the second half of the twentieth century enabled modern tele-therapy using relatively high energy x-rays and particles. Today mega-voltage (MV) x-rays are the most common modality of delivering high doses of potentially life saving radiation to a wide variety of disease, mostly malignant cancers. However, the maximum radiation dose that can be delivered is always limited by the effects to critical surrounding biologic structures. In many cases, due to their physical properties, ``heavy'' particle radiotherapy with protons and light ions may provide an advantage in this respect over MV x-rays allowing either a higher dose of radiation to be delivered to the volume or, for the same dose, reducing the concomitant damage to critical structures. This motivation, together with recent advances in particle therapy systems that are making the technology more readily available, is serving to grow the field of particle therapy. In particular, treatment with fast protons is becoming more widespread with over 20 facilities operating worldwide and more under construction. This presentation will provide an introduction to heavy particle therapy and additional details specifically on proton therapy.

  11. High-dose rate fractionated interstitial radiotherapy for oropharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Takayuki; Inoue, Toshihiko; Inoue, Takehiro; Teshima, Teruki; Murayama, Shigeyuki [Osaka Univ. (Japan). Faculty of Medicine

    1995-03-01

    The limitations of treating oropharyngeal cancer patients with definitive external radiotherapy are the complications of salivary glands, taste buds, mandible and temporomandibular joints. To avoid these complications we started interstitial radiotherapy as boost after 46 Gy of external radiotherapy. Ten cases (retromolar trigone; 1, soft palate; 1, base of tongue; 3, lateral wall; 5) were treated with this method and seven cases were controlled locally. With short follow-up period, xerostomia and dysgeusia are less than definitive external radiotherapy as clinical impression and no in-field recurrences have been experienced. With markedly increased tumor dose, the local control rate can be improved. This treatment method will be an alternative to definitive external radiotherapy to gain better QOL and higher control rate. (author).

  12. Second malignancies in high-dose areas of previous tumor radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Welte, Birgitta; Suhr, Peter; Bottke, Dirk; Bartkowiak, Detlef; Wiegel, Thomas [Dept. of Radiotherapy and Radiation Oncology, Univ. of Ulm (Germany); Doerr, Wolfgang [Dept. of Radiotherapy and Radiation Oncology, Radiobiology Lab., Univ. of Technology Dresden (Germany); Trott, Klaus Ruediger [UCL Cancer Centre, Univ. Coll. London (United Kingdom)

    2010-03-15

    Purpose: To characterize second tumors that developed in or near the high-dose areas of a previous radiotherapy, regarding their frequency, entities, latency, and dose dependence. Patients and Methods: 9,995/15,449 tumor patients of the Radiation Oncology Department in Ulm, Germany, treated between 1981 and 2003, survived at least 1 year after radiotherapy. By long-term follow-up and review of treatment documentation, 100 of them were identified who developed an independent second cancer in or near the irradiated first tumor site. Results: Major primary malignancies were breast cancer (27%), lymphoma (24%), and pelvic gynecologic tumors (17%). Main second tumors were carcinomas of the upper (18%) and lower (12%) gastrointestinal tract, head and neck tumors (10%), lymphoma (10%), breast cancer (9%), sarcoma (9%), and lung cancer (8%). Overall median second tumor latency was 7.4 years (1-42 years). For colorectal cancer it was 3.5 and for leukemia 4.3 years, but for sarcoma 11.7 and for breast cancer 17.1 years. The relatively frequent second tumors of the upper gastrointestinal tract were associated with median radiation doses of 24 Gy. By contrast, second colorectal cancer and sarcoma developed after median doses of 50 Gy. Conclusion: The 5- and 15-year probability to develop a histopathologically independent second tumor in or near the irradiated first tumor site, i.e., after intermediate or high radiation doses, was 0.5% and 2.2%, respectively. To identify potentially radiogenic second malignancies, a follow-up far beyond 5 years is mandatory. The incidence and potential dose-response relationship intermediate will be analyzed by a case-case and a case-control study of the Ulm data. (orig.)

  13. Radiotherapy after high-dose chemotherapy and peripheral blood stem cell support in high-risk breast cancer

    International Nuclear Information System (INIS)

    Hoeller, Ulrike; Heide, Juergen; Kroeger, Nicolaus; Krueger, William; Jaenicke, Fritz; Alberti, Winfried

    2002-01-01

    Purpose: To assess the toxicity and efficacy of radiotherapy with respect to locoregional control after adjuvant high-dose chemotherapy for patients with breast cancer. At first, radiotherapy was withheld because of toxicity concerns, but it was introduced in 1995 because of reported high locoregional relapse rates. Methods and Materials: Between 1992 and 1998, 40 patients with Stage II-III high-risk breast cancer received adjuvant high-dose chemotherapy consisting of thiotepa, mitoxantrone, and cyclophosphamide and peripheral blood stem cell support after four cycles of induction chemotherapy. The chest wall or breast, as well as the supraclavicular nodes, were irradiated with electrons and photons to a median dose of 50.4 Gy in 20 patients. Six additional patients received only supraclavicular irradiation to a median dose of 50.4 Gy. Acute toxicity was scored clinically. Pulmonary function tests were performed in 14 irradiated patients before high-dose chemotherapy and 1.1-4.4 years (median 1.6) after irradiation. The median follow-up time of living patients was 33 vs. 67 months in irradiated (n=26) and nonirradiated (n=14) patients, respectively. Results: G2 and G3 hematologic toxicity occurred in 1 patient each. No clinical pneumonitis or clinical impairment of lung function was observed. After 1-2 years, the lung function tests showed only minor changes in 4 patients. The 3-year locoregional control rate was 92% in the irradiated patients vs. 58% in the nonirradiated patients (p=0.049, actuarial analysis). Conclusion: In this series, adjuvant radiotherapy after adjuvant chemotherapy for breast cancer appeared well tolerated, with improved local regional control and without significant side effects. Longer follow-up and more patient accrual, as well as Phase III trials, are necessary for confirmation

  14. High biologically effective dose radiation therapy using brachytherapy in combination with external beam radiotherapy for high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Keisei Okamoto

    2017-02-01

    Full Text Available Purpose : To evaluate the outcomes of high-risk prostate cancer patients treated with biologically effective dose (BED ≥ 220 Gy of high-dose radiotherapy, using low-dose-rate (LDR brachytherapy in combination with external beam radiotherapy (EBRT and short-term androgen deprivation therapy (ADT. Material and methods : From 2005 to 2013, a total of 143 patients with high-risk prostate cancer were treated by radiotherapy of BED ≥ 220 Gy with a combination of LDR brachytherapy, EBRT, and androgen deprivation therapy (ADT. The high-risk patients in the present study included both high-risk and very high-risk prostate cancer. The number of high-risk features were: 60 patients with 1 high-risk factor (42%, 61 patients with 2 high-risk factors (43%, and 22 patients with 3 high-risk factors (15% including five N1 disease. External beam radiotherapy fields included prostate and seminal vesicles only or whole pelvis depending on the extension of the disease. Biochemical failure was defined by the Phoenix definition. Results : Six patients developed biochemical failure, thus providing a 5-year actual biochemical failure-free survival (BFFS rate of 95.2%. Biochemical failure was observed exclusively in cases with distant metastasis in the present study. All six patients with biochemical relapse had clinical failure due to bone metastasis, thus yielding a 5-year freedom from clinical failure (FFCF rate of 93.0%. None of the cases with N1 disease experienced biochemical failure. We observed four deaths, including one death from prostate cancer, therefore yielding a cause-specific survival (CSS rate of 97.2%, and an overall survival (OS rate of 95.5%. Conclusions : High-dose (BED ≥ 220 Gy radiotherapy by LDR in combination with EBRT has shown an excellent outcome on BFFS in high-risk and very high-risk cancer, although causal relationship between BED and BFFS remain to be explained further.

  15. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  16. Particle radiotherapy for patients with H and N malignant tumor

    International Nuclear Information System (INIS)

    Murakami, Masao; Demizu, Yusuke; Niwa, Yasue; Terashima, Kazuki; Fujii, Osamu; Mima, Masayuki; Hashimoto, Naoki; Jin, Dongcun

    2011-01-01

    Particle beams have a characteristic called the Bragg peak, which is a peak formed at a fixed depth in the body depending on the acceleration energy. Utilizing this property, a high dose can be concentrated in the target tumor while minimizing damage to surrounding normal tissues. Proton and carbon ion beams have a higher linear energy transfer (LET) than X-rays. The relative biological effectiveness of proton and carbon ion beams compared with X-rays (=1) is estimated to be 1.1 and 3.0, respectively. Therefore, we can expect particle radiotherapy to be effective for patients with radio-resistant tumors such as malignant melanoma, adenoidcystic carcinoma and adenocarcinoma. As of the end of July 2011, there were 9 particle institutes operating in Japan; the Hyogo Ion Beam Medical Center was established in May 2001 as a leading project of the ''Hyogo Cancer Strategy''. One major characteristic is that the Center can generate both proton and carbon ion beams. Locally advanced nasal, paranasal or salivary gland cell tumors are good candidates for particle radiotherapy. Downsizing of the accelerator, price reduction of the machine, broad use of particle therapy in the field of clinical oncology, and intensity modulated particle therapy are future challenges. (author)

  17. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    Science.gov (United States)

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  18. Physical properties of charged particle beams for use in radiotherapy

    International Nuclear Information System (INIS)

    Knapp, E.A.

    1975-01-01

    The physical properties of the possible charged particle beams used for cancer radiotherapy are reviewed. Each property is discussed for all interesting particles (π, p, α, Ne ion) and the differences are emphasized. This is followed by a short discussion of the several beam delivery systems used in particle therapy today, emphasizing the differences in the problems for the several different radiations, particularly the differences between the accelerated particle beams and those of a secondary nature. Dose calculation techniques are described

  19. High Radiation Doses from Radiotherapy Measured by Electron Spin Resonance in Dental Enamel

    International Nuclear Information System (INIS)

    Pass, B.; Wood, R.E.; Liu, F.; McLean, M.; Aldrich, J.E.

    1998-01-01

    For radiotherapy, an error in the complicated treatment planning or treatment procedure is a possibility, however remote. Thus, in the present study electron spin resonance (ESR) in dental enamel was investigated for the first time as a means of retrospective dosimetry for validating applied radiotherapy doses to the head and neck regions. Total absorbed radiation doses measured by ESR in dental enamel were compared to the doses determined by treatment planning for 19 patients who received radiotherapy for intra-oral, pharyngeal or laryngeal malignancies, or total-body irradiation prior to bone marrow transplants (BMT). For the 15 tumour irradiations there was, within the framework of the tooth positions as presented, general agreement between the treatment planned and ESR dose determinations. There were, however, both significant and minor discrepancies. For the BMT patients there were major discrepancies for two of the four patients investigated. This study indicates that ESR in dental enamel may be useful as the only means of retrospective dosimetry for validating applied radiotherapy doses after treatment. However, further research must be carried out before this technique can be accepted as accurate and reliable. (author)

  20. Early and late effects of local high dose radiotherapy of the brain on memory and attention

    International Nuclear Information System (INIS)

    Duchstein, S.; Gademann, G.; Peters, B.

    2003-01-01

    Early and Late Effects of Local High Dose Radiotherapy of the Brain on Memory and Attention Background: Stereotactic radiotherapy of benign tumors of the base of skull shows excellent tumor control and long survival. Aim is to study the impact of high dose radiation therapy on functions of memory and attention over time. Patients and Methods: 21 patients (age 42 ± 11 years) with tumors of the base of skull (meningiomas, pituitary gland adenomas) were treated by fractionated stereotactic radiotherapy (mean total dose 56,6 Gy/1,8 Gy). Comprehensive neuropsychological tests and MRI brain scans were performed before, 3, 9 and 21 months after therapy. 14 healthy volunteers were tested in parallel at baseline. In the follow-ups patients were their own controls. Results: In pretreatment tests there were significantly worse test results in comparison to the control group in ten of 32 tests. In postradiation tests only few changes were found in the early-delayed period and not much difference was seen in comparison to the baseline tests. In MRI scans tumor recurrences or radiation induced changes were not found. Conclusion: Radiation with high local doses in target volume extremely close to sensitive brain structures like temporal lobes did not induce significant decline of cognitive functions. (orig.) [de

  1. Salvage high-dose-rate brachytherapy for local prostate cancer recurrence after radical radiotherapy

    Directory of Open Access Journals (Sweden)

    V. A. Solodkiy

    2016-01-01

    Full Text Available Studies salvage interstitial radiation therapy for recurrent prostate cancer, launched at the end of the XX century. In recent years, more and more attention is paid to high-dose-rate brachytherapy (HDR-BT as a method of treating local recurrence.The purpose of research – preliminary clinical results of salvage high-dose-rate brachytherapy applied in cases of suspected local recurrence or of residual tumour after radiotherapy.Preliminary findings indicate the possibility of using HDR-BT, achieving local tumor control with low genitourinary toxicity.

  2. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  3. Establishing locoregional control of malignant pleural mesothelioma using high-dose radiotherapy and 18F-FDG PET/CT scan correlation

    International Nuclear Information System (INIS)

    Feigen, Malcolm; Lawford, Catherine; Churcher, Katheryn; Zupan, Eddy; Hamilton, Chris; Lee, Sze Ting; Scott, Andrew M.

    2011-01-01

    The management of malignant pleural mesothelioma represents one of the most challenging issues in oncology, as there is no proven long-term benefit from surgery, radiotherapy or chemotherapy alone or in combination. Locoregional progression remains the major cause of death, but radical surgical resection may produce major postoperative morbidity. While radical or postoperative radiotherapy using conventional techniques has resulted in severe toxicity with no impact on survival, recent advances in radiotherapy delivery may be more effective. We treated patients with locally advanced mesothelioma whose tumours had been sub optimally resected with high-dose three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT) to large volumes of one hemithorax, using CT and positron emission tomography (PET) scan-based treatment planning. Clinical outcomes were assessed by determining patterns of failure and metabolic changes in total glycolytic volume (TGV) between pre- and post-irradiation 18 F-FDG PET/CT scans and by recording acute and late toxicity grades. Fourteen patients were analysed with 40 PET scans performed before and up to 4.5 years after radiotherapy. Eleven patients had pleurectomy/decortications, one had an extrapleural pneumonectomy and two had no surgery. Four patients who received chemotherapy had all progressed prior to radiotherapy. After radiotherapy, the in-field local control rate was 71%. No progression occurred in two patients, one was salvaged with further radiotherapy to a new site, four recurred inside the irradiated volume all with concurrent distant metastases and the other seven had distant metastases only. The TGVs were reduced by an average of 67% (range 12–100%) after doses of 45 to 60 Gy to part or all of one hemithorax. There were no serious treatment-related toxicities. Median survival was 25 months from diagnosis and 17 months after starting radiotherapy. We have established that mesothelioma can be

  4. Imaging and concomitant dose in radiotherapy

    International Nuclear Information System (INIS)

    Negi, P.S.

    2008-01-01

    Image guidance in radiotherapy now involves multiple imaging procedures for planning, simulation, set-up inter and intrafraction monitoring. Presently ALARA (i.e. as low as reasonable achievable) is the principle of management of dose to radiation workers and patients in any diagnostic imaging procedures including image guided surgery. The situation is different in repeated radiographic/fluoroscopic imaging performed for simulation, dose planning, patient positioning and set-up corrections during preparation/execution of Image guided radiotherapy (IGRT) as well as for Intensity Modulated Radiotherapy (IMRT). Reported imaging and concomitant doses will be highlighted and discussed for the management and optimization of imaging techniques in IMRT and IGRT

  5. Available evidence on re-irradiation with stereotactic ablative radiotherapy following high-dose previous thoracic radiotherapy for lung malignancies.

    Science.gov (United States)

    De Bari, Berardino; Filippi, Andrea Riccardo; Mazzola, Rosario; Bonomo, Pierluigi; Trovò, Marco; Livi, Lorenzo; Alongi, Filippo

    2015-06-01

    Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  7. Long-Term Results After High-Dose Radiotherapy and Adjuvant Hormones in Prostate Cancer: How Curable Is High-Risk Disease?

    Energy Technology Data Exchange (ETDEWEB)

    Zapatero, Almudena, E-mail: azapatero.hlpr@salud.madrid.org [Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid (Spain); Garcia-Vicente, Feliciano [Department of Medical Physics, Hospital Universitario de la Princesa, Madrid (Spain); Martin de Vidales, Carmen; Cruz Conde, Alfonso; Ibanez, Yamile [Department of Radiation Oncology, Hospital Universitario de la Princesa, Madrid (Spain); Fernandez, Inmaculada; Rabadan, Mariano [Department of Urology, Hospital Universitario de la Princesa, Madrid (Spain)

    2011-12-01

    Purpose: To analyze long-term outcome and prognostic factors for high-risk prostate cancer defined by National Comprehensive Cancer Network criteria treated with high-dose radiotherapy and androgen deprivation in a single institution. Methods and Materials: A total of 306 patients treated between 1995 and 2007 in a radiation dose-escalation program fulfilled the National Comprehensive Cancer Network high-risk criteria. Median International Commission on Radiation Units and Measurements radiation dose was 78 Gy (range, 66.0-84.1 Gy). Long-term androgen deprivation (LTAD) was administered in 231 patients, short-term androgen deprivation (STAD) in 59 patients, and no hormones in 16 patients. The Phoenix (nadir plus 2 ng/mL) consensus definition was used for biochemical control. Multivariate analysis was performed to determine the independent prognostic impact of clinical and treatment factors. Median follow-up time was 64 months (range, 24-171 months). Results: The actuarial overall survival at 5 and 10 years was 95.7% and 89.8%, respectively, and the corresponding biochemical disease-free survival (bDFS) was 89.5% and 67.2%, respectively. Fourteen patients (4.6%) developed distant metastasis. Multivariate analysis showed that Gleason score >7 (p = 0.001), pretreatment prostate-specific antigen (PSA) level >20 ng/mL (p = 0.037), higher radiation dose (p = 0.005), and the use of adjuvant LTAD vs. STAD (p = 0.011) were independent prognostic factors affecting bDFS in high-risk disease. The 5-year bDFS for patients treated with LTAD plus radiotherapy dose >78 Gy was 97%. Conclusions: For high-risk patients the present series showed that the use of LTAD in conjunction with higher doses (>78 Gy) of radiotherapy was associated with improved biochemical tumor control. We observed that the presence of Gleason sum >7 and pretreatment PSA level >20 ng/mL in the same patient represents a 6.8 times higher risk of PSA failure. These men could be considered for clinical trials with

  8. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.

    Science.gov (United States)

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-07-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.

  9. Postoperative high-dose pelvic radiotherapy for N+ prostate cancer: Toxicity and matched case comparison with postoperative prostate bed-only radiotherapy

    International Nuclear Information System (INIS)

    Van Praet, Charles; Ost, Piet; Lumen, Nicolaas; De Meerleer, Gert; Vandecasteele, Katrien; Villeirs, Geert; Decaestecker, Karel; Fonteyne, Valérie

    2013-01-01

    Purpose: To report on toxicity of postoperative high-dose whole-pelvis radiotherapy (WPRT) with androgen deprivation therapy for lymph node metastasized (N1) prostate cancer (PC). To perform a matched-case analysis to compare this toxicity profile to postoperative prostate bed-only radiotherapy (PBRT). Materials and methods: Forty-eight N1-PC patients were referred for WPRT and 239 node-negative patients for PBRT. Patients were matched 1:1 according to pre-treatment demographics, symptoms, treatment and tumor characteristics. Mean dose to the prostate bed was 75 Gy (WPRT–PBRT) and 54 Gy to the elective nodes (WPRT) in 36 or 37 fractions. End points are genito-urinary (GU) and gastro-intestinal (GI) toxicity. Results: After WPRT, 35% developed grade 2 (G2) and 4% G3 acute GU toxicity. Acute GI toxicity developed in 42% (G2). Late GU toxicity developed in 36% (G2) and 7% (G3). One patient had G4 incontinence. Recuperation occurred in 59%. Late GI toxicity developed in 25% (G2) with 100% recuperation. Incidence of acute and late GI toxicity was higher following WPRT compared to PBRT (p ⩽ 0.041). GU toxicity was similar. With WPRT mean dose to bladder and rectosigmoid were higher. Conclusions: Postoperative high-dose WPRT comes at the cost of a temporary increase in G2. GI toxicity compared to PBRT because larger volumes of rectosigmoid are irradiated

  10. Effects of low dose mitomycin C on experimental tumor radiotherapy

    International Nuclear Information System (INIS)

    Yang Jianzheng; Liang Shuo; Qu Yaqin; Pu Chunji; Zhang Haiying; Wu Zhenfeng; Wang Xianli

    2001-01-01

    Objective: To evaluate the possibility of low dose mitomycin C(MMC) as an adjunct therapy for radiotherapy. Methods: Change in tumor size tumor-bearing mice was measured. Radioimmunoassay was used to determine immune function of mice. Results: Low dose Mac's pretreatment reduced tumor size more markedly than did radiotherapy only. The immune function in mice given with low dose MMC 12h before radiotherapy was obviously higher than that in mice subjected to radiotherapy only (P<0.05), and was close to that in the tumor-bearing mice before radiotherapy. Conclusion: Low dose MMC could improve the radiotherapy effect. Pretreatment with low dose MMC could obviously improve the immune suppression state in mice caused by radiotherapy. The mechanism of its improvement of radiotherapeutic effect by low dose of MMC might be due to its enhancement of immune function and induction of adaptive response in tumor-bearing mice

  11. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    Science.gov (United States)

    Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.

    2015-11-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.

  12. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification

    International Nuclear Information System (INIS)

    Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H

    2015-01-01

    There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200–2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison. (paper)

  13. Quality audit for dose determination in the field of radiotherapy using TLD

    International Nuclear Information System (INIS)

    Kharita, M. H.; Anjak, O.

    2010-08-01

    Quality audit is one of the important procedures in radiotherapy centers in order to verify the accuracy of the delivered radiation doses. The aim of this work is to establish a procedure for dose audit using TL dosimeters and to apply this procedure in radiotherapy centers. TL Dosimeters were distributed to several radiotherapy centers in Syria and Lebanon (4 with Co-60 and 14 with high energy photon beam radiotherapy units). They were exposed to 2 Gy in order to make an intercomparison study of the absorbed dose in water determined under reference conditions. The results show that only two beams were outside the accepted range, which is ±3.5%. and the were within the accepted range. External Quality audit is one of the important procedures in field of radiotherapy dosimeter in order to verify the accuracy of the radiation doses delivered to patients. (Author)

  14. Dose-response relationship for breast cancer induction at radiotherapy dose

    Directory of Open Access Journals (Sweden)

    Gruber Günther

    2011-06-01

    Full Text Available Abstract Purpose Cancer induction after radiation therapy is known as a severe side effect. It is therefore of interest to predict the probability of second cancer appearance for the patient to be treated including breast cancer. Materials and methods In this work a dose-response relationship for breast cancer is derived based on (i the analysis of breast cancer induction after Hodgkin's disease, (ii a cancer risk model developed for high doses including fractionation based on the linear quadratic model, and (iii the reconstruction of treatment plans for Hodgkin's patients treated with radiotherapy, (iv the breast cancer induction of the A-bomb survivor data. Results The fitted model parameters for an α/β = 3 Gy were α = 0.067Gy-1 and R = 0.62. The risk for breast cancer is according to this model for small doses consistent with the finding of the A-bomb survivors, has a maximum at doses of around 20 Gy and drops off only slightly at larger doses. The predicted EAR for breast cancer after radiotherapy of Hodgkin's disease is 11.7/10000PY which can be compared to the findings of several epidemiological studies where EAR for breast cancer varies between 10.5 and 29.4/10000PY. The model was used to predict the impact of the reduction of radiation volume on breast cancer risk. It was estimated that mantle field irradiation is associated with a 3.2-fold increased risk compared with mediastinal irradiation alone, which is in agreement with a published value of 2.7. It was also shown that the modelled age dependency of breast cancer risk is in satisfying agreement with published data. Conclusions The dose-response relationship obtained in this report can be used for the prediction of radiation induced secondary breast cancer of radiotherapy patients.

  15. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S.; Malandain, G.

    2007-01-01

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  16. Dose constraints in paediatric radiotherapy; Contraintes de dose en radiotherapie pediatrique

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, V. [Groupe de radiotherapie pediatrique SFCE, Centre Alexis-Vautrin, 54 - Nancy (France)

    2010-10-15

    The author discusses the issue of dose constraints for organs at risk when performing paediatric radiotherapy, and outlines that this issue is only partially resolved by the QUANTEC publication (quantitative estimates of normal tissue effects in the clinic). Then, he presents a guide elaborated by the French group of paediatric radiotherapists. This guide reviews organs at risk, imagery delineation requirements, dose constraints and short-, medium- and long-term consequences of organ irradiation. Short communication

  17. Testicular dose and hormonal changes after radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Hermann, Robert M.; Henkel, Karsten; Christiansen, Hans; Vorwerk, Hilke; Hille, Andrea; Hess, Clemens F.; Schmidberger, Heinz

    2005-01-01

    Background and purpose: To measure the dose received by the testicles during radiotherapy for rectal cancer and to determine the contribution of each field of the pelvic box and the relevance for hormonal status. Materials and methods: In 11 patients (mean age 55.2 years) testicular doses were measured with an ionisation chamber between 7 and 10 times during the course of pelvic radiotherapy (50 Gy) for rectal carcinoma. Before and several months after radiotherapy luteinizing hormone, follicle stimulating hormone and total testosterone serum levels were determined. Results: The mean cumulative radiation exposure to the testicles was 3.56 Gy (0.7-8.4 Gy; 7.1% of the prescribed dose). Seventy-three percent received more than 2 Gy to the testicles. Fifty-eight percent of the measured dose was contributed by the p.a. field, 30% by the a.p. field and 12% by the lateral fields. Mean LH and FSH levels were significantly increased after therapy (350%/185% of the pre-treatment values), testosterone levels decreased to 78%. No correlation could be found between changes of hormones and doses to the testis, probably due to the low number of evaluated patients. Conclusions: Radiotherapy of rectal carcinoma causes significant damage to the testis, as shown by increased levels of gonadotropins after radiotherapy. Most of the gonadal dose is delivered by the p.a. field, due to the divergence of the p.a. beam towards the testicles. The reduction in testosterone level may be of clinical concern. Patients who will receive radiotherapy for rectal carcinoma must be instructed about a high risk of permanent infertility, and the risk of endocrine failure (hypogonadism). Larger studies are needed to establish the correlation between testicular radiation dose and hormonal changes in this group of patients

  18. Concept for quantifying the dose from image guided radiotherapy

    International Nuclear Information System (INIS)

    Schneider, Uwe; Hälg, Roger; Besserer, Jürgen

    2015-01-01

    Radiographic image guidance is routinely used for patient positioning in radiotherapy. All radiographic guidance techniques can give a significant radiation dose to the patient. The dose from diagnostic imaging is usually managed by using effective dose minimization. In contrast, image-guided radiotherapy adds the imaging dose to an already high level of therapeutic radiation which cannot be easily managed using effective dose. The purpose of this work is the development of a concept of IGRT dose quantification which allows a comparison of imaging dose with commonly accepted variations of therapeutic dose. It is assumed that dose variations of the treatment beam which are accepted in the spirit of the ALARA convention can also be applied to the additional imaging dose. Therefore we propose three dose categories: Category I: The imaging dose is lower than a 2 % variation of the therapy dose. Category II: The imaging dose is larger than in category I, but lower than the therapy dose variations between different treatment techniques. Category III: The imaging dose is larger than in Category II. For various treatment techniques dose measurements are used to define the dose categories. The imaging devices were categorized according to the measured dose. Planar kV-kV imaging is a category I imaging procedure. kV-MV imaging is located at the edge between category I and II and is for increasing fraction size safely a category I imaging technique. MV-MV imaging is for all imaging technologies a category II procedure. MV fan beam CT for localization is a category I technology. Low dose protocols for kV CBCT are located between category I and II and are for increasing fraction size a category I imaging technique. All other investigated Pelvis-CBCT protocols are category II procedures. Fan beam CT scout views are category I technology. Live imaging modalities are category III for conventional fractionation, but category II for stereotactic treatments. Dose from radiotherapy

  19. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Fabrikant, J.I.; Holley, W.R.; Tobias, C.A.; Castro, J.R.

    1980-01-01

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  20. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  1. Heavy particle radiotherapy: prospects and pitfalls

    International Nuclear Information System (INIS)

    Faju, M.R.

    1980-01-01

    The use of heavy particles in radiotherapy of tumor volumes is examined. Particles considered are protons, helium ions, heavy ions, negative pions, and fast neutrons. Advantages and disadvantages are discussed

  2. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  3. A Monte Carlo dose calculation tool for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Ma, C.-M.; Li, J.S.; Pawlicki, T.; Jiang, S.B.; Deng, J.; Lee, M.C.; Koumrian, T.; Luxton, M.; Brain, S.

    2002-01-01

    A Monte Carlo user code, MCDOSE, has been developed for radiotherapy treatment planning (RTP) dose calculations. MCDOSE is designed as a dose calculation module suitable for adaptation to host RTP systems. MCDOSE can be used for both conventional photon/electron beam calculation and intensity modulated radiotherapy (IMRT) treatment planning. MCDOSE uses a multiple-source model to reconstruct the treatment beam phase space. Based on Monte Carlo simulated or measured beam data acquired during commissioning, source-model parameters are adjusted through an automated procedure. Beam modifiers such as jaws, physical and dynamic wedges, compensators, blocks, electron cut-outs and bolus are simulated by MCDOSE together with a 3D rectilinear patient geometry model built from CT data. Dose distributions calculated using MCDOSE agreed well with those calculated by the EGS4/DOSXYZ code using different beam set-ups and beam modifiers. Heterogeneity correction factors for layered-lung or layered-bone phantoms as calculated by both codes were consistent with measured data to within 1%. The effect of energy cut-offs for particle transport was investigated. Variance reduction techniques were implemented in MCDOSE to achieve a speedup factor of 10-30 compared to DOSXYZ. (author)

  4. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-01-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element

  5. Application of biological dose concept in dose optimization for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Li Yunhai; Liao Yuan; Zhou Lijun; Pan Ziqiang; Feng Yan

    2003-01-01

    Objective: On basis of physical dose optimization, LQ model was used to investigate the difference between the curves of biological effective dose and physical isodose. The influence of applying the biological dose concept on three dimensional conformal radiotherapy of prostate carcinoma was discussed. Methods: Four treatment plannings were designed for physical dose optimization: three fields, four-box fields, five fields and six fields. Target dose uniformity and protection of the critical tissue-rectum were used as the principal standard for designing the treatment planning. Biological effective dose (BED) was calculated by LQ model. The difference between the BED curve drawn in the central layer and the physical isodose curve was studied. The difference between the adjusted physical dose (APD) and the physical dose was also studied. Results: Five field planning was the best in target dose uniformity and protection of the critical tissue-rectum. The physical dose was uniform in the target, but the biological effective doses revealed great discrepancy in the biological model. Adjusted physical dose distribution also displayed larger discrepancy than the physical dose unadjusted. Conclusions: Intensified Modulated Radiotherapy (IMRT) technique with inversion planning using biological dose concept may be much more advantageous to reach a high tumor control probability and low normal tissue complication probability

  6. High Efficacy of Preoperative Low-Dose Radiotherapy with Sanazole (AK-2123 for Extraskeletal Ewing's Sarcoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Tomoya Sakabe

    2011-01-01

    Full Text Available Extraskeletal Ewing's sarcoma is a rare soft tissue tumor that is morphologically indistinguishable from Ewing's sarcoma of bone. We report a case of extraskeletal Ewing's sarcoma with several systemic problems. A 69-year-old man presented with a 5-month history of a rapidly enlarging mass in the right thigh. Because preoperative radiotherapy with sanazole (AK-2123 contributed the tumor mass reduction down to 40% in size, the tumor was successfully resected with clear surgical margins and repaired with a musculocutaneous flap. The high efficacy of pre-operative low-dose radiotherapy with sanazole was histologically confirmed that the resected tumor specimen involved no viable tumor cells and showed 100% necrosis. Based on clinical outcomes in this case, the combined modality of pre-operative low-dose radiotherapy with hypoxic cell radiosensitizer and adequate surgical resection might provide for the useful clinical application of extraskeletal Ewing's sarcoma treatment.

  7. Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

    International Nuclear Information System (INIS)

    Ffrrcsi, F.H.; Parton, C.

    2006-01-01

    Aim: We aim to check the safety of the standard palliative radiotherapy techniques by using the Linear quadratic model for a careful estimation of the doses received by the spinal cord, in all standard palliative lung radiotherapy fields and fractionation. Material and Methods: All patients surveyed at this prospective audit were treated with palliative chest radio-therapy for lung cancer over a period from January to June 2005 by different clinical oncology specialists within the department. Radiotherapy field criteria were recorded and compared with the recommended limits of the MRC trial protocols for the dose and fractionation prescribed. Doses delivered to structures off the field central axis were estimated using a standard CT scan of the chest. Dose estimates were made using an SLPLAN planning system. As unexpected spinal cord toxicity has been reported after hypo fractionated chest radiotherapy, a sagittal view was used to calculate the isodoses along the length of the spinal cord that could lie within the RT field. Equivalent dose estimates are made using the Linear Quadratic Equivalent Dose formula (LQED). The relative radiation sensitivity of spinal cord for myelopathy (the a/b dose) cord has been estimated as a/b = 1 Gy. Results: 17 Gy in 2 fraction and 39 Gy in 13 fraction protocols have spinal cord equivalent doses (using the linear-quadratic model) that lie within the conventional safe limits of 50 Gy in 25 fractions for the 100% isodose. However when the dosimetry is modelled for a 6 MV 100 cm isocentric linac in 3 dimensions, and altered separations and air space inhomogeneity are considered, the D-Max doses consistently fall above this limit on our 3 model patients. Conclusion: The 17 Gy in 2 fraction and 39 Gy in 13 fraction protocol would risk spinal cord damage if the radio therapist was unaware of the potential spinal cord doses. Alterative doses are suggested below 15.5 Gy/ 2 fractions (7 days apart) would be most acceptable

  8. Radiation dose in radiotherapy from prescription to delivery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs.

  9. Radiation dose in radiotherapy from prescription to delivery

    International Nuclear Information System (INIS)

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs

  10. Radiobiological evaluation of the radiation dose as used in high-precision radiotherapy. Effect of prolonged delivery time and applicability of the linear-quadratic model

    International Nuclear Information System (INIS)

    Shibamoto, Yuta; Otsuka, Shinya; Iwata, Hiromitsu; Sugie, Chikao; Ogino, Hiroyuki; Tomita, Natsuo

    2012-01-01

    Since the dose delivery pattern in high-precision radiotherapy is different from that in conventional radiation, radiobiological assessment of the physical dose used in stereotactic irradiation and intensity-modulated radiotherapy has become necessary. In these treatments, the daily dose is usually given intermittently over a time longer than that used in conventional radiotherapy. During prolonged radiation delivery, sublethal damage repair takes place, leading to the decreased effect of radiation. This phenomenon is almost universarily observed in vitro. In in vivo tumors, however, this decrease in effect can be counterbalanced by rapid reoxygenation, which has been demonstrated in a laboratory study. Studies on reoxygenation in human tumors are warranted to better evaluate the influence of prolonged radiation delivery. Another issue related to radiosurgery and hypofractionated stereotactic radiotherapy is the mathematical model for dose evaluation and conversion. Many clinicians use the linear-quadratic (LQ) model and biologically effective dose (BED) to estimate the effects of various radiation schedules, but it has been suggested that the LQ model is not applicable to high doses per fraction. Recent experimental studies verified the inadequacy of the LQ model in converting hypofractionated doses into single doses. The LQ model overestimates the effect of high fractional doses of radiation. BED is particularly incorrect when it is used for tumor responses in vivo, since it does not take reoxygenation into account. For normal tissue responses, improved models have been proposed, but, for in vivo tumor responses, the currently available models are not satisfactory, and better ones should be proposed in future studies. (author)

  11. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  12. Adjuvant radiotherapy in high-grade extremity sarcomas

    International Nuclear Information System (INIS)

    Franca, Carlos Antonio da Silva; Penna, Antonio Belmiro Rodrigues Campbell; Carvalho, Antonio Carlos Pires; Vieira, Sergio Lannes

    2010-01-01

    Objective: to evaluate the therapies utilized in the authors' institution for management of high-grade extremity sarcomas, analyzing the overall survival rates following multidisciplinary treatment. Materials and methods: retrospective study developed in the period from 1993 to 2007 with 36 patients diagnosed with stages IIb/III, submitted to postoperative external beam radiotherapy, with or without boost dose, utilizing high-dose brachytherapy. Results: thirty-six patients underwent surgery followed by adjuvant external beam radiation therapy. Four patients (11%) received boost dose with brachytherapy, and seven (19%) received chemotherapy. The average dose for radiotherapy was 50 Gy (CI 95%: 47-53 Gy), and the four patients with brachytherapy boost received doses ranging from 16.2 to 35 Gy. Chemotherapy was indicated for seven patients (19%) with positive margins. Fifteen patients (42%) presented local or distant recurrence, and all of them progressed to death. Twenty-one patients (58%) remain with no clinical/radiological evidence of local/distant recurrence. The mean follow-up time was 88 months (IC 95%: 74-102). The overall seven years survival rate was 80%. Conclusion: combined surgery and radiotherapy is an effective treatment with excellent outcomes in cases where brachytherapy is associated, with improved overall survival rates. (author)

  13. Relationship of bone marrow dose to eosinophilia following radiotherapy

    International Nuclear Information System (INIS)

    Murohashi, Ikuo; Gomi, Hiromichi; Nakano, Takashi; Morita, Shinroku; Arai, Tatsuo; Jinnai, Itsuro; Nara, Nobuo; Bessho, Masami; Hirashima, Kunitake.

    1986-01-01

    Absolute blood eosinophils were counted prior to and during radiotherapy in a total of 380 patients with carcinoma in the chest, pelvis, or abdomen. The patients were divided into 5 groups by types of cancer, and these groups differed in the irradiation sites or the sizes of radiation field. Accumulated bone marrow dose from the start of radiotherapy to the time when eosinophil count during radiotherapy reached its peak was simultaneously determined. In each group, maximum eosinophil count during radiotherapy was significantly increased compared with the value before radiotherapy. In all groups except one, the increase in eosinophil count following radiotherapy was directly proportional to the bone marrow dose. However, in the most heavily irradiated ovarian cancer group, the increase in eosinophil count was markedly lower. In contrast, neutrophils were reduced in numbers in all groups. These results suggest that bone marrow (red marrow) damage by irradiation results in eosinophilia, and that unimpaired hemopoiesis is also indispensable for such an eosinophil response. Accumulated bone marrow doses of 800 - 900 rad given during 4 weeks fractionated irradiation caused the most prominent eosinophilia. (author)

  14. SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants

    International Nuclear Information System (INIS)

    Moreau, M; Yasmin-Karim, S; Hao, Y; Ngwa, W

    2016-01-01

    Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2, 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.

  15. SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, M [Dana Farber Cancer Institute, Boston, MA (United States); Yasmin-Karim, S [Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Hao, Y [University of Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2, 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.

  16. Treatment of locally advanced breast carcinoma with high-dose external beam supervoltage radiotherapy

    International Nuclear Information System (INIS)

    Brufman, G.; Weshler, Z.; Prosnitz, L.R.; Fuks, Z.

    1981-01-01

    Between 1960 and 1978, 87 patients with locally advanced Tsub(3-4)Nsub(0-3)M 0 carcinoma of the breast were treated with 5,000 to 8,000 rad of external beam supervoltage radiotherapy. Initial clinical eradication of the tumour was observed in 76 of 87 cases (87%), but the actuarial probability of local control at 5 yr was only 53%. Furthermore, the actuarial probability of disease-free survival was 25% at 5 yr and 13% at 10 yr. Most of the patients eventually succumbed to metastatic breast carcinoma and the actuarial survival at 5 yr was 43% and at 10 yr, 16%. The addition of adjuvant low-dose chemotherapy, given to 13 patients, did not affect the rates of local control, survival or disease-free survival. The most common long-term complication was extensive and deforming radiation-induced fibrosis of the treated breast. The actuarial probability of 10-yr survival without a local recurrence and without severe fibrosis of the treated breast was only 17.5%. The role of adjuvant high-dose chemotherapy in the treatment of locally advanced breast carcinoma and the possible use of improved radiotherapy techniques to achieve a more effective long-term local control and a more desirable cosmetic end result are discussed. (author)

  17. Dose response relationship in local radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Hee Chul; Seong, Jin Sil; Han, Kwang Hyub; Chon, Chae Yoon; Moon, Young Myoung; Song, Jae Seok; Suh, Chang Ok

    2001-01-01

    In this study, it was investigated whether dose response relation existed or not in local radiotherapy for primary hepatocellular carcinoma. From January 1992 to March 2000, 158 patients were included in present study. Exclusion criteria included the presence of extrahepatic metastasis, liver cirrhosis of Child's class C, tumors occupying more than two thirds of the entire liver, and performance status on the ECOG scale of more than 3. Radiotherapy was given to the field including tumor with generous margin using 6, 10-MV X-ray. Mean tumor dose was 48.2±7.9 Gy in daily 1.8 Gy fractions. Tumor response was based on diagnostic radiologic examinations such as CT scan, MR imaging, hepatic artery angiography at 4-8 weeks following completion of treatment. Statistical analysis was done to investigate the existence of dose response relationship of local radiotherapy when it was applied to the treatment of primary hepatocellular carcinoma. An objective response was observed in 106 of 158 patients, giving a response rate of 67. 1%. Statistical analysis revealed that total dose was the most significant factor in relation to tumor response when local radiotherapy was applied to the treatment of primary hepatocellular carcinoma. Only 29.2% showed objective response in patients treated with dose less than 40 Gy, while 68.6% and 77.1 % showed major response in patients with 40-50 Gy and more than 50 Gy, respectively. Child-Pugh classification was significant factor in the development of ascites, overt radiation induced liver disease and gastroenteritis. Radiation dose was an important factor for development of radiation induced gastroduodenal ulcer. Present study showed the existence of dose response relationship in local radiotherapy for primary hepatocellular carcinoma. Only radiotherapy dose was a significant factor to predict the objective response. Further study is required to predict the maximal tolerance dose in consideration of liver function and non-irradiated liver

  18. Combination of high-dose rate brachytherapy and external beam radiotherapy for the treatment of advanced scalp angiosarcoma - case report

    International Nuclear Information System (INIS)

    Gentil, Andre Cavalcanti; Lima Junior, Carlos Genesio Bezerra; Soboll, Danyel Scheidegger; Novaes, Paulo Eduardo R.S.; Pereira, Adelino Jose; Pellizon, Antonio Carlos Assis

    2001-01-01

    The authors report a case of a patient with an extensive angiosarcoma of the scalp that was submitted only to radiotherapy with a combination of orthovoltage roentgentherapy and high-dose rate brachytherapy, using a mould. The clinical and technical features as well as the therapeutic outcome are presented, and the usefulness and peculiarities of high-dose rate brachytherapy for this particular indication is discussed. A comparative analysis of the difficulties and limitations of employing low-dose rate brachytherapy is also presented. The authors concluded that high-dose rate brachytherapy might be an useful, practical and safe option to treat neoplastic lesions of the scalp, and an alternative treatment to electrontherapy. (author)

  19. Potential for heavy particle radiation therapy

    International Nuclear Information System (INIS)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over 60 Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons

  20. Conversion coefficients for determination of dispersed photon dose during radiotherapy: NRUrad input code for MCNP.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Ng, C Y P; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Radiotherapy is a common cancer treatment module, where a certain amount of dose will be delivered to the targeted organ. This is achieved usually by photons generated by linear accelerator units. However, radiation scattering within the patient's body and the surrounding environment will lead to dose dispersion to healthy tissues which are not targets of the primary radiation. Determination of the dispersed dose would be important for assessing the risk and biological consequences in different organs or tissues. In the present work, the concept of conversion coefficient (F) of the dispersed dose was developed, in which F = (Dd/Dt), where Dd was the dispersed dose in a non-targeted tissue and Dt is the absorbed dose in the targeted tissue. To quantify Dd and Dt, a comprehensive model was developed using the Monte Carlo N-Particle (MCNP) package to simulate the linear accelerator head, the human phantom, the treatment couch and the radiotherapy treatment room. The present work also demonstrated the feasibility and power of parallel computing through the use of the Message Passing Interface (MPI) version of MCNP5.

  1. High-dose simultaneously integrated breast boost using intensity-modulated radiotherapy and inverse optimization

    International Nuclear Information System (INIS)

    Hurkmans, Coen W.; Meijer, Gert J.; Vliet-Vroegindeweij, Corine van; Sangen, Maurice J. van der; Cassee, Jorien

    2006-01-01

    Purpose: Recently a Phase III randomized trial has started comparing a boost of 16 Gy as part of whole-breast irradiation to a high boost of 26 Gy in young women. Our main aim was to develop an efficient simultaneously integrated boost (SIB) technique for the high-dose arm of the trial. Methods and Materials: Treatment planning was performed for 5 left-sided and 5 right-sided tumors. A tangential field intensity-modulated radiotherapy technique added to a sequentially planned 3-field boost (SEQ) was compared with a simultaneously planned technique (SIB) using inverse optimization. Normalized total dose (NTD)-corrected dose volume histogram parameters were calculated and compared. Results: The intended NTD was produced by 31 fractions of 1.66 Gy to the whole breast and 2.38 Gy to the boost volume. The average volume of the PTV-breast and PTV-boost receiving more than 95% of the prescribed dose was 97% or more for both techniques. Also, the mean lung dose and mean heart dose did not differ much between the techniques, with on average 3.5 Gy and 2.6 Gy for the SEQ and 3.8 Gy and 2.6 Gy for the SIB, respectively. However, the SIB resulted in a significantly more conformal irradiation of the PTV-boost. The volume of the PTV-breast, excluding the PTV-boost, receiving a dose higher than 95% of the boost dose could be reduced considerably using the SIB as compared with the SEQ from 129 cc (range, 48-262 cc) to 58 cc (range, 30-102 cc). Conclusions: A high-dose simultaneously integrated breast boost technique has been developed. The unwanted excessive dose to the breast was significantly reduced

  2. Low dose preoperative radiotherapy for carcinoma of the oesophagus

    International Nuclear Information System (INIS)

    Arnott, S.J.; Duncan, W.; Kerr, G.R.; Jack, W.J.L.; Mackillop, W.J.; Walbaum, P.R.; Cameron, E.

    1992-01-01

    Patients (176) with potentially operable squamous cell carcinoma or adenocarcinoma of middle or lower thirds of oesophagus were randomly assigned to preoperative radiotherapy or surgery alone. Patients assigned to the radiotherapy arm received 20 Gy in 10 treatments over 2 weeks, using parallel opposed 4 MV beams. The preoperative radiotherapy was not associated with any significant acute morbidity or any increase in operative complications. The median survival of the overall group of 176 patients was 8 moths, and the 5-year survival was 13%. There was no significant difference in the survival of the 90 patients who received preoperative radiotherapy and the 86 who were managed by surgery alone. Proportional hazards analysis identified lymph node involvement, high tumor grade and male sex as significant adverse prognostic features, but the treatment option assigned had no prognostic significance. It was concluded that low dose preoperative radiotherapy offered no advantage over surgery alone. (author). 9 refs.; 3 figs.; 6 tabs

  3. Determination of Absorbed Dose in Large 60-Co Fields Radiotherapy

    International Nuclear Information System (INIS)

    Hrsak, H.

    2003-01-01

    Radiation in radiotherapy has selective impact on ill and healthy tissue. During the therapy the healthy tissue receives certain amount of dose. Therefore dose calculations in outer radiotherapy must be accurate because too high doses produce damage in healthy tissue and too low doses cannot ensure efficient treatment of cancer cells. A requirement on accuracy in the dose calculations has lead to improvement of detectors, and development of absolute and relative dosimetry. Determination of the dose distribution with use of computer is based on data provided by the relative dosimetry. This paper compares the percentage depth doses in cubic water phantoms of various dimensions with percentage depth doses calculated with use of Mayneord factor from the experimental depth doses measured in water phantom of large dimension. Depth doses in water phantoms were calculated by the model of empirical dosimetrical functions. The calculations were based on the assumption that large 6 0C o photon field exceeds the phantom's limits. The experimental basis for dose calculations by the model of empirical dosimetrical functions were exposure doses measured in air and dose reduction factors because of finite phantom dimensions. Calculations were performed by fortran 90 software. It was found that the deviation of dosimetric model was small in comparison to the experimental data. (author)

  4. Definitive intraoperative very high-dose radiotherapy for localized osteosarcoma in the extremities

    International Nuclear Information System (INIS)

    Oya, Natsuo; Kokubo, Masaki; Mizowaki, Takashi; Shibamoto, Yuta; Nagata, Yasushi; Sasai, Keisuke; Nishimura, Yasumasa; Tsuboyama, Tadao; Toguchida, Junya; Nakamura, Takashi; Hiraoka, Masahiro

    2001-01-01

    Purpose: To evaluate the outcome and adverse effects in patients with osteosarcoma treated with very high-dose definitive intraoperative radiotherapy (IORT), with the intention of saving the affected limb. Methods and Materials: Thirty-nine patients with osteosarcoma in their extremities were treated with definitive IORT. The irradiation field included the tumor plus an adequate wide margin and excluded the major vessels and nerves. Forty-five to 80 Gy of electrons or X-rays were delivered. The median follow-up of the surviving patients was 124 months. Results: The cause-specific and relapse-free 5-year survival rate was 50% and 43%, respectively. Distant metastasis developed in 23 patients; 19 died and 4 were alive for >10 years. Nine local recurrences were found 4-29 months after IORT in the affected limb. No radiation-induced skin reaction or nerve palsy was observed in the patients treated with X-rays. Experiments using phantoms also confirmed that the scatter dose was below the toxic level in the IORT setting with X-rays. Conclusions: Very high-dose definitive IORT combined with preventive nailing and chemotherapy appeared to be a promising quality-of-life-oriented alternative to treating patients with osteosarcomas in the extremities, although the problem of recurrences from the surrounding unirradiated soft tissue remains to be solved

  5. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy

    International Nuclear Information System (INIS)

    Nguyen, Dan; Rwigema, Jean-Claude M; Yu, Victoria Y; Kaprealian, Tania; Kupelian, Patrick; Selch, Michael; Lee, Percy; Low, Daniel A; Sheng, Ke

    2014-01-01

    Glioblastoma multiforme (GBM) frequently recurs at the same location after radiotherapy. Further dose escalation using conventional methods is limited by normal tissue tolerance. 4π non-coplanar radiotherapy has recently emerged as a new potential method to deliver highly conformal radiation dose using the C-arm linacs. We aim to study the feasibility of very substantial GBM dose escalation while maintaining normal tissue tolerance using 4π. 11 GBM patients previously treated with volumetric modulated arc therapy (VMAT/RapidArc) on the NovalisTx™ platform to a prescription dose of either 59.4 Gy or 60 Gy were included. All patients were replanned with 30 non-coplanar beams using a 4π radiotherapy platform, which inverse optimizes both beam angles and fluence maps. Four different prescriptions were used including original prescription dose and PTV (4πPTV PD ), 100 Gy to the PTV and GTV (4πPTV 100Gy ), 100 Gy to the GTV only while maintaining prescription dose to the rest of the PTV (4πGTV 100Gy ), and a 5 mm margin expansion plan (4πPTV PD+5mm ). OARs included in the study are the normal brain (brain – PTV), brainstem, chiasm, spinal cord, eyes, lenses, optical nerves, and cochleae. The 4π plans resulted in superior dose gradient indices, as indicated by >20% reduction in the R50, compared to the clinical plans. Among all of the 4π cases, when compared to the clinical plans, the maximum and mean doses were significantly reduced (p < 0.05) by a range of 47.01-98.82% and 51.87-99.47%, respectively, or unchanged (p > 0.05) for all of the non-brain OARs. Both the 4πPTV PD and 4π GTV 100GY plans reduced the mean normal brain mean doses. 4π non-coplanar radiotherapy substantially increases the dose gradient outside of the PTV and better spares critical organs. Dose escalation to 100 Gy to the GTV or additional margin expansion while meeting clinical critical organ dose constraints is feasible. 100 Gy to the PTV result in higher normal brain doses but may

  6. The relationship between external beam radiotherapy dose and chronic urinary dysfunction - A methodological critique

    International Nuclear Information System (INIS)

    Rosewall, Tara; Catton, Charles; Currie, Geoffrey; Bayley, Andrew; Chung, Peter; Wheat, Janelle; Milosevic, Michael

    2010-01-01

    Purpose: To perform a methodological critique of the literature evaluating the relationship between external beam radiotherapy dose/volume parameters and chronic urinary dysfunction to determine why consistent associations between dose and dysfunction have not been found. Methods and materials: The radiotherapy literature was reviewed using various electronic medical search engines with appropriate keywords and MeSH headings. Inclusion criteria comprised of; English language articles, published between 1999 and June 2009, incorporating megavoltage external beam photons in standard-sized daily fraction. A methodological critique was then performed, evaluating the factors affected in the quantification of radiotherapy dose and chronic urinary dysfunction. Results: Nine of 22 eligible studies successfully identified a clinically and statistically significant relationship between dose and dysfunction. Accurate estimations of external beam radiotherapy dose were compromised by the frequent use of dosimetric variables which are poor surrogates for the dose received by the lower urinary tract tissue and do not incorporate the effect of daily variations in isocentre and bladder position. The precise categorization of chronic urinary dysfunction was obscured by reliance on subjective and aggregated toxicity metrics which vary over time. Conclusions: A high-level evidence-base for the relationship between external beam radiotherapy dose and chronic urinary dysfunction does not currently exist. The quantification of the actual external beam dose delivered to the functionally important tissues using dose accumulation strategies and the use of objective measures of individual manifestations of urinary dysfunction will assist in the identification of robust relationships between dose and urinary dysfunction for application in widespread clinical practice.

  7. Low or High Fractionation Dose {beta}-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil); De Fendi, Ligia Issa; Fonseca, Ellen Carrara [Department of Ophthalmology, Marilia Medicine School, Sao Paulo, SP (Brazil); Stefano, Eduardo Jose [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil)

    2012-02-01

    Purpose: Postoperative adjuvant treatment using {beta}-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24-52.5 Gy{sub 10.}.

  8. Multidisciplinary approach for the esophageal carcinoma with intent to conserve the esophagus centering on high-dose radiotherapy and concurrent chemotherapy

    International Nuclear Information System (INIS)

    Murakami, Masao; Kuroda, Yasumasa; Okamoto, Yoshiaki

    1997-01-01

    Forty-seven patients with operable squamous cell carcinoma of the thoracic esophagus were treated by initial concurrent chemoradiotherapy (CDDP-5 FU-44 Gy) followed by definitive high-dose of radiotherapy (CRT group: 35 patients) or surgery (CRT-S group: 12 patients). Clinical CR rate showed 86% in CRT group; and pathological CR rate 18% in CRT-S group. The overall median survival was 45 months, survival at 1, 3, 5 years being 96%, 52%, 48%, respectively. No treatment-related mortality was observed. The rate of the 'esophagus conservation' was 66%. Our results demonstrated that the multidisciplinary approach with intent to conserve the esophagus centering on high-dose radiotherapy and concurrent chemotherapy provides a significant improvement of both survival and quality of life in patients with operable esophageal carcinoma. (author)

  9. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mucha-Malecka, A. [Maria Sklodowska-Curie Memorial Institute, Krakow (Poland). Dept. of Radiation Oncology; Skladowski, K. [Maria Sklodowska-Curie Memorial Institute, Gliwice (Poland). Dept. of Radiation Oncology

    2013-08-15

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  10. High-dose radiotherapy alone for patients with T4-stage laryngeal cancer

    International Nuclear Information System (INIS)

    Mucha-Malecka, A.; Skladowski, K.

    2013-01-01

    Background and purpose: The purpose of this retrospective study was to report on the efficacy of radiotherapy alone in patients with T4-stage laryngeal cancer and to establish the prognostic value of (a) the size and location of the extralaryngeal tumor extensions and (b) of emergency tracheostomy. Patients and methods: A group of 114 patients were treated with definitive radiotherapy between 1990 and 1996. The piriform recess was involved in 37 cases (33 %), the base of the tongue and glosso-epiglottic vallecula in 34 cases (30 %), and the hypopharyngeal wall in 10 cases (9 %). In 16 cases (14 %), emergency tracheostomy was performed before radiotherapy. The mean total dose was 68 Gy (range, 60-77.6 Gy). The mean treatment time was 49 days (range, 42-74 days). Results: Actuarial 3-year local control (LC) was noted in 42 % of patients, disease-free survival (DFS) in 35 %, and overall survival (OS) in 40 %. The best prognosis was for the lesion suspected of cartilage infiltration: 56 % 3-year LC. The worst results were noted in the cases with massive infiltrations spreading from the larynx through the hypopharynx: 13 % 3-year LC. Emergency tracheostomy before radiotherapy was significantly connected with the worst treatment results (p = 0.000): 3-year LC in patients with tracheostomy was 0 % vs. 48 % in patients without tracheostomy. Conclusion: Conventional radiotherapy of T4 laryngeal cancer is a method of treatment with limited effectiveness. The efficacy of radiotherapy is dependent on the location and extent of extralaryngeal infiltrations. Emergency tracheostomy is a prognostic factor connected with the worst prognosis. (orig.)

  11. An assessment of effective dose to staff in external beam radiotherapy

    International Nuclear Information System (INIS)

    Rawlings, D.J.; Nicholson, L.

    1997-01-01

    Radiation safety in external beam radiotherapy is governed by national legislation. Annual doses recorded by radiographers and others associated with external beam radiotherapy are typically much lower than the relevant dose limit. However, it is possible that larger doses might be received as a result of an accidental irradiation. In the event of a significant exposure resulting in a dose at or near a relevant dose limit, an accurate conversion has to be made from the dose meter reading to the limiting quantity. A method was devised to demonstrate ratios of effective dose to personal dose equivalent which might be anticipated in the even of an individual other than the patient being irradiated within a radiotherapy treatment room consisting of a linear accelerator. The variation of ratios obtained under different conditions is discussed. (author)

  12. Realization of 3D evaluation algorithm in dose-guided radiotherapy

    International Nuclear Information System (INIS)

    Wang Yu; Li Gui; Wang Dong; Wu Yican; FDS Team

    2012-01-01

    3D evaluation algorithm instead of 2D evaluation method of clinical dose verification is highly needed for dose evaluation in Dose-guided Radiotherapy. 3D evaluation algorithm of three evaluation methods, including Dose Difference, Distance-To-Agreement and 7 Analysis, was realized by the tool of Visual C++ according to the formula. Two plans were designed to test the algorithm, plan 1 was radiation on equivalent water using square field for the verification of the algorithm's correctness; plan 2 was radiation on the emulation head phantom using conformal field for the verification of the algorithm's practicality. For plan 1, the dose difference, in the tolerance range has a pass rate of 100%, the Distance-To-Agreement and 7 analysis was of a pass rate of 100% in the tolerance range, and a pass rate of 99±1% at the boundary of range. For plan 2, the pass rate of algorithm were 88.35%, 100%, 95.07% for the three evaluation methods, respectively. It can be concluded that the 3D evaluation algorithm is feasible and could be used to evaluate 3D dose distributions in Dose-guided Radiotherapy. (authors)

  13. Contribution of secondary particles to the dose in 12C radiotherapy and other heavy ion beams

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František; Molokanov, A. G.

    2007-01-01

    Roč. 126, 1-4 (2007), s. 657-659 ISSN 0144-8420 R&D Projects: GA ČR GA202/04/0795 Institutional research plan: CEZ:AV0Z10480505 Keywords : secondery particles * radiotherapy * LET spectrometer Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.528, year: 2007

  14. Dose-response relationship in local radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Park, Hee Chul; Seong, Jinsil; Han, Kwang Hyub; Chon, Chae Yoon; Moon, Young Myoung; Suh, Chang Ok

    2002-01-01

    Purpose: Dose escalation using three-dimensional conformal radiotherapy (3D-CRT) is based on the hypothesis that increasing the dose can enhance tumor control. This study aimed to determine whether a dose-response relationship exists in local radiotherapy for primary hepatocellular carcinoma (HCC). Methods and Materials: One hundred fifty-eight patients were enrolled in the present study between January 1992 and March 2000. The exclusion criteria included the presence of an extrahepatic metastasis, liver cirrhosis of Child class C, tumors occupying more than two-thirds of the entire liver, and a performance status on the Eastern Cooperative Oncology Group scale of more than 3. Radiotherapy was given to the field, including the tumor, with generous margin using 6- or 10-MV X-rays. The mean radiation dose was 48.2 ± 7.9 Gy in daily 1.8-Gy fractions. The tumor response was assessed based on diagnostic radiologic examinations, including a computed tomography scan, magnetic resonance imaging, and hepatic artery angiography 4-8 weeks after the completion of treatment. Liver toxicity and gastrointestinal complications were evaluated. Results: An objective response was observed in 106 of 158 (67.1%) patients. Statistical analysis revealed that the total dose was the most significant factor associated with the tumor response. The response rates in patients treated with doses 50 Gy were 29.2%, 68.6%, and 77.1%, respectively. Survivals at 1 and 2 years after radiotherapy were 41.8% and 19.9%, respectively, with a median survival time of 10 months. The rate of liver toxicity according to the doses 50 Gy was 4.2%, 5.9%, and 8.4%, respectively, and the rate of gastrointestinal complications was 4.2%, 9.9%, and 13.2%, respectively. Conclusions: The present study showed the existence of a dose-response relationship in local radiotherapy for primary HCC. Only the radiation dose was a significant factor for predicting an objective response. The results of this study showed that 3D

  15. DOSE-ESCALATED EXTERNAL BEAM RADIOTHERAPY DURING HORMONO-RADIOTHERAPY FOR PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2016-01-01

    Full Text Available Introduction. The introduction of modern technologies of conformal external beam radiotherapy (EBRT into clinical practice for the treatment of prostate cancer requires proper quality assurance measures as well as a careful analysis of both the efficacy and toxicity data of treatments. The purpose of this study was to inves- tigate tolerance and the immediate efficacy of conformal dose-escalated EBRT during hormono-radiotherapy for prostate cancer. material and methods. The study involved 156 prostate cancer patients treated with EBRT. Among them, 30 patients received a total dose of 70 Gy, and in 126 patients the total dose was esca- lated to 72-76 Gy (median total dose - 74.0 Gy. Fifty-nine patients received intensity modulated radiation therapy. Results. The prescribed course of treatment was completed in all the patients with prostate cancer. Acute radiation-induced bladder reactions (RTOG were observed in 50 (32.1 % patients, of whom 48 (30.8 % experienced grade I reactions, and 2 (1.3 % experienced grade II reactions. Eighteen (11.5 % patients had radiation-induced rectum reactions, not above grade I. The development of grade II dysuric phenomena necessitated treatment interruption only in two patients. Of 9 (5.8 % patients who had late bladder complica- tions (RTOG/EORTC, 8 (5.1 % patients developed grade I complications, and one (0.6 % patient developed grade II complications. Of 11 (7.1 % patients who had rectum complications, 8 (5.1 % patients developed grade I complications, and 3 (1.9 % patients developed grade II complications. No patients experienced the increase in toxicity of treatment during dose escalation up to a total dose exceeding 70 Gy. During the follow-up period, only one patient developed recurrent disease. Conclusion. The results of our study suggest acceptable levels of toxicity following a continuous course of dose-escalated EBRT given in conjunction with hormono-radiotherapy to prostate cancer patients. Further

  16. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  17. Magneto-radiotherapy: using magnetic fields to guide dose deposition

    International Nuclear Information System (INIS)

    Nettelbeck, H.; Lerch, M.; Takacs, G.; Rosenfeld, A.

    2006-01-01

    Full text: Magneto-radiotherapy is the application of magnetic fields during radiotherapy procedures. It aims to improve the quality of cancer treatment by using magnetic fields to 1 g uide the dose-deposition of electrons in tissue. Monte Carlo (MC) studies have investigated magneto-radiotherapy applied to conventional photon and electron linac beams. In this study, a combination of MC PENELOPE simulations and physical experiments were done to investigate magneto-radiotherapy applied to MRT (Microbeam Radiation Therapy) and conventional linac radiotherapy.

  18. Dose calculation system for remotely supporting radiotherapy

    International Nuclear Information System (INIS)

    Saito, K.; Kunieda, E.; Narita, Y.; Kimura, H.; Hirai, M.; Deloar, H. M.; Kaneko, K.; Ozaki, M.; Fujisaki, T.; Myojoyama, A.; Saitoh, H.

    2005-01-01

    The dose calculation system IMAGINE is being developed keeping in mind remotely supporting external radiation therapy using photon beams. The system is expected to provide an accurate picture of the dose distribution in a patient body, using a Monte Carlo calculation that employs precise models of the patient body and irradiation head. The dose calculation will be performed utilising super-parallel computing at the dose calculation centre, which is equipped with the ITBL computer, and the calculated results will be transferred through a network. The system is intended to support the quality assurance of current, widely carried out radiotherapy and, further, to promote the prevalence of advanced radiotherapy. Prototypes of the modules constituting the system have already been constructed and used to obtain basic data that are necessary in order to decide on the concrete design of the system. The final system will be completed in 2007. (authors)

  19. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek [Poznan University of Medical Sciences, Department of Pediatric Oncology, Hematology and Transplantology, Poznan (Poland); Pawlak, Mikolaj A. [Poznan University of Medical Sciences, Department of Neurology and Cerebrovascular Disorders, Poznan (Poland); Karmelita-Katulska, Katarzyna [Poznan University of Medical Sciences, Department of Neuroradiology, Poznan (Poland)

    2017-02-15

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  20. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    International Nuclear Information System (INIS)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek; Pawlak, Mikolaj A.; Karmelita-Katulska, Katarzyna

    2017-01-01

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  1. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  2. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  3. Particle therapy

    International Nuclear Information System (INIS)

    Raju, M.R.

    1993-01-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  4. Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models

    International Nuclear Information System (INIS)

    Soehn, Matthias; Yan Di; Liang Jian; Meldolesi, Elisa; Vargas, Carlos; Alber, Markus

    2007-01-01

    Purpose: Accurate modeling of rectal complications based on dose-volume histogram (DVH) data are necessary to allow safe dose escalation in radiotherapy of prostate cancer. We applied different equivalent uniform dose (EUD)-based and dose-volume-based normal tissue complication probability (NTCP) models to rectal wall DVHs and follow-up data for 319 prostate cancer patients to identify the dosimetric factors most predictive for Grade ≥ 2 rectal bleeding. Methods and Materials: Data for 319 patients treated at the William Beaumont Hospital with three-dimensional conformal radiotherapy (3D-CRT) under an adaptive radiotherapy protocol were used for this study. The following models were considered: (1) Lyman model and (2) logit-formula with DVH reduced to generalized EUD (3) serial reconstruction unit (RU) model (4) Poisson-EUD model, and (5) mean dose- and (6) cutoff dose-logistic regression model. The parameters and their confidence intervals were determined using maximum likelihood estimation. Results: Of the patients, 51 (16.0%) showed Grade 2 or higher bleeding. As assessed qualitatively and quantitatively, the Lyman- and Logit-EUD, serial RU, and Poisson-EUD model fitted the data very well. Rectal wall mean dose did not correlate to Grade 2 or higher bleeding. For the cutoff dose model, the volume receiving > 73.7 Gy showed most significant correlation to bleeding. However, this model fitted the data more poorly than the EUD-based models. Conclusions: Our study clearly confirms a volume effect for late rectal bleeding. This can be described very well by the EUD-like models, of which the serial RU- and Poisson-EUD model can describe the data with only two parameters. Dose-volume-based cutoff-dose models performed worse

  5. Feasibility of preference-driven radiotherapy dose treatment planning to support shared decision making in anal cancer

    DEFF Research Database (Denmark)

    Rønde, Heidi S; Wee, Leonard; Pløen, John

    2017-01-01

    PURPOSE/OBJECTIVE: Chemo-radiotherapy is an established primary curative treatment for anal cancer, but clinically equal rationale for different target doses exists. If joint preferences (physician and patient) are used to determine acceptable tradeoffs in radiotherapy treatment planning, multipl...... that preference-informed dose planning is feasible for clinical studies utilizing shared decision making....... dose plans must be simultaneously explored. We quantified the degree to which different toxicity priorities might be incorporated into treatment plan selection, to elucidate the feasible decision space for shared decision making in anal cancer radiotherapy. MATERIAL AND METHODS: Retrospective plans.......7%-points; (0.3; 30.6); p decision space available in anal cancer radiotherapy to incorporate preferences, although tradeoffs are highly patient-dependent. This study demonstrates...

  6. Analysis of Biochemical Control and Prognostic Factors in Patients Treated With Either Low-Dose Three-Dimensional Conformal Radiation Therapy or High-Dose Intensity-Modulated Radiotherapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Vora, Sujay A.; Wong, William W.; Schild, Steven E.; Ezzell, Gary A.; Halyard, Michele Y.

    2007-01-01

    Purpose: To identify prognostic factors and evaluate biochemical control rates for patients with localized prostate cancer treated with either high-dose intensity-modulated radiotherapy (IMRT) or conventional-dose three-dimensional conformal radiotherapy 3D-CRT. Methods: Four hundred sixteen patients with a minimum follow-up of 3 years (median, 5 years) were included. Two hundred seventy-one patients received 3D-CRT with a median dose of 68.4 Gy (range, 66-71 Gy). The next 145 patients received IMRT with a median dose of 75.6 Gy (range, 70.2-77.4 Gy). Biochemical control rates were calculated according to both American Society for Therapeutic Radiology and Oncology (ASTRO) consensus definitions. Prognostic factors were identified using both univariate and multivariate analyses. Results: The 5-year biochemical control rate was 60.4% for 3D-CRT and 74.1% for IMRT (p < 0.0001, first ASTRO Consensus definition). Using the ASTRO Phoenix definition, the 5-year biochemical control rate was 74.4% and 84.6% with 3D-RT and IMRT, respectively (p = 0.0326). Univariate analyses determined that PSA level, T stage, Gleason score, perineural invasion, and radiation dose were predictive of biochemical control. On multivariate analysis, dose, Gleason score, and perineural invasion remained significant. Conclusion: On the basis of both ASTRO definitions, dose, Gleason score, and perineural invasion were predictive of biochemical control. Intensity-modulated radiotherapy allowed delivery of higher doses of radiation with very low toxicity, resulting in improved biochemical control

  7. Entrance and peripheral dose measurements during radiotherapy

    International Nuclear Information System (INIS)

    Sulieman, A.; Kappas, K.; Theodorou, K.

    2008-01-01

    In vivo dosimetry of entrance dose was performed using thermoluminescent dosimeters (TLD) in order to evaluate the clinical application of the build up caps in patient dose measurements and for different treatment techniques. Peripheral dose (thyroid and skin) was measured for patients during breast radiotherapy to evaluate the probability of secondary cancer induction. TLD-100 chips were used with different Copper build up caps (for 6 MV and 15 MV photon beams from two linear accelerators. Entrance doses were measured for patients during radiotherapy course for breast, head and neck, abdomen and pelvis malignancies. The measured entrance dose for the different patients for 6 MV beams is found to be within the ±2.6% compared to the dose derived from theoretical estimation (normalized dose at D max ). The same measurements for 15 MV beams are found to be ±3 %. The perturbation value can reach up to 20% of the D max , which acts as a limitation for entrance dose measurements. An average thyroid skin dose of 3.7% of the prescribed dose was measured per treatment session while the mean skin dose breast treatment session is estimated to be 42% of D max , for both internal and external fields. These results are comparable in those of the in vivo of reported in literature. The risk of fatality due to thyroid cancer per treatment course is 3x10 -3

  8. Evaluation of lens dose in medulloblastoma radiotherapy

    International Nuclear Information System (INIS)

    Oliveira, F.L.; Vilela, E.C.; Sousa, S.A; Lima, F.F. de

    2007-01-01

    The improvement of the applied radiotherapy techniques in the cranial-spinal therapy, which is used in the cases of medulloblastoma, aims the reduction of the risks of future damages in enclosed critical agencies in the irradiation fields. This work aims to evaluate the lens doses due two common techniques used in medulloblastoma radiotherapy. For this, thermoluminescent dosimeters, previously calibrated, were located in an anthropomorphic phantom (ALDERSON - RANDON Laboratory), in the tumor and lens positions. The employed techniques were as following: (1) angled fields technique and (2) half-beam block technique. The phantom was irradiated five times in each technique with two lateral opposed fields in the brain with a total prescribed dose of 1.5 Gy, followed of two posterior spinal fields with the same prescribed dose, using a 6MV accelerator. The results showed that the doses in the first technique were 0.10 +- 0,04 Gy and, in second one, 0.09 +- 0,02 Gy. It was observed that, independent of the employed technique, the lens doses practically are the same. (author)

  9. Neoadjuvant concurrent chemoradiotherapy followed by definitive high-dose radiotherapy or surgery for operable thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Masao, Murakami; Yasumasa, Kuroda; Yosiaki, Okamoto; Koichi, Kono; Eisaku, Yoden; Fusako, Kusumi; Kiyoshi, Hajiro; Satoru, Matsusue; Hiroshi, Takeda

    1997-01-01

    Purpose: A prospective clinical trial was undertaken to investigate the feasibility of concurrent chemoradiotherapy for the esophageal carcinoma. Materials and Methods: Between June 1989 and May 1996, forty patients with operable squamous cell carcinoma of the thoracic esophagus (stage 0 to III: UICC 1987), aged 45 to 78 (mean:64), were enrolled in a study of neoadjuvant concurrent chemoradiotherapy followed by definitive high-dose radiotherapy (CRT group) or surgery (CRT-S group). Neoadjuvant chemoradiotherapy consisted of 44Gy in 40 fractions for 4 weeks (2.2Gy/2Fr./day) through 10MVX rays, with one or two courses of cisplatin (80-150mg/body, mean:90mg/m 2 , day 1, bolus injection) and 5-fluorouracil (500-1500mg/body/day, mean:600mg/m 2 , day 1-4, continuous infusion). After completion of neoadjuvant chemoradiotherapy, clinical complete response (CR) was observed in 16 patients, partial response (PR) in 22, and no change (NC) in 2. Thirty responding patients (CR:16, PR:14) entered in CRT group, and 10 non-responding patients (PR:8, NC:2) followed by surgery (CRT-S group). A cumulative median dose of 66Gy for Tis,T1 and 71Gy for T2-T4 tumor with/without high-dose-rate intraluminal brachytherapy, and one to three courses of chemotherapy were delivered in CRT group. Intraoperative radiotherapy for abdominal lymphatic system and postoperative supraclavicular irradiation were added in CRT-S group. Results: Clinical CR rate at the completion of treatment showed 90% in CRT group, and pathological CR rate 10% in CRT-S group. The overall median survival was 45 months, survival at 1, 2, 3 years being 100%, 72%, 56%, respectively. Loco-regional failure was observed in 7 patients (all in CRT group), distant failure in 6 (3 in CRT group, 3 in CRT-S group) and loco-regional with distant failure in 1 (CRT group). Four patients of loco-regional recurrence in CRT group were salvaged by surgery. Overall survival at 2-, 3-years for CRT vs. CRT-S group was 72%, 64% vs. (1(1)); 100

  10. Clinical results in heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; Quivey, J.M.; Saunders, W.M.; Woodruff, K.H.; Chen, G.T.Y.; Lyman, J.T.; Pitluck, S.; Tobias, C.A.; Walton, R.E.; Peters, T.C.

    1980-01-01

    The chapter presents an overview of the use of heavy particles in human cancer radiotherapy. The biophysical characteristics and rationale for using heavy charged particle therapy are explored. The clinical experience with carbon, neon, argon and helium are summarized for various types of tumors including carcinomas of the uterine cervix and lung, skin melanomas and metastatic sarcomas. No obvious normal tissue complications have appeared

  11. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  12. Fetal dose reduction in head and neck radiotherapy of a pregnant woman

    International Nuclear Information System (INIS)

    Moeckli, R.; Pache, G.; Valley, J.F.; Ozsahin, M.; Mirimanoff, R.O.; Azria, D.

    2004-01-01

    Background and purpose: a pregnant woman was referred for post-operative radiotherapy of a malignant schwannoma in the head and neck region. A best-treatment plan was devised in order to minimize the fetal dose. Material and methods: the fetal dose resulting from radiological examinations was determined according to international protocols, that resulting from radiotherapy was calculated according to recommendation 36 of the American Association of Physicists in Medicine (AAPM) Task Group. Pre-treatment dosimetry was performed with an anthropomorphic phantom. Several alternative treatment plans were evaluated. The use of a multileaf collimator (MLC) and a virtual wedge (VW) was compared to cerrobend blocks (CB) and physical wedge (PW). In-vivo dosimetry was performed using a vaginal probe containing thermoluminescent dosimeters (TLD). Results: the total fetal dose resulting from diagnostic and radiotherapy procedures was estimated to be 36 mGy. The technique based on MLC and VW was elected for patient treatment. Measurements for this configuration resulted in a fetal dose reduction of 82%. The shielding of the patient's abdomen further reduced the fetal dose by 42%. Conclusion: the use of VW and MLC for the treatment of a pregnant woman is highly recommended. Each case should be individually studied with pre-treatment and in-vivo dosimetry. (orig.)

  13. Prognostic factors of inoperable localized lung cancer treated by high dose radiotherapy

    International Nuclear Information System (INIS)

    Schaake-Koning, C.S.; Schuster-Uitterhoeve, L.; Hart, G.; Gonzalez, D.G.

    1983-01-01

    A retrospective study was made of the results of high dose radiotherapy (greater than or equal to 50 Gy) given to 171 patients with inoperable, intrathoracic non small cell lung cancer from January 1971-April 1973. Local control was dependent on the total tumor dose: after one year local control was 63% for patients treated with >65 Gy, the two year local control was 35%. If treated with 2 , the one year local control was 72%; the two year local control was 44%. Local control was also influenced by the performance status, by the localization of the primary tumor in the left upper lobe and in the periphery of the lung. Local control for tumors in the left upper lobe and in the periphery of the lung was about 70% after one year, and about 40% after two years. The one and two years survival results were correlated with the factors influencing local control. The dose factor, the localization factors and the performance influenced local control independently. Tumors localized in the left upper lobe did metastasize less than tumors in the lower lobe, or in a combination of the two. This was not true for the right upper lobe. No correlation between the TNM system, pathology and the prognosis was found

  14. Cardiovascular risks associated with low dose ionizing particle radiation.

    Directory of Open Access Journals (Sweden)

    Xinhua Yan

    Full Text Available Previous epidemiologic data demonstrate that cardiovascular (CV morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ((1H; 0.5 Gy, 1 GeV and iron ion ((56Fe; 0.15 Gy, 1GeV/nucleon irradiation with and without an acute myocardial ischemia (AMI event in mice. We show that cardiac function of proton-irradiated mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in (56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, (56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.

  15. Does fast-neutron radiotherapy merely reduce the radiation dose

    International Nuclear Information System (INIS)

    Ando, Koichi

    1984-01-01

    We examined whether fast-neutron radiotherapy is superior to low-LET radiotherpy by comparing the relationship between cell survival and tumor control probabilities after exposure of tumor-bearing (species) to the two modalities. Analysis based on TCD 50 assay and lung colony assay indicated that single dose of fast neutron achieved animal cures at higher survival rates than other radiation modalities including single and fractionated γ-ray doses, fractionated doses of fast neutron, and the mixed-beam scheme with a sequence of N-γ-γ-γ-N. We conclude that fast-neutron radiotherapy cured animal tumors with lower cell killing rates other radiation modalities. (author)

  16. Application of biological effective dose (BED) to estimate the duration of symptomatic relief and repopulation dose equivalent in palliative radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Jones, Bleddyn; Cominos, Matilda; Dale, Roger G.

    2003-01-01

    Purpose: To investigate the potential for mathematic modeling in the assessment of symptom relief in palliative radiotherapy and cytotoxic chemotherapy. Methods: The linear quadratic model of radiation effect with the overall treatment time and the daily dose equivalent of repopulation is modified to include the regrowth time after completion of therapy. Results: The predicted times to restore the original tumor volumes after treatment are dependent on the biological effective dose (BED) delivered and the repopulation parameter (K); it is also possible to estimate K values from analysis of palliative treatment response durations. Hypofractionated radiotherapy given at a low total dose may produce long symptom relief in slow-growing tumors because of their low α/β ratios (which confer high fraction sensitivity) and their slow regrowth rates. Cancers that have high α/β ratios (which confer low fraction sensitivity), and that are expected to repopulate rapidly during therapy, are predicted to have short durations of symptom control. The BED concept can be used to estimate the equivalent dose of radiotherapy that will achieve the same duration of symptom relief as palliative chemotherapy. Conclusion: Relatively simple radiobiologic modeling can be used to guide decision-making regarding the choice of the most appropriate palliative schedules and has important implications in the design of radiotherapy or chemotherapy clinical trials. The methods described provide a rationalization for treatment selection in a wide variety of tumors

  17. Steep Dose-Response Relationship for Stage I Non-Small-Cell Lung Cancer Using Hypofractionated High-Dose Irradiation by Real-Time Tumor-Tracking Radiotherapy

    International Nuclear Information System (INIS)

    Onimaru, Rikiya; Fujino, Masaharu; Yamazaki, Koichi; Onodera, Yuya; Taguchi, Hiroshi; Katoh, Norio; Hommura, Fumihiro; Oizumi, Satoshi; Nishimura, Masaharu; Shirato, Hiroki

    2008-01-01

    Purpose: To investigate the clinical outcomes of patients with pathologically proven, peripherally located, Stage I non-small-cell lung cancer who had undergone stereotactic body radiotherapy using real-time tumor tracking radiotherapy during the developmental period. Methods and Materials: A total of 41 patients (25 with Stage T1 and 16 with Stage T2) were admitted to the study between February 2000 and June 2005. A 5-mm planning target volume margin was added to the clinical target volume determined with computed tomography at the end of the expiratory phase. The gating window ranged from ±2 to 3 mm. The dose fractionation schedule was 40 or 48 Gy in four fractions within 1 week. The dose was prescribed at the center of the planning target volume, giving more than an 80% dose at the planning target volume periphery. Results: For 28 patients treated with 48 Gy in four fractions, the overall actuarial survival rate at 3 years was 82% for those with Stage IA and 32% for those with Stage IB. For patients treated with 40 Gy in four fractions within 1 week, the overall actuarial survival rate at 3 years was 50% for those with Stage IA and 0% for those with Stage IB. A significant difference was found in local control between those with Stage IB who received 40 Gy vs. 48 Gy (p = 0.0015) but not in those with Stage IA (p = 0.5811). No serious radiation morbidity was observed with either dose schedule. Conclusion: The results of our study have shown that 48 Gy in four fractions within 1 week is a safe and effective treatment for peripherally located, Stage IA non-small-cell lung cancer. A steep dose-response curve between 40 and 48 Gy using a daily dose of 12 Gy delivered within 1 week was identified for Stage IB non-small-cell lung cancer in stereotactic body radiotherapy using real-time tumor tracking radiotherapy

  18. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chibani, O; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Eldib, A [Fox Chase Cancer Center, Philadelphia, PA (United States); University Cairo (Egypt); Mora, G [de Lisboa, Codex, Lisboa (Portugal)

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  19. Neoadjuvant androgen deprivation and long-term results for patients with intermediate- and high-risk prostate cancer treated with high-dose rate brachytherapy and external beam radiotherapy

    International Nuclear Information System (INIS)

    Pellizzon, Antonio Cassio Assis; Fogaroli, Ricardo Cesar; Silva, Maria Leticia Gobo; Castro, Douglas Guedes; Maia, Maria Conte

    2010-01-01

    Purpose: to evaluate the influence of neoadjuvant androgen deprivation (NAAD) and report the long term biochemical control rates according to the Phoenix Consensus Conference, and prognostic factors of intermediate- (IR) and high-risk (HR) prostate cancer treated with external beam radiotherapy and high-dose-rate brachytherapy (HDR-BT). Methods and materials: between March, 1997 and June, 2005, 184 patients considered IR or HR were treated with localized radiotherapy and HDR-BT at the Department of Radiation Oncology, Hospital A.C. Camargo, Sao Paulo, Brazil. Patient's age, Gleason score, clinical stage, initial PSA value, risk group for biochemical failure, presence of NAAD, doses of radiotherapy and HDR-BT were evaluated. Results: median age and follow-up were 70 years old (range, 47-83) and 74.5 months (range, 24-123 months), respectively. Patients considered IR were 91 (49.4%) and HR 93 (50.6%). Ninety-nine (53.8%) patients had no NAAD. The overall survival at 5 years was 93.6%. The 5-year actuarial biochemical control rates for all patients, IR and HR were 83.4%, 86.2% and 78.8%, respectively, p0.076. On univariate analysis the prognostic factors related to better biochemical control were Gleason score 45 Gy (p= 0.011) and HDR-BT dose > 20 Gy (p< 0.001). On multivariate analysis no statistical significant predictive factor related to biochemical control was found. Conclusions: the role of NAAD for IR and HR prostate cancer is still to be defined. HDR-BT combined to external radiotherapy is a successful form of treatment for these patients, with our results comparable to published data. (author)

  20. Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurements

    International Nuclear Information System (INIS)

    Boudou, C; Tropres, I; Rousseau, J; Lamalle, L; Adam, J F; Esteve, F; Elleaume, H

    2007-01-01

    Synchrotron stereotactic radiotherapy (SSR) is a radiotherapy technique that makes use of the interactions of monochromatic low energy x-rays with high atomic number (Z) elements. An important dose-enhancement can be obtained if the target volume has been loaded with a sufficient amount of a high-Z element, such as iodine. In this study, we compare experimental dose measurements, obtained with normoxic polymer gel (nPAG), with Monte Carlo computations. Gels were irradiated within an anthropomorphic head phantom and were read out by magnetic resonance imaging. The dose-enhancement due to the presence of iodine in the gel (iodine concentration: 5 and 10 mg ml -1 ) was measured at two radiation energies (35 and 80 keV) and was compared to the calculated factors. nPAG dosimetry was shown to be efficient for measuring the sharp dose gradients produced by SSR. The agreement between 3D gel dosimetry and calculated dose distributions was found to be within 4% of the dose difference criterion and a distance to agreement of 2.1 mm for 80% of the voxels. Polymer gel doped with iodine exhibited higher sensitivity, in good agreement with the calculated iodine-dose enhancement. We demonstrate in this preliminary study that iodine-doped nPAG could be used for measuring in situ dose distributions for iodine-enhanced SSR treatment

  1. On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Lahmer, G.; Brandt, T.; Kallis, K.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient’s anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.

  2. Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy

    International Nuclear Information System (INIS)

    Henríquez Hernández, Luis Alberto; Lara, Pedro Carlos; Pinar, Beatriz; Bordón, Elisa; Gallego, Carlos Rodríguez; Bilbao, Cristina; Pérez, Leandro Fernández; Morales, Amílcar Flores

    2009-01-01

    Breast cancer patients show a wide variation in normal tissue reactions after radiotherapy. The individual sensitivity to x-rays limits the efficiency of the therapy. Prediction of individual sensitivity to radiotherapy could help to select the radiation protocol and to improve treatment results. The aim of this study was to assess the relationship between gene expression profiles of ex vivo un-irradiated and irradiated lymphocytes and the development of toxicity due to high-dose hyperfractionated radiotherapy in patients with locally advanced breast cancer. Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database http://www.ncbi.nlm.nih.gov/geo/ (GEO accession GSE15341). We obtained a small group of 81 genes significantly regulated by radiotherapy, lumped in 50 relevant pathways. Using ANOVA and t-test statistical tools we found 20 and 26 constitutive genes (0 Gy) that segregate patients with and without acute and late toxicity, respectively. Non-supervised hierarchical clustering was used for the visualization of results. Six and 9 pathways were significantly regulated respectively. Concerning to irradiated lymphocytes (2 Gy), we founded 29 genes that separate patients with acute toxicity and without it. Those genes were gathered in 4 significant pathways. We could not identify a set of genes that segregates patients with and without late toxicity. In conclusion, we have found an association between the constitutive gene expression profile of peripheral blood lymphocytes and the development of acute and late toxicity in consecutive, unselected patients. These observations suggest the possibility of predicting normal tissue response to irradiation in high-dose non-conventional radiation therapy regimens. Prospective studies with higher number of patients are needed to validate these preliminary results

  3. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  4. Nonrandomized study comparing the effects of preoperative radiotherapy and daily administration of low-dose cisplatin with those radiotherapy alone for oral cancer

    International Nuclear Information System (INIS)

    Kurita, Hiroshi; Azegami, Takuya; Kobayashi, Hirokazu; Kurashina, Kenji; Tanaka, Kouichi; Kotani, Akira; Oguchi, Masahiko; Tamura, Minoru.

    1997-01-01

    The purpose of this study was to compare the effect of preoperative radiotherapy and daily administration of low-dose cisplatin with those of radiotherapy alone for oral cancer. Ten patients underwent preoperative radiotherapy of 30 to 40 Gy with concomitant daily administration of low-dose cisplatin (5 mg/body or 5 mg/m 2 ). Ten patients received external radiotherapy alone. The locoregional response rates (complete response and partial response) did not differ significantly between the two groups (80% for combined therapy and 60% for radiotherapy alone). On histopathologic evaluation of surgical specimens, however, the combined-therapy group (80%) had a higher response rate than did the radiotherapy-alone group (10%; p<0.01). We conclude that daily administration of low-dose cisplatin enhances the efficacy of radiotherapy against primary tumors. We also suggested that combined therapy may be beneficial as an initial treatment for oral cancer before a planned operation. (author)

  5. Dose profile measurements during respiratory-gated lung stereotactic radiotherapy: A phantom study

    International Nuclear Information System (INIS)

    Jong, W L; Ung, N M; Wong, J H D; Ng, K H

    2016-01-01

    During stereotactic body radiotherapy, high radiation dose (∼60 Gy) is delivered to the tumour in small fractionation regime. In this study, the dosimetric characteristics were studied using radiochromic film during respiratory-gated and non-gated lung stereotactic body radiotherapy (SBRT). Specifically, the effect of respiratory cycle and amplitude, as well as gating window on the dosimetry were studied. In this study, the dose profiles along the irradiated area were measured. The dose profiles for respiratory-gated radiation delivery with different respiratory or tumour motion amplitudes, gating windows and respiratory time per cycle were in agreement with static radiation delivery. The respiratory gating system was able to deliver the radiation dose accurately (±1.05 mm) in the longitudinal direction. Although the treatment time for respiratory-gated SBRT was prolonged, this approach can potentially reduce the margin for internal tumour volume without compromising the tumour coverage. In addition, the normal tissue sparing effect can be improved. (paper)

  6. Development of dose audits for complex treatment techniques in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M., E-mail: stefanic@cae.cnea.gov.ar [Centro Regional de Referencia con Patrones Secundarios para Dosimetria - CNEA, Presbitero Juan Gonzalez y Aragon 15, B1802AYA Ezeiza (Argentina)

    2014-08-15

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  7. Development of dose audits for complex treatment techniques in radiotherapy

    International Nuclear Information System (INIS)

    Stefanic, A. M.; Molina, L.; Vallejos, M.; Montano, G.; Zaretzky, A.; Saravi, M.

    2014-08-01

    This work was performed in the frame of a Coordinated Research Project (CRP) with IAEA whose objective was to extend the scope of activities carried out by national TLD-based networks from dosimetry audit for rectangular radiation fields to irregular and small fields relevant to modern radiotherapy. External audit is a crucial element in QA programmes for clinical dosimetry in radiotherapy, therefore a methodology and procedures were developed and were made available for dose measurement of complex radiotherapy parameters used for cancer treatment. There were three audit steps involved in this CRP: TLD based dosimetry for irregular MLC fields for conformal radiotherapy, dosimetry in the presence of heterogeneities and 2D MLC shaped fields relevant to stereotactic radiotherapy and applicable to dosimetry for IMRT. In addition, a new development of film-based 2D dosimetry for testing dose distributions in small field geometry was included. The plan for each audit step involved a pilot study and a trial audit run with a few local hospitals. The pilot study focused on conducting and evaluation of the audit procedures with all participants. The trial audit run was the running of the audit procedures by the participants to test them with a few local radiotherapy hospitals. This work intends to provide audits which are much nearer clinical practice than previous audits as they involve significant testing of Tps methods, as well as verifications to determinate whether hospitals can correctly calculate dose delivery in radiation treatments. (author)

  8. Effect of Concurrent High-Dose Cisplatin Chemotherapy and Conformal Radiotherapy on Cervical Esophageal Cancer Survival

    International Nuclear Information System (INIS)

    Huang Shaohui; Lockwood, Gina; Brierley, James; Cummings, Bernard; Kim, John; Wong, Rebecca; Bayley, Andrew; Ringash, Jolie

    2008-01-01

    Purpose: To determine whether a change in treatment policy to conformal, elective nodal radiotherapy and concurrent high-dose cisplatin improved survival for cervical esophageal cancer patients. Methods and Materials: All cervical esophageal cancer patients treated between 1997 and 2005 were restaged (1983 American Joint Committee on Cancer criteria). Patients treated before 2001 (previous cohort [PC]) were compared with those treated from 2001 onward (recent cohort [RC]). The PC institutional chemoradiotherapy protocol was 54 Gy in 20 fractions within 4 weeks, with 5-fluorouracil (1,000 mg/m 2 ) on Days 1-4 and either mitomycin C (10 mg/m 2 ) or cisplatin (75 mg/m 2 ) on Day 1. The RC institutional chemoradiotherapy protocol was conformal radiotherapy, 70 Gy in 35 fractions within 7 weeks, to the primary tumor and elective nodes, with high-dose cisplatin (100 mg/m 2 ) on Days 1, 22, and 43. Results: The median follow-up was 3.1 years (PC, 8.1 and RC, 2.3). Of 71 patients (25 women and 46 men), 21 of 29 in the PC and 29 of 42 in the RC were treated curatively (curative subgroup, n = 50). Between the two groups, no differences in overall survival or locoregional relapse-free survival were seen. The overall survival rate at 2 and 5 years was 35% (range, 24-47%) and 21% (range, 12-32%) in the whole group and 46% (range 32-60%) and 28% (range, 15-42%) in the curative group, respectively. In the curative group, no statistically significant prognostic factors were found. Trends toward better locoregional relapse-free survival were seen in women (2-year rate, 73% vs. for men, 36%; p = 0.08) and in patients aged >64 years (2-year rate, 68% vs. age ≤64 years, 34%; p = 0.10). Conclusion: No survival improvement could be demonstrated after changing the treatment policy to high-dose cisplatin-based, conventionally fractionated conformal chemoradiotherapy. Female gender and older age might predict for better outcomes

  9. Amino acid transport system - A substrate predicts the therapeutic effects of particle radiotherapy.

    Directory of Open Access Journals (Sweden)

    Tomoya Uehara

    Full Text Available L-[methyl-11C]Methionine (11C-Met is useful for estimating the therapeutic efficacy of particle radiotherapy at early stages of the treatment. Given the short half-life of 11C, the development of longer-lived 18F- and 123I-labeled probes that afford diagnostic information similar to 11C-Met, are being sought. Tumor uptake of 11C-Met is involved in many cellular functions such as amino acid transport System-L, protein synthesis, and transmethylation. Among these processes, since the energy-dependent intracellular functions involved with 11C-Met are more reflective of the radiotherapeutic effects, we evaluated the activity of the amino acid transport System-A as an another energy-dependent cellular function in order to estimate radiotherapeutic effects. In this study, using a carbon-ion beam as the radiation source, the activity of System-A was evaluated by a specific System-A substrate, alpha-[1-14C]-methyl-aminoisobutyric acid (14C-MeAIB. Cellular growth and the accumulation of 14C-MeAIB or 14C-Met were evaluated over time in vitro in cultured human salivary gland (HSG tumor cells (3-Gy or in vivo in murine xenografts of HSG tumors (6- or 25-Gy before and after irradiation with the carbon-ion beam. Post 3-Gy irradiation, in vitro accumulation of 14C-Met and 14C-MeAIB decreased over a 5-day period. In xenografts of HSG tumors in mice, tumor re-growth was observed in vivo on day-10 after a 6-Gy irradiation dose, but no re-growth was detected after the 25-Gy irradiation dose. Consistent with the growth results, the in vivo tumor accumulation of 14C-MeAIB did not decrease after the 6-Gy irradiation dose, whereas a significant decrease was observed after the 25-Gy irradiation dose. These results indicate that the activity of energy dependent System-A transporter may reflect the therapeutic efficacy of carbon-ion radiotherapy and suggests that longer half-life radionuclide-labeled probes for System-A may also provide widely available probes to

  10. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  11. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy

    International Nuclear Information System (INIS)

    Shah, Chirag; Badiyan, Shahed; Berry, Sameer; Khan, Atif J.; Goyal, Sharad; Schulte, Kevin; Nanavati, Anish; Lynch, Melanie; Vicini, Frank A.

    2014-01-01

    Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging

  12. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Directory of Open Access Journals (Sweden)

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  13. Dose-response relationship with radiotherapy: an evidence?

    International Nuclear Information System (INIS)

    Chauvet, B.; Rauglaudre, G. de; Mineur, L.; Alfonsi, M.; Reboul, F.

    2003-01-01

    The dose-response relationship is a fundamental basis of radiobiology. Despite many clinical data, difficulties remain to demonstrate a relation between dose and local control: relative role of treatment associated with radiation therapy (surgery, chemotherapy, hormonal therapy), tumor heterogeneity, few prospective randomized studies, uncertainty of local control assessment. Three different situations are discussed: tumors with high local control probabilities for which dose effect is demonstrated by randomized studies (breast cancer) or sound retrospective data (soft tissues sarcomas), tumors with intermediate local control probabilities for which dose effect seems to be important according to retrospective studies and ongoing or published phase III trials (prostate cancer), tumors with low local control probabilities for which dose effect appears to be modest beyond standard doses, and inferior to the benefit of concurrent chemotherapy (lung and oesophageal cancer). For head and neck tumors, the dose-response relationship has been explored through hyperfractionation and accelerated radiation therapy and a dose effect has been demonstrated but must be compared to the benefit of concurrent chemotherapy. Last but not least, the development of conformal radiotherapy allow the exploration of the dose response relationship for tumors such as hepatocellular carcinomas traditionally excluded from the field of conventional radiation therapy. In conclusion, the dose-response relationship remains a sound basis of radiation therapy for many tumors and is a parameter to take into account for further randomized studies. (author)

  14. High-dose-rate brachytherapy as salvage modality for locally recurrent prostate cancer after definitive radiotherapy. A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Chatzikonstantinou, Georgios; Zamboglou, Nikolaos; Roedel, Claus; Tselis, Nikolaos [J.W. Goethe University of Frankfurt, Department of Radiotherapy and Oncology, Frankfurt am Main (Germany); Zoga, Eleni [Sana Klinikum Offenbach, Department of Radiotherapy and Oncology, Offenbach am Main (Germany); Strouthos, Iosif [Medical Center - University of Freiburg, Department of Radiotherapy and Oncology, University of Freiburg, Freiburg (Germany); Butt, Saeed Ahmed [Sana Klinikum Offenbach, Department of Medical Physics and Engineering, Offenbach am Main (Germany)

    2017-09-15

    To review the current status of interstitial high-dose-rate brachytherapy as a salvage modality (sHDR BRT) for locally recurrent prostate cancer after definitive radiotherapy (RT). A literature search was performed in PubMed using ''high-dose-rate, brachytherapy, prostate cancer, salvage'' as search terms. In all, 51 search results published between 2000 and 2016 were identified. Data tables were generated and summary descriptions created. The main outcome parameters used were biochemical control (BC) and toxicity scores. Eleven publications reported clinical outcome and toxicity with follow-up ranging from 4-191 months. A variety of dose and fractionation schedules were described, including 19.0 Gy in 2 fractions up to 42.0 Gy in 6 fractions. The 5-year BC ranged from 18-77%. Late grade 3 genitourinary and gastrointestinal toxicity was 0-32% and 0-5.1%, respectively. sHDR BRT appears as safe and effective salvage modality for the reirradiation of locally recurrent prostate cancer after definitive RT. (orig.) [German] Zusammenfassende Darstellung relevanter Literatur zur interstitiellen High-Dose-Rate-Brachytherapie als Salvage-Modalitaet (sHDR-BRT) bei der Behandlung des lokal rezidivierten Prostatakarzinoms nach vorausgegangener definitiver Radiotherapie (RT). In der PubMed-Datenbank wurde eine Literaturrecherche mit den Suchbegriffen ''high-dose-rate, brachytherapy, prostate cancer, salvage'' durchgefuehrt. Zwischen den Jahren 2000 und 2016 wurden 51 Publikationen identifiziert. Die biochemische Kontrolle (BC) sowie das assoziierte Toxizitaetsprofil waren onkologische Hauptpunkte in der Analyse der beruecksichtigten Literatur. Von onkologischen Ergebnissen und Toxizitaeten berichteten 11 Publikationen bei einer medianen Nachbeobachtungszeit von 4-191 Monaten. Eine Variabilitaet von Dosis- und Fraktionierungsregimen wurde beschrieben mit totalen physikalischen Dosen von 19,0 Gy in 2 Fraktionen bis zu 42,0 Gy in 6 Fraktionen

  15. Physical fundamentals of the application of heavy charged particles in radiotherapy

    International Nuclear Information System (INIS)

    Bueche, G.

    1977-01-01

    In the chapter 'Medical Applications' A 'Radiotherapy' of the study, the following subjects are treated in detail by various authors: Physical fundamentals of the application of heavy charged particles in radiotherapy-radiation-biological fundamentals; clinical aspects of radiotherapy with protons and negative pions; patients and clinical dosimetry. (MG) [de

  16. Single-dose radiotherapy for painful bone metastases

    International Nuclear Information System (INIS)

    Kal, H.B.

    1999-01-01

    Background: External beam radiotherapy is frequently applied for palliative treatment of painful bone lesions with a variety of fractionation schemes. There is a continuous interest to administer only 1 or a few dose fractions for inducing pain relief. Methods: A review of the literature was made with the aim to determine whether a treatment can be deduced that is simple and effective. The linear-quadratic (L-Q) concept was applied to compare reported therapy schemes which each other for the iso-effect pain relief. Results: Single-dose and fractionated radiotherapy resulted in partial or complete pain relief in about 80% of the patients. Complete responses have been observed in about 43% of the patients. For patients responding to treatment, the duration of pain relief is at least 3 to 4 months with reported duration of up to 1 year or even longer. Conclusion: Based on this review of literature data concerning randomized trials a treatment with a single dose of 8 Gy is effective for inducing pain relief. (orig.) [de

  17. Radiotherapy in addition to radical surgery in rectal cancer: evidence for a dose-response effect favoring preoperative treatment

    International Nuclear Information System (INIS)

    Glimelius, Bengt; Isacsson, Ulf; Jung, Bo; Paahlman, Lars

    1997-01-01

    Purpose: This study explored the relationship between radiation dose and reduction in local recurrence rate after preoperative and postoperative radiotherapy in rectal cancer. Methods and Materials: All randomized trials initiated prior to 1988 comparing preoperative and postoperative radiotherapy with surgery alone or with each other were included. Local failure rates were available in 5626 randomized patients. The linear quadratic formula was used to compensate for different radiotherapy schedules. Results: For preoperative radiotherapy, a clear dose-response relationship could be established. For postoperative radiotherapy, the range of doses was narrow, and a dose-response relationship could not be demonstrated. At similar doses, preoperative radiotherapy appeared to be more efficient in reducing local failure rate than postoperative. The only trial comparing preoperative with postoperative radiotherapy confirms this notion. A 15-20 Gy higher dose may be required postoperatively than preoperatively to reach similar efficacy. Neither approach alone significantly influences survival, although it is likely that a small survival benefit may be seen after preoperative radiotherapy. Conclusions: The information from the entire randomized experience suggests that preoperative radiotherapy may be more dose efficient than postoperative radiotherapy

  18. Biological dose estimation for charged-particle therapy using an improved PHITS code coupled with a microdosimetric kinetic model

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Watanabe, Ritsuko; Kase, Yuki; Niita, Koji; Sihver, Lembit

    2009-01-01

    High-energy heavy ions (HZE particles) have become widely used for radiotherapy of tumors owing to their high biological effectiveness. In the treatment planning of such charged-particle therapy, it is necessary to estimate not only physical but also biological dose, which is the product of physical dose and relative biological effectiveness (RBE). In the Heavy-ion Medical Accelerator in Chiba (HIMAC), the biological dose is estimated by a method proposed by Kanai et al., which is based on the linear-quadratic (LQ) model with its parameters α and β determined by the dose distribution in terms of the unrestricted linear energy transfer (LET). Thus, RBE is simply expressed as a function of LET in their model. However, RBE of HZE particles cannot be uniquely determined from their LET because of their large cross sections for high-energy δ-ray production. Hence, development of a biological dose estimation model that can explicitly consider the track structure of δ-rays around the trajectory of HZE particles is urgently needed. Microdosimetric quantities such as lineal energy y are better indexes for representing RBE of HZE particles in comparison to LET, since they can express the decrease of ionization densities around their trajectories due to the production of δ-rays. The difference of the concept between LET and y is illustrated in Figure 1. However, the use of microdosimetric quantities in computational dosimetry was severely limited because of the difficulty in calculating their probability densities (PDs) in macroscopic matter. We therefore improved the 3-dimensional particle transport simulation code PHITS, providing it with the capability of estimating the microdosimetric PDs in a macroscopic framework by incorporating a mathematical function that can instantaneously calculate the PDs around the trajectory of HZE particles with precision equivalent to a microscopic track-structure simulation. A new method for estimating biological dose from charged-particle

  19. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe; Wu Lili; Lin Zhixiong

    2012-01-01

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volume histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.

  20. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer.

    Science.gov (United States)

    Wilcox, Shea W; Aherne, Noel J; Benjamin, Linus C; Wu, Bosco; de Campos Silva, Thomaz; McLachlan, Craig S; McKay, Michael J; Last, Andrew J; Shakespeare, Thomas P

    2014-01-01

    Dose-escalated (DE) radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS) in several studies. In the same group of patients, androgen deprivation therapy (ADT) has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT) with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT) and ADT. Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2.1% and 3.4%, respectively. No grade 3 or 4 late toxicities were reported. Pretreatment prostate specific antigen (P=0.001) and Gleason score (P=0.03) were significant in predicting biochemical failure on multivariate analysis. There is a high probability of tumor control with DE IG-IMRT combined with androgen deprivation, and this is a technique with a low probability of significant late toxicity. Our long term results corroborate the safety and efficacy of treating with IG-IMRT to high doses and compares favorably with published series for

  1. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    International Nuclear Information System (INIS)

    Castro, J.R.

    1979-01-01

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles

  2. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  3. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  4. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gogna, Nirdosh Kumar, E-mail: kumar_gogna@health.qld.gov.au [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia); Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia); Burmeister, Elizabeth [Princess Alexandra Hospital, Brisbane, Queensland (Australia); Holt, Tanya [Radiation Oncology Services, Mater Centre, Brisbane, Queensland (Australia)

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  5. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    Science.gov (United States)

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  6. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  7. Universal Survival Curve and Single Fraction Equivalent Dose: Useful Tools in Understanding Potency of Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Park, Clint; Papiez, Lech; Zhang Shichuan; Story, Michael; Timmerman, Robert D.

    2008-01-01

    Purpose: Overprediction of the potency and toxicity of high-dose ablative radiotherapy such as stereotactic body radiotherapy (SBRT) by the linear quadratic (LQ) model led to many clinicians' hesitating to adopt this efficacious and well-tolerated therapeutic option. The aim of this study was to offer an alternative method of analyzing the effect of SBRT by constructing a universal survival curve (USC) that provides superior approximation of the experimentally measured survival curves in the ablative, high-dose range without losing the strengths of the LQ model around the shoulder. Methods and Materials: The USC was constructed by hybridizing two classic radiobiologic models: the LQ model and the multitarget model. We have assumed that the LQ model gives a good description for conventionally fractionated radiotherapy (CFRT) for the dose to the shoulder. For ablative doses beyond the shoulder, the survival curve is better described as a straight line as predicted by the multitarget model. The USC smoothly interpolates from a parabola predicted by the LQ model to the terminal asymptote of the multitarget model in the high-dose region. From the USC, we derived two equivalence functions, the biologically effective dose and the single fraction equivalent dose for both CFRT and SBRT. Results: The validity of the USC was tested by using previously published parameters of the LQ and multitarget models for non-small-cell lung cancer cell lines. A comparison of the goodness-of-fit of the LQ and USC models was made to a high-dose survival curve of the H460 non-small-cell lung cancer cell line. Conclusion: The USC can be used to compare the dose fractionation schemes of both CFRT and SBRT. The USC provides an empirically and a clinically well-justified rationale for SBRT while preserving the strengths of the LQ model for CFRT

  8. Low-dose radiotherapy as treatment for benign lymphoepitelial lesion in HIV-patients

    International Nuclear Information System (INIS)

    Gonzalez Patino, E.; Lopez Vazquez, M.D.; Cascallar Caneda, L.; Antinez Lopez, J.; Victoria Fernandez, C.; Salvador Garrido, N.; Ares Banobre, M.; Porto vazquez, M.C.

    1995-01-01

    Standard treatments for benign lymphoepitelial lesion of the parotid gland in patients infected with the human immunodeficiency virus (HIV) are unsatisfactory. Recently, low-dose radiotherapy has been proposed as a noninvasive treatment option. We describe a case of bilateral benign lymphoepitelial lesion parotid gland in a HIV-positive paint, treated by radiotherapy. Low-dose radiotherapy, appears as a alternative in the treatment for benign lymphoepitelial lesion in HIV-patients, and preliminary evaluations have indicated that this treatment is effective from both the clinical and cosmetic points of view

  9. Results of a Prospective Study of High-Dose or Conventional Anthracycline-Cyclophosphamide Regimen Plus Radiotherapy for Localized Adult Non-Hodgkin’s Primary Bone Lymphoma

    Directory of Open Access Journals (Sweden)

    A. Schmidt-Tanguy

    2014-01-01

    Full Text Available Background. Primary bone lymphoma (PBL is a rare entity that has only been reviewed in one prospective and small retrospective studies, from which it is difficult to establish treatment guidelines. We prospectively evaluated high-dose or conventional anthracycline-cyclophosphamide dose and radiotherapy for PBL. Patients and Methods. The GOELAMS prospective multicenter study (1986–1998 enrolled adults with localized high-grade PBL according to age and performance status (PS. Patients <60 years received a high-dose CHOP regimen (VCAP and those ≥60 years a conventional anthracycline-cyclophosphamide regimen (VCEP-bleomycin; all received intrathecal chemotherapy and local radiotherapy. Results. Among the 26 patients included (VCAP: 19; VCEP-bleomycin: 7, 39% had poor PS ≥2. With a median follow-up of 8 years, overall survival, event-free survival, and relapse-free survival were 64%, 62%, and 65%, respectively, with no significant difference between treatment groups. Poor PS was significantly associated with shorter OS and EFS. Conclusions. Our results confirm the efficacy of our age-based therapeutic strategy. High-doses anthracycline-cyclophosphamide did not improve the outcome. VCEP-bleomycin is effective and well tolerated for old patients. The intensification must be considered for patients with PS ≥2, a poor prognostic factor.

  10. External beam radiotherapy alone or combined with high-dose-rate intracavitary irradiation in the treatment of cancer of the esophagus

    International Nuclear Information System (INIS)

    Hishikawa, Y.; Taniguchi, M.; Kamikonya, N.; Tanaka, S.; Miura, T.

    1988-01-01

    Autopsy findings of 35 patients, treated with radiotherapy for an esophageal carcinoma, were reviewed. A residual tumor was seen at autopsy in 7 of 16 patients treated with high-dose-rate intracavitary irradiation following external irradiation, in 13 of 14 patients treated with external irradiation of 50 Gy or more, and in all 5 patients treated with external irradiation of less than 50 Gy. Incidence on lymph node metastasis, at autopsy, did not diifer between the combined radiotherapy group and the external irradiation groups. However, it correlated with disease stage. It was observed in 11 of 17 patients with Stage 1 and Stage 2 disease, compared to 17 of 18 patients with Stage 3 and Stage 4 disease. Distant organ metastasis, at autopsy, also did not differ between the combined radiotherapy group and the external irradiation groups, and was also correlated with disease stage. It was found in 8 of 17 patients with Stage 1 and Stage 2 disease, compared to all 18 patients with Stage 3 and Stage 4 disease. Mean survival was different between the patients treated by high-dose-rate intracavitary irradiation following external irradiation and those treated by external irradiation alone; 11.3 months in the 16 patients treated with combined therapy, as compared to 6.9 months in the 14 patients who received external irradiation of 50 Gy or more, and 3.6 months in the 5 patients who received external irradiation of less than 50 Gy. 6 refs.; 5 tabs

  11. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kamigyo-ku, Kyoto (Japan); Soseikai General Hospital, CyberKnife Center, Shimotoba Fushimi-ku, Kyoto (Japan); Demizu, Yusuke; Okimoto, Tomoaki [Hyogo Ion Beam Medical Center, Department of Radiology, Tatsuno, Hyogo (Japan); Ogita, Mikio [Fujimoto Hayasuzu Hospital, Radiotherapy Department, Miyakonojo, Miyazaki (Japan); Himei, Kengo [Japanese Red Cross Okayama Hospital, Department of Radiology, Okayama, Okayama (Japan); Nakamura, Satoaki; Suzuki, Gen [Kyoto Prefectural University of Medicine, Department of Radiology, Graduate School of Medical Science, Kamigyo-ku, Kyoto (Japan); Yoshida, Ken; Kotsuma, Tadayuki [National Hospital Organization Osaka National Hospital, Department of Radiation Oncology, Osaka, Osaka (Japan); Yoshioka, Yasuo [Osaka University Graduate School of Medicine, Department of Radiation Oncology, Suita, Osaka (Japan); Oh, Ryoongjin [Miyakojima IGRT Clinic, Osaka (Japan)

    2017-07-15

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1-year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3. (orig.) [German] Bestimmung der Ergebnisse einer Rebestrahlung von wiederkehrenden Kopf-Hals-Tumoren mittels verschiedener Modalitaeten. Die retrospektive Studie umfasst 26 Patienten, die mit der Ionenstrahlentherapie (CP), und 150 Patienten, die mit der Photonenstrahlentherapie (117 Stereotaxien [CK] und 36 intensitaetsmodulierte Strahlentherapien [IMRT]) behandelt

  12. Physical, biological and clinical basis of light ions using in radiotherapy: EULIMA project

    International Nuclear Information System (INIS)

    Chauvel, P.

    1991-01-01

    Improving the efficiency of radiotherapy is a constant concern in oncology: more than half of the patients who contract cancer receive radiotherapy at some stage. Use of charged particles in radiotherapy represents indisputable progress in localization of the dose delivered to tumour masses, thereby allowing reduction of dose received by adjacent healthy tissues. Protons improve the physical selectivity of the irradiation, i.e. the dose distribution. High-LET (Linear Energy Transfer) radiations produce different biological effects, decreasing the differences in radiosensitivity, and allowing radiation therapy to control radioresistant tumours. Fast neutrons represent the most known of these high-LET particles, but they suffer of a relatively poor physical selectivity. The two approaches (physical selectivity and biological advantages) are joined in by light ions (Carbon, Oxygen, Neon). Highly selective high-LET radiation therapy can be performed for radioresistant tumours without damage to healthy tissues. Preliminary results obtained in Berkeley (USA) demonstrate an improved local control of unresectable, slowly growing tumours, confirming what could be extrapolated from proton and neutrontherapy. Furthermore, radioactive light ion beams can be used to verify the accuracy of treatment planning by checking the range of the particle with a PET camera, and in the future for the treatment itself. In the framework of its programme Europe against Cancer, the Commission of the European Communities participates in the funding of the EULIMA (European Light Ion Medical Accelerator) project feasibility study, aiming to design an hospital-based light ion therapy facility in Europe [fr

  13. High-dose-rate brachytherapy as salvage modality for locally recurrent prostate cancer after definitive radiotherapy. A systematic review

    International Nuclear Information System (INIS)

    Chatzikonstantinou, Georgios; Zamboglou, Nikolaos; Roedel, Claus; Tselis, Nikolaos; Zoga, Eleni; Strouthos, Iosif; Butt, Saeed Ahmed

    2017-01-01

    To review the current status of interstitial high-dose-rate brachytherapy as a salvage modality (sHDR BRT) for locally recurrent prostate cancer after definitive radiotherapy (RT). A literature search was performed in PubMed using ''high-dose-rate, brachytherapy, prostate cancer, salvage'' as search terms. In all, 51 search results published between 2000 and 2016 were identified. Data tables were generated and summary descriptions created. The main outcome parameters used were biochemical control (BC) and toxicity scores. Eleven publications reported clinical outcome and toxicity with follow-up ranging from 4-191 months. A variety of dose and fractionation schedules were described, including 19.0 Gy in 2 fractions up to 42.0 Gy in 6 fractions. The 5-year BC ranged from 18-77%. Late grade 3 genitourinary and gastrointestinal toxicity was 0-32% and 0-5.1%, respectively. sHDR BRT appears as safe and effective salvage modality for the reirradiation of locally recurrent prostate cancer after definitive RT. (orig.) [de

  14. Long-term outcomes from dose-escalated image-guided intensity-modulated radiotherapy with androgen deprivation: encouraging results for intermediate- and high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Wilcox SW

    2014-08-01

    Full Text Available Shea W Wilcox,1,4 Noel J Aherne,2,4 Linus C Benjamin,1 Bosco Wu,1 Thomaz de Campos Silva,3 Craig S McLachlan,4 Michael J McKay,3,5 Andrew J Last,1 Thomas P Shakespeare1–4 1North Coast Cancer Institute, Port Macquarie, NSW, Australia; 2North Coast Cancer Institute, Coffs Harbour, NSW, Australia; 3North Coast Cancer Institute, Lismore, NSW, Australia; 4The University of New South Wales, Rural Clinical School, Sydney, NSW, Australia; 5The University of Sydney, Sydney, NSW, Australia Purpose: Dose-escalated (DE radiotherapy in the setting of localized prostate cancer has been shown to improve biochemical disease-free survival (bDFS in several studies. In the same group of patients, androgen deprivation therapy (ADT has been shown to confer a survival benefit when combined with radiotherapy doses of up to 70 Gy; however, there is currently little long-term data on patients who have received high-dose intensity-modulated radiotherapy (IMRT with ADT. We report the long-term outcomes in a large cohort of patients treated with the combination of DE image-guided IMRT (IG-IMRT and ADT. Methods and materials: Patients with localized prostate cancer were identified from a centralized database across an integrated cancer center. All patients received DE IG-IMRT, combined with ADT, and had a minimum follow up of 12 months post-radiotherapy. All relapse and toxicity data were collected prospectively. Actuarial bDFS, metastasis-free survival, prostate cancer-specific survival, and multivariate analyses were calculated using the SPSS v20.0 statistical package. Results: Seven hundred and eighty-two eligible patients were identified with a median follow up of 46 months. Overall, 4.3% of patients relapsed, 2.0% developed distant metastases, and 0.6% died from metastatic prostate cancer. At 5-years, bDFS was 88%, metastasis-free survival was 95%, and prostate cancer-specific survival was 98%. Five-year grade 2 genitourinary and gastrointestinal toxicity was 2

  15. Organ doses can be estimated from the computed tomography (CT) dose index for cone-beam CT on radiotherapy equipment.

    Science.gov (United States)

    Martin, Colin J; Abuhaimed, Abdullah; Sankaralingam, Marimuthu; Metwaly, Mohamed; Gentle, David J

    2016-06-01

    Cone beam computed tomography (CBCT) systems are fitted to radiotherapy linear accelerators and used for patient positioning prior to treatment by image guided radiotherapy (IGRT). Radiotherapists' and radiographers' knowledge of doses to organs from CBCT imaging is limited. The weighted CT dose index for a reference beam of width 20 mm (CTDIw,ref) is displayed on Varian CBCT imaging equipment known as an On-Board Imager (OBI) linked to the Truebeam linear accelerator. This has the potential to provide an indication of organ doses. This knowledge would be helpful for guidance of radiotherapy clinicians preparing treatments. Monte Carlo simulations of imaging protocols for head, thorax and pelvic scans have been performed using EGSnrc/BEAMnrc, EGSnrc/DOSXYZnrc, and ICRP reference computational male and female phantoms to derive the mean absorbed doses to organs and tissues, which have been compared with values for the CTDIw,ref displayed on the CBCT scanner console. Substantial variations in dose were observed between male and female phantoms. Nevertheless, the CTDIw,ref gave doses within  ±21% for the stomach and liver in thorax scans and 2  ×  CTDIw,ref can be used as a measure of doses to breast, lung and oesophagus. The CTDIw,ref could provide indications of doses to the brain for head scans, and the colon for pelvic scans. It is proposed that knowledge of the link between CTDIw for CBCT should be promoted and included in the training of radiotherapy staff.

  16. Health-Related Quality of Life After Single-Fraction High-Dose-Rate Brachytherapy and Hypofractionated External Beam Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Morton, Gerard C.; Loblaw, D. Andrew; Chung, Hans; Tsang, Gail; Sankreacha, Raxa; Deabreu, Andrea; Zhang Liying; Mamedov, Alexandre; Cheung, Patrick; Batchelar, Deidre; Danjoux, Cyril; Szumacher, Ewa

    2011-01-01

    Purpose: To investigate the change in health-related quality of life for men after high-dose-rate brachytherapy and external beam radiotherapy for prostate cancer and the factors associated with this change. Methods and Materials: Eligible patients had clinically localized intermediate-risk prostate cancer. The patients received high-dose-rate brachytherapy as a single 15-Gy implant, followed by external beam radiotherapy to 37.5 Gy in 15 fractions. The patients were monitored prospectively for toxicity (Common Terminology Criteria for Adverse Events, version 3.0) and health-related quality of life (Expanded Prostate Cancer Index Composite [EPIC]). The proportion of patients developing a clinically significant difference in the EPIC domain score (minimally important difference of >0.5 standard deviation) was determined and correlated with the baseline clinical and dosimetric factors. The study accrued 125 patients, with a median follow-up of 24 months. Results: By 24 months, 23% had Grade 2 urinary toxicity and only 5% had Grade 2 bowel toxicity, with no Grade 3 toxicity. The proportion of patients reporting a significant decrease in EPIC urinary, bowel, sexual, and hormonal domain scores was 53%, 51%, 45%, and 40% at 12 months and 57%, 65%, 51%, and 30% at 24 months, respectively. The proportion with a >1 standard deviation decrease in the EPIC urinary, bowel, sexual, and hormonal domain scores was 38%, 36%, 24%, and 20% at 12 months and 46%, 48%, 19%, and 8% at 24 months, respectively. On multivariate analysis, the dose to 10% of the urethra was associated with a decreasing EPIC urinary domain score (p = .0089) and, less strongly (p = .0312) with a decreasing hormonal domain score. No association was found between the prostate volume, bladder dose, or high-dose volume and urinary health-related quality of life. A high baseline International Index of Erectile Function score was associated (p = .0019) with a decreasing sexual domain score. The optimal maximal dose

  17. [Late sequelae of central nervous system prophylaxis in children with acute lymphoblastic leukemia: high doses of intravenous methotrexate versus radiotherapy of the central nervous system--review of literature].

    Science.gov (United States)

    Zając-Spychała, Olga; Wachowiak, Jacek

    2012-01-01

    Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in

  18. Is argon plasma coagulation an effective and safe treatment option for patients with chronic radiation proctitis after high doses of radiotherapy?

    Directory of Open Access Journals (Sweden)

    Eduardo Hortelano

    Full Text Available Introduction: In severe cases refractory to medical treatment, APC appears to be the preferred alternative to control persistent rectal bleeding of patients with chronic radiation proctitis. Although successful outcomes have been demonstrated in patients previously treated with moderate doses of radiotherapy, there is reluctance towards its indication due to the concern of severe adverse events in patients treated with high doses of radiation. Objectives: The aim of this study was to assess the efficacy and toxicity of APC in the management of bleeding radiation-induced proctitis in patients treated with high doses of radiation for prostate cancer. Methods and materials: Data from 30 patients were treated with APC due to chronic radiation proctitis, were reviewed retrospectively. All cases had prostate cancer and 9 of them (30 % underwent previous radical prostatectomy. The median dose of conformal 3D External Beam Radiotherapy (EBRT delivered was 74 Gy (range 46-76. Median rectal D1cc and D2cc was 72.5 and 72.4 Gy respectively. Median rectal V70, V60 and V40 was 12, 39.5 and 80 %. Cardiovascular and digestive disease, diabetes, smoking behaviour, lowest haemoglobin and transfusion requirements were recorded. Indications for treatment with APC were anemia and persistent bleeding despite medical treatment. Argon gas flow was set at 1.8 l/min with an electrical power setting of 50 W. Results: Median age of all patients was 69.6 years. The median lowest haemoglobin level was 9.6 g/dL. Median time between completion of radiotherapy and first session of APC was 13 months. Ninety-four therapeutic sessions were performed (median 3 sessions. Median time follow-up was 14.5 months (range 2-61. Complete response with resolved rectal bleeding was achieved in 23 patients (77 %, partial response in 5 (16 % and no control in 2 (6 %. No patients required transfusion following therapy. Two patients developed long-term (> 6 weeks grade 2 rectal ulceration and

  19. Hyperfractionated conformal radiotherapy in locally advanced prostate cancer: results of a dose escalation study

    International Nuclear Information System (INIS)

    Forman, Jeffrey D.; Duclos, Marie; Shamsa, Falah; Porter, Arthur T.; Orton, Colin

    1996-01-01

    Purpose: This study was initiated to assess the incidence of chronic complications and histologic and biochemical control following hyperfractionated conformal radiotherapy in patients with locally advanced prostate cancer. Methods and Materials: Between October 1991 and October 1994, 49 patients with locally advanced prostate cancer were entered on the first two dose levels of a prospective dose-escalation study using hyperfractionated three dimensional conformal radiotherapy. The first 25 patients received a minimum tumor dose of 78 Gy to the prostate and seminal vesicles in 6 weeks at 1.3 Gy, b.i.d. No increase in chronic toxicity compared with conventional radiotherapy was noted; therefore, an additional 24 patients were treated to a minimum tumor dose of 82.8 Gy to the prostate and seminal vesicles in 7 weeks at 1.15 Gy, b.i.d. Toxicity was scored according to the Radiation Therapy Oncology Group morbidity grading scale. Efficacy was assessed through scheduled postradiation prostate specific antigen values and ultrasound-guided biopsies. The median follow-up for the entire group was 20 months. Results: The hyperfractionated external radiation was well tolerated with minimal acute morbidity. At 30 months, the actuarial probability of Grade 2 gastrointestinal toxicity was 17%. At 30 months, the actuarial probability of Grade 2 genitourinary toxicity was 16%. There was no statistically significant difference between the two dose levels. No Grade 3 or 4 gastrointestinal or genitourinary toxicity was noted. At 12 months, 84% of patients had a prostate specific antigen ≤ 4; and 53%; ≤ 1 ng/ml. At 12 months, 71% of patients had post radiation biopsies that were either negative (55%) or showed a marked therapeutic effect (16%). Conclusion: The use of hyperfractionated conformal radiotherapy facilitated dose escalation with no increase in chronic toxicity compared to standard doses. The initial tumor response based on prostate specific antigen measurements and

  20. On-line MR imaging for dose validation of abdominal radiotherapy

    NARCIS (Netherlands)

    Glitzner, M; Crijns, S P M; de Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static

  1. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  2. Dose-volumetric parameters for predicting hypothyroidism after radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Kim, Mi Young; Yu, Tosol; Wu, Hong-Gyun

    2014-01-01

    To investigate predictors affecting the development of hypothyroidism after radiotherapy for head and neck cancer, focusing on radiation dose-volumetric parameters, and to determine the appropriate radiation dose-volumetric threshold of radiation-induced hypothyroidism. A total of 114 patients with head and neck cancer whose radiotherapy fields included the thyroid gland were analysed. The purpose of the radiotherapy was either definitive (n=81) or post-operative (n=33). Thyroid function was monitored before starting radiotherapy and after completion of radiotherapy at 1 month, 6 months, 1 year and 2 years. A diagnosis of hypothyroidism was based on a thyroid stimulating hormone value greater than the maximum value of laboratory range, regardless of symptoms. In all patients, dose volumetric parameters were analysed. Median follow-up duration was 25 months (range; 6-38). Forty-six percent of the patients were diagnosed as hypothyroidism after a median time of 8 months (range; 1-24). There were no significant differences in the distribution of age, gender, surgery, radiotherapy technique and chemotherapy between the euthyroid group and the hypothyroid group. In univariate analysis, the mean dose and V35-V50 results were significantly associated with hypothyroidism. The V45 is the only variable that independently contributes to the prediction of hypothyroidism in multivariate analysis and V45 of 50% was a threshold value. If V45 was <50%, the cumulative incidence of hypothyroidism at 1 year was 22.8%, whereas the incidence was 56.1% if V45 was ≥50%. (P=0.034). The V45 may predict risk of developing hypothyroidism after radiotherapy for head and neck cancer, and a V45 of 50% can be a useful dose-volumetric threshold of radiation-induced hypothyroidism. (author)

  3. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy

    International Nuclear Information System (INIS)

    Petrovic, N.; Krestic-Vesovic, J.; Stojanovic, D.; Ciraj-Bjelac, O.; Lazarevic, D.; Kovacevic, M.

    2011-01-01

    When high-energy photon beams are used for irradiation in radiotherapy, neutrons that are the result of photonuclear reactions create activation products that affect the occupational dose of radiotherapy staff. For the assessment of activation products in situ gamma spectroscopy was performed parallel to dose-rate measurements following irradiation, by using a high-energy photon beam from a linear accelerator Elekta Precise (Elekta, Stockholm (Sweden)) used in radiotherapy. The major identified activation products were the following radioisotopes: 2 '8Al, 24 Na, 56 Mn, 5 4 M n, 187 W, 64 Cu and 62 Cu. Based on the typical workload and dose-rate measurement, the assessed additional annual occupational dose ranged from 1.7 to 0.25 mSv. As the measured dose rate arising from the activation products rapidly decreases as a function of time, the assessed additional dose is negligible after 10 min following irradiation. To keep the occupational dose as low as reasonably achievable, it is recommended to delay entrance to the therapy room at least 2-4 min, when high-energy photons are used. This would reduce the effective dose by 30 %. (authors)

  4. A high-precision system for conformal intracranial radiotherapy

    International Nuclear Information System (INIS)

    Tome, Wolfgang A.; Meeks, Sanford L.; Buatti, John M.; Bova, Francis J.; Friedman, William A.; Li Zuofeng

    2000-01-01

    Purpose: Currently, optimally precise delivery of intracranial radiotherapy is possible with stereotactic radiosurgery and fractionated stereotactic radiotherapy. We report on an optimally precise optically guided system for three-dimensional (3D) conformal radiotherapy using multiple noncoplanar fixed fields. Methods and Materials: The optically guided system detects infrared light emitting diodes (IRLEDs) attached to a custom bite plate linked to the patient's maxillary dentition. The IRLEDs are monitored by a commercially available stereo camera system, which is interfaced to a personal computer. An IRLED reference is established with the patient at the selected stereotactic isocenter, and the computer reports the patient's current position based on the location of the IRLEDs relative to this reference position. Using this readout from the computer, the patient may be dialed directly to the desired position in stereotactic space. The patient is localized on the first day and a reference file is established for 5 different couch positions. The patient's image data are then imported into a commercial convolution-based 3D radiotherapy planning system. The previously established isocenter and couch positions are then used as a template upon which to design a conformal 3D plan with maximum beam separation. Results: The use of the optically guided system in conjunction with noncoplanar radiotherapy treatment planning using fixed fields allows the generation of highly conformal treatment plans that exhibit a high degree of dose homogeneity and a steep dose gradient. To date, this approach has been used to treat 28 patients. Conclusion: Because IRLED technology improves the accuracy of patient localization relative to the linac isocenter and allows real-time monitoring of patient position, one can choose treatment-field margins that only account for beam penumbra and image resolution without adding margin to account for larger and poorly defined setup uncertainty. This

  5. Polyethylene glycol hydrogel rectal spacer implantation in patients with prostate cancer undergoing combination high-dose-rate brachytherapy and external beam radiotherapy.

    Science.gov (United States)

    Yeh, Jekwon; Lehrich, Brandon; Tran, Carolyn; Mesa, Albert; Baghdassarian, Ruben; Yoshida, Jeffrey; Torrey, Robert; Gazzaniga, Michael; Weinberg, Alan; Chalfin, Stuart; Ravera, John; Tokita, Kenneth

    2016-01-01

    To present rectal toxicity rates in patients administered a polyethylene glycol (PEG) hydrogel rectal spacer in conjunction with combination high-dose-rate brachytherapy and external beam radiotherapy. Between February 2010 and April 2015, 326 prostate carcinoma patients underwent combination high-dose-rate brachytherapy of 16 Gy (average dose 15.5 Gy; standard deviation [SD] = 1.6 Gy) and external beam radiotherapy of 59.4 Gy (average dose 60.2 Gy; SD = 2.9 Gy). In conjunction with the radiation therapy regimen, each patient was injected with 10 mL of a PEG hydrogel in the anterior perirectal fat space. The injectable spacer (rectal spacer) creates a gap between the prostate and the rectum. The rectum is displaced from the radiation field, and rectal dose is substantially reduced. The goal is a reduction in rectal radiation toxicity. Clinical efficacy was determined by measuring acute and chronic rectal toxicity using the National Cancer Center Institute Common Terminology Criteria for Adverse Events v4.0 grading scheme. Median followup was 16 months. The mean anterior-posterior separation achieved was 1.6 cm (SD = 0.4 cm). Rates of acute Grade 1 and 2 rectal toxicity were 37.4% and 2.8%, respectively. There were no acute Grade 3/4 toxicities. Rates of late Grade 1, 2, and 3 rectal toxicity were 12.7%, 1.4%, and 0.7%, respectively. There were no late Grade 4 toxicities. PEG rectal spacer implantation is safe and well tolerated. Acute and chronic rectal toxicities are low despite aggressive dose escalation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  6. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations

    International Nuclear Information System (INIS)

    Yepes, Pablo P; Mirkovic, Dragan; Taddei, Phillip J

    2010-01-01

    An essential component in proton radiotherapy is the algorithm to calculate the radiation dose to be delivered to the patient. The most common dose algorithms are fast but they are approximate analytical approaches. However their level of accuracy is not always satisfactory, especially for heterogeneous anatomical areas, like the thorax. Monte Carlo techniques provide superior accuracy; however, they often require large computation resources, which render them impractical for routine clinical use. Track-repeating algorithms, for example the fast dose calculator, have shown promise for achieving the accuracy of Monte Carlo simulations for proton radiotherapy dose calculations in a fraction of the computation time. We report on the implementation of the fast dose calculator for proton radiotherapy on a card equipped with graphics processor units (GPUs) rather than on a central processing unit architecture. This implementation reproduces the full Monte Carlo and CPU-based track-repeating dose calculations within 2%, while achieving a statistical uncertainty of 2% in less than 1 min utilizing one single GPU card, which should allow real-time accurate dose calculations.

  7. Audit on dose delivery by using TLD in Radiotherapy Centers in Malaysia

    International Nuclear Information System (INIS)

    Md Saion Salikin; Taiman Kadni; Husaini Salleh; Asmaliza Hashim; Hasrul Husham Hussain

    2004-01-01

    The External Audit Group (EAQ) is established and supported by IAEA. Its main objective is to audit the accuracy of dose delivery to patients in radiotherapy centres or hospitals in developing countries in IAEA member states. At MINT the operation of EAG is managed by Medical Physics Group and supported by Secondary Standard Dosimetry Laboratory (SSDL), MINT. The selected radiotherapy centers are supplied with TLD powder in capsule form, to be irradiated with the required radiation doses, by their physicists. The irradiated TLD is analysed at SSDL. The result of the audit for a few radiotherapy centres in Malaysia, is presented in brief in this paper. (Author)

  8. Cardiac Dose From Tangential Breast Cancer Radiotherapy in the Year 2006

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Povall, Julie M.; McGale, Paul; Nisbet, Andrew; Dodwell, David; Smith, Jonathan T.; Darby, Sarah C.

    2008-01-01

    Purpose: To quantify the radiation doses received by the heart and coronary arteries from contemporary tangential breast or chest wall radiotherapy. Methods and Materials: Fifty consecutive patients with left-sided breast cancer and 5 consecutive patients with right-sided breast cancer treated at a large United Kingdom radiotherapy center during the year 2006 were selected. All patients were irradiated with 6- or 8-MV tangential beams to the breast or chest wall. For each dose plan, dose-volume histograms for the heart and left anterior descending (LAD) coronary artery were calculated. For 5 of the left-sided and all 5 right-sided patients, dose-volume histograms for the right and circumflex coronary arteries were also calculated. Detailed spatial assessment of dose to the LAD coronary artery was performed for 3 left-sided patients. Results: For the 50 patients given left-sided irradiation, the average mean (SD) dose was 2.3 (0.7) Gy to the heart and 7.6 (4.5) Gy to the LAD coronary artery, with the distal LAD receiving the highest doses. The right and circumflex coronary arteries received approximately 2 Gy mean dose. Part of the heart received >20 Gy in 22 left-sided patients (44%). For the 5 patients given right-sided irradiation, average mean doses to all cardiac structures were in the range 1.2 to 2 Gy. Conclusions: Heart dose from left-tangential radiotherapy has decreased considerably over the past 40 years, but part of the heart still receives >20 Gy for approximately half of left-sided patients. Cardiac dose for right-sided patients was generally from scattered irradiation alone

  9. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    International Nuclear Information System (INIS)

    Shiraishi, Satomi; Moore, Kevin L.

    2016-01-01

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D clin − D pred . The mean (〈δD r 〉), standard deviation (σ δD r ), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r PTV ) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r PTV ∈ [ − 6, 30] mm. The average prediction error was less

  10. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    International Nuclear Information System (INIS)

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok

    2005-01-01

    The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of 23.4 ∼ 59.4 Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-ICBT) was also performed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of 14.4∼ 43.2 Gy (Median 36.0) of EBRT in 495 patients, while in the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder and rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor (α / β = 10) and late-responding tissues (α /β = 3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED Gy 3 and the risk of complication was assessed using serial multiple logistic regressions models. The associations between R-BED Gy 3 and rectal complications

  11. High-dose (70-78 GY) conformal radiotherapy for prostate cancer; the relation between observed late bladder and rectum complications and parameters derived from the dose volume histograms

    International Nuclear Information System (INIS)

    Lebesque, J.V.; Bruce, A.; Boersma, L.J.; Velde, A. te

    1996-01-01

    complications (≥ grade II) was 13% at 2 years, both for doses to the anterior rectal wall ≤ 75 Gy and > 75 Gy (Figure). This is much lower than after conventional radiotherapy for prostate cancer (Smit et al.), where these figures were 21% and 60%, respectively. In univariate analyses, we did not find a significant relation between GI complications rates (grade II and/or III) and irradiated rectal wall volumes, total prescribed radiation dose or maximum radiation dose to the anterior rectal wall. The estimated NTCPs (on average 11%) were much higher than the incidence of grade III GI toxicity in our study ( 20% these figures were 11.4% and 0%, respectively. We are currently investigating whether dose surface histograms are more reliable to predict the observed late GI complications ≥ grade II. Conclusions: Conformal radiotherapy reduces late rectal complications significantly with respect to conventional radiotherapy. Observed late GI complications grade III were much lower than the NTCP estimations based on the model and parameter values of Kutcher et al. and Burman et al., respectively. Observed late GI complications ≥ grade II were overall in the range of the NTCP estimations, but did not correlate specifically with DVH parameters and NTCP estimations. Consequently, adaptation of the NTCP model and/or its parameter values for rectum complications is highly necessary. Grade III GU complications were mostly related to the prostatic urethra and consequently DVHs of the bladder have only limited value

  12. Analysis of the testicular dose in patients undergoing radiotherapy for carcinoma of the prostate

    International Nuclear Information System (INIS)

    Bejar Navarro, M. J.; Ordonez Marquez, J.; Hervas Moron, A.; Alvarez Rodriguez, S.; Garcia-Galloway, E.; Sanchez Casanueva, R.; Polo Rubio, A.; Rodriguez-Patron, R.; Yanowsky, K.; Gomez Dos Santos, V.

    2013-01-01

    The objectives of this work are: -Studying comparatively the doses received in testes in patients undergoing radiotherapy of prostate carcinoma with external beam radiation and brachytherapy of low rate using I-125 seeds. -Compare doses due to images of verification using Cone Beam CT (CBCT), with doses of radiotherapy treatment itself. -Determine the seminal alterations and cytogenetic after treatment with ionizing radiation (RTE or BQT) in patients diagnosed with prostate cancer and its relation with testicular dose. (Author)

  13. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    International Nuclear Information System (INIS)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C.; Muenscher, A.; Blessmann, M.; Todorovic, M.; Tennstedt, P.

    2013-01-01

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  14. Xerostomia after radiotherapy. What matters - mean total dose or dose to each parotid gland?

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, S.; Sommer, J.; Prosch, C.; Bajrovic, A.; Kruell, A.; Petersen, C. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Radiation Oncology; Muenscher, A. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Otorhinolaryngology and Head and Neck Surgery; Blessmann, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Oral and Maxillofacial Surgery; Todorovic, M. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Medical Physics; Tennstedt, P. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Martini-Clinic, Prostate Cancer Center

    2013-03-15

    Purpose: Xerostomia is a debilitating side effect of radiotherapy in patients with head and neck cancer. We undertook a prospective study of the effect on xerostomia and outcomes of sparing one or both parotid glands during radiotherapy for patients with squamous cell carcinoma of the head and neck. Methods and materials: Patients with locally advanced squamous cell carcinoma of the head and neck received definitive (70 Gy in 2 Gy fractions) or adjuvant (60-66 Gy in 2 Gy fractions) curative-intent radiotherapy using helical tomotherapy with concurrent chemotherapy if appropriate. Group A received < 26 Gy to the left and right parotids and group B received < 26 Gy to either parotid. Results: The study included 126 patients; 114 (55 in group A and 59 in group B) had follow-up data. There were no statistically significant differences between groups in disease stage. Xerostomia was significantly reduced in group A vs. group B (p = 0.0381). Patients in group A also had significantly less dysphagia. Relapse-free and overall survival were not compromised in group A: 2-year relapse-free survival was 86% vs. 72% in group B (p = 0.361); 2-year overall survival was 88% and 76%, respectively (p = 0.251). Conclusion: This analysis suggests that reducing radiotherapy doses to both parotid glands to < 26 Gy can reduce xerostomia and dysphagia significantly without compromising survival. Sparing both parotids while maintaining target volume coverage and clinical outcome should be the treatment goal and reporting radiotherapy doses delivered to the individual parotids should be standard practice. (orig.)

  15. Chromosomal aberration in peripheral lymphocytes and doses to the active bone marrow in radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Gershkevitsh, E.; Trott, K.R.

    2002-01-01

    Purpose: Radiotherapy plays an important role in the management of prostate cancer. Epidemiological data indicate a small but significant risk of radiation-induced leukemia after radiotherapy which might be related to the high mean bone marrow dose associated with radiotherapy of prostate cancer. The purpose of the study was to investigate the relation between the mean bone marrow dose and unstable chromosome aberrations in peripheral blood lymphocytes in patients undergoing conformal radiotherapy for prostate cancer as a possible indicator of risk. Endometrial cancer patients were also included for comparison. Patients and Methods: Nine patients, six with prostate cancer (60-73 years old) and three with endometrial cancer (61-81 years old) treated with radiotherapy were included in the study. The non-bony spaces inside the pelvic bones were outlined on every CT slice using the treatment planning system and mean doses to the bone marrow calculated. Blood samples of the patients were obtained at different times before, during and at the end of treatment. Lymphocytes were cultured in the usual way and metaphases scored for dicentric aberrations. Results: 46 samples from nine patients were obtained. The mean number of metaphases analyzed per sample was 180 with a range from 52 to 435. The mean bone marrow doses for prostate cancer patients ranged from 2.8 to 4.2 Gy and for endometrial cancer patients from 12.8 to 14.8 Gy. The aberration yield increased with the planning target volume and the mean bone marrow dose. Conclusion: The yield of dicentric aberrations for prostate cancer patients correlated closely with the mean bone marrow dose albeit the induction of dicentrics occurred in mature T lymphocytes most of which were probably in transit through the irradiated volumes. Therefore, the observed relationship between dicentrics and mean bone marrow doses are indirect. (orig.) [de

  16. Dose escalated radiotherapy for T1 and T2 nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lu, J. J.; Zhang, Q.; Lee, K. M.; Loh, K. S.; Tan, K. S.

    2008-01-01

    Nasopharyngeal carcinoma (NPC) is most prevalent in the Guangzhou province in southern China, in Hong Kong and in Singapore. It also occurs in Europe and North America, partly due to its epidemiological association with the woodworking and shoe manufacturing industry. Because of its anatomical location, i.e. so close to vital organs at risk, such as the brain stem and eyes, the technique of radiotherapy and dose/fractionation prescription is of extreme importance. This communication describes our experience with dose escalation radiotherapy for stages T1 and T2 of NPC. (author)

  17. Dose rate effect from the relationship between ICRU rectal dose and local control rate in intracavitary radiotherapy for carcinoma of the uterine cervix. Six fraction HDR and three-fraction LDR in three weeks

    International Nuclear Information System (INIS)

    Jingu, Kenichi; Akita, Yuzou; Ohmagari, Jyunichi

    2001-01-01

    The dose rate effect, low dose rate radiotherapy (LDR)/high dose rate radiotherapy (HDR), was calculated using the isoeffect ICRU rectal dose by intracavitary radiotherapy (ICRT) for uterine cervix cancer. The subjects analyzed consisted of 78 LDR and 74 HDR patients whose ICRU rectal dose could be calculated and whose local control as stage II/III cases could be evaluated. The point A dose in ICRT was 45-55 Gy/3 fractions/3 weeks for LDR and 30 Gy/6 fractions/3 weeks for HDR. The dose effect relationships associated with local control at each whole pelvis external radiation dose were calculated using the double integration method and Probit analysis, and the 50% and 90% local control ICRU rectal doses were calculated from this relationship. Finally, the dose rate effect LDR/HDR was determined from 50% and 90% local control doses. The dose rate effect calculated from the 50% local control dose was 1.24 and that from the 90% local control dose was 1.14. (author)

  18. Clinical investigation on RBE estimation for heavy particle radiotherapy

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Kamada, Tadashi; Yanagi, Takeshi; Mizoe, Junetsu; Tsujii, Hirohiko

    2004-01-01

    Analysis of the clinical updated data of the prostate cancer patients treated with carbon-ions was performed for the purpose of investigating the clinical relative biological effectiveness (RBE) values of carbon ion beams. Most of the patients received the carbon ion radiotherapy (C-ion RT) with the dose of 66.0 GyE/20 fractions. Probabilities of the late urethral morbidity and biochemical tumor control with this dose fractionation were calculated using the actual updated clinical data. The linear energy transfer (LET) values and physical carbon ion doses of urethra were obtained from treatment planning data. RBE values were calculated from the ratio of average carbon physical doses and photon doses which cause the same grade of urethra reaction with the same probabilities. Obtained RBE values were compared with the values that are being used in actual carbon ion radiotherapy in National Institute of Radiological Sciences (NIRS). In addition, relative RBE of carbon ion beams for biochemical tumor control was calculated using the data from the literature. As a result, the RBE values being used for the treatment were thought to be proper enough for both the urethra reaction and tumor control. (author)

  19. Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer, using dose-volume histograms

    International Nuclear Information System (INIS)

    Boersma, Liesbeth J.; Brink, Mandy van den; Bruce, Allison M.; Shouman, Tarek; Gras, Luuk; Velde, Annet te; Lebesque, Joos V.

    1998-01-01

    Purpose: To investigate whether Dose-Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer. Methods and Materials: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (>6 months) GI and GU complications was classified using the RTOG/EORTC and the SOMA/LENT scoring system. In addition, GI complications were divided in nonsevere and severe (requiring one or more laser treatments or blood transfusions) rectal bleeding. The median follow-up time was 24 months. We investigated whether rectal and bladder wall volumes, irradiated to various dose levels, correlated with the observed actuarial incidences of GI and GU complications, using volume as a continuous variable. Subsequently, for each dose level in the DVH, the rectal wall volumes were dichotomized using different volumes as cutoff levels. The impact of the total radiation dose, and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: The actuarial incidence at 2 years for GI complications ≥Grade II was 14% (RTOG/EORTC) or 20% (SOMA/LENT); for GU complications ≥Grade III 8% (RTOG/EORTC) or 21% (SOMA/LENT). Neither for GI complications ≥Grade II (RTOG/EORTC or SOMA/LENT), nor for GU complications ≥Grade III (RTOG/EORTC or SOMA/LENT), was a significant correlation found between any of the DVH parameters and the actuarial incidence of complications. For severe rectal bleeding (actuarial incidence at 2 years 3%), four consecutive volume cutoff levels were found, which significantly discriminated between high and low risk. A trend was observed that a total radiation dose ≥ 74 Gy (or a maximum radiation dose in the rectal wall >75 Gy) resulted in a higher incidence of severe rectal bleeding (p

  20. Radiotherapy for calcaneodynia. Results of a single center prospective randomized dose optimization trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Jeremias, C.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R. [University Hospital Erlangen (Germany). Dept. of Radiation Oncology

    2013-04-15

    The aim of this work was to compare the efficacy of two different dose fractionation schedules for radiotherapy of patients with calcaneodynia. Between February 2006 and April 2010, 457 consecutive evaluable patients were recruited for this prospective randomized trial. All patients received radiotherapy using the orthovoltage technique. One radiotherapy series consisted of 6 single fractions/3 weeks. In case of insufficient remission of pain after 6 weeks a second radiation series was performed. Patients were randomly assigned to receive either single doses of 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before, immediately after, and 6 weeks after radiotherapy using a visual analogue scale (VAS) and a comprehensive pain score (CPS). The overall response rate for all patients was 87 % directly after and 88 % 6 weeks after radiotherapy. The mean VAS values before, immediately after, and 6 weeks after treatment for the 0.5 and 1.0 Gy groups were 65.5 {+-} 22.1 and 64.0 {+-} 20.5 (p = 0.188), 34.8 {+-} 24.7 and 39.0 {+-} 26.3 (p = 0.122), and 25.1 {+-} 26.8 and 28.9 {+-} 26.8 (p = 0.156), respectively. The mean CPS before, immediately after, and 6 weeks after treatment was 10.1 {+-} 2.7 and 10.0 {+-} 3.0 (p = 0.783), 5.6 {+-} 3.7 and 6.0 {+-} 3.9 (p = 0.336), 4.0 {+-} 4.1 and 4.3 {+-} 3.6 (p = 0.257), respectively. No statistically significant differences between the two single dose trial arms for early (p = 0.216) and delayed response (p = 0.080) were found. Radiotherapy is an effective treatment option for the management of calcaneodynia. For radiation protection reasons, the dose for a radiotherapy series is recommended not to exceed 3-6 Gy. (orig.)

  1. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy

    International Nuclear Information System (INIS)

    Fay, Michael; Tan, Alex; Fisher, Richard; Mac Manus, Michael; Wirth, Andrew; Ball, David

    2005-01-01

    Purpose: To determine the relationship between various parameters derived from lung dose-volume histogram analysis and the risk of symptomatic radiation pneumonitis (RP) in patients undergoing radical radiotherapy for primary lung cancer. Methods and Materials: The records of 156 patients with lung cancer who had been treated with radical radiotherapy (≥45 Gy) and for whom dose-volume histogram data were available were reviewed. The incidence of symptomatic RP was correlated with a variety of parameters derived from the dose-volume histogram data, including the volume of lung receiving 10 Gy (V 10 ) through 50 Gy (V 50 ) and the mean lung dose (MLD). Results: The rate of RP at 6 months was 15% (95% confidence interval 9-22%). On univariate analysis, only V 30 (p = 0.036) and MLD (p = 0.043) were statistically significantly related to RP. V 30 correlated highly positively with MLD (r = 0.96, p 30 and MLD can be used to predict the risk of RP in lung cancer patients undergoing radical radiotherapy

  2. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Bednarz, B. P., E-mail: bbednarz2@wisc.edu [Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703 (United States); Sterpin, E. [Molecular Imaging, Radiotherapy and Oncology, Université catholique de Louvain, Brussels, Belgium 1348 (Belgium)

    2015-02-15

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy{sup ®} Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code GEANT4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can

  3. External beam abdominal radiotherapy in patients with seminoma stage I: field type, testicular dose, and spermatogenesis

    International Nuclear Information System (INIS)

    Jacobsen, Kari Dolven; Olsen, Dag Rune; Fossaa, Kristian; Fossaa, Sophie Dorothea

    1997-01-01

    Purpose: To establish a predictive model for the estimation of the gonadal dose during adjuvant para-aortic (PA) or dog leg (DL: PA plus ipsilateral iliac) field radiotherapy in patients with testicular seminoma. Methods and Materials: The surface gonadal dose was measured in patients with seminoma Stage I receiving PA or DL radiotherapy. Sperm cell analysis was performed before and 1 year after irradiation. PA and DL radiotherapy were simulated in the Alderson phantom while we measured the dose to the surface and middle of an artificial testicle, varying its position within realistic anatomical constraints. The symphysis-to-testicle distance (STD), field length, and thickness of the patient were experimental variables. The developed mathematical model was validated in subsequent patients. Results: The mean gonadal dose in patients was 0.09 and 0.32 Gy after PA and DL irradiation, respectively (p < 0.001). DL radiotherapy, but not PA irradiation led to significant reduction of the sperm count 1 year after irradiation. The gonadal dose-reducing effect of PA irradiation was confirmed in the Alderson phantom. A significant correlation was found between the STD and the gonadal dose during DL irradiation. A mathematical model was established for calculation of the gonadal dose and confirmed by measurements in patients. Conclusions: During radiotherapy of seminoma, the gonadal dose decreases with increasing STD. It is possible to predict the individual gonadal dose based on delivered midplane dose and STD

  4. Defining a dose-response relationship for prostate external beam radiotherapy

    International Nuclear Information System (INIS)

    Trada, Yuvnik; Plank, Ash; Martin, Jarad

    2013-01-01

    We aimed to quantify a relationship between radiotherapy dose and freedom from biochemical failure (FFBF) in low- and intermediate-risk prostate cancer. To reduce confounding we used data with a standardised end–point, mature follow-up, low competing risk of metastatic failure, conventional fractionation and separate reporting for outcomes with hormonal therapy (HT). A systematic review of the literature was carried out. Studies that reported the use of radiotherapy alone in 1.8–2Gy fractions in low- and intermediate-risk prostate cancer were included. The primary end–point was Phoenix definition 5-year FFBF. A logistic regression was used to quantify the dose–response relationship. Data from eight studies with 3037 patients met the inclusion criteria. The data from 810 low-risk patients and 2245 intermediate-risk patients were analysed. A strong association between radiotherapy dose and FFBF was found in low- and intermediate-risk patients managed with radiotherapy alone. In low-risk patients not treated with HT the dose required to achieve 50% biochemical tumour control (TCD 50 ) is 52.0 Gy and the slope of the dose–response curve at TCD 50 (γ 50 ) is 2.1%/Gy. At 78Gy this represented a FFBF of 90.3%. In intermediate-risk patients not treated with HT the TCD 50 is 64.7Gy and γ 50 is 3.2%/Gy. At 78 Gy this translated into a FFBF of 84.3%. HT had a small effect for low-risk patients and an inconsistent effect for intermediate-risk men. A strong association was found between radiation dose and biochemical outcome in both low- and intermediate-risk patients. Standardised reporting of results from future studies will make future analyses more robust.

  5. Value of low-dose 2 X 2 Gy palliative radiotherapy in advanced low-grade non-Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Ng, M.; Wirth, A.; Ryan, G.; MacManus, M.

    2006-01-01

    Low-dose radiotherapy over the last decade has been reported to provide effective palliation for patients with low-grade non-Hodgkin's lymphoma. In this retrospective case series of 10 patients, we report our early experience using low-dose radiotherapy (usually 2 x2 Gy) for patients with advanced-stage follicular, mucosal associated lymphoid tissue, mantle cell and small lymphocytic lymphomas. Median follow up was 27 weeks. Response rates were high (complete response, 70%; partial response, 20%), the response durable and the toxicity was minimal (no toxicity greater than grade 1). Low-dose irradiation is an effective treatment option for patients with low-grade lymphomas with local symptoms Copyright (2006) Blackwell Publishing Asia Pty Ltd

  6. Phase III trial of high and low dose rate interstitial radiotherapy for early oral tongue cancer

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Teshima, Teruki; Murayama, Shigeyuki; Shimizutani, Kimishige; Fuchihata, Hajime; Furukawa, Souhei

    1996-01-01

    Purpose: Oral tongue carcinomas are highly curable with radiotherapy. In the past, patients with tongue carcinoma have usually been treated with low dose rate (LDR) interstitial radiation. This Phase III study was designed to compare the treatment results obtained with LDR with those obtained with high dose rate (HDR) interstitial radiotherapy for tongue carcinoma. Methods and Materials: The criteria for patient selection for the Phase III study were: (a) presence of a T1T2N0 tumor that could be treated with single-plane implantation, (b) localization of tumor at the lateral tongue border, (c) tumor thickness of 10 mm or less, (d) performance status between O and 3, and (e) absence of any severe concurrent disease. From April 1992 through December 1993, 15 patients in the LDR group (70 Gy/4 to 9 days) and 14 patients in the HDR group (60 Gy/10 fractions/6 days) were accrued. The time interval between two fractions of the HDR brachytherapy was more than 6 h. Results: Local recurrence occurred in two patients treated with LDR brachytherapy but in none of the patients treated with HDR. One- and 2-year local control rates for patients in the LDR group were both 86%, compared with 100% in the HDR group (p = 0.157). There were four patients with nodal metastasis in the LDR group and three in the HDR group. Local recurrence occurred in two of the four patients with nodal metastases in the LDR group. One- and 2-year nodal control rates for patients in the LDR group are were 85%, compared with 79% in the HDR group. Conclusion: HDR fractionated interstitial brachytherapy can be an alternative to traditional LDR brachytherapy for early tongue cancer and eliminate the radiation exposure for medical staffs

  7. Comparative study of reference points by dosimetric analyses for late complications after uniform external radiotherapy and high-dose-rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Chen, S.-W.; Liang, J.-A.; Yeh, L.-S.; Yang, S.-N.; Shiau, A.-C.; Lin, F.-J.

    2004-01-01

    Purpose: This study aimed to correlate and compare the predictive values of rectal and bladder reference doses of uniform external beam radiotherapy without shielding and high-dose-rate intracavitary brachytherapy (HDRICB) with late sequelae in patients with uterine cervical cancer. Methods and materials: Between September 1992 and December 1998, 154 patients who survived more than 12 months after treatment were studied. Initially, they were treated with 10-MV X-rays (44 to 45 Gy/22 to 25 fractions over 4 to 5 weeks) to the whole pelvis, after which HDRICB was performed using 192 Ir remote afterloading at 1-week intervals for 4 weeks. The standard prescribed dose for each HDRICB was 6.0 Gy to point A. Patient- and treatment-related-factors were evaluated for late rectal complications using logistic regression modeling. Results: The probability of rectal complications showed better correlation of dose-response with increasing total ICRU (International Committee on Radiotherapy Units and Measurements) rectal dose. Multivariate logistic regression demonstrated a high risk of late rectal sequelae in patients who developed rectal complications (p 0.0001;relative risk, 15.06;95% CI, 2.89∼43.7) and total ICRU rectal dose greater than 16 Gy (p = 0.02;relative risk, 2.07;95% CI, 1.13∼4.55). The high risk factors for bladder complications were seen in patients who developed rectal complications (p = 0.0001;relative risk, 15.2;95% CI, 2.81∼44.9) and total ICRU bladder dose greater than 24 Gy (p = 0.02;relative risk, 8.93;95% CI, 1.79∼33.1). Conclusion: This study demonstrated the predictive value of ICRU rectal and bladder reference dosing in HDRICB for patients receiving uniform external beam radiation therapy without central shielding. Patients who had a total ICRU rectal dose greater than 16 Gy, or a total ICRU bladder dose over 24 Gy, were at risk of late sequelae

  8. Nutritional surveillance in head and neck cancer patients during radiotherapy. The difference between concurrent chemoradiotherapy using high-dose cisplatin and radiotherapy alone

    International Nuclear Information System (INIS)

    Nakahara, Susumu; Yoshino, Kunitoshi; Fujii, Takashi; Uemura, Hirokazu; Suzuki, Motoyuki; Nishiyama, Kinji; Inohara, Hidenori

    2012-01-01

    Concurrent chemoradiotherapy (CCRT) has been widely used in organ preservation for advanced head and neck squamous cell carcinoma. Malnutrition, one of the most detrimental side effects concerned with CCRT, occurs frequently in patients with CCRT, but few studies have reported on the nutritional status in detail during CCRT. The aim of this study was to evaluate the changes in the nutritional status during CCRT compared with radiotherapy alone (RT). We introduce hypopharyngeal cancer patients as the subjects that include 26 cases who underwent CCRT with high dose cisplatin (80 mg/m 2 x 3: goal 240 mg/m 2 in total) and also 26 cases who underwent RT during the same period. For evaluation, we examined the rate of body weight change, serum albumin, total lymphocyte counts and hemoglobin. In this context, the rate of body weight change is the most reliable indicator, and the rate of change at the end of treatment as compared to before the start of treatment was 3.8% in patients treated with RT and 8.1% in patients treated with CCRT. This result suggests that improvement in nutritional status is necessary when considering patients undergoing CCRT. However, regarding completion of treatment, when radiotherapy was not interrupted due to adverse events the median total dose of cisplatin of 240 mg/m 2 seemed satisfactory. In addition, regarding the route for energy intake, tube feeding was required only in 2 patients (7.7%) in the RT group and 4 patients (15.4%) in the CCRT group, and no significant difference was found between them. Therefore, percutaneous endoscopic gastrostomy (PEG) for CCRT in advance would be unnecessary at least for hypopharyngeal cancer patients. (author)

  9. Radiochromic film as a radiotherapy surface-dose detector

    International Nuclear Information System (INIS)

    Butson, M.J.; Metcalfe, P.E.; Wollongong Univ., NSW; Mathur, J.N.

    1996-01-01

    Radiochromic film is shown to be a useful surface-dose detector for radiotherapy x-ray beams. Central-axis percentage surface-dose results as measured by Gafchromic film for a 6 MVp x-ray beam produced by a Varian 2100C Linac at 100 cm SSD are 16%, 25%, 35%, 41% for 10, 20, 30 and 40 cm square field sizes, respectively. Using a simple, uniform light source and a CCD camera connected to an image analysis system, quantitative 3D surface doses are accurately attainable in real time as either numerical data, a black-and-white image or a colour-enhanced image. (Author)

  10. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    OpenAIRE

    Leotta, Salvatore; Amato, Ernesto; Settineri, Nicola; Basile, Emilia; Italiano, Antonio; Auditore, Lucrezia; Santacaterina, Anna; Pergolizzi, Stefano

    2018-01-01

    Image Guided RadioTherapy (IGRT) is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT) scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS ...

  11. Relationship between radiation dose and lung function in patients with lung cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Harsaker, V.; Dale, E.; Bruland, O.S.; Olsen, D.R.

    2003-01-01

    In patients with inoperable non-small cell lung cancer (NSCLC), radical radiotherapy is the treatment of choice. The dose is limited by consequential pneumonitis and lung fibrosis. Hence, a better understanding of the relationship between the dose-volume distributions and normal tissue side effects is needed. CT is a non-invasive method to monitor the development of fibrosis and pneumonitis, and spirometry is an established tool to measure lung function. NSCLC patients were included in a multicenter trial and treated with megavoltage conformal radiotherapy. In a subgroup comprising 16 patients, a total dose of 59-63 Gy with 1.8-1.9 Gy per fraction was given. Dose-volume histograms were calculated and corrected according to the linear-quadratic formula using alpha/beta=3 Gy. The patients underwent repetitive CT examinations (mean follow-up, 133 days) following radiotherapy, and pre and post treatment spirometry (mean follow-up, 240 days). A significant correlation was demonstrated between local lung dose and changes in CT numbers >30 days after treatment (p 40 Gy Gy there was a sudden increase in CT numbers at 70-90 days. Somewhat unexpectedly, the highest mean lung doses were found in patients with the least reductions in lung function (peak expiratory flow; p<0.001). The correlation between CT numbers, radiation dose and time after treatment show that CT may be used to monitor development of lung fibrosis/pneumonitis after radiotherapy for lung cancer. Paradoxically, the patients with the highest mean lung doses experienced the minimum deterioration of lung function. This may be explained by reduction in the volume of existing tumour masses obstructing the airways, leading to relief of symptoms. This finding stresses the role of radiotherapy for lung cancer, especially where the treatment aim is palliative

  12. Investigation of dose modifications related to dental cares in an ORL radiotherapy treatment

    International Nuclear Information System (INIS)

    De Conto, C.; Gschwind, R.; Makovicka, L.; De Conto, C.; Martin, E.

    2010-01-01

    The authors report the investigation of the influence of dental implants on the dose received during an ORL radiotherapy treatment in order to optimize both the dosimetric planning and the patient radioprotection. They report experimental measurements performed on a phantom representing a lower jaw in irradiation conventional conditions. Then, they report the Monte Carlo simulation of the dose distribution in the phantom using the BEAMnrc code designed for radiotherapy

  13. Tumor sterilization dose and radiation induced change of the brain tissue in radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Yoshii, Yoshihiko; Maki, Yutaka; Takano, Shingo

    1987-01-01

    Ninety-seven patients with brain tumors (38 gliomas, 26 brain metastases, 18 sellar tumors, 15 others) were treated by cobalt gamma ray or proton radiotherapy. In this study, normal brain injury due to radiation was analysed in terms of time-dose-fractionation (TDF), nominal standard dose (NSD) by the Ellis formula and NeuNSD by a modification in which the N exponent was -0.44 and the T exponent was -0.06. Their calculated doses were analysed in relationship to the normal brain radiation induced change (RIC) and the tumor sterilization dose. All brain tumors with an exception of many patients with brain metastases were received a surgical extirpation subtotally or partially prior to radiotherapy. And all patients with glioma and brain metastasis received also immuno-chemotherapy in the usual manner during radiotherapy. The calculated dose expressed by NeuNSD and TDF showed a significant relationship between a therapeutic dose and a postradiation time in terms of the appearance of RIC. It was suggested that RIC was caused by a dose over 800 in NeuNSD and a dose over 70 in TDF. Furthermore, it was suggested that an aged patient and a patient who had the vulnerable brain tissue to radiation exposure in the irradiated field had the high risk of RIC. On the other hand, our results suggested that the tumor sterilization dose should be over 1,536 NeuNSD and the irradiated method should be further considered in addition to the radiobiological concepts for various brain tumors. (author)

  14. Rectal dose during radiotherapy: how much is too much?

    International Nuclear Information System (INIS)

    Booth, J.; Adelaide University,

    2002-01-01

    Full text: The clinical intent of radiotherapy for prostate cancer is to deposit high radiation dose to the prostate and as low as possible to healthy tissue. The rectum is one adjacent structure that is very sensitive to side effects including rectal bleeding, stricture, and ulceration. The dose that the rectum receives is often difficult to predict because its position and size will differ on each treatment day from the original planning CT images. The aim of this work is to use current measured values from the literature on rectal wall motion to mathematically model the dynamic rectal wall. The model is used with a pre calculated dose distribution to evaluate the difference between planned anticipated and actually delivered rectal radiation doses. The dose delivered will depend on the status of the rectum in the preliminary planning CT scan. Deviations from the planned dose were larger if the rectum was empty in the planning CT scan (ΔD = ± 25%) than if it was full (ΔD = ± 15%). If the planning CT scan demonstrated the rectum in the mean treatment position the dose variation is reduced (ΔD = ± 10%). These results support the conclusion that care should be taken to plan treatments using CT images that contain reproducible information

  15. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The

  16. Cosmetic results in early stage breast cancer patients with high-dose brachytherapy after conservative surgery

    International Nuclear Information System (INIS)

    Torres, Felipe; Pineda, Beatriz E

    2004-01-01

    Purpose: to reveal cosmetic results in patients at early stages of low risk breast cancer treated with partial accelerated radiotherapy using high dose rate brachytherapy. Methods and materials: from March 2001 to July 2003,14 stages l and ll breast cancer patients were treated at the Colombian national cancer institute in Bogota with conservative surgery and radiotherapy upon the tumor bed (partial accelerated radiotherapy), using interstitial implants with iridium 192 (high dose rate brachytherapy) with a dose of 32 Gys, over 4 days, at 8 fractions twice a day. Results: with an average follow up of 17.7 months, good cosmetic results were found among 71.4 % of patients and excellent results among 14.3% of patients, furthermore none of the patients neither local nor regional or distant relapses. Conclusion: among patients who suffer from breast cancer at early stages, it showed is possible to apply partial accelerated radiotherapy upon the tumor bed with high doses over 4 days with good to excellent cosmetic results

  17. Assessment of leakage dose in vivo in patients undergoing radiotherapy for breast cancer

    Directory of Open Access Journals (Sweden)

    Peta Lonski

    2018-01-01

    Full Text Available Background and purpose: Accurate quantification of the relatively small radiation doses delivered to untargeted regions during breast irradiation in patients with breast cancer is of increasing clinical interest for the purpose of estimating long-term radiation-related risks. Out-of-field dose calculations from commercial planning systems however may be inaccurate which can impact estimates for long-term risks associated with treatment. This work compares calculated and measured dose out-of-field and explores the application of a correction for leakage radiation. Materials and methods: Dose calculations of a Boltzmann transport equation solver, pencil beam-type, and superposition-type algorithms from a commercial treatment planning system (TPS were compared with in vivo thermoluminescent dosimetry (TLD measurements conducted out-of-field on the contralateral chest at points corresponding to the thyroid, axilla and contralateral breast of eleven patients undergoing tangential beam radiotherapy for breast cancer. Results: Overall, the TPS was found to under-estimate doses at points distal to the radiation field edge with a modern linear Boltzmann transport equation solver providing the best estimates. Application of an additive correction for leakage (0.04% of central axis dose improved correlation between the measured and calculated doses at points greater than 15 cm from the field edge. Conclusions: Application of a correction for leakage doses within peripheral regions is feasible and could improve accuracy of TPS in estimating out-of-field doses in breast radiotherapy. Keywords: Breast radiotherapy, TLD, Leakage dose, Dose calculation algorithm

  18. Assessment of eye, hand and male gonadal skin dose in radiotherapy

    International Nuclear Information System (INIS)

    Pushap, M.P.S.

    1979-01-01

    An attempt has been made to gauge the dose to (1) the eye, (2) the skin of the hands and (3) the gonads from radiotherapy of other parts of the body. The study has been done on actual male patients at the Jorjani Medical Centre, Tehran. The study, indicated high dose to the eye lid i.e. about 3% of the tumour dose in the case of head irradiation. The eyes and gonads lie at unequal distances from thorax, so are their doses. It is further emphasised that a minimum dose of 400 rad in three weeks to one month has been reported to be cataractogenic in man. A 50% incidence of progressive loss of vision with a dose of 750 rad to 1000 rad in three weeks to three months time has been observed. If appropriate techniques are not employed to shield the eye, even from stray radiation, such limits may easily be reached. (K.B.)

  19. Dose concentration and dose verification for radiotherapy of cancer

    International Nuclear Information System (INIS)

    Maruyama, Koichi

    2005-01-01

    The number of cancer treatments using radiation therapy is increasing. The background of this increase is the accumulated fact that the number of successful cases is comparative to or even better than surgery for some types of cancer due to the improvement in irradiation technology and radiation planning technology. This review describes the principles and technology of radiation therapy, its characteristics, particle therapy that improves the dose concentration, its historical background, the importance of dose concentration, present situation and future possibilities. There are serious problems that hinder the superior dose concentration of particle therapy. Recent programs and our efforts to solve these problems are described. A new concept is required to satisfy the notion of evidence based medicine, i.e., one has to develop a method of dose verification, which is not yet available. This review is for researchers, medical doctors and radiation technologists who are developing this field. (author)

  20. Dose-Escalated Hypofractionated Intensity-Modulated Radiotherapy in High-Risk Carcinoma of the Prostate: Outcome and Late Toxicity

    Directory of Open Access Journals (Sweden)

    David Thomson

    2012-01-01

    Results. Median followup was 84 months. Five-year overall survival (OS was 83% and biochemical progression-free survival (bPFS was 50% for 57 Gy. Five-year OS was 75% and bPFS 58% for 60 Gy. At 7 years, toxicity by RTOG criteria was acceptable with no grade 3 or above toxicity. Compared with baseline, there was no significant change in urinary symptoms at 2 or 7 years. Bowel symptoms were stable between 2 and 7 years. All patients continued to have significant sexual dysfunction. Conclusion. In high-risk prostate cancer, dose-escalated hypofractionated radiotherapy using IMRT results in encouraging outcomes and acceptable late toxicity.

  1. SU-E-J-198: Out-Of-Field Dose and Surface Dose Measurements of MRI-Guided Cobalt-60 Radiotherapy

    International Nuclear Information System (INIS)

    Lamb, J; Agazaryan, N; Cao, M; Low, D; Thomas, D; Yang, Y

    2015-01-01

    Purpose: To measure quantities of dosimetric interest in an MRI-guided cobalt radiotherapy machine that was recently introduced to clinical use. Methods: Out-of-field dose due to photon scatter and leakage was measured using an ion chamber and solid water slabs mimicking a human body. Surface dose was measured by irradiating stacks of radiochromic film and extrapolating to zero thickness. Electron out-of-field dose was characterized using solid water slabs and radiochromic film. Results: For some phantom geometries, up to 50% of Dmax was observed up to 10 cm laterally from the edge of the beam. The maximum penetration was between 1 and 2 mm in solid water, indicating an electron energy not greater than approximately 0.4 MeV. Out-of-field dose from photon scatter measured at 1 cm depth in solid water was found to fall to less than 10% of Dmax at a distance of 1.2 cm from the edge of a 10.5 × 10.5 cm field, and less that 1% of Dmax at a distance of 10 cm from field edge. Surface dose was measured to be 8% of Dmax. Conclusion: Surface dose and out-of-field dose from the MRIguided cobalt radiotherapy machine was measured and found to be within acceptable limits. Electron out-of-field dose, an effect unique to MRI-guided radiotherapy and presumed to arise from low-energy electrons trapped by the Lorentz force, was quantified. Dr. Low is a member of the scientific advisory board of ViewRay, Inc

  2. In-vivo (entrance) dose measurements in external beam radiotherapy with aqueous FBX dosimetry system

    International Nuclear Information System (INIS)

    Semwal, M.K.; Thakur, P.K.; Bansal, A.K.; Vidyasagar, P.B.

    2005-01-01

    FBX aqueous chemical dosimetry system has been found useful in radiotherapy owing to its low dose measuring capability. In the present work, entrance dose measurements in external beam radiotherapy on a telecobalt machine were carried out with the system on 100 patients. Treatments involving simple beam arrangement of open parallel-opposed beams in cranial and pelvic irradiations were selected for this study. In place of a spectrophotometer, a simple and inexpensive colorimeter was used for absorbance measurements. The purpose was to assess the efficacy of the FBX system for in-vivo dose measurements. The results obtained show that the average discrepancy between the measured and expected dose for both categories of patients was 0.2% (standard deviation 3.2%) with a maximum of +1 0.3%. There were 5.5% cases showing more than ± 5% discrepancy. Comparison of the results obtained with published work on entrance dose measurements, with diode detectors, shows that the inexpensive FBX system can be used for in-vivo (entrance) dose measurements for simple beam arrangements in radiotherapy and can thus serve as a useful QA tool. (author)

  3. Testicular dose in prostate cancer radiotherapy. Impact on impairment of fertility and hormonal function

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, D.; Badakhshi, H.; Budach, V. [Dept. of Radiation Oncology, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany); Kuschke, W.; Bohsung, J. [Dept. of Medical Physics, Charite - Univ. Clinic - Campus Mitte, Berlin (Germany)

    2005-03-01

    Purpose: to determine the dose received by the unshielded testicles during a course of 20-MV conventional external-beam radiotherapy for patients with localized prostate cancer. Critical evaluation of the potential impact on fertility and hormonal impairment in these patients according to the literature. Patients and methods: the absolute dose received by the testicles of 20 randomly selected patients undergoing radiotherapy of prostate cancer was measured by on-line thermoluminescence dosimetry. Patients were treated in supine position with an immobilization cushion under their knees. A flexible tube, containing three calibrated thermoluminescence dosimeters (TLDs) was placed on top or underneath the testicle closest to the perineal region with a day-to-day alternation. The single dose to the planning target volume was 1.8 Gy. Ten subsequent testicle measurements were performed on each patient. The individual TLDs were then read out and the total absorbed dose was calculated. Results: the mean total dose ({+-} standard deviation) measured in a series of 10 subsequent treatment days in all patients was 49 cGy ({+-} 36 cGy). The calculated projected doses made on a standard series of 40 fractions of external-beam radiotherapy were 196 cGy ({+-} 145 cGy). The results of this study are appraised with the available data in the literature. Conclusion: the dose received by the unshielded testes can be assessed as a risk for permanent infertility and impairment of hormonal function in prostate cancer patients treated with external-beam radiotherapy. (orig.)

  4. ORANGE: a Monte Carlo dose engine for radiotherapy

    International Nuclear Information System (INIS)

    Zee, W van der; Hogenbirk, A; Marck, S C van der

    2005-01-01

    This study presents data for the verification of ORANGE, a fast MCNP-based dose engine for radiotherapy treatment planning. In order to verify the new algorithm, it has been benchmarked against DOSXYZ and against measurements. For the benchmarking, first calculations have been done using the ICCR-XIII benchmark. Next, calculations have been done with DOSXYZ and ORANGE in five different phantoms (one homogeneous, two with bone equivalent inserts and two with lung equivalent inserts). The calculations have been done with two mono-energetic photon beams (2 MeV and 6 MeV) and two mono-energetic electron beams (10 MeV and 20 MeV). Comparison of the calculated data (from DOSXYZ and ORANGE) against measurements was possible for a realistic 10 MV photon beam and a realistic 15 MeV electron beam in a homogeneous phantom only. For the comparison of the calculated dose distributions and dose distributions against measurements, the concept of the confidence limit (CL) has been used. This concept reduces the difference between two data sets to a single number, which gives the deviation for 90% of the dose distributions. Using this concept, it was found that ORANGE was always within the statistical bandwidth with DOSXYZ and the measurements. The ICCR-XIII benchmark showed that ORANGE is seven times faster than DOSXYZ, a result comparable with other accelerated Monte Carlo dose systems when no variance reduction is used. As shown for XVMC, using variance reduction techniques has the potential for further acceleration. Using modern computer hardware, this brings the total calculation time for a dose distribution with 1.5% (statistical) accuracy within the clinical range (less then 10 min). This means that ORANGE can be a candidate for a dose engine in radiotherapy treatment planning

  5. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  6. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy

    DEFF Research Database (Denmark)

    Laugaard Lorenzen, Ebbe; Brink, Carsten; Taylor, Carolyn W.

    2016-01-01

    BACKGROUND AND PURPOSE: We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. MATERIAL AND METHODS: Three tangential radiotherapy regimens were reconstructed using CT......-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. RESULTS: For left-sided breast cancer, mean...... to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always

  7. Threshold dose for peripheral neuropathy following intraoperative radiotherapy (IORT) in a large animal model

    International Nuclear Information System (INIS)

    Kinsella, T.J.; DeLuca, A.M.; Barnes, M.; Anderson, W.; Terrill, R.; Sindelar, W.F.

    1991-01-01

    Radiation injury to peripheral nerve is a dose-limiting toxicity in the clinical application of intraoperative radiotherapy, particularly for pelvic and retroperitoneal tumors. Intraoperative radiotherapy-related peripheral neuropathy in humans receiving doses of 20-25 Gy is manifested as a mixed motor-sensory deficit beginning 6-9 months following treatment. In a previous experimental study of intraoperative radiotherapy-related neuropathy of the lumbro-sacral plexus, an approximate inverse linear relationship was reported between the intraoperative dose (20-75 Gy range) and the time to onset of hind limb paresis (1-12 mos following intraoperative radiotherapy). The principal histological lesion in irradiated nerve was loss of large nerve fibers and perineural fibrosis without significant vascular injury. Similar histological changes in irradiated nerves were found in humans. To assess peripheral nerve injury to lower doses of intraoperative radiotherapy in this same large animal model, groups of four adult American Foxhounds received doses of 10, 15, or 20 Gy to the right lumbro-sacral plexus and sciatic nerve using 9 MeV electrons. The left lumbro-sacral plexus and sciatic nerve were excluded from the intraoperative field to allow each animal to serve as its own control. Following treatment, a complete neurological exam, electromyogram, and nerve conduction studies were performed monthly for 1 year. Monthly neurological exams were performed in years 2 and 3 whereas electromyogram and nerve conduction studies were performed every 3 months during this follow-up period. With follow-up of greater than or equal to 42 months, no dog receiving 10 or 15 Gy IORT shows any clinical or laboratory evidence of peripheral nerve injury. However, all four dogs receiving 20 Gy developed right hind limb paresis at 8, 9, 9, and 12 mos following intraoperative radiotherapy

  8. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik

    2013-01-01

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy

  9. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Pusan (Korea, Republic of)

    2013-09-15

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

  10. High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients

    International Nuclear Information System (INIS)

    Lips, Irene M; Dehnad, Homan; Gils, Carla H van; Boeken Kruger, Arto E; Heide, Uulke A van der; Vulpen, Marco van

    2008-01-01

    We evaluated the acute and late toxicity after high-dose intensity-modulated radiotherapy (IMRT) with fiducial marker-based position verification for prostate cancer. Between 2001 and 2004, 331 patients with prostate cancer received 76 Gy in 35 fractions using IMRT combined with fiducial marker-based position verification. The symptoms before treatment (pre-treatment) and weekly during treatment (acute toxicity) were scored using the Common Toxicity Criteria (CTC). The goal was to score late toxicity according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) scale with a follow-up time of at least three years. Twenty-two percent of the patients experienced pre-treatment grade ≥ 2 genitourinary (GU) complaints and 2% experienced grade 2 gastrointestinal (GI) complaints. Acute grade 2 GU and GI toxicity occurred in 47% and 30%, respectively. Only 3% of the patients developed acute grade 3 GU and no grade ≥ 3 GI toxicity occurred. After a mean follow-up time of 47 months with a minimum of 31 months for all patients, the incidence of late grade 2 GU and GI toxicity was 21% and 9%, respectively. Grade ≥ 3 GU and GI toxicity rates were 4% and 1%, respectively, including one patient with a rectal fistula and one patient with a severe hemorrhagic cystitis (both grade 4). In conclusion, high-dose intensity-modulated radiotherapy with fiducial marker-based position verification is well tolerated. The low grade ≥ 3 toxicity allows further dose escalation if the same dose constraints for the organs at risk will be used

  11. High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients

    Directory of Open Access Journals (Sweden)

    Boeken Kruger Arto E

    2008-05-01

    Full Text Available Abstract We evaluated the acute and late toxicity after high-dose intensity-modulated radiotherapy (IMRT with fiducial marker-based position verification for prostate cancer. Between 2001 and 2004, 331 patients with prostate cancer received 76 Gy in 35 fractions using IMRT combined with fiducial marker-based position verification. The symptoms before treatment (pre-treatment and weekly during treatment (acute toxicity were scored using the Common Toxicity Criteria (CTC. The goal was to score late toxicity according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC scale with a follow-up time of at least three years. Twenty-two percent of the patients experienced pre-treatment grade ≥ 2 genitourinary (GU complaints and 2% experienced grade 2 gastrointestinal (GI complaints. Acute grade 2 GU and GI toxicity occurred in 47% and 30%, respectively. Only 3% of the patients developed acute grade 3 GU and no grade ≥ 3 GI toxicity occurred. After a mean follow-up time of 47 months with a minimum of 31 months for all patients, the incidence of late grade 2 GU and GI toxicity was 21% and 9%, respectively. Grade ≥ 3 GU and GI toxicity rates were 4% and 1%, respectively, including one patient with a rectal fistula and one patient with a severe hemorrhagic cystitis (both grade 4. In conclusion, high-dose intensity-modulated radiotherapy with fiducial marker-based position verification is well tolerated. The low grade ≥ 3 toxicity allows further dose escalation if the same dose constraints for the organs at risk will be used.

  12. High-LET dose-response characteristics by track structure theory of heavy charged particles

    International Nuclear Information System (INIS)

    Hansen, J.W.; Olsen, K.J.

    1981-09-01

    The track structure theory developed by Katz and co-workers ascribes the effect of high-LET radiation to the highly inhomogeneous dose distribution due to low energy Δ-rays ejected from the particle track. The theory predicts the effectiveness of high-LET radiation by using the ion parameters zsub(eff') effective charge of the ion, and β = v/c, the relative ion velocity, together with the characteristic dose D 37 derived from low-LET dose-response characteristic of the detector and the approximate size asub(0) of the sensitive element of the detector. 60 Co gamma-irradiation is used as a reference low-LET radiation, while high-LET radiation ranging from 16 MeV protons to 4 MeV/amu 16 0-ions covering an initial LET range of 30-5500 MeVcm 2 /g is obtained from a tandem Van de Graaff accelerator. A thin film (5mg/cm 2 ) radiochromic dye cyanide plastic dosemeter was used as detector with the characteristic dose of 16.8 Mrad and a sensitive element size of 10 -7 cm. Theoretical and experimental effectiveness, RBE, agreed within 10 to 25% depending on LET. (author)

  13. MO-FG-BRA-05: Dosimetric and Radiobiological Validation of Respiratory Gating in Conventional and Hypofractionated Radiotherapy of the Lung: Effect of Dose, Dose Rate, Gating Window and Breathing Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, L; Soultan, D; Pettersson, N; Yock, A; Cornell, M; Aguilera, J; Murphy, J; Advani, S; Moiseenko, V [University of California, San Diego, La Jolla, CA (United States); Gill, B [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2016-06-15

    Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240 cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.

  14. Absorbed dose calculation of the energy deposition close to bone, lung and soft tissue interfaces in molecular radiotherapy

    International Nuclear Information System (INIS)

    Fernandez, M.; Lassman, M.

    2015-01-01

    Full text of publication follows. Aim: for voxel-based dosimetry in molecular radiotherapy (MRT) based on tabulated voxel S-values these values are usually obtained only for soft tissue. In order to study the changes in the dose deposition patterns at interfaces between different materials we have performed Monte Carlo simulations. Methods: the deposited energy patterns were obtained using the Monte-Carlo radiation code MCNPX v2.7 for Lu 177 (medium-energy) and Y 90 (high-energy). The following interfaces were studied: soft tissue-bone and soft tissue-lungs. For this purpose a volume of soft tissue homogeneously filled with Lu 177 or Y 90 was simulated at the interface to 3 different volumes containing no activity: soft tissue, lungs and bone. The emission was considered to be isotropic. The dimensions were chosen to ensure that the energy deposited by all generated particles was scored. The materials were defined as recommended by ICPR46; the decay schemes of Eckerman and Endo were used. With these data the absorbed dose patterns normalized to the maximum absorbed dose in the source region (soft tissue) were calculated. Results: the absorbed dose fractions in the boundary with soft tissue, bone and lungs are 50%, 47% and 57%, respectively, for Lu 177 and 50%, 47% and 51% for Y 90 . The distances to the interface at which the absorbed fractions are at 0.1% are 1.0, 0.6 and 3.0 mm for Lu 177 and 7.0, 4.0 and 24 mm for Y 90 , for soft tissue, bone and lungs respectively. Conclusions: in MRT, the changes in the absorbed doses at interfaces between soft tissue and bone/lungs need to be considered for isotopes emitting high energy particles. (authors)

  15. Radiotherapy Dose Fractionation under Parameter Uncertainty

    International Nuclear Information System (INIS)

    Davison, Matt; Kim, Daero; Keller, Harald

    2011-01-01

    In radiotherapy, radiation is directed to damage a tumor while avoiding surrounding healthy tissue. Tradeoffs ensue because dose cannot be exactly shaped to the tumor. It is particularly important to ensure that sensitive biological structures near the tumor are not damaged more than a certain amount. Biological tissue is known to have a nonlinear response to incident radiation. The linear quadratic dose response model, which requires the specification of two clinically and experimentally observed response coefficients, is commonly used to model this effect. This model yields an optimization problem giving two different types of optimal dose sequences (fractionation schedules). Which fractionation schedule is preferred depends on the response coefficients. These coefficients are uncertainly known and may differ from patient to patient. Because of this not only the expected outcomes but also the uncertainty around these outcomes are important, and it might not be prudent to select the strategy with the best expected outcome.

  16. Properties of the proton therapy. A high precision radiotherapy

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    The proton therapy is a radiotherapy using protons beams. The protons present interesting characteristics but they need heavy technologies to be used, such particles accelerators, radiation protection wall and sophisticated technologies to reach the high precision allowed by their ballistic qualities (planning of treatment, beam conformation and patient positioning). (N.C.)

  17. Analysis of dose volume histogram parameters to estimate late bladder and rectum complications after high-dose (70-78 Gy) conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Boersma, L.J.; Brink, M. van den; Bruce, A.; Gras, L.; Velde, A. te; Lebesque, J.V.

    1997-01-01

    Purpose: To investigate whether Dose Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer, and to examine the effect of using different morbidity scoring systems on the results of these analyses. Materials and Methods: DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (> 6 months) GI and GU complications was scored based on questionnaires and classified using the RTOG/EORTC and the SOMA/LENT scoring system. Moreover, patients were classified as being a rectal bleeder or no rectal bleeder and a distinction was made between non-severe and severe (requiring one or more laser treatments) rectal bleeding. The median follow-up time was 22 months. It was investigated whether the relative and absolute rectal wall volumes, irradiated to various dose levels (≥ 60 Gy, ≥ 65 Gy, ≥ 70 Gy and ≥ 75 Gy) were correlated with the observed actuarial incidences of GI complications. First, the analysis was performed using volume as a continuous variable. Subsequently, for each dose level in the DVH the rectal wall volumes were dichotomized using different volumes as cut-off levels. Twenty cut-off levels were tested on their ability to discriminate between high and low risk for developing GI complications (Fig.). The relationship between bladder wall volumes irradiated to various dose levels and observed actuarial GU complications was investigated using the absolute bladder wall volumes, measured as a continuous variable. For both GI and GU complications, the role of the prescribed radiation dose and the maximum radiation dose in the rectal and bladder wall was analyzed as well. Results: None of the DVH parameters of the rectal wall was significantly correlated with the actuarial incidences of

  18. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    International Nuclear Information System (INIS)

    Geinitz, Hans

    2015-01-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  19. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    International Nuclear Information System (INIS)

    Deng Jun; Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior–inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT–contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  20. Testicular Doses in Image-Guided Radiotherapy of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States); Chen Zhe; Yu, James B.; Roberts, Kenneth B.; Peschel, Richard E.; Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

    2012-01-01

    Purpose: To investigate testicular doses contributed by kilovoltage cone-beam computed tomography (kVCBCT) during image-guided radiotherapy (IGRT) of prostate cancer. Methods and Materials: An EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions from kVCBCT on 3 prostate cancer patients. Absorbed doses to various organs were compared between intensity-modulated radiotherapy (IMRT) treatments and kVCBCT scans. The impact of CBCT scanning mode, kilovoltage peak energy (kVp), and CBCT field span on dose deposition to testes and other organs was investigated. Results: In comparison with one 10-MV IMRT treatment, a 125-kV half-fan CBCT scan delivered 3.4, 3.8, 4.1, and 5.7 cGy to the prostate, rectum, bladder, and femoral heads, respectively, accounting for 1.7%, 3.2%, 3.2%, and 8.4% of megavoltage photon dose contributions. However, the testes received 2.9 cGy from the same CBCT scan, a threefold increase as compared with 0.7 cGy received during IMRT. With the same kVp, full-fan mode deposited much less dose to organs than half-fan mode, ranging from 9% less for prostate to 69% less for testes, except for rectum, where full-fan mode delivered 34% more dose. As photon beam energy increased from 60 to 125 kV, kVCBCT-contributed doses increased exponentially for all organs, irrespective of scanning mode. Reducing CBCT field span from 30 to 10 cm in the superior-inferior direction cut testicular doses from 5.7 to 0.2 cGy in half-fan mode and from 1.5 to 0.1 cGy in full-fan mode. Conclusions: Compared with IMRT, kVCBCT-contributed doses to the prostate, rectum, bladder, and femoral heads are clinically insignificant, whereas dose to the testes is threefold more. Full-fan CBCT usually deposits much less dose to organs (except for rectum) than half-fan mode in prostate patients. Kilovoltage CBCT-contributed doses increase exponentially with photon beam energy. Reducing CBCT field significantly cuts doses to testes and other organs.

  1. Whole brain radiotherapy for brain metastases: The technique of irradiation influences the dose to parotid glands

    International Nuclear Information System (INIS)

    Loos, G.; Paulon, R.; Verrelle, P.; Lapeyre, M.

    2012-01-01

    In the treatment of brain metastases, whole brain radiotherapy can be carried out according two distinct methods: one using multi-leaf collimator for field shaping and protection of organs at risk, and a second one is to make a rotation of the field to avoid the eyes. The aim of the study was to compare for 10 patients the dose distributions at organs at risk for each method. Patients received 30 Gy in 10 fractions. Except for parotid glands, the dose received by organs at risk and the planning target volume was the same with each method. For whole brain radiotherapy, excluding the cisterna cerebellomedullaris, the mean parotid dose was 9.63 Gy using the multi-leaf collimator versus 12.32 Gy using the field rotation (P = 0.04). For whole brain radiotherapy including the cisterna cerebellomedullaris, the mean parotid dose was 11.12 Gy using the multi-leaf collimator versus 20.06 Gy using field rotation (P < 0.001). Using the multi-leaf collimator seems recommended for whole brain radiotherapy, to reduce the dose to the parotids. (authors)

  2. Time and dose-related changes in lung perfusion after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Farr, Katherina P; Khalil, Azza A; Møller, Ditte S

    2018-01-01

    BACKGROUND AND PURPOSE: To examine radiation-induced changes in regional lung perfusion per dose level in 58 non-small-cell lung cancer (NSCLC) patients treated with intensity-modulated radiotherapy (IMRT). MATERIAL AND METHODS: NSCLC patients receiving chemo-radiotherapy (RT) of minimum 60 Gy we...

  3. The effects of low-dose radiotherapy on fresh osteochondral allografts: An experimental study in rabbits

    Directory of Open Access Journals (Sweden)

    Uğur Gönç

    2016-10-01

    Conclusion: In osteochondral massive allograft transplantations, the immune reaction of the host could be precluded with radiotherapy, and the side-effects can be prevented by low-dose fractionated regimen. The total dose of fractionated radiotherapy for an immune suppression should be adjusted not to damage the cartilage tissue, but to avoid articular degeneration in the long term.

  4. Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

    Directory of Open Access Journals (Sweden)

    Nouri S.

    2017-03-01

    Full Text Available Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. Objective: This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO estimating tumor positions in real-time radiotherapy. Method: One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. Results: The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. Conclusion: The internal target volume (ITV should be determined based on the applied neural network algorithm on training steps.

  5. Improving Positioning in High-Dose Radiotherapy for Prostate Cancer: Safety and Visibility of Frequently Used Gold Fiducial Markers

    Energy Technology Data Exchange (ETDEWEB)

    Fonteyne, Valerie, E-mail: valerie.fonteyne@uzgent.be [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Ost, Piet [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium); Villeirs, Geert [Department of Radiology, Ghent University Hospital, Ghent (Belgium); Oosterlinck, Willem [Department of Urology, Ghent University Hospital, Ghent (Belgium); Impens, Aline; De Gersem, Werner; De Wagter, Carlos; De Meerleer, Gert [Department of Radiotherapy, Ghent University Hospital, Ghent (Belgium)

    2012-05-01

    Purpose: The use of gold fiducial markers (GFMs) for prostate positioning in high-dose radiotherapy is gaining interest. The purpose of this study was to compare five GFMs regarding feasibility of ultrasound-based implantation in the prostate and intraprostatic lesion (IPL); toxicity; visibility on transabdominal ultrasound (TU) and cone-beam CT (CBCT); reliability of automatic, soft tissue, and GFM-based CBCT patient positioning by comparing manual and automatic fusion CBCT. Methods and Materials: Twenty-five patients were included. Pain and toxicity were scored after implantation and high-dose radiotherapy. Fisher exact test was used to evaluate the correlation of patients' characteristics and prostatitis. Positioning was evaluated on TU and kilovoltage CBCT images. CBCT fusion was performed automatically (Elekta XVI technology, release 3.5.1 b27, based on grey values) and manually on soft tissue and GFMs. Pearson correlation statistics and Bland-Altman evaluation were used. Five GFMs were compared. Results: Twenty percent of the patients developed prostatitis despite antibiotic prophylaxis. Cigarette smoking was significantly correlated with prostatitis. The visualization of all GFMs on TU was disappointing. Consequently we cannot recommend the use of these GFMs for TU-based prostate positioning. For all GFMs, there was only fair to poor linear correlation between automatic and manual CBCT images, indicating that even when GFMs are used, an operator evaluation is imperative. However, when GFMs were analyzed individually, a moderate to very strong correlation between automatic and manual positioning was found for larger GFMs in all directions. Conclusion: The incidence of prostatitis in our series was high. Further research is imperative to define the ideal preparation protocol preimplantation and to select patients. Automatic fusion is more reliable with larger GFMs at the cost of more scatter. The stability of all GFMs was proven.

  6. Two cases of acute radio-esophagitis induced by a relatively low dose of radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mikuni, Morio; Ohtani, Tsuyoshi; Ono, Kouichi [Nihon Univ., Tokyo (Japan). School of Medicine] [and others

    1998-06-01

    Case 1 was a female, 48 years of age. After a diagnosis of lung cancer, radiotherapy (2 Gy/day) was started. On the sixth day, when radiotherapy reached a total dose of 12 Gy, swallowing became difficult and painful. Upper gastrointestinal endoscopy was performed, and redness, erosion, and easy bleeding of the mucosa in the chest, mid-esophagus, were demonstrated. Sodium alginate was administered to treat the symptoms and there was an improvement in both the symptoms and endoscopic findings. Case 2 was a male, 75 years of age. After a diagnosis of lung cancer, radiotherapy (2 Gy/day) was started. On the 12th day, when radiotherapy reached a total dose of 20 Gy, painful swallowing occurred. Upper gastrointestinal endoscopy revealed, redness and mild hemorrhage in the mucosal epithelium of the chest, mid-esophagus. Radiotherapy was suspended, and sodium alginate was administered. Symptoms improved, based on the findings of upper gastrointestinal endoscopy as well as subjective symptoms. (author)

  7. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  8. Effects of target size on the comparison of photon and charged particle dose distributions

    International Nuclear Information System (INIS)

    Phillips, M.H.; Frankel, K.A.; Tjoa, T.; Lyman, J.T.; Fabrikant, J.I.; Levy, R.P.

    1989-12-01

    The work presented here is part of an ongoing project to quantify and evaluate the differences in the use of different radiation types and irradiation geometries in radiosurgery. We are examining dose distributions for photons using the ''Gamma Knife'' and the linear accelerator arc methods, as well as different species of charged particles from protons to neon ions. A number of different factors need to be studied to accurately compare the different modalities such as target size, shape and location, the irradiation geometry, and biological response. This presentation focuses on target size, which has a large effect on the dose distributions in normal tissue surrounding the lesion. This work concentrates on dose distributions found in radiosurgery, as opposed to those usually found in radiotherapy. 5 refs., 2 figs

  9. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    Science.gov (United States)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original

  10. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    Andreo, P.

    2001-01-01

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions) [es

  11. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    Science.gov (United States)

    2013-01-01

    Purpose To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. Methods We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. Results We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Conclusions Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities. PMID:23369282

  12. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    Directory of Open Access Journals (Sweden)

    Keller Stephanie

    2013-01-01

    Full Text Available Abstract Purpose To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. Methods We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. Results We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Conclusions Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities.

  13. Efficacy of low-dose radiotherapy in painful gonarthritis: experiences from a retrospective East German bicenter study

    International Nuclear Information System (INIS)

    Keller, Stephanie; Müller, Klaus; Kortmann, Rolf-Dieter; Wolf, Ulrich; Hildebrandt, Guido; Liebmann, André; Micke, Oliver; Flemming, Gert; Baaske, Dieter

    2013-01-01

    To evaluate the efficacy of low-dose radiotherapy in painful gonarthritis. We assessed the medical records of 1037 patients with painful gonarthritis who had undergone low-dose radiotherapy between 1981 and 2008. The subjective patient perception of the response to irradiation as graded immediately or up to two months after the completion of a radiotherapy series was evaluated and correlated with age, gender, radiological grading and the duration of symptoms before radiotherapy. Moreover, we performed a mail survey to obtain additional long-term follow-up information and received one hundred and six evaluable questionnaires. We assessed 1659 series of radiotherapy in 1037 patients. In 79.3% of the cases the patients experienced a slight, marked or complete pain relief immediately or up to two months after the completion of radiotherapy. Gender, age and the duration of pain before radiotherapy did not have a significant influence on the response to irradiation. In contrast, severe signs of osteoarthritis were associated with more effective pain relief. In more than 50% of the patients who reported a positive response to irradiation a sustained period of symptomatic improvement was observed. Our results confirm that low-dose radiotherapy is an effective treatment for painful osteoarthritis of the knee. In contrast to an earlier retrospective study, severe signs of osteoarthritis constituted a positive prognostic factor for the response to irradiation. A randomized trial is urgently required to compare radiotherapy with other treatment modalities

  14. Education in physics of radiotherapy

    International Nuclear Information System (INIS)

    Kessler, Judith; Feld, Diana B.; Portillo, Perla A.; Casal, Mariana R.; Menendez, Pablo R.

    2008-01-01

    Radiotherapy is the clinical application which requires the highest precision in dose delivery because of the very high doses administrated to patients, taking into account that new diagnostic methods and new modalities and treatment machines give greater possibilities of dose escalation. These higher doses may also produce serious side effects if not accurately administered. High qualified personnel is therefore needed for dealing with these new complex modalities, assuring that dose prescribed is correctly administered and providing adequate radiation protection to patients, public and staff. Education in Physics of Radiotherapy aims to provide students with solid theoretical and practical basis in order to be able to work with great responsibility and understanding in a Radiotherapy Department and assure that appropriate radiation protection to patients, public and staff. Since 1964 the National Atomic Energy Commission (CNEA) gives course related to Radiotherapy and since 2002, due to a collaborative project, these courses are given at the Oncology Institute 'Angel H. Roffo' (IOAR) which belongs to the University of Buenos Aires (UBA). The IOAR is well equipped in Radiotherapy and new techniques are continuously introduced. That is why, being a University Institution and having highly specialized staff, it is the ideal hospital for teaching Radiotherapy in Buenos Aires, not only for regular courses but also for implementing workshops, seminars and updating courses as well. Continuous education helps to create and increase awareness of the importance of radiation protection in patients as well as in public and staff. (author)

  15. Health related quality of life in locally advanced NSCLC treated with high dose radiotherapy and concurrent chemotherapy or cetuximab – Pooled results from two prospective clinical trials

    International Nuclear Information System (INIS)

    Hallqvist, Andreas; Bergman, Bengt; Nyman, Jan

    2012-01-01

    Background: In non-small cell lung cancer (NSCLC) stage III, data on patient reported health-related quality of life (HRQL) are scarce, especially regarding concurrent chemoradiotherapy. Aims: To evaluate HRQL in patients treated with high dose radiotherapy combined with concurrent chemotherapy or the antibody cetuximab. Methods: The study population comprised all patients enroled in either of two phase II trials in locally advanced NSCLC performed in Sweden 2002–2007. The RAKET trial investigated three different ways of increasing local control (accelerated hyperfractionated treatment or concurrent daily or weekly chemotherapy). The Satellite trial evaluated the addition of cetuximab to thoracic irradiation. HRQL was measured at four time points: At baseline, before radiotherapy, 4–6 weeks after radiotherapy and at 3 months follow-up, using the EORTC QLQ-C30 and LC14 set of questionnaires. Results: 154/220 patients (65%) who completed HRQL assessments at all time points were included in the longitudinal study. There was a significant decline over time regarding most functioning measures. Dyspnoea and fatigue gradually deteriorated without recovery after completed treatment. Chemotherapy related symptoms showed a transient deterioration, whereas radiotherapy related esophagitis had not fully recovered at 3 months. Patients with stage IIIA disease tended to recover better regarding global QL, fatigue and dyspnoea compared to patients with stage IIIB. Patients with WHO performance status (PS) 0 reported improved global QL and less fatigue over time compared with PS 1. Concurrent chemotherapy was associated with more pronounced fatigue and dysphagia, and worse global QL compared with concurrent cetuximab. Baseline physical functioning was an independent predictor of overall survival. Conclusion: Patients undergoing high dose thoracic radiotherapy combined with chemotherapy or cetuximab reported a gradual deterioration in functioning, dyspnoea and fatigue, while

  16. Chemo-radiotherapy for localized pancreatic cancer: increased dose intensity and reduced acute toxicity with concomitant radiotherapy and protracted venous infusion 5-fluorouracil

    International Nuclear Information System (INIS)

    Poen, Joseph C.; Collins, Helen L.; Niederhuber, John E.; Oberhelman, Harry A.; Vierra, Mark A.; Bastidas, Augusto J.; Young, Harvey S.; Slosberg, Edward A.; Jeffrey, Brooke R.; Longacre, Teri A.; Goffinet, Don R.

    1996-01-01

    Purpose: Although concomitant radiotherapy (RT) and bolus 5-Fluorouracil (5-FU) have been shown to improve survival in patients with resectable or locally advanced pancreatic cancer, most patients will eventually succumb to their disease. Since 1994, we have attempted to improve efficacy by administering 5-FU by protracted venous infusion (PVI). This study compares the dose intensity and acute toxicity of our current regimen utilizing 5-FU by PVI with our prior regimen of radiotherapy and bolus 5-FU. Materials and Methods: Since January, 1986, 77 patients with resectable or locally advanced adenocarcinoma of the pancreas were treated with radiation therapy. Thirteen received radiation therapy alone or a planned split-course treatment and were therefore excluded from this study. The remaining 64 patients were treated with continuous course RT and concurrent 5-FU by bolus injection for 3 days during weeks 1 and 5 (n=44) or by PVI 5-FU throughout the entire course of radiotherapy (n=20). Patients were treated on 6 or 15 MV linear accelerators with 3-4 custom shaped fields to target doses of 40-50 Gy following pancreaticoduodenectomy or 50-60 Gy for locally advanced disease. 5-FU target doses were 500 mg/m 2 for bolus injection and 200-225 mg/m 2 /day for PVI. Dose intensity was assessed for both 5-FU and radiotherapy by calculating total doses (mg/m 2 and Gy, respectively) and dose/week of treatment. The Cooperative Group Common Toxicity Scale was used to score acute hematologic and gastrointestinal toxicity. Only those endpoints which could be reliably and objectively quantified (e.g. blood counts, weight loss, treatment interruption) were evaluated. Patients with resectable and locally advanced disease were jointly and independently evaluated. Results: The patient characteristics and radiotherapy treatment techniques were similar between the two treatment groups. The mean irradiated volume was 1,323 cm 3 (95% CI: 1,210-1,436). Chemotherapy and radiotherapy dose

  17. Prostate cancer: Doses and volumes of radiotherapy

    International Nuclear Information System (INIS)

    Hennequin, C.; Rivera, S.; Quero, L.; Latorzeff, I.

    2010-01-01

    Radiotherapy is nowadays a major therapeutic option in prostate cancer. Technological improvements allowed dose escalation without increasing late toxicity. Some randomized trials have shown that dose escalation decreases the biochemical failure rate, without any benefit in survival with the present follow-up. However, some studies indicate that the distant metastases rate is also decreased. Most of these studies have been done without hormonal treatment, and the role of dose escalation in case of long-term androgen deprivation is unknown. The target volume encompassed the whole gland: however, complete or partial focal treatment of the prostate can be done with sophisticated IMRT technique and must be evaluated. Proximal part of the seminal vesicles must be included in the target volumes. The role of nodal irradiation is another debate, but it could be logically proposed for the unfavourable group. (authors)

  18. Treatment planning for heavy ion radiotherapy: physical beam model and dose optimization

    International Nuclear Information System (INIS)

    Kraemer, M.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-09-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12 C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code is in clinical use since the start of the GSI pilot project in December 1997. To this end 48 patients have been successfully planned and treated. (orig.)

  19. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization

    Science.gov (United States)

    Krämer, M.; Jäkel, O.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-11-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows us to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40 000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code has been in clinical use since the start of the GSI pilot project in December 1997. Forty-eight patients have been successfully planned and treated.

  20. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  1. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    Science.gov (United States)

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    International Nuclear Information System (INIS)

    Waldenstroem, Ann-Charlotte; Olsson, Caroline; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Al-Abany, Massoud; Palm, Asa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-01-01

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.

  3. Radial dose distribution of 6.0 MeV/n α-particle in water

    International Nuclear Information System (INIS)

    Soga, F.; Sato, Y.; Hirabayashi, M.; Ohsawa, D.

    2003-01-01

    For the study of radiation biology and its application to radiotherapy, the double differential cross section of electron emission from water vapor induced by 6.0 MeV alpha particle beam is measured. The energy spectra of electrons ranging 7- 10000 eV are detected by the electrostatic analyzer and micro channel plate. The measurements are made at angles between 20 and 160 degrees. With use of this data set, the radial dose distribution in water is calculated by using KURBUC code. It is the Monte Carlo type code of the electron transport process, where the track of the electron is simulated through each individual interactions including elastic scattering, ionization cross section and total excitation cross section in case that electrons with certain energy are put in the liquid-density water. In order to understand the effect of radiation when the particle flux is injected in the human body like radiotherapy using accelerator beam, the dose distribution in the biological substances is essential as the first step to know the effect of irradiation. From the double differential cross sections obtained, the cumulative density functions are produced concerning both energy and angle. These functions are used for the initial randomly produced rays for 3 dimensional Monte Carlo track simulations. The results show that the track of electrons emitted and slowed down is most frequent in the perpendicular direction to the initial beam direction and most of the secondary electrons are stopped within the range of 100 nanometers. The characteristic of the obtained radial dose distribution is nearly 1/r 2 dependence with broad plateau region (penumbra) and gradual decreasing tail of penumbra extending more than a few micrometers which is much longer than the theoretical prediction

  4. Dose optimization in radiotherapy patients for IMRT based on 4D-CBCT

    International Nuclear Information System (INIS)

    Alfonso, R.; Castillo, D.; Ascensión, Y.; Linares, H.; García, F.; Argota, R.

    2015-01-01

    The use of tomographic systems based on conical photon beams kVp (kV-CBCT) to verify the accuracy of the positioning of patients in external radiotherapy treatments has expanded in recent years, with increasing availability of linear accelerators systems for image guided radiation therapy (IGRT) based kV-CBCT systems, incorporated into the gantry of the equipment. Several studies have evaluated the collateral doses received by patients using these positioning systems for radiotherapy (RT). Recently, the firm Elekta has developed a solution to manage the effects of respiratory movements and reduce internal margins that affect the planning target volume (Symmetry TM ), which is based on the acquisition of dynamic tomographic studies (4D- CBCT), making it possible to estimate the average white temporal position in each treatment, without using methods triggered or ‘tracking’. These 4D studies however require a greater number of images per gantry angle, potentially involves a higher dose administered to patients, besides the actual dose treatment beam. The present study investigated a methodology to assess dose rates 4DCBCT (4D-CBDI) using dosimetric instrumentation and phantoms as those typically available in radiotherapy departments. The doses received by different techniques are compared using as criteria of merit image quality and overall geometric accuracy achieved in positioning and internal margins. The results show that it is possible to reduce the administered to patients in studies of CBCT static and dynamic, without significantly affecting the objectives of the same in terms of geometric accuracy dose. [es

  5. Optimization of total arc degree for stereotactic radiotherapy by using integral biologically effective dose and irradiated volume

    International Nuclear Information System (INIS)

    Lim, Do Hoon; Kim, Dae Yong; Lee, Myung Za; Chun, Ha Chung

    2001-01-01

    To find the optimal values of total arc degree to protect the normal brain tissue from high dose radiation in stereotactic radiotherapy planning. With Xknife-3 planning system and 4 MV linear accelerator, the authors planned under various values of parameters. One isocenter, 12, 20, 30, 40, 50, and 60 mm of collimator diameters, 100 deg, 200 deg, 300 deg, 400 deg, 500 deg, 600 deg, of total arc degrees, and 30 deg or 45 deg of arc intervals were used. After the completion of planning, the plans were compared each other using V 50 (the volume of normal brain that is delivered high dose radiation) and integral biologically effective dose. At 30 deg of arc interval, the values of V 50 had the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval, up to 400 deg of total arc degree, the values of V 50 decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. At 30 deg of arc interval, integral biologically effective dose showed the decreased pattern with the increase of total arc degree in any collimator diameter. At 45 deg arc interval with less than 40 mm collimator diameter, the integral biologically effective dose decreased with the increase of total arc degree, but with 50 and 60 mm of collimator diameters, up to 400 deg of total arc degree, integral biologically effective dose decreased with the increase of total arc degree, but at 500 deg and 600 deg of total arc degrees, the values increased. In the stereotactic radiotherapy planning for brain lesions, planning with 400 deg of total arc degree is optimal. Especially, when the larger collimator more than 50 mm diameter should be used, the uses of 500 deg and 600 deg of total arc degrees make the increase of V 50 and integral biologically effective dose, Therefore stereotactic radiotherapy planning using 400 deg of total arc degree can increase the therapeutic ratio and produce the effective outcome

  6. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    Science.gov (United States)

    Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-03-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.

  7. Radiotherapy in differentiated thyroid cancer: Optimal dose distribution using a wax bolus

    International Nuclear Information System (INIS)

    Mayer, R.; Stucklschweiger, G.; Oechs, A.; Pakish, B.; Hackl, A.; Preidler, K.; Szola, D.

    1994-01-01

    The study includes 53 patients with differentiated thyroid cancer, who underwent surgical and radioiodine therapy as well as hormone therapy. Postoperative radiotherapy was performed in all patients in 'mini-mantle-technique' with parallel opposed fields, followed by an anterior boost-field with electrons up to 60-64 Gy, using a wax bolus for optimal dose distribution in the target volume sparing out the spinal cord as much as possible. The dose to the spinal cord did not exceed 44 Gy in any case. The study shows that radiotherapy with doses up to 60-64 Gy plays an important role in postsurgical therapeutic management. Therefore nonradical surgery is a less important prognostic factor for survival and local recurrence in patients with differentiated thyroid cancer than histological diagnosis in combination with age and lymph node involvement

  8. Studying the potential of point detectors in time-resolved dose verification of dynamic radiotherapy

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Andersen, C.E.

    2015-01-01

    Modern megavoltage x-ray radiotherapy with high spatial and temporal dose gradients puts high demands on the entire delivery system, including not just the linear accelerator and the multi-leaf collimator, but also algorithms used for optimization and dose calculations, and detectors used for quality assurance and dose verification. In this context, traceable in-phantom dosimetry using a well-characterized point detector is often an important supplement to 2D-based quality assurance methods based on radiochromic film or detector arrays. In this study, an in-house developed dosimetry system based on fiber-coupled plastic scintillator detectors was evaluated and compared with a Farmer-type ionization chamber and a small-volume ionization chamber. An important feature of scintillator detectors is that the sensitive volume of the detector can easily be scaled, and five scintillator detectors of different scintillator length were thus employed to quantify volume averaging effects by direct measurement. The dosimetric evaluation comprised several complex-shape static fields as well as simplified dynamic deliveries using RapidArc, a volumetric-modulated arc therapy modality often used at the participating clinic. The static field experiments showed that the smallest scintillator detectors were in the best agreement with dose calculations, while needing the smallest volume averaging corrections. Concerning total dose measured during RapidArc, all detectors agreed with dose calculations within 1.1 ± 0.7% when positioned in regions of high homogenous dose. Larger differences were observed for high dose gradient and organ at risk locations, were differences between measured and calculated dose were as large as 8.0 ± 5.5%. The smallest differences were generally seen for the small-volume ionization chamber and the smallest scintillators. The time-resolved RapidArc dose profiles revealed volume-dependent discrepancies between scintillator and ionization chamber response

  9. Proton Radiotherapy for High-Risk Pediatric Neuroblastoma: Early Outcomes and Dose Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Hattangadi, Jona A. [Harvard Radiation Oncology Program, Boston, MA (United States); Rombi, Barbara [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Provincial Agency for Proton Therapy, Trento (Italy); Yock, Torunn I.; Broussard, George [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Friedmann, Alison M.; Huang, Mary [Department of Pediatric Hematology-Oncology, Massachusetts General Hospital, Boston, MA (United States); Chen, Yen-Lin E.; Lu, Hsiao-Ming; Kooy, Hanne [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); MacDonald, Shannon M., E-mail: smacdonald@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States)

    2012-07-01

    Purpose: To report the early outcomes for children with high-risk neuroblastoma treated with proton radiotherapy (RT) and to compare the dose distributions for intensity-modulated photon RT (IMRT), three-dimensional conformal proton RT (3D-CPT), and intensity-modulated proton RT to the postoperative tumor bed. Methods and Materials: All patients with high-risk (International Neuroblastoma Staging System Stage III or IV) neuroblastoma treated between 2005 and 2010 at our institution were included. All patients received induction chemotherapy, surgical resection of residual disease, high-dose chemotherapy with stem cell rescue, and adjuvant 3D-CPT to the primary tumor sites. The patients were followed with clinical examinations, imaging, and laboratory testing every 6 months to monitor disease control and side effects. IMRT, 3D-CPT, and intensity-modulated proton RT plans were generated and compared for a representative case of adjuvant RT to the primary tumor bed followed by a boost. Results: Nine patients were treated with 3D-CPT. The median age at diagnosis was 2 years (range 10 months to 4 years), and all patients had Stage IV disease. All patients had unfavorable histologic characteristics (poorly differentiated histologic features in 8, N-Myc amplification in 6, and 1p/11q chromosomal abnormalities in 4). The median tumor size at diagnosis was 11.4 cm (range 7-16) in maximal dimension. At a median follow-up of 38 months (range 11-70), there were no local failures. Four patients developed distant failure, and, of these, two died of disease. Acute side effects included Grade 1 skin erythema in 5 patients and Grade 2 anorexia in 2 patients. Although comparable target coverage was achieved with all three modalities, proton therapy achieved substantial normal tissue sparing compared with IMRT. Intensity-modulated proton RT allowed additional sparing of the kidneys, lungs, and heart. Conclusions: Preliminary outcomes reveal excellent local control with proton therapy

  10. Radiation dose to contra lateral breast during treatment of breast malignancy by radiotherapy

    Directory of Open Access Journals (Sweden)

    Chougule Arun

    2007-01-01

    Full Text Available Aims: External beam radiotherapy is being used regularly to treat the breast malignancy postoperatively. The contribution of collimator leakage and scatter radiation dose to contralateral breast is of concern because of high radio sensitivity of breast tissue for carcinogenesis. This becomes more important when the treated cancer breast patient is younger than 45 years and therefore the contralateral breast must be treated as organ at risk. Quantification of contralateral dose during primary breast irradiation is helpful to estimate the risk of radiation induced secondary breast malignancy. Materials and Methods: In present study contralateral breast dose was measured in 30 cancer breast patients undergoing external beam therapy by Co-60 teletherapy machine. Postoperative radiotherapy was delivered by medial and lateral tangential fields on alternate days in addition to supraclavicle field daily with 200 cGy/F to a total dose of 5000 cGy in 25 fractions. CaSO4: Dy themoluminescence dosimeter discs were employed for these measurements. Three TLD discs were put on the surface of skin of contra lateral breast, one at the level of nipple and two at 3 cms away from nipple on both side along the midline for each field. At the end treatment of each filed, TLD discs were removed and measured for dose after 24h on Thelmador - 6000 TLD reader. Results: The dose at the contra lateral breast nipple was to be 152.5 to 254.75 cGy for total primary breast dose of 5000 cGy in 25 equal fractions which amounted to 3.05-6.05% of total dose to diseased breast. Further it was observed that the maximum contribution of contralateral breast dose was due to medical tangential half blocked field. Conclusion: CaSO4; Dy thermoluminescence dosimetry is quite easy, accurate and convenient method to measure the contra lateral breast dose.

  11. SYSTEMS-2: A randomised phase II study of radiotherapy dose escalation for pain control in malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    M. Ashton

    2018-01-01

    Full Text Available SYSTEMS-2 is a randomised study of radiotherapy dose escalation for pain control in 112 patients with malignant pleural mesothelioma (MPM. Standard palliative (20 Gy/5# or dose escalated treatment (36 Gy/6# will be delivered using advanced radiotherapy techniques and pain responses will be compared at week 5. Data will guide optimal palliative radiotherapy in MPM.

  12. Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation

    Science.gov (United States)

    Ziegenhein, Peter; Pirner, Sven; Kamerling, Cornelis Ph; Oelfke, Uwe

    2015-08-01

    Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37× compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25× and 1.95× faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.

  13. Preoperative radiotherapy with high dose rate brachytherapy in the treatment of stage IIB cervix cancer. A retrospective analysis of histological specimens

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Trippe, N; Novaes, P.E.; Brandani, I.B.; Hanriot, R.; Souza, L.M.; Pellizzon, A.C.; Salvajoli, J.V.; Baraldi, H.E.; Maia, M.A.; Fogaroli, R.C.

    1996-01-01

    Purpose/Objective: To evaluate the histological specimens of the stage IIB cervix cancer patients who were treated by preoperative radiotherapy with external beam radiotherapy (EBRT) and high dose rate (HDR) brachytherapy. Materials and Methods: From August 1992 to August 1995, 32 patients with stage IIB cervix cancer were underwent to preoperative radiotherapy. All patients received EBRT at the whole pelvis with total dose of 45Gy in 25 fractions of 1,8Gy through a 4 MV linear accelerator. The HDR brachytherapy was realized through a Micro-Selectron device, working with Iridium-192 with initial activity of 10 Ci. The prescribed dose was 6,0Gy at point A, defined by the Manchester, system in 2 weekly insertions during the course of EBRT. The insertions were done by the Fletcher colpostats in association with intrauterine tandem. Four to six weeks after the end of radiotherapy, the patients were underwent to Total Hysterectomy and Salpingoforectomy through Piver second level technique. The uterine specimens were histologically analysed with attention to residual disease at the cervix and lymph nodes status. Results: The histological analysis showed that 19 (59,4%) patients had no residual tumor at the cervix while 13 (40,6%) had microscopic residual tumor. The lymph nodes were negative in 30 (93,8%) patients and positive in 2 (6,3%). All positive lymph nodes patients also had microscopic residual tumor at the cervix. With the follow up ranging from six to 42 months and medium of 21 months, 29 (90,6%) patients are alive with no evidence of disease, one (5,6%) is alive with local recurrence and two (6,2%) have died due to the progression of local disease. Of the 19 patients with negative specimens, 18 (94,7%) are alive with no evidence of disease and of the 13 patients with positive specimens, 11 (84,6%) are alive with no evidence of disease. Local recurrence occurred in two patients with positive specimens and in one with negative. These differences are not

  14. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    Science.gov (United States)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin

  15. Specification of volume and dose in radiotherapy

    International Nuclear Information System (INIS)

    Levernes, S.

    1997-01-01

    As a result of a questionnaire about dose and volume specifications in radiotherapy in the Nordic countries, a group has been set up to propose common recommendations for these countries. The proposal is partly based on ICRU 50, but with major extensions. These extensions fall into three areas: patient geometry, treatment geometry, and dose specifications. For patient geometry and set-up one need alignment markings and anatomical reference points, the latter can be divided into internal and external reference points. These points are necessary to get relationships between coordinate systems related to patient and to treatment unit. For treatment geometry the main volume will be an anatomical target volume which just encompass the clinical target volume with all its variations and movements. This anatomical volume are the most suitable volume for prescription, optimization and reporting dose. A set-up margin should be added to the beam periphery in beams-eye-view to get the minimum size and shape of the beam. For dose specification the most important parameter for homogeneous dose distributions is the arithmetic mean of dose to the anatomical target volume together with its standard deviation. In addition the dose to the ICRU reference point should be reported for intercomparison, together with minimum and maximum doses or dose volume histograms for the anatomical target volume. (author)

  16. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    Energy Technology Data Exchange (ETDEWEB)

    Geinitz, Hans [Krankenhaus der Barmherzigen Schwestern, Linz (Austria). Dept. of Radiation Oncology; Linz Univ. (Austria). Medical Faculty; Roach, Mack III [California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology; Van As, Nicholas (ed.) [The Institute of Cancer Research, Sutton Surrey (United Kingdom)

    2015-04-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  17. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Batista, Delano V.S., E-mail: delano@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2011-07-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm{sup 2}, incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  18. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    International Nuclear Information System (INIS)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X.; Batista, Delano V.S.

    2011-01-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm 2 , incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  19. Radiation dose to testes and risk of infertility from radiotherapy for rectal cancer.

    Science.gov (United States)

    Mazonakis, Michalis; Damilakis, John; Varveris, Haris; Gourtsouiannis, Nicholas

    2006-03-01

    This study aims to provide the means for testicular dose estimation from radiotherapy for rectal cancer. Rectal irradiation was simulated on a humanoid phantom using a 6 MV photon beam. The effect of field size, distance from irradiated area, wedge introduction into lateral beams, tissue thickness along the beam axis and use of gonad shields on the testicular dose was examined. Testicular dose was measured in five patients undergoing radiotherapy for rectal carcinoma. For a 4500 cGy tumour dose, testicular dose was 32-216 cGy depending upon the field dimensions and the distance from the field isocenter. The presence of wedges increased the testicular dose by a factor up to 2.2. The increase of irradiated tissue thickness increased the gonadal dose up to 40% whereas the use of the appropriate gonad shield reduced the dose by >66%. A simple method was developed to estimate testicular dose. The mean difference between the in vivo gonadal doses and the doses calculated using the proposed method was 5.8%. Testicular dose can exceed the value of 100 cGy, which permits a complete recovery of spermatogenesis. The presented data can be used to estimate the gonadal dose and the associated risk of infertility attributable to rectal irradiation.

  20. High-dose radiotherapy or concurrent chemo-radiation in lung cancer patients only induces a temporary, reversible decline in QoL

    International Nuclear Information System (INIS)

    Pijls-Johannesma, Madelon; Houben, Ruud; Boersma, Liesbeth; Grutters, Janneke; Seghers, Katarina; Lambin, Philippe; Wanders, Rinus; De Ruysscher, Dirk

    2009-01-01

    Background and purpose: Aggressive radiotherapy or concurrent chemo-radiation therapy for lung cancer leads to a high incidence of severe, mostly esophageal, toxicity. The purpose of this study was to investigate the evolution of quality of life (QoL) in patients with lung cancer, selected for curative radiotherapy (RT) or chemo-RT. Methods: Seventy-five lung cancer patients completed a longitudinal the EORTC QLQ-C30 and LC13. Linear mixed regression models were fitted to investigate the impact of different factors on overall QoL. Results: Overall QoL decreased shortly after the end of RT (4 points, p = 0.19), but increased back to baseline within 3 months. Mean scores of role functioning (p = 0.018), cognitive functioning (p = 0.002), dyspnoea (EORTC QLQ-LC13; p = 0.043), dysphagia (p = 0.005) and hoarseness (p = 0.029), showed a significant worsening over time. Emotional functioning (p = 0.033) improved significantly over time. Severe esophagitis (≥grade 2) was reported in only 12% of the patients. Next to maximal esophageal toxicity ≥grade 2 (p = .0.010), also tumor stage IIIA (p < 0.001), tumor stage IIIB (p = 0.003), gender (p = 0.042) and fatigue (p < 0.001) appeared to be significant predictors of QoL. Conclusion: High-dose radiotherapy or concurrent chemo-radiation in the treatment of lung cancer seems to be a well-tolerated treatment option with preservation of QoL.

  1. Control of absorbed dose in radiotherapy with 60 Co units

    International Nuclear Information System (INIS)

    Penchev, V.; Constantinov, B.; Buchakliev, Z.

    2000-01-01

    A Network for External Quality Audit has been developed and established in Bulgaria by the Secondary Standard Dosimetry Laboratory (SSDL) - Sofia. The results prove the usefulness of the TL Postal Dose programme in helping Bulgarian radiotherapy departments improve and maintain the consistency of patient doses in clinically acceptable level. The participation of the SSDL-Sofia in the IAEA Quality Audit Programme confirms the quite satisfactory accuracy of the therapy level dose measurements and determination achieved. The role of the SSDL is critical in providing traceable calibration to hospitals

  2. Helium charged-particle radiotherapy of locally advanced carcinoma of the esophagus, stomach, and biliary tract

    International Nuclear Information System (INIS)

    Castro, J.R.; Chen, G.T.Y.; Pitluck, S.

    1983-01-01

    Sixty-five patients with squamous carcinoma of the esophagus (32 patients), carcinoma of the stomach (18 patients) and carcinoma of the biliary tract (15 patients) received from 6000 to 7000 equivalent rad (60-70 Gray equivalents) of helium radiotherapy at 2.0 GyE per fraction, four fractions per day, using multiportal, spread-out Bragg peak therapy. All patients had locally advanced disease without evidence of distant metastases. Partial compensation for tissue inhomogeneities was accomplished. Although palliation of symptoms and regression of tumor was commonly seen, local failure occurred in most patients (77%). The median survival was 8 months. It does not appear that an increase in tumor dose relative to normal tissues can be achieved that would be high enough to increase locoregional control rates over historical control rates with low-LET irradiation. Further studies will be carried out with heavier particles such as neon or silicon in hopes of achieving greater biological effect on these difficult-to-control tumors. 22 references, 6 figures, 1 table

  3. A reference dosimetric system for dose interval of radiotherapy based on alanine/RPE

    International Nuclear Information System (INIS)

    Rodrigues Junior, Orlando; Galante, Ocimar L.; Campos, Leticia L.

    2001-01-01

    This work describes the development of a reference dosimetric system based on alanine/EPR for radiotherapy dose levels. Currently the IPEN is concluding a similar system for the dose range used for irradiation of products, 10-10 5 Gy. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The system uses alanine as detector and electronic paramagnetic resonance - EPR as measure technique. To reach accuracy better than 5% mathematical studies on the best optimization of the EPR spectrometer parameters and methods for the handling of the EPR sign are discussed. (author)

  4. Experimental evaluation of neutron dose in radiotherapy patients: Which dose?

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Expósito, M., E-mail: mariateresa.romero@uab.cat; Domingo, C.; Ortega-Gelabert, O.; Gallego, S. [Grup de Recerca en Radiacions Ionizants (GRRI), Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193 (Spain); Sánchez-Doblado, F. [Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009 (Spain); Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla 41009 (Spain)

    2016-01-15

    Purpose: The evaluation of peripheral dose has become a relevant issue recently, in particular, the contribution of secondary neutrons. However, after the revision of the Recommendations of the International Commission on Radiological Protection, there has been a lack of experimental procedure for its evaluation. Specifically, the problem comes from the replacement of organ dose equivalent by the organ-equivalent dose, being the latter “immeasurable” by definition. Therefore, dose equivalent has to be still used although it needs the calculation of the radiation quality factor Q, which depends on the unrestricted linear energy transfer, for the specific neutron irradiation conditions. On the other hand, equivalent dose is computed through the radiation weighting factor w{sub R}, which can be easily calculated using the continuous function provided by the recommendations. The aim of the paper is to compare the dose equivalent evaluated following the definition, that is, using Q, with the values obtained by replacing the quality factor with w{sub R}. Methods: Dose equivalents were estimated in selected points inside a phantom. Two types of medical environments were chosen for the irradiations: a photon- and a proton-therapy facility. For the estimation of dose equivalent, a poly-allyl-diglicol-carbonate-based neutron dosimeter was used for neutron fluence measurements and, additionally, Monte Carlo simulations were performed to obtain the energy spectrum of the fluence in each point. Results: The main contribution to dose equivalent comes from neutrons with energy higher than 0.1 MeV, even when they represent the smallest contribution in fluence. For this range of energy, the radiation quality factor and the radiation weighting factor are approximately equal. Then, dose equivalents evaluated using both factors are compatible, with differences below 12%. Conclusions: Quality factor can be replaced by the radiation weighting factor in the evaluation of dose

  5. Phase III trial of high- vs. low-dose-rate interstitial radiotherapy for early mobile tongue cancer

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Yoshida, Ken; Yoshioka, Yasuo; Shimamoto, Shigetoshi; Tanaka, Eiichi; Yamazaki, Hideya; Shimizutani, Kimishige; Teshima, Teruki; Furukawa, Souhei

    2001-01-01

    Purpose: Early mobile tongue cancer can be controlled with interstitial radiotherapy (ISRT). We carried out a Phase III trial to compare the treatment results of low-dose-rate (Ld) ISRT and high-dose-rate (HDR) ISRT for early mobile tongue cancer. Methods and Materials: From April 1992 through October 1996, 59 patients with cancer of the early mobile tongue were registered in this Phase III study. Eight patients were excluded from the evaluation because of violations of the requirements for this study. Of 51 eligible patients, 26 patients were treated with LDR-ISRT (70 Gy/4-9 days) and 25 patients with HDR-ISRT (60 Gy/10 fractions/1 week). For the hyperfractionated HDR-ISRT, the time interval between 2 fractions was more than 6 h. Results: Five-year local control rates of the LDR and HDR groups were 84% and 87% respectively. Nodal metastasis occurred in 6 patients in each group. Five-year nodal control rates of the LDR and HDR groups were 77% and 76%, respectively. Conclusion: Hyperfractionated HDR-ISRT for early mobile tongue cancer has the same local control compared with continuous LDR-ISRT. Hyperfractionated HDR-ISRT is an alternative treatment for continuous LDR-ISRT

  6. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    Science.gov (United States)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  7. Prostate cancer: variables to keep in mind at the moment to decide the external radiotherapy dose

    International Nuclear Information System (INIS)

    Donato, H.; Barros, J.M.; Fernandez Bibiloni, C.; Barrios, E.; Martinez, A.; Broda, E.; Cardiello, C.; Alva, R.; Chiozza, J.; Filomia, M.L.; Rafailovici, L.; Dosoretz, B.

    2007-01-01

    The objective of this work is to evaluate forecast factors and other variables in the decision of the final dose for prostate cancer treatment with 3D conformal radiotherapy techniques of modulated intensity. To determine the optimal dose, direct and indirect variables related to the disease should be considered. Also the equipment and the radiotherapy technique will impact on this decision [es

  8. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  9. Monitor units are not predictive of neutron dose for high-energy IMRT

    Directory of Open Access Journals (Sweden)

    Hälg Roger A

    2012-08-01

    Full Text Available Abstract Background Due to the substantial increase in beam-on time of high energy intensity-modulated radiotherapy (>10 MV techniques to deliver the same target dose compared to conventional treatment techniques, an increased dose of scatter radiation, including neutrons, is delivered to the patient. As a consequence, an increase in second malignancies may be expected in the future with the application of intensity-modulated radiotherapy. It is commonly assumed that the neutron dose equivalent scales with the number of monitor units. Methods Measurements of neutron dose equivalent were performed for an open and an intensity-modulated field at four positions: inside and outside of the treatment field at 0.2 cm and 15 cm depth, respectively. Results It was shown that the neutron dose equivalent, which a patient receives during an intensity-modulated radiotherapy treatment, does not scale with the ratio of applied monitor units relative to an open field irradiation. Outside the treatment volume at larger depth 35% less neutron dose equivalent is delivered than expected. Conclusions The predicted increase of second cancer induction rates from intensity-modulated treatment techniques can be overestimated when the neutron dose is simply scaled with monitor units.

  10. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging

    International Nuclear Information System (INIS)

    Sykes, Jonathan R.; Amer, Ali; Czajka, Jadwiga; Moore, Christopher J.

    2005-01-01

    Background and purpose: Image Guidance of patient set-up for radiotherapy can be achieved by acquiring X-ray volumetric images (XVI) with Elekta Synergy and registering these to the planning CT scan. This enables full 3D registration of structures from similar 3D imaging modalities and offers superior image quality, rotational set-up information and a large field of view. This study uses the head section of the Rando phantom to demonstrate a new paradigm of faster, lower dose XVI that still allows registration to high precision. Materials and methods: One high exposure XVI scan and one low exposure XVI scan were performed with a Rando Head Phantom. The second scan was used to simulate ultra low dose, fast acquisition, full and half scans by discarding a large number of projections before reconstruction. Dose measurements were performed using Thermo Luminescent Dosimeters (TLD) and an ion chamber. The reconstructed XVI scans were automatically registered with a helical CT scan of the Rando Head using the volumetric, grey-level, cross-correlation algorithm implemented in the Syntegra software package (Philips Medical Systems). Reproducibility of the registration process was investigated. Results: In both XVI scans the body surface, bone-tissue and tissue air interfaces were clearly visible. Although the subjective image quality of the low dose cone beam scan was reduced, registration of both cone beam scans with the planning CT scan agreed within 0.1 mm and 0.1 deg. Dose to the patient was reduced from 28 mGy to less than 1 mGy and the equivalent scan speed reduced to one minute or less. Conclusions: Automatic 3D registration of high speed, ultra low dose XVI scans with the planning CT scan can be used for precision 3D patient set-up verification/image guidance on a daily basis with out loss of accuracy when compared to higher dose XVI scans

  11. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    Science.gov (United States)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  12. Development of evaluation and performance verification technology for radiotherapy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Jang, S. Y.; Kim, B. H. and others

    2005-02-15

    No matter how much the importance is emphasized, the exact assessment of the absorbed doses administered to the patients to treat the various diseases such as lately soaring malignant tumors with the radiotherapy practices is the most important factor. In reality, several over-exposed patients from the radiotherapy practice become very serious social issues. Especially, the development of a technology to exactly assess the high doses and high energies (In general, dose administered to the patients with the radiotherapy practices are very huge doses, and they are about three times higher than the lethal doses) generated by the radiation generators and irradiation equipment is a competing issue to be promptly conducted. Over fifty medical centers in Korea operate the radiation generators and irradiation equipment for the radiotherapy practices. However, neither the legal and regulatory systems to implement a quality assurance program are sufficiently stipulated nor qualified personnel who could run a program to maintain the quality assurance and control of those generators and equipment for the radiotherapy practices in the medical facilities are sufficiently employed. To overcome the above deficiencies, a quality assurance program such as those developed in the technically advanced countries should be developed to exactly assess the doses administered to patients with the radiotherapy practices and develop the necessary procedures to maintain the continuing performance of the machine or equipment for the radiotherapy. The QA program and procedures should induce the fluent calibration of the machine or equipment with quality, and definitely establish the safety of patients in the radiotherapy practices. In this study, a methodology for the verification and evaluation of the radiotherapy doses is developed, and several accurate measurements, evaluations of the doses delivered to patients and verification of the performance of the therapy machine and equipment are

  13. Intensity modulated radiotherapy (IMRT) in bilateral retinoblastoma

    International Nuclear Information System (INIS)

    Atalar, Banu; Ozyar, Enis; Gunduz, Kaan; Gungor, Gorkem

    2010-01-01

    External beam radiotherapy (EBRT) for retinoblastoma has traditionally been done with conventional radiotherapy techniques which resulted high doses to the surrounding normal tissues. A 20 month-old girl with group D bilateral retinoblastoma underwent intensity modulated radiotherapy (IMRT) to both eyes after failing chemoreduction and focal therapies including cryotherapy and transpupillary thermotherapy. In this report, we discuss the use of IMRT as a method for reducing doses to adjacent normal tissues while delivering therapeutic doses to the tumour tissues compared with 3-dimensional conformal radiotherapy (3DCRT). At one year follow-up, the patient remained free of any obvious radiation complications. Image guided IMRT provides better dose distribution than 3DCRT in retinoblastoma eyes, delivering the therapeutic dose to the tumours and minimizing adjacent tissue damage

  14. Testicular shield for para-aortic radiotherapy and estimation of gonad doses

    OpenAIRE

    Ravichandran, R.; Binukumar, J. P.; Kannadhasan, S.; Shariff, M. H.; Ghamrawy, Kamal El

    2008-01-01

    For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG) with low melting point alloy (Cerroband). The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofo...

  15. Effectiveness of surgery and individualized high-dose hyperfractionated accelerated radiotherapy on survival in clinical stage I non-small cell lung cancer. A propensity score matched analysis

    International Nuclear Information System (INIS)

    Jimenez, Marcelo F.; Baardwijk, Angela van; Aerts, Hugo J.W.L.; De Ruysscher, Dirk; Novoa, Nuria M.; Varela, Gonzalo; Lambin, Philippe

    2010-01-01

    Background and purpose: Surgery is considered the treatment of choice for early-stage non-small cell lung cancer (NSCLC). Patients with poor pulmonary function or other comorbidities are treated with radiotherapy. The objective of this investigation is to compare the 3-year survival of two early-stage NSCLC populations treated in two different hospitals, either by surgical resection (lobectomy) or by individualized high-dose accelerated radiotherapy, after matching patients by propensity scoring analysis. Methods: A retrospective comparative study has been performed on two series of consecutive patients with cytohistological diagnosis of NSCLC, clinically staged IA by means of PET-scan (radiotherapy group) and pathologically staged IA (surgery group). Results: A total of 157 cases were initially selected for the analysis (110 operated and 47 treated by radiotherapy). Patients in the radiotherapy group were older, with higher comorbidity and lower FEV1% with 3-years probability of survival for operated patients higher than that found for patients treated by radiotherapy. After matching by propensity scoring (using age and FEV1%), differences disappear and 3-years probability of survival had no statistical differences. Conclusions: Although this is a non-randomized retrospective analysis, we have not found 3-years survival differences after matching cases between surgery and radiotherapy. Nevertheless, data presented here support the continuous investigation for non-surgical alternatives in this disease.

  16. Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

    International Nuclear Information System (INIS)

    Papanikolaou, Niko; Stathakis, Sotirios

    2009-01-01

    Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.

  17. Testicular shield for para-aortic radiotherapy and estimation of gonad doses.

    Science.gov (United States)

    Ravichandran, R; Binukumar, J P; Kannadhasan, S; Shariff, M H; Ghamrawy, Kamal El

    2008-10-01

    For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG) with low melting point alloy (Cerroband). The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofoam support. Phantom measurement was carried out with a humanoid phantom and a 0.6 cc ion chamber. The mean energy of the scattered photon was calculated for single scattering at selected distances from the beam edge and with different field dimensions. One patient received radiotherapy with an inverted Y field and gonad doses were estimated using calibrated thermo-luminescent detector (TLD) chips. Measured doses with the ion chamber were 7.1 and 3.5% of the mid-plane doses without a shield at 3 and 7.5 cm off-field respectively. These values decreased to 4.6 and 1.7% with the bottom shield alone, and to 1.7 and 0.8% with both bottom and top shields covering the ion chamber. The measured doses at the gonads during the patient's treatment were 0.5-0.92% for the AP field (0.74 +/- 0.17%, n = 5) and 0.5-1.2% for the PA field (0.88 +/- 0.24%, n = 5). The dose received by the testis for the full course of treatment was 32 cGy (0.8%) for a total mid-plane dose of 40 Gy. The first-scatter energy estimated at the gonads is around 1.14 MeV for a primary beam of 15 MV for a long axis dimension of 37 cm of primary field. During the patient's treatment, the estimated absorbed doses at the gonads were comparable with reported values in similar treatments. The testicular shield reported in this study is of light weight and could be used conveniently in treatments of abdominal fields.

  18. Testicular shield for para-aortic radiotherapy and estimation of gonad doses

    Directory of Open Access Journals (Sweden)

    Ravichandran R

    2008-01-01

    Full Text Available For radiotherapy of para-aortic and abdominal regions in male patients, gonads are to be protected to receive less than 2% of the prescribed dose. A testicular shield was fabricated for abdominal radiotherapy with 15 MV X-rays ((Clinac 2300 CD, Varian AG with low melting point alloy (Cerroband. The dimensions of the testicular shield were 6.5 cm diameter and 3.5 cm depth with 1.5 cm wall thickness. During treatment, this shield was held in position by a rectangular sponge and Styrofoam support. Phantom measurement was carried out with a humanoid phantom and a 0.6 cc ion chamber. The mean energy of the scattered photon was calculated for single scattering at selected distances from the beam edge and with different field dimensions. One patient received radiotherapy with an inverted Y field and gonad doses were estimated using calibrated thermo-luminescent detector (TLD chips. Measured doses with the ion chamber were 7.1 and 3.5% of the mid-plane doses without a shield at 3 and 7.5 cm off-field respectively. These values decreased to 4.6 and 1.7% with the bottom shield alone, and to 1.7 and 0.8% with both bottom and top shields covering the ion chamber. The measured doses at the gonads during the patient′s treatment were 0.5-0.92% for the AP field (0.74 ± 0.17%, n = 5 and 0.5-1.2% for the PA field (0.88 ± 0.24%, n = 5. The dose received by the testis for the full course of treatment was 32 cGy (0.8% for a total mid-plane dose of 40 Gy. The first-scatter energy estimated at the gonads is around 1.14 MeV for a primary beam of 15 MV for a long axis dimension of 37 cm of primary field. During the patient′s treatment, the estimated absorbed doses at the gonads were comparable with reported values in similar treatments. The testicular shield reported in this study is of light weight and could be used conveniently in treatments of abdominal fields.

  19. On-line MR imaging for dose validation of abdominal radiotherapy

    International Nuclear Information System (INIS)

    Glitzner, M; Crijns, S P M; De Senneville, B Denis; Kontaxis, C; Prins, F M; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial.Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant.In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur.The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions.In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose.Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  −2.3–1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  −2.5 to 1.9 Gy could be traced back. (paper)

  20. On-line MR imaging for dose validation of abdominal radiotherapy

    Science.gov (United States)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Kontaxis, C.; Prins, F. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-11-01

    For quality assurance and adaptive radiotherapy, validation of the actual delivered dose is crucial. Intrafractional anatomy changes cannot be captured satisfactorily during treatment with hitherto available imaging modalitites. Consequently, dose calculations are based on the assumption of static anatomy throughout the treatment. However, intra- and interfraction anatomy is dynamic and changes can be significant. In this paper, we investigate the use of an MR-linac as a dose tracking modality for the validation of treatments in abdominal targets where both respiratory and long-term peristaltic and drift motion occur. The on-line MR imaging capability of the modality provides the means to perform respiratory gating of both delivery and acquisition yielding a model-free respiratory motion management under free breathing conditions. In parallel to the treatment, the volumetric patient anatomy was captured and used to calculate the applied dose. Subsequently, the individual doses were warped back to the planning grid to obtain the actual dose accumulated over the entire treatment duration. Ultimately, the planned dose was validated by comparison with the accumulated dose. Representative for a site subject to breathing modulation, two kidney cases (25 Gy target dose) demonstrated the working principle on volunteer data and simulated delivery. The proposed workflow successfully showed its ability to track local dosimetric changes. Integration of the on-line anatomy information could reveal local dose variations  -2.3-1.5 Gy in the target volume of a volunteer dataset. In the adjacent organs at risk, high local dose errors ranging from  -2.5 to 1.9 Gy could be traced back.

  1. On a new method to compute photon skyshine doses around radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.; Facure, A. [Comissao Nacional de Eenrgia Nuclear, Rio de Janeiro (Brazil); Xavier, A. [PEN/Coppe -UFRJ, Rio de Janeiro (Brazil)

    2006-07-01

    Full text of publication follows: Nowadays, in a great number of situations constructions are raised around radiotherapy facilities. In cases where the constructions would not be in the primary x-ray beam, 'skyshine' radiation is normally accounted for. The skyshine method is commonly used to to calculate the dose contribution from scattered radiation in such circumstances, when the roof shielding is projected considering there will be no occupancy upstairs. In these cases, there will be no need to have the usual 1,5-2,0 m thick ceiling, and the construction costs can be considerably reduced. The existing expression to compute these doses do not accomplish to explain mathematically the existence of a shadow area just around the outer room walls, and its growth, as we get away from these walls. In this paper we propose a new method to compute photon skyshine doses, using geometrical considerations to find the maximum dose point. An empirical equation is derived, and its validity is tested using M.C.N.P. 5 Monte Carlo calculation to simulate radiotherapy rooms configurations. (authors)

  2. SU-E-J-116: Uncertainties Associated with Dose Summation of High-Dose Rate Brachytherapy and Intensity Modulated Radiotherapy for Gynecological Cases

    Energy Technology Data Exchange (ETDEWEB)

    Kauweloa, K; Bergamo, A; Gutierrez, A; Stathakis, S; Papanikolaou, N; Kirby, N [University of Texas HSC SA, San Antonio, TX (United States); Cancer Therapy and Research Center, San Antonio, TX (United States); Mavroidis, P [University of North Carolina, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: Determining the cumulative dose distribution (CDD) for gynecological patients treated with both high-dose rate (HDR) brachytherapy and intensity-modulated radiotherapy (IMRT) is challenging. The purpose of this work is to study the uncertainty of performing this with a structure-guided deformable (SGD) approach in Velocity. Methods: For SGD, the Hounsfield units inside specified contours are overridden to set uniform values. Deformable image registration (DIR) is the run on these process images, which forces the DIR to focus on these contour boundaries. 18 gynecological cancer patients were used in this study. The original bladder and rectum planning contours for these patients were used to drive the SGD. A second set of contours were made of the bladder by the same person with the intent of carefully making them completely consistent with each other. This second set was utilized to evaluate the spatial accuracy of the SGD. The determined spatial accuracy was then multiplied by the local dose gradient to determine a dose uncertainty associated with the SGD dose warping. The normal tissue complication probability (NTCP) was then calculated for each dose volume histogram (DVH) that included four different probabilistic uncertainties associated with the spatial errors (e.g., 68.3% and 95.4%). Results: The NTCPs for each DVH (e.g., NTCP-−95.4%, NTCP-−68.3%, NTCP-68.3%, NTCP-95.4%) differed amongst patients. All patients had an NTCP-−95.4% close to 0%, while NTCP-95.4% ranged from 0.67% to 100%. Nine patients had an NTCP-−95.4% less than 50% while the remaining nine patients had NTCP-95.4% greater than 50%. Conclusion: The uncertainty associated with this CDD technique renders a large NTCP uncertainty. Thus, it is currently not practical for clinical use. The two ways to improve this would be to use more precise contours to drive the SGD and to use a more accurate DIR algorithm.

  3. An automatic dose verification system for adaptive radiotherapy for helical tomotherapy

    International Nuclear Information System (INIS)

    Mo, Xiaohu; Chen, Mingli; Parnell, Donald; Olivera, Gustavo; Galmarini, Daniel; Lu, Weiguo

    2014-01-01

    Purpose: During a typical 5-7 week treatment of external beam radiotherapy, there are potential differences between planned patient's anatomy and positioning, such as patient weight loss, or treatment setup. The discrepancies between planned and delivered doses resulting from these differences could be significant, especially in IMRT where dose distributions tightly conforms to target volumes while avoiding organs-at-risk. We developed an automatic system to monitor delivered dose using daily imaging. Methods: For each treatment, a merged image is generated by registering the daily pre-treatment setup image and planning CT using treatment position information extracted from the Tomotherapy archive. The treatment dose is then computed on this merged image using our in-house convolution-superposition based dose calculator implemented on GPU. The deformation field between merged and planning CT is computed using the Morphon algorithm. The planning structures and treatment doses are subsequently warped for analysis and dose accumulation. All results are saved in DICOM format with private tags and organized in a database. Due to the overwhelming amount of information generated, a customizable tolerance system is used to flag potential treatment errors or significant anatomical changes. A web-based system and a DICOM-RT viewer were developed for reporting and reviewing the results. Results: More than 30 patients were analysed retrospectively. Our in-house dose calculator passed 97% gamma test evaluated with 2% dose difference and 2mm distance-to-agreement compared with Tomotherapy calculated dose, which is considered sufficient for adaptive radiotherapy purposes. Evaluation of the deformable registration through visual inspection showed acceptable and consistent results, except for cases with large or unrealistic deformation. Our automatic flagging system was able to catch significant patient setup errors or anatomical changes. Conclusions: We developed an automatic

  4. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    International Nuclear Information System (INIS)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha

    2016-01-01

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  5. Influence of high-dose gamma radiation and particle size on antioxidant properties of Maize ( Zea mays L.) flour

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, Haq; Shad, Muhammad Aslam; Rehman, Tanzila; Ramzan, Ayesha, E-mail: haqnawaz@bzu.edu.pk [Bahauddin Zakariya University, Multan (Pakistan)

    2016-10-15

    Influence of high-dose gamma radiation and particle size on antioxidant properties of maize (Zea mays L.) flour was studied using response surface methodology. A central composite design based on three levels of each of particle size, in terms of mesh number (40, 60 and 80 meshes), and gamma radiation dose (25, 50 and 75 kGy) was constructed. A statistically significant dose-dependent decrease (p<0.05) in antioxidant properties of gamma irradiated flour was observed. However, an increase in the mesh number (decrease in particle size of flour) resulted in an increase in antioxidant properties. The optimum level of radiation dose to achieve maximum value of responses was found to be 50 kGy for Trolox equivalent total antioxidant activity (TETAOA), 25 kGy for iron chelating ability (ICA), 25 kGy for reducing power (RP) and 75 kGy for linoleic acid reduction capacity (LARC). However, the optimum level of mesh number to achieve desired levels of TETAOA, ICA, RP and LARC was found to be 80 meshes. (author)

  6. Dose dependence of complication rates in cervix cancer radiotherapy

    International Nuclear Information System (INIS)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder

  7. Dose dependence of complication rates in cervix cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Orton, C.G.; Wolf-Rosenblum, S.

    1986-01-01

    The population selected for this study was a group of 410 Stage IIB and III squamous cell Ca cervix patients treated at the Radiumhemmet between the years 1958-1966. A total of 48 of these patients developed moderate-to-severe rectal and/or bladder complications. Of these, 33 were evaluable with respect to dose-dependence of complications, that is, complete intracavitary dose measurements and external beam dose calculations, no chemotherapy or electrocautery, and complete clinical radiotherapy records. A group of 57 randomly selected uninjured patients were used as controls. Results show good correlation between dose, expressed in TDF units, and complication rates for both rectal and bladder injuries. Severity of rectal injury was observed to increase with increase in dose, although no such correlation was observed for bladder injuries. Mean delays in the expression of symptoms of injury were 10 months for the rectum and 22 months for the bladder.

  8. Six fractions per week of external beam radiotherapy and high-dose-rate brachytherapy for carcinoma of the uterine cervix: A phase I/II study

    International Nuclear Information System (INIS)

    Yoon, Sang Min; Huh, Seung Jae; Park, Won; Lee, Jeung Eun; Park, Young Je; Nam, Hee Rim; Lim, Do Hoon; Ahn, Yong Chan

    2006-01-01

    Purpose: This study evaluated the treatment results of external beam radiotherapy administered in six fractions per week and high-dose-rate (HDR) brachytherapy for the treatment of cervical cancer. Methods and Materials: From July 2000 to July 2003, 43 patients were enrolled in this study. The patients received 45 Gy from a 10-MV photon beam using four-field box or anterior-posterior beams. Parametrial regions and the pelvic side walls were boosted with up to 50.4 Gy using a midline block. The daily fraction dose was 1.8 Gy administered in six-weekly fractions, from Monday to Saturday. HDR brachytherapy was also delivered at doses of 24 Gy to point A in six fractions twice a week. The median follow-up time was 37 months (range, 9-60 months). Results: The median overall treatment time was 51 days for all patients (range, 44-62 days). Thirty-four patients (79.1%) achieved complete remission and 8 (18.6%) achieved partial remission after radiotherapy. Locoregional recurrence occurred in 5 patients (11.6%), and a distant metastasis was encountered in 6 patients (13.9%). The 3-year overall survival, locoregional, and distant metastasis-free survival rates were 74.7%, 87.8%, and 84.7%, respectively. Grade 2 and 3 late rectal complications were encountered in 3 (6.5%) and 1 (2.2%), respectively. There were no Grade 3 late bladder complications. Conclusions: Six fractions per week of external beam radiotherapy and HDR brachytherapy is an effective treatment for patients with a carcinoma of the uterine cervix and can be used as a possible alternative to concomitant chemoradiotherapy in elderly patients or in patients with co-morbidity

  9. Radical radiotherapy for invasive bladder cancer: What dose and fractionation schedule to choose?

    International Nuclear Information System (INIS)

    Pos, Floris J.; Hart, Guus; Schneider, Christoph; Sminia, Peter

    2006-01-01

    Purpose: To establish the α/β ratio of bladder cancer from different radiotherapy schedules reported in the literature and provide guidelines for the design of new treatment schemes. Methods and Materials: Ten external beam radiotherapy (EBRT) and five brachytherapy schedules were selected. The biologically effective dose (BED) of each schedule was calculated. Logistic modeling was used to describe the relationship between 3-year local control (LC3y) and BED. Results: The estimated α/β ratio was 13 Gy (95% confidence interval [CI], 2.5-69 Gy) for EBRT and 24 Gy (95% CI, 1.3-460 Gy) for EBRT and brachytherapy combined. There is evidence for an overall dose-response relationship. After an increase in total dose of 10 Gy, the odds of LC3y increase by a factor of 1.44 (95% CI, 1.23-1.70) for EBRT and 1.47 (95% CI, 1.25-1.72) for the data sets of EBRT and brachytherapy combined. Conclusion: With the clinical data currently available, a reliable estimation of the α/β ratio for bladder cancer is not feasible. It seems reasonable to use a conventional α/β ratio of 10-15 Gy. Dose escalation could significantly increase local control. There is no evidence to support short overall treatment times or large fraction sizes in radiotherapy for bladder cancer

  10. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Image-guided and adaptive radiotherapy

    International Nuclear Information System (INIS)

    Louvel, G.; Chajon, E.; Henry, O.; Cazoulat, G.; Le Maitre, A.; Simon, A.; Bensadoun, R.J.; Crevoisier, R. de

    2012-01-01

    Image-guided radiotherapy (IGRT) aims to take into account anatomical variations occurring during irradiation by visualization of anatomical structures. It may consist of a rigid registration of the tumour by moving the patient, in case of prostatic irradiation for example. IGRT associated with intensity-modulated radiotherapy (IMRT) is strongly recommended when high-dose is delivered in the prostate, where it seems to reduce rectal and bladder toxicity. In case of significant anatomical deformations, as in head and neck tumours (tumour shrinking and decrease in volume of the salivary glands), re-planning appears to be necessary, corresponding to the adaptive radiotherapy. This should ideally be 'monitored' and possibly triggered based on a calculation of cumulative dose, session after session, compared to the initial planning dose, corresponding to the concept of dose-guided adaptive radiotherapy. The creation of 'planning libraries' based on predictable organ positions (as in cervical cancer) is another way of adaptive radiotherapy. All of these strategies still appear very complex and expensive and therefore require stringent validation before being routinely applied. (authors)

  12. Hot particle dose calculations using the computer code VARSKIN Mod 2

    International Nuclear Information System (INIS)

    Durham, J.S.

    1991-01-01

    The only calculational model recognised by the Nuclear Regulatory Commission (NRC) for hot particle dosimetry is VARSKIN Mod 1. Because the code was designed to calculate skin dose from distributed skin contamination and not hot particles, it is assumed that the particle has no thickness and, therefore, that no self-absorption occurs within the source material. For low energy beta particles such as those emitted from 60 Co, a significant amount of self-shielding occurs in hot particles and VARSKIN Mod 1 overestimates the skin dose. In addition, the presence of protective clothing, which will reduce the calculated skin dose for both high and low energy beta emitters, is not modelled in VARSKIN Mod 1. Finally, there is no provision in VARSKIN Mod 1 to calculate the gamma contribution to skin dose from radionuclides that emit both beta and gamma radiation. The computer code VARSKIN Mod 1 has been modified to model three-dimensional sources, insertion of layers of protective clothing between the source and skin, and gamma dose from appropriate radionuclides. The new code, VARSKIN Mod 2, is described and the sensitivity of the calculated dose to source geometry, diameter, thickness, density, and protective clothing thickness are discussed. Finally, doses calculated using VARSKIN Mod 2 are compared to doses measured from hot particles found in nuclear power plants. (author)

  13. Collateral patient doses in the Varian 21iX radiotherapy Linac

    International Nuclear Information System (INIS)

    Barquero, R.; Castillo, A. del

    2008-01-01

    Full text: The radiotherapy aim is to irradiate the patient tumor cells while the doses in healthy tissue remains as low as possible. Nevertheless, when high photon energy accelerators are used, collateral undesired photon and neutron doses are always implied during the treatments and became more important with the new accelerators and techniques as IMRT. To assess secondary cancer risk outside the treatment volume as a long-term medical consequence of treatments, the total doses received by each patient outside the primary field during his treatment must be estimated. To achieve this purpose photon and neutron dose equivalents Hp(10) and H*(10) has been measured in a new Varian 21iX with maximum photon energy of 15 MV placed recently in our radiotherapy department. Three devices: 1) a neutron dose rate meter BERTHOLD LB 4111 calibrated recently in the German PTB laboratory, 2) a calibrated environmental pressurized photon ionization chamber (IC) VICTOREEN 450-PI n/s 1020, and 3) a calibrated personal electronic photon dosimeter GAMMACOM 4200M, were placed above the treatment couch outside the primary field while the Varian 21iX reference test were done. In particular the photon and neutron doses in the couch were measured while a water phantom was irradiated during automatic beam data acquisition for a 15 MV beam. A complete set of measurements changing field size are made. These 15 MV results are compared with data measured previously by thermoluminescence and bubble dosimeters in the same facility for an Elekta Precise and a Siemens KDS both with maximum photon energy of 18 MV. From this the benefits in the patient collateral doses of decreasing the maximum treatment photon energy are discussed. The patient doses obtained in the Varian 21iX had values that go from 80 to 800 uSv per treatment Gray. As the Varian 21iX therapy Linac is operated in pulsed mode with short pulse length the discussion of the results includes: 1. The correction of dead time in the GM

  14. Dose characteristics of in-house-built collimators for stereotactic radiotherapy with a linear accelerator

    International Nuclear Information System (INIS)

    Norrgaard, F. Stefan E.; Kulmala, Jarmo A.J.; Minn, Heikki R.I.; Sipilae, Petri M.

    1998-01-01

    Dose characteristics of a stereotactic radiotherapy unit based on a standard Varian Clinac 4/100 4 MV linear accelerator, in-house-built Lipowitz collimators and the SMART stereotactic radiotherapy treatment planning software have been determined. Beam collimation is constituted from the standard collimators of the linear accelerator and a tertiary collimation consisting of a replaceable divergent Lipowitz collimator. Four collimators with isocentre diameters of 15, 25, 35 and 45 mm, respectively, were constructed. Beam characteristics were measured in air, acrylic or water with ionization chamber, photon diode, electron diode, diamond detector and film. Monte Carlo simulation was also applied. The radiation leakage under the collimators was less than 1% at 50 mm depth in water. Specific beam characteristics for each collimator were imported to SMART and dose planning with five non-coplanar converging 140 deg. arcs separated by 36 deg. angles was performed for treatment of a RANDO phantom. Dose verification was made with TLD and radiochromic film. The in-house-built collimators were found to be suitable for stereotactic radiotherapy and patient treatments with this system are in progress. (author)

  15. Phantom measurements and computed estimates of breast dose with radiotherapy for Hodgkin's lymphoma: dose reduction with the use of the involved field

    International Nuclear Information System (INIS)

    Wirth, A.; Kron, T.; Sorell, G.; Cramb, J.; Wittwer, H.; Sullivan, K.

    2008-01-01

    Full text: The risk of breast cancer following radiotherapy for Hodgkin's lymphoma appears to be dose related. In this study we compared breast dose in an anthropomorphic phantom for conventional 'mantle'; upper mediastinal/bilateral neck (minimantle) and unilateral neck fields, and evaluated the accuracy of computer planned dose estimates for out-of-field doses. For each field, computer-planned breast dose (CPD) estimates were compared with thermolu-minescence dosimetry measurements in five locations within 'breast tissue'. CPD were also compared with ion chamber measurements in a slab phantom. Measured dose and CPD were within 20% of each other up to approximately 10 cm from the field edge. Beyond 10 cm, the CPD underestimated dose by a factor of 2 or more. The minimantle reduced the breast dose by a factor of approximately 10 compared with the mantle treatment. Treating the neck field lowered the breast dose by a further 50% or more. Modern involved-field radiotherapy for lymphoma substantially reduces breast dose compared with mantle fields. Computer dosimetery underestimated dose at larger distances from the field. This needs to be considered if computer dosimetery is used to estimate breast dose and, by extrapolation, breast cancer risk.

  16. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    International Nuclear Information System (INIS)

    Artemova, N.A.

    2008-01-01

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  17. A comparison of anti-tumor effects of high dose rate fractionated and low dose rate continuous irradiation in multicellular spheroids

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Omura, Motoko; Matsubara, Sho.

    1997-01-01

    In a clinical experience, high dose rate (HDR) fractionated interstitial radiotherapy can be an alternative to traditional low dose rate (LDR) continuous interstitial radiotherapy for head and neck cancers. To investigate biological effect of HDR, compared to LDR, comparisons have been made using spheroids of human squamous carcinoma cells. Both LDR and HDR were delivered by 137 Cs at 37degC. Dose rate of LDR was 8 Gy/day and HDR irradiations of fraction size of 4, 5 or 6 Gy were applied twice a day with an interval time of more than 6 hr. We estimated HDR fractionated dose of 31 Gy with 4 Gy/fr to give the same biological effects of 38 Gy by continuous LDR for spheroids. The ratio of HDR/LDR doses to control 50% spheroids was 0.82. (author)

  18. Particle radiotherapy, a novel external radiation therapy, versus liver resection for hepatocellular carcinoma accompanied with inferior vena cava tumor thrombus: A matched-pair analysis.

    Science.gov (United States)

    Komatsu, Shohei; Kido, Masahiro; Asari, Sadaki; Toyama, Hirochika; Ajiki, Tetsuo; Demizu, Yusuke; Terashima, Kazuki; Okimoto, Tomoaki; Sasaki, Ryohei; Fukumoto, Takumi

    2017-12-01

    Hepatocellular carcinoma accompanied with inferior vena cava tumor thrombus carries a dismal prognosis, and the feasibility of local treatment has remained controversial. The present study aimed to compare the outcomes of particle radiotherapy and liver resection in patients with hepatocellular carcinoma with inferior vena cava tumor thrombus. Thirty-one and 19 patients, respectively, underwent particle radiotherapy and liver resection for hepatocellular carcinoma with inferior vena cava tumor thrombus. A matched-pair analysis was undertaken to compare the short- and long-term outcomes according to tumor stage determined using the tumor-node-metastasis classification. Both stages IIIB and IV (IVA and IVB) patients were well-matched for 12 factors, including treatment policy and patient and tumor characteristics. The median survival time of matched patients with stage IIIB tumors in the particle radiotherapy group was greater than that in the liver resection group (748 vs 272 days, P = .029), whereas no significant difference was observed in the median survival times of patients with stage IV tumors (239 vs 311 days, respectively). There were significantly fewer treatment-related complications of grade 3 or greater in the particle radiotherapy group (0%) than in the liver resection group (26%). Particle radiotherapy is potentially preferable in hepatocellular carcinoma patients with stage IIIB inferior vena cava tumor thrombus and at least equal in efficiency to liver resection in those with stage IV disease, while causing significantly fewer complications. Considering the relatively high survival and low invasiveness of particle radiotherapy when compared to liver resection, this approach may represent a novel treatment modality for hepatocellular carcinoma with inferior vena cava tumor thrombus. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fast Neutron Dose Distribution in a Linac Radiotherapy Facility

    International Nuclear Information System (INIS)

    Al-Othmany, D.Sh.; Abdul-Majid, S.; Kadi, M.W.

    2011-01-01

    CR-39 plastic detectors were used for fast neutron dose mapping in the radiotherapy facility at King AbdulAziz University Hospital (KAUH). Detectors were calibrated using a 252 Cf neutron source and a neutron dosimeter. After exposure chemical etching was performed using 6N NaOH solution at 70 degree C. Tracks were counted using an optical microscope and the number of tracks/cm 2 was converted to a neutron dose. 15 track detectors were distributed inside and outside the therapy room and were left for 32 days. The average neutron doses were 142.3 mSv on the accelerator head, 28.5 mSv on inside walls, 1.4 mSv beyond the beam shield, and 1 mSv in the control room

  20. From physical dose constraints to equivalent uniform dose constraints in inverse radiotherapy planning

    International Nuclear Information System (INIS)

    Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon

    2003-01-01

    Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely

  1. Precision high-dose radiotherapy with helium-ion beams: treatment of malignant tumors in humans

    International Nuclear Information System (INIS)

    Saunders, W.S.; Castro, J.R.; Austin-Seymour, M.; Chen, G.T.Y.; Collier, J.M.; Zink, S.R.; Capra-Young, D.; Pitluck, S.; Walton, R.E.; Pascale, C.R.

    1985-01-01

    The advantages of the Bragg peak and sharp penumbra of the helium-ion beam emphasize its importance in radiotherapy. Perhaps the best example of this type of treatment is that for the treatment of malignant melanoma of the eye. The authors treated 181 such patients, 46 in the last 12 months. They continue to have very encouraging results in this group. Only eight patients have had a recurrence of their tumor, and in all eight a second treatment, usually removal of the eye, has apparently cured the tumor. They have generally been able to preserve the pretreatment visual acuity as long as the edge of the tumor is at least 3-4 mm away from the optic disc or macula. Four different tumor doses have been used since this program was begun. The first 20 patients received 70 GyE; the dose was then raised to 80 GyE for the next 69 patients. The group of patients treated with 80 GyE began to develop an unacceptable incidence of glaucoma in the treated eye, so the dose was then decreased to 60 GyE. So far, 4 of 61 patients (or 7%) in the 60-GyE group have developed glaucoma

  2. Single-fraction stereotactic radiotherapy: a dose-response analysis of arteriovenous malformation obliteration

    International Nuclear Information System (INIS)

    Touboul, Emmanuel; Al Halabi, Assem; Buffat, Laurent; Merienne, Louis; Huart, Judith; Schlienger, Michel; Lefkopoulos, Dimitrios; Mammar, Hamid; Missir, Odile; Meder, Jean-Francois; Laurent, Alex; Housset, Martin

    1998-01-01

    Purpose: Stereotactic radiotherapy delivered in a high-dose single fraction is an effective technique to obliterate intracranial arteriovenous malformations (AVM). To attempt to analyze the relationships between dose, volume, and obliteration rates, we studied a group of patients treated using single-isocenter treatment plans. Methods and Materials: From May 1986 to December 1989, 100 consecutive patients with angiographically proven AVM had stereotactic radiotherapy delivered as a high-dose single fraction using a single-isocenter technique. Distribution according to Spetzler-Martin grade was as follows: 79 grade 1-3, three grade 4, 0 grade 5, and 18 grade 6. The target volume was spheroid in 74 cases, ellipsoid in 11, and large and irregular in 15. The targeted volume of the nidus was estimated using two-dimensional stereotactic angiographic data and, calculated as an ovoid-shaped lesion, was 1900 ± 230 mm 3 (median 968 mm 3 ; range 62-11, 250 mm 3 ). The mean minimum target dose (D min ) was 19 ± 0.6 Gy (median 20 Gy; range: 3-31.5). The mean volume within the isodose which corresponded to the minimum target dose was 2500 ± 300 mm 3 (median 1200 mm 3 ; range 75-14 900 mm 3 ). The mean maximum dose (D max ) was 34.5 ± 0.5 Gy (median 35 Gy; range 15-45). The mean angiographic follow-up was 42 ± 2.3 months (median 37.5; range 7-117). Results: The absolute obliteration rate was 51%. The 5-year actuarial obliteration rate was 62.5 ± 7%. After univariate analysis, AVM obliteration was influenced by previous surgery (p = 0.0007), D min by steps of 5 Gy (p = 0.005), targeted volume of the nidus (≤968 mm 3 vs. >968 mm 3 ; p = 0.015), and grade according to Spetzler-Martin (grade 1-3 vs. grade 4-6; p = 0.011). After multivariate analysis, the independent factors influencing AVM obliteration were the D min [relative risk (RR) 1.9; 95% confidence interval (CI) 1.4-2.5; p min but does not seem to be influenced by D max and the targeted volume of the nidus

  3. Peripheral dose measurement in high-energy photon radiotherapy with the implementation of MOSFET.

    Science.gov (United States)

    Vlachopoulou, Vassiliki; Malatara, Georgia; Delis, Harry; Theodorou, Kiki; Kardamakis, Dimitrios; Panayiotakis, George

    2010-11-28

    To study the peripheral dose (PD) from high-energy photon beams in radiotherapy using the metal oxide semiconductor field effect transistor (MOSFET) dose verification system. The radiation dose absorbed by the MOSFET detector was calculated taking into account the manufacturer's Correction Factor, the Calibration Factor and the threshold voltage shift. PD measurements were carried out for three different field sizes (5 cm × 5 cm, 10 cm × 10 cm and 15 cm × 15 cm) and for various depths with the source to surface distance set at 100 cm. Dose measurements were realized on the central axis and then at distances (1 to 18 cm) parallel to the edge of the field, and were expressed as the percentage PD (% PD) with respect to the maximum dose (d(max)). The accuracy of the results was evaluated with respect to a calibrated 0.3 cm(3) ionization chamber. The reproducibility was expressed in terms of standard deviation (s) and coefficient of variation. % PD is higher near the phantom surface and drops to a minimum at the depth of d(max), and then tends to become constant with depth. Internal scatter radiation is the predominant source of PD and the depth dependence is determined by the attenuation of the primary photons. Closer to the field edge, where internal scatter from the phantom dominates, the % PD increases with depth because the ratio of the scatter to primary increases with depth. A few centimeters away from the field, where collimator scatter and leakage dominate, the % PD decreases with depth, due to attenuation by the water. The % PD decreases almost exponentially with the increase of distance from the field edge. The decrease of the % PD is more than 60% and can reach up to 90% as the measurement point departs from the edge of the field. For a given distance, the % PD is significantly higher for larger field sizes, due to the increase of the scattering volume. Finally, the measured PD obtained with MOSFET is higher than that obtained with an ionization chamber

  4. Assessment of Parotid Gland Dose Changes During Head and Neck Cancer Radiotherapy Using Daily Megavoltage Computed Tomography and Deformable Image Registration

    International Nuclear Information System (INIS)

    Lee, Choonik; Langen, Katja M.; Lu Weiguo; Haimerl, Jason; Schnarr, Eric; Ruchala, Kenneth J.; Olivera, Gustavo H.; Meeks, Sanford L.; Kupelian, Patrick A.; Shellenberger, Thomas D.; Manon, Rafael R.

    2008-01-01

    Purpose: To analyze changes in parotid gland dose resulting from anatomic changes throughout a course of radiotherapy in a cohort of head-and-neck cancer patients. Methods and Materials: The study population consisted of 10 head-and-neck cancer patients treated definitively with intensity-modulated radiotherapy on a helical tomotherapy unit. A total of 330 daily megavoltage computed tomography images were retrospectively processed through a deformable image registration algorithm to be registered to the planning kilovoltage computed tomography images. The process resulted in deformed parotid contours and voxel mappings for both daily and accumulated dose-volume histogram calculations. The daily and cumulative dose deviations from the original treatment plan were analyzed. Correlations between dosimetric variations and anatomic changes were investigated. Results: The daily parotid mean dose of the 10 patients differed from the plan dose by an average of 15%. At the end of the treatment, 3 of the 10 patients were estimated to have received a greater than 10% higher mean parotid dose than in the original plan (range, 13-42%), whereas the remaining 7 patients received doses that differed by less than 10% (range, -6-8%). The dose difference was correlated with a migration of the parotids toward the high-dose region. Conclusions: The use of deformable image registration techniques and daily megavoltage computed tomography imaging makes it possible to calculate daily and accumulated dose-volume histograms. Significant dose variations were observed as result of interfractional anatomic changes. These techniques enable the implementation of dose-adaptive radiotherapy

  5. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning.

    Science.gov (United States)

    Korhonen, Juha; Kapanen, Mika; Keyrilainen, Jani; Seppala, Tiina; Tuomikoski, Laura; Tenhunen, Mikko

    2013-01-01

    Magnetic resonance (MR) images are used increasingly in external radiotherapy target delineation because of their superior soft tissue contrast compared to computed tomography (CT) images. Nevertheless, radiotherapy treatment planning has traditionally been based on the use of CT images, due to the restrictive features of MR images such as lack of electron density information. This research aimed to measure absorbed radiation doses in material behind different bone parts, and to evaluate dose calculation errors in two pseudo-CT images; first, by assuming a single electron density value for the bones, and second, by converting the electron density values inside bones from T(1)∕T(2)∗-weighted MR image intensity values. A dedicated phantom was constructed using fresh deer bones and gelatine. The effect of different bone parts to the absorbed dose behind them was investigated with a single open field at 6 and 15 MV, and measuring clinically detectable dose deviations by an ionization chamber matrix. Dose calculation deviations in a conversion-based pseudo-CT image and in a bulk density pseudo-CT image, where the relative electron density to water for the bones was set as 1.3, were quantified by comparing the calculation results with those obtained in a standard CT image by superposition and Monte Carlo algorithms. The calculations revealed that the applied bulk density pseudo-CT image causes deviations up to 2.7% (6 MV) and 2.0% (15 MV) to the dose behind the examined bones. The corresponding values in the conversion-based pseudo-CT image were 1.3% (6 MV) and 1.0% (15 MV). The examinations illustrated that the representation of the heterogeneous femoral bone (cortex denser compared to core) by using a bulk density for the whole bone causes dose deviations up to 2% both behind the bone edge and the middle part of the bone (diameter bones). This study indicates that the decrease in absorbed dose is not dependent on the bone diameter with all types of bones. Thus

  6. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    International Nuclear Information System (INIS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Shirai, Toshiyuki; Noda, Koji; Kanai, Tatsuaki; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-01-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with α r = 0.764 Gy −1 and β = 0.0615 Gy −2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both

  7. Audit of radiation dose delivered in time-resolved four-dimensional computed tomography in a radiotherapy department

    International Nuclear Information System (INIS)

    Hubbard, Patricia; Calllahan, Jason; Cramb, Jim; Budd, Ray

    2015-01-01

    To review the dose delivered to patients in time-resolved computed tomography (4D CT) used for radiotherapy treatment planning. 4D CT is used at Peter MacCallum Cancer Centre since July 2007 for radiotherapy treatment planning using a Philips Brilliance Wide Bore CT scanner (16 slice, helical 4D CT acquisition). All scans are performed at 140 kVp and reconstructed in 10 datasets for different phases of the breathing cycle. Dose records were analysed retrospectively for 387 patients who underwent 4D CT procedures between 2007 and 2013. A total of 444 4D CT scans were acquired with the majority of them (342) being for lung cancer radiotherapy. Volume CT dose index (CTDIvol) as recorded over this period was fairly constant at approximately 20 mGy for adults. The CTDI for 4D CT for lung cancers of 19.6 ± 9.3 mGy (n = 168, mean ± 1SD) was found to be 63% higher than CTDIs for conventional CT scans for lung patients that were acquired in the same period (CTDIvol 12 ± 4 mGy, sample of n = 25). CTDI and dose length product (DLP) increased with increasing field of view; however, no significant difference between DLPs for different indications (breast, kidney, liver and lung) could be found. Breathing parameters such as breathing rate or pattern did not affect dose. 4D CT scans can be acquired for radiotherapy treatment planning with a dose less than twice the one required for conventional CT scanning.

  8. Radiotherapy dose compensation for lung patients

    International Nuclear Information System (INIS)

    Piyaratna, N.; Arnold, A.; Metcalfe, P.

    1999-01-01

    The purpose of the present paper is to provide a more homogeneous dose distribution in the target volume from compensated anterior and posterior fields while the healthy lung is spared by de-weighting the lateral fields. A compensation computation which used linear iterations to compute the most homogeneous dose distribution across the target volume was applied to produce optimum compensator designs. The equivalent tissue-air ratio (E-TAR) inhomogeneity correction was applied for the computations using a GE target series 11 planning computer. The compensators designed were tested for accuracy in a modified water/lung phantom using a scanning diode and an anthropomorphic phantom using thermoluminescent dosimeters. A comparison has been made between the compensated and uncompensated plans for the first nine patients who we have treated with this technique. The dose profiles produced by the computation agreed with the prediction of the computed isodose plans to within ± 2% at the target depth. The thermoluminescent dosimeter (TLD)-measured results in the anthropomorphic phantom agreed with the planning computer within ± 3%. A comparison of nine compensated plans of radiotherapy patients for large-volume targets in the lung region showed a maximum variation in the target to be 19% uncompensated versus 10% compensated. By providing compensated treatment fields from anterior and posterior treatment portals, a homogeneous dose that conforms well to the target volume is provided. As an added bonus, this enables the lateral lung fields to be significantly de-weighted and the healthy lung is spared considerable dose. Copyright (1999) Blackwell Science Pty Ltd

  9. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  10. Benign painful shoulder syndrome. Initial results of a single-center prospective randomized radiotherapy dose-optimization trial

    International Nuclear Information System (INIS)

    Ott, O.J.; Hertel, S.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R.

    2012-01-01

    Background and purpose: To compare the efficacy of two different dose-fractionation schedules for radiotherapy of patients with benign painful shoulder syndrome. Patients and methods: Between February 2006 and February 2010, 312 consecutive evaluable patients were recruited for this prospective randomized trial. All patients received radiotherapy with an orthovoltage technique. One radiotherapy course consisted of 6 single fractions in 3 weeks. In case of insufficient remission of pain after 6 weeks, a second radiation series was performed. Patients were randomly assigned to receive either single doses of 0.5 or 1.0 Gy. The endpoint was pain reduction. Pain was measured before, right after, and 6 weeks after radiotherapy using a visual analogue scale (VAS) and a comprehensive pain score (CPS). Results: The overall response rate for all patients was 83% directly after and 85% 6 weeks after radiotherapy. The mean VAS values before, directly after, and 6 weeks after treatment for the 0.5 and 1.0 Gy groups were 56.8 ± 23.7 and 53.2 ± 21.8 (p = 0.158), 38.2 ± 26.1 and 34.0 ± 24.5 (p = 0.189), and 33.0 ± 27.2 and 23.7 ± 22.7 (p = 0.044), respectively. The mean CPS before, directly after, and 6 weeks after treatment was 9.7 ± 3.0 and 9.5 ± 2.7 (p = 0.309), 6.1 ± 3.6 and 5.4 ± 3.6 (p = 0.096), 5.3 ± 3.7 and 4.1 ± 3.7 (p = 0.052), respectively. Despite a slight advantage in the VAS analysis for the 1.0 Gy group for delayed response, the CPS analysis revealed no statistically significant differences between the two single-dose trial arms for early (p = 0.652) and delayed response quality (p = 0.380). Conclusion: Radiotherapy is an effective treatment option for the management of benign painful shoulder syndrome. Concerning radiation protection, the dose for a radiotherapy series is recommended not to exceed 3-6 Gy. (orig.)

  11. External beam radiotherapy dose response characteristics of 1127 men with prostate cancer treated in the PSA era

    International Nuclear Information System (INIS)

    Pollack, Alan; Smith, Lewis G.; Eschenbach, Andrew C. von

    2000-01-01

    Purpose: To characterize the relationship of radiotherapy dose to prostate cancer patient outcome, with an emphasis on the influence of pretreatment prognostic variables. Methods and Materials: The 1127 Stage T1-T4 prostate cancer patients examined were treated consecutively with definitive external beam radiotherapy at the University of Texas-M.D. Anderson Cancer Center from 1987 to 1997. All had a pretreatment prostate-specific antigen (PSA) level. Treatment failure was defined as two consecutive PSA elevations on follow-up. There were 994 patients treated with a four-field box throughout to 60-70 Gy after a small reduction at 46 Gy and 161 treated with a six-field conformal boost after 46 Gy to 74-78 Gy. No patient received neoadjuvant or adjuvant androgen ablation. Median follow-up was 51.8 months. Results: Patients were divided into three radiotherapy dose groups consisting of ≤67 Gy (n = 500), >67-77 Gy (n = 495), and >77 Gy (n = 132). Relative to other prognostic factors, there were fewer patients treated to the highest dose level with a pretreatment PSA (PSAB) ≤4 or >20 ng/ml, Stage T3/T4 disease, or a Gleason score of 2-6. Actuarial 4-year freedom from biochemical failure (bNED) rates for the entire cohort were 54%, 71%, and 77% (p 67-77 Gy was associated with improved bNED rates for all PSAB (≤10 and >10), stage (T1/T2 and T3/T4), and Gleason score (2-6 and 7-10) subgroups tested. In contrast, the only prognostic group that benefited from raising dose from >67-77 Gy to >77 Gy was patients with a PSAB >10 ng/ml; although trends were noted for Stage T1/T2 and Gleason 2-6 patients. Patients with the combined features of a PSAB >10 ng/ml and Stage T1/T2 disease had 4-year bNED rates of 61% and 93% at the intermediate- and high-dose levels. A strongly significant linear association between dose (60-78 Gy) and 4-year actuarial bNED was demonstrated for patients with these intermediate-risk features. Conclusion: Prostate cancer dose response to external

  12. Class solution to decrease rectal dose in prostate radiotherapy treatments 3D-CRT

    International Nuclear Information System (INIS)

    Andres Rodriguez, C.; Tortosa Oliver, R.; Alonso Hernandez, D.; Mari Palacios, A.; Castillo Belmonte, A. del

    2011-01-01

    This paper contains a method developed in our center with conventional 3D radiotherapy techniques to increase the dose conformation around the target volume in prostate cancer treatments significantly reduced the doses to the rectum. To evaluate the goodness of the method, the results are compared with two classical techniques of treatment.

  13. Environmental dose level survey of radiotherapy center in large cancer hospital

    International Nuclear Information System (INIS)

    Wan Bin; Zhong Hailuo; Wu Dake; Li Jian; Wang Pei; Qi Guohai; Huang Renbing; Lang Jinyi

    2009-01-01

    Objective: To investigate and analyze the radiation dosage around the working environment in radiotherapy centre affiliated to Sichuan cancer hospital in the western China. Methods: In 60 days, we have continuously monitored the accumulated dose that absorbed by doctors, nurses, technicians, physicists and engineers, and investigated the working environment ( 60 Co unit, accelerator, after loading unit, X-ray simulator, CT simulator, gamma knife, MRI and doctor's office) and external environment by using TLD, and compared our results to those released by relevant departments. Results: The average dosage in the working environment is 1.96 μC ·kg -1 ·month -1 , 1.61 μC ·kg -1 ·month -1 in external environment. Conclusion: In the past 25 years, the radiotherapy center constructed strictly by the criterions of environment and protection departments required, so the radiation dosage in or outside the radiotherapy center has reached the national standard, which is safe for the staff and patients. Its instatement that the radiotherapy sites constructed by the related laws well accorded with the safety standards regulated. (authors)

  14. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam [Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science, University of Nottingham, Nottingham NG8 1BB (United Kingdom); Department of Oncology, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB (United Kingdom)

    2011-12-15

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  15. A self-adaptive case-based reasoning system for dose planning in prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Mishra, Nishikant; Petrovic, Sanja; Sundar, Santhanam

    2011-01-01

    Purpose: Prostate cancer is the most common cancer in the male population. Radiotherapy is often used in the treatment for prostate cancer. In radiotherapy treatment, the oncologist makes a trade-off between the risk and benefit of the radiation, i.e., the task is to deliver a high dose to the prostate cancer cells and minimize side effects of the treatment. The aim of our research is to develop a software system that will assist the oncologist in planning new treatments. Methods: A nonlinear case-based reasoning system is developed to capture the expertise and experience of oncologists in treating previous patients. Importance (weights) of different clinical parameters in the dose planning is determined by the oncologist based on their past experience, and is highly subjective. The weights are usually fixed in the system. In this research, the weights are updated automatically each time after generating a treatment plan for a new patient using a group based simulated annealing approach. Results: The developed approach is analyzed on the real data set collected from the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK. Extensive experiments show that the dose plan suggested by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Conclusions: The developed case-based reasoning system enables the use of knowledge and experience gained by the oncologist in treating new patients. This system may play a vital role to assist the oncologist in making a better decision in less computational time; it utilizes the success rate of the previously treated patients and it can also be used in teaching and training processes.

  16. Radiotherapy in primary cerebral lymphoma

    International Nuclear Information System (INIS)

    Legros, L.; Benezery, K.; Lagrange, J.L.

    1999-01-01

    Primary cerebral lymphoma is a rare disease with an unfavorable prognosis. Whole brain radiotherapy has been the standard treatment, but neither the optimal radiation fields nor optimal dose level of the regimen are as yet firmly establisheD. From this review of the literature, it seems that the whole brain must be treated, and a boost to the area of the primary site must be discussed. With regard to dose, the radiation dose-response relationship is not clearly proven. Yet, a minimum dose of 40 Gy is necessary, and the maximum dose is set at 50 Gy because of late neurological sequelae. Because of the poor prognosis of this disease and the risk of late sequelae, other avenues have been explored. Chemotherapy has been studied, seem to have a survival advantage and combinations of radiotherapy and chemotherapy, especially with high-dose methotrexate. Because primary cerebral lymphoma is an uncommon disease, randomized clinical trials that compare radiotherapy alone to chemotherapy plus radiotherapy may not be feasible. Finally, even if chemotherapy seems to have a survival advantage, the regimen of chemotherapy is still a matter of debate. (authors)

  17. Evaluation of surface and shallow depth dose reductions using a Superflab bolus during conventional and advanced external beam radiotherapy.

    Science.gov (United States)

    Yoon, Jihyung; Xie, Yibo; Zhang, Rui

    2018-03-01

    The purpose of this study was to evaluate a methodology to reduce scatter and leakage radiations to patients' surface and shallow depths during conventional and advanced external beam radiotherapy. Superflab boluses of different thicknesses were placed on top of a stack of solid water phantoms, and the bolus effect on surface and shallow depth doses for both open and intensity-modulated radiotherapy (IMRT) beams was evaluated using thermoluminescent dosimeters and ion chamber measurements. Contralateral breast dose reduction caused by the bolus was evaluated by delivering clinical postmastectomy radiotherapy (PMRT) plans to an anthropomorphic phantom. For the solid water phantom measurements, surface dose reduction caused by the Superflab bolus was achieved only in out-of-field area and on the incident side of the beam, and the dose reduction increased with bolus thickness. The dose reduction caused by the bolus was more significant at closer distances from the beam. Most of the dose reductions occurred in the first 2-cm depth and stopped at 4-cm depth. For clinical PMRT treatment plans, surface dose reductions using a 1-cm Superflab bolus were up to 31% and 62% for volumetric-modulated arc therapy and 4-field IMRT, respectively, but there was no dose reduction for Tomotherapy. A Superflab bolus can be used to reduce surface and shallow depth doses during external beam radiotherapy when it is placed out of the beam and on the incident side of the beam. Although we only validated this dose reduction strategy for PMRT treatments, it is applicable to any external beam radiotherapy and can potentially reduce patients' risk of developing radiation-induced side effects. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. An independent dose calculation algorithm for MLC-based stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Lorenz, Friedlieb; Killoran, Joseph H.; Wenz, Frederik; Zygmanski, Piotr

    2007-01-01

    We have developed an algorithm to calculate dose in a homogeneous phantom for radiotherapy fields defined by multi-leaf collimator (MLC) for both static and dynamic MLC delivery. The algorithm was developed to supplement the dose algorithms of the commercial treatment planning systems (TPS). The motivation for this work is to provide an independent dose calculation primarily for quality assurance (QA) and secondarily for the development of static MLC field based inverse planning. The dose calculation utilizes a pencil-beam kernel. However, an explicit analytical integration results in a closed form for rectangular-shaped beamlets, defined by single leaf pairs. This approach reduces spatial integration to summation, and leads to a simple method of determination of model parameters. The total dose for any static or dynamic MLC field is obtained by summing over all individual rectangles from each segment which offers faster speed to calculate two-dimensional dose distributions at any depth in the phantom. Standard beam data used in the commissioning of the TPS was used as input data for the algorithm. The calculated results were compared with the TPS and measurements for static and dynamic MLC. The agreement was very good (<2.5%) for all tested cases except for very small static MLC sizes of 0.6 cmx0.6 cm (<6%) and some ion chamber measurements in a high gradient region (<4.4%). This finding enables us to use the algorithm for routine QA as well as for research developments

  19. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation

    Directory of Open Access Journals (Sweden)

    Valerie Bríd O’Leary

    2015-04-01

    Full Text Available Exposure to low-dose irradiation causes transiently elevated expression of the long ncRNA PARTICLE (gene PARTICLE, promoter of MAT2A-antisense radiation-induced circulating lncRNA. PARTICLE affords both a cytosolic scaffold for the tumor suppressor methionine adenosyltransferase (MAT2A and a nuclear genetic platform for transcriptional repression. In situ hybridization discloses that PARTICLE and MAT2A associate together following irradiation. Bromouridine tracing and presence in exosomes indicate intercellular transport, and this is supported by ex vivo data from radiotherapy-treated patients. Surface plasmon resonance indicates that PARTICLE forms a DNA-lncRNA triplex upstream of a MAT2A promoter CpG island. We show that PARTICLE represses MAT2A via methylation and demonstrate that the radiation-induced PARTICLE interacts with the transcription-repressive complex proteins G9a and SUZ12 (subunit of PRC2. The interplay of PARTICLE with MAT2A implicates this lncRNA in intercellular communication and as a recruitment platform for gene-silencing machineries through triplex formation in response to irradiation.

  20. Dose distribution of chest wall electron beam radiotherapy for patients with breast cancer after radical mastectomy

    International Nuclear Information System (INIS)

    Cong Yetong; Chen Dawei; Bai Lan; Zhou Yinhang; Piao Yongfeng; Wang Xi; Qu Yaqin

    2006-01-01

    Objective: To study the dose distribution of different bolus after different energy electron beam irradiation to different chest wall radiotherapy for the patients with breast cancer. Methods: The paper simulated the dose distribution of women's left breast cancer after radical mastectomy by 6 and 9 MeV electron beam irradiation, and TLD was used to measure. Results: The dose of skin became higher and the dose of lung was less when 0.5 and 1.0 cm bolus were used on the body; with the increasing of the energy of electron beam, the high dose field became larger; and with the same energy of electron beam, the high dose field moved to surface of the body when the bolus was thicker. Conclusion: When different energy electron ray irradiates different thickness bolus, the dosage of skin surface increases and the dosage of anterior margin of lung reduces. With electron ray energy increasing, the high dosage field is widen, when the electron ray energy is identity, the high dosage field migrates to the surface after adding bolus. Using certain depth bolus may attain the therapeutical dose of target area. (authors)

  1. Treatment of the prostate cancer with high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Torres Silva, Felipe

    2002-01-01

    The prostate cancer treatment in early stages is controversial. The high dose rate brachytherapy has been used like monotherapy or boost with external beam radiotherapy in advanced disease. This paper describes the technique and the advantages over other modalities

  2. The integral biologically effective dose to predict brain stem toxicity of hypofractionated stereotactic radiotherapy

    International Nuclear Information System (INIS)

    Clark, Brenda G.; Souhami, Luis; Pla, Conrado; Al-Amro, Abdullah S.; Bahary, Jean-Paul; Villemure, Jean-Guy; Caron, Jean-Louis; Olivier, Andre; Podgorsak, Ervin B.

    1998-01-01

    Purpose: The aim of this work was to develop a parameter for use during fractionated stereotactic radiotherapy treatment planning to aid in the determination of the appropriate treatment volume and fractionation regimen that will minimize risk of late damage to normal tissue. Materials and Methods: We have used the linear quadratic model to assess the biologically effective dose at the periphery of stereotactic radiotherapy treatment volumes that impinge on the brain stem. This paper reports a retrospective study of 77 patients with malignant and benign intracranial lesions, treated between 1987 and 1995, with the dynamic rotation technique in 6 fractions over a period of 2 weeks, to a total dose of 42 Gy prescribed at the 90% isodose surface. From differential dose-volume histograms, we evaluated biologically effective dose-volume histograms and obtained an integral biologically-effective dose (IBED) in each case. Results: Of the 77 patients in the study, 36 had target volumes positioned so that the brain stem received more than 1% of the prescribed dose, and 4 of these, all treated for meningioma, developed serious late damage involving the brain stem. Other than type of lesion, the only significant variable was the volume of brain stem exposed. An analysis of the IBEDs received by these 36 patients shows evidence of a threshold value for late damage to the brain stem consistent with similar thresholds that have been determined for external beam radiotherapy. Conclusions: We have introduced a new parameter, the IBED, that may be used to represent the fractional effective dose to structures such as the brain stem that are partially irradiated with stereotactic dose distributions. The IBED is easily calculated prior to treatment and may be used to determine appropriate treatment volumes and fractionation regimens minimizing possible toxicity to normal tissue

  3. Tomotherapy – a different way of dose delivery in radiotherapy

    Science.gov (United States)

    Skórska, Małgorzata; Jodda, Agata; Ryczkowski, Adam; Kaźmierska, Joanna; Adamska, Krystyna; Karczewska-Dzionk, Aldona; Żmijewska-Tomczak, Małgorzata; Włodarczyk, Hanna

    2012-01-01

    Aim of the study Helical tomotherapy is one of the methods of radiotherapy. This method enables treatment implementation for a wide spectrum of clinical cases. The vast array of therapeutic uses of helical tomotherapy results directly from the method of dose delivery, which is significantly different from the classic method developed for conventional linear accelerators. The paper discusses the method of dose delivery by a tomotherapy machine. Moreover, an analysis and presentation of treatment plans was performed in order to show the therapeutic possibilities of the applied technology. Dose distributions were obtained for anaplastic medulloblastoma, multifocal metastases to brain, vulva cancer, tongue cancer, metastases to bones, and advanced skin cancer. Tomotherapy treatment plans were compared with conventional linear accelerator plans. Results Following the comparative analysis of tomotherapy and conventional linear accelerator plans, in each case we obtained the increase in dose distribution conformity manifested in greater homogeneity of doses in the radiation target area for anaplastic medulloblastoma, multifocal metastases to brain, vulva cancer, metastases to bones, and advanced skin cancer, and the reduction of doses in organs at risk (OAR) for anaplastic medulloblastoma, vulva cancer, tongue cancer, and advanced skin cancer. The time of treatment delivery in the case of a tomotherapy machine is comparable to the implementation of the plan prepared in intensity-modulated radiotherapy (IMRT) technique for a conventional linear accelerator. In the case of tomotherapy the application of a fractional dose was carried out in each case during one working period of the machine. For a conventional linear accelerator the total value of the fractional dose in the case of anaplastic medulloblastoma and metastases to bones was delivered using several treatment plans, for which a change of set-up was necessary during a fraction. Conclusion The obtained results

  4. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    Science.gov (United States)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  5. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  6. Fluorouracil and high-dose leucovorin with radiotherapy as adjuvant therapy for rectal cancer. Results of a phase II study

    Energy Technology Data Exchange (ETDEWEB)

    Giralt, J. [Radiation Oncology Service, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Rubio, D. [Medical Oncology Service, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Maldonado, X. [Radiation Oncology Service, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Naval, J. [Dept. of Surgery, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Casado, S. [Medical Oncology Service, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Lara, F. [Dept. of Surgery, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Rosello, J.M. [Dept. of Preventive Medicine, Hospital General Universitari Vall d`Hebron, Barcelona (Spain); Armengol, M. [Dept. of Surgery, Hospital General Universitari Vall d`Hebron, Barcelona (Spain)

    1997-07-01

    The purpose of this phase II study was to evaluate the efficacy and toxicity of fluorouracil and high-dose leucovorin (5-FU/LV) with pelvic irradiation as adjuvant therapy for patients with macroscopical resected rectal or recto-sigmoid cancer. Following surgery for stages II-III primary (52) or recurrent rectal cancer (4), 56 patients received 8 cycles of 5-FU/LV and pelvic irradiation. 5-FU doses were 200 mgr/m{sup 2} for cycles 2-3 and 300 mgr/m{sup 2} for cycles 1 and 4-8. LV doses remained fixed at 200 mgr/m{sup 2}. Pelvic radiation was started in the third week, between the first and second cycle. The total dose was 50.4 Gy. No serve complications had been recorded. The incidence of grade 3 diarrhea was 19%. Three patients presented leukopenia grade 3 (5%). In 44 patients (78%) the planned treatment could be administered. The median follow-up was 40 months (range 22-66). Seven patients had a local relapse (13%) and 6 developed distant metastasis (10%). The 3-year disease-free survival was 72% and the overall survival was 76%. These preliminary results show that combined post-operative 5-FU/LV and pelvic radiotherapy are well tolerated and present a reasonable local control and survival rates. This adjuvant treatment should be evaluated in randomized trials. (orig.).

  7. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region

    International Nuclear Information System (INIS)

    Roesink, Judith M.; Moerland, Marinus A.; Battermann, Jan J.; Hordijk, Gerrit Jan; Terhaard, Chris H.J.

    2001-01-01

    Purpose: To study the radiation tolerance of the parotid glands as a function of dose and volume irradiated. Methods and Materials: One hundred eight patients treated with primary or postoperative radiotherapy for various malignancies in the head-and-neck region were prospectively evaluated. Stimulated parotid flow rate was measured before radiotherapy and 6 weeks, 6 months, and 1 year after radiotherapy. Parotid gland dose-volume histograms were derived from CT-based treatment planning. The normal tissue complication probability model proposed by Lyman was fit to the data. A complication was defined as stimulated parotid flow rate 50 (the dose to the whole organ leading to a complication probability of 50%) was found to be 31, 35, and 39 Gy at 6 weeks, 6 months, and 1 year postradiotherapy, respectively. The volume dependency parameter n was around 1, which means that the mean parotid dose correlates best with the observed complications. There was no steep dose-response curve (m=0.45 at 1 year postradiotherapy). Conclusions: This study on dose/volume/parotid gland function relationships revealed a linear correlation between postradiotherapy flow ratio and parotid gland dose and a strong volume dependency. No threshold dose was found. Recovery of parotid gland function was shown at 6 months and 1 year after radiotherapy. In radiation planning, attempts should be made to achieve a mean parotid gland dose at least below 39 Gy (leading to a complication probability of 50%)

  8. Successful treatment of chronic recurrent multifocal osteomyelitis using low-dose radiotherapy. A case report

    International Nuclear Information System (INIS)

    Dietzel, Christian T.; Vordermark, Dirk; Schaefer, Christoph

    2017-01-01

    Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoinflammatory disease, which lacks an infectious genesis and predominantly involves the metaphysis of long bones. Common treatments range from nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids at first onset of disease, to immunosuppressive drugs and bisphosphonates in cases of insufficient remission. The therapeutic use of low-dose radiotherapy for CRMO constitutes a novelty. A 67-year-old female patient presented with radiologically proven CRMO affecting the right tibia/talus and no response to immunosuppressive therapy. Two treatment series of radiation therapy were applied with an interval of 6 weeks. Each series contained six fractions (three fractions per week) with single doses of 0.5 Gy, thus the total applied dose was 6 Gy. Ten months later, pain and symptoms of osteomyelitis had completely vanished. Radiotherapy seems to be an efficient and feasible complementary treatment option for conventional treatment refractory CRMO in adulthood. The application of low doses per fraction is justified by the inflammatory pathomechanism of disease. (orig.) [de

  9. Lack of benefit for the addition of androgen deprivation therapy to dose-escalated radiotherapy in the treatment of intermediate- and high-risk prostate cancer.

    LENUS (Irish Health Repository)

    Krauss, Daniel

    2012-02-01

    PURPOSE: Assessment of androgen deprivation therapy (ADT) benefits for prostate cancer treated with dose-escalated radiotherapy (RT). METHODS AND MATERIALS: From 1991 to 2004, 1,044 patients with intermediate- (n = 782) or high-risk (n = 262) prostate cancer were treated with dose-escalated RT at William Beaumont Hospital. Patients received external-beam RT (EBRT) alone, brachytherapy (high or low dose rate), or high dose rate brachytherapy plus pelvic EBRT. Intermediate-risk patients had Gleason score 7, prostate-specific antigen (PSA) 10.0-19.9 ng\\/mL, or Stage T2b-T2c. High-risk patients had Gleason score 8-10, PSA >\\/=20, or Stage T3. Patients were additionally divided specifically by Gleason score, presence of palpable disease, and PSA level to further define subgroups benefitting from ADT. RESULTS: Median follow-up was 5 years; 420 patients received ADT + dose-escalated RT, and 624 received dose-escalated RT alone. For all patients, no advantages in any clinical endpoints at 8 years were associated with ADT administration. No differences in any endpoints were associated with ADT administration based on intermediate- vs. high-risk group or RT modality when analyzed separately. Patients with palpable disease plus Gleason >\\/=8 demonstrated improved clinical failure rates and a trend toward improved survival with ADT. Intermediate-risk patients treated with brachytherapy alone had improved biochemical control when ADT was given. CONCLUSION: Benefits of ADT in the setting of dose-escalated RT remain poorly defined. This question must continue to be addressed in prospective study.

  10. Patient dose in image guided radiotherapy: Monte Carlo study of the CBCT dose contribution

    Directory of Open Access Journals (Sweden)

    Salvatore Leotta

    2018-02-01

    Full Text Available Image Guided RadioTherapy (IGRT is a technique whose diffusion is growing thanks to the well-recognized gain in accuracy of dose delivery. However, multiple Cone Beam Computed Tomography (CBCT scans add dose to patients, and its contribution has to be assessed and minimized. Aim of our work was to evaluate, through Monte Carlo simulations, organ doses in IGRT due to CBCT and therapeutic MV irradiation in head-neck, thorax and pelvis districts. We developed a Monte Carlo simulation in GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations, reproducing an Elekta Synergy medical linac operating at 6 and 10 MV photon energy, and we set up a scalable anthropomorphic model. After a validation by comparison with the experimental quality indexes, we evaluated the average doses to all organs and tissues belonging to the model for the three cases of irradiated district. Scattered radiation in therapy is larger than that diffused by CBCT by one to two orders of magnitude.

  11. High dose radiotherapy for pituitary tumours

    International Nuclear Information System (INIS)

    Mead, K.W.

    1981-01-01

    The results of treatment of 120 pituitary tumours are presented. Based on this experience operable chromophobe adenomas are now treated with 5,000 rads in 4 weeks and inoperable ones receive an additional central dose to 7,500 rads. Pituitary Cushing's tumours are given 10,000 rads in 5 weeks using small fields and acromegalics 5,000 rads to the whole sella and 7,500 to its lower half. The absence of complications at these dose levels is attributed to the use of small fields and the precise application of treatment

  12. High dose radiotherapy for pituitary tumours

    Energy Technology Data Exchange (ETDEWEB)

    Mead, K.W. (Queensland Radium Inst., Herston (Australia))

    1981-11-01

    The results of treatment of 120 pituitary tumours are presented. Based on this experience operable chromophobe adenomas are now treated with 5,000 rads in 4 weeks and inoperable ones receive an additional central dose to 7,500 rads. Pituitary Cushing's tumours are given 10,000 rads in 5 weeks using small fields and acromegalics 5,000 rads to the whole sella and 7,500 to its lower half. The absence of complications at these dose levels is attributed to the use of small fields and the precise application of treatment.

  13. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Kan, M W K; Cheung, J Y C; Leung, L H T; Lau, B M F; Yu, P K N

    2011-01-01

    Nasopharyngeal tumors are commonly treated with intensity-modulated radiotherapy techniques. For photon dose calculations, problems related to loss of lateral electronic equilibrium exist when small fields are used. The anisotropic analytical algorithm (AAA) implemented in Varian Eclipse was developed to replace the pencil beam convolution (PBC) algorithm for more accurate dose prediction in an inhomogeneous medium. The purpose of this study was to investigate the accuracy of the AAA for predicting interface doses for intensity-modulated stereotactic radiotherapy boost of nasopharyngeal tumors. The central axis depth dose data and dose profiles of phantoms with rectangular air cavities for small fields were measured using a 6 MV beam. In addition, the air-tissue interface doses from six different intensity-modulated stereotactic radiotherapy plans were measured in an anthropomorphic phantom. The nasopharyngeal region of the phantom was especially modified to simulate the air cavities of a typical patient. The measured data were compared to the data calculated by both the AAA and the PBC algorithm. When using single small fields in rectangular air cavity phantoms, both AAA and PBC overestimated the central axis dose at and beyond the first few millimeters of the air-water interface. Although the AAA performs better than the PBC algorithm, its calculated interface dose could still be more than three times that of the measured dose when a 2 x 2 cm 2 field was used. Testing of the algorithms using the anthropomorphic phantom showed that the maximum overestimation by the PBC algorithm was 20.7%, while that by the AAA was 8.3%. When multiple fields were used in a patient geometry, the dose prediction errors of the AAA would be substantially reduced compared with those from a single field. However, overestimation of more than 3% could still be found at some points at the air-tissue interface.

  14. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  15. Can high-dose fotemustine reverse MGMT resistance in glioblastoma multiforme?

    Science.gov (United States)

    Gallo, Chiara; Buonerba, Carlo; Di Lorenzo, Giuseppe; Romeo, Valeria; De Placido, Sabino; Marinelli, Alfredo

    2010-11-01

    Glioblastoma multiforme (GBM), the highest grade malignant glioma, is associated with a grim prognosis-median overall survival is in the range 12-15 months, despite optimum treatment. Surgery to the maximum possible extent, external beam radiotherapy, and systemic temozolomide chemotherapy are current standard treatments for newly diagnosed GBM, with intracerebral delivery of carmustine wafers (Gliadel). Unfortunately, the effectiveness of chemotherapy can be hampered by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT), which confers resistance both to temozolomide and nitrosoureas, for example fotemustine and carmustine. MGMT activity can be measured by PCR and immunohistochemistry, with the former being the current validated technique. High-dose chemotherapy can deplete MGMT levels in GBM cells and has proved feasible in various trials on temozolomide, in both newly diagnosed and recurrent GBM. We here report the unique case of a GBM patient, with high MGMT expression by immunohistochemistry, who underwent an experimental, high-dose fotemustine schedule after surgery and radiotherapy. Although treatment caused two episodes of grade 3-4 thrombocytopenia, a complete response and survival of more than three years were achieved, with a 30% increase in dose intensity compared with the standard fotemustine schedule.

  16. Volumes and doses for external radiotherapy - Definitions and recommendations; Volum og doser i ekstern straaleterapi - Definisjoner og anbefalinger

    Energy Technology Data Exchange (ETDEWEB)

    Levernes, Sverre (ed.)

    2012-07-01

    The report contains definitions of volume and dose parameters for external radiotherapy. In addition the report contains recommendations for use, documentation and minimum reporting for radiotherapy of the individual patient.(Author)

  17. High-dose preoperative chemoradiotherapy in esophageal cancer patients does not increase postoperative pulmonary complications: Correlation with dose-volume histogram parameters

    International Nuclear Information System (INIS)

    Hurmuzlu, Meysan; Ovrebo, Kjell; Wentzel-Larsen, Tore; Muren, Ludvig Paul; Viste, Asgaut; Smaaland, Rune

    2010-01-01

    Purpose: To investigate the association of high-dose preoperative chemoradiotherapy (CRT) and dose-volume histogram (DVH) parameters of lungs with incidence of postoperative pulmonary complications and to identify predictive clinical factors of pulmonary complications. Methods: Data of 65 patients were collected retrospectively. Thirty-five patients underwent transthoracic esophagectomy (TTE) alone and 30 received cisplatin and 5-fluorouracil, concomitant with radiotherapy, median dose 66 Gy, and followed by TTE. From the DVH for each lung alone and for both lungs together as one organ we generated total lung volume, mean radiotherapy dose, relative and absolute volumes receiving more than a threshold dose, and relative and absolute volumes receiving less than a threshold dose. Postoperative pulmonary complications were defined as pneumonia or respiratory failure. Results: Sixty percent of the patients in the TTE alone group had postoperative pulmonary complications versus 63% in the CRT + TTE group. Postoperative mortality was 8.6% and 16.7% in the respective patient groups (p = NS). None of the DVH parameters was associated with postoperative pulmonary complications. Squamous cell carcinoma was an adverse factor related to increased postoperative pulmonary complications. Conclusion: High-dose preoperative CRT was not associated with increased postoperative pulmonary complications in this cohort of esophageal cancer patients.

  18. Influence of Daily Set-Up Errors on Dose Distribution During Pelvis Radiotherapy

    International Nuclear Information System (INIS)

    Kasabasic, M.; Ivkovic, A.; Faj, D.; Rajevac, V.; Sobat, H.; Jurkovic, S.

    2011-01-01

    An external beam radiotherapy (EBRT) using megavoltage beam of linear accelerator is usually the treatment of choice for the cancer patients. The goal of EBRT is to deliver the prescribed dose to the target volume, with as low as possible dose to the surrounding healthy tissue. A large number of procedures and different professions involved in radiotherapy process, uncertainty of equipment and daily patient set-up errors can cause a difference between the planned and delivered dose. We investigated a part of this difference caused by daily patient set-up errors. Daily set-up errors for 35 patients were measured. These set-up errors were simulated on 5 patients, using 3D treatment planning software XiO (CMS Inc., St. Louis, MO). The differences in dose distributions between the planned and shifted ''geometry'' were investigated. Additionally, an influence of the error on treatment plan selection was checked by analyzing the change in dose volume histograms, planning target volume conformity index (CI P TV) and homogeneity index (HI). Simulations showed that patient daily set-up errors can cause significant differences between the planned and actual dose distributions. Moreover, for some patients those errors could influence the choice of treatment plan since CI P TV fell under 97 %. Surprisingly, HI was not as sensitive as CI P TV on set-up errors. The results showed the need for minimizing daily set-up errors by quality assurance programme. (author)

  19. Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

    International Nuclear Information System (INIS)

    Yang, Mingchao

    2014-01-01

    This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues. The treatment planning aims to determine the best suited radiation parameters for each patient's treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multi-criteria with linear constraints. The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient's phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization. (author) [fr

  20. Quality Management in Radiotherapy. Chapter 19

    International Nuclear Information System (INIS)

    Scalliet, P.

    2017-01-01

    Soon after the discovery of X rays and natural radioactivity, the therapeutic use of ionizing radiation grew into what has today become an important oncological specialty, with unmatched cost–benefit features. Radiotherapy is an inexpensive solution to many cancers; it is a reproducible technique with fundamentals that rely both on a large set of evidence based medical data and on high technology equipment that has benefited from the digital revolution in the second half of the twentieth century. One characteristic of radiotherapy is its narrow therapeutic window, with cure being never very far from injury. Therefore, radiotherapy administration requires great accuracy in target volume definition and dose control. Modest underdosage leads to the recurrence of cancer, while overdosage leads to unacceptable toxicity. While more sophisticated treatment techniques have emerged recently (intensity modulation, image guidance, hadrons), equally sophisticated means to control the actual delivery of radiotherapy have been developed. Better control of dose delivery allows for better delineation between target tissue exposed to high doses and normal tissue shielded to the maximum, with steep dose gradients sometimes over a few millimetres. This, in turn, requires better volume definition and better control of patient positioning.

  1. Can we avoid high levels of dose escalation for high-risk prostate cancer in the setting of androgen deprivation?

    Directory of Open Access Journals (Sweden)

    Shakespeare TP

    2016-05-01

    Full Text Available Thomas P Shakespeare,1,2 Shea W Wilcox,1 Noel J Aherne1,2 1Department of Radiation Oncology, North Coast Cancer Institute, 2Rural Clinical School, Faculty of Medicine, University of New South Wales, Coffs Harbour, NSW, Australia Aim: Both dose-escalated external beam radiotherapy (DE-EBRT and androgen deprivation therapy (ADT improve outcomes in patients with high-risk prostate cancer. However, there is little evidence specifically evaluating DE-EBRT for patients with high-risk prostate cancer receiving ADT, particularly for EBRT doses >74 Gy. We aimed to determine whether DE-EBRT >74 Gy improves outcomes for patients with high-risk prostate cancer receiving long-term ADT. Patients and methods: Patients with high-risk prostate cancer were treated on an institutional protocol prescribing 3–6 months neoadjuvant ADT and DE-EBRT, followed by 2 years of adjuvant ADT. Between 2006 and 2012, EBRT doses were escalated from 74 Gy to 76 Gy and then to 78 Gy. We interrogated our electronic medical record to identify these patients and analyzed our results by comparing dose levels. Results: In all, 479 patients were treated with a 68-month median follow-up. The 5-year biochemical disease-free survivals for the 74 Gy, 76 Gy, and 78 Gy groups were 87.8%, 86.9%, and 91.6%, respectively. The metastasis-free survivals were 95.5%, 94.5%, and 93.9%, respectively, and the prostate cancer-specific survivals were 100%, 94.4%, and 98.1%, respectively. Dose escalation had no impact on any outcome in either univariate or multivariate analysis. Conclusion: There was no benefit of DE-EBRT >74 Gy in our cohort of high-risk prostate patients treated with long-term ADT. As dose escalation has higher risks of radiotherapy-induced toxicity, it may be feasible to omit dose escalation beyond 74 Gy in this group of patients. Randomized studies evaluating dose escalation for high-risk patients receiving ADT should be considered. Keywords: radiotherapy, IMRT, dose

  2. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan.

    Science.gov (United States)

    Mohamad, Osama; Makishima, Hirokazu; Kamada, Tadashi

    2018-03-06

    Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.

  3. Reirradiation of Large-Volume Recurrent Glioma With Pulsed Reduced-Dose-Rate Radiotherapy

    International Nuclear Information System (INIS)

    Adkison, Jarrod B.; Tome, Wolfgang; Seo, Songwon; Richards, Gregory M.; Robins, H. Ian; Rassmussen, Karl; Welsh, James S.; Mahler, Peter A.; Howard, Steven P.

    2011-01-01

    Purpose: Pulsed reduced-dose-rate radiotherapy (PRDR) is a reirradiation technique that reduces the effective dose rate and increases the treatment time, allowing sublethal damage repair during irradiation. Patients and Methods: A total of 103 patients with recurrent glioma underwent reirradiation using PRDR (86 considered to have Grade 4 at PRDR). PRDR was delivered using a series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median dose of 50 Gy (range, 20-60) delivered in 1.8-2.0-Gy fractions. The mean treatment volume was 403.5 ± 189.4 cm 3 according to T 2 -weighted magnetic resonance imaging and a 2-cm margin. Results: For the initial or upgraded Grade 4 cohort (n = 86), the median interval from the first irradiation to PRDR was 14 months. Patients undergoing PRDR within 14 months of the first irradiation (n = 43) had a median survival of 21 weeks. Those treated ≥14 months after radiotherapy had a median survival of 28 weeks (n = 43; p = 0.004 and HR = 1.82 with a 95% CI ranging from 1.25 to 3.10). These data compared favorably to historical data sets, because only 16% of the patients were treated at first relapse (with 46% treated at the second relapse, 32% at the third or fourth relapse, and 4% at the fourth or fifth relapse). The median survival since diagnosis and retreatment was 6.3 years and 11.4 months for low-grade, 4.1 years and 5.6 months for Grade 3, and 1.6 years and 5.1 months for Grade 4 tumors, respectively, according to the initial histologic findings. Multivariate analysis revealed age at the initial diagnosis, initial low-grade disease, and Karnofsky performance score of ≥80 to be significant predictors of survival after initiation of PRDR. Conclusion: PRDR allowed for safe retreatment of larger volumes to high doses with palliative benefit.

  4. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  5. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    In radiotherapy, the primary objective is to deliver a prescribed dose of radiation to a tumour or lesion within a patient while minimising the dose delivered to the surrounding healthy tissue. Traditional radiotherapy treatments usually involve simple external or internal irradiations of a tumour. External irradiations are normally achieved in the clinic with photon or electron beams produced by high energy linear accelerators. The photon or electron beams are collimated into regular shapes as they emerge from the treatment head of the unit which is supported by a gantry that can be rotated isocentrically to any position. A discrete number of photon or electron beams with different angles of incidence that intersect at the iso-centre are used to produce a region of high dose around the tumour volume (positioned at the iso-centre). Internal irradiations are normally achieved in the clinic by implanting radioactive sources in and around the tumour or lesion. Such irradiations are characterised by very high doses local to the tumour. Radioactive sources are also used to prevent post-angioplasty restenosis by inserting sources into arteries. Usually when treating a tumour, a compromise is made between tumour control and complications arising from normal tissue damage. One measure of this compromise, the therapeutic ratio, is defined as the radiation dose producing complications in 50% of patients divided by the dose providing tumour control in 50% of the patients. The therapeutic ratio depends on the radiobiological characteristics of the cancerous tissue and surrounding healthy tissues and on the radiation dose distribution achieved by the radiotherapy treatment. It is generally believed that the therapeutic ratio can be minimised by optimising the conformation of the radiation dose distribution to the target volume. This is difficult with traditional radiotherapy techniques since they do not produce dose distributions that adequately cover tumour volumes of complex

  6. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan; Burke, Elaine; Li Yi; Goguen, Laura; Wirth, Lori J.; Haddad, Robert I.; Norris, Carl M.; Court, Laurence E.; Aninno, Donald J. D.; Posner, Marshall R.; Allen, Aaron M.

    2008-01-01

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessed with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving ≥50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving ≥50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects after

  7. The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results

    International Nuclear Information System (INIS)

    Ott, O.J.; Hertel, S.; Gaipl, U.S.; Frey, B.; Schmidt, M.; Fietkau, R.

    2014-01-01

    To evaluate the long-term efficacy of pain reduction by two dose-fractionation schedules for radiotherapy of painful shoulder syndrome. Between February 2006 and February 2010, 312 evaluable patients were recruited for this prospective trial. All patients received low-dose orthovoltage radiotherapy. One course consisted of 6 fractions in 3 weeks. In the case of insufficient pain remission after 6 weeks, a second course was administered. Patients were randomly assigned to one of two groups to receive single doses of either 0.5 or 1.0 Gy. Endpoint was pain reduction. Pain was measured before radiotherapy, as well as immediately after (early response), 6 weeks after (delayed response) and approximately 3 years after (long-term response) completion of radiotherapy using a questionnaire-based visual analogue scale (VAS) and a comprehensive pain score (CPS). Median follow-up was 35 months (range 11-57). The overall early, delayed and long-term response rates for all patients were 83, 85 and 82%, respectively. The mean VAS scores before treatment and those for early, delayed and long-term response in the 0.5- and 1.0-Gy groups were 56.8±23.7 and 53.2±21.8 (p=0.16); 38.2±36.1 and 34.0±24.5 (p=0.19); 33.0±27.2 and 23.7±22.7 (p=0.04) and 27.9±25.8 and 32.1±26.9 (p=0.25), respectively. The mean CPS values before treatment and those for early, delayed and long-term response were 9.7±3.0 and 9.5±2.7 (p=0.31); 6.1±3.6 and 5.4±3.6 (p=0.10); 5.3±3.7 and 4.1±3.7 (p=0.05) and 4.0±3.9 and 5.3±4.4 (p=0.05), respectively. No significant differences in the quality of the long-term response were found between the 0.5- and 1.0-Gy arms (p=0.28). Radiotherapy is an effective treatment for the management of benign painful shoulder syndrome. For radiation protection reasons, the dose for a radiotherapy series should not exceed 3.0 Gy. (orig.)

  8. Uncertainties associated to the using of alanine/EPR for the dose interval in the radiotherapy; Incertezas associadas na utilizacao da alanina/RPE para o intervalo de dose da radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Junior, O.; Campos, L. L. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2004-07-01

    The High Doses Laboratory of IPEN is developing a dosimetric system for high doses based on Electron Paramagnetic Resonance (EPR) of free radical radiation induced on alanine. The objective of this work is to present the efforts towards to improve the measure accuracy for doses in the range between 1-10 Gy. This system could be used as reference by radiotherapy services, as much in the quality control of the equipment, as for routine accompaniment of more complex handling where the total doses can reach some grays. The main problem for routine implantation is the calibration and the traceability of the system and many errors sources affects the accuracy of the measurements. In this work are discussed same aspects related on the uncertainty evaluation associated with high dose measurement using alanine and EPR. (author)

  9. 3D in radiotherapy - pushing the dose envelope to improve cure

    International Nuclear Information System (INIS)

    Leibel, Steven A.

    1996-01-01

    Approximately one in four newly diagnosed cancer patients receive radiation in the initial attempt to cure the tumor. In terms of the 1996 cancer incidence data, this comprises more than 350,000 patients. Inasmuch as 25% of these patients initially relapse at primary tumor sites, the issue of improving local control remains a major challenge to the profession. Recent improvements in treatment planning and delivery have enhanced the precision of radiotherapy, but radiation resistance remains a critical issue that confounds the potential for cure in many tumors. Chemical and biological modifiers of the radiation response have provided an approach with clinical promise, but their therapeutic impact remains to be established. Hence, tumor dose escalation continues to represent the most viable approach to improve local control. Recent experience with new conformal radiotherapy techniques has demonstrated that significant tumor dose escalation is feasible with concomitant reduction in normal tissue toxicity. This experience provides the best hope for immediate improvement in the rates of local tumor control. It remains, nonetheless, unclear how far the dose envelope can be pushed and whether this would be sufficient to overcome the problem of local failure. It may turn out that biological modification of the radiation response may still be necessary to provide a maximal control in certain types of tumors

  10. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    Science.gov (United States)

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  11. SU-E-T-501: Normal Tissue Toxicities of Pulsed Low Dose Rate Radiotherapy and Conventional Radiotherapy: An in Vivo Total Body Irradiation Study

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Zhang, P; Wang, B; Chen, L; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: Pulsed low dose rate radiotherapy (PLDR) is a re-irradiation technique for therapy of recurrent cancers. We have previously shown a significant difference in the weight and survival time between the mice treated with conventional radiotherapy (CRT) and PLDR using total body irradiation (TBI). The purpose of this study was to investigate the in vivo effects of PLDR on normal mouse tissues.Materials and Methods: Twenty two male BALB/c nude mice, 4 months of age, were randomly assigned into a PLDR group (n=10), a CRT group (n=10), and a non-irradiated control group (n=2). The Siemens Artiste accelerator with 6 MV photon beams was used. The mice received a total of 18Gy in 3 fractions with a 20day interval. The CRT group received the 6Gy dose continuously at a dose rate of 300 MU/min. The PLDR group was irradiated with 0.2Gyx20 pulses with a 3min interval between the pulses. The mice were weighed thrice weekly and sacrificed 2 weeks after the last treatment. Brain, heart, lung, liver, spleen, gastrointestinal, urinary and reproductive organs, and sternal bone marrow were removed, formalin-fixed, paraffin-embedded and stained with H and E. Morphological changes were observed under a microscope. Results: Histopathological examination revealed atrophy in several irradiated organs. The degree of atrophy was mild to moderate in the PLDR group, but severe in the CRT group. The most pronounced morphological abnormalities were in the immune and hematopoietic systems, namely spleen and bone marrow. Brain hemorrhage was seen in the CRT group, but not in the PLDR group. Conclusions: Our results showed that PLDR induced less toxicity in the normal mouse tissues than conventional radiotherapy for the same dose and regimen. Considering that PLDR produces equivalent tumor control as conventional radiotherapy, it would be a good modality for treatment of recurrent cancers.

  12. Standard-Fractionated Radiotherapy for Optic Nerve Sheath Meningioma: Visual Outcome Is Predicted by Mean Eye Dose

    Energy Technology Data Exchange (ETDEWEB)

    Abouaf, Lucie [Neuro-Ophthalmology Unit, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); Girard, Nicolas [Radiotherapy-Oncology Department, Lyon Sud Hospital, Hospices Civils de Lyon, Lyon (France); Claude Bernard University, Lyon (France); Lefort, Thibaud [Neuro-Radiology Department, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); D' hombres, Anne [Claude Bernard University, Lyon (France); Tilikete, Caroline; Vighetto, Alain [Neuro-Ophthalmology Unit, Pierre-Wertheimer Hospital, Hospices Civils de Lyon, Lyon (France); Claude Bernard University, Lyon (France); Mornex, Francoise, E-mail: francoise.mornex@chu-lyon.fr [Claude Bernard University, Lyon (France)

    2012-03-01

    Purpose: Radiotherapy has shown its efficacy in controlling optic nerve sheath meningiomas (ONSM) tumor growth while allowing visual acuity to improve or stabilize. However, radiation-induced toxicity may ultimately jeopardize the functional benefit. The purpose of this study was to identify predictive factors of poor visual outcome in patients receiving radiotherapy for ONSM. Methods and Materials: We conducted an extensive analysis of 10 patients with ONSM with regard to clinical, radiologic, and dosimetric aspects. All patients were treated with conformal radiotherapy and subsequently underwent biannual neuroophthalmologic and imaging assessments. Pretreatment and posttreatment values of visual acuity and visual field were compared with Wilcoxon's signed rank test. Results: Visual acuity values significantly improved after radiotherapy. After a median follow-up time of 51 months, 6 patients had improved visual acuity, 4 patients had improved visual field, 1 patient was in stable condition, and 1 patient had deteriorated visual acuity and visual field. Tumor control rate was 100% at magnetic resonance imaging assessment. Visual acuity deterioration after radiotherapy was related to radiation-induced retinopathy in 2 patients and radiation-induced mature cataract in 1 patient. Study of radiotherapy parameters showed that the mean eye dose was significantly higher in those 3 patients who had deteriorated vision. Conclusions: Our study confirms that radiotherapy is efficient in treating ONSM. Long-term visual outcome may be compromised by radiation-induced side effects. Mean eye dose has to be considered as a limiting constraint in treatment planning.

  13. A multi-GPU real-time dose simulation software framework for lung radiotherapy.

    Science.gov (United States)

    Santhanam, A P; Min, Y; Neelakkantan, H; Papp, N; Meeks, S L; Kupelian, P A

    2012-09-01

    Medical simulation frameworks facilitate both the preoperative and postoperative analysis of the patient's pathophysical condition. Of particular importance is the simulation of radiation dose delivery for real-time radiotherapy monitoring and retrospective analyses of the patient's treatment. In this paper, a software framework tailored for the development of simulation-based real-time radiation dose monitoring medical applications is discussed. A multi-GPU-based computational framework coupled with inter-process communication methods is introduced for simulating the radiation dose delivery on a deformable 3D volumetric lung model and its real-time visualization. The model deformation and the corresponding dose calculation are allocated among the GPUs in a task-specific manner and is performed in a pipelined manner. Radiation dose calculations are computed on two different GPU hardware architectures. The integration of this computational framework with a front-end software layer and back-end patient database repository is also discussed. Real-time simulation of the dose delivered is achieved at once every 120 ms using the proposed framework. With a linear increase in the number of GPU cores, the computational time of the simulation was linearly decreased. The inter-process communication time also improved with an increase in the hardware memory. Variations in the delivered dose and computational speedup for variations in the data dimensions are investigated using D70 and D90 as well as gEUD as metrics for a set of 14 patients. Computational speed-up increased with an increase in the beam dimensions when compared with a CPU-based commercial software while the error in the dose calculation was lung model-based radiotherapy is an effective tool for performing both real-time and retrospective analyses.

  14. Effects of low dose radiation on antioxidant enzymes after radiotherapy of tumor-bearing mice

    International Nuclear Information System (INIS)

    Li Jin; Gao Gang; Wang Qin; Tang Weisheng; Liu Xiaoqiu; Wang Zhiquan

    2005-01-01

    Objective: To search for effects of low dose radiation on the activities of antioxidant enzymes after radiotherapy of tumor-bearing mice. Methods: Superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) were all determined by chemical colorimetry. Results: Low dose radiation increase the activities of antioxidant enzymes superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT) in serum of tumor-bearing mice more markedly than those in the unirradiated controls. The activities of antioxidant enzymes SOD, GST, CAT in serum of tumor-bearing mice (d 5 , d 3 ) irradiated with 5cGy 6h before 2.0 Gy radiation are obviously higher than those of the group (c 3 , c 5 ) given with radiotherapy only. Conclusion: The increase in the activities of antioxidant enzymes in serum of tumor-bearing mice triggered by low dose radiation could partly contribute to the protective mechanism. (authors)

  15. Effect of age-dependent bone electron density on the calculated dose distribution from kilovoltage and megavoltage photon and electron radiotherapy in paediatric MRI-only treatment planning.

    Science.gov (United States)

    Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Saeedi-Moghadam, M; Jalli, R; Sina, S

    2018-01-01

    MRI-only treatment planning (TP) can be advantageous in paediatric radiotherapy. However, electron density extraction is necessary for dose calculation. Normally, after bone segmentation, a bulk density is assigned. However, the variation of bone bulk density in patients makes the creation of pseudo CTs challenging. This study aims to assess the effects of bone density variations in children on radiation attenuation and dose calculation for MRI-only TP. Bone contents of <15-year-old children were calculated, and substituted in the Oak Ridge National Laboratory paediatric phantoms. The percentage depth dose and beam profile of 150 kVp and 6 MV photon and 6 MeV electron beams were then calculated using Xcom, MCNPX (Monte Carlo N-particle version X) and ORLN phantoms. Using 150 kVp X-rays, the difference in attenuation coefficient was almost 5% between an 11-year-old child and a newborn, and ~8% between an adult and a newborn. With megavoltage radiation, the differences were smaller but still important. For an 18 MV photon beam, the difference of radiation attenuation between an 11-year-old child and a newborn was 4% and ~7.4% between an adult and a newborn. For 6 MeV electrons, dose differences were observed up to the 2 cm depth. The percentage depth dose difference between 1 and 10-year-olds was 18.5%, and between 10 and 15-year-olds was 24%. The results suggest that for MRI-only TP of photon- or electron-beam radiotherapy, the bone densities of each age group should be defined separately for accurate dose calculation. Advances in knowledge: This study highlights the need for more age-specific determination of bone electron density for accurate dose calculations in paediatric MRI-only radiotherapy TP.

  16. Intensity-Modulated Radiotherapy for Locally Advanced Non-Small-Cell Lung Cancer: A Dose-Escalation Planning Study

    International Nuclear Information System (INIS)

    Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank

    2011-01-01

    Purpose: To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). Methods and Materials: For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). Results: IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. Conclusion: In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT.

  17. The cost-effectiveness and cost-utility of high-dose palliative radiotherapy for advanced non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Coy, Peter; Schaafsma, Joseph; Schofield, John A.

    2000-01-01

    Purpose: To compute cost-effectiveness/cost-utility (CE/CU) ratios, from the treatment clinic and societal perspectives, for high-dose palliative radiotherapy treatment (RT) for advanced non-small-cell lung cancer (NSCLC) against best supportive care (BSC) as comparator, and thereby demonstrate a method for computing CE/CU ratios when randomized clinical trial (RCT) data cannot be generated. Methods and Materials: Unit cost estimates based on an earlier reported 1989-90 analysis of treatment costs at the Vancouver Island Cancer Centre, Victoria, British Columbia, Canada, are updated to 1997-1998 and then used to compute the incremental cost of an average dose of high-dose palliative RT. The incremental number of life days and quality-adjusted life days (QALDs) attributable to treatment are from earlier reported regression analyses of the survival and quality-of-life data from patients who enrolled prospectively in a lung cancer management cost-effectiveness study at the clinic over a 2-year period from 1990 to 1992. Results: The baseline CE and CU ratios are $9245 Cdn per life year (LY) and $12,836 per quality-adjusted life year (QALY), respectively, from the clinic perspective; and $12,253/LY and $17,012/QALY, respectively, from the societal perspective. Multivariate sensitivity analysis for the CE ratio produces a range of $5513-28,270/LY from the clinic perspective, and $7307-37,465/LY from the societal perspective. Similar calculations for the CU ratio produce a range of $7205-37,134/QALY from the clinic perspective, and $9550-49,213/QALY from the societal perspective. Conclusion: The cost effectiveness and cost utility of high-dose palliative RT for advanced NSCLC compares favorably with the cost effectiveness of other forms of treatment for NSCLC, of treatments of other forms of cancer, and of many other commonly used medical interventions; and lies within the US $50,000/QALY benchmark often cited for cost-effective care

  18. A dose-response analysis for classical Kaposi's sarcoma management by radiotherapy

    International Nuclear Information System (INIS)

    Oysul, K.; Beyzadeoglu, M.; Surenkok, S.; Ozyigit, G.; Dirican, B.

    2008-01-01

    Objective was to evaluate the dose-response relationship in classical Kaposi's sarcoma CKS patients treated with external beam radiotherapy. Between 1993 and 2004, patients with CKS treated at the Department of Radiation Oncology, Gulhane Military Medical School, Ankara, Turkey were evaluated in this retrospective study. The median age at initial presentation was 60 years. First we analyzed the overall response rates for normalized total dose2Gy NTD2Gy of 20Gy. Secondly we searched for whether better response rates could be obtained with the NTD2Gy of >/=20Gy compared to the NTD2Gy of /20Gy and 64% and 24%for NDT2Gyof 20< Gy and these were statistically different p=0.001. Late side effects of radiation therapy were acceptable in all but 4 patients with fibrosis and edema. This retrospective analysis showed that radiotherapy schedules with an NDT2Gy of 20 Gy and above by using local irradiation fields are effective in terms of complete response rates in the management of CKS compared to NDT2Gy of < 20 Gy. (author)

  19. Magnetic resonance only workflow and validation of dose calculations for radiotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Lübeck Christiansen, Rasmus; Jensen, Henrik R.; Brink, Carsten

    2017-01-01

    Background: Current state of the art radiotherapy planning of prostate cancer utilises magnetic resonance (MR) for soft tissue delineation and computed tomography (CT) to provide an electron density map for dose calculation. This dual scan workflow is prone to setup and registration error....... This study evaluates the feasibility of an MR-only workflow and the validity of dose calculation from an MR derived pseudo CT. Material and methods: Thirty prostate cancer patients were CT and MR scanned. Clinical treatment plans were generated on CT using a single 18 MV arc volumetric modulated arc therapy...... was successfully delivered to one patient, including manually performed daily IGRT. Conclusions: Median gamma pass rates were high for pseudo CT and proved superior to uniform density. Local differences in dose calculations were concluded not to have clinical relevance. Feasibility of the MR-only workflow...

  20. Controversies in external beam and high dose rate brachytherapy of oesophageal cancer

    International Nuclear Information System (INIS)

    Sur, R.K.; Levin, V.C.; Malas, Simon; Donde, Bernard

    1994-01-01

    Various controversies in the treatment of oesophageal carcinoma with external beam radiotherapy and high dose rate intracavitary irradiation have been reviewed. Conflicting results from different parts of the world has made it difficult to optimize the radiation dose that may give the best results. More studies and longer follow-up are needed before a definite conclusion can be made on the optimization of dose. (author). 18 refs., 2 tabs

  1. Calculating gamma dose factors for hot particle exposures

    International Nuclear Information System (INIS)

    Murphy, P.

    1990-01-01

    For hot particle exposures to the skin, the beta component of radiation delivers the majority of the dose. However, in order to fully demonstrate regulatory compliance, licenses must ordinarily provide reasonable bases for assuming that both the gamma component of the skin dose and the whole body doses are negligible. While beta dose factors are commonly available in the literature, gamma dose factors are not. This paper describes in detail a method by which gamma skin dose factors may be calculated using the Specific Gamma-ray Constant, even if the particle is not located directly on the skin. Two common hot particle exposure geometries are considered: first, a single square centimeter of skin lying at density thickness of 7 mg/cm 2 and then at 1000 mg/cm 2 . A table provides example gamma dose factors for a number of isotopes encountered at power reactors

  2. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    International Nuclear Information System (INIS)

    Okamoto, Masahiko; Ishikawa, Hitoshi; Ebara, Takeshi; Kato, Hiroyuki; Tamaki, Tomoaki; Akimoto, Tetsuo; Ito, Kazuto; Miyakubo, Mai; Yamamoto, Takumi; Suzuki, Kazuhiro; Takahashi, Takeo; Nakano, Takashi

    2012-01-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose–volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy × five times in 3 days or 7 Gy × three, 10.5 Gy × two, or 9 Gy × two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2 or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED 3 at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED 3–5% and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED 3–5% was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.

  3. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G [Department of Physics of the University and INFN, Milan (Italy)

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  4. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    Energy Technology Data Exchange (ETDEWEB)

    Cusumano, Davide, E-mail: davide.cusumano@unimi.it [School of Medical Physics, University of Milan, Milan (Italy); Fumagalli, Maria L. [Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Marchetti, Marcello; Fariselli, Laura [Department of Neurosurgery, Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); De Martin, Elena [Health Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  5. Radiotherapy-induced emesis. An overview

    International Nuclear Information System (INIS)

    Feyer, P.; Buchali, A.; Hinkelbein, M.; Budach, V.; Zimmermann, J.S.; Titlbach, O.J.

    1998-01-01

    Background: A significant number of patients receiving radiotherapy experience the distressing side effects of emesis and nausea. These symptoms are some of the most distressing problems for the patients influencing their quality of life. Methods: International study results concerning radiotherapy-induced emesis are demonstrated. A German multicenter questionnaire examining the strategies to prevent or to treat radiotherapy-induced nausea and emesis is presented. An international analysis concerning incidence of emesis and nausea in fractionated radiotherapy patients is discussed. Finally the consensus of the consensus conference on antiemetic therapy from the Perugia International Cancer Conference V is introduced. Results: Untreated emesis can lead to complications like electrolyte disorders, dehydration, metabolic disturbances and nutrition problems with weight loss. Prophylactic antiemetics are often given to patients receiving single high-dose radiotherapy to the abdomen. A survey has revealed that antiemetic prophylaxis is not routinely offered to the patients receiving fractionated radiotherapy. However, there is a need for an effective treatment of emesis for use in this group of patients, too. In 20% of patients nausea and emesis can cause a treatment interruption because of an inadequate control of symptoms. Like in chemotherapy strategies there exist high, moderate, and low emetogenic treatment regimens in radiotherapy as well. The most emetogenic potential has the total body irradiation followed by radiotherapy to the abdomen. Radiotherapy induced emesis can be treated effectively with conventional antiemetics up to 50%. Conclusions: Studies with total body irradiation, fractionated treatment and high-dose single exposures have cleary demonstrated the value of 5-HT3-receptor antagonist antiemetics. There is a response between 60 and 97%. There is no difference in the efficacy of the different 5-HT3-antagonists. High-risk patients should be prophylactic

  6. Dose to the uterus from radiotherapy procedures for breast carcinoma

    International Nuclear Information System (INIS)

    Martin Rincon, C.; Jerez Sainz, I.; Modolell Farre, I.; Espana Lopez, M.L.; Lopez Franco, P.

    2001-01-01

    In the early period of the pregnancy, the radiological protection of the unborn child is of particular concern. In several reports dose thresholds for deterministic effects as well as dose values that increase the probability of stochastic effects have been established. The aim of this article was to estimate the peripheral dose (PD) in order to evaluate the absorbed dose in utero for breast carcinoma treatment related to the radiotherapy procedures established in our hospital. The treatment was simulated using an anthropomorphic phantom Alderson-Rando, and two similar treatment planning with and without wedges were performed, taken into account the average field parameters used in 300 treatment planning patients. The PD values were determined with a NE 2571 ionization chamber in a General Electric linac for the treatments considered. Experimental measures provided dose in utero values slightly higher than 5 cGy, dose threshold established in some articles for radioinduced effects in the fetus. The planning system underestimated the PD values and no significant influence with the use of wedges was found. (author)

  7. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Eley, John [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Newhauser, Wayne, E-mail: newhauser@lsu.edu [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Homann, Kenneth; Howell, Rebecca [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 (United States); Graduate School of Biomedical Sciences, The University of Texas, 6767 Bertner Ave., Houston, TX 77030 (United States); Schneider, Christopher [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809 (United States); Durante, Marco; Bert, Christoph [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany)

    2015-03-11

    Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  8. Intraoperative and external beam radiotherapy for pancreatic carcinoma; Intraoperative und perkutane Radiotherapie des Pankreaskarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Eble, M.J. [Abt. Klinische Radiologie, Radiologische Universitaetsklinik Heidelberg (Germany); Maurer, U. [Klinikum der Stadt Mannheim (Germany). Inst. fuer Radiologie

    1996-05-01

    Therapeutic strategies in the treatment of pancreatic carcinoma are based on the high number of non-resectable cancers, the high relative radioresistance and the high distant metastases rate. Even in curatively resected carcinomas, a locally effective treatment modality is needed because of the risk of microscopical residual disease in the peripancreatic tissue. The efficacy of radiotherapy is dose dependent. Based on an analysis of published data a dose of more than 50 Gy is recommended, resulting in a high morbidity rate with external beam radiotherapy alone. The use of intraoperative radiotherapy allows locally restricted dose escalation without increased perioperative morbidity. In adjuvant and in primary treatment, local tumor control was improved (70-90%). With palliative intent, pain relief was obtained rapidly in over 60% of patients and led to improved patient performance. As a result of the high distant metastases rate, even in curatively resected carcinomas, the overall prognosis could not be significantly improved. Further dose escalation is limited by the increasing incidence of upper gastrointestinal bleeding (20-30%). (orig.) [Deutsch] Therapiestrategien beim Pankreaskarzinom werden bestimmt durch den hohen Anteil primaer nicht resektabler Karzinome, der hohen relativen Strahlenresistenz und der hohen Fernmetastasierungsrate. Selbst kurativ resezierte Karzinome erfordern durch ihre hohe lokale Tumorzellpersistenz eine lokal effektive adjuvante Behandlungsmassnahme. Die Effektivitaet einer Radiotherapie ist dosisabhaengig. Aus der Analyse publizierter Daten wird eine Dosis von >50 Gy, welche bei der alleinigen perkutanen Bestrahlung mit einer hohen Morbiditaet verbunden ist, empfohlen. Mit der intraoperativen Radiotherapie ist eine lokal begrenzte Dosiseskalation ohne erhoehte perioperative Morbiditaet moeglich. Sowohl in der adjuvanten als auch in der primaeren Behandlung kann die lokale Tumorkontrolle deutlich verbessert werden (70-90%). Unter

  9. Study of the spheronization process of glass particles by the gravitational falling process for internal selective radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, E.C.; Martinelli, J.R.; Sene, F.F.

    2011-01-01

    The internal selective radiotherapy is an alternative to treat hepatocellular carcinoma. Glass microspheres containing β - emitter radionuclide are introduced in the liver, and they are housed preferentially in the region where the cancer cells are located. The microspheres are trapped in the arterioles which feed the tumors, and the β - particles annihilate the cancer cells. The glass particles must be spherical to avoid unnecessary bleeding, and the particle size must be restricted to a range which optimizes the blocking effect and avoid the migration to other parts of the human body. The particle size distribution of microspheres is not easily predicted since the variation of the aspect ratio and the presence of agglomerates can influence the resulting particle size distribution. In the present work, the spheronization process to obtain microspheres from irregular shape glass particles with suitable diameter and shape for radiotherapy treatment is studied. (author)

  10. Clinical physics for charged particle treatment planning

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Pitluck, S.; Lyman, J.T.

    1981-01-01

    The installation of a computerized tomography (CT) scanner which can be used with the patient in an upright position is described. This technique will enhance precise location of tumor position relative to critical structures for accurate charged particle dose delivery during fixed horizontal beam radiotherapy. Pixel-by-pixel treatment planning programs have been developed to calculate the dose distribution from multi-port charged particle beams. The plan includes CT scans, data interpretation, and dose calculations. The treatment planning computer is discussed. Treatment planning for irradiation of ocular melanomas is described

  11. Biological effects of heavy particles

    International Nuclear Information System (INIS)

    Sabatier, L.; Martins, B.; Dutrillaux, B.

    1991-01-01

    The usual definitions of biological dose and biological dosimetry do not fit in case of particles with high linear energy transfer (LET). The dose corresponds to an average value which is not representative of the highly localized energy transfer due to heavy ions. Fortunately, up to now, a biological dosimetry following an exposure to high LET particles is necessary only for cosmonauts. In radiotherapy applications, one exactly knows the nature and energy of incident particle beams. The quality requirements for a good biodosimeter include reliable relation between dose and effect, weak sensitivity to individual variations, reliability and stability of acquired informations against the time delay between exposure and measurements. Nothing is better than the human lymphocyte to be used for measurements that fulfil these requirements. In the case of a manned spaceship, the irradiation dose corresponds to a wide range of radiation (protons, neutrons, heavy ions), and making a dosimetry as well as defining it are of current concern. As yet, there exist two possible definitions, which reduce the dose either to a proton or to a neutron equivalent one. However, such an approximation is not a faithful representation of the irradiation effects and in particular, the long-term effects may be quite different. In the future, it is reasonable to expect an evolution towards technics that enable identifying irradiated cells and quantifying precisely their radiation damage in order to reconstruct the spectrum of particles received by a given cosmonaut in a given time. Let us emphasize that the radiation hazards due to a short stay in space are quite minor, but in the case of a travel to Mars, they cannot be neglected [fr

  12. Study of the spheroidization process of glass particles for selective internal radiotherapy

    International Nuclear Information System (INIS)

    Barros Filho, Eraldo Cordeiro

    2012-01-01

    The selective internal radiotherapy is an alternative method to treat hepatocellular carcinoma. Glass microspheres containing radionuclides are introduced in the liver through the hepatic artery, and they are housed preferentially in the region where the cancer cells are located. The microspheres are trapped in the arterioles which feed the tumors, and the β - particles annihilate the cancer cells. When these particles simultaneously emit γ rays, they can also be used to provide images of the tumor. The glass particles must be spherical to avoid unnecessary bleeding, and the particle size must be restricted to a range which is appropriated to trap them and avoid the migration to other parts of the body. Furthermore, they must have a good chemical durability and be nontoxic. The particle size distribution of microspheres is not easily predicted based on the original irregular particles since the variation of the aspect ratio and the presence of agglomerates can influence the final result. In the present work, the spheroidization process to obtain microspheres for radiotherapy treatment was studied. The glass microspheres were characterized by X-rays diffraction, Energy Dispersive X-rays Fluorescence Spectroscopy, Differential Scanning Calorimetry, Specific Superficial Area and cytotoxicity test. The dissolution rate in distilled water at 90 degree C (DR∼10 -8 g.cm - 2.min -1 ), density (2.79g.cm -3 ), viscosity, and size particle distribution were determined. The surface morphological aspect was evaluated by Scanning Electron Microscopy before and after the chemical durability tests in SBF and after the neutron irradiation. It is proposed that the produced material should be sieved to select the most suitable microspheres

  13. Treatment Planning for Pulsed Reduced Dose-Rate Radiotherapy in Helical Tomotherapy

    International Nuclear Information System (INIS)

    Rong Yi; Paliwal, Bhudatt; Howard, Steven P.; Welsh, James

    2011-01-01

    Purpose: Pulsed reduced dose-rate radiotherapy (PRDR) is a valuable method of reirradiation because of its potential to reduce late normal tissue toxicity while still yielding significant tumoricidal effect. A typical method using a conventional linear accelerator (linac) is to deliver a series of 20-cGy pulses separated by 3-min intervals to give an effective dose-rate of just under 7 cGy/min. Such a strategy is fraught with difficulties when attempted on a helical tomotherapy unit. We investigated various means to overcome this limitation. Methods and Materials: Phantom and patient cases were studied. Plans were generated with varying combinations of field width (FW), pitch, and modulation factor (MF) to administer 200 cGy per fraction to the planning target in eight subfractions, thereby mimicking the technique used on conventional linacs. Plans were compared using dose-volume histograms, homogeneity indices, conformation numbers, and treatment time. Plan delivery quality assurance was performed to assess deliverability. Results: It was observed that for helical tomotherapy, intrinsic limitations in leaf open time in the multileaf collimator deteriorate plan quality and deliverability substantially when attempting to deliver very low doses such as 20-40 cGy. The various permutations evaluated revealed that the combination of small FW (1.0 cm), small MF (1.3-1.5), and large pitch (∼0.86), along with the half-gantry-angle-blocked scheme, can generate clinically acceptable plans with acceptable delivery accuracy (±3%). Conclusion: Pulsed reduced dose-rate radiotherapy can be accurately delivered using helical tomotherapy for tumor reirradiation when the appropriate combination of FW, MF, and pitch is used.

  14. First online real-time evaluation of motion-induced 4D dose errors during radiotherapy delivery

    DEFF Research Database (Denmark)

    Ravkilde, Thomas; Skouboe, Simon; Hansen, Rune

    2018-01-01

    PURPOSE: In radiotherapy, dose deficits caused by tumor motion often far outweigh the discrepancies typically allowed in plan-specific quality assurance (QA). Yet, tumor motion is not usually included in present QA. We here present a novel method for online treatment verification by real......-time motion-including 4D dose reconstruction and dose evaluation and demonstrate its use during stereotactic body radiotherapy (SBRT) delivery with and without MLC tracking. METHODS: Five volumetric modulated arc therapy (VMAT) plans were delivered with and without MLC tracking to a motion stage carrying...... a Delta4 dosimeter. The VMAT plans have previously been used for (non-tracking) liver SBRT with intra-treatment tumor motion recorded by kilovoltage intrafraction monitoring (KIM). The motion stage reproduced the KIM-measured tumor motions in 3D while optical monitoring guided the MLC tracking. Linac...

  15. Outcomes of visual acuity in carbon ion radiotherapy: Analysis of dose-volume histograms and prognostic factors

    International Nuclear Information System (INIS)

    Hasegawa, Azusa; Mizoe, Jun-etsu; Mizota, Atsushi; Tsujii, Hirohiko

    2006-01-01

    Purpose: To analyze the tolerance dose for retention of visual acuity in patients with head-and-neck tumors treated with carbon ion radiotherapy. Methods and Materials: From June 1994 to March 2000, 163 patients with tumors in the head and neck or skull base region were treated with carbon ion radiotherapy. Analysis was performed on 54 optic nerves (ONs) corresponding to 30 patients whose ONs had been included in the irradiated volume. These patients showed no evidence of visual impairment due to other factors and had a follow-up period of >4 years. All patients had been informed of the possibility of visual impairment before treatment. We evaluated the dose-complication probability and the prognostic factors for the retention of visual acuity in carbon ion radiotherapy, using dose-volume histograms and multivariate analysis. Results: The median age of 30 patients (14 men, 16 women) was 57.2 years. Median prescribed total dose was 56.0 gray equivalents (GyE) at 3.0-4.0 GyE per fraction per day (range, 48-64 GyE; 16-18 fractions; 4-6 weeks). Of 54 ONs that were analyzed, 35 had been irradiated with max ]) resulting in no visual loss. Conversely, 11 of the 19 ONs (58%) irradiated with >57 GyE (D max ) suffered a decrease of visual acuity. In all of these cases, the ONs had been involved in the tumor before carbon ion radiotherapy. In the multivariate analysis, a dose of 20% of the volume of the ON (D 2 ) was significantly associated with visual loss. Conclusions: The occurrence of visual loss seems to be correlated with a delivery of >60 GyE to 20% of the volume of the ON

  16. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    International Nuclear Information System (INIS)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda; DeWyngaert, J. Keith; Narayana, Ashwatha; Formenti, Silvia C.; Shah, Jinesh N.

    2010-01-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV) = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving ≥25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p -7 for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.

  17. High-Dose Adjuvant Radiotherapy After Radical Prostatectomy With or Without Androgen Deprivation Therapy

    International Nuclear Information System (INIS)

    Ost, Piet; Cozzarini, Cesare; De Meerleer, Gert; Fiorino, Claudio; De Potter, Bruno; Briganti, Alberto; Nagler, Evi V.T.; Montorsi, Francesco; Fonteyne, Valérie; Di Muzio, Nadia

    2012-01-01

    Purpose: To retrospectively evaluate the outcome and toxicity in patients receiving high-dose (>69 Gy) adjuvant radiotherapy (HD-ART) and the impact of androgen deprivation therapy (ADT). Methods and Materials: Between 1999 and 2008, 225 node-negative patients were referred for HD-ART with or without ADT to two large academic institutions. Indications for HD-ART were extracapsular extension, seminal vesicle invasion (SVI), and/or positive surgical margins at radical prostatectomy (RP). A dose of at least 69.1 Gy was prescribed to the prostate bed and seminal vesicle bed. The ADT consisted of a luteinizing hormone–releasing hormone analog. The duration and indication of ADT was left at the discretion of the treating physician. The effect of HD-ART and ADT on biochemical (bRFS) and clinical (cRFS) relapse-free survival was examined through univariate and multivariate analysis, with correction for known patient- and treatment-related variables. Interaction terms were introduced to evaluate effect modification. Results: After a median follow-up time of 5 years, the 7-year bRFS and cRFS were 84% and 88%, respectively. On multivariate analysis, the addition of ADT was independently associated with an improved bRFS (hazard ratio [HR] 0.4, p = 0.02) and cRFS (HR 0.2, p = 0.008). Higher Gleason scores and SVI were associated with decreased bRFS and cRFS. A lymphadenectomy at the time of RP independently improved cRFS (HR 0.09, p = 0.009). The 7-year probability of late Grade 2–3 toxicity was 29% and 5% for genitourinary (GU) and gastrointestinal (GI) symptoms, respectively. The absolute incidence of Grade 3 toxicity was <1% and 10% for GI and GU symptoms, respectively. The study is limited by its retrospective design and the lack of a standardized use of ADT. Conclusions: This retrospective study shows significantly improved bRFS and cRFS rates with the addition of ADT to HD-ART, with low Grade 3 gastrointestinal toxicity and 10% Grade 3 genitourinary toxicity.

  18. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas--rationale for combination with radiotherapy

    International Nuclear Information System (INIS)

    Koukourakis, M.I.; Koukouraki, S.; Giatromanolaki, A.; Kakolyris, S.; Georgoulias, V.; Velidaki, A.; Archimandritis, S.; Karkavitsas, N.N.

    2000-01-01

    Sarcomas are radioresistant tumors, the only curative therapy being radical surgical resection. Stealth liposomal doxorubicin (Caelyx) is a novel drug formulation that allows prolonged circulation and high intratumoral concentration. This study investigates the concurrent use of radiotherapy with Caelyx in a cohort of 7 patients with locally advanced or recurrent sarcoma. Radiotherapy was given as a standard fractionation regimen to a total dose of 70 Gy. Caelyx was given as a 30-min infusion at a dose of 25 mg/m 2 every 2 weeks. Scintigraphic imaging with Caelyx- 99m Tc-DTPA showed an increased (2.8 +/- 0.9 times higher) intratumoral drug accumulation compared to the surrounding healthy tissue. The regimen was well tolerated without any severe hematological or systemic toxicity. 'In field' radiation toxicity was not increased. Complete response was observed in 4/7 cases. It is concluded that combined chemo-radiotherapy with stealth liposomal doxorubicin for locally advanced sarcomas is feasible and promising, the benefit expected from the unique ability of the stealth liposomes to accumulate selectively in the tumoral tissue

  19. The Effect of Breast Reconstruction Prosthesis on Photon Dose Distribution in Breast Cancer Radiotherapy

    Directory of Open Access Journals (Sweden)

    fatemeh sari

    2017-12-01

    Full Text Available Introduction: Siliconeprosthetic implants are commonlyutilizedfor tissue replacement and breast augmentation after mastectomy. On the other hand, some patients require adjuvant radiotherapy in order to preventlocal-regional recurrence and increment ofthe overall survival. In case of recurrence, the radiation oncologist might have to irradiate the prosthesis.The aim of this study was to evaluate the effect of silicone prosthesis on photon dose distribution in breast radiotherapy. Materials and Methods: The experimental dosimetry was performed using theprosthetic breast phantom and the female-equivalent mathematical chest phantom. A Computerized Tomographybased treatment planning was performedusing a phantom and by CorePlan Treatment Planning System (TPS. For measuring the absorbed dose, thermoluminescent dosimeter(TLD chips (GR-207A were used. Multiple irradiations were completed for all the TLD positions, and the dose absorbed by the TLDs was read by a lighttelemetry (LTM reader. Results: Statistical comparisons were performed between the absorbed dosesassessed by the TLDs and the TPS calculations forthe same sites. Our initial resultsdemonstratedanacceptable agreement (P=0.064 between the treatment planning data and the measurements. The mean difference between the TPS and TLD resultswas 1.99%.The obtained findings showed that radiotherapy is compatible withsilicone gel prosthesis. Conclusion: It could be concludedthat the siliconbreast prosthesis has no clinicallysignificant effectondistribution of a 6 MV photon beam for reconstructed breasts.

  20. Comparison between steel and lead shieldings for radiotherapy rooms regarding neutron doses to patients

    International Nuclear Information System (INIS)

    Silva, M.G.; Rebello, W.F.; Andrade, E.R.; Medeiros, M.P.C.; Mendes, R.M.S.; Braga, K.L.; Gomes, R.G.

    2015-01-01

    The NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities, considers, in shielding calculations for radiotherapy rooms, the use of lead and/or steel to be applied on bunker walls. The NCRP Report calculations were performed foreseeing a better protection of people outside the radiotherapy room. However, contribution of lead and steel to patient dose should be taken into account for radioprotection purposes. This work presents calculations performed by MCNPX code in analyzing the Ambient Dose Equivalent due to neutron, H *(10) n , within a radiotherapy room, in the patients area, considering the use of additional shielding of 1 TVL of lead or 1 TVL of steel, positioned at the inner faces of walls and ceiling of a bunker. The head of the linear accelerator Varian 2100/2300 C/D was modeled working at 18MeV, with 5 x 5 cm 2 , 10 x 10 cm 2 , 20 x 20 cm 2 , 30 x 30 cm 2 and 40 x 40 cm 2 openings for jaws and MLC and operating in eight gantry's angles. This study shows that the use of lead generates an average value of H *(10) n at patients area, 8.02% higher than the expected when using steel. Further studies should be performed based on experimental data for comparison with those from MCNPX simulation. (author)

  1. Uterine cervix cancer treatment in IIB, IIIA and IIIB stages with external radiotherapy versus external radiotherapy and scintiscanning of low dose. ION SOLCA. Years 1998-2000

    International Nuclear Information System (INIS)

    Sanchez, Doris; Falquez, Roberto

    2002-01-01

    We realized study of retrospective accomplished in course of years 1998-2000, reviewing clinical charts of statistical department of ION SOLCA. We reviewed 544 cases in 1998, 603 patients in 1999, and 630 cases in 2000. In the radiotherapy service, 133 patients received treatment with external radiotherapy between February 1998 to February 1999 in IIB, IIIA, IIIB stages and only 80 patients were treated with external radiotherapy and scintiscanning of low dose rate in the same stages between March 1999 to March 2000. (The author)

  2. Conformation radiotherapy with eccentric multi-leaves, (1)

    International Nuclear Information System (INIS)

    Obata, Yasunori; Sakuma, Sadayuki.

    1986-01-01

    In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)

  3. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    Science.gov (United States)

    Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  4. Verification of the calculation program for brachytherapy planning system of high dose rate (PLATO)

    International Nuclear Information System (INIS)

    Almansa, J.; Alaman, C.; Perez-Alija, J.; Herrero, C.; Real, R. del; Ososrio, J. L.

    2011-01-01

    In our treatments are performed brachytherapy high dose rate since 2007. The procedures performed include gynecological intracavitary treatment and interstitial. The treatments are performed with a source of Ir-192 activity between 5 and 10 Ci such that small variations in treatment times can cause damage to the patient. In addition the Royal Decree 1566/1998 on Quality Criteria in radiotherapy establishes the need to verify the monitor units or treatment time in radiotherapy and brachytherapy. All this justifies the existence of a redundant system for brachytherapy dose calculation that can reveal any abnormality is present.

  5. Radiotherapy and risk of implantable cardioverter-defibrillator malfunctions: experimental data from direct exposure at increasing doses.

    Science.gov (United States)

    Zecchin, Massimo; Artico, Jessica; Morea, Gaetano; Severgnini, Mara; Bianco, Elisabetta; De Luca, Antonio; Fantasia, Anna Zorzin; Salvatore, Luca; Milan, Vittorino; Lucarelli, Matteo; Dissegna, Roberta; Cannatà, Antonio; Sinagra, Gianfranco

    2018-04-01

    During radiotherapy, in patients with implantable cardioverter-defibrillators (ICDs) malfunctions are considered more likely if doses more than 2 Gy reach the ICD site; however, most malfunctions occur with high-energy (>10 MV) radiations, and the risk is less defined using 6-MV linear accelerators. The purpose of the study is to experimentally evaluate the occurrence of malfunctions in ICDs radiated with a 6-MV linear accelerator at increasing photon doses. Thirty-two ICDs from all manufacturers (31 explanted and one demo) were evaluated; all devices with a sufficient battery charge underwent multiple radiations with a 6-MV photon beam reaching a cumulative dose at ICD site of 0.5, 1, 2, 3, 5 and 10 Gy and interrogated after every session. All antitachycardia therapies were left enabled; two ICDs were connected to a rhythm simulator (one simulating a complete atrioventricular block without ventricular activity) and visually monitored by external ECG and the ICD programmer during radiation. Thirteen ICDs were excluded before radiation because of battery depletion; after radiation up to the cumulative dose at the cardiac implantable electronic device site of 10 Gy, in the remaining 19 devices, programmation and battery charge remained unchanged and no switch to safety mode was observed; oversensing, pacing inhibition or inappropriate antitachycardia therapy were neither recorded nor visually observed during radiation. With a low-energy accelerator, neither malfunctions nor electromagnetic interferences were detected radiating the ICDs at doses usually reaching the ICD pocket during radiotherapy sessions. In this context, magnet application to avoid oversensing and inappropriate therapy seems, therefore, useless.

  6. Agreement of quadratic and CRE models in predicting the late effects of continuous low dose-rate radiotherapy; and reply

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.

    1986-01-01

    These letters discuss the problems associated with the fact that the normal tissue isoeffect formulae based on the Ellis equation (1969) do not correctly account for the late-occurring effects of fractionated radiotherapy, and with the extension of the linear quadratic model to include continuous low dose-rate radiotherapy with constant or decaying sources by R.G. Dale (1985). J.A. O'Donoghue points out that the 'late effects' and CRE curves correspond closely, whilst the 'acute effects; and CRE curves are in obvious disagreement. For continuous low-dose-rate radiotherapy, the CRE and late effects quadratic model are in agreement. Useful bibliography. (U.K.)

  7. Low-Dose Involved-Field Radiotherapy as Alternative Treatment of Nodular Lymphocyte Predominance Hodgkin's Lymphoma

    International Nuclear Information System (INIS)

    Haas, Rick L.M.; Girinsky, Theo; Aleman, Berthe; Henry-Amar, Michel; Boer, Jan-Paul de; Jong, Daphne de

    2009-01-01

    Purpose: Nodular lymphocyte predominance Hodgkin's lymphoma is a very rare disease, characterized by an indolent clinical course, with sometimes very late relapses occurring in a minority of all patients. Considerable discussion is ongoing on the treatment of primary and relapsed disease. Patients and Methods: A group of 9 patients were irradiated to a dose of 4 Gy on involved areas only. Results: After a median follow-up of 37 months (range, 6-66), the overall response rate was 89%. Six patients had complete remission (67%), two had partial remission (22%), and one had stable disease (11%). Of 8 patients, 5 developed local relapse 9-57 months after radiotherapy. No toxicity was noted. Conclusion: In nodular lymphocyte predominance Hodgkin's lymphoma, low-dose radiotherapy provided excellent response rates and lasting remissions without significant toxicity.

  8. Coordinated research efforts for establishing an international radiotherapy dose intercomparison service based on the alanine/ESR system

    International Nuclear Information System (INIS)

    Nette, H.P.; Onori, S.; Fattibene, P.; Regulla, D.; Wieser, A.

    1993-01-01

    The IAEA has long been active in the field of high-dose standardization. An International Dose Assurance Service (IDAS) was established based on alanine/ESR dosimetry. This service operates over the range of 100 Gy to 100 kGy and is directed towards industrial radiation processing in IAEA member states. It complements the IAEA/WHO TLD postal dose intercomparison service for dose assurance in hospital radiotherapy departments. Experience with the alanine high dose service suggests that the alanine dosimeter might provide superior performance to TLD in the therapy dose range. Preliminary test measurements with the participation of GSF/Germany, Istituto Superiore di Sanita/Italy (both providing alanine dosimeters and their evaluation) and IAEA (providing reference irradiations) seems to justify research efforts through an IAEA Coordinated Research Programme (CRP). This CRP, entitled ''Therapy Level Dosimetry with the Alanine/ESR System'' is presently under set-up. It will include general work common to all assigned/potential contract holders as well as some specific research topics in accordance to individual proposals of each participant. (author)

  9. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    International Nuclear Information System (INIS)

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. (author)

  10. Miniature probe with semiconductor photodiode for measuring dose rates in radiotherapy

    International Nuclear Information System (INIS)

    Burian, A.

    1991-01-01

    The probe is designed for gaining information on the magnitude and spatial distribution of the dose which will be absorbed by the patient's body during radiotherapy. The probe satisfies requirements of high-level miniaturization and requirements on the shape and tissue-equivalence of the casing, as well as on efficient electromagnetic shielding. It is fitted with a miniature photodiode. Conductive carbon cement was used for attaching contacts to the photodiode. Efficient electromagnetic shielding was achieved by means of a carbon-based conductive layer. The photodiode casing was made from a mixture of organic materials whose biogenic elements approximate the standard soft human tissue. The geometry of the casing is adapted to the particular field of application of the probe. (Z.S). 2 figs

  11. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at [EBG MedAustron GmbH, 2700 Wiener Neustadt (Austria); Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz (Austria); Paganetti, Harald; Zhu, Mingyao; Winey, Brian A. [Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions

  12. Alanine-EPR dosimetry system for high industrial as well radiotherapeutic dose measurement

    International Nuclear Information System (INIS)

    Dobrovodsky, J.; Bukovjan, J.

    2005-01-01

    Slovak Institute of Metrology is developing new metrology standard for high doses, based on the alanine-EPR as a reference dosimetry system. A Bruker e-scan EPR analyser developed specifically for alanine dosimetry has improved stability of EPR measurement, especially at lower dose range. The standard e-scan system provides sensitivity below 1 Gray. After further improvement of the system and lowering of dose determination expanded uncertainty down below 1 %, its utilisation for radiotherapy field is expected (authors)

  13. Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.

    Science.gov (United States)

    Gauer, Tobias; Sothmann, Thilo; Blanck, Oliver; Petersen, Cordula; Werner, René

    2018-06-01

    Radiotherapy of extracranial metastases changed from normofractioned 3D CRT to extreme hypofractionated stereotactic treatment using VMAT beam techniques. Random interaction between tumour motion and dynamically changing beam parameters might result in underdosage of the CTV even for an appropriately dimensioned ITV (interplay effect). This study presents a clinical scenario of extreme hypofractionated stereotactic treatment and analyses the impact of interplay effects on CTV dose coverage. For a thoracic/abdominal phantom with an integrated high-resolution detector array placed on a 4D motion platform, dual-arc treatment plans with homogenous target coverage were created using a common VMAT technique and delivered in a single fraction. CTV underdosage through interplay effects was investigated by comparing dose measurements with and without tumour motion during plan delivery. Our study agrees with previous works that pointed out insignificant interplay effects on target coverage for very regular tumour motion patterns like simple sinusoidal motion. However, we identified and illustrated scenarios that are likely to result in a clinically relevant CTV underdosage. For tumour motion with abnormal variability, target coverage quantified by the CTV area receiving more than 98% of the prescribed dose decreased to 78% compared to 100% at static dose measurement. This study is further proof of considerable influence of interplay effects on VMAT dose delivery in stereotactic radiotherapy. For selected conditions of an exemplary scenario, interplay effects and related motion-induced target underdosage primarily occurred in tumour motion pattern with increased motion variability and VMAT plan delivery using complex MLC dose modulation.

  14. High dose rate brachytherapy for superficial cancer of the esophagus

    International Nuclear Information System (INIS)

    Maingon, Philippe; D'Hombres, Anne; Truc, Gilles; Barillot, Isabelle; Michiels, Christophe; Bedenne, Laurent; Horiot, Jean Claude

    2000-01-01

    Purpose: We analyzed our experience with external radiotherapy, combined modality treatment, or HDR brachytherapy alone to limited esophageal cancers. Methods and Materials: From 1991 to 1996, 25 patients with limited superficial esophagus carcinomas were treated by high dose rate brachytherapy. The mean age was 63 years (43-86 years). Five patients showed superficial local recurrence after external radiotherapy. Eleven patients without invasion of the basal membrane were staged as Tis. Fourteen patients with tumors involving the submucosa without spreading to the muscle were staged as T1. Treatment consisted of HDR brachytherapy alone in 13 patients, external radiotherapy and brachytherapy in 8 cases, and concomitant chemo- and radiotherapy in 4 cases. External beam radiation was administered to a total dose of 50 Gy using 2 Gy daily fractions in 5 weeks. In cases of HDR brachytherapy alone (13 patients), 6 applications were performed once a week. Results: The mean follow-up is 31 months (range 24-96 months). Twelve patients received 2 applications and 13 patients received 6 applications. Twelve patients experienced a failure (48%), 11/12 located in the esophagus, all of them in the treated volume. One patient presented an isolated distant metastasis. In the patients treated for superficial recurrence, 4/5 were locally controlled (80%) by brachytherapy alone. After brachytherapy alone, 8/13 patients were controlled (61%). The mean disease-free survival is 14 months (1-36 months). Overall survival is 76% at 1 year, 37% at 2 years, and 14% at 3 years. Overall survival for Tis patients is 24% vs. 20% for T1 (p 0.83). Overall survival for patients treated by HDR brachytherapy alone is 43%. One patient presented with a fistula with local failure after external radiotherapy and brachytherapy. Four stenosis were registered, two were diagnosed on barium swallowing without symptoms, and two required dilatations. Conclusion: High dose rate brachytherapy permits the treating

  15. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, E; Kim, S; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD (United States); Lee, C [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Pelletier, C; Jung, J [Department of Physics, East Carolina University Greenville, NC (United States); Jones, E [Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  16. SU-F-T-115: Uncertainty in the Esophagus Dose in Retrospective Epidemiological Study of Breast Cancer Radiotherapy Patients

    International Nuclear Information System (INIS)

    Mosher, E; Kim, S; Lee, C; Lee, C; Pelletier, C; Jung, J; Jones, E

    2016-01-01

    Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) to create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.

  17. SU-F-T-119: Development of Heart Prediction Model to Increase Accuracy of Dose Reconstruction for Radiotherapy Patients

    International Nuclear Information System (INIS)

    Mosher, E; Choi, M; Lee, C; Jones, E

    2016-01-01

    Purpose: To assess individual variation in heart volume and location in order to develop a prediction model of the heart. This heart prediction model will be used to calculate individualized heart doses for radiotherapy patients in epidemiological studies. Methods: Chest CT images for 30 adult male and 30 adult female patients were obtained from NIH Clinical Center. Image-analysis computer programs were used to segment the whole heart and 8 sub-regions and to measure the volume of each sub- region and the dimension of the whole heart. An analytical dosimetry method was used for the 30 adult female patients to estimate mean heart dose during conventional left breast radiotherapy. Results: The average volumes of the whole heart were 803.37 cm"3 (COV 18.8%) and 570.19 cm"3 (COV 18.8%) for adult male and female patients, respectively, which are comparable with the international reference volumes of 807.69 cm"3 for males and 596.15 cm"3 for females. Some patient characteristics were strongly correlated (R"2>0.5) with heart volume and heart dimensions (e.g., Body Mass Index vs. heart depth in males: R"2=0.54; weight vs. heart width in the adult females: R"2=0.63). We found that the mean heart dose 3.805 Gy (assuming prescribed dose of 50 Gy) in the breast radiotherapy simulations of the 30 adult females could be an underestimate (up to 1.6-fold) or overestimate (up to 1.8-fold) of the patient-specific heart dose. Conclusion: The study showed the significant variation in patient heart volumes and dimensions, resulting in substantial dose errors when a single average heart model is used for retrospective dose reconstruction. We are completing a multivariate analysis to develop a prediction model of the heart. This model will increase accuracy in dose reconstruction for radiotherapy patients and allow us to individualize heart dose calculations for patients whose CT images are not available.

  18. SU-F-T-119: Development of Heart Prediction Model to Increase Accuracy of Dose Reconstruction for Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, E; Choi, M; Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD (United States); Jones, E [Radiology and Imaging Sciences Clinical Center, National Institutes of Health, Bethesda, MD (United States)

    2016-06-15

    Purpose: To assess individual variation in heart volume and location in order to develop a prediction model of the heart. This heart prediction model will be used to calculate individualized heart doses for radiotherapy patients in epidemiological studies. Methods: Chest CT images for 30 adult male and 30 adult female patients were obtained from NIH Clinical Center. Image-analysis computer programs were used to segment the whole heart and 8 sub-regions and to measure the volume of each sub- region and the dimension of the whole heart. An analytical dosimetry method was used for the 30 adult female patients to estimate mean heart dose during conventional left breast radiotherapy. Results: The average volumes of the whole heart were 803.37 cm{sup 3} (COV 18.8%) and 570.19 cm{sup 3} (COV 18.8%) for adult male and female patients, respectively, which are comparable with the international reference volumes of 807.69 cm{sup 3} for males and 596.15 cm{sup 3} for females. Some patient characteristics were strongly correlated (R{sup 2}>0.5) with heart volume and heart dimensions (e.g., Body Mass Index vs. heart depth in males: R{sup 2}=0.54; weight vs. heart width in the adult females: R{sup 2}=0.63). We found that the mean heart dose 3.805 Gy (assuming prescribed dose of 50 Gy) in the breast radiotherapy simulations of the 30 adult females could be an underestimate (up to 1.6-fold) or overestimate (up to 1.8-fold) of the patient-specific heart dose. Conclusion: The study showed the significant variation in patient heart volumes and dimensions, resulting in substantial dose errors when a single average heart model is used for retrospective dose reconstruction. We are completing a multivariate analysis to develop a prediction model of the heart. This model will increase accuracy in dose reconstruction for radiotherapy patients and allow us to individualize heart dose calculations for patients whose CT images are not available.

  19. Improving dose homogeneity in head and neck radiotherapy with custom 3-D compensation

    International Nuclear Information System (INIS)

    Brock, Linda K.; Harari, Paul M.; Sharda, Navneet N.; Paliwal, Bhudatt R.; Kinsella, Timothy J.

    1996-01-01

    Purpose/Objective: Anatomic contour irregularities and tissue inhomogeneities can lead to significant radiation dose variation across complex treatment volumes. Such dose non-uniformity occurs routinely in radiation of the head and neck (H and N) despite beam shaping with blocks or beam modification with wedges. Small dose variations are amplified by the high total doses delivered (often >70 Gy) which can thereby influence late normal tissue complications as well as tumor control. We have therefore implemented the routine use of 3-D custom tissue compensators for our H and N cancer patients fabricated directly from CT scan contour data obtained in the treatment position. The capacity of such compensators to improve dose uniformity in patients with tumors of the H and N is herein reported. Materials and Methods: Between July 1992 and March 1995, 80 patients receiving H and N radiotherapy had 3-D custom compensators fabricated for their treatment course. Detailed dosimetric records have been reviewed for thirty cases to date (60 custom compensators). Dose uniformity across the treatment volume, peak dose delivery and maximum doses to selected, clinically relevant, anatomic subsites were analyzed and compared with uncompensated and wedged plans. Dose-volume histograms were generated and volumes receiving greater than 5% and 10% of the prescribed dose noted. Phantom dose measurements were performed for compensated fields using a water chamber and were compared to calculated doses in order to evaluate the accuracy of isodoses generated by the Theraplan treatment planning system. Accuracy of the fabrication and positioning of the custom compensators was verified by direct measurement. Results: Custom compensators resulted in an average reduction of dose variance across the treatment volume from 13.8% (7-20%) for the uncompensated plans to 4.5% (2-7%) with the compensators. Wedged plans were variable but on average an 8% (3-15%) dose variance was noted. Maximum doses

  20. Under-utilisation of high-dose-rate brachytherapy boost in men with intermediate-high risk prostate cancer treated with external beam radiotherapy.

    Science.gov (United States)

    Ong, Wee Loon; Evans, Sue M; Millar, Jeremy L

    2018-04-01

    The aim of this study was to evaluate the use of high-dose-rate brachytherapy (HDR-BT) boost with definitive external beam radiotherapy (EBRT) in prostate cancer (CaP) management. The study population comprised men with intermediate-high risk CaP captured in the population-based Prostate Cancer Outcome Registry Victoria (PCOR-Vic), treated with EBRT from January 2010 to December 2015. The primary outcome is the proportion of men who received HDR-BT boost. Multivariate logistic regressions were used to evaluate the effect of patient-, tumour- and treatment-factors on the likelihood of HDR-BT use. Medicare Benefit Schedule (MBS) data was accessed to evaluate the Australia-wide pattern of HDR-BT use. One thousand eight hundred and six patients were included in this study - 886 (49%) intermediate-risk, and 920 (51%) high-risk CaP patients. Overall, only 124 (7%) patients had EBRT + HDR-BT - 47 (5%) intermediate-risk and 77 (8%) high-risk CaP patients (P = 0.01). There is higher proportion of patients who had HDR-BT in public institutions (7% public vs. 3% private, P = 0.005) and in metropolitan centres (9% metropolitan vs. 2% regional, P Victorian men with CaP. The decline in HDR-BT use was also observed nationally. © 2017 The Royal Australian and New Zealand College of Radiologists.

  1. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tajaldeen, A [RMIT university, Docklands, Vic (Australia); Ramachandran, P [Peter MacCallum Cancer Centre, Bendigo (Australia); Geso, M [RMIT University, Bundoora, Melbourne (Australia)

    2015-06-15

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  2. SU-E-T-91: Accuracy of Dose Calculation Algorithms for Patients Undergoing Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Tajaldeen, A; Ramachandran, P; Geso, M

    2015-01-01

    Purpose: The purpose of this study was to investigate and quantify the variation in dose distributions in small field lung cancer radiotherapy using seven different dose calculation algorithms. Methods: The study was performed in 21 lung cancer patients who underwent Stereotactic Ablative Body Radiotherapy (SABR). Two different methods (i) Same dose coverage to the target volume (named as same dose method) (ii) Same monitor units in all algorithms (named as same monitor units) were used for studying the performance of seven different dose calculation algorithms in XiO and Eclipse treatment planning systems. The seven dose calculation algorithms include Superposition, Fast superposition, Fast Fourier Transform ( FFT) Convolution, Clarkson, Anisotropic Analytic Algorithm (AAA), Acurous XB and pencil beam (PB) algorithms. Prior to this, a phantom study was performed to assess the accuracy of these algorithms. Superposition algorithm was used as a reference algorithm in this study. The treatment plans were compared using different dosimetric parameters including conformity, heterogeneity and dose fall off index. In addition to this, the dose to critical structures like lungs, heart, oesophagus and spinal cord were also studied. Statistical analysis was performed using Prism software. Results: The mean±stdev with conformity index for Superposition, Fast superposition, Clarkson and FFT convolution algorithms were 1.29±0.13, 1.31±0.16, 2.2±0.7 and 2.17±0.59 respectively whereas for AAA, pencil beam and Acurous XB were 1.4±0.27, 1.66±0.27 and 1.35±0.24 respectively. Conclusion: Our study showed significant variations among the seven different algorithms. Superposition and AcurosXB algorithms showed similar values for most of the dosimetric parameters. Clarkson, FFT convolution and pencil beam algorithms showed large differences as compared to superposition algorithms. Based on our study, we recommend Superposition and AcurosXB algorithms as the first choice of

  3. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution.

    Science.gov (United States)

    Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel

    2017-03-01

    Radiation therapy, in conjunction with surgical implant fixation, is a common combined treatment in cases of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced Polyetheretherketone (CFR-PEEK) material has been recently introduced for production of intramedullary nails and plates. The purpose of this work was to investigate the perturbation effects of the new CFR-PEEK screws on radiotherapy dose distributions and to evaluate these effects in comparison with traditional titanium screws. The investigation was performed by means of Monte Carlo (MC) simulations for a 6 MV photon beam. The project consisted of two main stages. First, a comparison of measured and MC calculated doses was performed to verify the validity of the MC simulation results for different materials. For this purpose, stainless steel, titanium, and CFR-PEEK plates of various thicknesses were used for attenuation and backscatter measurements in a solid water phantom. For the same setup, MC dose calculations were performed. Next, MC dose calculations for titanium, CFR-PEEK screws, and CFR-PEEK screws with ultrathin titanium coating were performed. For the plates, the results of our MC calculations for all materials were found to be in good agreement with the measurements. This indicates that the MC model can be used for calculation of dose perturbation effects caused by the screws. For the CFR-PEEK screws, the maximum dose perturbation was less than 5%, compared to more than 30% perturbation for the titanium screws. Ultrathin titanium coating had a negligible effect on the dose distribution. CFR-PEEK implants have good prospects for use in radiotherapy because of minimal dose alteration and the potential for more accurate treatment planning. This could favorably influence treatment efficiency and decrease possible over- and underdose of adjacent tissues. The use of such implants has potential clinical advantages

  4. Can we avoid high levels of dose escalation for high-risk prostate cancer in the setting of androgen deprivation?

    Science.gov (United States)

    Shakespeare, Thomas P; Wilcox, Shea W; Aherne, Noel J

    2016-01-01

    Both dose-escalated external beam radiotherapy (DE-EBRT) and androgen deprivation therapy (ADT) improve outcomes in patients with high-risk prostate cancer. However, there is little evidence specifically evaluating DE-EBRT for patients with high-risk prostate cancer receiving ADT, particularly for EBRT doses >74 Gy. We aimed to determine whether DE-EBRT >74 Gy improves outcomes for patients with high-risk prostate cancer receiving long-term ADT. Patients with high-risk prostate cancer were treated on an institutional protocol prescribing 3-6 months neoadjuvant ADT and DE-EBRT, followed by 2 years of adjuvant ADT. Between 2006 and 2012, EBRT doses were escalated from 74 Gy to 76 Gy and then to 78 Gy. We interrogated our electronic medical record to identify these patients and analyzed our results by comparing dose levels. In all, 479 patients were treated with a 68-month median follow-up. The 5-year biochemical disease-free survivals for the 74 Gy, 76 Gy, and 78 Gy groups were 87.8%, 86.9%, and 91.6%, respectively. The metastasis-free survivals were 95.5%, 94.5%, and 93.9%, respectively, and the prostate cancer-specific survivals were 100%, 94.4%, and 98.1%, respectively. Dose escalation had no impact on any outcome in either univariate or multivariate analysis. There was no benefit of DE-EBRT >74 Gy in our cohort of high-risk prostate patients treated with long-term ADT. As dose escalation has higher risks of radiotherapy-induced toxicity, it may be feasible to omit dose escalation beyond 74 Gy in this group of patients. Randomized studies evaluating dose escalation for high-risk patients receiving ADT should be considered.

  5. Physics aspects of recent and future concepts in radiotherapy

    International Nuclear Information System (INIS)

    Georg, D.

    2001-01-01

    Full text: The development of 3-D conformal radiotherapy (3D-CRT), in which the high dose volume matches as closely as possible the target volume and avoids therefore normal tissue irradiation as far as possible, has been a major theme in radiotherapy for improving the therapeutic window. Conformal radiotherapy is not a new concept but only the technological improvements of the last decade allow its clinical implementation. More recent and advanced forms of 3D-CRT are intensity modulated radiotherapy (IMRT) and stereotactic radiotherapy (SRT). IMRT uses an additional degree of freedom to achieve a new class of conformation: the variation of the primary beam intensity. SRT is based on a three dimensional stereotactic coordinate system which is correlated with the patient and the treatment facility through modern imaging technology. IMRT and SRT are related by common features, e.g. high dose gradients and small fields which require a high geometric precision. A high dosimetric and geometric precision can only be based on a detailed knowledge of the patient specific anatomy. Therefore, IMRT and SRT need to underlie multi-modality imaging studies. Both IMRT and SRT utilize photon beams and multiple field arrangements which increase the volumes of healthy tissue receiving low doses. Photons have a low selectivity along the beam direction implying that the sharp dose gradients are to be compromised. The increased low dose volume as well as the low selectivity of photon beams can be over-come by using proton or ions. Brachytherapy, a form of radiotherapy where encapsuled radioactive sources are placed directly in or in the vicinity of the tumor, is by definition conformal. Endovascular brachytherapy has become a promising new field in radiotherapy for the prevention of (re)stenosis after angioplasty. Although many clinical trials have been performed during the last years specific aspects related to endovascular brachytherapy have not been addressed clearly, such as the

  6. The precision of radiotherapy in Gliwice, Poland, estimated by in vivo dose measurements

    International Nuclear Information System (INIS)

    Orlef, A.; Lobodziec, W.; Maniakowski, Z.

    1995-01-01

    The aim of this work was to evaluate the precision of irradiation using gamma Co-60 Philips Unites and linear accelerators Neptun 10p and Saturne II+ which generate X-rays of 9MV and 23MV respectively. This work has been undertaken for the reason that the effect of radiotherapy of cancer is strongly dependent of the precision of the dose delivery to a patient. The in vivo dose measurements were performed using a p-type silicon diodes (EDE-5, EDP-20, EDP-30) connected to a DPD-510 electrometer (Scanditronix). The diodes were calibrated by comparison their response to a 0.6cm 3 ionization chamber (NE 2571) placed at the relevant depth in the phantom. The entrance and exit dose calibration factors have been determined for reference conditions (constant SSD, field, temperature, ...). For conditions different from reference one the correction factors have been evaluated. The 855 in vivo dose measurements of entrance dose were performed. The histograms of percentage differences between measured and planed entrance dose has been constructed and analyzed. The average values of such differences were: -1.3%, 4.0%, -0.9% for gamma Co-60, X 9MV, X 23MV, respectively. These values can be interpreted as systematic uncertainties. The standard deviations (SD) were found as: 3.1%, 4.1%, 3.5%. These parameters can be considered as a random uncertainties. The 546 cases of dose at the reference point for head and neck cancer have been evaluated taking into account the entrance and exit measured doses. The average difference between those values and planned one was 1.3% and SD = 5.1%. There were observed the changes of the dimensions of the irradiated tissue block during the radiotherapy. This had a significant influence on the differences between delivered (measured) and planed doses at reference point

  7. Changes in lateral dimensions of irradiated volume and their impact on the accuracy of dose delivery during radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Senkus-Konefka, Elzbieta; Naczk, Edmund; Borowska, Ilona; Badzio, Andrzej; Jassem, Jacek

    2006-01-01

    Background and purpose: To assess changes in lateral dimensions of irradiated volume during head and neck cancer radiotherapy and to determine their impact on the accuracy of dose delivery. Patients and methods: Lateral dimensions of irradiated volumes were measured in five predefined points prior to treatment and then bi-weekly. For each measurement, midline dose was calculated and verified using in vivo dosimetry. Early radiation reactions, patient weight changes and the need to modify radiotherapy accessories were also recorded. The study included 33 head and neck cancer patients irradiated using parallel opposed megavoltage fields. Results: Body mass changes during radiotherapy ranged from -18 to +4 kg (median -5). Lateral dimension changes >5 mm (range -37 to +16) occurred in 32 patients (97%). For axis measurements, the degree of lateral dimension changes were correlated with treatment field size (P=0.022) and degree of mucositis (P=0.017). Axis doses calculated for changed dimensions varied from those prescribed by -2.5 to +6% (median +2%). Differences larger than 5% were present in 4.8% of calculations. In 17 patients (52%), radiotherapy accessories had to be modified during treatment. The need to modify radiotherapy accessories correlated with larger treatment portals (P=0.004), more weight loss during treatment (P=0.01) and higher initial N stage (P=0.04). Conclusions: Changes of irradiated volume lateral dimensions during head and neck cancer radiotherapy may lead to considerable dose delivery inaccuracies. Watchful monitoring, corrections to calculated dose when changes observed are significant and radiotherapy accessories modification during the course of treatment are strongly recommended

  8. The role of radiotherapy in the management of extrahepatic bile duct cancer: an analysis of 145 consecutive patients treated with intraluminal and/or external beam radiotherapy

    International Nuclear Information System (INIS)

    Kamada, Tadashi; Saitou, Hiroya; Takamura, Akio; Nojima, Takayuki; Okushiba, Shun-Ichi

    1996-01-01

    Purpose: To determine the feasibility of high dose radiotherapy and to evaluate its role in the management of extrahepatic bile duct (EHBD) cancer. Methods and Materials: Between 1983 and 1991, 145 consecutive patients with EHBD cancer were treated by low dose rate intraluminal 192 Ir irradiation (ILRT) either alone or in combination with external beam radiotherapy (EBRT). Among the primarily irradiated, 77 patients unsuitable for surgical resection, 54 were enrolled in radical radiotherapy, and 23 received palliative radiotherapy. Fifty-nine received postoperative radiotherapy, and the remaining 9 preoperative radiotherapy. The mean radiation dose was 67.8 Gy, ranging from 10 to 135 Gy. Intraluminal 192 Ir irradiation was indicated in 103 patients, and 85 of them were combined with EBRT. Expandable metallic biliary endoprosthesis (EMBE) was used in 32 primarily irradiated patients (31 radical and 1 palliative radiotherapy) after the completion of radiotherapy. Results: The 1-, 3-, and 5-year actuarial survival rates for all 145 patients were 55%, 18%, and 10%, for the 54 patients treated by radical radiotherapy (mean 83.1 Gy), 56%, 13%, and 6% [median survival time (MST) 12.4 months], and for the 59 patients receiving postoperative radiotherapy (mean 61.6 Gy), 73%, 31%, and 18% (MST 21.5 months), respectively. Expandable metallic biliary endoprosthesis was useful for the early establishment of an internal bile passage in radically irradiated patients and MST of 14.9 months in these 31 patients was significantly longer than that of 9.3 months in the remaining 23 patients without EMBE placement (p < 0.05). Eighteen patients whose surgical margins were positive in the hepatic side bile duct(s) showed significantly better survival compared with 15 patients whose surgical margins were positive in the adjacent structure(s) (44% vs. 0% survival at 3 years, p < 0.001). No survival benefit was obtained in patients given palliative or preoperative radiotherapy

  9. Radiotherapy for bladder cancer and kidney cancer

    International Nuclear Information System (INIS)

    Ishikawa, Hitoshi; Tanaka, Keiichi; Iizumi, Takashi; Shimizu, Shosei; Okumura, Toshiyuki; Sakurai, Hideyuki; Kimura, Tomokazu; Nishiyama, Hiroyuki

    2017-01-01

    This paper explained the current state of radiotherapy for bladder cancer and kidney cancer, and discussed the role of radiotherapy in curative treatment and the future development. In the diagnosis and treatment of bladder cancer, it is important to judge the existence of pathological muscular layer invasion based on transurethral resection of bladder tumor (TUR-BT). In surgical results in Japan, the U.S., and Switzerland, 5-year survival rate is about 60 to 70%. Standard treatment for bladder cancer with muscle layer invasion had been surgery, and radiotherapy had been applied to the cases without resistance to surgery. Three combined therapy with TUR-BT and simultaneous chemoradiotherapy is the current standard bladder conserving therapy. The 5-year survival rate is approximately 60%, which is superior to the treatment with irradiation alone. Radiotherapy for kidney cancer is most often used as perioperative treatment for locally advanced cancer or as symptomatic treatment for metastatic lesions. However, due to recent improvement in radiotherapy technology, correspondence to respiratory movement and high dose administration associated with improvement in dose concentration have been realized, and stereotactic irradiation using a high single dose for inoperable disease cases or surgery refusal disease cases has come to be clinically applied. (A.O.)

  10. Radiotherapy Dosimetry Protocols For High Energy Photons And Electrons

    International Nuclear Information System (INIS)

    Thwaites, D.I.

    1999-01-01

    One vital requirement in radiotherapy is to ensure as closely as possible consistency in determination of dose between different centers and at different times, both within a given country and internationally, because the comparison and transfer of clinical experience and the evaluation of clinical trials is dependent on common statements of dose delivered. In addition at each loon] centre it is vital that the absorbed dose calibration of each beam is carried out to exacting and consistent standards, as this is the fundamental measurement upon which the quality of all treatments on that machine depend throughout its clinical lifetime. The systems in place to ensure consistency in dosimetry differ in the details from country to country, but all depend on the same basic considerations: - the use of ion chambers of similar design and similar construction materials, - traceable calibrations of these chambers to an accredited primary or secondary standard dosimetry laboratory (SSDL) in terms of some agreed relevant dosimetric quantity, - dose statements in terms of absorbed dose to a common material, water, - the application of an appropriate recommended national or international dosimetry protocol (or code of practice) which ensures commonality in the method of use of the calibrated ion chamber, the radiotherapy treatment beam calibration conditions and any data required to convert the ion chamber reading to absorbed dose to water, and - strict quality control on each step in this process

  11. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation

    Science.gov (United States)

    Hao, Yao; Altundal, Yucel; Moreau, Michele; Sajo, Erno; Kumar, Rajiv; Ngwa, Wilfred

    2015-09-01

    Nanoparticle-aided radiation therapy is emerging as a promising modality to enhance radiotherapy via the radiosensitizing action of high atomic number (Z) nanoparticles. However, the delivery of sufficiently potent concentrations of such nanoparticles to the tumor remain a challenge. This study investigates the dose enhancement to lung tumors due to high-Z nanoparticles (NPs) administered via inhalation during external beam radiotherapy. Here NPs investigated include: cisplatin nanoparticles (CNPs), carboplatin nanoparticles (CBNPs), and gold nanoparticles (GNPs). Using Monte Carlo-generated megavoltage energy spectra, a previously employed analytic method was used to estimate dose enhancement to lung tumors due to radiation-induced photoelectrons from the NPs administered via inhalation route (IR) in comparison to intravenous (IV) administration. Previous studies have indicated about 5% of FDA-approved cisplatin concentrations reach the lung via IV. Meanwhile recent experimental studies indicate that 3.5-14.6 times higher concentrations of NPs can reach the lung by IR compared to IV. Taking these into account, the dose enhancement factor (DEF) defined as the ratio of the radiotherapy dose with and without nanoparticles was calculated for a range of NPs concentrations and tumor sizes. The DEF for IR was then compared with that for IV. For IR with 3.5 times higher concentrations than IV, and 2 cm diameter tumor, clinically significant DEF values of up to 1.19, 1.26, and 1.51 were obtained for CNPs, CBNPs and GNPs. In comparison values of 1.06, 1.08, and 1.15 were obtained via IV administration. For IR with 14.6 times higher concentrations, even higher DEF values were obtained e.g. 1.81 for CNPs. Results also showed that the DEF increased with increasing field size or decreasing tumor volume, as expected. The results of this work indicate that IR administration of targeted high-Z CNPs/CBNPs/GNPs could enable clinically significant DEF to lung tumors compared to IV

  12. An intra-patient dose-escalation study of disodium pamidronate plus radiotherapy versus radiotherapy alone for the treatment of osteolytic metastases. Monitoring of recalcification using image-processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vassilis Kouloulias, E. [Dept. of Radiology, Aretaieion Univ. Hospital, Athens (Greece); Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece); John Kouvaris, R.; Antypas, C.; Mystakidou, K.; Moulopoulos, A.; Lambros Vlahos, J. [Dept. of Radiology, Aretaieion Univ. Hospital, Athens (Greece); Matsopoulos, G.; Nikolaos Uzunoglu, C. [Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece)

    2003-07-01

    Objective: To evaluate the clinical benefit and mainly to monitor quantitatively the recalcification of osteolytic lesions after radiotherapy with or without intravenous infusion of disodium pamidronate (DP) in different doses. Patients and Methods: 42 patients with solitary lytic metastasis in weight-bearing bones were studied. Primary endpoints were the mean value and energy of gray-level histogram in plain radiographs (MVGLH and EGLH) and relative electron density (RED) of CT scans in bone lesions. In eleven patients (group A) the DP dose was increased stepwise from 90 up to 180 mg (flat dose), while in other 15 patients (group B) a flat dose of 180 mg was administered intravenously in 2 h. In both groups, the first session of DP was given concurrently with local radiotherapy (30 Gy in ten fractions, 5 days a week). Another 16 patients (group C) underwent radiotherapy only. Results: Morbidity related to pamidronate was mild. Significant differences from the baseline (p < 0.05, Wilcoxon test) were recorded for MVGLH, EGLH and RED values, regarding all groups. Improvement was significantly higher in patients of group B versus A, while the results of pamidronate groups (A and B) were superior to group C, concerning the above indices (p < 0.05, Mann-Whitney test). Additionally, pamidronate groups had significantly lower skeletal morbidity than group C. Conclusion: The 2-h infusional flat dose of 180 mg every 4 weeks seems to be tolerable and superior to 90 mg regarding palliation and mainly recalcification of osteolytic lesions. Radiotherapy alone is effective but inferior to the combined treatment. Last but not least, the findings of MVGLH, EGLH and RED indicate an important increase in bone mass and bone formation, which was difficult to be identified visually by the experts. (orig.)

  13. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed?

    Energy Technology Data Exchange (ETDEWEB)

    Wondergem, Jan [International Atomic Energy Agency, Applied Radiation Biology and Radiotherapy Section, Division of Human Health, Department of Nuclear Sciences and Applications, Vienna (Austria); Boerma, Marjan [University of Arkansas for Medical Sciences, Division of Radiation Health, Department of Pharmaceutical Sciences, Little Rock, AR (United States); Kodama, Kazunori [Radiation Effects Research Foundation, Hiroshima (Japan); Stewart, Fiona A. [Netherlands Cancer Institute, Biological Stress Response (H3), Amsterdam (Netherlands); Trott, Klaus R.

    2013-11-15

    The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here. (orig.)

  14. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed?

    International Nuclear Information System (INIS)

    Wondergem, Jan; Boerma, Marjan; Kodama, Kazunori; Stewart, Fiona A.; Trott, Klaus R.

    2013-01-01

    The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here. (orig.)

  15. Results of different modes conformal radiotherapy in treatment of cervical cancer

    International Nuclear Information System (INIS)

    Baranovs'ka, L.M.; Yivankova, V.S.; Khrulenko, T.V.; Skomorokhova, T.V.; Gorelyina, G.L.

    2017-01-01

    Development of techniques for cytotoxic treatment applying different modes of conformal radiotherapy, brachytherapy and high-energy (high dose rate - HDR) is one of the promising areas of optimization and efficiency of conservative treatment of patients with regional forms of cervical cancer. At Radiation Oncology Department, National Cancer Institute, 89 patients with stage 2b-3b cervical cancer, aged 29 to 70, underwent examination and combined radiotherapy course. The patients were divided into 2 main groups (56 patients) depending on the mode of developed conformal radiation therapy, and a control group made up by 33 patients (classic, default conformal radiotherapy). Results. Along with external beam radiotherapy, the patients of Group 2 were provided with conformal radiotherapy carried out by means of the linear accelerator of electrons in the mode of enhanced multi fractionation of irradiation dose applied to the small pelvis area (tumor and lymph efflux channels) with the single tumor dose 1.3 Gy twice per day once 4-6 hours up to the total radiation dose of 45 Gy applied to the small pelvis lymph nodes. The patients of Group 1 and the ones of the control group underwent conformal radiotherapy in the mode of standard fractionation applied to the small pelvis area with the single tumor dose of 1.8 Gy up to the total radiation dose of 45 Gy. Conformal radiotherapy was carried out for the patients of Group 1 associated with chemoradiomodifiers (tegafur, cisplatin). At the stage 2 of combined radiotherapy course, all patients underwent HDR brachytherapy via Co60 source in the mode of the single tumor dose of 5 Gy at point A up to the total radiation dose of 35-40 Gy. Therefore, employing accelerated mode of multifractiation in conformal radiotherapy of patients with regional cervical cancer makes it possible to enhance canrcinocidal irradiation doses applied to a tumor, and an interval between radiotherapy fractions provides conditions for initiation of

  16. Imaging dose in breast radiotherapy: does breast size affect the dose to the organs at risk and the risk of secondary cancer to the contralateral breast?

    International Nuclear Information System (INIS)

    Batumalai, Vikneswary; Quinn, Alexandra; Jameson, Michael; Delaney, Geoff; Holloway, Lois

    2015-01-01

    Correct target positioning is crucial for accurate dose delivery in breast radiotherapy resulting in utilisation of daily imaging. However, the radiation dose from daily imaging is associated with increased probability of secondary induced cancer. The aim of this study was to quantify doses associated with three imaging modalities and investigate the correlation of dose and varying breast size in breast radiotherapy. Planning computed tomography (CT) data sets of 30 breast cancer patients were utilised to simulate the dose received by various organs from a megavoltage computed tomography (MV-CT), megavoltage electronic portal image (MV-EPI) and megavoltage cone-beam computed tomography (MV-CBCT). The mean dose to organs adjacent to the target volume (contralateral breast, lungs, spinal cord and heart) were analysed. Pearson correlation analysis was performed to determine the relationship between imaging dose and primary breast volume and the lifetime attributable risk (LAR) of induced secondary cancer was calculated for the contralateral breast. The highest contralateral breast mean dose was from the MV-CBCT (1.79 Gy), followed by MV-EPI (0.22 Gy) and MV-CT (0.11 Gy). A similar trend was found for all organs at risk (OAR) analysed. The primary breast volume inversely correlated with the contralateral breast dose for all three imaging modalities. As the primary breast volume increases, the likelihood of a patient developing a radiation-induced secondary cancer to the contralateral breast decreases. MV-CBCT showed a stronger relationship between breast size and LAR of developing a radiation-induced contralateral breast cancer in comparison with the MV-CT and MV-EPI. For breast patients, imaging dose to OAR depends on imaging modality and treated breast size. When considering the use of imaging during breast radiotherapy, the patient's breast size and contralateral breast dose should be taken into account

  17. Difference in temporal lobe dose between two radiotherapy techniques in the treatment of NPC with anterior nasal involvement

    International Nuclear Information System (INIS)

    Wu, V.W.C.; Luk, J.H.Y.; Wong, S.F.T.; Lam, E.C.H.; Fung, M.C.Y.; Tong, S.M.; Ku, I.K.M.

    1997-01-01

    Nasopharyngeal carcinoma with anterior extension are treated with special radiotherapy techniques. The purpose of this study is to investigate the difference of temporal lobe dose between two radiotherapy techniques (A and B) which are commonly used in the treatment of such condition in Hong Kong. The study is carried out by performing radiation treatments to a humanoid phantom under simulated conditions of the two techniques. The dose measurement is done by thermoluminescent dosimeters (TLD) which are placed inside the phantom. Both techniques employ a '3-field' arrangement: a heavy-weighted anterior facial fields with two lateral opposing facial fields. The main difference lies in the anterior facial field in which technique A uses electron beam throughout while technique B uses a mixture of photon and electron beams. The results demonstrates that technique A delivers higher dose to temporal lobe than technique B. In a course of radical external beam radiotherapy (66 Gy), the mean dose to inferior temporal lobe are 59.29 Gy in technique A and 34.06 Gy in technique B respectively (p < 0.0001). Furthermore, it is found that the temporal lobe dose difference between the two techniques is mainly due to their phase I treatment. (p < 0.0001 for phase I and p = 0.078 for phase II). (authors)

  18. submitter Dose prescription in carbon ion radiotherapy: How to compare two different RBE-weighted dose calculation systems

    CERN Document Server

    Molinelli, Silvia; Mairani, Andrea; Matsufuji, Naruhiro; Kanematsu, Nobuyuki; Inaniwa, Taku; Mirandola, Alfredo; Russo, Stefania; Mastella, Edoardo; Hasegawa, Azusa; Tsuji, Hiroshi; Yamada, Shigeru; Vischioni, Barbara; Vitolo, Viviana; Ferrari, Alfredo; Ciocca, Mario; Kamada, Tadashi; Tsujii, Hirohiko; Orecchia, Roberto; Fossati, Piero

    2016-01-01

    Background and purpose: In carbon ion radiotherapy (CIRT), the use of different relative biological effectiveness (RBE) models in the RBE-weighted dose $(D_{RBE})$ calculation can lead to deviations in the physical dose $(D_{phy})$ delivered to the patient. Our aim is to reduce target $D_{phy}$ deviations by converting prescription dose values. Material and methods: Planning data of patients treated at the National Institute of Radiological Sciences (NIRS) were collected, with prescribed doses per fraction ranging from 3.6 Gy (RBE) to 4.6 Gy (RBE), according to the Japanese semi-empirical model. The $D_{phy}$ was Monte Carlo (MC) re-calculated simulating the NIRS beamline. The local effect model (LEM)_I was then applied to estimate $D_{RBE}$. Target median $D_{RBE}$ ratios between MC + LEM_I and NIRS plans determined correction factors for the conversion of prescription doses. Plans were re-optimized in a LEM_I-based commercial system, prescribing the NIRS uncorrected and corrected $D_{RBE}$. Results: The MC ...

  19. Comparison between steel and lead shieldings for radiotherapy rooms regarding neutron doses to patients

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.G.; Rebello, W.F.; Andrade, E.R.; Medeiros, M.P.C.; Mendes, R.M.S.; Braga, K.L.; Gomes, R.G., E-mail: eng.cavaliere@gmail.com, E-mail: ggrprojetos@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, A.X., E-mail: ademir@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The NCRP Report No. 151, Structural Shielding Design and Evaluation for Megavoltage X- and Gamma-Ray Radiotherapy Facilities, considers, in shielding calculations for radiotherapy rooms, the use of lead and/or steel to be applied on bunker walls. The NCRP Report calculations were performed foreseeing a better protection of people outside the radiotherapy room. However, contribution of lead and steel to patient dose should be taken into account for radioprotection purposes. This work presents calculations performed by MCNPX code in analyzing the Ambient Dose Equivalent due to neutron, H *(10){sub n}, within a radiotherapy room, in the patients area, considering the use of additional shielding of 1 TVL of lead or 1 TVL of steel, positioned at the inner faces of walls and ceiling of a bunker. The head of the linear accelerator Varian 2100/2300 C/D was modeled working at 18MeV, with 5 x 5 cm{sup 2}, 10 x 10 cm{sup 2}, 20 x 20 cm{sup 2}, 30 x 30 cm{sup 2} and 40 x 40 cm{sup 2} openings for jaws and MLC and operating in eight gantry's angles. This study shows that the use of lead generates an average value of H *(10){sub n} at patients area, 8.02% higher than the expected when using steel. Further studies should be performed based on experimental data for comparison with those from MCNPX simulation. (author)

  20. Measurements and calculations of doses from radioactive particles

    International Nuclear Information System (INIS)

    Leroux, J.B.; Herbaut, Y.

    1996-01-01

    Three Mile Island (TMI) and Tchernobyl reactor accidents have revealed the importance of the skin exposure to beta radiation produced by small high activity sources, named 'hot particles'. In nuclear power reactors, they may arise as small fragments of irradiated fuel or material which have been neutron activated by passing through the reactor co. In recent years, skin exposure to hot particles has been subject to different limitation criteria, formulated by AIEA, ICRP, NCRP working groups. The present work is the contribution of CEA Grenoble to a contract of the Commission of the European communities in cooperation with several laboratories: University of Birmingham, University of Toulouse and University of Montpellier with the main goal to check experiments and calculations of tissue dose from 60 Co radioactive particles. This report is split up into two parts: hot particle dosimetry close to a 60 Co spherical sample with an approximately 200 μm diameter, using a PTW extrapolation chamber model 233991; dose calculations from two codes: the Varskin Mod 2 computer code and the Hot 25 S2 Monte Carlo algorithm. The two codes lead to similar results; nevertheless there is a large discrepancy (of about 2) between calculations and PTW measurements which are higher by a factor of 1.9. At a 70 μm skin depth and for 1 cm 2 irradiated area, the total (β + γ) tissue dose rate delivered by a spherical ( φ = 200 μm) 60 Co source, in contact with skin, is of the order of 6.1 10 -2 nGy s -1 Bq -1 . (author)

  1. Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients

    International Nuclear Information System (INIS)

    Sandilos, Panagiotis; Baras, Panagiotis; Georgiou, Evangelos; Dardoufas, Konstantinos; Karaiskos, Pantelis; Papagiannis, Panagiotis; Paschalis, Theodoros; Tatsis, Elias; Torrens, Michael; Vlahos, Lampros

    2006-01-01

    Polymer gels constitute water equivalent integrating detectors, which, combined with magnetic resonance imaging (MRI), can provide accurate three dimensional (3D) dose distributions in contemporary radiotherapy applications where the small field dimensions and steep dose gradients induce limitations to conventional dosimeters. One of the main obstacles for adapting the method for routine use in the clinical setting is the cost effectiveness of the MRI readout method. Currently, optimized Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo imaging pulse sequences are commonly used which however result in long imaging times. This work evaluates the efficiency of 3D, dual-echo, k-space segmented turbo spin echo (TSE) scanning sequences for accurate dosimetry with sub-millimetre spatial resolution in strenuous radiation therapy applications. PABIG polymer gel dosimeters were irradiated with an 192 Ir High Dose Rate brachytherapy source, the 4 mm and 8 mm collimator helmets of a gamma knife unit and a custom made x-knife collimator of 1 cm diameter. Profile and dose distribution measurements using TSE are benchmarked against corresponding findings obtained by the commonly used, but time consuming, CPMG sequence as well as treatment planning calculations, Monte Carlo (MC) simulations and film measurements. The implementation of a high Turbo factor was found to provide comparable accuracy, allowing a 64-fold MRI scan acceleration compared to conventional multi-echo sequences. The availability of TSE sequences in typical MRI installations greatly facilitates the introduction of polymer gel dosimetry in the clinical environment as a practicable tool for the determination of full 3D dose distributions in contemporary radiotherapy applications

  2. Fast, three-dimensional, MR Imaging for polymer gel dosimetric applications involving high dose and steep dose gradients

    Energy Technology Data Exchange (ETDEWEB)

    Sandilos, Panagiotis [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Baras, Panagiotis [Philips Hellas Medical Systems, 44 Kifissias Ave., Maroussi 151 25, Athens (Greece); Georgiou, Evangelos [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece); Dardoufas, Konstantinos [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece): Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Karaiskos, Pantelis [Medical Physics Department, University of Athens, 75 Mikras Asias, 115 27 Athens (Greece): Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece)]. E-mail: p.karaiskos@hygeia.gr; Papagiannis, Panagiotis [Physics Department, Nuclear and Particle Physics Section, University of Athens, Panepistimioupolis, Ilisia, 157 71 Athens (Greece); Paschalis, Theodoros [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Tatsis, Elias [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece); Torrens, Michael [Hygeia Hospital, Kiffisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens (Greece); Vlahos, Lampros [Department of Radiology, Medical School, University of Athens, Areteion Hospital, 76 Vas. Sofias Ave., 115 28 Athens (Greece)

    2006-12-20

    Polymer gels constitute water equivalent integrating detectors, which, combined with magnetic resonance imaging (MRI), can provide accurate three dimensional (3D) dose distributions in contemporary radiotherapy applications where the small field dimensions and steep dose gradients induce limitations to conventional dosimeters. One of the main obstacles for adapting the method for routine use in the clinical setting is the cost effectiveness of the MRI readout method. Currently, optimized Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo imaging pulse sequences are commonly used which however result in long imaging times. This work evaluates the efficiency of 3D, dual-echo, k-space segmented turbo spin echo (TSE) scanning sequences for accurate dosimetry with sub-millimetre spatial resolution in strenuous radiation therapy applications. PABIG polymer gel dosimeters were irradiated with an {sup 192}Ir High Dose Rate brachytherapy source, the 4 mm and 8 mm collimator helmets of a gamma knife unit and a custom made x-knife collimator of 1 cm diameter. Profile and dose distribution measurements using TSE are benchmarked against corresponding findings obtained by the commonly used, but time consuming, CPMG sequence as well as treatment planning calculations, Monte Carlo (MC) simulations and film measurements. The implementation of a high Turbo factor was found to provide comparable accuracy, allowing a 64-fold MRI scan acceleration compared to conventional multi-echo sequences. The availability of TSE sequences in typical MRI installations greatly facilitates the introduction of polymer gel dosimetry in the clinical environment as a practicable tool for the determination of full 3D dose distributions in contemporary radiotherapy applications.

  3. Dose delivery verification and accuracy assessment of stereotaxy in stereotactic radiotherapy and radiosurgery

    International Nuclear Information System (INIS)

    Pelagade, S.M.; Bopche, T.T.; Namitha, K.; Munshi, M.; Bhola, S.; Sharma, H.; Patel, B.K.; Vyas, R.K.

    2008-01-01

    The outcome of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) in both benign and malignant tumors within the cranial region highly depends on precision in dosimetry, dose delivery and the accuracy assessment of stereotaxy associated with the unit. The frames BRW (Brown-Roberts-Wells) and GTC (Gill- Thomas-Cosman) can facilitate accurate patient positioning as well as precise targeting of tumours. The implementation of this technique may result in a significant benefit as compared to conventional therapy. As the target localization accuracy is improved, the demand for treatment planning accuracy of a TPS is also increased. The accuracy of stereotactic X Knife treatment planning system has two components to verify: (i) the dose delivery verification and the accuracy assessment of stereotaxy; (ii) to ensure that the Cartesian coordinate system associated is well established within the TPS for accurate determination of a target position. Both dose delivery verification and target positional accuracy affect dose delivery accuracy to a defined target. Hence there is a need to verify these two components in quality assurance protocol. The main intention of this paper is to present our dose delivery verification procedure using cylindrical wax phantom and accuracy assessment (target position) of stereotaxy using Geometric Phantom on Elekta's Precise linear accelerator for stereotactic installation

  4. Cardiac Side-effects From Breast Cancer Radiotherapy.

    Science.gov (United States)

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  5. Changes of the liver volume and the Child-Pugh score after high dose hypofractionated radiotherapy in patients with small hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kim, Young Il; Park, Hee Chul; Lim, Do Hoon; Park, Hyo Jung; Park, Su Yeon; Kim, Jin Sung; Han, Young Yih; Kang, Sang Won; Paik, Seung Woon

    2012-01-01

    To investigate the safety of high dose hypofractionated radiotherapy (RT) in patients with small hepatocellular carcinoma (HCC) in terms of liver volumetric changes and clinical liver function. We retrospectively reviewed 16 patients with small HCC who were treated with high dose hypofractionated RT between 2006 and 2009. The serial changes of the liver volumetric parameter were analyzed from pre-RT and follow-up (FU) computed tomography (CT) scans. We estimated linear time trends of whole liver volume using a linear mixed model. The serial changes of the Child-Pugh (CP) scores were also analyzed in relation to the volumetric changes. Mean pre-RT volume of entire liver was 1,192.2 mL (range, 502.6 to 1,310.2 mL) and mean clinical target volume was 14.7 mL (range, 1.56 to 70.07 mL). Fourteen (87.5%) patients had 4 FU CT sets and 2 (12.5%) patients had 3 FU CT sets. Mean interval between FU CT acquisition was 2.5 months. After considering age, gender and the irradiated liver volume as a fixed effects, the mixed model analysis confirmed that the change in liver volume is not significant throughout the time course of FU periods. Majority of patients had a CP score change less than 2 except in 1 patient who had CP score change more than 3. The high dose hypofractionated RT for small HCC is relatively safe and feasible in terms of liver volumetric changes and clinical liver function.

  6. Dose deviations caused by positional inaccuracy of multileaf collimator in intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Wang, H.C.; Chui, C.S.; Tsai, H.Y.; Chen, C.H.; Tsai, L.F.

    2008-01-01

    Introduction: Multileaf collimator (MLC) is currently a widely used system in the delivery of intensity modulated radiotherapy (IMRT). The accuracy of the multileaf position plays an important role in the final outcome of the radiation treatment. According to ICRU recommendation, a dose inaccuracy over than 5% of prescribed dose affects treatment results. In order to quantify the influence of leaf positional errors on dose distribution, we set different MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases. Two-dimensional dose distributions of radiotherapy plans with different leaf displacements generated with a commercial treatment planning system. And verification films were used to measure two-dimensional dose distributions. Then a computerized dose comparison system will be introduced to analyze the dose deviations. Materials/methods: We assumed MLC positional inaccuracy from 0 to 6 mm for step-and-shoot IMRT in clinical cases by simulating the different leaf displacements with a commercial treatment planning system. Then we transferred the treatment plans with different leaf offset that may be happened in clinical situation to linear accelerator. Verification films (Kodat EDR2) were well positioned within solid water phantoms to be irradiated by the simulated plans. The films were scanned to display two-dimensional dose distributions. Finally, we compared with the dose distributions with MLC positional inaccuracy by a two-dimensional dose comparison software to analyze the deviations in Gamma indexes and normalized agreement test (NAT) values. Results: In general, the data show that larger leaf positional error induces larger dose error. More fields used for treatment generate lesser errors. Besides, leaf position relative to a field influences the degree of dose error. A leaf lying close to the border of a field leads to a more significant dose deviation than a leaf in the center. Algorithms for intensity modulation also affect

  7. Adjuvant radiotherapy and risk of contralateral breast cancer

    International Nuclear Information System (INIS)

    Storm, H.H.; Blettner, M.; Pedersen, J.

    1992-01-01

    To evaluate the relationship between high-dose radiotherapy and secondary breast cancer, a nested and matched case-control study in the cohort of breast cancer patients in Denmark was conducted. Radiation dose to the contralateral breast was reconstructed by medical physicists for each of the 529 cases and 529 controls, 82.4% of each group was treated with radiation. The average breast dose was 2.51 Gy, and a 20% increased risk was expected for this population at average age 51 years. There was no evidence that radiotherapy increased the overall risk of second breast cancer (RR=1.04), although the possibility of a RR as high as 1.46 could not be excluded. There was little indication that the risk varied over categories of radiation dose, time since exposure, or age at exposure. Thus, data provides additional evidence that there is little if any risk of radiation induced breast cancer associated with exposure of breast tissue to low-dose radiation (e.g., from mammographic X-rays or adjuvant radiotherapy) in later life. (author). 9 refs., 1 fig., 1 tab

  8. Application of a Novel Dose-Uncertainty Model for Dose-Uncertainty Analysis in Prostate Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Jin Hosang; Palta, Jatinder R.; Kim, You-Hyun; Kim, Siyong

    2010-01-01

    Purpose: To analyze dose uncertainty using a previously published dose-uncertainty model, and to assess potential dosimetric risks existing in prostate intensity-modulated radiotherapy (IMRT). Methods and Materials: The dose-uncertainty model provides a three-dimensional (3D) dose-uncertainty distribution in a given confidence level. For 8 retrospectively selected patients, dose-uncertainty maps were constructed using the dose-uncertainty model at the 95% CL. In addition to uncertainties inherent to the radiation treatment planning system, four scenarios of spatial errors were considered: machine only (S1), S1 + intrafraction, S1 + interfraction, and S1 + both intrafraction and interfraction errors. To evaluate the potential risks of the IMRT plans, three dose-uncertainty-based plan evaluation tools were introduced: confidence-weighted dose-volume histogram, confidence-weighted dose distribution, and dose-uncertainty-volume histogram. Results: Dose uncertainty caused by interfraction setup error was more significant than that of intrafraction motion error. The maximum dose uncertainty (95% confidence) of the clinical target volume (CTV) was smaller than 5% of the prescribed dose in all but two cases (13.9% and 10.2%). The dose uncertainty for 95% of the CTV volume ranged from 1.3% to 2.9% of the prescribed dose. Conclusions: The dose uncertainty in prostate IMRT could be evaluated using the dose-uncertainty model. Prostate IMRT plans satisfying the same plan objectives could generate a significantly different dose uncertainty because a complex interplay of many uncertainty sources. The uncertainty-based plan evaluation contributes to generating reliable and error-resistant treatment plans.

  9. Development of a computational model for the calculation of neutron dose equivalent in laminated primary barriers of radiotherapy rooms

    International Nuclear Information System (INIS)

    Rezende, Gabriel Fonseca da Silva

    2015-01-01

    Many radiotherapy centers acquire 15 and 18 MV linear accelerators to perform more effective treatments for deep tumors. However, the acquisition of these equipment must be accompanied by an additional care in shielding planning of the rooms that will house them. In cases where space is restricted, it is common to find primary barriers made of concrete and metal. The drawback of this type of barrier is the photoneutron emission when high energy photons (e.g. 15 and 18 MV spectra) interact with the metallic material of the barrier. The emission of these particles constitutes a problem of radiation protection inside and outside of radiotherapy rooms, which should be properly assessed. A recent work has shown that the current model underestimate the dose of neutrons outside the treatment rooms. In this work, a computational model for the aforementioned problem was created from Monte Carlo Simulations and Artificial Intelligence. The developed model was composed by three neural networks, each being formed of a pair of material and spectrum: Pb18, Pb15 and Fe18. In a direct comparison with the McGinley method, the Pb18 network exhibited the best responses for approximately 78% of the cases tested; the Pb15 network showed better results for 100% of the tested cases, while the Fe18 network produced better answers to 94% of the tested cases. Thus, the computational model composed by the three networks has shown more consistent results than McGinley method. (author)

  10. Modelling carcinogenesis after radiotherapy using Poisson statistics: implications for IMRT, protons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bleddyn [Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ (United Kingdom)], E-mail: Bleddyn.Jones@rob.ox.ac.uk

    2009-06-01

    relative changes in carcinogenesis that incorporate fractionation and relative biological effects (RBE). This alternative modelling approach allows absolute and relative risk estimations per cell and can be extended to tissues. The classical turnover point in carcinogenesis occurring after a single exposure is a feature of the model; also, the dose-response relationship becomes pseudo-linear with extended fractionation and when heterogeneity of the radiosensitivity parameters is introduced; there is also an inverse relationship between dose per fraction and cancer induction. In principle, this new approach might influence the conduct of proton and ion beam therapy, particularly beam placements and fractionation policies. The theoretical implications for future radiotherapy are considerable, but these predictions should be subjected to cellular and tissue experiments that simulate these forms of treatment, including any secondary neutron production in some cases depending on the beam delivery technique, e.g. in tissue equivalent humanoid phantoms using cell transformation techniques. Since the UK has no working high energy particle beam facility over 100 MeV, British scientists would require use of particle beam facilities in Europe, USA or Japan to perform experiments.

  11. Dose-effect relationships for individual pelvic floor muscles and anorectal complaints after prostate radiotherapy.

    NARCIS (Netherlands)

    Smeenk, R.J.; Hoffmann, A.L.; Hopman, W.P.M.; Lin, E.N.J.T. van; Kaanders, J.H.A.M.

    2012-01-01

    PURPOSE: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). METHODS AND MATERIALS: In 48 patients treated for localized prostate

  12. The Early Result of Whole Pelvic Radiotherapy and Stereotactic Body Radiotherapy Boost for High Risk Localized Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Yu-Wei eLin

    2014-10-01

    Full Text Available PurposeThe rationale for hypofractionated radiotherapy in the treatment of prostate cancer is based on the modern understanding of radiobiology and advances in stereotactic body radiotherapy (SBRT techniques. Whole-pelvis irradiation combined with SBRT boost for high-risk prostate cancer might escalate biologically effective dose without increasing toxicity. Here, we report our 4-year results of SBRT boost for high-risk localized prostate cancer.Methods and MaterialsFrom October 2009 to August 2012, 41 patients of newly diagnosed, high-risk or very high-risk (NCCN definition localized prostate cancer patients were treated with whole-pelvis irradiation and SBRT boost. The whole pelvis dose was 45Gy (25 fractions of 1.8Gy. The SBRT boost dose was 21 Gy (three fractions of 7 Gy. Ninety percent of these patients received hormone therapy. The toxicities of gastrointestinal (GI and genitourinary (GU tracts were scored by Common Toxicity Criteria Adverse Effect (CTCAE v3.0. Biochemical failure was defined by Phoenix definition.ResultsMedian follow-up was 42 months. Mean PSA before treatment was 44.18 ng/ml. Mean PSA level at 3, 6, 12, 18, and 24 months was 0.94, 0.44, 0.13, 0.12, and 0.05 ng/ml, respectively. The estimated 4-year biochemical failure-free survival was 91.9%. Three biochemical failures were observed. GI and GU tract toxicities were minimal. No grade 3 acute GU or GI toxicity was noted. During radiation therapy, 27% of the patient had grade 2 acute GU toxicity and 12% had grade 2 acute GI toxicity. At 3 months, most toxicity scores had returned to baseline. At the last follow up, there was no grade 3 late GU or GI toxicity.ConclusionsWhole-pelvis irradiation combined with SBRT boost for high-risk localized prostate cancer is feasible with minimal toxicity and encouraging biochemical failure-free survival. Continued accrual and follow-up would be necessary to confirm the biochemical control rate and the toxicity profiles.

  13. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  14. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  15. Prediction of the location and size of the stomach using patient characteristics for retrospective radiation dose estimation following radiotherapy

    Science.gov (United States)

    Lamart, Stephanie; Imran, Rebecca; Simon, Steven L.; Doi, Kazutaka; Morton, Lindsay M.; Curtis, Rochelle E.; Lee, Choonik; Drozdovitch, Vladimir; Maass-Moreno, Roberto; Chen, Clara C.; Whatley, Millie; Miller, Donald L.; Pacak, Karel; Lee, Choonsik

    2013-12-01

    Following cancer radiotherapy, reconstruction of doses to organs, other than the target organ, is of interest for retrospective health risk studies. Reliable estimation of doses to organs that may be partially within or fully outside the treatment field requires reliable knowledge of the location and size of the organs, e.g., the stomach, which is at risk from abdominal irradiation. The stomach location and size are known to be highly variable between individuals, but have been little studied. Moreover, for treatments conducted years ago, medical images of patients are usually not available in medical records to locate the stomach. In light of the poor information available to locate the stomach in historical dose reconstructions, the purpose of this work was to investigate the variability of stomach location and size among adult male patients and to develop prediction models for the stomach location and size using predictor variables generally available in medical records of radiotherapy patients treated in the past. To collect data on stomach size and position, we segmented the contours of the stomach and of the skeleton on contemporary computed tomography (CT) images for 30 male patients in supine position. The location and size of the stomach was found to depend on body mass index (BMI), ponderal index (PI), and age. For example, the anteroposterior dimension of the stomach was found to increase with increasing BMI (≈0.25 cm kg-1 m2) whereas its craniocaudal dimension decreased with increasing PI (≈-3.3 cm kg-1 m3) and its transverse dimension increased with increasing PI (≈2.5 cm kg-1 m3). Using the prediction models, we generated three-dimensional computational stomach models from a deformable hybrid phantom for three patients of different BMI. Based on a typical radiotherapy treatment, we simulated radiotherapy treatments on the predicted stomach models and on the CT images of the corresponding patients. Those dose calculations demonstrated good

  16. Radiotherapy and high-dose chemotherapy in advanced Ewing's tumors

    International Nuclear Information System (INIS)

    Pape, H.; Glag, M.; Gripp, S.; Wittkamp, M.; Schmitt, G.; Laws, H.J.; Kaik, B. van; Goebel, U.; Burdach, S.; Juergens, H.

    1999-01-01

    Background: Ewing's tumors are sensitive to radio- and chemotherapy. Patients with multifocal disease suffer a poor prognosis. Patients presenting primary bone marrow involvement or bone metastases at diagnosis herald a 3-year disease-free survival below 15%. The European Intergroup Cooperative Ewing's Sarcoma Study (EICESS) has established the following indications for high-dose therapy in advanced Ewing's tumors: Patients with primary multifocal bone disease, patients with early ( [de

  17. Radiation dose to laterally transposed ovaries during external beam radiotherapy for cervical cancer

    International Nuclear Information System (INIS)

    Mazonakis, Michael; Damilakis, John; Varveris, Haris; Gourtsoyiannis, Nicholas

    2006-01-01

    The purpose of this study was to estimate the radiation dose to laterally transposed ovaries from external beam radiotherapy for cervical cancer. Dose measurements were performed in a modified humanoid phantom using a 6 MV photon beam. The dependence of the ovarian dose upon the field size, the distance from the primary irradiation field and the presence of wedges or gonadal shielding was determined. For a tumor dose of 45 Gy, ovarian dose was 0.88-8.51 Gy depending on the field size employed and the location of the transposed ovary in respect to the treatment field. Positioning of 7 cm thick shielding reduced the dose to ovary by less than 19%. The use of wedges increased the ovarian dose by a factor up to 1.5. Accurate radiographic localization of the ovaries allows the use of the presented dosimetric results to obtain a reasonable prediction of the ovarian dose

  18. Quality assurance in radiotherapy

    International Nuclear Information System (INIS)

    2003-03-01

    Good radiotherapy results and safety of treatment require the radiation to be optimally applied to a specified target area and the correct dose. According to international recommendations, the average uncertainty in therapeutic dose should not exceed 5%. The need for high precision in therapeutic dose requires quality assurance covering the entire radiotherapy process. Besides the physical and technical characteristics of the therapy equipment, quality assurance must include all radiotherapy equipment and procedures that are significant for the correct magnitude and precision of application of the therapeutic dose. The duties and responsibilities pertaining to various stages of treatment must also be precisely defined. These requirements may be best implemented through a quality system. The general requirements for supervision and quality assurance of medical radiation apparatus are prescribed in section 40 of the Radiation Act (592/1991, amendment 1142/1998) and in sections 18 and 32 of the Decree of the Ministry of Social Affairs and Health on the medical use of radiation (423/2000). Guide ST 2.2 imposes requirements on structural radiation shielding of radiotherapy equipment and the premises in which it is used, and on warning and safety arrangements. Guide ST 1.1 sets out the general safety principles for radiation practices and regulatory control procedure for the use of radiation. Guide ST 1.6 provides general requirements for operational measures in the use of radiation. This Guide sets out the duties of responsible parties (the party running a radiation practice) in respect of arranging and maintaining radiotherapy quality assurance. The principles set out in this Guide and Guide ST 6.3 may be applied to radionuclide therapy

  19. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability

    International Nuclear Information System (INIS)

    Booth, J.T.; Zavgorodni, S.F.; Royal Adelaide Hospital, SA

    2001-01-01

    Uncertainty in the precise quantity of radiation dose delivered to tumours in external beam radiotherapy is present due to many factors, and can result in either spatially uniform (Gaussian) or spatially non-uniform dose errors. These dose errors are incorporated into the calculation of tumour control probability (TCP) and produce a distribution of possible TCP values over a population. We also study the effect of inter-patient cell sensitivity heterogeneity on the population distribution of patient TCPs. This study aims to investigate the relative importance of these three uncertainties (spatially uniform dose uncertainty, spatially non-uniform dose uncertainty, and inter-patient cell sensitivity heterogeneity) on the delivered dose and TCP distribution following a typical course of fractionated external beam radiotherapy. The dose distributions used for patient treatments are modelled in one dimension. Geometric positioning uncertainties during and before treatment are considered as shifts of a pre-calculated dose distribution. Following the simulation of a population of patients, distributions of dose across the patient population are used to calculate mean treatment dose, standard deviation in mean treatment dose, mean TCP, standard deviation in TCP, and TCP mode. These parameters are calculated with each of the three uncertainties included separately. The calculations show that the dose errors in the tumour volume are dominated by the spatially uniform component of dose uncertainty. This could be related to machine specific parameters, such as linear accelerator calibration. TCP calculation is affected dramatically by inter-patient variation in the cell sensitivity and to a lesser extent by the spatially uniform dose errors. The positioning errors with the 1.5 cm margins used cause dose uncertainty outside the tumour volume and have a small effect on mean treatment dose (in the tumour volume) and tumour control. Copyright (2001) Australasian College of

  20. The radiochromic dye film dose meter as a possible test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.; Jensen, M.; Katz, R.

    1980-09-01

    The response characteristic of the thin-film radiometric dye cyanide plastic dose meter to ionizing radiation of electrons and heavy charged particles is investigated as a possible test of the particle track theory worked out by Robert Katz and coworkers. Dose response curves for low-LET radiation have been investigated and are used for a quality estimation of the response for protons and oxygen ions at 16 and 4 MeV/amu, respectively. A bleaching effect on the colouration at high doses intimates that the target cannot be interpreted lieerally, but it might still be possinle to transfer the function of the macroscopic dose response to a theoretical dose response curve in a microscopic scale for a single ion. From this relation the macroscopic dose response curve can be determined qhen the film is irradiated with heavy ions. It will be shown theoretically that for protons there is no saturation in the track core, whereas calculations for oxygen ions show a heavy saturation in the track core, which means that a part of the ions loose their energy ineffectively. We can conclude that itis possible qualitatively to predict the dose response curve for high-LET particles by means of the dose response curve for low-LET radiation. (author)

  1. Mean esophageal radiation dose is predictive of the grade of acute esophagitis in lung cancer patients treated with concurrent radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Ozgen, A.; Hayran, M.; Kahraman, F.

    2012-01-01

    The intention of this research was to define the predictive factors for acute esophagitis (AE) in lung cancer patients treated with concurrent chemotherapy and three-dimensional conformal radiotherapy. The data for 72 lung cancer patients treated with concurrent chemoradiotherapy between 2008 and 2010 were prospectively evaluated. Mean lung dose, mean dose of esophagus, volume of esophagus irradiated and percentage of esophagus volume treated were analysed according to esophagitis grades. The mean esophageal dose was associated with an increased risk of esophageal toxicity (Kruskal-Wallis test, P<0.001). However, the mean lung dose and the volume of esophagus irradiated were not associated with an increased risk of esophageal toxicity (Kruskal-Wallis test, P=0.50 and P=0.41, respectively). The mean radiation dose received by the esophagus was found to be highly correlated with the duration of Grade 2 esophagitis (Spearman test, r=0.82, P<0.001). The mean dose of esophagus ≥28 Gy showed statistical significance with respect to AE Grade 2 or worse (receiver operating characteristic curve analysis, 95% confidence interval (CI), 0.929-1.014). In conclusion, the mean esophageal dose was significantly associated with a risk of esophageal toxicity in patients with lung cancer treated with concurrent radiotherapy and chemotherapy. (author)

  2. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  3. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  4. Radiotherapy for solitary plasmacytoma and multiple myeloma

    International Nuclear Information System (INIS)

    Schmaus, M.C.; Neuhof, D.

    2014-01-01

    Solitary plasmacytoma and multiple myeloma require a differentiated radiotherapy. The irradiation for plasmacytoma with an adequate total dose (medullary 40-50 Gy or extramedullary 50-60 Gy) leads to a high degree of local control with a low rate of side effects. In cases of multiple myeloma radiotherapy will achieve effective palliation, both in terms of recalcification as well as reduction of neurological symptoms and analgesia. In terms of analgesia the rule is the higher the single dose fraction the faster the reduction of pain. As part of a conditioning treatment prior to stem cell transplantation radiotherapy contributes to the establishment of a graft versus myeloma effect (GVM). (orig.) [de

  5. Summary report on first research coordination meeting on heavy charged-particle interaction data for radiotherapy

    International Nuclear Information System (INIS)

    Palmans, H.; Noy, R.C.

    2008-04-01

    A summary is given of the First Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. A programme to compile and evaluate charged-particle nuclear data for therapeutic applications was proposed. Detailed coordinated research proposals were also agreed. Technical discussions and the resulting work plan of the Coordinated Research Project are summarized, along with actions and deadlines. (author)

  6. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    Castro, J.R.

    1981-01-01

    The clinical radiotherapy trial has accured 243 patients irradiated with particles and 13 patients irradiated as controls in randomized studies. Of the 243 particle patients, 194 have been treated with helium ions, either solely or in combination with photon irradiation, and 49 have received all or part of their irradiation with one of the heavier particles, either carbon, neon, or argon ions. The project thus can be divided into two general phases: (1) evaluation of improved dose distribution without significant biologic advantage by use of helium ion irradiation; and (2) evaluation of improved dose distribution and enhanced biologic effect by irradiation with heavy charged particles such as carbon, neon, and argon ions

  7. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  8. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    Energy Technology Data Exchange (ETDEWEB)

    Oborn, B. M., E-mail: brad.oborn@gmail.com [Illawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500 (Australia); Ge, Y. [Sydney Medical School, University of Sydney, NSW 2006 (Australia); Hardcastle, N. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Metcalfe, P. E. [Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Keall, P. J. [Sydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia)

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, while the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of this study

  9. Selection of the optimal radiotherapy technique for locally advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Lee, Ik-Jae; Seong, Jinsil; Koom, Woong-Sub; Kim, Yong-Bae; Jeon, Byeong-Chul; Kim, Joo-Ho; Han, Kwang-Hyub

    2011-01-01

    Various techniques are available for radiotherapy of hepatocellular carcinoma, including three-dimensional conformal radiotherapy, linac-based intensity-modulated radiotherapy and helical tomotherapy. The purpose of this study was to determine the optimal radiotherapy technique for hepatocellular carcinoma. Between 2006 and 2007, 12 patients underwent helical tomotherapy for locally advanced hepatocellular carcinoma. Helical tomotherapy computerized radiotherapy planning was compared with the best computerized radiotherapy planning for three-dimensional conformal radiotherapy and linac-based intensity-modulated radiotherapy for the delivery of 60 Gy in 30 fractions. Tumor coverage was assessed by conformity index, radical dose homogeneity index and moderated dose homogeneity index. Computerized radiotherapy planning was also compared according to the tumor location. Tumor coverage was shown to be significantly superior with helical tomotherapy as assessed by conformity index and moderated dose homogeneity index (P=0.002 and 0.03, respectively). Helical tomotherapy showed significantly lower irradiated liver volume at 40, 50 and 60 Gy (V40, V50 and V60, P=0.04, 0.03 and 0.01, respectively). On the contrary, the dose-volume of three-dimensional conformal radiotherapy at V20 was significantly smaller than those of linac-based intensity-modulated radiotherapy and helical tomotherapy in the remaining liver (P=0.03). Linac-based intensity-modulated radiotherapy showed better sparing of the stomach compared with helical tomotherapy in the case of separated lesions in both lobes (12.3 vs. 24.6 Gy). Helical tomotherapy showed the high dose-volume exposure to the left kidney due to helical delivery in the right lobe lesion. Helical tomotherapy achieved the best tumor coverage of the remaining normal liver. However, helical tomotherapy showed much exposure to the remaining liver at the lower dose region and left kidney. (author)

  10. Modeling the Risk of Secondary Malignancies after Radiotherapy

    Directory of Open Access Journals (Sweden)

    Uwe Schneider

    2011-11-01

    Full Text Available In developed countries, more than half of all cancer patients receive radiotherapy at some stage in the management of their disease. However, a radiation-induced secondary malignancy can be the price of success if the primary cancer is cured or at least controlled. Therefore, there is increasing concern regarding radiation-related second cancer risks in long-term radiotherapy survivors and a corresponding need to be able to predict cancer risks at high radiation doses. Of particular interest are second cancer risk estimates for new radiation treatment modalities such as intensity modulated radiotherapy, intensity modulated arc-therapy, proton and heavy ion radiotherapy. The long term risks from such modern radiotherapy treatment techniques have not yet been determined and are unlikely to become apparent for many years, due to the long latency time for solid tumor induction. Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors who were exposed to γ-rays and neutrons. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. With increasing cure rates, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this review, emphasis was placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. Simple radiation protection models should be used only with extreme care for risk estimates in radiotherapy, since they are developed exclusively for low dose. When applied to scatter radiation, such models can predict only a fraction of observed second malignancies. Better semi-empirical models include the effect of dose fractionation and represent the dose-response relationships more accurately. The involved uncertainties are still huge for most of the organs and tissues. A major reason for

  11. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  12. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients

    International Nuclear Information System (INIS)

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Che, Kaijun; Wu, Vincent W.C.

    2013-01-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning.

  13. Therapeutic effects of low radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Trott, K.R. (Dept. of Radiation Biology, St. Bartholomew' s Medical College, London (United Kingdom))

    1994-01-01

    This editorial explores the scientific basis of radiotherapy with doses of < 1 Gy for various non-malignant conditions, in particular dose-effect relationships, risk-benefit considerations and biological mechanisms. A review of the literature, particularly clinical and experimental reports published more than 50 years ago was conducted to clarify the following problems. 1. The dose-response relationships for the therapeutic effects on three groups of conditions: non-malignant skin disease, arthrosis and other painful degenerative joint disorders and anti-inflammatory radiotherapy; 2. risks after radiotherapy and after the best alternative treatments; 3. the biological mechanisms of the different therapeutic effects. Radiotherapy is very effective in all three groups of disease. Few dose-finding studies have been performed, all demonstrating that the optimal doses are considerable lower than the generally recommended doses. In different conditions, risk-benefit analysis of radiotherapy versus the best alternative treatment yields very different results: whereas radiotherapy for acute postpartum mastitis may not be justified any more, the risk-benefit ratio of radiotherapy of other conditions and particularly so in dermatology and some anti-inflammatory radiotherapy appears to be more favourable than the risk-benefit ratio of the best alternative treatments. Radiotherapy can be very effective treatment for various non-malignant conditions such as eczema, psoriasis, periarthritis humeroscapularis, epicondylitis, knee arthrosis, hydradenitis, parotitis and panaritium and probably be associated with less acute and long-term side effects than similarly effective other treatments. Randomized clinical studies are required to find the optimal dosage which, at present, may be unnecessarily high.

  14. Difference in temporal lobe dose between two radiotherapy techniques in the treatment of NPC with anterior nasal involvement

    Energy Technology Data Exchange (ETDEWEB)

    Wu, V.W.C.; Luk, J.H.Y.; Wong, S.F.T.; Lam, E.C.H.; Fung, M.C.Y.; Tong, S.M.; Ku, I.K.M. [Hong Kong Polytechnic University, Hong Kong, (Hong Kong). Department of Radiography and Optometry

    1997-04-01

    Nasopharyngeal carcinoma with anterior extension are treated with special radiotherapy techniques. The purpose of this study is to investigate the difference of temporal lobe dose between two radiotherapy techniques (A and B) which are commonly used in the treatment of such condition in Hong Kong. The study is carried out by performing radiation treatments to a humanoid phantom under simulated conditions of the two techniques. The dose measurement is done by thermoluminescent dosimeters (TLD) which are placed inside the phantom. Both techniques employ a `3-field` arrangement: a heavy-weighted anterior facial fields with two lateral opposing facial fields. The main difference lies in the anterior facial field in which technique A uses electron beam throughout while technique B uses a mixture of photon and electron beams. The results demonstrates that technique A delivers higher dose to temporal lobe than technique B. In a course of radical external beam radiotherapy (66 Gy), the mean dose to inferior temporal lobe are 59.29 Gy in technique A and 34.06 Gy in technique B respectively (p < 0.0001). Furthermore, it is found that the temporal lobe dose difference between the two techniques is mainly due to their phase I treatment. (p < 0.0001 for phase I and p = 0.078 for phase II). (authors). 14 refs., 3 tabs., 6 figs.

  15. Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method

    Science.gov (United States)

    Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher

    2017-12-01

    A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.

  16. A Novel Dose Constraint to Reduce Xerostomia in Head-and-Neck Cancer Patients Treated With Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Strigari, Lidia; Benassi, Marcello; Arcangeli, Giorgio; Bruzzaniti, Vicente; Giovinazzo, Giuseppe; Marucci, Laura

    2010-01-01

    Purpose: To investigate the predictors of incidence and duration of xerostomia (XT) based on parotid glands (PG), submandibular glands (SMG), and both glands taken as a whole organ (TG) in head-and-neck cancer patients treated with intensity-modulated radiotherapy. Methods and Materials: A prospective study was initiated in May 2003. Sixty-three head-and-neck patients (44 with nasopharynx cancer) were included in the analysis. Using the dose-volume histogram the PG, SMG, and TG mean doses were calculated. Unstimulated and stimulated salivary flow were measured and XT-related questionnaires were compiled before and at 3, 6, 12, 18, and 24 months after radiotherapy. Salivary gland toxicity was evaluated using the Radiation Therapy Oncology Group scale, and Grade ≥3 toxicity was used as the endpoint. The XT incidence was investigated according to descriptive statistics and univariate and multivariate analysis. The Bonferroni method was used for multiple comparison adjustment. Results: After a reduced flow at 3 months after radiotherapy, recovery of salivary flow was observed over time. Primary site and salivary gland mean doses and volumes were identified in univariate analysis as prognostic factors. Multivariate analysis confirmed that TG mean dose (p = 0.00066) and pretreatment stimulated salivary flow (p = 0.00420) are independent factors for predicting XT. Conclusion: The TG mean dose correlates with XT as assessed by Radiation Therapy Oncology Group criteria, salivary output, and XT-related questionnaires. Our results suggest that TG mean dose is a candidate dose constraint for reducing XT, requiring considerably more validation in non-nasopharyngeal cancer patients.

  17. Large field radiotherapy

    International Nuclear Information System (INIS)

    Vanasek, J.; Chvojka, Z.; Zouhar, M.

    1984-01-01

    Calculations may prove that irradiation procedures, commonly used in radiotherapy and represented by large-capacity irradiation techniques, do not exceed certain limits of integral doses with favourable radiobiological action on the organism. On the other hand integral doses in supralethal whole-body irradiation, used in the therapy of acute leukemia, represent radiobiological values which without extreme and exceptional further interventions and teamwork are not compatible with life, and the radiotherapeutist cannot use such high doses without the backing of a large team. (author)

  18. Particle exposure and inhaled dose during commuting in Singapore

    Science.gov (United States)

    Tan, Sok Huang; Roth, Matthias; Velasco, Erik

    2017-12-01

    Exposure concentration and inhaled dose of particles during door-to-door trips walking and using motorized transport modes (subway, bus, taxi) are evaluated along a selected route in a commercial district of Singapore. Concentrations of particles smaller than 2.5 μm in size (PM2.5), black carbon, particle-bound polycyclic aromatic hydrocarbons, number of particles, active surface area and carbon monoxide have been measured in-situ using portable instruments. Simultaneous measurements were conducted at a nearby park to capture the background concentrations. The heart rate of the participants was monitored during the measurements as a proxy of the inhalation rate used to calculate the inhaled dose of particles. All measured metrics were highest and well above background levels during walking. No significant difference was observed in the exposure concentration of PM2.5 for the three motorized transport modes, unlike for the metrics associated with ultrafine particles (UFP). The concentration of these freshly emitted particles was significantly lower on subway trips. The absence of combustion sources, use of air conditioning and screen doors at station platforms are effective measures to protect passengers' health. For other transport modes, sections of trips close to accelerating and idling vehicles, such as bus stops, traffic junctions and taxi stands, represent hotspots of particles. Reducing the waiting time at such locations will lower pollutants exposure and inhaled dose during a commute. After taking into account the effect of inhalation and travel duration when calculating dose, the health benefit of commuting by subway for this particular district of Singapore became even more evident. For example, pedestrians breathe in 2.6 and 3.2 times more PM2.5 and UFP, respectively than subway commuters. Public buses were the second best alternative. Walking emerged as the worst commuting mode in terms of particle exposure and inhaled dose.

  19. Scatter Dose in Patients in Radiation Therapy

    International Nuclear Information System (INIS)

    Schmidt, W. F. O.

    2003-01-01

    Patients undergoing radiation therapy are often treated with high energy radiation (bremsstrahlung) which causes scatter doses in the patients from various sources as photon scatter coming from collimator, gantry, patient, patient table or room (walls, floor, air) or particle doses resulting from gamma-particle reactions in the atomic nucleus if the photon energies are above 8 MeV. In the last years new treatment techniques like IMRT (esp the step-and-shoot- or the MIMIC-techniques) have increased interest in these topics again. In the lecture an overview about recent measurements on scatter doses resulting from gantry, table and room shall be given. Scatter doses resulting from the volume treated in the patient to other critical parts of the body like eyes, ovarii etc. have been measured in two diploma works in our institute and are compared with a program (PERIDOSE; van der Giessen, Netherlands) to estimate them. In some cases these scatter doses have led to changes of treatment modalities. Also an overview and estimation of doses resulting from photon-particle interactions is given according to a publication from Gudowska et al.(Gudowska I, Brahme A, Andreo P, Gudowski W, Kierkegaard J. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV. Phys Med Biol 1999; 44(9):2099-2125.). Energy dose has been calculated with Monte Carlo-methods and is compared with analytical methods for 50 MV bremsstrahlung. From these data biologically effective doses from particles in different depths of the body can be estimated also for energies used in normal radiotherapy. (author)

  20. Actual Dose Variation of Parotid Glands and Spinal Cord for Nasopharyngeal Cancer Patients During Radiotherapy

    International Nuclear Information System (INIS)

    Han Chunhui; Chen Yijen; Liu An; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: For intensity-modulated radiotherapy of nasopharyngeal cancer, accurate dose delivery is crucial to the success of treatment. This study aimed to evaluate the significance of daily image-guided patient setup corrections and to quantify the parotid gland volume and dose variations for nasopharyngeal cancer patients using helical tomotherapy megavoltage computed tomography (CT). Methods and Materials: Five nasopharyngeal cancer patients who underwent helical tomotherapy were selected retrospectively. Each patient had received 70 Gy in 35 fractions. Daily megavoltage CT scans were registered with the planning CT images to correct the patient setup errors. Contours of the spinal cord and parotid glands were drawn on the megavoltage CT images at fixed treatment intervals. The actual doses delivered to the critical structures were calculated using the helical tomotherapy Planned Adaptive application. Results: The maximal dose to the spinal cord showed a significant increase and greater variation without daily setup corrections. The significant decrease in the parotid gland volume led to a greater median dose in the later phase of treatment. The average parotid gland volume had decreased from 20.5 to 13.2 cm 3 by the end of treatment. On average, the median dose to the parotid glands was 83 cGy and 145 cGy for the first and the last treatment fractions, respectively. Conclusions: Daily image-guided setup corrections can eliminate significant dose variations to critical structures. Constant monitoring of patient anatomic changes and selective replanning should be used during radiotherapy to avoid critical structure complications

  1. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    than reported previously or convective updraft may have influenced the transport. Models applicable to large particle dispersion in a turbulent atmosphere should be further developed. The health threat from large nuclear fuel particles differs from that of uniform contamination. In contact with human tissue such as skin, a highly active beta-emitting particle may cause a large but localised dose to the tissue, whereas at distances of more than about one centimetre from the source the dose is negligible. Large particles are poorly inhalable because of their size. They may be deposited in the upper airways but are not easily transported deep into the lungs. Instead, deposition onto the surface of skin is of more relevance with respect to acute deterministic health effects. In the present work, skin doses are calculated for particles of different sizes and different types by assuming the particles are deposited on the body surface. The deposition probability as a function of the number concentration of the particles in air is not estimated. The doses are calculated at the nominal depth of the basal cell layer and averaged over a square centimetre of the skin. Calculated doses are compared with the annual skin dose limit for the public (50 mGy at a depth of 0.07 mm and averaged over 1 cm'). After the Chernobyl accident the most active nuclear fuel particles detected in Europe, hundreds of kilometres from the source, would have been able to produce a skin dose exceeding this limit within one hour when deposited onto skin. However, the appearance of deterministic effects necessitates skin contact lasting more than one day. The health hazards of nuclear fuel particles must be taken into account in estimating the consequences of a severe nuclear accident and planning countermeasures to protect the rescue workers and the general public. (orig.)

  2. Dose-escalated intensity-modulated radiotherapy and irradiation of subventricular zones in relation to tumor control outcomes of patients with glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Kusumawidjaja G

    2016-03-01

    Full Text Available Grace Kusumawidjaja,1 Patricia Zhun Hong Gan,1 Whee Sze Ong,2 Achiraya Teyateeti,3 Pittaya Dankulchai,3 Daniel Yat Harn Tan,1 Eu Tiong Chua,1 Kevin Lee Min Chua,1 Chee Kian Tham,4 Fuh Yong Wong,1 Melvin Lee Kiang Chua1,5 1Division of Radiation Oncology, National Cancer Centre, Singapore; 2Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre, Singapore; 3Department of Radiology, Division of Radiation Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand; 4Division of Medical Oncology, National Cancer Centre, Singapore; 5Duke-NUS Graduate Medical School, Singapore Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor with high relapse rate. In this study, we aimed to determine if dose-escalated (DE radiotherapy improved tumor control and survival in GBM patients. Methods: We conducted a retrospective analysis of 49 and 23 newly-diagnosed histology-proven GBM patients, treated with DE radiotherapy delivered in 70 Gy (2.33 Gy per fraction and conventional doses (60 Gy, respectively, between 2007 and 2013. Clinical target volumes for 70 and 60 Gy were defined by 0.5 and 2.0 cm expansion of magnetic resonance imaging T1-gadolinium-enhanced tumor/surgical cavity, respectively. Bilateral subventricular zones (SVZ were contoured on a co-registered pre-treatment magnetic resonance imaging and planning computed tomography dataset as a 5 mm wide structure along the lateral margins of the lateral ventricles. Survival outcomes of both cohorts were compared using log-rank test. Radiation dose to SVZ in the DE cohort was evaluated. Results: Median follow-up was 13.6 and 15.1 months for the DE- and conventionally-treated cohorts, respectively. Median overall survival (OS of patients who received DE radiotherapy was 15.2 months (95% confidence interval [CI] =11.0–18.6, while median OS of the latter cohort was 18.4 months (95% CI =12.5–31.4, P=0.253. Univariate analyses of

  3. Retrospective methods to estimate radiation dose at the site of breast cancer development after Hodgkin lymphoma radiotherapy

    Directory of Open Access Journals (Sweden)

    Nicola S. Russell

    2017-12-01

    Full Text Available Background: An increased risk of breast cancer following radiotherapy for Hodgkin lymphoma (HL has now been robustly established. In order to estimate the dose–response relationship more accurately, and to aid clinical decision making, a retrospective estimation of the radiation dose delivered to the site of the subsequent breast cancer is required. Methods: For 174 Dutch and 170 UK female patients with breast cancer following HL treatment, the 3-dimensional position of the breast cancer in the affected breast was determined and transferred onto a CT-based anthropomorphic phantom. Using a radiotherapy treatment planning system the dose distribution on the CT-based phantom was calculated for the 46 different radiation treatment field set-ups used in the study population. The estimated dose at the centre of the breast cancer, and a margin to reflect dose uncertainty were determined on the basis of the location of the tumour and the isodose lines from the treatment planning. We assessed inter-observer variation and for 47 patients we compared the results with a previously applied dosimetry method. Results: The estimated median point dose at the centre of the breast cancer location was 29.75 Gy (IQR 5.8–37.2, or about 75% of the prescribed radiotherapy dose. The median dose uncertainty range was 5.97 Gy. We observed an excellent inter-observer variation (ICC 0.89 (95% CI: 0.74–0.95. The absolute agreement intra-class correlation coefficient (ICC for inter-method variation was 0.59 (95% CI: 0.37–0.75, indicating (nearly good agreement. There were no systematic differences in the dose estimates between observers or methods. Conclusion: Estimates of the dose at the point of a subsequent breast cancer show good correlation between methods, but the retrospective nature of the estimates means that there is always some uncertainty to be accounted for. Keywords: Retrospective dosimetry, Hodgkin lymphoma, Breast carcinogenesis

  4. Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Ottosson, Rickard; Lindvold, Lars René

    2011-01-01

    A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse w...... and quality assurance of complex radiotherapy treatments.......A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse....... No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm...

  5. IAEA/WHO TLD postal dose audit service and high precision measurements for radiotherapy level dosimetry

    International Nuclear Information System (INIS)

    Izewska, J.; Bera, P.; Vatnitsky, S.

    2002-01-01

    Since 1969 the International Atomic Energy Agency, together with the World Health Organization, has performed postal TLD audits to verify calibration of radiotherapy beams in developing countries. The TLD programme also monitors activities of Secondary Standard Dosimetry Laboratories (SSDLs). The programme has checked approximately 4000 clinical beams in over 1100 hospitals, and in many instances significant errors have been detected in the beam calibration. Subsequent follow-up actions help to resolve the discrepancies, thus preventing further mistreatment of patients. The audits for SSDLs check the implementation of the dosimetry protocol in order to assure proper dissemination of dosimetry standards to the end-users. The TLD audit results for SSDLs show good consistency in the basic dosimetry worldwide. New TLD procedures and equipment have recently been introduced by the IAEA that include a modified TLD calibration methodology and computerised tools for automation of dose calculation from TLD readings. (author)

  6. Comparison of dose evaluation index by pencil beam convolution and anisotropic analytical algorithm in stereotactic radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Tachibana, Masayuki; Noguchi, Yoshitaka; Fukunaga, Jyunichi; Hirano, Naomi; Yoshidome, Satoshi; Hirose, Takaaki

    2009-01-01

    We previously studied dose distributions of stereotactic radiotherapy (SRT) for lung cancer. Our aim is to compare in combination pencil beam convolution with the inhomogeneity correction algorithm of Batho power low [PBC (BPL)] to the anisotropic analytical algorithm (AAA) by using the dose evaluation indexes. There were significant differences in D95, planning target volume (PTV) mean dose, homogeneity index, and conformity index, V10, and V5. The dose distributions inside the PTV calculated by PBC (BPL) were more uniform than those of AAA. There were no significant differences in V20 and mean dose of total lung. There was no large difference for the whole lung. However, the surrounding high-dose region of PTV became smaller in AAA. The difference in dose evaluation indexes extended between PBC (BPL) and AAA that as many as low CT value of lung. When the dose calculation algorithm is changed, it is necessary to consider difference dose distributions compared with those of established practice. (author)

  7. Computer calculation of dose distributions in radiotherapy. Report of a panel

    International Nuclear Information System (INIS)

    1966-01-01

    As in most areas of scientific endeavour, the advent of electronic computers has made a significant impact on the investigation of the physical aspects of radiotherapy. Since the first paper on the subject was published in 1955 the literature has rapidly expanded to include the application of computer techniques to problems of external beam, and intracavitary and interstitial dosimetry. By removing the tedium of lengthy repetitive calculations, the availability of automatic computers has encouraged physicists and radiotherapists to take a fresh look at many fundamental physical problems of radiotherapy. The most important result of the automation of dosage calculations is not simply an increase in the quantity of data but an improvement in the quality of data available as a treatment guide for the therapist. In October 1965 the International Atomic Energy Agency convened a panel in Vienna on the 'Use of Computers for Calculation of Dose Distributions in Radiotherapy' to assess the current status of work, provide guidelines for future research, explore the possibility of international cooperation and make recommendations to the Agency. The panel meeting was attended by 15 participants from seven countries, one observer, and two representatives of the World Health Organization. Participants contributed 20 working papers which served as the bases of discussion. By the nature of the work, computer techniques have been developed by a few advanced centres with access to large computer installations. However, several computer methods are now becoming 'routine' and can be used by institutions without facilities for research. It is hoped that the report of the Panel will provide a comprehensive view of the automatic computation of radiotherapeutic dose distributions and serve as a means of communication between present and potential users of computers

  8. Novel applications of particle accelerators to radiotherapy

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Burlon, A.A.; Universidad Nacional de San Martin, Villa Ballester

    2002-01-01

    Charged hadrons (protons and heavier ions) have very definite advantages over photons as far as radiotherapy applications are concerned. They allow for much better spatial dose localization due to their charge, relatively high mass and nature of the energy deposition process. In the frame of an attempt to promote the introduction of hadrontherapy in Argentina an external beam facility has been installed at our tandem accelerator TANDAR. The advantages of heavy ions can only be fully exploited for tumors of well defined localization. In certain types of malignancies, however, the region infiltrated by tumor cells is diffuse, with no sharp boundaries and with microscopic ramifications. In such cases (particularly in certain brain cancers) a more sophisticated scheme has been suggested called boron neutron capture therapy (BNCT). In this work, the use of the Tandar accelerator to produce neutrons for feasibility studies for BNCT through low-energy proton beams on a thick LiF target is being briefly described. Studies on the 13 C(d,n) reaction and a comparison with other neutron-producing reactions are also mentioned. Simulation work to optimize an accelerator-based neutron production target is discussed. A project is being prepared to develop a small proton accelerator in Argentina. Technical specifications of this machine are briefly discussed. (author)

  9. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  10. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    Science.gov (United States)

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  12. Surface applicators for high dose rate brachytherapy in AIDS-related kaposi's sarcoma

    International Nuclear Information System (INIS)

    Evans, Michael D.C.; Yassa, Mariam; Podgorsak, Ervin B.; Roman, Ted N.; Schreiner, L. John; Souhami, Luis

    1997-01-01

    Purpose: The development of commercially available surface applicators using high dose rate remote afterloading devices has enabled radiotherapy centers to treat selected superficial lesions using a remote afterloading brachytherapy unit. The dosimetric parameters of these applicators, the clinical implementation of this technique, and a review of the initial patient treatment regimes are presented. Methods and Materials: A set of six fixed-diameter (1, 2, and 3 cm), tungsten/steel surface applicators is available for use with a single stepping-source (Ir-192, 370 GBq) high dose rate afterloader. The source can be positioned either in a parallel or perpendicular orientation to the treatment plane at the center of a conical aperture that sits at an SSD of approximately 15 mm and is used with a 1-mm thick removable plastic cap. The surface dose rates, percent depth dose, and off-axis ratios were measured. A custom-built, ceiling-mounted immobilization device secures the applicator on the surface of the patient's lesion during treatment. Results: Between November 1994, and September 1996, 16 AIDS-related Kaposi's sarcoma patients having a total of 120 lesions have been treated with palliative intent. Treatment sites were distributed between the head and neck, extremity, and torso. Doses ranged from 8 to 20 Gy, with a median dose of 10 Gy delivered in a single fraction. Treatments were well tolerated with minimal skin reaction, except for patients with lesions treated to 20 Gy who developed moderate/severe desquamation. Conclusion: Radiotherapy centers equipped with a high dose rate remote afterloading unit may treat small selected surface lesions with commercially available surface applicators. These surface applicators must be used with a protective cap to eliminate electron contamination. The optimal surface dose appears to be either 10 or 15 Gy depending upon the height of the lesion

  13. Quantitative radiation dose-response relationships for normal tissues in man. II. Response of the salivary glands during radiotherapy

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1983-01-01

    A quantitative dose-response curve for salivary gland function in patients during radiotherapy is presented. Salivary-function data used in this study were obtained from four previously published reports. All patients were treated with 60 Co teletherapy to the head and neck using conventional treatment techniques. Salivary dysfunction was determined at specific dose levels by comparing salivary flow rates before therapy with flow rates at specific dose intervals during radiotherapy up to a total dose of 6000 cGy. Fifty percent salivary dysfunction occurred after 1000 cGy and eighty percent dysfunction was observed by the end of the therapy course (6000 cGy). The salivary-function curve was also compared to the previously published dose-response curve for taste function. Comparisons of the two curves indicate that salivary dysfunction precedes taste loss and that the shapes of the dose-response curves are different. A new term, tissue tolerance ratio, defined as the ratio of responses of two tissues given the same radiation dose, was used to make the comparisons between gustatory and salivary gland tissue effects. Measurements of salivary gland function and analysis of dose-response curves may be useful in evaluating chemical modifiers of radiation response

  14. Atomic force microscopy and mechanical testing of bovine pericardium irradiated to radiotherapy doses

    International Nuclear Information System (INIS)

    Daar, Eman; Kaabar, W.; Woods, E.; Lei, C.; Nisbet, A.; Bradley, D.A.

    2014-01-01

    Within the context of radiotherapy our work investigates the feasibility of identifying changes in structural and biomechanical properties of pericardium resulting from exposure to penetrating photon irradiation. Collagen fibres extracted from bovine pericardium were chosen as a model of pericardium extracellular matrix as these form the main fibrous component of the medium. Tests of mechanical properties, controlled by the various structural elements of the tissues, were performed on frontal pericardium, including uni-axial tests and atomic force microscopy (AFM). While the irradiated collagen fibres showed no significant change in D-band spacing up to doses of 80 Gy, the fibre width was found to increase by 34±9% at 80 Gy when compared with that for un-irradiated samples. - Highlights: • Methods for identifying changes in tissue biophysical properties following photon irradiation. • Tests made using collagen fibres extracted from bovine pericardium. • Sensitivity of uni-axial tests and atomic force microscopy (AFM) investigated. • Radiotherapy doses investigated up to 80 Gy, delivered by 6 MV photons

  15. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    LENUS (Irish Health Repository)

    Bratland, Ase

    2011-04-08

    Abstract Background In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Findings Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. Conclusions When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile. Trial registration ClinicalTrials.gov: NCT00455351

  16. Gastrointestinal toxicity of vorinostat: reanalysis of phase 1 study results with emphasis on dose-volume effects of pelvic radiotherapy

    International Nuclear Information System (INIS)

    Bratland, Åse; Dueland, Svein; Hollywood, Donal; Flatmark, Kjersti; Ree, Anne H

    2011-01-01

    In early-phase studies with targeted therapeutics and radiotherapy, it may be difficult to decide whether an adverse event should be considered a dose-limiting toxicity (DLT) of the investigational systemic agent, as acute normal tissue toxicity is frequently encountered with radiation alone. We have reanalyzed the toxicity data from a recently conducted phase 1 study on vorinostat, a histone deacetylase inhibitor, in combination with pelvic palliative radiotherapy, with emphasis on the dose distribution within the irradiated bowel volume to the development of DLT. Of 14 eligible patients, three individuals experienced Common Terminology Criteria of Adverse Events grade 3 gastrointestinal and related toxicities, representing a toxicity profile vorinostat has in common with radiotherapy to pelvic target volumes. For each study patient, the relative volumes of small bowel receiving radiation doses between 6 Gy and 30 Gy at 6-Gy intervals (V6-V30) were determined from the treatment-planning computed tomography scans. The single patient that experienced a DLT at the second highest dose level of vorinostat, which was determined as the maximum-tolerated dose, had V6-V30 dose-volume estimates that were considerably higher than any other study patient. This patient may have experienced an adverse radiation dose-volume effect rather than a toxic effect of the investigational drug. When reporting early-phase trial results on the tolerability of a systemic targeted therapeutic used as potential radiosensitizing agent, radiation dose-volume effects should be quantified to enable full interpretation of the study toxicity profile.

  17. SU-E-T-282: Dose Measurements with An End-To-End Audit Phantom for Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R; Artschan, R [Calvary Mater Newcastle, Newcastle, NSW (Australia); Thwaites, D [University of Sydney, Sydney, NSW (Australia); Lehmann, J [Calvary Mater Newcastle, Newcastle, NSW (Australia); University of Sydney, Sydney, NSW (Australia)

    2015-06-15

    Purpose: Report on dose measurements as part of an end-to-end test for stereotactic radiotherapy, using a new audit tool, which allows audits to be performed efficiently either by an onsite team or as a postal audit. Methods: Film measurements have been performed with a new Stereotactic Cube Phantom. The phantom has been designed to perform Winston Lutz type position verification measurements and dose measurements in one setup. It comprises a plastic cube with a high density ball in its centre (used for MV imaging with film or EPID) and low density markers in the periphery (used for Cone Beam Computed Tomography, CBCT imaging). It also features strategically placed gold markers near the posterior and right surfaces, which can be used to calculate phantom rotations on MV images. Slit-like openings allow insertion of film or other detectors.The phantom was scanned and small field treatment plans were created. The fields do not traverse any inhomogeneities of the phantom on their paths to the measurement location. The phantom was setup at the delivery system using CBCT imaging. The calculated treatment fields were delivered, each with a piece of radiochromic film (EBT3) placed in the anterior film holder of the phantom. MU had been selected in planning to achieve similar exposures on all films. Calibration films were exposed in solid water for dose levels around the expected doses. Films were scanned and analysed following established procedures. Results: Setup of the cube showed excellent suitability for CBCT 3D alignment. MV imaging with EPID allowed for clear identification of all markers. Film based dose measurements showed good agreement for MLC created fields down to 0.5 mm × 0.5 mm. Conclusion: An end-to-end audit phantom for stereotactic radiotherapy has been developed and tested.

  18. Adjuvant high-dose-rate brachytherapy after external beam radiotherapy in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Oezyar, Enis; Yildz, Ferah; Akyol, Fadil H.; Atahan, I. Lale

    2002-01-01

    Purpose: To compare the local control and survival rates obtained with either external beam radiation therapy (ERT) and adjuvant high-dose-rate (HDR) brachytherapy (BRT) or ERT alone in patients with nasopharyngeal cancer. Methods and Materials: Between December 1993 and December 1999, 144 patients (106 male, 38 female) with the diagnosis of nasopharyngeal cancer were treated with either ERT and adjuvant HDR BRT (Group A) or ERT alone (Group B) at our department. BRT was not applied in 38 patients for the following reasons: (1) Unit was unavailable (n=13), (2) Patient was younger than 18 years (n=17), (3) Patient received accelerated hyperfractionated ERT (n=6), and (4) Patient refused BRT (n=2). The median age for whole group was 43 (range: 9-82 years). According to the AJCC-1997 staging system, there were 11 (7.6%), 35 (24.3%), 38 (26.4%), and 60 (41.7%) patients in Stage I, II, III, and IV, respectively. There were 57 (39.6%) patients with T1, 41 (28.5%) with T2, 20 (13.9%) with T3, and 26 (18.1%) with T4 tumors. Histopathologic diagnosis was WHO 2-3 in 137 (95.2%) patients. ERT doses ranged between 58.8 and 74 Gy (median: 66 Gy). There were significantly more patients with young age, N2 status, and Stage III disease in Group B and with Stage II disease in Group A. Significantly more patients received chemotherapy in Group B. BRT with an HDR 192 Ir microSelectron afterloading unit was delivered in 106 patients at the conclusion of ERT using a single-channel nasal applicator. Dose was prescribed at 1 cm from the source, and total dose of 12 Gy in 3 fractions on 3 consecutive days was given immediately after ERT. Besides radiotherapy, 82 (56.9%) patients received cisplatin-based chemotherapy, as well. Follow-up time ranged between 12 and 80 months (median: 32 months). Results: The two groups were comparable in terms of local recurrence, locoregional failure, regional failure, and rate of distant metastasis. Local failure was observed in 11 (10.3%) out of 106

  19. Dose mapping sensitivity to deformable registration uncertainties in fractionated radiotherapy – applied to prostate proton treatments

    International Nuclear Information System (INIS)

    Tilly, David; Tilly, Nina; Ahnesjö, Anders

    2013-01-01

    Calculation of accumulated dose in fractionated radiotherapy based on spatial mapping of the dose points generally requires deformable image registration (DIR). The accuracy of the accumulated dose thus depends heavily on the DIR quality. This motivates investigations of how the registration uncertainty influences dose planning objectives and treatment outcome predictions. A framework was developed where the dose mapping can be associated with a variable known uncertainty to simulate the DIR uncertainties in a clinical workflow. The framework enabled us to study the dependence of dose planning metrics, and the predicted treatment outcome, on the DIR uncertainty. The additional planning margin needed to compensate for the dose mapping uncertainties can also be determined. We applied the simulation framework to a hypofractionated proton treatment of the prostate using two different scanning beam spot sizes to also study the dose mapping sensitivity to penumbra widths. The planning parameter most sensitive to the DIR uncertainty was found to be the target D 95 . We found that the registration mean absolute error needs to be ≤0.20 cm to obtain an uncertainty better than 3% of the calculated D 95 for intermediate sized penumbras. Use of larger margins in constructing PTV from CTV relaxed the registration uncertainty requirements to the cost of increased dose burdens to the surrounding organs at risk. The DIR uncertainty requirements should be considered in an adaptive radiotherapy workflow since this uncertainty can have significant impact on the accumulated dose. The simulation framework enabled quantification of the accuracy requirement for DIR algorithms to provide satisfactory clinical accuracy in the accumulated dose

  20. Chemo-radiotherapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kochi, Masato; Ushio, Yukitaka [Kumamoto Univ. (Japan). School of Medicine

    2002-05-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  1. Chemo-radiotherapy for malignant brain tumors

    International Nuclear Information System (INIS)

    Kochi, Masato; Ushio, Yukitaka

    2002-01-01

    Malignant gliomas: Randomized clinical trials conducted in the USA showed that radiotherapy plus chemotherapy with nitrosoureas offered a long-term survival advantage to patients younger than 60 years old with malignant gliomas. Combination chemotherapy, such as procarbazine/CCNU/vincristine (PCV) must be tested further, and intra-arterial chemotherapy with nitrosoureas offered no survival advantage. Combination chemotherapy with PCV showed efficacy for patients with anaplastic oligodendroglioma and anaplastic oligoastrocytoma. Medulloblastoma: The addition of chemotherapy to radiotherapy improved the survival of patients with poor risk medulloblastoma, and may reduce the required craniospinal radiation dose in patients with good risk medulloblastoma. Primary CNS lymphoma (PCNSL): Combination of chemotherapy with high-dose MTX and radiotherapy improved survival of patients with PCNSL; however, the neurotoxicity produced by this treatment modality is a serious problem in older patients. Intracranial germ cell tumors: The addition of chemotherapy to radiotherapy may produce long term survival with good quality of life in patients with germinoma. Neoadjuvant therapy consisting of chemotherapy and radiotherapy followed by complete surgical excision improved survival of patients with intracranial nongerminomatous germ cell tumors. (author)

  2. Prospective Trial of High-Dose Reirradiation Using Daily Image Guidance With Intensity-Modulated Radiotherapy for Recurrent and Second Primary Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Cheng, Suzan; Donald, Paul J.; Purdy, James A.

    2011-01-01

    Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651 daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 ± 1.25 mm, 1.79 ± 1.45 mm, and 1.98 ± 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.

  3. On the use of distributions of stopping pions as an indicator of the spatial distribution of the high-LET dose in negative pion radiotherapy

    International Nuclear Information System (INIS)

    Brenner, D.J.

    1991-01-01

    A semi-empirical across the treatment volume of a therapeutic negative pion beam. Such beams deliver dose partially at high LET (through alphas and heavier particles produced both directly in pion stars and via intermediate star-produced neutrons), and partially at low LET (through scattering of pions, electrons and muons, as well as protons produced directly from pion stars and via intermediate neutrons). The problem is how to understand the spatial distribution of the high-LET dose, which is responsible for the potentially improved biological response in the treatment volume

  4. Pregnancy and radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Karasawa, Kumiko

    2013-01-01

    Cancer in pregnancy is relatively uncommon but breast cancer is one of the most common malignancy occur with pregnancy. Prescribed doses of radiotherapy are significantly higher than those of diagnostic procedures. Fetal exposure and damage can occur during radiotherapy within target area. Because of those risks, radiotherapy during pregnancy is basically has to avoid. Even though, feral damage depends on fetal dose and has some threshold dose. Practically, even in stochastic effect, there are some minimal doses. A most important point is careful estimation of fetal dose before radiation. The physician has to inform the patient about risk and benefit of radiotherapy to fetus and to mother and have an ethical balance to help the mother and family to make a final decision. (author)

  5. Nanoparticle-guided radiotherapy

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method and nano-sized particles for image guided radiotherapy (IGRT) of a target tissue. More specifically, the invention relates to nano-sized particles comprising X-ray-imaging contrast agents in solid form with the ability to block x-rays, allowing for simult...... for simultaneous or integrated external beam radiotherapy and imaging, e.g., using computed tomography (CT)....

  6. Irradiation of single cells with individual high-LET particles

    International Nuclear Information System (INIS)

    Nelson, J.M.; Braby, L.A.

    1993-01-01

    The dose-limiting normal tissue of concern when irradiating head and neck lesions is often the vascular endothelium within the treatment field. Consequently, the response of capillary endothelial cells exposed to moderate doses of high LET particles is essential for establishing exposure limits for neutron-capture therapy. In an effort to characterize the high-LET radiation biology of cultured endothelial cells, the authors are attempting to measure cellular response to single particles. The single-particle irradiation apparatus, described below, allows them to expose individual cells to known numbers of high-LET particles and follow these cells for extended periods, in order to assess the impact of individual particles on cell growth kinetics. Preliminary cell irradiation experiments have revealed complications related to the smooth and efficient operation of the equipment; these are being resolved. Therefore, the following paragraphs deal primarily with the manner by which high LET particles deposit energy, the requirements for single-cell irradiation, construction and assembly of such apparatus, and testing of experimental procedures, rather than with the radiation biology of endothelial cells

  7. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Flickinger, J C; Kalend, A [Pittsburgh University School of Medicine (USA). Department of Radiation Oncology Pittsburg Cancer Institute (USA)

    1990-03-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab.

  8. Use of normalized total dose to represent the biological effect of fractionated radiotherapy

    International Nuclear Information System (INIS)

    Flickinger, J.C.; Kalend, A.

    1990-01-01

    There are currently a number of radiobiological models to account for the effects of dose fractionation and time. Normalized total dose (NTD) is not another new model but is a previously reported, clinically useful form in which to represent the biological effect, determined by any specific radiobiological dose-fractionation model, of a course of radiation using a single set of standardized, easily understood terminology. The generalized form of NTD reviewed in this paper describes the effect of a course of radiotherapy administered with nonstandard fractionation as the total dose of radiation in Gy that could be administered with a given reference fractionation such as 2 Gy per fraction, 5 fractions per week that would produce an equivalent biological effect (probability of complications or tumor control) as predicted by a given dose-fractionation formula. The use of normalized total dose with several different exponential and linear-quadratic dose-fraction formulas is presented. (author). 51 refs.; 1 fig.; 1 tab

  9. Radiotherapy and brachytherapy

    International Nuclear Information System (INIS)

    2007-02-01

    This presentation first defines the radiotherapy and brachytherapy techniques, indicates the used ionizing radiations (electromagnetic and particles), describes the mechanisms and processes of action of ionizing radiations: they can be physical by photon-matter interactions (Compton effect and photoelectric effect) or due to electron-matter interactions (excitation, ionization), physical-chemical by direct or indirect action (DNA damage), cellular (mitotic or apoptotic death), tissue (sane and tumorous tissues and differential effect). It discusses the biological efficiency of these treatments which depends on different parameters: intrinsic radio-sensitivity, time (session fractioning and organisation in time), oxygen, radiation quality, cellular cycle, dose rate, temperature. It presents the different types of radiotherapy: external radiotherapy (general sequence, delineation, dosimetry, protection of critical organs, treatment session, quality control, monitoring consultation) and briefly presents some specific techniques (total body irradiation, total cutaneous electron therapy, pre-operation radiotherapy, radio-surgery, hadron-therapy). It proposes an overview of the main indications for this treatment: brain tumours, upper aero digestive tract tumours, bronchial tumours, oesophagus, stomach and pancreas tumours, breast tumours, cervix cancer, rectum tumour, and so on, and indicates the possible associated treatments. The next part addresses brachytherapy. It presents the principles and comments the differences with radiotherapy. It indicates the used radio-elements (Caesium 137, Iridium 192, Iodine 125), describes the implementation techniques (plastic tubes, use of iodine 125, intracavitary and endo-luminal radiation therapy). It proposes an overview of the different treated tumours (skin, breast, prostates, bronchial, oesophagus, ENT) and indicates possible early and late secondary effects for different organs

  10. Langerhans Cell Histiocytosis of the Cranial Base: Is Low-Dose Radiotherapy Effective?

    Directory of Open Access Journals (Sweden)

    Andreas Meyer

    2012-01-01

    Full Text Available Introduction. Langerhans cell histiocytosis (LCH is a rare disease of unknown etiology with different clinical features. A standardised treatment has not been established so far. Case Report. We report a case of a 28-year-old patient who initially presented with hypesthesia of the fifth cranial nerve and pain of the left ear. Diagnosis showed a tumour localised in the cranial base with a maximum diameter of 4.1 cm. The diagnosis of LCH was confirmed histologically by biopsy. Diagnostic workup verified the cranial lesion as the sole manifestation of LCH. A total dose of 9 Gy (single dose 1.8 Gy was delivered. The symptoms dissolved completely within 6 months after radiation; repeated CT and MRI scans revealed a reduction in size of the lesion and a remineralisation of the bone. After a followup of 13 years the patient remains free of symptoms without relapse or any side effects from therapy. Discussion. Due to the indolent course of the disease with a high rate of spontaneous remissions the choice of treatment strongly depends on the individual clinical situation. In the presented case low-dose radiotherapy was sufficient to obtain long-term local control in a region with critical structures and tissues.

  11. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: correlation with the integral dose

    International Nuclear Information System (INIS)

    Nguyen, F.; Rubino, C.; Guerin, S.; de Vathaire, F.; Diallo, I.; Samand, A.; Hawkins, M.; Oberlin, O.; Lefkopoulos, D.

    2006-01-01

    In the cohort, among patients who had received radiotherapy, only those who had received the highest integral dose had a higher risk. Among the other patients, including 80% of the variability of the integral dose, no increased risk was evidenced. Thus, the integral dose in the study cannot be considered as a good predictor of later risk. (N.C.)

  12. Risk of a second malignant neoplasm after cancer in childhood treated with radiotherapy: correlation with the integral dose

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, F.; Rubino, C.; Guerin, S.; de Vathaire, F. [National Institute of Public Health and Medical Research (INSERM) Unit 605, Institut Gustave-Roussy, Villejuif (France); Diallo, I.; Samand, A. [National Institute of Public Health and Medical Research (INSERM) Unit 605, Institut Gustave-Roussy, Villejuif, (France); Medical Physics and Radiotherapy Departments, Institut Gustave-Roussy, Villejuif (France); Hawkins, M. [Centre for Childhood Cancer Survivor Studies, University of Birmingham, Birmingham (United Kingdom); Oberlin, O. [Paediatrics Department, Institut Gustave-Roussy, Villejuif (France); Lefkopoulos, D. [Medical Physics and Radiotherapy Departments, Institut Gustave-Roussy, Villejuif (France)

    2006-07-01

    In the cohort, among patients who had received radiotherapy, only those who had received the highest integral dose had a higher risk. Among the other patients, including 80% of the variability of the integral dose, no increased risk was evidenced. Thus, the integral dose in the study cannot be considered as a good predictor of later risk. (N.C.)

  13. Preparation and preclinical evaluation of 211At-labelled compounds for α-particle radiotherapy

    International Nuclear Information System (INIS)

    Larsen, R.H.

    1994-01-01

    The interest for α-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on 211 At and 212 Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active 211 At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h α-particle. It is further shown that 211 At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs

  14. Results of the Phase I Dose-Escalating Study of Motexafin Gadolinium With Standard Radiotherapy in Patients With Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Ford, Judith M.; Seiferheld, Wendy; Alger, Jeffrey R.; Wu, Genevieve; Endicott, Thyra J.; Mehta, Minesh; Curran, Walter; Phan, See-Chun

    2007-01-01

    Purpose: Motexafin gadolinium (MGd) is a putative radiation enhancer initially evaluated in patients with brain metastases. This Phase I trial studied the safety and tolerability of a 2-6-week course (10-22 doses) of MGd with radiotherapy for glioblastoma multiforme. Methods and Materials: A total of 33 glioblastoma multiforme patients received one of seven MGd regimens starting at 10 doses of 4 mg/kg/d MGd and escalating to 22 doses of 5.3 mg/kg/d MGd (5 or 10 daily doses then three times per week). The National Cancer Institute Cancer Therapy Evaluation Program toxicity and stopping rules were applied. Results: The maximal tolerated dose was 5.0 mg/kg/d MGd (5 d/wk for 2 weeks, then three times per week) for 22 doses. The dose-limiting toxicity was reversible transaminase elevation. Adverse reactions included rash/pruritus (45%), chills/fever (30%), and self-limiting vesiculobullous rash of the thumb and fingers (42%). The median survival of 17.6 months prompted a case-matched analysis. In the case-matched analysis, the MGd patients had a median survival of 16.1 months (n = 31) compared with the matched Radiation Therapy Oncology Group database patients with a median survival of 11.8 months (hazard ratio, 0.43; 95% confidence interval, 0.20-0.94). Conclusion: The maximal tolerated dose of MGd with radiotherapy for glioblastoma multiforme in this study was 5 mg/kg/d for 22 doses (daily for 2 weeks, then three times weekly). The baseline survival calculations suggest progression to Phase II trials is appropriate, with the addition of MGd to radiotherapy with concurrent and adjuvant temozolomide

  15. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  16. Radiotherapy of abdomen with precise renal assessment with SPECT/CT imaging (RAPRASI): design and methodology of a prospective trial to improve the understanding of kidney radiation dose response

    International Nuclear Information System (INIS)

    Lopez-Gaitan, Juanita; O’Mara, Brenton; Chu, Julie; Faggian, Jessica; Williams, Luke; Hofman, Michael S; Spry, Nigel A; Ebert, Martin A; Robins, Peter; Boucek, Jan; Leong, Trevor; Willis, David; Bydder, Sean; Podias, Peter; Waters, Gemma

    2013-01-01

    The kidneys are a principal dose-limiting organ in radiotherapy for upper abdominal cancers. The current understanding of kidney radiation dose response is rudimentary. More precise dose-volume response models that allow direct correlation of delivered radiation dose with spatio-temporal changes in kidney function may improve radiotherapy treatment planning for upper-abdominal tumours. Our current understanding of kidney dose response and tolerance is limited and this is hindering efforts to introduce advanced radiotherapy techniques for upper-abdominal cancers, such as intensity-modulated radiotherapy (IMRT). The aim of this study is to utilise radiotherapy and combined anatomical/functional imaging data to allow direct correlation of radiation dose with spatio-temporal changes in kidney function. The data can then be used to develop a more precise dose-volume response model which has the potential to optimise and individualise upper abdominal radiotherapy plans. The Radiotherapy of Abdomen with Precise Renal Assessment with SPECT/CT Imaging (RAPRASI) is an observational clinical research study with participating sites at Sir Charles Gairdner Hospital (SCGH) in Perth, Australia and the Peter MacCallum Cancer Centre (PMCC) in Melbourne, Australia. Eligible patients are those with upper gastrointestinal cancer, without metastatic disease, undergoing conformal radiotherapy that will involve incidental radiation to one or both kidneys. For each patient, total kidney function is being assessed before commencement of radiotherapy treatment and then at 4, 12, 26, 52 and 78 weeks after the first radiotherapy fraction, using two procedures: a Glomerular Filtration Rate (GFR) measurement using the 51 Cr-ethylenediamine tetra-acetic acid (EDTA) clearance; and a regional kidney perfusion measurement assessing renal uptake of 99m Tc-dimercaptosuccinic acid (DMSA), imaged with a Single Photon Emission Computed Tomography / Computed Tomography (SPECT/CT) system. The CT component

  17. Treatment outcome of high-dose image-guided intensity-modulated radiotherapy using intra-prostate fiducial markers for localized prostate cancer at a single institute in Japan

    International Nuclear Information System (INIS)

    Takeda, Ken; Shimizu, Eiji; Abe, Keiko; Shirata, Yuko; Ishikawa, Yohjiro

    2012-01-01

    Several studies have confirmed the advantages of delivering high doses of external beam radiotherapy to achieve optimal tumor-control outcomes in patients with localized prostate cancer. We evaluated the medium-term treatment outcome after high-dose, image-guided intensity-modulated radiotherapy (IMRT) using intra-prostate fiducial markers for clinically localized prostate cancer. In total, 141 patients with localized prostate cancer treated with image-guided IMRT (76 Gy in 13 patients and 80 Gy in 128 patients) between 2003 and 2008 were enrolled in this study. The patients were classified according to the National Comprehensive Cancer Network-defined risk groups. Thirty-six intermediate-risk patients and 105 high-risk patients were included. Androgen-deprivation therapy was performed in 124 patients (88%) for a median of 11 months (range: 2–88 months). Prostate-specific antigen (PSA) relapse was defined according to the Phoenix-definition (i.e., an absolute nadir plus 2 ng/ml dated at the call). The 5-year actuarial PSA relapse-free survival, the 5-year distant metastasis-free survival, the 5-year cause-specific survival (CSS), the 5-year overall survival (OS) outcomes and the acute and late toxicities were analyzed. The toxicity data were scored according to the Common Terminology Criteria for Adverse Events, version 4.0. The median follow-up was 60 months. The 5-year PSA relapse-free survival rates were 100% for the intermediate-risk patients and 82.2% for the high-risk patients; the 5-year actuarial distant metastasis-free survival rates were 100% and 95% for the intermediate- and high-risk patients, respectively; the 5-year CSS rates were 100% for both patient subsets; and the 5-year OS rates were 100% and 91.7% for the intermediate- and high-risk patients, respectively. The Gleason score (<8 vs. ≥8) was significant for the 5-year PSA relapse-free survival on multivariate analysis (p = 0.044). There was no grade 3 or 4 acute toxicity. The incidence of

  18. Prospective Multi-Institutional Study of Definitive Radiotherapy With High-Dose-Rate Intracavitary Brachytherapy in Patients With Nonbulky (<4-cm) Stage I and II Uterine Cervical Cancer (JAROG0401/JROSG04-2)

    Energy Technology Data Exchange (ETDEWEB)

    Toita, Takafumi, E-mail: b983255@med.u-ryukyu.ac.jp [Department of Radiology, Graduate School of Medical Science, University of Ryukyus, Okinawa (Japan); Kato, Shingo [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Niibe, Yuzuru [Department of Radiology, School of Medicine, Kitasato University, Sagamihara (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Kazumoto, Tomoko [Department of Radiology, Saitama Cancer Center, Saitama (Japan); Kodaira, Takeshi [Department of Radiation Oncology, Aichi Cancer Center, Nagoya (Japan); Kataoka, Masaaki [Department of Radiology, National Shikoku Cancer Center, Ehime (Japan); Shikama, Naoto [Department of Radiation Oncology, Saku Central Hospital, Saku (Japan); Kenjo, Masahiro [Department of Radiation Oncology, Graduate School of Medical Science, Hiroshima University, Hiroshima (Japan); Tokumaru, Sunao [Department of Radiology, Saga University, Saga (Japan); Yamauchi, Chikako [Department of Radiation Oncology, Shiga Medical Center for Adults, Moriyama (Japan); Suzuki, Osamu [Department of Radiation Oncology, Osaka Medical Center for Cancer, Osaka (Japan); Sakurai, Hideyuki [Proton Medical Research Center and Tsukuba University, Tsukuba (Japan); Numasaki, Hodaka; Teshima, Teruki [Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka (Japan); Oguchi, Masahiko [Department of Radiation Oncology, Cancer Institute Hospital, Tokyo (Japan); Kagami, Yoshikazu [Radiation Oncology Division, National Cancer Center Hospital, Tokyo (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University, Graduate School of Medicine, Maebashi (Japan); Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, Graduate School of Medicine, Kyoto (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-01-01

    Purpose: To determine the efficacy of a definitive radiotherapy protocol using high-dose-rate intracavitary brachytherapy (HDR-ICBT) with a low cumulative dose schedule in nonbulky early-stage cervical cancer patients, we conducted a prospective multi-institutional study. Methods and Materials: Eligible patients had squamous cell carcinoma of the intact uterine cervix, Federation of Gynecologic Oncology and Obstetrics (FIGO) stages Ib1, IIa, and IIb, tumor size <40 mm in diameter (assessed by T2-weighted magnetic resonance imaging), and no pelvic/para-aortic lymphadenopathy. The treatment protocol consisted of whole-pelvis external beam radiotherapy (EBRT) of 20 Gy/10 fractions, pelvic EBRT with midline block of 30 Gy/15 fractions, and HDR-ICBT of 24 Gy/4 fractions (at point A). The cumulative biologically effective dose (BED) was 62 Gy{sub 10} ({alpha}/{beta} = 10) at point A. The primary endpoint was the 2-year pelvic disease progression-free (PDPF) rate. All patients received a radiotherapy quality assurance review. Results: Between September 2004 and July 2007, 60 eligible patients were enrolled. Thirty-six patients were assessed with FIGO stage Ib1; 12 patients with stage IIa; and 12 patients with stage IIb. Median tumor diameter was 28 mm (range, 6-39 mm). Median overall treatment time was 43 days. Median follow-up was 49 months (range, 7-72 months). Seven patients developed recurrences: 3 patients had pelvic recurrences (2 central, 1 nodal), and 4 patients had distant metastases. The 2-year PDPF was 96% (95% confidence interval [CI], 92%-100%). The 2-year disease-free and overall survival rates were 90% (95% CI, 82%-98%) and 95% (95% CI, 89%-100%), respectively. The 2-year late complication rates (according to Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer of Grade {>=}1) were 18% (95% CI, 8%-28%) for large intestine/rectum, 4% (95% CI, 0%-8%) for small intestine, and 0% for bladder. No Grade {>=}3 cases were

  19. Adjuvant single-fraction radiotherapy is safe and effective for intractable keloids

    International Nuclear Information System (INIS)

    Song, Changhoon; Wu, Honggyun; Chang, Hak; Kim, Il Han; Ha, Sung W.

    2014-01-01

    The aim of this study was to assess the feasibility and efficacy of high-dose, single-fraction electron beam radiotherapy for therapy-resistant keloids. Before 2010, intractable keloids were treated at our institution with post-operative irradiation of 6-15 Gy in 3-5 fractionations. For convenience and cost effectiveness, we have changed our treatment protocol to high-dose single-fraction radiotherapy. A total of 12 patients with 16 keloid lesions were treated from January 2010 to January 2013 in our department. A 10-Gy dose of electron irradiation was given within 72 h of the surgical excision. The mean follow-up period was 20 months. Treatments were well tolerated, and there was no recurrence in any of the patients. Severe adverse effects were not observed. Surgical excision of the keloid, followed by immediate, single-fraction, high-dose radiotherapy, is both safe and effective in preventing recurrence of therapy-resistant keloids. (author)

  20. Differences among doses for neuro-axis radiotherapy planning in the gonadal region

    International Nuclear Information System (INIS)

    Lima, F.F de; Vilela, E.C.; Oliveira, F.L.; Filho, J.A.

    2015-01-01

    Radiotherapy can disrupt the functioning of the hypothalamic-pituitary axis, directly causing ovarian deficiencies, such as the decrease in fertility or damage that renders the uterus incapable of accommodating the growth of a fetus. However, these issues have become increasingly important to a growing number of pediatric and adolescent cancer survivors. The whole-body, cranial-spinal axis, as well as abdomen and pelvic region irradiations may expose the ovaries to radiation and may cause premature ovarian failure, whereas doses above 35 Gy cranial can affect the hypothalamic-pituitary functions. This study performed a comparison of four doses of radiotherapy planning techniques for the neural axis. For this analysis, technical simulations were performed for the treatment of medulloblastoma in four different planning, applied in a RANDO anthropomorphic phantom and dosimeters (TLD-100). The radiation fields in the 1”st and 2”nd planning were 40 x 5 cm”2 and 17 x 5 cm”2 with 4.0 cm depth, in which doses were 0.03 and 0.05 Gy / day and 0.11 and 0.09 Gy / days, on the right and left sides, respectively. The 3”rd and 4”th measured planning 32 x 7 cm”2 and 18 x 7 cm”2, with a 2 cm gap and a 4.0 and 5.0 cm depth, in which doses were 1.08 and 0.2 Gy/day and 1.14 and 0.14 Gy/day, on the left and right sides, respectively. It could be observed that the doses in the ovaries in the 3”rd and 4”th schedules proved to be larger than the doses in the 1 s t and 2 n d planning. This is caused by the spinal field width and the depth of the second spinal field, which is 1.0 cm more than the field of the 1”st and 2”nd planning. These differences should be observed in image planning, as incorrect measures can cause damage in the treatment finish. (authors)

  1. Leukoencephalopathy in childhood hematopoietic neoplasm caused by moderate-dose methotrexate and prophylactic cranial radiotherapy -- an MR analysis

    International Nuclear Information System (INIS)

    Matsumoto, Ko; Takahashi, Shoki; Sato, Atsushi; Imaizumi, Masue; Higano, Shuichi; Sakamoto, Kiyohiko; Asakawa, Hiroshi; Tada, Keiya

    1995-01-01

    Purpose: The main purpose of this study was to determine influential factors related to minor leukoencephalopathy (LEP) caused by moderate-dose methotrexate (MTX) and prophylactic cranial radiotherapy (CRT) in childhood hematopoietic malignancies. We also compared the incidence of LEP following this treatment to that reported in the literature following treatment with high-dose MTX alone. Methods and Materials: Thirty-eight pediatric patients of hematopoietic malignancies (37 acute lymphoblastic leukemias, 1 non-Hodgkin lymphoma) who were given CRT (18-24 Gy) as well as prophylactic intrathecal and per os MTX were studied for leukoencephalopathy by magnetic resonance (MR) imaging. All the patients were free from grave neuropsychiatric disturbances. The data were examined to elucidate the influential ones of five factors (patients' age, doses of intrathecal and per os MTX, dose of CRT, interval between treatment, and MR study) to develop LEP using multiple regression analysis. To compare the effect of moderate-dose MTX and prophylactic CRT on LEP to that of high-dose MTX alone, we conducted literature review. Results: Seven out of 38 patients (18%) developed LEP. From multiple regression analysis and partial correlation coefficients, the age and CRT dose seemed influential in the subsequent development of LEP. The incidence of LEP following treatment with moderate-dose MTX and prophylactic CRT appears to be less than that reported in the literature following treatment with intravenous high-dose MTX. However, even moderate-dose MTX in combination with CRT can result in a significant incidence of MR-detectable LEP, particularly in children 6 years of age or younger receiving 24 Gy. Conclusion: Leukoencephalopathy was caused by moderate-dose MTX and prophylactic CRT in pediatric patients, probably less frequently than by high-dose MTX treatment alone. The influential factors were patient's age and CRT dose

  2. Four R's of radiotherapy

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    Radiotherapy given as multiple doses can be effective in sterilizing cancers, but the processes whereby the neoplasm is eradicated and the normal tissues are preserved are not fully understood. The differential between normal tissue and tumor response is enhanced by dose fractionation, single doses resulting in severe normal tissue injury when the dose is sufficient to control a proportion of treated tumors. Data are reviewed from radiobiological studies on laboratory animals and cultured cells that have thrown some light on four of the phenomena that influence the outcome of fractionated-dose radiotherapy, one or more of which may account for the relative sparing of normal tissues. These are repair of sublethal injury in normal and neoplastic cells, reoxygenation of the tumor, redistribution through the division cycle, and regeneration of surviving normal and malignant cells between dose fractions. These have been called the four R's of fractionated radiotherapy. Other factors are involved in the outcome of multifraction radiotherapy, including maintenance of the architectural integrity of the normal tissues, the volume of tissue irradi []ted, the tumor bed, and the immunocompetence of the host. (90 references) (CH)

  3. Severe encephalopathy after high-dose chemotherapy with autologous stem cell support for brain tumours

    NARCIS (Netherlands)

    van den Berkmortel, F.; Gidding, C.; de Kanter, M.; Punt, C. J. A.

    2006-01-01

    Recurrent medulloblastoma carries a poor prognosis. Long-term survival has been obtained with high-dose chemotherapy with autologous stem cell transplantation and secondary irradiation. A 21-year-old woman with recurrent medulloblastoma after previous chemotherapy and radiotherapy is presented. The

  4. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target.

    Science.gov (United States)

    Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M

    2014-01-20

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.

  5. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target

    International Nuclear Information System (INIS)

    Budiarto, E; Keijzer, M; Heemink, A W; Storchi, P R M; Breedveld, S; Heijmen, B J M

    2014-01-01

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements. (paper)

  6. Modeling of a planning system in radiotherapy and Nuclear Medicine using the MCNP6 code

    International Nuclear Information System (INIS)

    Massicano, Felipe

    2015-01-01

    Cancer therapy has many branches and one of them is the use of radiation sources as treatment leading method. Radiotherapy and nuclear medicine are examples of these treatment types. For using the ionization radiation as main tool for the therapy, there is the need of crafting many treatment simulation in order to maximum the tumoral tissue dose without surpass the dose limit in health tissue surrounding. Treatment planning systems (TPS) are systems which have the purpose of simulating these therapy types. Nuclear medicine and radiotherapy have many distinct features linked to the therapy mode and consequently they have different TPS destined for each. The radiotherapy TPS is more developed than the nuclear medicine TPS and by that reason the development of a TPS that was similar to the radiotherapy TPS, but enough generic for include other therapy types, it will contribute with significant advances in nuclear medicine and in others therapy types with radiation. Based on this, the goal of work was to model a TPS that utilizes the Monte Carlo N-Particle Transport code (MCNP6) in order to simulate radiotherapy therapy, nuclear medicine therapy and with potential for simulating other therapy types too. The result of this work was the creation of a Framework in Java language, object oriented, named IBMC which will assist in the development of new TPS with MCNP6 code. The IBMC allowed to develop rapidly and easily TPS for radiotherapy and nuclear medicine and the results were validated with systems already consolidated. The IBMC showed high potential for developing TPS by new therapy types. (author)

  7. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance

    International Nuclear Information System (INIS)

    Sveistrup, Joen; Rosenschöld, Per Munck af; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-01-01

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1–2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5–7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT. The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction

  8. The HYP-RT Hypoxic Tumour Radiotherapy Algorithm and Accelerated Repopulation Dose per Fraction Study

    Directory of Open Access Journals (Sweden)

    W. M. Harriss-Phillips

    2012-01-01

    Full Text Available The HYP-RT model simulates hypoxic tumour growth for head and neck cancer as well as radiotherapy and the effects of accelerated repopulation and reoxygenation. This report outlines algorithm design, parameterisation and the impact of accelerated repopulation on the increase in dose/fraction needed to control the extra cell propagation during accelerated repopulation. Cell kill probabilities are based on Linear Quadratic theory, with oxygenation levels and proliferative capacity influencing cell death. Hypoxia is modelled through oxygen level allocation based on pO2 histograms. Accelerated repopulation is modelled by increasing the stem cell symmetrical division probability, while the process of reoxygenation utilises randomised pO2 increments to the cell population after each treatment fraction. Propagation of 108 tumour cells requires 5–30 minutes. Controlling the extra cell growth induced by accelerated repopulation requires a dose/fraction increase of 0.5–1.0 Gy, in agreement with published reports. The average reoxygenation pO2 increment of 3 mmHg per fraction results in full tumour reoxygenation after shrinkage to approximately 1 mm. HYP-RT is a computationally efficient model simulating tumour growth and radiotherapy, incorporating accelerated repopulation and reoxygenation. It may be used to explore cell kill outcomes during radiotherapy while varying key radiobiological and tumour specific parameters, such as the degree of hypoxia.

  9. SU-G-TeP3-05: In Vitro Demonstration of Endothelial Dose Enhancement Due to Gold Nanoparticles During Low-Voltage Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin-Karim, S; Makrigiorgos, GM [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Moreau, M; Ngwa, W [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); University of Massachusetts Lowell, Lowell, MA (United States); Kumar, R [Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Northeastern University, Boston, MA (United States); Hanlon, J; Arnoldussen, M [Oraya Therapeutics Inc., Newark, CA (United States); Hempstead, J; Celli, J [University of Massachusetts Boston, Boston, MA (United States)

    2016-06-15

    Purpose: Oraya Therapy uses low-voltage, stereotactic, highly targeted X-rays for the treatment of wet age-related macular degeneration (AMD) — offering a new option for patients worldwide. Neovascular endothelial cells play a crucial role in the pathogenesis of this disease. This in-vitro study investigates the potential of gold nanoparticles (GNP) to enhance endothelial cell damage during low-voltage radiotherapy towards potential applications in the treatment of wet-AMD. Methods: Primary human umbilical cord vein endothelium cells (HUVEC) were treated with 1.4 nm sized GNPs for 24 hrs and then irradiated with variable X-ray doses using an Oraya therapy system (100 kVp) or a Small Animal Radiation and Research platform (SARRP) at other beam qualities (up to 220 kVp). Radio-sensitization was assessed by clonogenic assays. Variable concentrations of GNPs (0.05 mg/ml, 0.1 mg/ml, 0.25 mg/ml, 0.5 mg/ml, and 1 mg/ml) where employed. The dose enhancement factor (DEF) was calculated as the ratio of radiation doses required to give the same biological effect (survival factor, SF) with and without GNPs. Results: Preliminary results show DEFs of up to 2.62 for the different combinations of x-ray doses and GNP concentrations and beam qualities. In general the DEF increased with increase in GNP concentration. However, for high doses the effect of GNP becomes less apparent likely due to already high cell kill by the radiation alone. Conclusion: The findings suggest that targeted GNPs can play a significant synergistic role in enhancing stereotactic radiosurgery for wet AMD. The results also provide impetus for ongoing studies to find the optimal synergy between the doses or beam energies and GNPs concentration. This will benefit in-vivo studies towards development of nanoparticle-aided radiotherapy for treatment of wet-AMD and potentially ocular cancers.

  10. Feasibility of dose planning using CBCT images combined with MSCT images for adaptive radiotherapy

    International Nuclear Information System (INIS)

    Usui, Keisuke; Kunieda, Etsuo; Ogawa, Koichi

    2013-01-01

    If a kilo-voltage cone-beam computed tomography (CBCT) system mounted on a linear accelerator becomes available for dose calculation, we can confirm the dose distribution of treatment in each day by referring it to the initially planned dose distribution. In this paper, we verified the validity of the calculation method using CBCT images combined with multi-slice CT images. To evaluate the accuracy of calculated dose distribution, γ analysis, distance-to-agreement analysis and dose-volume-histogram analysis were used as the conventional dose calculation methods using CBCT images. The results showed that the dose distribution calculated by our proposed method agreed with the initial treatment plan better compared with the other methods. In addition, our method was so stable that the calculated dose distribution was insensitive to variations in clinical conditions. We demonstrated the feasibility of our proposed method for adaptive radiotherapy. (author)

  11. Dose-response characteristics of low- and intermediate-risk prostate cancer treated with external beam radiotherapy

    International Nuclear Information System (INIS)

    Cheung, Rex; Tucker, Susan L.; Lee, Andrew K.; Crevoisier, Renaud de; Dong Lei; Kamat, Ashish; Pisters, Louis; Kuban, Deborah

    2005-01-01

    Purpose: In this era of dose escalation, the benefit of higher radiation doses for low-risk prostate cancer remains controversial. For intermediate-risk patients, the data suggest a benefit from higher doses. However, the quantitative characterization of the benefit for these patients is scarce. We investigated the radiation dose-response relation of tumor control probability in low-risk and intermediate-risk prostate cancer patients treated with radiotherapy alone. We also investigated the differences in the dose-response characteristics using the American Society for Therapeutic Radiology and Oncology (ASTRO) definition vs. an alternative biochemical failure definition. Methods and materials: This study included 235 low-risk and 387 intermediate-risk prostate cancer patients treated with external beam radiotherapy without hormonal treatment between 1987 and 1998. The low-risk patients had 1992 American Joint Committee on Cancer Stage T2a or less disease as determined by digital rectal examination, prostate-specific antigen (PSA) levels of ≤10 ng/mL, and biopsy Gleason scores of ≤6. The intermediate-risk patients had one or more of the following: Stage T2b-c, PSA level of ≤20 ng/mL but >10 ng/mL, and/or Gleason score of 7, without any of the following high-risk features: Stage T3 or greater, PSA >20 ng/mL, or Gleason score ≥8. The logistic models were fitted to the data at varying points after treatment, and the dose-response parameters were estimated. We used two biochemical failure definitions. The ASTRO PSA failure was defined as three consecutive PSA rises, with the time to failure backdated to the mid-point between the nadir and the first rise. The second biochemical failure definition used was a PSA rise of ≥2 ng/mL above the current PSA nadir (CN + 2). The failure date was defined as the time at which the event occurred. Local, nodal, and distant relapses and the use of salvage hormonal therapy were also failures. Results: On the basis of the

  12. Nanoscale radiation transport and clinical beam modeling for gold nanoparticle dose enhanced radiotherapy (GNPT) using X-rays.

    Science.gov (United States)

    Zygmanski, Piotr; Sajo, Erno

    2016-01-01

    We review radiation transport and clinical beam modelling for gold nanoparticle dose-enhanced radiotherapy using X-rays. We focus on the nanoscale radiation transport and its relation to macroscopic dosimetry for monoenergetic and clinical beams. Among other aspects, we discuss Monte Carlo and deterministic methods and their applications to predicting dose enhancement using various metrics.

  13. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  14. Results in patients treated with high-dose-rate interstitial brachytherapy for oral tongue cancer

    International Nuclear Information System (INIS)

    Yamamoto, Michinori; Shirane, Makoto; Ueda, Tsutomu; Miyahara, Nobuyuki

    2006-01-01

    Eight patients were treated with high-dose-rate interstitial brachytherapy for oral tongue cancer between September 2000 and August 2004. The patient distribution was 1 T1, 5 T2, 1 T3, and 1 T4a. Patients received 50-60 Gy in 10 fractions over seven days with high-dose-rate brachytherapy. Six of the eight patients were treated with a combination of external beam radiotherapy (20-30 Gy) and interstitial brachytherapy. The two-year primary local control rate was 83% for initial case. High-dose-rate brachytherapy was performed safely even for an aged person, and was a useful treatment modality for oral tongue cancer. (author)

  15. Preliminary estimation of minimum target dose in intracavitary radiotherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kiyoshi; Oishi-Tanaka, Yumiko; Sugahara, Shinji; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2001-08-01

    In intracavitary radiotherapy (ICRT) for cervical cancer, minimum target dose (D{sub min}) will pertain to local disease control more directly than will reference point A dose (D{sub A}). However, ICRT has been performed traditionally without specifying D{sub min} since the target volume was not identified. We have estimated D{sub min} retrospectively by identifying tumors using magnetic resonance (MR) images. Pre- and posttreatment MR images of 31 patients treated with high-dose-rate ICRT were used. ICRT was performed once weekly at 6.0 Gy D{sub A}, and involved 2-5 insertions for each patient, 119 insertions in total. D{sub min} was calculated arbitrarily simply at the point A level using the tumor width (W{sub A}) to compare with D{sub A}. W{sub A} at each insertion was estimated by regression analysis with pre- and posttreatment W{sub A}. D{sub min} for each insertion varied from 3.0 to 46.0 Gy, a 16-fold difference. The ratio of total D{sub min} to total D{sub A} for each patient varied from 0.5 to 6.5. Intrapatient D{sub min} difference between the initial insertion and final insertion varied from 1.1 to 3.4. Preliminary estimation revealed that D{sub min} varies widely under generic dose prescription. Thorough D{sub min} specification will be realized when ICRT-applicator insertion is performed under MR imaging. (author)

  16. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Woo; Hong, Se Mie [Dept. of Radiation Oncology, Konkuk University Medical Center, Seoul (Korea, Republic of)

    2011-11-15

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  17. Analysis of Cumulative Dose to Implanted Pacemaker According to Various IMRT Delivery Methods: Optimal Dose Delivery Versus Dose Reduction Strategy

    International Nuclear Information System (INIS)

    Lee, Jeong Woo; Hong, Se Mie

    2011-01-01

    Cancer patients with implanted cardiac pacemaker occasionally require radiotherapy. Pacemaker may be damaged or malfunction during radiotherapy due to ionizing radiation or electromagnetic interference. Although radiotherapy should be planned to keep the dose to pacemaker as low as possible not to malfunction ideally, current radiation treatment planning (RTP) system does not accurately calculate deposited dose to adjacent field border or area beyond irradiated fields. In terms of beam delivery techniques using multiple intensity modulated fields, dosimetric effect of scattered radiation in high energy photon beams is required to be detailed analyzed based on measurement data. The aim of this study is to evaluate dose discrepancies of pacemaker in a RTP system as compared to measured doses. We also designed dose reduction strategy limited value of 2 Gy for radiation treatment patients with cardiac implanted pacemaker. Total accumulated dose of 145 cGy based on in-vivo dosimetry was satisfied with the recommendation criteria to prevent malfunction of pacemaker in SS technique. However, the 2 mm lead shielder enabled the scattered doses to reduce up to 60% and 40% in the patient and the phantom, respectively. The SS technique with the lead shielding could reduce the accumulated scattered doses less than 100 cGy. Calculated and measured doses were not greatly affected by the beam delivery techniques. In-vivo and measured doses on pacemaker position showed critical dose discrepancies reaching up to 4 times as compared to planned doses in RTP. The current SS technique could deliver lower scattered doses than recommendation criteria, but use of 2 mm lead shielder contributed to reduce scattered doses by 60%. The tertiary lead shielder can be useful to prevent malfunction or electrical damage of implanted pacemakers during radiotherapy. It is required to estimate more accurate scattered doses of the patient or medical device in RTP to design proper dose reduction strategy.

  18. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  19. Study of the radiation scattered and produced by concrete shielding of radiotherapy rooms and its effects on equivalent doses in patients' organs

    International Nuclear Information System (INIS)

    Braga, K.L.; Rebello, W.F.; Andrade, E.R.; Gavazza, S.; Medeiros, M.P.C.; Mendes, R.M.S.; Gomes, R.G.; Silva, M.G.; Thalhofer, J.L.; Silva, A.X.; Santos, R.F.G.

    2015-01-01

    Within a radiotherapy room, in addition to the primary beam, there is also secondary radiation due to the leakage of the accelerator head and the radiation scattering from room objects, patient and even the room's shielding itself, which is projected to protect external individuals disregarding its effects on the patient. This work aims to study the effect of concrete shielding wall over the patient, taking into account its contribution on equivalent doses. The MCNPX code was used to model the linear accelerator Varian 2100/2300 C/D operating at 18MeV, with MAX phantom representing the patient undergoing radiotherapy treatment for prostate cancer following Brazilian Institute of Cancer four-fields radiation application protocol (0°, 90°, 180° and 270°). Firstly, the treatment was patterned within a standard radiotherapy room, calculating the equivalent doses on patient's organs individually. In a second step, this treatment was modeled withdrawing the walls, floor and ceiling from the radiotherapy room, and then the equivalent doses calculated again. Comparing these results, it was found that the concrete has an average shielding contribution of around 20% in the equivalent dose on the patient's organs. (author)

  20. Out-of-field organ doses and associated radiogenic risks from para-aortic radiotherapy for testicular seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Mazonakis, Michalis, E-mail: mazonak@med.uoc.gr; Berris, Theocharis; Damilakis, John [Department of Medical Physics, Faculty of Medicine, University of Crete, P. O. Box 2208, 71003 Iraklion, Crete (Greece); Varveris, Charalambos; Lyraraki, Efrossyni [Department of Radiotherapy and Oncology, University Hospital of Iraklion, 71110 Iraklion, Crete (Greece)

    2014-05-15

    Purpose: The aims of this study were to (a) calculate the radiation dose to out-of-field organs from radiotherapy for stage I testicular seminoma and (b) estimate the associated radiogenic risks. Methods: Monte Carlo methodology was employed to model radiation therapy with typical anteroposterior and posteroanterior para-aortic fields on an anthropomorphic phantom simulating an average adult. The radiation dose received by all main and remaining organs that defined by the ICRP publication 103 and excluded from the treatment volume was calculated. The effect of field dimensions on each organ dose was determined. Additional therapy simulations were generated by introducing shielding blocks to protect the kidneys from primary radiation. The gonadal dose was employed to assess the risk of heritable effects for irradiated male patients of reproductive potential. The lifetime attributable risks (LAR) of radiotherapy-induced cancer were estimated using gender- and organ-specific risk coefficients for patient ages of 20, 30, 40, and 50 years old. The risk values were compared with the respective nominal risks. Results: Para-aortic irradiation to 20 Gy resulted in out-of-field organ doses of 5.0–538.6 mGy. Blocked field treatment led to a dose change up to 28%. The mean organ dose variation by increasing or decreasing the applied field dimensions was 18.7% ± 3.9% and 20.8% ± 4.5%, respectively. The out-of-field photon doses increased the lifetime intrinsic risk of developing thyroid, lung, bladder, prostate, and esophageal cancer by (0.1–1.4)%, (0.4–1.1)%, (2.5–5.4)%, (0.2–0.4)%, and (6.4–9.2)%, respectively, depending upon the patient age at exposure and the field size employed. A low risk for heritable effects of less than 0.029% was found compared with the natural incidence of these defects. Conclusions: Testicular cancer survivors are subjected to an increased risk for the induction of bladder and esophageal cancer following para-aortic radiotherapy. The