WorldWideScience

Sample records for high-density field-reversed configuration

  1. Experimental profile evolution of a high-density field-reversed configuration

    International Nuclear Information System (INIS)

    Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.

    2006-01-01

    A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by π) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (∼10 17 cm -3 ) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter α (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD

  2. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  3. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  4. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Kiguchi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Asai, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)]. E-mail: asai@phys.cst.nihon-u.ac.jp; Takahashi, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Matsuzawa, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Okano, T. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Nogi, Y. [College of Science and Technology, Nihon University, 1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2006-11-15

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 10{sup 21} m{sup -3}, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 10{sup 19} m{sup -3} by spheromak injection. The density is about one third of the conventional formed by the z-ionized method.

  5. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    Science.gov (United States)

    2017-05-24

    THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA

  6. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  7. Particle transort in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.; Lipson, J.; Sgro, A.G.

    1981-01-01

    A field reversed configuration (FRC) is a compact toroid that contains no toroidal field. These plasmas are observed to be grossly stable for about 10-100 ..mu..sec. The lifetimes appear limited by an n = 2 rotational instability which may be caused by particle loss. Particle transport is therefore an important issue for these configurations. We investigate particle loss with a steady-state, 1-D model which approximates the experimental observation of elongated FRC equilibrium with about constant separatrix radius.

  8. Rotational instabilities in field reversed configurations

    International Nuclear Information System (INIS)

    Santiago, M.A.M.; Tsui, K.H.; Ponciano, B.M.B.; Sakanaka, P.H.

    1988-01-01

    The rotational instability (n = 2 toroidal mode) in field reversed configurations (FRC) using the ideal MHD equations in cylindrical geometry is studied. These equations are solved using a realistic densite profile, and the influence of some plasma parameters on the growth rate is analysed. The model shows good qualitative results. The growth rate increases rapidly as rotational frequency goes up and the mode m = 2 dominates over the m = 1 mode. With the variation of the density profile, it is observed that the growth rate decreases as the density dip at the center fills up. Calculated value ranges from 1/2 to 1/7 of the rotational frequency Ω whereas the measured value is around Ω/50. The developed analysis is valid for larger machines. The influence of the plasma resistivity on the mode stabilization is also analysed. The resistivity, which is the fundamental factor in the formation of compact torus, tends to decrease the growth rate. (author) [pt

  9. Rotational stability of a long field-reversed configuration

    International Nuclear Information System (INIS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-01-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone

  10. Rotational stability of a long field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  11. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    Science.gov (United States)

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  12. Ohm close-quote s law for plasmas in reversed field pinch configuration

    International Nuclear Information System (INIS)

    Martines, E.; Vallone, F.

    1997-01-01

    An analytical relationship between current density and applied electric field in reversed field pinch (RFP) plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned momentum transport caused by the magnetic field stochasticity. This Ohm close-quote s law yields current density profiles with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP experiments has been obtained. The results of the theoretical work have been compared with experimental data from the RFX experiment, and a good agreement has been found. copyright 1997 The American Physical Society

  13. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  14. Particle-confinement criteria for axisymmetric field-reversed magnetic configurations

    International Nuclear Information System (INIS)

    Hsiao, M.Y.; Miley, G.H.

    1984-01-01

    Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)

  15. A high voltage pulse generator based on silicon-controlled rectifier for field-reversed configuration experiment.

    Science.gov (United States)

    Lin, Munan; Liu, Ming; Zhu, Guanghui; Wang, Yanpeng; Shi, Peiyun; Sun, Xuan

    2017-08-01

    A high voltage pulse generator based on a silicon-controlled rectifier has been designed and implemented for a field reversed configuration experiment. A critical damping circuit is used in the generator to produce the desired pulse waveform. Depending on the load, the rise time of the output trigger signal can be less than 1 μs, and the peak amplitudes of trigger voltage and current are up to 8 kV and 85 A in a single output. The output voltage can be easily adjusted by changing the voltage on a capacitor of the generator. In addition, the generator integrates an electrically floating heater circuit so it is capable of triggering either pseudosparks (TDI-type hydrogen thyratron) or ignitrons. Details of the circuits and their implementation are described in the paper. The trigger generator has successfully controlled the discharging sequence of the pulsed power supply for a field reversed configuration experiment.

  16. Field-reversed configuration translation studies in FRX-C/T

    International Nuclear Information System (INIS)

    Chrien, R.E.; Armstrong, W.T.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Field-Reversed Configuration (FRC) translation is being studied in the FRX-C/T device. The main goals of this experiment are to demonstrate translation into a dc field region with minimal losses and to study modification of the equilibrium profiles of the FRC by varying x/sub s/, the ratio of separatrix radius (r/sub s/) to conducting wall radius (r/sub w/), through translation. FRC's are formed with a range of densities (1→5 x 10/sup 15/ cm/sup -3/) and x/sub s/ (0.35→0.55) in the FRX-C source, configured as a slightly conical theta pinch coil (r/sub w/ increases from 0.22 m to 0.28 m in four steps over 2 m). In 10→40 μs after formation, the FRC enters a 0.20-m radius stainless steel vessel with a dc field up to 8 kG. The translation velocity varies from 5→12 cm/μs and is typically about one-half the FRC Alfven velocity

  17. Internal magnetic field measurements in a translating field-reversed configuration

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  18. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  19. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  20. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  1. Macroscopic electromagnetic properties of the Irvine Field-Reversed Configuration: Equilibrium, power balance and fluctuations

    Science.gov (United States)

    Trask, Erik Harold

    The plasma parameters and characteristics of the Irvine Field-Reversed Configuration (IFRC) are summarized in this thesis. Particular emphasis is placed on the development of the different diagnostics used to make measurements in the experiment, as well as the measurements themselves. Whenever possible, actual measurements are used in lieu of theoretical or analytical fits to data. Analysis of magnetic probes (B-dots) comprises the bulk of what is known about the IFRC. From these B-dot probes, the magnetic field structure in a two dimensional plane at constant toroidal position has been determined, and has been found to be consistent with a field-reversed configuration. Peak reversed fields of approximately 250 Gauss have been observed. Further analyses have been developed to extract information from the magnetic field structure, including components of the electric field, the current density, and plasma pressure in the same two dimensional plane. Electric field magnitudes reach 600 V/m, concurrent with current densities greater than 105 Amps/m2 and thermal pressures over 200 Pa. Spectroscopic analysis of hydrogen lines has been done to make estimates of the electron temperature, while spectroscopic measurements of the Doppler broadening of the Halpha line31 have allowed an estimate of the ion temperature. Particle losses out one axial end plane measured by an array of Faraday cups quantify the how well the configuration traps particles. Spectral information derived from B-dot probes indicates that there is substantial power present at frequencies lying between the hydrogen cyclotron and mean gyrofrequency. These various measurements are used to find the following parameters that characterize the Irvine FRC: (1) Electromagnetic and thermal stored energies as functions of time. (2) Power balance, including input power from the field coils, resistive heating, power lost by particle transport and radiation, and particle and energy confinement times. (3) Strong

  2. Kinetic Stability of the Field Reversed Configuration

    International Nuclear Information System (INIS)

    E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

    2002-01-01

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments

  3. Flux loss and heating during the formation of a field-reversed configuration

    International Nuclear Information System (INIS)

    Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.

    1982-01-01

    The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field

  4. Reversed-field pinch configuration with minimum energy and finite beta

    International Nuclear Information System (INIS)

    Zhang Peng

    1989-01-01

    The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results

  5. Effects of the resistivity profile on the formation of a reversed configuration and single helicity states in compressible simulations of the reversed-field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.

    2013-01-01

    Compressible magnetohydrodynamics simulations of the reversed-field pinch (RFP) are presented. Previous simulations of the RFP, including density and pressure evolution, showed that a stationary state with a reversed toroidal magnetic field could not be obtained, contrary to the results produced with numerical codes neglecting density and pressure dynamics. The simulations described in the present paper show that including density and pressure evolution, a stationary RFP configuration can be obtained if the resistivity has a radial profile steeply increasing close to the wall. Such resistivity profile is more realistic than a uniform resistivity, since the temperature at the wall is lower than in the plasma core

  6. Field-reversed configuration confinement in TRX-1

    International Nuclear Information System (INIS)

    Steinhauer, L.; Slough, J.

    1984-01-01

    Particle and poloidal flux lifetime data from the TRX-1, field-reversed theta pinch experiment, have been used to infer information on the basic transport behavior. The field-reversed configurations were created over a broad range of plasma parameters: separatrix radii, 4-8 cm; lengths, 35-80 cm; and temperature T/sub e/ + T/sub i/, 150-1000 eV. The confinement times covered a wide range as well: Particles, tau/sub N/ = 30-170 μs; poloidal flux, tau/sub phi/ = 30-140 μs; and energy tau/sub E/ = 20-75 μs. The experimental data was divided, a priori, into three classes: 1) the triggered-reconnection mode; 2) the programmed-formation mode with a good preionization (PI); and 3) programmed formation with poor PI

  7. Particle transport in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.

    1982-05-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.

  8. Particle transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Linford, R.K.

    1982-01-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement

  9. A Mirnov loop array for field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.

    1990-01-01

    An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs

  10. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  11. Experimental studies of field-reversed configuration translation

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.; Milroy, R.D.

    1986-03-01

    In the FRX-C/T experiment (Proceedings of the 9th Symposium for Engineering Problems of Fusion Research (IEEE, New York, 1981), p. 1751), field-reversed configuration (FRC) plasmas have been formed in, and launched from, a field-reversed theta-pinch source and subsequently trapped in an adjacent confinement region. No destructive instabilities or enhanced losses of poloidal flux, particles, or thermal energy are observed for FRC total trajectories of up to 16 m. The observed translation dynamics agree with two-dimensional magnetohydrodynamic (MHD) simulations. When translated into reduced external magnetic fields, FRC's are observed to accelerate, expand, and cool in partial agreement with adiabatic theory. The plasmas reflect from an external mirror and after each reflection, the axial kinetic energy is reduced by approximately 50%. Because of this reduction, FRC's are readily trapped without the need of pulsed gate magnet coils.

  12. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  13. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  14. Reactor prospects and present status of field-reversed configurations

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1995-01-01

    Field-Reversed Configurations (FRC) have an ideal geometry for a reactor, combining high beta toroidal confinement, with a linear external geometry. Present small diameter FRCs are thought to be stabilized by kinetic effects, but recent experiments in the Large s Experiment (LSX) have demonstrated stability as well into the MHD regime. Present empirical transport coefficients are already sufficient for a small pulsed reactor, but small steady state reactors will require about an order of magnitude reduction in plasma diffusivity. 13 refs., 4 figs., 1 tab

  15. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  16. High-β, improved confinement reversed-field pinch plasmas at high density

    International Nuclear Information System (INIS)

    Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.

    2008-01-01

    In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n e =4x10 19 m -3 . Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch

  17. Mitigation of rotational instability of high-beta field-reversed configuration by double-sided magnetized plasmoid injection

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, H.; Inomoto, M. [Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Asai, T.; Takahashi, Ts. [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan)

    2014-03-15

    Active control of destructive rotational instability in a high-beta field-reversed configuration (FRC) plasma was demonstrated by using double-sided plasmoid injection technique. The elliptical deformation of the FRC's cross section was mitigated as a result of substantial suppression of spontaneous spin-up by the plasmoid injection. It was found that the injected plasmoid provided better stability against the rotational mode, suggesting that the compensation of the FRC's decaying magnetic flux might help to suppress its spin-up.

  18. Flux loss during the equilibrium phase of field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.

    1982-01-01

    Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations

  19. Flux loss during the equilibrium phase of field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.

    1982-10-01

    Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations.

  20. Formation of Field Reversed Configuration (FRC on the Yingguang-I device

    Directory of Open Access Journals (Sweden)

    Qizhi Sun

    2017-09-01

    Full Text Available As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF based on the Field Reversed Configuration (FRC, which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP, China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD.

  1. Formation of field reversed configurations in a slow, multi-turn coil system: Appendix B

    International Nuclear Information System (INIS)

    Slough, J.T.; Hoffman, A.L.

    1987-01-01

    A previous field-reversed theta pinch, TRX-1, has been modified by replacing the single turn main compression coil with an array of three-turn coils. Field reversed configurations (FRCs) have been formed at relatively low values of azimuthal electric field, where ohmic dissipation and axial compressive heating are substituted for the radial shock heating which is dominant in high voltage theta pinches. The longer magnetic field risetime has allowed various controls to be applied to the formation timing, so that the axial implosion can be made to coincide with the peak of the applied magnetic field. This 'programmed formation' control results in maximum plasma heating, and minimizes the formation dynamics

  2. Electrical design of a high current density air-core reversed-field pinch ''ZTP''

    International Nuclear Information System (INIS)

    Reass, W.A.; Cribble, R.F.; Melton, J.G.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  3. Electrical design of a high current density air-core reversed-field pinch ZTP

    International Nuclear Information System (INIS)

    Reass, W.A.; Melton, J.G.; Gribble, R.F.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  4. Theory of field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1993-01-01

    This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics

  5. The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1988-01-01

    This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab

  6. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    Science.gov (United States)

    Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2017-10-01

    Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  7. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  8. Dynamic processes in field-reversed-configuration compact toroids

    International Nuclear Information System (INIS)

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs

  9. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    International Nuclear Information System (INIS)

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  10. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-11-15

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  11. Field reversal in mirror machines

    International Nuclear Information System (INIS)

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  12. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  13. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  14. Tilt stability and compression heating studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.

    1990-01-01

    The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs

  15. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    Directory of Open Access Journals (Sweden)

    Yang Xiaokang

    2017-01-01

    Full Text Available Numerous efforts have been made at Tri-Alpha Energy (TAE to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  16. Tilting mode in rigidly rotating field-reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Milovich, J.L.

    1983-01-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant

  17. Measurements of Plasma Power Losses in the C-2 Field-Reversed Configuration Experiment

    Science.gov (United States)

    Korepanov, Sergey; Smirnov, Artem; Garate, Eusebio; Donin, Alexandr; Kondakov, Alexey; Singatulin, Shavkat

    2013-10-01

    A high-confinement operating regime with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection in the C-2 field-reversed configuration (FRC) experiment. To analyze the power balance in C-2, two new diagnostic instruments - the pyroelectric (PE) and infrared (IR) bolometers - were developed. The PE bolometer, designed to operate in the incident power density range from 0.1-100 W/cm2, is used to measure the radial power loss, which is dominated by charge-exchange neutrals and radiation. The IR bolometer, which measures power irradiated onto a thin metal foil inserted in the plasma, is designed for the power density range from 0.5-5 kW/cm2. The IR bolometer is used to measure the axial power loss from the plasma near the end divertors. The maximum measurable pulse duration of ~ 10 ms is limited by the heat capacitance of the IR detector. Both detectors have time resolution of about 10-100 μs and were calibrated in absolute units using a high power neutral beam. We present the results of first direct measurements of axial and radial plasma power losses in C-2.

  18. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  19. The large-s field-reversed configuration experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Carey, L.N.; Crawford, E.A.; Harding, D.G.; DeHart, T.E.; McDonald, K.F.; McNeil, J.L.; Milroy, R.D.; Slough, J.T.; Maqueda, R.; Wurden, G.A.

    1993-01-01

    The Large-s Experiment (LSX) was built to study the formation and equilibrium properties of field-reversed configurations (FRCs) as the scale size increases. The dynamic, field-reversed theta-pinch method of FRC creation produces axial and azimuthal deformations and makes formation difficult, especially in large devices with large s (number of internal gyroradii) where it is difficult to achieve initial plasma uniformity. However, with the proper technique, these formation distortions can be minimized and are then observed to decay with time. This suggests that the basic stability and robustness of FRCs formed, and in some cases translated, in smaller devices may also characterize larger FRCs. Elaborate formation controls were included on LSX to provide the initial uniformity and symmetry necessary to minimize formation disturbances, and stable FRCs could be formed up to the design goal of s = 8. For x ≤ 4, the formation distortions decayed away completely, resulting in symmetric equilibrium FRCs with record confinement times up to 0.5 ms, agreeing with previous empirical scaling laws (τ∝sR). Above s = 4, reasonably long-lived (up to 0.3 ms) configurations could still be formed, but the initial formation distortions were so large that they never completely decayed away, and the equilibrium confinement was degraded from the empirical expectations. The LSX was only operational for 1 yr, and it is not known whether s = 4 represents a fundamental limit for good confinement in simple (no ion beam stabilization) FRCs or whether it simply reflects a limit of present formation technology. Ideally, s could be increased through flux buildup from neutral beams. Since the addition of kinetic or beam ions will probably be desirable for heating, sustainment, and further stabilization of magnetohydrodynamic modes at reactor-level s values, neutral beam injection is the next logical step in FRC development. 24 refs., 21 figs., 2 tabs

  20. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2003-01-01

    The profile relaxation from a magnetic hydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  1. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-10-01

    The profile relaxation from a magnetohydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  2. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-01-01

    The profile relaxation from a magnetichydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) in investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulations is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic is effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  3. Coupled transport in field-reversed configurations

    Science.gov (United States)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  4. Field-reversed configuration produced by a linear theta-pinch, Tupa-1

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.; Sakanaka, P.H.; Machida, M.

    1987-01-01

    The formation of field reversed configuration, FRC, in one meter mirrorless linear theta-pinch device Tupa-I was observed. This configuration was studied during the first half magnetic cycle of ringing main bank discharge using magnetic probes. The separatrix radius by the exclude flux probe and the ion temperature by visible spectroscopy were measured. The plasma dynamics was observed by the image converter camera. A clear indication of the formation of FRC due to reconnection of the antiparallel bias to the main field and a fast reconnection, less than 0.2 microsec, that is explained in terms of forced reconnection driven by the Kruskal-Schwarzschild instability, are also observed. (author) [pt

  5. Resistive m=o mode in reverse-field configurations

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Santiago, M.A.M.

    1982-01-01

    The resistive m=0 mode is studied. Where m is the azimuthal mode number in magnetic confinement configurations with parallel field lines such that the magnetic field reverses direction inside the plasma. A cylindrical plasma column which rotates rigidly with a rotation velocity Ω is considered. It is found that the growth rate of the mode γ scales differently with the plasma resistivity depending on whether Ω vanishes or not; γα sup(3/5) for Ω=0 and γα sup(1/3) for Ω different 0. When the Hall term is also included in the generalized Ohm's law, γα sup(1/2) is obtained. This last result is in disagreement with the results of Krappraff et al. (Author) [pt

  6. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    International Nuclear Information System (INIS)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-01-01

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics

  7. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-03-31

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.

  8. FRC [field-reversed configuration] translation studies on FRX-C/LSM

    International Nuclear Information System (INIS)

    Rej, D.; Barnes, G.; Baron, M.

    1989-01-01

    In preparation for upcoming compression-heating experiments, field-reversed configurations (FRCs) have been translated out of the FRX-C/LSM θ-pinch source, and into the 0.4-m-id, 6.7-m-long translation region formerly used on FRX-C/T. Unlike earlier experiments FRCs are generated without magnetic tearing in the larger FRX-C/LSM source (nominal coil id = 0.70 m, length = 2 m); larger, lower-energy-density FRCs are formed: r/sub s/ ≅ 0.17 m, B/sub ext/ ≅ 0.35 T, ≅ 7 /times/ 10 20 m/sup /minus/3/ and T/sub e/ + T/sub i/ ≅ 400 eV. An initial 3-mtorr D 2 pressure is introduced by either static or puff fill. Asymmetric fields from auxiliary end coils (used for non-tearing formation) provide the accelerating force on the FRC, thereby eliminating the need for a conical θ-pinch coil. An important feature is the abrupt 44% decrease in the flux-conserving wall radius at the transition between the θ-pinch and translation region, similar to that in the compressor. In this paper we review a variety of issues addressed by the recent translation experiments: translation dynamics; translation through a modulated magnetic field; stabilization of the n = 2 rotational instability by weak helical quadrupole fields; and confinement properties. Results from internal magnetic field measurements in translating FRCs may be found in a companion paper. 10 refs., 5 figs

  9. Non-stationary classical diffusion in field - reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.

    1988-01-01

    Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt

  10. Analytic, two fluid, field reversed configuration equilibrium with sheared rotation

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1989-01-01

    A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters

  11. Translation of field-reversed configurations in the FRX C/T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Milroy, R.D.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device.

  12. Translation of field-reversed configurations in the FRX C/T experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.

    1984-01-01

    One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device

  13. Electron temperature in field reversed configurations and theta pinches with closed magnetic field lines

    International Nuclear Information System (INIS)

    Newton, A.A.

    1986-01-01

    Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)

  14. Compact toroid development: activity plan for field reversed configurations

    International Nuclear Information System (INIS)

    1984-06-01

    This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC). This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives

  15. Profile stabilization of tilt mode in a Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  16. Profile stabilization of tilt mode in a Field Reversed Configuration

    International Nuclear Information System (INIS)

    Cobb, J.W.; Tajima, T.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed

  17. Studies of a poloidal divertor reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Dexter, R.N.; Prager, S.C.; Sprott, J.C.

    1988-07-01

    An attempt has been made to form a reversed field pinch (RFP) in a poloidal divertor configuration which position the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four internal aluminum rings. Plasmas were formed with plasma current /approximately/135 kA, toroidal field reversal lasting /approximately/1 msec, line-averaged density /approximately/1--2 /times/ 10 13 cm/sup /minus/3/ and central electron temperature /approximately/55 eV, but a large asymmetry in the magnetic field (δB/B /approximately/40%) onset at about the time the toroidal field reversed at the wall. Symmetric, poloidal divertor RFP equilibria were not formed. This behavior might be expected based on linear MHD stability analysis of a cylindrical plasma bounded by a large vacuum region and distant conducting wall. The symmetric equilibrium before the asymmetry develops and the asymmetry itself are described. 15 refs., 3 figs

  18. US-Japan workshop on field-reversed configurations with steady-state high-temperature fusion plasmas and the 11th US-Japan workshop on compact toroids

    International Nuclear Information System (INIS)

    Barnes, D.C.; Fernandez, J.C.; Rej, D.J.

    1990-05-01

    The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately

  19. US-Japan workshop on field-reversed configurations with steady-state high-temperature fusion plasmas and the 11th US-Japan workshop on compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D.C.; Fernandez, J.C.; Rej, D.J. (comps.)

    1990-05-01

    The US-Japan Workshop on Field-Reversed Configurations with Steady-State High-Temperature Fusion Plasma and the 11th US-Japan Workshop on Compact Toroids were held at Los Alamos National Laboratory, Los Alamos, New Mexico on November 7--9, 1989. These proceedings contain the papers presented at the workshops as submitted by the authors. These papers have been indexed separately.

  20. Kinetic stability of field-reversed configurations

    International Nuclear Information System (INIS)

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria

  1. Engineering and physics of high-power-density, compact, reversed-field-pinch fusion reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Krakowski, R.A.; Schultz, K.R.; Steiner, D.

    1989-01-01

    The technical feasibility and key developmental issues of compact, high-power-density Reversed-Field-Pinch (RFP) reactors are the primary results of the TITAN RFP reactor study. Two design approaches emerged, TITAN-I and TITAN-II, both of which are steady-state, DT-burning, circa 1000 MWe power reactors. The TITAN designs are physically compact and have a high neutron wall loading of 18 MW m 2 . Detailed analyses indicate that: a) each design is technically feasible; b) attractive features of compact RFP reactors can be realized without sacrificing the safety and environmental potential of fusion; and c) major features of this particular embodiment of the RFP reactor are retained in a design window of neutron wall loading ranging from 10 to 20 MW/m 2 . A major product of the TITAN study is the identification and quantification of major engineering and physics requirements for this class of RFP reactors. These findings are the focus of this paper. (author). 26 refs.; 4 figs.; 1 tab

  2. Tearing relaxation and the globalization of transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren; Barnes, D. C.

    2009-01-01

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  3. Laser heating of field-reversed configurations

    International Nuclear Information System (INIS)

    Carson, R.S.; Vlases, G.C.

    1983-01-01

    The experimental facility is a 21-cm-long solenoid with a 5.5-cm bore. The 4-cm ID quartz tube is filled with slowly flowing H 2 to 0.5-3.0 torr. Fields up to 6.5 T in 3.7 μsec are produced, with reverse-bias fields up -1.9 T. Preionization is by 40kA axial discharge 4.5 μsec before field-reversal is begun. The CO 2 laser used produces 300 to 400 J in 2 μsec, in an annular beam that can be defocused for preheating the outer edges of the plasma, or focused tightly for central-column heating and beam propagation during formation. The focusing system includes a return mirror for multiple passing of the laser energy. Diagnostics include compensated, diamagnetic flux loops, internal field probes, cross-tube and axial interferometers, fast photography, and spectroscopy

  4. Effects of background neutral particles on a field-reversed configuration plasma in the translation process

    International Nuclear Information System (INIS)

    Matsuzawa, Yoshiki; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2008-01-01

    A field-reversed configuration (FRC) plasma was translated into a weakly ionized plasma and the effects of heating and particle buildup of the FRC plasma due to the background neutral particles and plasma injection in the translation process were investigated. Improvement of the particle and poloidal flux confinements and delay of onset of n=2 rotational instability were observed in the translation process. It was found that the internal structure of the plasma pressure (plasma temperature and density) at the separatrix and field null was deformed by the particle injection. FRC plasma translation through the background particles was equivalent to an end-on particle beam injection to the FRC plasma. Particles and energy were supplied during the translation. The results obtained for the phenomena of particle supply and plasma heating were also supported by the results of two-dimensional particle simulation. The effects of background particle injection appear to be a promising process for the regeneration of translation kinetic energy to plasma internal energy

  5. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMFo)

    International Nuclear Information System (INIS)

    Glasser, A.H.; Cohen, S.A.

    2001-01-01

    The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate

  6. Computational study of the influence of mirror parameters on FRC (field-reversed configuration) equilibria:

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Sakanaka, P.H.

    1990-01-01

    Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)

  7. Hall magnetohydrodynamics simulations of end-shorting induced rotation in field-reversed configurations

    International Nuclear Information System (INIS)

    Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-01-01

    End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E T is set to zero at the axial boundaries in an extended MHD model that includes the Hall and ∇P e terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed

  8. Compact toroid injection fueling in a large field-reversed configuration

    Science.gov (United States)

    Asai, T.; Matsumoto, T.; Roche, T.; Allfrey, I.; Gota, H.; Sekiguchi, J.; Edo, T.; Garate, E.; Takahashi, Ts.; Binderbauer, M.; Tajima, T.

    2017-07-01

    A repetitively driven compact toroid (CT) injector has been developed for the large field-reversed configuration (FRC) facility of the C-2/C-2U, primarily for particle refueling. A CT is formed and injected by a magnetized coaxial plasma gun (MCPG) exclusively developed for the C-2/C-2U FRC. To refuel the particles of long-lived FRCs, multiple CT injections are required. Thus, a multi-stage discharge circuit was developed for a multi-pulsed CT injection. The drive frequency of this system can be adjusted up to 1 kHz and the number of CT shots per injector is two; the system can be further upgraded for a larger number of injection pulses. The developed MCPG can achieve a supersonic ejection velocity in the range of ~100 km s-1. The key plasma parameters of electron density, electron temperature and the number of particles are ~5  ×  1021 m-3, ~30 eV and 0.5-1.0  ×  1019, respectively. In this project, single- and double-pulsed counter CT injection fueling were conducted on the C-2/C-2U facility by two CT injectors. The CT injectors were mounted 1 m apart in the vicinity of the mid-plane. To avoid disruptive perturbation on the FRC, the CT injectors were operated at the lower limit of the particle inventory. The experiments demonstrated successful refueling with a significant density build-up of 20-30% of the FRC particle inventory per single CT injection without any deleterious effects on the C-2/C-2U FRC.

  9. Final report for the field-reversed configuration power plant critical-issue scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.

    2001-03-01

    This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.

  10. Magnetic cusp and electric nested- or single-well configurations for high density antihydrogen and fusion nonneutral plasma applications

    International Nuclear Information System (INIS)

    Ordonez, C. A.

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  11. Magnetic Cusp and Electric Nested- or Single-Well Configurations for High Density Antihydrogen and Fusion Nonneutral Plasma Applications

    International Nuclear Information System (INIS)

    C.A. Ordonez

    1999-01-01

    Malmberg-Penning traps have had limited uses for applications that require high density nonneutral plasma confinement. For such traps, the density is severely limited because a magnetic field is used to provide a radially inward force to balance both self-electric and centrifugal radially outward forces. A possible way to confine higher density nonneutral plasmas is to use a magnetic cusp configuration. An annular nonneutral plasma would be confined in the radial magnetic field of a magnetic cusp such that radial confinement is provided by an externally produced electric potential well while axial confinement is provided by the magnetic field. In addition, a radial electric potential profile having a nested-well configuration can be used to simultaneously confine two oppositely signed plasma species (e.g., positrons and antiprotons) that overlap. In the work reported, various aspects of using magnetic cusp configurations and electric nested-well configurations are considered. Plasma confinement with these configurations may be useful for obtaining fast antihydrogen recombination and trapping rates and for achieving practical fusion power production

  12. Rethermalization of a field-reversed configuration plasma in translation experiments

    International Nuclear Information System (INIS)

    Himura, H.; Okada, S.; Sugimoto, S.; Goto, S.

    1995-01-01

    A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field. copyright 1995 American Institute of Physics

  13. One-dimensional modeling of plasma diffusion in field reversed configurations

    International Nuclear Information System (INIS)

    Hamasaki, S.; Krall, N.A.

    1986-03-01

    Over the past several years, a picture has emerged of transport in field reversed configuration (FRC) which explains many, though not all, of the loss phenomena observed in that device. That picture is complicated by the geometry, which includes both magnetically connected and magnetically isolated regions, and by the transport process, which includes a substantial contribution from short wavelength, fast time scale processes. This paper extends our previous work on this topic by carrying a one-dimensional model as far as it can be carried, in terms of goemetrical and physical consistency, and isolates the difference between the model and experiment as coming from phenomena beyond the scope of 1-D anomalous transport

  14. The separatrix radius measurement of field-reversed configuration plasma in FRX-L

    International Nuclear Information System (INIS)

    Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.

    2004-01-01

    Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  15. CFRX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies

    International Nuclear Information System (INIS)

    Hsiao Mingyuan

    1989-01-01

    A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. A typical example of the code results is also given. (orig.)

  16. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  17. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky

    2005-04-13

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.

  18. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    International Nuclear Information System (INIS)

    Landsman, A.S.; Cohen, S.A.; Edelman, M.; Zaslavsky, G.M.

    2005-01-01

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar(copyright) surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics

  19. Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations

    International Nuclear Information System (INIS)

    Finn, J.M.; Sudan, R.N.

    We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed

  20. Overview of C-2W Field-Reversed Configuration Experimental Program

    Science.gov (United States)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  1. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  2. Edge-plasmas and wall protection in RFPs [Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1988-01-01

    The Reverse-Field Pinch (RFP) has the ability to operate as a compact, moderate-to-high beta, high-power-density system. A compact system requires careful control of the particle and heat fluxes impinging on plasma-facing components. A strongly recycling, toroidal-field open divertor combined with a highly radiating (>90% of plasma heating power) core plasma is required. An open divertor configuration locates the plate near the field null to take advantage of the flux expansion and minimum poloidal asymmetries to minimize peak heat fluxes. The physics and engineering requirements are quantitatively discussed for an evolutionary sequence of impurity/ash-control schemes for AT-40M (0.4 MA) → ZT-P (0.08 MA) → ZTH (2-4 MA) → FTF/RFP (10 MA) → TITAN (18 MA). 13 refs., 5 figs., 2 tabs

  3. Internal tilting and classical transport for field-reversed configurations based on the Maschke--Hernegger solution

    International Nuclear Information System (INIS)

    Clemente, R.A.; Grillo, C.E.

    1984-01-01

    It is shown that elongated field-reversed configurations based on the Maschke--Hernegger solution of the Grad--Shafranov equation are unstable to internal tilting. The particle transport properties across the flux surfaces of such a model are also considered in the limit of large elongation of the separatrix. An estimation of the time of confinement of particles in terms of classical conductivity, which is lower than previous estimates, is given

  4. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    Science.gov (United States)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  5. Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device

    Science.gov (United States)

    Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team

    2014-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.

  6. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    Science.gov (United States)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  7. Positional stability of field-reversed-configurations in the presence of resistive walls

    Energy Technology Data Exchange (ETDEWEB)

    Rath, N., E-mail: nrath@trialphanenergy.com; Onofri, M.; Barnes, D. C. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-06-15

    We show that in a field-reversed-configuration, the plasma is unstable to either transverse or axial rigid displacement, but never to both. Driving forces are found to be parallel to the direction of displacement with no orthogonal components. Furthermore, we demonstrate that the properties of a resistive wall (geometry and resistivity) in the vicinity of the plasma do not affect whether the plasma is stable or unstable, but in the case of an unstable system determine the instability growth rate. Depending on the properties of the wall, the instability growth is dominated by plasma inertia (and not affected by wall resistivity) or dominated by ohmic dissipation of wall eddy currents (and thus proportional to the wall resistivity).

  8. Los Alamos field-reversed configuration (FRC) research

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.

  9. Los Alamos field-reversed configuration (FRC) research

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R 2 . A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction

  10. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Belova, E.V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.

    2008-01-01

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state

  11. Study on improvement of the lifetime of a field-reversed configuration by tangential neutron beam injection

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kondoh, Yoshiomi; Hirano, Yoichi; Asai, Tomohiko; Takahashi, Tsutomu; Mizuguchi, Naoki; Tomita, Yukihiro

    2006-01-01

    The numerical analysis of neutron beam injection (NBI) is carried out to keep the stationary conditions of the field-reversed configuration (FRC) plasma. The ionization process of neutron beam was reproduced by the Monte Carlo method. A confinement of 15 keV beam ion was investigated using the sharp of stormer region obtained by the position and velocity at a moment of ionization. The relation between the external magnetic field B ex [T] and radius of machine r w [m] was shown by B ex = 0.1 r w -3/4 . The power imparted to plasma was estimated by beam ion orbital calculation. The confinement coefficient of beam ion was lost by re-charge-exchange reaction with deuterium; this fact was discovered at first. In order to keep the configuration of plasma under the conditions of 0.2 T of the external magnetic field, 0.4 m of radius, and 100 eV ion temperature, about 17 MW/m NBI power is needed. (S.Y.)

  12. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  13. Losses of neutral injected fast ions due to adiabaticity breaking processes in a field-reversed configuration

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Inoue, Koji; Ishizuka, Takashi; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-02-01

    Losses of neutral beam (NB) injected fast ions from the confinement region of a Field-Reversed Configuration (FRC) with a strong magnetic mirror are numerically analyzed for parameters relevant to NB injection experiments on the FIX (FRC injection experiment) device [T. Asai et al., Phys. Plasmas 7, 2294 (2000)]. Ionization processes of beam particles are calculated by the Monte Carlo method. The confinement of beam ions is discussed with the concept of accessible regions that restrict the ion excursion and are determined from two constants of motion, the kinetic energy and canonical angular momentum, in the case of an axisymmetric and a steady state FRC without an electrostatic field. From the calculation of the accessible regions, it is found that all the fast ions suffer from the orbit loss on the wall surface and/or the end loss. Single particle orbits are also calculated to find a difference of confinement properties from the results by employing the accessible regions. The magnetic moment is observed to show non-adiabatic motions of the beam ions, which cause a gradual orbit loss on the wall even in a case that a strong magnetic mirror is applied. The results show that the correlation of the magnetic moment disappears as the fast ions experience the density gradient around the separatrix surface and the field-null points. (author)

  14. Proposal for the ZT-40 reversed-field Z-pinch experiment

    International Nuclear Information System (INIS)

    Baker, D.A.; Machalek, M.D.

    1977-08-01

    A next-generation, toroidal, reversed-field Z-pinch experiment to be constructed at LASL is proposed. On the basis of encouraging ZT-I and ZT-S experimental results, a larger device with a 40-cm bore and a 114-cm major radius is proposed, to extend the confinement time by about an order of magnitude. The new experiment will explore the physics of programming reversed-field pinches in a size range unexplored by previous reversed-field pinch experiments. Model reversed-field pinch reactor calculations show that, if stability is assumed, small fusion reactors are possible if the pinch current density is high. A basic aim will be to delineate the plasma and current density ranges in which stable reversed-field pinches can be produced. Improved vacuum techniques will be used to overcome the radiation losses that probably kept electron temperatures low in the earlier, smaller experiments

  15. Thermal instabilities in the edge region of reversed-field pinches

    International Nuclear Information System (INIS)

    Goedert, J.; Mondt, J.P.

    1984-04-01

    Thermal stability of the edge region of reversed-field pinch configurations is analyzed within the context of a two-fluid model. Two major sources of instability are identified in combination with a parallel electric field: either an electron temperature gradient and/or a density gradient that leads to rapid growth (of several to many ohmic heating rates) over a region of several millimeters around the mode-rational surfaces in the edge region. The basic signature of both instabilities is electrostatic. In the case of the density gradient mode, the signature relies on the effects of electron compressibility, whereas the temperature gradient mode can be identified as the current-convective instability by taking the limit of zero diamagnetic drift, density gradient, thermal force, drift heat flux, and electron compressibility

  16. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device.

    Science.gov (United States)

    Matsumoto, T; Sekiguchi, J; Asai, T; Gota, H; Garate, E; Allfrey, I; Valentine, T; Morehouse, M; Roche, T; Kinley, J; Aefsky, S; Cordero, M; Waggoner, W; Binderbauer, M; Tajima, T

    2016-05-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10(21) m(-3), ∼40 eV, and 0.5-1.0 × 10(19), respectively.

  17. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T., E-mail: cstd14003@g.nihon-u.ac.jp; Sekiguchi, J.; Asai, T. [College of Science and Technology, Nihon University, 1-8-14 Kanda, Chiyoda-ku, Tokyo 1018308 (Japan); Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Tajima, T. [Tri Alpha Energy, Inc., P.O. Box 7010 Rancho Santa Margarita, California 92688 (United States); Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-05-15

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10{sup 21} m{sup −3}, ∼40 eV, and 0.5–1.0 × 10{sup 19}, respectively.

  18. Development of a magnetized coaxial plasma gun for compact toroid injection into the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Garate, E.; Allfrey, I.; Valentine, T.; Morehouse, M.; Roche, T.; Kinley, J.; Aefsky, S.; Cordero, M.; Waggoner, W.; Binderbauer, M.; Tajima, T.

    2016-01-01

    A compact toroid (CT) injector was developed for the C-2 device, primarily for refueling of field-reversed configurations. The CTs are formed by a magnetized coaxial plasma gun (MCPG), which consists of coaxial cylindrical electrodes and a bias coil for creating a magnetic field. First, a plasma ring is generated by a discharge between the electrodes and is accelerated by Lorenz self-force. Then, the plasma ring is captured by an interlinkage flux (poloidal flux). Finally, the fully formed CT is ejected from the MCPG. The MCPG described herein has two gas injection ports that are arranged tangentially on the outer electrode. A tungsten-coated inner electrode has a head which can be replaced with a longer one to extend the length of the acceleration region for the CT. The developed MCPG has achieved supersonic CT velocities of ∼100 km/s. Plasma parameters for electron density, electron temperature, and the number of particles are ∼5 × 10"2"1 m"−"3, ∼40 eV, and 0.5–1.0 × 10"1"9, respectively.

  19. Design of a fully-fiber multi-chord interferometer and a new phase-shift demodulation method for field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Dongfan, E-mail: fangdongfan1208@126.com; Sun, Qizhi; Zhao, Xiaoming; Jia, Yuesong [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAEP, P. O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-05-15

    A 633 nm laser interferometer has been designed based on a novel concept, which, without the acousto-optic modulator or the demodulator circuit, adopts the fibers to connect all elements except photodetectors and oscilloscope in this system to make it more compact, portable, and efficient. The noteworthy feature is to mathematically compare the two divided interference signals, which have the same phase-shift caused by the electron density but possess the different initial phase and low angular frequencies. It is possible to read the plasma density directly on the oscilloscope by our original mathematic demodulation method without a camera. Based on the Abel inversion algorithm, the radial electron density profiles versus time can be obtained by using the multi-chord system. The designed measurable phase shift ranges from 0 to 2π rad corresponding to the maximum line integral of electron density less than 3.5 × 10{sup 17} cm{sup −2}, and the phase accuracy is about 0.017 rad corresponding to the line integral of electron density accuracy of 1 × 10{sup 15} cm{sup −2}. After the construction of eight-chord interferometer, it will provide the detailed time resolved information of the spatial distribution of the electron density in the field-reversed configuration (FRC) plasma target produced by the “Yingguang-1” programmed-discharge device, which is being constructed in the Key Laboratory of Pulsed Power, China Academy of Engineering Physics.

  20. Non-local kinetic transport studies of a field-reversed configuration. Annual technical report, July 1, 1987-June 30, 1988

    International Nuclear Information System (INIS)

    Choi, C.K.

    1988-01-01

    The Field Reversed Configuration (FRC) is a type of plasma experiment of current interest in fusion research. The life of an FRC can be divided into two periods, a highly dynamic formation phase followed by a quiescent equilibrium phase. The FRC can be a viable source of fusion energy only if the confinement properties of the equilibrium phase are sufficient for breakeven. The purpose of this report is to provide the FRC theory community with equilibrium models that have been found to be useful. Three equilibrium models are presented: a kinetic model, a rigidly rotating model, and an MHD model

  1. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  2. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  3. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  4. Stability of the field-reversed mirror

    International Nuclear Information System (INIS)

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  5. Murakami density limit in tokamaks and reversed-field pinches

    International Nuclear Information System (INIS)

    Perkins, F.W.; Hulse, R.A.

    1984-03-01

    A theoretical upper limit for the density in an ohmically heated tokamak discharge follows from the requirement that the ohmic heating power deposited in the central current-carrying channel exceed the impurity radiative cooling in this critical region. A compact summary of our results gives this limit n/sub M/ for the central density as n/sub M/ = [Z/sub e//(Z/sub e/-1]/sup 1/2/n/sub eo/ (B/sub T//1T)(1m/R) where n/sub eo/ depends strongly on the impurity species and is remarkably independent of the central electron temperature T/sub e/(0). For T/sub e/(0) approx. 1 keV, we have n/sub eo/ = 1.5 x 10 14 cm -3 for beryllium, n/sub eo/ = 5 x 10 13 cm -3 for oxygen, n/sub eo/ = 1.0 x 10 13 cm -3 for iron, and n/sub eo/ = 0.5 x 10 13 cm -3 for tungsten. The results agree quantitatively with Murakami's original observations. A similar density limit, known as the I/N limit, exists for reversed-field pinch devices and this limit has also been evaluated for a variety of impurity species

  6. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  7. Effective Spend Management Through Electronic Reverse Auction Configurations

    Directory of Open Access Journals (Sweden)

    Mojmír Prídavok

    2013-07-01

    Full Text Available The purpose of the paper is to analyz wide range of possible auction strategies and configurations of eRA, with respect to the ever changing market conditions. Electronic reverse auction (eRA represents an electronic sourcing method of competitive bidding among a number of qualified suppliers. Theory assumes that eRA represents pure market environment with information perfectly distributed between both buyers and suppliers. Although initial eRA cost savings in B2B could be as high as 40%, without deeper knowledge of different auctions strategies and configurations, additional cost reductions are not possible. To identify crucial determinant, the statistical (correlation analysis on the data set of more than 18.000 auction items with different configuration parameters was conducted. Findings suggest that the more bidders are invited to the eRA, the better results could be expected. Additionally, the complexity of the eRA parameterization does not seem to influent the success of the eRA. These results can influence usage and SW development of eRA application in real environment. This research extends already realized studies in the field of electronic auctions for the B2B processes

  8. Turbulent transport in reversed field pinches

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1976-01-01

    MHD stability of the Reversed Field Pinch (RFP) relies on reversal of the toroidal field component in the outer plasma region. Interest in this configuration comes from its potential economic advantages as a thermonuclear reactor, since compared to a Tokamak the RFP supports a higher value of β, the ratio between plasma and total magnetic pressure. Results of computations on the time-evolution of the RFP using a 1D MHD model are reported. (orig./GG) [de

  9. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  10. Field reversed theta pinch TC-I UNICAMP

    International Nuclear Information System (INIS)

    Honda, R.Y.; Machida, M.; Aramaki, E.A.; Porto, P.; Berni, L.A.

    1990-01-01

    Field reversed configuration TC-I device is 16 cm diameter, 1 meter long with two mirror coils and 30 kJ field reversed theta pinch working for over two years at University of Campinas. Its implosion dynamics and field reversal parameters have been studied using flux excluded loops, internal magnetic probe, visible spectroscopy, photodiode array and image converter camera. The vacuum vessel is a pyrex tube of 14,5 cm diameter pumped with a liquid nitrogen cooled diffusion pump to a base pressure of 6 x 10 -7 Torr. The schematic view of the machine and experimental set up are shown. (Author)

  11. Field reversal experiments (FRX)

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1979-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centres the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFCs with a major radius R=2-6cm, a minor radius a approximately 2cm, and a total length l approximately 35cm. The observed temperatures are Tsub(e) approximately 100eV and Tsub(i)=150-350eV with a peak density n approximately 2x10 15 cm -3 . After the plasma has reached equilibrium, the RFC remains stable for up to 30μs, followed by the rapid growth of the rotational m=2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behaviour of the m=2 mode agrees qualitatively with the theoretically predicted instability for rotational velocities exceeding some critical value. (author)

  12. Field reversal experiments (FRX)

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10 15 cm -3 . After the plasma reaches equilibrium, the RFC remains stable for up to 30 μs followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value

  13. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2005-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  14. Impurity screening in high density plasmas in tokamaks with a limiter configuration

    International Nuclear Information System (INIS)

    Ferro, C.; Zanino, R.

    1992-01-01

    Impurity screening in high density plasmas in tokamaks with a limiter configuration is investigated by means of a simple semi-analytical model. An iterative scheme is devised, in order to determine self-consistently the values of scrape-off layer thickness, edge electron density and temperature, and main plasma contamination parameter Z eff , as a function of given average electron density and temperature in the main plasma and given input power. The model is applied to the poloidal limiter case of the Frascati Tokamak Upgrade, and results are compared with experimental data. A reasonable agreement between the trends is found, emphasizing the importance of a high edge plasma density for obtaining a clean main plasma in limiter tokamaks. (orig.)

  15. A one-and-a-quarter-dimensional transport code for field-reversed configuration studies: A user's guide for CFRX

    International Nuclear Information System (INIS)

    Hsiao, Ming-Yuan; Werley, K.A.; Ling, Kuok-Mee.

    1988-05-01

    A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. Input, output, and structure of the code are described in detail. A typical example of the code results is also given. 20 refs., 21 figs., 7 tabs

  16. Equilibrium paradigm for field-reversed configurations and application to experiments

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.; Intrator, T. P.

    2009-01-01

    Fresh insights on field-reversed configurations (FRCs) are incorporated in a new paradigm for equilibria. In particular four new or unappreciated properties are accounted for: an empirically based scrape-off layer thickness; a new, more accurate axial force balance relation; viscous force regularity at the O-point; and the broken-surface effect. The new paradigm corrects glaring defects of previous models (rigid rotor, Hill's vortex). Further, the new paradigm is simple enough to be easily used as an interpretive tool despite the limited data suite in most experiments. It is applied to the newly enhanced FRC data compendium, a database of 69 records from 15 facilities. Several important observations and corrections on the previous understanding of FRCs follow, three of which stand out. (1) The traditional axial force balance ('average-β' relation) gives an inaccurate scaling with the separatrix-to-wall radius ratio. (2) The improved equilibrium paradigm yields separatrix particle transport rates of 3-5 m 2 /s for 'best confinement' examples; this is a factor of three lower than crude 'bulk' estimates commonly used. (3) The transport compared to the Bohm rate shows a great deal of scatter (40% scatter/mean ratio), i.e., 'Bohm' is not a useful representation for transport scaling.

  17. Los Alamos Compact Toroid, fast liner, and High-Density Z-Pinch programs

    International Nuclear Information System (INIS)

    Linford, R.K.; Hammel, J.E.; Sherwood, H.R.

    1982-01-01

    The compact Toroid and High Density Z-Pinch are two of the plasma configurations presently being studied at Los Alamos. This paper summarizes these two programs along with the recently terminated Fast Liner Program. Included in this discussion is an analysis of compact Toroid formation techniques showing the tearing and reconnection of the fields that separate the spheromak from the radial fields of the coaxial source, and the final equilibrium state of the elongated FRC in the theta-pinch coil. In addition the typical dimensions of the geometry of the Fast Liner experiments are delineated Z-pinch and electrode assembly is displayed as is a graphic of the temporal behavior of the current required for radial equilibrium. Spheromak is examined in terms of formation, gross stability, and equilibrium and field reversed configuration is discussed in terms of gross stability, equilibrium, and confinement scaling

  18. Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability

    Energy Technology Data Exchange (ETDEWEB)

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-01-28

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.

  19. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasaka, Naotaka

    2004-04-01

    Effects of Coulomb collisions on neutral beam (NB) injected fast ions into Field-Reversed Configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing down and pitch angle collisions. The Monte-Carlo method is used for the pitch angle scattering, and the friction term is added to the equation of motion to show effects of slowing down collision such as the deposited power profile. Calculation parameters used are relevant to the NB injection on the FRC Injection Experiment (FIX) device. It is found that the dominant local power deposition occurs in the open field region between the X-point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found negligible. The loss mechanism due to non-adiabatic fast ion motion, which is intrinsic in non-uniform FRC plasmas, affects much greater than the pitch angle scattering by Coulomb collision. (author)

  20. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    International Nuclear Information System (INIS)

    Malmberg, Jenny-Ann

    2003-06-01

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  1. Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Yu, He; Meng, Liang; Szott, Matthew M; Meister, Jack T; Cho, Tae S; Ruzic, David N

    2013-01-01

    An effort to optimize the magnetic field configuration specifically for high-power impulse magnetron sputtering (HiPIMS) was made. Magnetic field configurations with different field strengths, race track widths and race track patterns were designed using COMSOL. Their influence on HiPIMS plasma properties was investigated using a 36 cm diameter copper target. The I–V discharge characteristics were measured. The temporal evolution of electron temperature (T e ) and density (n e ) was studied employing a triple Langmuir probe, which was also scanned in the whole discharge region to characterize the plasma distribution and transport. Based on the studies, a closed path for electrons to drift along was still essential in HiPIMS in order to efficiently confine electrons and achieve a high pulse current. Very dense plasmas (10 19 –10 20 m −3 ) were generated in front of the race tracks during the pulse, and expanded downstream afterwards. As the magnetic field strength increased from 200 to 800 G, the expansion became faster and less isotropic, i.e. more directional toward the substrate. The electric potential distribution accounted for these effects. Varied race track widths and patterns altered the plasma distribution from the target to the substrate. A spiral-shaped magnetic field design was able to produce superior plasma uniformity on the substrate in addition to improved target utilization. (paper)

  2. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Hagenson, R.L.; Copenhaver, C.; Werley, K.A.

    1986-01-01

    The unique confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact, high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media power cycle driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) with a power density and mass approaching values characteristic of pressurized-water fission rectors. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. After describing the main physics and technology issues for this base-case reactor, directions for future study are suggested

  3. Recent studies of Reversed-Field Pinch reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    The reactor prognoses of a class of confinement scheme that relies primarily on self-fields induced by axial currents flowing within a plasma column are presented. The primary focus has been placed on the toroidal Reversed-Field Pinch (RFP). At the limit of very large current densities is the gas-embedded Dense Z-Pinch (DZP), a small-radius, linear device. Past conventional RFP reactor designs are reviewed. The extention of these conventional RFP reactors to DD advanced-fuel operation is described. The implications are summarized of operating higher-density, compact RFPs as reactors, wherein the current density rather than physical dimensions are scaled. Lastly, the application of very high current densities supported in a sub-millimeter linear current channel, as embodied in the DZP reactor, is reviewed

  4. MHD turbulence models for the reversed field pinch

    International Nuclear Information System (INIS)

    Gimblett, C.G.; Watkins, M.L.

    1976-01-01

    A kinematic model which describes the effect of isotropic, non-mirror symmetric turbulence on a mean magnetic field is used to examine the temporal behaviour of magnetic field in high beta pinch experiments. Solutions to the model can indicate the formation of a steady-state, force-free configuration that corresponds to the state of lowest magnetic energy and the reversal of the toroidal magnetic field at the plasma boundary in accordance with experimental observations on toroidal pinches such as ZETA and HBTX. This model neglects both the dynamic interaction between fluid and field and the associated anisotropy. These effects are examined in a further model. (author)

  5. Design of a new large s field reversed configuration experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Slough, J.T.

    1986-01-01

    The present TRX facility utilizes programmed formation techniques to form s = 2 plasmas in a 20 cm diameter by 1 m long plasma tube. LSX will have an 80 cm diameter by 4 m long plasma tube and will employ the same programmed formation techniques as TRX. This should result in s = 8 plasmas and FRC flux and energy lifetimes in the msec range if the presently measured scaling persists. LSX will be initially restricted to an external field of 7.5 kG, and typical plasma conditions will be 300 eV electron and ion temperatures and electron or ion densities of about 2x10/sup 15/ cm/sup -3/. The low voltage formation techniques developed in TRX-2 (Eθ /sub values of about 100 volts/cm) will also be employed on LSX, so that relatively low voltage power supplies can be utilized. A modified form of second half cycle circuitry is planned to replace the function of a large reverse bias capacitor bank. The increase in total power supply efficiency allows the primary magnet energy storage to be less that 1 MJ

  6. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-01-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision

  7. Poloidal flux loss in a field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Milroy, R.D.; Steinhauer, L.C.

    1981-01-01

    Poloidal flux loss has been measured in field-reversed configurations and related to anomalous resistivity near the magnetic field null. The results indicate that mechanisms in addition to the lower-hybrid drift instability are affecting transport

  8. Advanced-fuel reversed-field pinch reactor (RFPR)

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-10-01

    The utilization of deuterium-based fuels offers the potential advantages of greater flexibility in blanket design, significantly reduced tritium inventory, potential reduction in radioactivity level, and utilization of an inexhaustible fuel supply. The conventional DT-fueled Reversed-Field Pinch Reactor (RFPR) designs are reviewed, and the recent extension of these devices to advanced-fuel (catalyzed-DD) operation is presented. Attractive and economically competitive DD/RFPR systems are identified having power densities and plasma parameters comparable to the DT systems. Converting an RFP reactor from DT to DD primarily requires increasing the magnetic field levels a factor of two, still requiring only modest magnet coil fields (less than or equal to 4 T). When compared to the mainline tokamak, the unique advantages of the RFP (e.g., high beta, low fields at the coils, high ohmic-heating power densities, unrestricted aspect ratio) are particularly apparent for the utilization of advanced fuels

  9. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  10. A self-organized plasma with induction, reconnection, and injection techniques: the SPIRIT concept for field reversed configuration research

    International Nuclear Information System (INIS)

    Yamada, Masaaki; JI, Hantao; Gerhardt, Stefan P.; Belova, Elena V.; Davidson, Ronald C.; Mikkelsen, David R.

    2007-01-01

    A comprehensive research concept, known as SPIRIT, is described for the investigation of the formation, stability, and sustainment of oblate field reversed configurations (FRCs). This concept, whose name stands for Self-organized Plasma with Induction, Reconnection, and Injection Techniques (SPIRIT), allows for the study of FRC stability properties on time scales much longer than the energy confinement time. Counter-helicity merging of inductively formed spheromaks is utilized to form large-flux FRCs. These FRCs are sustained by neutral beam injection with the initial aid of compact ohmic solenoids. Stability to n=1 tilt/shift modes is provided by plasma shaping and conducting shells. Stability to n ≥ 2 co-interchange modes is achieved by a distribution of high-energy non-thermal ions provided by the neutral beam. The combination of plasma shaping, conducting shells, current sustainment, and the non-thermal beam component are expected to lead to a configuration with stability to all global MHD modes, a regime recently discovered through hybrid-MHD simulation using the HYM code. An experimental test of the concept, utilizing the existing Magnetic Reconnection Experiment (MRX) facility, is described. Initial experiments in MRX have confirmed the viability of the SPIRIT concept, and calculations indicate that the confinement of high-energy ions in MRX should be sufficient to test the SPIRIT concept. (author)

  11. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masaaki [Princeton Plasma Physics Laboratory, Princeton University Princeton, New Jersey USA (United States)

    2016-03-25

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  12. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  13. Confinement characteristics of the TPE reversed field pinch plasmas and effects of the boundary configuration

    International Nuclear Information System (INIS)

    Yagi, Y.; Maejima, Y.; Zollino, G.

    2001-01-01

    Confinement characteristics of the TPE series reversed field pinch (RFP) machines, TPE-1RM15, TPE-1RM20 and TPE-1RM20mod, at Electrotechnical Laboratory (ETL) are summarized. Especially data are synthesized in respect to the effects of the different boundary structures of the machines, where shell proximity and overlapped poloidal shell gaps by the multi-layered shell structure are featured. Comparison of the experimental results is shown in terms of the characteristics of magnetic fluctuations, global confinement properties in general, operation capability of the improved confinement in high pinch parameter (Q) discharges and locked mode events. Linear growth rate of the unstable modes as a function of the shell distance is numerically simulated. Understandings of RFP plasma physics have also made progress by the most recent intensive experiments on correlation studies between fast electrons and dynamo activities and measurement of the plasma and mode rotation. TPE-1RM20mod was shutdown in December 1996 and new RFP experiment has started in TPE-RX from March 1998. The new machine also succeeds the concept of the shell configuration of the TPE-1RM20. (author)

  14. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  15. Analysis techniques for diagnosing runaway ion distributions in the reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jkim536@wisc.edu; Anderson, J. K.; Capecchi, W.; Bonofiglo, P. J.; Sears, S. H. [University of Wisconsin—Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    An advanced neutral particle analyzer (ANPA) on the Madison Symmetric Torus measures deuterium ions of energy ranges 8-45 keV with an energy resolution of 2-4 keV and time resolution of 10 μs. Three different experimental configurations measure distinct portions of the naturally occurring fast ion distributions: fast ions moving parallel, anti-parallel, or perpendicular to the plasma current. On a radial-facing port, fast ions moving perpendicular to the current have the necessary pitch to be measured by the ANPA. With the diagnostic positioned on a tangent line through the plasma core, a chord integration over fast ion density, background neutral density, and local appropriate pitch defines the measured sample. The plasma current can be reversed to measure anti-parallel fast ions in the same configuration. Comparisons of energy distributions for the three configurations show an anisotropic fast ion distribution favoring high pitch ions.

  16. Rebound coefficient of collisionless gas in a rigid vessel. A model of reflection of field-reversed configuration

    International Nuclear Information System (INIS)

    Takaku, Yuichi; Hamada, Shigeo

    1996-01-01

    A system of collisionless neutral gas contained in a rigid vessel is considered as a simple model of reflection of field-reversed configuration (FRC) plasma by a magnetic mirror. The rebound coefficient of the system is calculated as a function of the incident speed of the vessel normalized by the thermal velocity of the gas before reflection. The coefficient is compared with experimental data of FIX (Osaka U.) and FRX-C/T(Los Alamos N.L.). Agreement is good for this simple model. Interesting is that the rebound coefficient takes the smallest value (∼0.365) as the incident speed tends to zero and approaches unity as it tends to infinity. This behavior is reverse to that expected for a system with collision dominated fluid instead of collisionless gas. By examining the rebound coefficient, therefore, it could be successfully inferred whether the ion mean free path in each experiment was longer or shorter than the plasma length. (author)

  17. Reversed field pinch magnetic equilibrium and profile dynamics in Extrap T1-upgrade

    International Nuclear Information System (INIS)

    Nordlund, P.; Mazur, S.; Drake, J.R.

    1992-05-01

    An eight station insertable magnetic probe has been installed on the Extrap T1-U machine. The structure of the reversed field pinch magnetic equilibrium and the time evolution of the profiles has been studied. The probe was inserted into sustained high current density RFP plasma, typically 12-16 MA/m 2 on axis. When the probe was inserted there was a somewhat shorter pulse duration and a slightly decaying current. The magnetic field profiles are shift corrected and expressed in a cylindrically symmetric form. All quantities are then derived from cylindrically symmetric equations. In the beginning of the sustainment phase, where the best reproducibility is achieved, we have been able to obtain estimates of the pressure profile consistent with independent measurements of the central pressure. Values of βθ approx = 0.19 and approx = 0.09 are found leading to an estimation of the energy confinement time, with the probe inserted, of τε approx = 5 μs. Profiles of the effective parallel conductivity clearly indicates the presence of a 'dynamo mechanism' sustaining the field configuration. Higher Θ discharges usually exhibit large oscillations in the F-Θ plane. We find that these oscillations represents macroscopic redistribution of the current in the plasma. A cyclic process is found where the parallel current density (μ-profile) tends to peak in the center and then relax towards a flatter and broader configuration. Towards the end of the discharge there is an increasing fluctuation level along with an increasing V loop /I p - Here we find a relative increase in the current density in the edge region resulting in a hollow μ-profile. (au) (15 refs., 31 figs.)

  18. Field reversal experiments: FRX-A and FRX-B results

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    The equilibrium, stability, and confinement properties of the Field Reversed Configuration (FRC) are being studied in two theta pinch facilities referred to as FRX-A, and FRX-B. The configuration is a toroidal plasma confined in a purely poloidal field configuration containing both closed and open field lines. The FRX system produces highly elongated tori with major radius R=3 to 5 cm, minor radius a approx. 2 cm, and a full length l approx. 35 to 50 cm. Plasma conditions have ranged from T/sub e/ approx. 150 eV, T/sub i/ approx. 800 eV, and n/sub max/ approx. 10 15 /cm 3 to T/sub e/ approx. 100 eV, T/sub i/ approx. 150 eV, and n/sub max/ approx. 4 x 10 15 /cm 3 . The plasma remains in a stable equilibrium for up to 50 μs followed by an n = 2 rotational instability which results in termination of the FRC. The plasma behavior with respect to equilibrium, stability, and rotation is consistent with recent theoretical work in these areas

  19. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  20. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Schnurr, N.M.; Copenhaver, C.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.

    1986-01-01

    The unique confinement properties of the poloidal-field-dominated Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media (i.e., two separate coolants) power cycle that would be driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) having a power density and mass approaching pressurized-water-fission reactor values. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. A general rationale outlining the need for improved fusion concepts is given, followed by a description of the RFP principle, a detailed systems and trade-off analysis, and a conceptual FPC design for the ∝ 20-MW/m 2 (neutrons) compact RFP reactor, CRFPR(20). Key FPC components are quantified, and full power-balance, thermal, and mechanical FPC integrations are given. (orig.)

  1. Equilibrium of field reversed configurations with rotation. II. One space dimension and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2002-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed

  2. High density high performance plasma with internal diffusion barrier in Large Helical Device

    International Nuclear Information System (INIS)

    Sakamoto, R.; Kobayashi, M.; Miyazawa, J.

    2008-10-01

    A attractive high density plasma operational regime, namely an internal diffusion barrier (IDB), has been discovered in the intrinsic helical divertor configuration on the Large Helical Device (LHD). The IDB which enables core plasma to access a high density/high pressure regime has been developed. It is revealed that the IDB is reproducibly formed by pellet fueling in the magnetic configurations shifted outward in major radius. Attainable central plasma density exceeds 1x10 21 m -3 . Central pressure reaches 1.5 times atmospheric pressure and the central β value becomes fairly high even at high magnetic field, i.e. β(0)=5.5% at B t =2.57 T. (author)

  3. Analysis and Design Considerations of a High-Power Density, Dual Air Gap, Axial-Field Brushless, Permanent Magnet Motor.

    Science.gov (United States)

    Cho, Chahee Peter

    1995-01-01

    Until recently, brush dc motors have been the dominant drive system because they provide easily controlled motor speed over a wide range, rapid acceleration and deceleration, convenient control of position, and lower product cost. Despite these capabilities, the brush dc motor configuration does not satisfy the design requirements for the U.S. Navy's underwater propulsion applications. Technical advances in rare-earth permanent magnet materials, in high-power semiconductor transistor technology, and in various rotor position-sensing devices have made using brushless permanent magnet motors a viable alternative. This research investigates brushless permanent magnet motor technology, studying the merits of dual-air gap, axial -field, brushless, permanent magnet motor configuration in terms of power density, efficiency, and noise/vibration levels. Because the design objectives for underwater motor applications include high-power density, high-performance, and low-noise/vibration, the traditional, simplified equivalent circuit analysis methods to assist in meeting these goals were inadequate. This study presents the development and verification of detailed finite element analysis (FEA) models and lumped parameter circuit models that can calculate back electromotive force waveforms, inductance, cogging torque, energized torque, and eddy current power losses. It is the first thorough quantification of dual air-gap, axial -field, brushless, permanent magnet motor parameters and performance characteristics. The new methodology introduced in this research not only facilitates the design process of an axial field, brushless, permanent magnet motor but reinforces the idea that the high-power density, high-efficiency, and low-noise/vibration motor is attainable.

  4. Simulation study of self-sustainment mechanism in reversed-field pinch configuration

    International Nuclear Information System (INIS)

    Kusano, Kanya; Sato, Tetsuya.

    1989-09-01

    3D magnetohydrodynamic (MHD) simulations are carried out in order to reveal the fundamental mechanism of the self-sustainment process in the reversed-field pinch plasma. It is confirmed that the RFP configuration is sustained in a cyclic process, where the MHD relaxation phase and the resistive diffusion phase appear cyclically and alternatively. In the MHD relaxation process, the RFP plasma approaches a Taylor's minimum energy state, but it departs from there in the diffusion process. In other words, since MHD relaxation processes periodically release excess magnetic energy accumulated in the resistive diffusion phase, RFP plasma can stay in the neighborhood of the minimum energy state. The mechanism of this cyclic process is disclosed. Namely, when at least two ideal kink (m = 1) modes becomes unstable, MHD relaxation can take place. This is because the MHD relaxation progresses through nonlinear reconnection of the m = 0 mode, which is driven by nonlinear coupling between the unstable kink modes. Therefore, self-sustainment processes can be achieved by the nonlinear effects of essentially the m = 0 and 1 modes. The quantitative dependence of the relaxation-diffusion cycle on the aspect ratio of the device is considered along with its dependence on the magnetic Reynolds, number. These results are consistent with recent experiments and indicate that a coherent oscillation, which is often observed in experiments, is necessary for self-sustainment. The influence of self-sustainment processes on particle confinement is briefly discussed. (author)

  5. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1985-01-01

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented

  6. High-flux first-wall design for a small reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Graham, A.L.; Christensen, K.E.

    1982-01-01

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high-technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time-averaged heat flux of 4.5 MW/m 2 with a conservatively estimated transient peak approximately twice the average value. We present the design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities. We combined a thermal analysis with a structural fatigue analysis to design the heat transfer module to last 10 6 cycles or one year at 80% duty for a 26-s power cycle. This fatigue life is compatible with a radiation damage life of 14 MW/yr/m 2

  7. Multi-configuration time-dependent density-functional theory based on range separation

    DEFF Research Database (Denmark)

    Fromager, E.; Knecht, S.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    Multi-configuration range-separated density-functional theory is extended to the time-dependent regime. An exact variational formulation is derived. The approximation, which consists in combining a long-range Multi-Configuration- Self-Consistent Field (MCSCF) treatment with an adiabatic short...... (srGGA) approximations. As expected, when modeling long-range interactions with the MCSCF model instead of the adiabatic Buijse-Baerends density-matrix functional as recently proposed by Pernal [J. Chem. Phys. 136, 184105 (2012)10.1063/1.4712019], the description of both the 1D doubly-excited state...

  8. Numerical Study of the Formation, Ion Spin-up and Nonlinear Stability Properties of Field-reversed Configurations

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2004-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs and the new FRC formation method by the counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good agreement with results from the SSX-FRC experiment. Simulations show formation of an FRC in about 30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  9. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  10. Equilibrium of field reversed configurations with rotation. IV. Two space dimensions and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2003-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed

  11. Role of magnetic reconnection phenomena in the reversed-field pinch

    International Nuclear Information System (INIS)

    Baker, D.A.

    1983-01-01

    The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics

  12. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.; Sharafat, S.; Najmabadi, F.

    1989-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections, and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated at a level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated at a level 2 of safety assurance. (orig.)

  13. The safety designs for the TITAN reversed-field pinch reactor study

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, R.L.; Hoot, C.G.; Schultz, K.R.; Grotz, S.P.; Blanchard, J.P.; Sharafat, S.; Najmabadi, F.

    1988-01-01

    TITAN is a study to investigate the potential of the reversed-field pinch concept as a compact, high-power density energy system. Two reactor concepts were developed, a self-cooled lithium design with vanadium structure and an aqueous solution loop-in-pool design, both operating at 18 MW/m 2 . The key safety features of the TITAN-I lithium-vanadium blanket design are in material selection, fusion power core configuration selection, lithium piping connections and passive lithium drain tank system. Based on these safety features and results from accident evaluation, TITAN-I can at least be rated as level 3 of safety assurance. For the TITAN-II aqueous loop-in-pool design, the key passive feature is the complete submersion of the fusion power core and the corresponding primary coolant loop system into a pool of low temperature water. Based on this key safety design feature, the TITAN-II design can be rated as level 2 of safety assurance. 7 refs., 2 figs

  14. The Study of Spherical Cores with a Toroidal Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gholipour, Mahmoud [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)—Maragha, P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-01

    Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modified form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.

  15. Improved density profile measurements in the C-2U advanced beam-driven Field-Reversed Configuration (FRC) plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Beall, M., E-mail: mbeall@trialphaenergy.com; Deng, B. H.; Gota, H. [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the prior C-2 experiment, electron density was measured using a two-color 6-chord CO{sub 2}/HeNe interferometer. Analysis shows that high-frequency common mode phase noise can be reduced by a factor of 3 by constructing a reference chord. In the system upgrade from C-2 to C-2U a 4-chord far-infrared laser interferometer was developed, which demonstrated superior sensitivity (1 × 10{sup 16} m{sup −2} at >1 MHz bandwidth) and solved the under spatial sampling issue of the C-2 interferometer system. Improved density-profile measurement results are presented in this paper, including evidence of fast-ion modified density profile and stabilization of the n = 1 plasma wobble mode.

  16. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  17. Trap array configuration influences estimates and precision of black bear density and abundance.

    Directory of Open Access Journals (Sweden)

    Clay M Wilton

    Full Text Available Spatial capture-recapture (SCR models have advanced our ability to estimate population density for wide ranging animals by explicitly incorporating individual movement. Though these models are more robust to various spatial sampling designs, few studies have empirically tested different large-scale trap configurations using SCR models. We investigated how extent of trap coverage and trap spacing affects precision and accuracy of SCR parameters, implementing models using the R package secr. We tested two trapping scenarios, one spatially extensive and one intensive, using black bear (Ursus americanus DNA data from hair snare arrays in south-central Missouri, USA. We also examined the influence that adding a second, lower barbed-wire strand to snares had on quantity and spatial distribution of detections. We simulated trapping data to test bias in density estimates of each configuration under a range of density and detection parameter values. Field data showed that using multiple arrays with intensive snare coverage produced more detections of more individuals than extensive coverage. Consequently, density and detection parameters were more precise for the intensive design. Density was estimated as 1.7 bears per 100 km2 and was 5.5 times greater than that under extensive sampling. Abundance was 279 (95% CI = 193-406 bears in the 16,812 km2 study area. Excluding detections from the lower strand resulted in the loss of 35 detections, 14 unique bears, and the largest recorded movement between snares. All simulations showed low bias for density under both configurations. Results demonstrated that in low density populations with non-uniform distribution of population density, optimizing the tradeoff among snare spacing, coverage, and sample size is of critical importance to estimating parameters with high precision and accuracy. With limited resources, allocating available traps to multiple arrays with intensive trap spacing increased the amount of

  18. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    Science.gov (United States)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  19. Compressibility Effects in the Dynamics of the Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2008-01-01

    We study the reversed-field pinch through the numerical solution of the compressible magnetohydrodynamic equations. Two cases are investigated: In the first case the pressure is derived from an adiabatic condition, and in the second case the pressure equation includes heating terms due to resistivity and viscosity. In the adiabatic case a single helicity state is observed, and the reversed-field pinch configuration is formed for short time intervals and is finally lost. In the nonadiabatic case the system reaches a multiple helicity state, and the reversal parameter remains negative for a longer time. The results show the importance of compressibility in determining the large scale dynamics of the system

  20. 3-dimensional simulation of dynamo effect of reversed field pinch

    International Nuclear Information System (INIS)

    Koide, Shinji.

    1990-09-01

    A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)

  1. Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1987-01-01

    A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs

  2. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1980-01-01

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV

  3. Field reversal experiments (FRX). [Equilibrium, confinement, and stability

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.

  4. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall

  5. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  6. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  7. 1.4D quasistatic profile model of transport in a field-reversed configuration (FRC)

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    Global confinement models are useful for determining how a given transport mechanism (dependent on local parameters) translates into global confinement times. Such models are also useful for inferring the overall magnitudes of transport rates, and limited information about their spatial profiles. They are especially important in a field reversed configuration (FRC) where the equilibrium and transport rates are so intimately coupled, and where the flux loss time is such an important factor. An earlier global FRC confinement model, sometimes called QUASI, was based on the assumption of a quasi-steady equilibrium. The equilibrium was assumed to have square-ends with some features of 2D equilibria: (1) equal pressure on inner and outer branches of the flux lines; and (2) average-beta relation. Models of this type have been called 1-1/4D transport models. The same general approach has now been applied in a straightforward way to an equilibrium with realistic axial structure. This might be called a 1.4D quasisteady transport model. The assumed axial structure can be that of an analytic equilibrium, or a more complicated computed equilibrium as desired. The example used here is an elongated Hill's vortex equilibrium. As will be shown later, the equilibrium is reflected by two integral quantities that appear in the quasistatic diffusion equation

  8. ZT-P: an advanced air core reversed field pinch prototype

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Buchenauer, C.J.; Burkhardt, L.C.

    1986-01-01

    The ZT-P experiment, with a major radius of 0.45 m and a minor radius of 0.07 m, was designed to prototype the next generation of reversed field pinch (RFP) machines at Los Alamos. ZT-P utilizes an air-core poloidal field system, with precisely wound and positioned rigid copper coils, to drive the plasma current and provide plasma equilibrium with intrinsically low magnetic field errors. ZT-P's compact configuration is adaptable to test various first wall and limiter designs at reactor-relevant current densities in the range of 5 to 20 MA/m 2 . In addition, the load assembly design allows for the installation of toroidal field divertors. Design of ZT-P began in October 1983, and assembly was completed in October 1984. This report describes the magnetic, electrical, mechanical, vacuum, diagnostic, data acquisition, and control aspects of the machine design. In addition, preliminary data from initial ZT-P operation are presented. Because of ZT-P's prototypical function, many of its design aspects and experimental results are directly applicable to the design of a next generation RFP. 17 refs., 47 figs

  9. Modification of the magnetic field structure in the vicinity of the x-points by the strong mirror field for a field-reversed configuration (FRC) with the Thick Edge-Layer plasma

    International Nuclear Information System (INIS)

    Suzuki, Yukihisa; Okada, Shigefumi; Goto, Seiichi

    2003-01-01

    Modification of the magnetic field structure in the vicinity of the x-points and changes of the separatrix shape are investigated under the pressure effects due to an edge-layer plasma together with a mirror field by the two-dimensional (2-D) MHD equilibrium solutions of field-reversed configuration (FRC) obtained from the Grad-Shafranov equation. To explore the coupling pressure effects caused by edge-layer plasma and mirror field, the equilibrium calculations are performed by the combinations of several values of mirror ratio (R m ) and of edge-layer width (δ), respectively. A summary of results for present study is as follows. In the condition of weak mirror field (1.0 m m > 1.6, ψ=0 surface never opens up for any δ. These original results make it clear that large magnetic curvature produced by the strong mirror field enhances the magnetic stress around the x-point, so that the ends of FRC are effectively sustained by this enhanced magnetic stress, which counteracts the edge-layer plasma pressure effect. (author)

  10. Magnetization configurations and hysteresis loops of small permalloy ellipses

    International Nuclear Information System (INIS)

    Schneider, M; Liszkowski, J; Rahm, M; Wegscheider, W; Weiss, D; Hoffmann, H; Zweck, J

    2003-01-01

    We investigated systematically the easy axis magnetization reversal of 20 nm thick permalloy ellipses with a fixed major axis of 1.47 μm and minor axes of 0.22-1.47 μm. Lorentz transmission electron microscopy was used to image the micromagnetic configurations during magnetization reversal. Hysteresis loops of single ellipses were recorded by means of micro-Hall magnetometry and could be traced back to certain reversal mechanisms observed by Lorentz microscopy. In most cases, the magnetization reversal is initiated by the evolution of a magnetization buckling, followed by the formation of a single, a double, or a trapped vortex configuration. For ellipses with high aspect ratio (length-to-width ratio), the magnetization switches in the reversed magnetic field without creation of a stable vortex configuration. Our experiments show that the characteristic field values for vortex creation, single vortex annihilation, and switching strongly depend on the shape anisotropy of the elements

  11. Reversed preparation of low-density poly(divinylbenzene/styrene) foam columns coated with gold films

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yinhai; Wang, Ni; Li, Yaling; Yao, Mengqi; Gan, Haibo; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-06-15

    Highlights: • A reversed fabrication of low density foam columns coated with gold films was proposed. • The uniformity in thickness and purity of gold film are easy to be controlled. • A compact layer is prepared through an electrophoretic deposition method. • A low density (12 mg/cc) foam column coated with gold film is obtained. - Abstract: This work aims to fabricate low-density, porous, non-conductive, structural poly(divinylbenzene/styrene) foam columns by high-internal-phase emulsion templating. We prepare these non-conductive foam columns coated with a thin gold layer by electrochemical deposition and the reversed preparation technique. As expected, the density of the foam obtained through this novel method was about 12 mg cm{sup −3}, and the thickness of the gold coating was about 3 μm. We performed field emission scanning electron microscopy to morphologically and microstructurally characterize the products and X-ray diffraction and energy dispersive spectroscopy to determine the composition of the gold coating.

  12. Refueling and density control in the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Wurden, G.A.; Weber, P.G.; Watt, R.G.; Munson, C.P.; Cayton, T.E.; Buechl, K.

    1987-01-01

    The effects of pellet injection and gas puff refueling have been studied in the ZT-40M Reversed Field Pinch. Multiple deuterium pellets (≤ 6 x 10 19 D atoms/pellet) with velocities ranging from 300 to 700 m/sec have been injected into plasmas with n-bar/sub e/ ∼1 to 5 X 10 19 m -3 , I/sub phi/ ∼100 to 250 kA, T/sub e/(0) ∼150 to 300 eV and discharge durations of ≤ 20 msec. Photographs and an array D/sub α/ detectors show substantial deflection of the pellet trajectory in both the poloidal and toroidal planes, due to asymmetric ablation of the pellet by electrons streaming along field lines. To compensate for the poloidal deflection, the injector was moved up +14 cm off-axis, allowing the pellets to curve down to the midplane. In this fashion, central peaking of the pellet density deposition profile can be obtained. Both electron and ion temperatures fall in response to the density rise, such that β/sub θ/(β/sub θ/ identical to n-bar/sub e/(T/sub e/(0) + T/sub i/)/(B/sub θ/(a)) 2 ) remains roughly constant. Energy confinement is momentarily degraded, and typically a decrease in F (F identical to B/sub phi/(a)/(B/sub phi/)) is seen as magnetic energy is converted to plasma energy when the pellet ablates. As a result of pellet injection at I/sub phi/ = 150 kA we observe T/sub e/(0) α n-bar/sub e//sup -.9 +- .1/, while the helicity based resistivity eta/sub k/ transiently varies as n-bar/sub e//sup .7 +- .1/. While the achievement of center-peaked density profiles is possible with pellet injection, gas puffing at rates strong enough to show a 50% increase in n-bar/sub e/ over a period of 10 msec (∼150 torr-litres/sec) leads to hollow density profiles. The refueling requirements for parameters expected in the next generation RFPs (ZTH, RFX) can be extrapolated from these data using modified tokamak pellet ablation codes

  13. ADX: a high field, high power density, Advanced Divertor test eXperiment

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  14. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  15. The theta-pinch - a versatile tool for the generation and study of high temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hintz, E. [Inst. fuer Plasmaphysik, Forschungszentrum-Juelich GmbH (Germany)

    2004-07-01

    The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)

  16. The theta-pinch - a versatile tool for the generation and study of high temperature plasmas

    International Nuclear Information System (INIS)

    Hintz, E.

    2004-01-01

    The more general technical and physical features of theta-pinches are described. Special field of their application are high-ss plasmas. Two examples are analysed and studied in more detail: a high density plasma near thermal equilibrium and a low density plasma far from equilibrium. The latter is of special interest for future investigations. Possibilities of field-reversed configurations are pointed out. (orig.)

  17. Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)

    International Nuclear Information System (INIS)

    Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.

    1983-01-01

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given

  18. Toroidal fusion reactor design based on the reversed-field pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.

    1978-07-01

    The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system

  19. Observations of plasma tearing instabilities and associated axial translation in field-reversed experiments

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Cochrane, J.C.; Lipson, J.; Tuszewski, M.

    1981-02-01

    Tearing and reconnection processes during the formation and quiescent periods of a field-reversed configuration are studied with an axial array of compensated diamagnetic loops. Several representative plasma shots are documented

  20. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    Science.gov (United States)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  1. Initial Design of the 60 Megawatt Rotating Magnetic Field (RMF) Oscillator System for the University of Washington ''TCS'' Field Reversed Configuration Experiment

    International Nuclear Information System (INIS)

    Reass, W.A.; Miera, D.A.; Wurden, G.A.

    1997-01-01

    This paper presents the initial electrical and mechanical design of two phase-locked 30 Megawatt RMS, 150 kHz oscillator systems used for current drive and plasma sustainment of the ''Translation, Confinement, and Sustainment'' (TCS) field reversed configuration (FRC) plasma. By the application of orthogonally-placed saddle coils on the surface of the glass vacuum vessel, the phase-controlled rotating magnetic field perturbation will induce an electric field in the plasma which should counter the intrinsic ohmic decay of the plasma, and maintain the FRC. Each system utilizes a bank of 6 parallel magnetically beamed ML8618 triodes. These devices are rated at 250 Amperes cathode current and a 45 kV plate voltage. An advantage of the magnetically beamed triode is their extreme efficiency, requiring only 2.5 kW of filament and a few amps and a few kV of grid drive. Each 3.5 uH saddle coil is configured with an adjustable tank circuit (for tuning). Assuming no losses and a nominal 18 kV plate voltage, the tubes can circulate about 30 kV and 9 kA (pk to pk) in the saddle coil antenna, a circulating power of over 33 megawatts RMS. On each cycle the tubes can kick in up to 1500 Amperes, providing a robust phase control. DC high-voltage from the tubes is isolated from the saddle coil antennas and tank circuits by a 1:1 coaxial air-core balun transformer. To control the ML8618's phase and amplitude, fast 150 Ampere ''totem-pole'' grid drivers, an ''on'' hot-deck and an ''off'' hot-deck are utilized. The hot-decks use up to 6 each 3CPX1500A7 slotted radial beam triodes. By adjusting the conduction angle, amplitude may be regulated, with inter-pulse timing, phase angle can be controlled. A central feedback timing chassis monitors each systems' saddle coil antenna and appropriately derives each systems timing signals. Fiber-optic cables are used to isolate between the control room timing chassis and the remote power oscillator system. Complete system design detail will be

  2. Magnetohydrodynamic effects of current profile control in reversed field pinches

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1999-01-01

    Linear and non-linear MHD computations are used to investigate reversed field pinch configurations with magnetic fluctuations reduced through current profile control. Simulations with reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are orders of magnitude smaller than those in simulations without profile control. The core of the improved configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear simulations. (author)

  3. High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system

    Science.gov (United States)

    Sproul, William D.; Rudnik, Paul J.; Graham, Michael E.; Rohde, Suzanne L.

    1990-01-01

    Attention is given to an opposed cathode sputtering system constructed with the ability to coat parts with a size up to 15 cm in diameter and 30 cm in length. Initial trials with this system revealed very low substrate bias currents. When the AlNiCo magnets in the two opposed cathodes were arranged in a mirrored configuration, the plasma density at the substrate was low, and the substrate bias current density was less than 1 mA/sq cm. If the magnets were arranged in a closed-field configuration where the field lines from one set of magnets were coupled with the other set, the substrate bias current density was as high as 5.7 mA/sq cm when NdFeB magnets were used. In the closed-field configuration, the substrate bias current density was related to the magnetic field strength between the two cathodes and to the sputtering pressure. Hard well-adhered TiN coatings were reactively sputtered in the opposed cathode system in the closed-field configuration, but the mirrored configuration produced films with poor adhesion because of etching problems and low plasma density at the substrate.

  4. Experiments of spheromak and reversed field configuration in 2m theta pinch

    International Nuclear Information System (INIS)

    Nogi, Y.; Shimamura, S.; Ogura, H.; Osanai, Y.; Saito, K.; Shiina, S.; Yoshimura, H.

    1981-01-01

    Since the z-current produces the paramagnetic field near the electrodes, the spheromak formation is more difficult in the straight bias field. In order to help the reconnection at the coil ends, the cusp bias coils are added to both ends of the straight coil. Then the spheromak configuration is formed and the plasma is confined for 5 to 10 μs. On the other hand, the RFC continues for about 30 μs in case of the straight bias field. The confinement time is limited by the rotational instability. Although the start time of the instability is not clear, the elongation of the plasma is detected in 15 to 20 μs after the RFC is formed. The period of the rotation is slightly different every shot. Detailed study of the instability is being pursued

  5. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  6. Magnetization reversal in magnetic dot arrays: Nearest-neighbor interactions and global configurational anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wiele, Ben [Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Ghent-Zwijnaarde (Belgium); Fin, Samuele [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); Pancaldi, Matteo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); Vavassori, Paolo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Sarella, Anandakumar [Physics Department, Mount Holyoke College, 211 Kendade, 50 College St., South Hadley, Massachusetts 01075 (United States); Bisero, Diego [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); CNISM, Unità di Ferrara, 44122 Ferrara (Italy)

    2016-05-28

    Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.

  7. Current-driven instabilities of the kinetic shear Alfven wave: Application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-01-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  8. Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-04-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  9. Divertor design for the TITAN reversed-field-pinch reactor

    International Nuclear Information System (INIS)

    Cooke, P.I.H.; Bathke, C.G.; Blanchard, J.P.; Creedon, R.L.; Grotz, S.P.; Hasan, M.Z.; Orient, G.; Sharafat, S.; Werley, K.A.

    1987-01-01

    The design of the toroidal-field divertor for the TITAN high-power-density reversed-field-pinch reactor is described. The heat flux on the divertor target is limited to acceptable levels (≤ 10 MW/m 2 ) for liquid-lithium cooling by use of an open divertor geometry, strong radiation from the core and edge plasma, and careful shaping of the target surface. The divertor coils are based on the Integrated-Blanket-Coil approach to minimize the loss in breeding-blanket coverage due to the divertor. A tungsten-rhenium armour plate, chosen for reasons of sputtering resistance, and good thermal and mechanical properties, protects the vanadium-alloy coolant tubes

  10. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  11. Equilibrium of field reversed configurations with rotation. I. One space dimension and one type of ion

    International Nuclear Information System (INIS)

    Rostoker, Norman; Qerushi, Artan

    2002-01-01

    Self-consistent solutions of the Vlasov-Maxwell equations are obtained. They involve rigid rotor distributions. This selection is justified on physical grounds. For this selection the Vlasov equation can be replaced by moment equations which terminate without any additional assumptions. For one-dimensional equilibria with one type of ion these equations have exact solutions. A complete equilibrium solution appropriate to a field reversed configuration with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. From this solution all other physical quantities can be determined. A Green's function method is developed to solve this equation, which provides a basis for an iterative solution. This method has the advantage that at every iteration the boundary conditions are satisfied. In this paper cylindrical geometry with one space dimension and one type of ion is considered, where analytic solutions are available. The convergence of the Green's function method is established. For this nonlinear problem there is usually more than one solution for completely specified boundary conditions (bifurcation). The present method selects one solution. It is applicable to equilibria with many ion species and to two dimensions

  12. Analysis of resistive tearing-mode in the reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Oshiyama, Hiroshi; Masamune, Sadao; Hamuro, Eitaro; Tamaki, Reiji.

    1985-01-01

    As one of the methods of confining high temperature plasma by magnetic stress, attention has been paid to reversed field pinch (RFP). This RFP is the method of maintaining plasma pressure by combining the poloidal field generated by plasma current and the toroidal field having nearly same intensity, thus forming the toroidal shape, closed magnetic surface. As the typical RFP equipment, there have been TPE-1R(M), HBTX-1A, ZT-40M and OHTE, but in order to anticipate the further development, one of the problems is the resistive instability. In this study, the critical beta value determined by the tearing mode in RFP configuration was examined by analytical and numerical calculation methods. The position of a wall required for the stability was determined by solving a second order differential equation for a radial perturbed magnetic field. The propriety of the computer code for determining the position was examined. The magnetic field configuration having a finite beta value was determined, and its stability against a tearing mode was investigated. For this judgement of the stability, the developed computer code was used. The tearing mode in a Bessel function model, the tearing mode of a finite beta value and others are described. (Kako, I.)

  13. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  14. High pressure studies of configuration interaction and crystal field effects in Sm2+

    International Nuclear Information System (INIS)

    Shen, Y.; Bray, K.L.

    1998-01-01

    Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of

  15. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  16. Analytical study of a reversed-field pinch with rectangular cross section

    International Nuclear Information System (INIS)

    Zhang Peng

    1990-01-01

    An analyic solution of the force-free equation for a toroidal configuration of rectangular cross section is presented. It is shown that the critical value of contraction ratio for the appearance of a reversed field as well as of the ohmic current increases as the elongation of the cross section increases

  17. Simulation study of dynamo structure in reversed field pinch

    International Nuclear Information System (INIS)

    Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.

    1992-10-01

    The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)

  18. Pair creation by dynamic field configurations

    International Nuclear Information System (INIS)

    Aoyama, H.

    1982-01-01

    This thesis deals with the dynamics of the classical configuration of a quantum field unstable due to pair creation. The effective action method is developed first to treat such problems for a simple two-field model. Physical quantities such as pair creation probabilities are related to a complex function called the effective configuration, which is defined to minimize the effective action. Unitarity of the S-matrix is verified at the lowest order of the weak-field approximation. At the same order, the real valued vacuum expectation value of the quantum field, named the real configuration, is constructed in terms of the effective configuration. An integro-differential equation for the real configuration is given and is used to show that the real configuration is causal, while the effective configuration is not. Two practical applications of the effective action method are discussed. The first deals with pair creation in an anisotropic universe, and the real geometry is given in terms of the effective geometry in the samll anisotropy limit. The second deals with expanding vacuum bubbles. Corresponding to three possible situations, three kinds of field equations of each of the effective configuration and the real configuration are obtained. The behavior of the bubble is also studied by a semi-classical method, and one of the three situations is suggested to be plausible

  19. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  20. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  1. High density plasma heating in the Tokamak à configuration variable

    International Nuclear Information System (INIS)

    Curchod, L.

    2011-04-01

    The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2 nd harmonic EC power in ordinary (O 2 ) or extraordinary (X 2 ) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3 rd harmonic EC power (X 3 ) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X 2 and X 3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O 2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation

  2. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  3. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  4. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  5. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  6. Reversed-Field Pinch Reactor (RFPR) concept

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.

    1979-08-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times

  7. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    Science.gov (United States)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  8. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  9. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  10. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis

    International Nuclear Information System (INIS)

    Ouyang Wei; Wang Wei; Zhang Haixia; Wu Wengang; Li Zhihong

    2013-01-01

    The great advances in nanotechnology call for advances in miniaturized power sources for micro/nano-scale systems. Nanofluidic channels have received great attention as promising high-power-density substitutes for ion exchange membranes for use in energy harvesting from ambient ionic concentration gradient, namely reverse electrodialysis. This paper proposes the nanofluidic crystal (NFC), of packed nanoparticles in micro-meter-sized confined space, as a facile, high-efficiency and high-power-density scaling-up scheme for energy harvesting by nanofluidic reverse electrodialysis (NRED). Obtained from the self-assembly of nanoparticles in a micropore, the NFC forms an ion-selective network with enormous nanochannels due to electrical double-layer overlap in the nanoparticle interstices. As a proof-of-concept demonstration, a maximum efficiency of 42.3 ± 1.84%, a maximum power density of 2.82 ± 0.22 W m −2 , and a maximum output power of 1.17 ± 0.09 nW/unit (nearly three orders of magnitude of amplification compared to other NREDs) were achieved in our prototype cell, which was prepared within 30 min. The current NFC-based prototype cell can be parallelized and cascaded to achieve the desired output power and open circuit voltage. This NFC-based scaling-up scheme for energy harvesting based on NRED is promising for the building of self-powered micro/nano-scale systems. (paper)

  11. The TITAN Reversed-Field Pinch fusion reactor study

    International Nuclear Information System (INIS)

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m 2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m 2 ; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings

  12. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  13. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  14. FRC formation studies in a field reversed theta pinch with a variable length coil

    International Nuclear Information System (INIS)

    Maqueda, R.; Sobehart, J.; Rodrigo, A.B.

    1987-01-01

    The formation phase of field reversed configurations (FRC) produced using a theta pinch has received considerable attention lately in connection with the possibility of developing formation methods in time scales longer than the Alven radial time, which would permit the use of low-voltage technology and represent an important engineering simplification in the trend towards larger scale machines sup (1)). The mechanisms leading to the loss of trapped reversed flux during the preheating 2 ) and formation sup (3,4)) stages, looking for maximization of this quantity in order to improve on the stability and transport properties of the configuration in its final equilibrium state are investigated. As a result, semi-emperical scaling laws have been obtained relating the reversed flux loss with experimental operating parameters during the early stages of the formation process 1 ). (author) [pt

  15. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.

    2002-10-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  16. Drift reversal capability in helical systems

    International Nuclear Information System (INIS)

    Yokoyama, M.; Itoh, K.; Okamura, S.; Matsuoka, K.; Nakajima, N.; Itoh, S.-I.; Neilson, G.H.; Zarnstorff, M.C.; Rewoldt, G.

    2003-01-01

    The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in experiments. (author)

  17. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  18. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  19. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  20. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  1. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.

    1988-03-01

    TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.

  2. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group

    1989-04-01

    TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).

  3. The Reverse Supply Chain: Configuration, Integration and Profitability

    DEFF Research Database (Denmark)

    Gobbi, Chiara

    2008-01-01

    This thesis presents the results of a qualitative investigation that has been conducted in order to enhance knowledge of the reverse supply chain management field. Two aspects of the reverse flow need to be taken into consideration: the importance of introducing mechanisms that promote the circui......This thesis presents the results of a qualitative investigation that has been conducted in order to enhance knowledge of the reverse supply chain management field. Two aspects of the reverse flow need to be taken into consideration: the importance of introducing mechanisms that promote...... the circuitry of resources in order to protect the environment, and the increasing awareness that if strategically managed, the reverse chain represents an opportunity for profit generation and for improving the competitive position of a firm. In the first case, the main stakeholders are represented...... within the 27 Member States, reaching approximately 14-24 Kg. per inhabitant in Western Europe and the 6-12 Kg. per inhabitant in the New Member States. In the second case, the main stakeholder is the firm, the producer that has the possibility of exploring new opportunities to achieve a competitive...

  4. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  5. Magnetic islands at the field reversal surface in reversed field pinches

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Reiman, A.H.

    1985-09-01

    In the reversed field pinch (RFP), magnetic field perturbations having zero poloidal mode number and any toroidal mode number are resonant at the field reversal surface. Such perturbations are a particular threat to the RFP because of their weak radial dependence at low toroidal mode number, and because the toroidal field ripple is essentially of this type. The widths of the resulting islands are calculated in this paper. The self-consistent plasma response is included through the assumption that the plasma relaxes to a Taylor force-free state. The connection with linear tearing mode theory is established for those limits where arbitrarily large islands result from infinitesimal perturbations. Toroidal effects are considered, and application of the theory to RFP experiments is discussed

  6. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  7. A multiframe soft x-ray camera with fast video capture for the LSX field reversed configuration (FRC) experiment

    International Nuclear Information System (INIS)

    Crawford, E.A.

    1992-01-01

    Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper [E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. 61, 2795 (1990)] as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with ''particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed

  8. The effects of field reversal on the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Hutchinson, I.H.; LaBombard, B.; Goetz, J.A.; Lipschultz, B.; McCracken, G.M.; Snipes, J.A.; Terry, J.L.

    1995-01-01

    Imbalances between the inboard and outboard legs of the single null divertor in tokamak Alcator C-Mod are observed to reverse when the direction of the toroidal field is reversed. These imbalances are measured by embedded probes in the target plates, tomographic reconstructions of bolometry and line radiation, and visible imaging. Density imbalances of about a factor of ten at the targets are observed at moderate density, decreasing as the density is raised until they are almost balanced. The data indicate that the electron pressure is not imbalanced, thus arguing against momentum imbalance as the cause of these drift-induced effects. Instead, power flux imbalance caused by E r ''and'' B convection, and enhanced by radiation, is suggested as the underlying cause. (Author)

  9. Effects of work zone configurations and traffic density on performance variables and subjective workload.

    Science.gov (United States)

    Shakouri, Mahmoud; Ikuma, Laura H; Aghazadeh, Fereydoun; Punniaraj, Karthy; Ishak, Sherif

    2014-10-01

    This paper investigates the effect of changing work zone configurations and traffic density on performance variables and subjective workload. Data regarding travel time, average speed, maximum percent braking force and location of lane changes were collected by using a full size driving simulator. The NASA-TLX was used to measure self-reported workload ratings during the driving task. Conventional lane merge (CLM) and joint lane merge (JLM) were modeled in a driving simulator, and thirty participants (seven female and 23 male), navigated through the two configurations with two levels of traffic density. The mean maximum braking forces was 34% lower in the JLM configuration, and drivers going through the JLM configuration remained in the closed lane longer. However, no significant differences in speed were found between the two merge configurations. The analysis of self-reported workload ratings show that participants reported 15.3% lower total workload when driving through the JLM. In conclusion, the implemented changes in the JLM make it a more favorable merge configuration in both high and low traffic densities in terms of optimizing traffic flow by increasing the time and distance cars use both lanes, and in terms of improving safety due to lower braking forces and lower reported workload. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  11. Vortex configuration in the presence of local magnetic field and locally applied stress

    Energy Technology Data Exchange (ETDEWEB)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena, E-mail: beena@biu.ac.il

    2017-02-15

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  12. Vortex configuration in the presence of local magnetic field and locally applied stress

    International Nuclear Information System (INIS)

    Wissberg, Shai; Kremen, Anna; Shperber, Yishai; Kalisky, Beena

    2017-01-01

    Highlights: • We discuss different ways to determine vortex configuration using a scanning SQUID. • We determined the vortex configuration by approaching the sample during cooling. • We observed an accumulation of vortices when contact was made with the sample. • We show how we can manipulate local vortex configuration using contact. - Abstract: Vortex configuration is determined by the repulsive interaction, which becomes dominant with increasing vortex density, by the pinning potential, and by other considerations such as the local magnetic fields, currents flowing in the sample, or as we showed recently, by local stress applied on the sample. In this work we describe different ways to control vortex configuration using scanning SQUID microscopy.

  13. The benefits of ITER for the portfolio of fusion configurations

    International Nuclear Information System (INIS)

    Goldston, R.J.

    2002-01-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  14. The benefits of ITER for the portfolio of fusion configurations

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)

    2002-10-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  15. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  16. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  17. High-Sensitivity Measurement of Density by Magnetic Levitation.

    Science.gov (United States)

    Nemiroski, Alex; Kumar, A A; Soh, Siowling; Harburg, Daniel V; Yu, Hai-Dong; Whitesides, George M

    2016-03-01

    This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10(-6) g/cm(3). Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densities-Nylon spheres, PMMA spheres, and drug spheres-demonstrate the applicability of rotated Maglev to measuring the density of small (0.1-1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.

  18. Physics considerations of the Reversed-Field Pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  19. A study of reversed field pinch experiments using a new programming mode

    International Nuclear Information System (INIS)

    Kita, Y.

    1979-08-01

    A new mode of external-field programming for setting up a reversed-field pinch (RFP) is tested in STP-1. It involves creating an initial plasma with a screw pinch followed by external-field reversal. The program is done carefully so as to satisfy the equilibrium relation with respect to the minor radius throughout the setting-up phase. Increase of the trapped flux in the plasma by a factor of two is consequently attained, as compared with previous usual programming mode. Actually, at a plasma current of 58 kA, a stable operation time of 13 μsec is achieved with a density of 3.5 x 10 15 cm -3 and a temperature of 20 eV. After 13 μsec stable operation time, the plasma is suddenly crashed down by a violent MHD instability. One dimensional stability analysis based on ideal MHD model is applied to the experimental results. It is found that the instability is m = 1 resistive tearing mode under the influence of viscosity. Using the new programming high current operation at 110 kA is done and results in higher plasma temperature and density of 40 eV and 4.5 x 10 15 cm -3 , respectively. The duration of stable discharge, however, is limited to about 10 μsec, in spite of the expected longer confinement time at the higher temperature. (author)

  20. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Yang, Xiaokang; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl; Koehn, Alf; Petrov, Yuri

    2015-01-01

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition

  1. Density and magnetic field measurements in the Tormac IV-c plasma

    International Nuclear Information System (INIS)

    Coonrod, J.W. Jr.

    1978-01-01

    Tormac is a concept for magnetically confining a high-β fusion plasma in a toroidal, stuffed line cusp. A Tormac plasma has two regions: an interior confined on the closed toroidal field lines of the stuffing field, and an exterior sheath on open, cusped field lines. The interior plasma gives the device a longer confinement time than a standard mirror, while the favorable curvature of the cusp fields allow the plasma to be stable at higher values of β (the ratio of the plasma pressure to magnetic pressure) than a totally closed configuration like Tokamak. This thesis describes the design, construction and operation of Tormac IV-c, and reports on the results, with emphasis on describing the behavior of the density compression and field penetration

  2. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  3. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  4. Influence of the configuration of the magnetic filter field on the discharge structure in the RF driven negative ion source prototype for fusion

    Science.gov (United States)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.

  5. A simple highly accurate field-line mapping technique for three-dimensional Monte Carlo modeling of plasma edge transport

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.

    2005-01-01

    The paper presents a new simple and accurate numerical field-line mapping technique providing a high-quality representation of field lines as required by a Monte Carlo modeling of plasma edge transport in the complex magnetic boundaries of three-dimensional (3D) toroidal fusion devices. Using a toroidal sequence of precomputed 3D finite flux-tube meshes, the method advances field lines through a simple bilinear, forward/backward symmetric interpolation at the interfaces between two adjacent flux tubes. It is a reversible field-line mapping (RFLM) algorithm ensuring a continuous and unique reconstruction of field lines at any point of the 3D boundary. The reversibility property has a strong impact on the efficiency of modeling the highly anisotropic plasma edge transport in general closed or open configurations of arbitrary ergodicity as it avoids artificial cross-field diffusion of the fast parallel transport. For stellarator-symmetric magnetic configurations, which are the standard case for stellarators, the reversibility additionally provides an average cancellation of the radial interpolation errors of field lines circulating around closed magnetic flux surfaces. The RFLM technique has been implemented in the 3D edge transport code EMC3-EIRENE and is used routinely for plasma transport modeling in the boundaries of several low-shear and high-shear stellarators as well as in the boundary of a tokamak with 3D magnetic edge perturbations

  6. Behaviour of the peripheral plasma in the reversed field pinch

    International Nuclear Information System (INIS)

    Matsuoka, A.; Sato, K.I.; Arimoto, H.; Yamada, S.; Nagata, A.; Murata, H.

    1986-01-01

    By using Langmuir probes installed behind limiters, time behaviour of the peripheral plasma in the Reversed Field Pinch (RFP) are investigated. They are strongly affected by the confined RFP plasma and are divided into three phases (the initial phase before setting up the RFP configuration, the current rising phase, and the quiescent phase), which are just the same as those of the confined RFP plasma. Typical behaviour of the peripheral plasma have relations to the pump out phenomena and of the toroidal flux generation. (author)

  7. Switching field distribution and magnetization reversal process of FePt dot patterns

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, S., E-mail: ishio@gipc.akita-u.ac.jp [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Takahashi, S.; Hasegawa, T.; Arakawa, A.; Sasaki, H. [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Yan, Z.; Liu, X. [Venture Business Laboratory, Akita University, Tegata Gakuen-machi, Akita 010-8502 (Japan); Kondo, Y.; Yamane, H.; Ariake, J. [Akita Prefectural R and D Center, 4-21 Sanuki, Akita 010-1623 (Japan); Suzuki, M.; Kawamura, N.; Mizumaki, M. [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2014-06-01

    The fabrication of FePt nanodots with a high structural quality and the control of their switching fields are key issues in realizing high density bit pattern recording. We have prepared FePt dot patterns for dots with 15–300 nm diameters by electron beam lithography and re-annealing, and studied the relation between magnetization reversal process and structure of FePt nanodots. The switching field (H{sub sw}) of dot patterns re-annealed at 710 °C for 240 min showed a bimodal distribution, where a higher peak was found at 5–6 T, and a lower peak was found at ∼2 T. It was revealed by cross-sectional TEM analysis that the structure of dots in the pattern can be classified into two groups. One group has a high degree of order with well-defined [0 0 1] crystalline growth, and the other group includes structurally-disturbed dots like [1 1 1] growth and twin crystals. This structural inhomogeneity causes the magnetic switching field distribution observed. - Highlights: • FePt dot patterns with 15–100 nm dot diameters were prepared by EB lithography. • Maximum coercivity of 30 kOe was found in the dot pattern with 30 nm in diameter. • Magnetization reversal was studied on the base of TEM analysis and LLG simulation.

  8. Reversed-field pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. The 5-s dwell period between burn pulses for plasma quench and refueling allows steady-state operation of all thermal systems outside the first wall; no auxiliary thermal capacity is required. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented water/steam coolant tubes. The slightly superheated steam emerging from this blanket directly drives a turbine that produces electrical power at an efficiency of 30%. A borated-water shield is located immediately outside the thermal blanket to protect the superconducting magnet coils. Both the superconducting poloidal and toroidal field coils are energized by homopolar motor/generators. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  9. Field configurations for small deviations of the integral filling factors in IQHE

    International Nuclear Information System (INIS)

    Cabo, A.; Castineiras, J.; Gonzalez, R.; Penaranda, S.

    1990-07-01

    A numerical solution of the effective Maxwell equations of the IQHE is presented. It corresponds to inhomogeneous electromagnetic field distributions appearing after a small constant magnetic field is added to a 2D-electron gas sheet when the density exactly fills an integral number of Landau levels. It follows that the Chern-Simons terms of the Maxwell equation transform the applied magnetic field into an equivalent homogeneous charge density. The numerical value of this density is exactly the one which is needed to furnish complete filling at the new value of the total magnetic field. The system then reacts tending to screen the effective charge density by removing charge from the sample edges. It is interesting that for the selected parameter values here, reflecting the current experimental situations, the system response is able to approximately establish an integral filling factor in the central portion of the sheet. Then, at least a small plateau is predicted to occur in pure samples at zero temperature. It also follows that the current distribution is unsymmetric under the inversion, as opposed to the configuration associated to a flow of a net Hall current at integral filling factors. (author). 8 refs, 4 figs

  10. Tokamak-like confinement at high beta and low field in the reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J S; Anderson, J K; Biewer, T M; Brower, D L; Chapman, B E; Chattopadhyay, P K; Craig, D; Deng, B; Hartog, D J Den; Ding, W X; Fiksel, G; Forest, C B; Goetz, J A; O'Connell, R; Prager, S C; Thomas, M A

    2003-01-01

    For several reasons, improved-confinement achieved in the reversed field pinch (RFP) during the last few years can be characterized as 'tokamak-like'. Historically, RFP plasmas have had relatively poor confinement due to tearing instability which causes magnetic stochasticity and enhanced transport. Tearing reduction is achieved through modification of the inductive current drive, which dramatically improves confinement. The electron temperature increases to >1 keV and the electron heat diffusivity decreases to approx. 5 m 2 s -1 , comparable with the transport level expected in a tokamak plasma of the same size and current. This corresponds to a 10-fold increase in global energy confinement. Runaway electrons are confined, and Fokker-Planck modelling of the electron distribution reveals that the diffusion at high energy is independent of the parallel velocity, uncharacteristic of stochastic transport. Improved-confinement occurs simultaneously with increased beta approx. 15%, while maintaining a magnetic field strength ten times weaker than a comparable tokamak. Measurements of the current, magnetic, and electric field profiles show that a simple Ohm's Law applies to this RFP sustained without dynamo relaxation

  11. Far-infrared laser interferometry measurements on the STP-3(M) reversed-field pinch

    International Nuclear Information System (INIS)

    Kubota, Shigeyuki; Nagatsu, Masaaki; Tsukishima, Takashige; Arimoto, Hideki; Sato, Koichi; Matsuoka, Akio.

    1993-09-01

    Far-infrared laser interferometry at 432 μm was carried out on the STP-3(M) reversed-field pinch. Measurements along two vertical chords showed a change from a parabolic-like to a flat-like electron density profile after field reversal. A density profile inversion and a correlated toroidal magnetic flux perturbation were also observed during the transition from the current rising to the current decay phase. Measurements of electron density fluctuations indicated relative fluctuation levels of ∼10% for both chords during the current rising phase and ∼5% and ∼15% during the current decay phase for the central and outer chords, respectively. Spectral analysis showed a ∼30 kHz mode consistent with poloidal mode number m=0 magnetic fluctuations, and a ∼90 kHz mode localized to the outer region of the plasma, which was strongly excited during the current decay phase and may be connected to particle and energy transport in STP-3(M). (author)

  12. Reversed-field-pinch and ultra-low-q discharges in REPUTE-2

    International Nuclear Information System (INIS)

    Inoue, N.; Yoshida, Z.; Kamada, Y.; Saito, M.; Miyamoto, K.

    1987-01-01

    Ultra-low q (ULQ) and very-low q (VLQ) discharge experiments have been done using the REPUTE-1 RFP. It was found that in these q regime, the plasma density and beta are fairly high, and the confinement property is less sensitive to the error field compared to the RFP. However, since the temperature of the REPUTE-1 discharge is limited in low value because of the small plasma current due to the small toroidal field, its magnetic Reynolds number is too small to simulate the reactor plasma behavior. The radiation barrier has not been overcome yet, and consequently the energy confinement time is very short. In order to improve these aspects of the REPUTE-1 experiment, the REPUTE-2 is designed to produce higher toroidal field of 2T. The toroidal field increases slowly to the final value as in the case of the ramp-up mode of the RFP operation. The first stage of the REPUTE-2 project will be devoted to study the confinement physics of RFP, ULQ, and VLQ. In the second stage, innovation of these configurations, such as resistive shell RFP, neutral beam current drive, and higher current density, is planned. 8 refs., 1 fig., 2 tabs

  13. Plasma behaviour in large reversed-field pinches and reactors

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Bodin, H.A.B.; Carolan, P.G.; Johnston, J.W.; Newton, A.A.; Roberts, K.V.; Robinson, D.C.; Watts, M.R.C.; Piotrowicz, V.A.

    1981-01-01

    Recent analytic and numerical results on large reversed-field-pinch (RFP) systems and RFP reactors are presented. Predictions are made of the plasma behaviour in Eta Beta II, HBTXIA (under construction) and RFX (planned). The setting-up phase of an RFP is studied by using turbulence theory in transport equilibrium calculations, and estimates are made of the volt-seconds consumption for four different modes of field control. A prescription is given for a dynamo producing self-reversal which yields finite-β configurations. Residual instabilities of these equilibria may be resistive pressure-driven g-modes, and a new study of these modes that includes parallel viscosity indicates stability for anti β approximately 10%. The sustainment phase of the RFP is examined with tokamak scaling laws assumed for the energy confinement time. Temperatures in excess of 1keV are predicted for currents of 2MA in RFX. An operating cycle for a pulsed RFP reactor including gas puffing to reach ignition is proposed following a study of the energy replacement time for an Ohmically heated plasma. The scaling of the reactor parameters with minor radius is also investigated. (author)

  14. Cluster observation of plasma flow reversal in the magnetotail during a substorm

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-08-01

    Full Text Available We investigate in detail a reversal of plasma flow from tailward to earthward detected by Cluster at the downstream distance of ~19 RE in the midnight sector of the magnetotail on 22 August 2001. This flow reversal was accompanied by a sign reversal of the Bz component and occurred during the late substorm expansion phase as revealed by simultaneous global view of auroral activity from IMAGE. We examine the associated Hall current system signature, current density, electric field, Lorentz force, and current dissipation/dynamo term, the last two parameters being new features that have not been studied previously for plasma flow reversals. It is found that (1 there was no clear quadrupole Hall current system signature organized by the flow reversal time, (2 the x-component of the Lorentz force did not change sign while the other two did, (3 the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source, (4 the electric field was occasionally dawnward, producing a dynamo effect, and (5 the electric field was occasionally larger at the high-latitude plasma sheet than near the neutral sheet. These observations are consistent with the current disruption model for substorms in which these disturbances are due to shifting dominance of multiple current disruption sites and turbulence at the observing location.

  15. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  16. A simple statistical model for geomagnetic reversals

    Science.gov (United States)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  17. Megagauss field generation for high-energy-density plasma science experiments

    International Nuclear Information System (INIS)

    Rovang, Dean Curtis; Struve, Kenneth William; Porter, John Larry Jr.

    2008-01-01

    There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs

  18. Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display.

    Science.gov (United States)

    Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile

    2017-10-13

    Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.

  19. The effect of magnetic field configuration on particle pinch velocity in compact helical system (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Ida, K.; Yamada, H.

    1994-01-01

    Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)

  20. Confinement and heating of high beta plasma with emphasis on compact toroids. Compact toroid research

    International Nuclear Information System (INIS)

    Vlases, G.C.; Pietrzyk, Z.A.

    1984-11-01

    Two older projects associated with very high energy density plasmas, specifically the High Density Field Reversed Configuration and the Liner Plasma Compression Experiment, have been completed. Attention has been turned to compact toroid experiments of more conventional density, and three experiments have been initiated. These include the Coaxial Slow Source Experiment, the Variable Length FRC Experiment, and Variable Angle CthetaP Experiment. In each case, the project was begun in order to provide basic plasma physics information on specific unresolved issues of progammatic importance to the national CT Program

  1. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  2. Modelling of radial electric field profile for different divertor configurations

    International Nuclear Information System (INIS)

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  3. System and method for magnetic current density imaging at ultra low magnetic fields

    Science.gov (United States)

    Espy, Michelle A.; George, John Stevens; Kraus, Robert Henry; Magnelind, Per; Matlashov, Andrei Nikolaevich; Tucker, Don; Turovets, Sergei; Volegov, Petr Lvovich

    2016-02-09

    Preferred systems can include an electrical impedance tomography apparatus electrically connectable to an object; an ultra low field magnetic resonance imaging apparatus including a plurality of field directions and disposable about the object; a controller connected to the ultra low field magnetic resonance imaging apparatus and configured to implement a sequencing of one or more ultra low magnetic fields substantially along one or more of the plurality of field directions; and a display connected to the controller, and wherein the controller is further configured to reconstruct a displayable image of an electrical current density in the object. Preferred methods, apparatuses, and computer program products are also disclosed.

  4. Flux trapping during field reversal in a field reversed theta pinch

    International Nuclear Information System (INIS)

    Milroy, R.D.; Hoffman, A.L.; Slough, J.T.; Harding, D.G.

    1983-01-01

    In this paper we present new results from both numerical and experimental studies of the formation of the conducting sheath near the tube wall and its effectiveness in trapping bias flux during field reversal

  5. Experimental and numerical studies on pressure drop in reverse electrodialysis: Effect of unit cell configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Kook; Choi, Kyung Soo [Advanced Combustion Laboratory, Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Chan Soo; Hwang, Kyo Sik; Han, Ji Hyung; Kim, Han Ki; Jeong, Nam Jo [Jeju Global Research Center, Korea Institute of Energy Research, Jeju (Korea, Republic of)

    2016-11-15

    Experimental and numerical studies on pressure drop in Reverse electrodialysis (RED) were performed. In this study, a module with 200 unit cells is considered for the demonstration of bench-scale RED module and two different unit cell configurations are utilized. Pressure drop through the module is measured by varying flow rates. For evaluating the hydrodynamic characteristics in the unit cell, a numerical simulation is also conducted and the simplified method using a porous media model is employed to simulate the channel filled with spacer. Due to the insertion of spacer and narrow channel, great pressure loss occurs along the unit cell. Based on estimated pressure data, high pressure difference between seawater and fresh water channel takes place locally in the unit cell configuration with crossflow direction, leading to a leakage problem through the membrane and finally degradation in the output power. Consequently, it is confirmed that the unit cell configuration is one of the important design parameters in a RED module.

  6. Nonlinear tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1989-01-01

    Finite-amplitude islands, which are the saturated states of tearing modes in the reversed field pinch, are calculated. These states are bifurcated noncylindrical equilibrium states. With σ(r) (σequivalentj x B/B 2 ) nonuniform across the plasma, as is consistent with experiment, a variety of m = 1 and m = 0 bifurcated equilibria are possible, instead of just the m = 1 helix calculated for uniform σ(r) by Taylor [in Pulsed High Beta Plasmas, edited by D. Evans (Pergamon, Oxford, 1976), p. 59]. Assuming the magnetic field lines in the reversed field pinch are weakly stochastic, the growth time of an unstable tearing mode is on the inertial time scale, as in the Taylor model, in constrast to growth on the resistive time scale predicted from nonlinear tearing mode theory when magnetic surfaces exist. The dependence of the saturated island width on radius of a conducting shell is investigated. Islands in the reversed field pinch often have magnetic wells in the island interior, which may result in improved confinement in the island regions

  7. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  8. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  9. Experimental study on highly collisional edge plasmas in W7-AS island divertor configurations

    International Nuclear Information System (INIS)

    Grigull, P.; Hildebrandt, D.; Sardei, F.; Feng, Y.; Herre, G.; Herrmann, A.; Hofmann, J.V.; Kisslinger, J.; Kuehner, G.; Niedermeyer, H.; Schneider, R.; Verbeek, H.; Wagner, F.; Wolf, R.; Zhang, X.D.

    1997-01-01

    Edge plasma scenarios in island divertor configurations ('natural' magnetic islands intersected by targets) are studied by comparing data from moderate to high density NBI discharges with 3D code (EMC3/EIRENE) results. The data strongly indicate that high recycling with significant particle flux enhancement was achieved in this geometry. But, plasma pressure losses towards the targets are relatively strong, and high recycling sets in only at n e >10 20 m -3 . The respective density enhancement in front of the targets is moderate (up to a factor of about three relative to the upstream density). These scenarios are also in basic agreement with B2/EIRENE code predictions. At n e >1.5 x 10 20 m -3 detachment seems to develop. Improvements are expected from additional coils controlling the field line pitch inside the islands, and from optimized targets which will better focus recycling neutrals into the islands. Both are in preparation. (orig.)

  10. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  11. Conceptual design of the field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-01-01

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate

  12. Cost-constrained design point for the Reversed-Field Pinch Reactor (RFPR)

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1978-01-01

    A broad spectrum of Reversed-Field Pinch Reactor (RFPR) operating modes are compared on an economics basis. An RFPR with superconducting coils and an air-core poloidal field transformer optimizes to give a minimum cost system when compared to normal-conducting coils and the iron-core transformer used in earlier designs. An interim design is described that exhibits a thermally stable, unrefueled, 21 s burn (burnup 50 percent) with an energy containment time equal to 200 times the Bohm time, which is consistent with present-day tokamak experiments. This design operates near the minimum energy state (THETA = B/sub THETA/(r/sub w/)/[B/sub z/] = 2.0 and F = B/sub z/(r/sub w/)/[B/sub z/] = 1.0 from the High Beta Model) of the RFP configuration. This cost-optimized design produces a reactor of 1.5-m minor radius and 12.8-m major radius, that generates 1000 MWe (net) with a recirculating power fraction of 0.15 at a direct capital cost of 970 $/kWe

  13. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  14. The effect of quadrupole fields on particle confinement in a field-reversed mirror

    International Nuclear Information System (INIS)

    McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.

    1982-01-01

    A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device

  15. Role of anisotropic thermal conductivity in the reversed-field pinch dynamics

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2011-01-01

    Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.

  16. High-density near-field optical disc recording using phase change media and polycarbonate substrate

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2004-09-01

    We developed a high density near field optical recording disc system with a solid immersion lens and two laser sources. In order to realize the near field optical recording, we used a phase change recording media and a molded polycarbonate substrate. The near field optical pick-up consists of a solid immersion lens with numerical aperture of 1.84. The clear eye pattern of 90.2 GB capacity (160nm track pitch and 62 nm per bit) was observed. The jitter using a limit equalizer was 10.0 % without cross-talk. The bit error rate using an adaptive PRML with 8 taps was 3.7e-6 without cross-talk. We confirmed that the near field optical disc system is a promising technology for a next generation high density optical disc system.

  17. Field dependence of the current density of superconductors at high temperatures

    International Nuclear Information System (INIS)

    Hiergeist, R.; Hergt, R.; Erb, A.; Kummeth, P.; Winzer, K.

    1993-01-01

    An essential drawback of the high-T c superconductors (HTS) with respect to technical applications at liquid nitrogen temperature is the large degradation of their pinning properties in magnetic fields. For the field dependence of the volume pinning force often a high field tail due to thermally activated flux flow is observed. An exponential decay of the irreversible magnetization with increasing field was reported in the case of sintered material (YBCO) for the intergranular part of the magnetization while a power law decay was found for the intragranular part. Song et al. observed an exponential field dependence of the critical current density for proton-irradiated material which before irradiation showed a power law decay. Gladun et al. found an exponential decay for BSCCO-2223 tapes. The high field behaviour of BSCCO was shown to be governed by thermally activated flux creep with a logarithmic pinning barrier, which may result in an exponential decrease of the current with the external magnetic field, as argued recently by Ries et al. We will show in the present paper that the different HTS substance classes (YBCO, BSCCO, TBCCO) behave qualitatively in a similar way. (orig.)

  18. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  19. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  20. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  1. END effects on the n = 2 rotational instability in the reversed field theta-pinch

    International Nuclear Information System (INIS)

    Aso, Y.; Wu, Ch.; Himeno, S.; Hirano, K.

    1981-07-01

    It is observed that n = 2 rotational mode which appears in the field reversed configuration created by a theta-pinch can be stabilized if the ejected plasmas from the ends are guided out to the far ends of the apparatus by long axial solenoidal fields. This is understood from the fact that endshorting becomes no longer possible before the ejecting plasma tips reach to the ends. Measurement of plasma rotations just outside the separatrix suggests that both preferential diffusion loss and endshorting play a very important role for the n = 2 mode. (author)

  2. Dynamical similarity of geomagnetic field reversals.

    Science.gov (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  3. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    Science.gov (United States)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  4. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  5. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Melton, J.G.; Linton, T.W.

    1983-01-01

    The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell

  6. Improvement of RFX performances by field and impurity control

    International Nuclear Information System (INIS)

    Buffa, A.; Gnesotto, F.

    1995-01-01

    The Reverse Field Pinch experiment RFX has been operated since 1992 with the principal objective of extending the knowledge of RFP confinement to larger dimensions and higher plasma currents. Experiments have been run between 500 and 900 kA; confinement parameters are mainly determined by magnetic field quality and plasma density behavior. Significant improvements were obtained by feedback controlling the poloidal field configuration and by reducing the impurities produced by plasma-wall interactions

  7. Characteristics of a large reversed field pinch machine, TPE-RX

    International Nuclear Information System (INIS)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K.; Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K.; Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K.

    1998-01-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  8. Characteristics of a large reversed field pinch machine, TPE-RX

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K. [Electrotechnical Lab., Tsukuba-shi, Ibaraki (Japan); Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K. [Mitsubishi Electric Corp. (Japan); Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K. [Mitsubishi Heavy Industries Ltd. (Japan)

    1998-07-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  9. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  10. Effect of magnetic configuration on density fluctuation and particle transport in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Yamagishi, O.; Ida, K.; Yamada, H.; Yoshinuma, M.; Yokoyama, M.; Miyazawa, J.; Morita, S.; Kawahata, K.; Tokzawa, T.; Shoji, M.; Vyacheslavov, L.N.; Sanin, A.L.

    2005-01-01

    The study of fluctuations and particle transport is important issue in heliotron and stellarator devices as well as in tokamaks. A two dimensional phase contrast interferometer (2D PCI) was developed to investigate fluctuation characteristics, which play role in confinement. The current 2D PCI can detect fluctuations for which -1 0.3 -1 and 5< f<500kHz. With the use of magnetic shear and the 2D detector, the spatial resolution around 20% of averaged minor radius is possible presently. The strongest fluctuations are localized in the plasma edge, where density gradients are negative, but fluctuations also exist in the positive density gradient region of the hollow density profile. The phase velocity of fluctuations in the positive gradient region is close to plasma ErxBt rotation. On the other hand, fluctuations in the negative density gradient region propagate in the ion diamagnetic direction in the plasma frame and do not follow ErxBt rotation. This suggests there is a different nature of the fluctuations in the positive and negative density gradient regions. A particle transport was studied by means of density modulation experiments. The systematic study was done at Rax=3.6m, which is so-called standard configuration. The density profiles vary from peaked to hollow with increasing heating power. It was also found that particle diffusion and convection are functions of electron temperature and its gradient respectively. The magnetic configuration is another parameter, which characterizes particle confinement. At more outward shifted configurations, helical ripple becomes larger and the ergodic region becomes thicker, then neoclassical transport becomes larger. However estimated diffusion coefficients are still around one order of magnitude larger than neoclassical values in edge region, where ρ = 0.7 ∼ 1.0 and they are larger at more outward configurations. At the same time the convection velocity is found to be comparable with neoclassical prediction at Rax=3

  11. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  12. MHD simulation of relaxation to a flipped ST configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kagei, Y [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Nagata, M [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan); Suzuki, Y [Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, Taito-ku, Tokyo (Japan); Kishimoto, Y [Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Naka-machi, Ibaraki (Japan); Hayashi, T [National Institute for Fusion Science, Toki, Gifu (Japan); Uyama, T [Department of Electrical Engineering and Computer Sciences, Himeji Institute of Technology, Himeji, Hyogo (Japan)

    2003-02-01

    The dynamics of spherical torus (ST) plasmas, when the external toroidal magnetic field is decreased to zero and then increased in the opposite direction, has been investigated using three-dimensional magnetohydrodynamic (MHD) numerical simulations. It has been found that the flipped ST configuration is self-organized after the ST configuration collapses because of the growth of the n = 1 mode in the open flux region and a following magnetic reconnection event. During the transition between these configurations, not only the paramagnetic toroidal field but also the poloidal field reverses polarity spontaneously. (letter to the editor)

  13. The evolution of configuration from q > 1 to q < 1

    International Nuclear Information System (INIS)

    Zhang Peng

    1993-06-01

    The evolution of configuration from an initial state of tokamak-like plasma to RFP (reversed field pinch) along the trajectory of minimum energy state is studied. the high plasma current allowed in a RFP is expected to be sufficient to heat the plasma to ignition without the need of auxiliary neutral-beam or radio-frequency heating

  14. Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

    Directory of Open Access Journals (Sweden)

    Thomas Reichert

    2017-05-01

    Full Text Available We present magnetoresistive organic field-effect transistors featuring ultrasmall magnetic field-effects as well as a sign reversal. The employed material systems are coevaporated thin films with different compositions consisting of the electron donor 2,2',7,7'-tetrakis-(N,N-di-p-methylphenylamino-9,9'-spirobifluorene (Spiro-TTB and the electron acceptor 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN. Intermolecular charge transfer between Spiro-TTB and HAT-CN results in a high intrinsic charge carrier density in the coevaporated films. This enhances the probability of bipolaron formation, which is the process responsible for magnetoresistance effects in our system. Thereby even ultrasmall magnetic fields as low as 0.7 mT can influence the resistance of the charge transport channel. Moreover, the magnetoresistance is drastically influenced by the drain voltage, resulting in a sign reversal. An average B0 value of ≈2.1 mT is obtained for all mixing compositions, indicating that only one specific quasiparticle is responsible for the magnetoresistance effects. All magnetoresistance effects can be thoroughly clarified within the framework of the bipolaron model.

  15. Instanton Field Configurations and Black Holes

    CERN Document Server

    Konopleva, N P

    2005-01-01

    The role of vacuum relativization in QCD and nucleus theory is discussed. It is shown that relativistic vacuum must be described by vacuum Einstein equations. Black Holes have to make their appearance in QCD because of Schwarzschildean solution of these equations. Instanton configurations of any fields do not change vacuum Einstein equations and their solutions, because their energy-momentum tensors are zero. But they make it possible to determine a space-time topology, which cannot be defined by differential Einstein equations. Therefore, Black Holes number in space-time is possibly connected with instanton configurations of fields and other matter. Instantons do not fall into Black Holes and are the very matter which surrounds them.

  16. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  17. Operational limits of high density H-modes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mertens, V.; Borrass, K.; Kaufmann, M.; Lang, P.T.; Lang, R.; Mueller, H.W.; Neuhauser, J.; Schneider, R.; Schweinzer, J.; Suttrop, W.

    2001-01-01

    Systematic investigations of H-mode density limit (H→L-mode back transition) plasmas with gas fuelling and alternatively with additional pellet injection from the magnetic high-field-side HFS are being performed in the new closed divertor configuration DV-II. The resulting database covering a wide range of the externally controllable plasma parameters I p , B t and P heat confirms that the H-mode threshold power exceeds the generally accepted prediction P L→H heat ∝B-bar t dramatically when one approaches Greenwald densities. Additionally, in contrast to the Greenwald scaling a moderate B t -dependence of the H-mode density limit is found. The limit is observed to coincide with divertor detachment and a strong increase of the edge thermal transport, which has, however, no detrimental effect on global τ E . The pellet injection scheme from the magnetic high-field-side HFS, developed recently on ASDEX Upgrade, leads to fast particle drifts which are, contrary to the standard injection from the low-field-side, directed into the plasma core. This improves markedly the pellet particle fuelling efficiency. The responsible physical mechanism, the diamagnetic particle drift of the pellet ablatant was successfully verified recently. Other increased particle losses on respectively different time scales after the ablation process, however, still persist. Generally, a clear gain in achievable density and plasma stored energy is achieved with stationary HFS pellet injection compared to gas-puffing. (author)

  18. Memory Device and Nanofabrication Techniques Using Electrically Configurable Materials

    Science.gov (United States)

    Ascenso Simões, Bruno

    Development of novel nanofabrication techniques and single-walled carbon nanotubes field configurable transistor (SWCNT-FCT) memory devices using electrically configurable materials is presented. A novel lithographic technique, electric lithography (EL), that uses electric field for pattern generation has been demonstrated. It can be used for patterning of biomolecules on a polymer surface and patterning of resist as well. Using electrical resist composed of a polymer having Boc protected amine group and iodonium salt, Boc group on the surface of polymer was modified to free amine by applying an electric field. On the modified surface of the polymer, Streptavidin pattern was fabricated with a sub-micron scale. Also patterning of polymer resin composed of epoxy monomers and diaryl iodonium salt by EL has been demonstrated. Reaction mechanism for electric resist configuration is believed to be induced by an acid generation via electrochemical reduction in the resist. We show a novel field configurable transistor (FCT) based on single-walled carbon nanotube network field-effect transistors in which poly (ethylene glycol) crosslinked by electron-beam is incorporated into the gate. The device conductance can be configured to arbitrary states reversibly and repeatedly by applying external gate voltages. Raman spectroscopy revealed that evolution of the ratio of D- to G-band intensity in the SWCNTs of the FCT progressively increases as the device is configured to lower conductance states. Electron transport studies at low temperatures showed a strong temperature dependence of the resistance. Band gap widening of CNTs up to ˜ 4 eV has been observed by examining the differential conductance-gate voltage-bias voltage relationship. The switching mechanism of the FCT is attributed a structural transformation of CNTs via reversible hydrogenation and dehydrogenations induced by gate voltages, which tunes the CNT bandgap continuously and reversibly to non-volatile analog values

  19. Oscillating field current drive for reversed field pinch discharges

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Baker, D.A.

    1984-06-01

    Oscillating Field Current Drive (OFCD), also known as F-THETA pumping, is a steady-state current-drive technique proposed for the Reversed Field Pinch (RFP). Unlike other current-drive techniques, which employ high-technology, invasive, and power intensive schemes using radio frequency or neutral particle injection, F-THETA pumping entails driving the toroidal and poloidal magnetic field circuits with low-frequency (audio) oscillating voltage sources. Current drive by this technique is a consequence of the strong nonlinear plasma coupling in the RFP. Because of its low frequency and efficient plasma coupling, F-THETA pumping shows excellent promise as a reactor-relevant current-drive technique. A conceptual and computational study of this concept, including its experimental and reactor relevance, is explored in this paper

  20. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  1. Density effects on electronic configurations in dense plasmas

    Science.gov (United States)

    Faussurier, Gérald; Blancard, Christophe

    2018-02-01

    We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.

  2. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  3. Configurational entropy of polar glass formers and the effect of electric field on glass transition.

    Science.gov (United States)

    Matyushov, Dmitry V

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ(γ)/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  4. Relativistic reversal of the ponderomotive force in a standing laser wave

    International Nuclear Information System (INIS)

    Pokrovsky, A.L.; Kaplan, A.E.

    2005-01-01

    Effect of relativistic reversal of the ponderomotive force (PF), reported earlier for a collinear configuration of electron and laser standing wave [A. E. Kaplan and A. L. Pokrovsky, Phys. Rev. Lett., 95, 053601 (2005)], is studied here theoretically for various types of polarizations of the laser beam. We demonstrated that the collinear configuration, in which the laser wave is linearly polarized with electric field E-vector parallel to the initial electron momentum p-vector 0 , is the optimal configuration for the relativistic reversal. In that case, the transverse PF reverses its direction when the incident momentum is p 0 =mc. The reversal effect vanishes in the cases of circular and linear with E-vector perpendicular p-vector 0 polarizations. We have discovered, however, that the counter-rotating circularly polarized standing waves develop attraction and repulsion areas along the axis of laser, in the laser field whose intensity is homogeneous in that axis, i.e., has no field gradient

  5. Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  6. Fusion proton diagnostic for the C-2 field reversed configurationa)

    Science.gov (United States)

    Magee, R. M.; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-01

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm2), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (˜100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  7. Translation Studies on an Annular Field Reversed Configuration Device

    Science.gov (United States)

    2012-10-01

    step H( f ) Transfer function Isat + Ion saturation current Ii Inner coil current Io Outer coil current Ip Plasmoid current Ibit Impulse bit Ien...density can be calculated from the ion saturation current. The ion saturation current is [72] Isat + = ecn0Ap √ kBTe 2πmi ii(X) (5.28) where n0 is the

  8. Scaling of sustained ZT-40 M reversed field pinches

    International Nuclear Information System (INIS)

    Graham, J.; Haberstich, A.; Baker, D.A.; Buchenauer, C.J.; Caramana, E.J.; DiMarco, J.N.; Erickson, R.M.; Ingraham, J.C.; Jacobson, A.R.; Little, E.M.; Massey, R.S.; Phillips, J.A.; Schoenberg, K.F.; Schofield, A.E.; Thomas, K.S.; Watt, R.G.; Weber, P.G.

    1993-12-01

    Experiments aimed at evaluating the scaling properties of the ZT-40M Reversed-Field Pinch (RFP) facility were conducted in 1983 at Los Alamos. Sustained discharges were produced at nominal toroidal currents ranging from 60 to 240 kA. The standard fill pressure was kept close to the lower limit of the usable pressure range, and the scaling data were acquired at a fixed time in the discharges while the plasma was in a quasi-steady state. Scalings of the diameter-averaged electron density, electron temperature on axis, product of these two parameters, and of various definitions of the electrical resistivity are presented. Trends of the toroidal voltage, energy containment time, and poloidal beta are shown. The impurity contents, particle containment time, and total radiation losses are described, and results obtained with and without poloidal limiters are compared. In addition, the performance of the facility at higher than standard density and at a constant ratio of the toroidal current over the electron line density is examined

  9. Reassessment of the requirements to obtain field reversal in mirror machines

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Fowler, T.K.

    1977-01-01

    Requirements to obtain field reversal by neutral injection are re-examined to take account of a cancellation of currents at a field null caused by electron-ion collisions that drag the electrons along with the moving ions. We find that for cases of interest even a small admixture of higher-Z ions generates a residual current (the Ohkawa current) that is sufficient to maintain field reversal in steady state with a lifetime comparable to the usual magnetic diffusion time. An approximate prescription is given for buildup to such a state; namely, the neutral injection current must be sufficient to reduce the field to zero on axis with open confinement for an initial plasma radius of r 1 = 4r/sub Li/, where r/sub Li/ is the ion Larmor radius in the vacuum field. Again high-Z ions are needed to bring about the transition to a field-reversed state, r 1 = 4r/sub Li/ being the initial radius that minimizes the injection current needed to do this for a reasonable high-Z ion content (10% helium, or less of a higher-Z gas). Since 4r/sub Li/ is about 2 times the radius in past 2XIIB experiments, it is concluded that either the injection current or the energy confinement time must be substantially increased, by about a factor of 3, if field reversal is to be achieved in 2XIIB. Auxiliary injection by pulsed ion sources or plasma guns might reduce the current requirements significantly if 6 kilojoules of energy could be deposited in the plasma

  10. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.

    2015-07-30

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  11. Assessment of Microbial Fuel Cell Configurations and Power Densities

    KAUST Repository

    Logan, Bruce E.; Wallack, Maxwell J; Kim, Kyoung-Yeol; He, Weihua; Feng, Yujie; Saikaly, Pascal

    2015-01-01

    Different microbial electrochemical technologies are being developed for a many diverse applications, including wastewater treatment, biofuel production, water desalination, remote power sources, and as biosensors. Current and energy densities will always be limited relative to batteries and chemical fuel cells, but these technologies have other advantages based on the self-sustaining nature of the microorganisms that can donate or accept electrons from an electrode, the range of fuels that can be used, and versatility in the chemicals that can be produced. The high cost of membranes will likely limit applications of microbial electrochemical technologies that might require a membrane. For microbial fuel cells, which do not need a membrane, questions remain on whether larger-scale systems can produce power densities similar to those obtained in laboratory-scale systems. It is shown here that configuration and fuel (pure chemicals in laboratory media versus actual wastewaters) remain the key factors in power production, rather than the scale of the application. Systems must be scaled up through careful consideration of electrode spacing and packing per unit volume of reactor.

  12. Antioxidant activity of high-density lipoprotein (HDL) using different ...

    African Journals Online (AJOL)

    HDL is a potent antioxidant in terms of inhibition of lipid peroxidation, ROS production and LDL oxidation. These may to some extent add to the antiatherogenic beyond reverse-cholesterol transport properties of HDL. Keywords: high-density lipoprotein; reverse cholesterol transport; apolipoprotein A1; antioxidant; in vitro.

  13. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  14. Compact reversed-field pinch reactors (CRFPR): sensitivity study and design-point determination

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1982-07-01

    If the costing assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves overly optimistic, approaches that promise considerably increased system power density and reduced mass utilization will be required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique, magnetic topology associated with the Reversed-Field Pinch (RFP), the compact reactor embodiment for this approach is particularly attractive from the viewpoint of low-field resistive coils operating with Ohmic losses that can be made small relative to the fusion power. A comprehensive system model is developed and described for a steady-state, compact RFP reactor (CRFPR). This model is used to select a unique cost-optimized design point that will be used for a conceptual engineering design. The cost-optimized CRFPR design presented herein would operate with system power densities and mass utilizations that are comparable to fission power plants and are an order of magnitude more favorable than the conventional approaches to magnetic fusion power. The sensitivity of the base-case design point to changes in plasma transport, profiles, beta, blanket thickness, normal vs superconducting coils, and fuel cycle (DT vs DD) is examined. The RFP approach is found to yield a point design for a high-power-density reactor that is surprisingly resilient to changes in key, but relatively unknown, physics and systems parameters

  15. Plasma-column instabilities in a reversed-field pinch without a shell

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  16. Plasma-column instabilities in a reversed-field pinch without a shell

    International Nuclear Information System (INIS)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  17. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  18. Using Magnetic Fields to Create and Control High Energy Density Matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Mark [Sandia National Laboratory

    2012-05-09

    The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.

  19. Field-reversed experiments (FRX) on compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-11-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10/sup 15/ cm/sup -3/ to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10/sup 15/ cm/sup -3/. Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 ..mu..sec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed.

  20. Field-reversed experiments (FRX) on compact toroids

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10 15 cm -3 to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10 15 cm -3 . Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 μsec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed

  1. External magnetic field configurations for EXTRAP

    International Nuclear Information System (INIS)

    Bonnevier, B.

    1982-08-01

    The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)

  2. Covariant density functional theory beyond mean field and applications for nuclei far from stability

    International Nuclear Information System (INIS)

    Ring, P

    2010-01-01

    Density functional theory provides a very powerful tool for a unified microscopic description of nuclei all over the periodic table. It is not only successful in reproducing bulk properties of nuclear ground states such as binding energies, radii, or deformation parameters, but it also allows the investigation of collective phenomena, such as giant resonances and rotational excitations. However, it is based on the mean field concept and therefore it has its limits. We discuss here two methods based based on covariant density functional theory going beyond the mean field concept, (i) models with an energy dependent self energy allowing the coupling to complex configurations and a quantitative description of the width of giant resonances and (ii) methods of configuration mixing between Slater determinants with different deformation and orientation providing are very successful description of transitional nuclei and quantum phase transitions.

  3. Experimental study of flow field characteristics on bed configurations in the pebble bed reactor

    International Nuclear Information System (INIS)

    Jia, Xinlong; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jia, Haijun; Jiang, Shengyao

    2017-01-01

    Highlights: • PTV study of flow fields of pebble bed reactor with different configurations are carried out. • Some criteria are proposed to quantify vertical velocity field and flow uniformity. • The effect of different pebble bed configurations is also compared by the proposed criteria. • The displacement thickness is used analogically to analyze flow field characteristics. • The effect of mass flow variation in the stagnated region of the funnel flow is measured. - Abstract: The flow field characteristics are of fundamental importance in the design work of the pebble bed high temperature gas cooled reactor (HTGR). The different effects of bed configurations on the flow characteristics of pebble bed are studied through the PTV (Particle Tracking Velocimetry) experiment. Some criteria, e.g. flow uniformity (σ) and mass flow level (α), are proposed to estimate vertical velocity field and compare the bed configurations. The distribution of the Δθ (angle difference between the individual particle velocity and the velocity vector sum of all particles) is also used to estimate the resultant motion consistency level. Moreover, for each bed configuration, the thickness of displacement is analyzed to measure the effect of the funnel flow zone based on the boundary layer theory. Detailed information shows the quantified characteristics of bed configuration effects on flow uniformity and other characteristics; and the sequence of levels of each estimation criterion is obtained for all bed configurations. In addition, a good design of the pebble bed configuration is suggested and these estimation criteria can be also applied and adopted in testing other geometry designs of pebble bed.

  4. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  5. Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors

    International Nuclear Information System (INIS)

    Chu, Y.Y.

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design

  6. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    International Nuclear Information System (INIS)

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-01-01

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  7. Earth's magnetic field is probably not reversing.

    Science.gov (United States)

    Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney

    2018-04-30

    The geomagnetic field has been decaying at a rate of [Formula: see text]5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.

  8. Brane configurations and 4D field theory dualities

    International Nuclear Information System (INIS)

    Brandhuber, A.; Sonnenschein, J.; Yankielowicz, S.

    1997-01-01

    We study brane configurations which correspond to field theories in four dimension with N=2 and N=1 supersymmetry. In particular we discuss brane motions that translate to Seiberg's duality in N=1 models recently studied by Elitzur, Giveon and Kutasov. We investigate, using the brane picture, the moduli spaces of the dual theories. Deformations of these models like mass terms and vacuum expectation values of scalar fields can be identified with positions of branes. The map of these deformations between the electric and dual magnetic theories is clarified. The models we study reproduce known field theory results and we provide an example of new dual pairs with N=1 supersymmetry. Possible relations between brane configurations and non-supersymmetric field theories are discussed. (orig.)

  9. Energetic electron measurements in the edge of a reversed-field pinch

    International Nuclear Information System (INIS)

    Ingraham, J.C.; Ellis, R.F.; Downing, J.N.; Munson, C.P.; Weber, P.G.; Wurden, G.A.

    1990-01-01

    The edge plasma of the ZT-40M [Fusion Technol. 8, 1571 (1985)] reversed-field pinch has been studied using a combination of three different plasma probes: a double-swept Langmuir probe, an electrostatic energy analyzer, and a calorimeter--Langmuir probe. The edge plasma has been measured both with and without a movable graphite tile limiter present nearby in the plasma. Without a limiter a fast nonthermal tail of electrons (T congruent 350 eV) is detected in the edge plasma with nearly unidirectional flow along B and having a density between 2% and 10% of the cold edge plasma (T congruent 20 eV). The toroidal sense of this fast electron flow is against the force of the applied electric field. A large power flux along B is measured flowing in the same direction as the fast electrons and is apparently carried by the fast electrons. With the limiter present the fast electrons are still detected in the plasma, but are strongly attenuated in the shadow of the limiter. The measured scrape-off lengths for both the fast electrons and the cold plasma indicate cross-field transport at the rate of, or less than, Bohm diffusion. Estimates indicate that the fast electrons could carry the reversed-field pinch current density at the edge and, from the measured transverse diffusion rates, could also account for the electron energy loss channel in ZT-40 M. The long mean-free-path kinetic nature of these fast electrons suggests that a kinetic process, rather than a magnetohydrodynamic process that is based upon a local Ohm's law formulation, is responsible for their generation

  10. Formation of a field-reversed configuration by coalescence of spheromaks

    International Nuclear Information System (INIS)

    Dasgupta, B.; Sato, Tetsuya; Hayashi, Takaya; Watanabe, Kunihiko; Watanabe, Tomohiko

    1995-01-01

    We present a numerical simulation of the slow formation of FRC by the merging of two spheromaks with opposite toroidal fluxes. A rather important feature of such a method of formation of FRC should be made explicit. A spheromak is basically a Taylor minimum energy state. On the other hand the FRC with its single component poloidal magnetic field and high plasma beta is decidedly far away from a Taylor state. So a numerical simulation of this process, besides demonstrating the feasibility of such FRC formation, is expected to show the traits in the process of transition from a Taylor state to a non-Taylor state. 5 refs., 2 figs., 1 tab

  11. High Fidelity Modeling of Field Reversed Configuration (FRC) Thrusters

    Science.gov (United States)

    2017-04-22

    plasma. Anomalous resistivity eects can be measured and the rst indications point to them being at least one order of magnitude larger than the Spitzer...uid codes to provide detailed spectra for validation with experimental measurements as described in Section C.3. The inelastic cross-sections...Equi- librium ( LTE ) assumption is often used to describe the state of the gas in the discharge region [4–17]. However, Non Local Thermodynamic

  12. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  13. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  14. Statistics of peaks in cosmological nonlinear density fields

    International Nuclear Information System (INIS)

    Suginohara, Tatsushi; Suto, Yasushi.

    1990-06-01

    Distribution of the high-density peaks in the universe is examined using N-body simulations. Nonlinear evolution of the underlying density field significantly changes the statistical properties of the peaks, compared with the analytic results valid for the random Gaussian field. In particular, the abundances and correlations of the initial density peaks are discussed in the context of biased galaxy formation theory. (author)

  15. Computational Analysis of G-Quadruplex Forming Sequences across Chromosomes Reveals High Density Patterns Near the Terminal Ends.

    Directory of Open Access Journals (Sweden)

    Julia H Chariker

    Full Text Available G-quadruplex structures (G4 are found throughout the human genome and are known to play a regulatory role in a variety of molecular processes. Structurally, they have many configurations and can form from one or more DNA strands. At the gene level, they regulate gene expression and protein synthesis. In this paper, chromosomal-level patterns of distribution are analyzed on the human genome to identify high-level distribution patterns potentially related to global functional processes. Here we show unique high density banding patterns on individual chromosomes that are highly correlated, appearing in a mirror pattern, across forward and reverse DNA strands. The highest density of G4 sequences occurs within four megabases of one end of most chromosomes and contains G4 motifs that bind with zinc finger proteins. These findings suggest that G4 may play a role in global chromosomal processes such as those found in meiosis.

  16. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... in the particle fluid. For nuclear densities above 2 to 3 rho(0), where rho(0) is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 10(17) Gauss....

  17. Physics of reversed-field pinch profile sustainment

    International Nuclear Information System (INIS)

    Moses, R.W.

    1984-01-01

    A description of the Reversed-Field Pinch (RFP) is given, emphasizing the necessity of a magnetohydrodynamic (MHD) or kinetic process to sustain field reversal. Three sustainment mechanisms are reviewed: the MHD dynamo, the tangled discharge model, and nonlocal resistivity. A slab model of steady (ohmic) states is described. A relationship between ohmic state wave numbers and the minimum amplitude of nonsymmetric field components is given. If ohmic states are the sole source of the sustainment process, their wave lengths are probably much longer than the minor diameter of the plasma. Otherwise field asymmetries would exceed those observed in experiments. It is noted that internal field data are still limited, restricting the generality of our comments

  18. RAPID COMMUNICATION: Effect of strain, magnetic field and field angle on the critical current density of Y Ba2Cu3O7-δ coated conductors

    Science.gov (United States)

    van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.

    2010-07-01

    A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.

  19. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  20. A conceptual design study of a reversed field pinch fusion reactor

    International Nuclear Information System (INIS)

    Kondo, S.; Tanaka, S.; Terai, T.; Hashizume, H.

    1989-01-01

    A conceptual design of a Reversed-Field Pinch (RFP) fusion reactor with a solid breeder blanket REPUTER-1 has been studied through parametric system studies and detailed design and analysis in order to clarify the technical feasibility of a compact fusion reactor. F-θ pumping is used for driving the plasma current necessary for steady state operation. A maintenance policy of replacing a whole fusion power core including TF coils is proposed to cope with the requirements of high wall loading and high mass power density. For the same reason a normal conductor is selected for most of the coils. The first wall is structurally independent of the blanket. The blanket module is composed of SiC reinforced blocks which form a stable arch so as to keep the stresses in SiC basically compressive. The coolant for the first wall and the limiter is pressurized water, while the coolant for the blanket is helium gas. A number of thin Li 2 O and thick beryllium tiles are packed into the blanket block so as to obtain a proper tritium breeding ratio. A pumped limiter is chosen for the plasma exhaust system. The study has shown the technical feasibility of a high power density fusion power reactor (330 kWe/tonne) with solid breeder blanket and many key physics and engineering issues are also clarified. (orig.)

  1. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  2. Field errors in the RFX magnetic field configuration

    International Nuclear Information System (INIS)

    Bellina, F.; Campostrini, P.P.; Chitarin, G.; Fauri, M.; Zaccaria, P.L.

    1987-01-01

    Several factors can jeopardize the desired field configuration in the plasma region of a toroidal machine, namely: the wrong positioning of the coil conductors; the displacement of the coils due to the deflection of the mechanical structure; the currents in the busbars feeding the coils; the ferromagnetic materials around the machine; and the eddy currents in any conducting loop in the neighbourhood of the machine. This paper describes the various methods used for evaluating the effects of each item listed above and the technical solutions which have been adopted, case by case, in order to comply with the requirements on the field errors

  3. Highly reversible open framework nanoscale electrodes for divalent ion batteries.

    Science.gov (United States)

    Wang, Richard Y; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2013-01-01

    The reversible insertion of monovalent ions such as lithium into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. Here we report that nanomaterials in the Prussian Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible insertion of aqueous alkaline earth divalent ions, including Mg(2+), Ca(2+), Sr(2+), and Ba(2+). We show unprecedented long cycle life and high rate performance for divalent ion insertion. Our results represent a step forward and pave the way for future development in divalent batteries.

  4. Effects of compressibility and heating in magnetohydrodynamics simulations of a reversed field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2009-01-01

    The reversed field pinch is studied using numerical simulations of the compressible magnetohydrodynamics equations. Contrary to what has been done in previous works, the hypotheses of constant density and vanishing pressure are not used. Two cases are investigated. In the first case the pressure is derived from an adiabatic condition and in the second case the pressure equation includes heating terms due to resistivity and viscosity. The evolution of the reversal parameter and the production of single helicity or multiple helicity states are different in the two cases. The simulations show that the results are affected by compressibility and are very sensitive to hypotheses on heat production.

  5. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Sallander, J.

    1999-01-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities. (author)

  6. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  7. The critical current density of an SNS Josephson-junction in high magnetic fields

    International Nuclear Information System (INIS)

    Carty, George J; Hampshire, Damian P

    2013-01-01

    Although the functional form of the critical current density (J c ) of superconducting–normal–superconducting (SNS) Josephson-junctions (J-Js) has long been known in the very low field limit (e.g. the sinc function), includes the local properties of the junction and has been confirmed experimentally in many systems, there have been no such general solutions available for high fields. Here, we derive general analytic equations for J c in zero field and in high fields across SNS J-Js for arbitrary resistivity of the superconductor and the normal layer which are consistent with the literature results available in limiting cases. We confirm the validity of the approach using both computational solutions to time-dependent Ginzburg–Landau (TDGL) theory applied to SNS junctions and experimental J c data for an SNS PbBi–Cd–PbBi junction. We suggest that since SNS junctions can be considered the basic building blocks for the description of the grain boundaries of polycrystalline materials because they both provide flux-flow channels, this work may provide a mathematical framework for high J c technological polycrystalline superconductors in high magnetic fields. (paper)

  8. Confinement in TPE-RX reversed field pinch

    International Nuclear Information System (INIS)

    Yagi, Y.; Bolzonella, T.; Canton, A.

    2001-01-01

    Characteristics of the confinement properties of a reversed field pinch (RFP), the TPE-RX (R/a=1.72/0.45 m, R and a are major and minor radii), are presented for the plasma current, I p of 0.2-0.4 MA. TPE-RX has been operational since 1998, and I p =0.5 MA and duration time of up to 0.1 s have been obtained separately. It is found that I p /N (=12x10 -14 Am, N is the line density) is higher than those of other RFPs and poloidal beta, β p , and energy confinement time, τ E , are 5-10% and 0.5-1 ms, respectively, which are comparable with those of other RFPs of comparable sizes (RFX and MST). Pulsed poloidal current drive has recently been tested and the result has shown a twofold improvement of β p and τ E . The improvement is discussed in terms of the dynamic trajectories in the F-Θ plane, where F and Θ are reversal and pinch parameters, respectively. The global confinement properties are compared between the locked and non-locked discharges, which yields a better understanding of the mode-locking phenomena in RFP plasmas. (author)

  9. Magnetosphere of Uranus: plasma sources, convection, and field configuration

    International Nuclear Information System (INIS)

    Voigt, G.; Hill, T.W.; Dessler, A.J.

    1983-01-01

    At the time of the Voyager 2 flyby of Uranus, the planetary rotational axis will be roughly antiparallel to the solar wind flow. If Uranus has a magnetic dipole moment that is approximately aligned with its spin axis, and if the heliospheric shock has not been encountered, we will have the rare opportunity to observe a ''pole-on'' magnetosphere as discussed qualitatively by Siscoe. Qualitative arguments based on analogy with Earth, Jupiter, and Saturn suggest that the magnetosphere of Uranus may lack a source of plasma adequate to produce significant internal currents, internal convection, and associated effects. In order to provide a test of this hypothesis with the forthcoming Voyager measurements, we have constructed a class of approximately self-consistent quantitative magnetohydrostatic equilibrium configurations for a pole-on magnetosphere with variable plasma pressure parameters. Given a few simplifying assumptions, the geometries of the magnetic field and of the tail current sheet can be computed for a given distribution of trapped plasma pressure. The configurations have a single funnel-shaped polar cusp that points directly into the solar wind and a cylindrical tail plasma sheet whose currents close within the tail rather than on the tail magnetopause, and whose length depends on the rate of decrease of thermal plasma pressure down the tail. Interconnection between magnetospheric and interplanetary fields results in a highly asymmetric tail-field configuration. These features were predicted qualtitatively by Siscoe; the quantitative models presented here may be useful in the interpretation of Voyager encounter results

  10. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    International Nuclear Information System (INIS)

    Chen, Z; Kametani, F; Larbalestier, D C; Chen, Y; Xie, Y; Selvamanickam, V

    2009-01-01

    We have made extensive low temperature and high field evaluations of a recent 2.1 μm thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm) 2 O 3 nanoprecipitates, which are self-aligned in planes tilted ∼7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J c values of ∼3.1 MA cm -2 at 77 K and ∼43 MA cm -2 at 4.2 K, and by a strongly enhanced irreversibility field H irr , which reaches that of Nb 3 Sn (∼28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J c values are ∼15% of the depairing current density J d , much the highest of any superconductor suitable for magnet construction.

  11. A high critical current density MOCVD coated conductor with strong vortex pinning centers suitable for very high field use

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z; Kametani, F; Larbalestier, D C [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Chen, Y; Xie, Y; Selvamanickam, V [SuperPower Incorporated, Schenectady, NY 12304 (United States)], E-mail: zhijun@asc.magnet.fsu.edu

    2009-05-15

    We have made extensive low temperature and high field evaluations of a recent 2.1 {mu}m thick coated conductor (CC) grown by metal-organic chemical vapor deposition (MOCVD) with a view to its use for high field magnet applications, for which its very strong Hastelloy substrate makes it very suitable. This conductor contains dense three-dimensional (Y,Sm){sub 2}O{sub 3} nanoprecipitates, which are self-aligned in planes tilted {approx}7 deg. from the tape plane. Very strong vortex pinning is evidenced by high critical current density J{sub c} values of {approx}3.1 MA cm{sup -2} at 77 K and {approx}43 MA cm{sup -2} at 4.2 K, and by a strongly enhanced irreversibility field H{sub irr}, which reaches that of Nb{sub 3}Sn ({approx}28 T at 1.5 K) at 60 K, even in the inferior direction of H parallel c axis. At 4.2 K, J{sub c} values are {approx}15% of the depairing current density J{sub d}, much the highest of any superconductor suitable for magnet construction.

  12. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn

    2008-01-01

    The indirect hydrogen storage capabilities of Mg(NH3)(6)Cl-2, Ca(NH3)(6)Cl-2, Mn(NH3)(6)Cl-2, and Ni(NH3)(6)Cl-2 are investigated. All four metal ammine chlorides can be compacted to solid tablets with densities of at least 95% of the crystal density. This gives very high indirect hydrogen...

  13. The physics of reversed-field pinch profile sustainment

    International Nuclear Information System (INIS)

    Moses, R.W.

    1985-01-01

    A description of the Reversed-Field Pinch (RFP) is given. There is experimental evidence that indicates that an RFP dynamo effect sustains field reversal in steady state. Three sustainment mechanisms are reviewed: the MHD model, the tangled discharge model, and the kinetic dynamo model. The relationship of these models to each another is discussed briefly

  14. High frequency electric field spikes formed by electron beam-plasma interaction in plasma density gradients

    International Nuclear Information System (INIS)

    Gunell, H.; Loefgren, T.

    1997-02-01

    In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs

  15. High current density toroidal pinch discharges with weak toroidal fields

    International Nuclear Information System (INIS)

    Brunsell, P.; Brzozowski, J.; Drake, J.R.; Hellblom, G.; Kaellne, E.; Mazur, S.; Nordlund, P.

    1990-01-01

    Toroidal discharges in the ultralow q regime (ULQ) have been studied in the rebuilt Extrap TI device. ULQ discharges are sustained for pulse lengths exceeding 1 ms, which corresponds to more than 10 resistiv shell times. Values for the safety factor at the vacuum vessel wall are between rational values: 1/(n+1) -2 . The magnetic fluctuation level increases during the transition between rational values of q(a). For very low values of q(a), the loop voltage increases and the toroidal field development in the discharge exhibits the characteristic behaviour of the setting-up phase of a field reversed pinch. (author) 1 ref., 2 figs., 1 tab

  16. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  17. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Directory of Open Access Journals (Sweden)

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  18. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  19. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  20. High density fuel storage rack

    International Nuclear Information System (INIS)

    Zezza, L.J.

    1980-01-01

    High storage density for spent nuclear fuel assemblies in a pool achieved by positioning fuel storage cells of high thermal neutron absorption materials in an upright configuration in a rack. The rack holds the cells at required pitch. Each cell carries an internal fuel assembly support, and most cells are vertically movable in the rack so that they rest on the pool bottom. Pool water circulation through the cells and around the fuel assemblies is permitted by circulation openings at the top and bottom of the cells above and below the fuel assemblies

  1. Theoretical and experimental studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.

    1986-01-01

    The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (≤8 mWb) and s (≤4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment

  2. Configuration mixing of mean-field states

    International Nuclear Information System (INIS)

    Bender, M; Heenen, P-H

    2005-01-01

    Starting from self-consistent mean-field models, we discuss how to include correlations from fluctuations in collective degrees of freedom through symmetry restoration and configuration mixing, which give access to ground-state correlations and collective excitations. As an example for the method, we discuss the spectroscopy of neutron-deficient Pb isotopes

  3. Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Innocente, P.; Alfier, A.; Canton, A.; Pasqualotto, R.

    2009-01-01

    The large range of plasma currents (I p = 0.2-1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.

  4. Theoretical and experimental studies of field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.; Caramana, E.J.; Lewis, H.R.; Linford, R.K.; Ling, K.M.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.

    1986-01-01

    The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (less than or equal to8 mWb) and s (less than or equal to4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment.

  5. Comparison between the boundary layer and global resistivity methods for tearing modes in reversed field configurations

    International Nuclear Information System (INIS)

    Santiago, M.A.M.

    1987-01-01

    A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt

  6. Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff

    Science.gov (United States)

    Zhang, Ying; Hu, Jinniu; Liu, Peng

    2018-01-01

    The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.

  7. A comprehensive theory of the equilibria in a tokamak and a reversed field pinch

    International Nuclear Information System (INIS)

    Chiyoda, Katsuji

    1996-01-01

    The equilibrium configuration of a tokamak is analysed by the equilibrium equations derived for analysing a reversed field pinch (RFP). The expressions of the magnetic field and the toroidal shift in the internal plasma region and the external vacuum region are obtained. The expressions in the vacuum region become the Shafranov's expressions, when the plasma-center coordinates is used. Discontinuities of the equilibrium quantities are considered. It is concluded that the equilibrium equations are applicable also to the tokamak plasma and that the difference of the equilibria between the tokamak and the RFP stems from the choices of the pressure and the toroidal current function. A feature of our theory is that any ordering to the safety factor is not imposed. (author)

  8. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  9. Field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe

  10. Research on high energy density plasmas and applications

    International Nuclear Information System (INIS)

    1999-01-01

    Recently, technologies on lasers, accelerators, and pulse power machines have been significantly advanced and input power density covers the intensity range from 10 10 W/cm 2 to higher than 10 20 W/cm 2 . As the results, high pressure gas and solid targets can be heated up to very high temperature to create hot dense plasmas which have never appeared on the earth. The high energy density plasmas opened up new research fields such as inertial confinement fusion, high brightness X-ray radiation sources, interiors of galactic nucleus,supernova, stars and planets, ultra high pressure condensed matter physics, plasma particle accelerator, X-ray laser, and so on. Furthermore, since these fields are intimately connected with various industrial sciences and technologies, the high energy density plasma is now studied in industries, government institutions, and so on. This special issue of the Journal of Plasma Physics and Nuclear Fusion Research reviews the high energy density plasma science for the comprehensive understanding of such new fields. In May, 1998, the review committee for investigating the present status and the future prospects of high energy density plasma science was established in the Japan Society of Plasma Science and Nuclear Fusion Research. We held three committee meetings to discuss present status and critical issues of research items related to high energy density plasmas. This special issue summarizes the understandings of the committee. This special issue consists of four chapters: They are Chapter 1: Physics important in the high energy density plasmas, Chapter 2: Technologies related to the plasma generation; drivers such as lasers, pulse power machines, particle beams and fabrication of various targets, Chapter 3: Plasma diagnostics important in high energy density plasma experiments, Chapter 4: A variety of applications of high energy density plasmas; X-ray radiation, particle acceleration, inertial confinement fusion, laboratory astrophysics

  11. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir

    2017-09-22

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell\\'s configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  12. Towards an optimum silicon heterojunction solar cell configuration for high temperature and high light intensity environment

    KAUST Repository

    Abdallah, Amir; Daif, Ounsi El; Aï ssa, Brahim; Kivambe, Maulid; Tabet, Nouar; Seif, Johannes; Haschke, Jan; Cattin, Jean; Boccard, Mathieu; De Wolf, Stefaan; Ballif, Christophe

    2017-01-01

    We report on the performance of Silicon Heterojunction (SHJ) solar cell under high operating temperature and varying irradiance conditions typical to desert environment. In order to define the best solar cell configuration that resist high operating temperature conditions, two different intrinsic passivation layers were tested, namely, an intrinsic amorphous silicon a-SiO:H with CO/SiH ratio of 0.4 and a-SiOx:H with CO/SiH ratio of 0.8, and the obtained performance were compared with those of a standard SHJ cell configuration having a-Si:H passivation layer. Our results showed how the short circuit current density J, and fill factor FF temperature-dependency are impacted by the cell's configuration. While the short circuit current density J for cells with a-SiO:H layers was found to improve as compared with that of standard a-Si:H layer, introducing the intrinsic amorphous silicon oxide (a-SiO:H) layer with CO/SiH ratio of 0.8 has resulted in a reduction of the FF at room temperature due to hindering the carrier transport by the band structure. Besides, this FF was found to improve as the temperature increases from 15 to 45°C, thus, a positive FF temperature coefficient.

  13. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  14. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  15. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto

    2015-02-01

    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  16. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  17. Electric field effect on the magnetic properties of zigzag MoS2 nanoribbons with different edge passivation.

    Science.gov (United States)

    Nam, Yeonsig; Cho, Daeheum; Lee, Jin Yong

    2017-11-22

    Electrical control of magnetic exchange coupling interactions is central to designing magnetic materials. In this study, we performed density functional theory calculations to investigate the magnetic spin configuration, magnetic moment, and magnetic coupling strength of zigzag MoS 2 nanoribbons (zMoS 2 NRs) with different edge passivation, that is, pristine (Pristine), hydrogen termination (H-tem), sulfur termination (S-term), and sulfhydryl termination (SH-term). Further, we investigated the influence of an external electric field (F Ext ) on the magnetic properties. Pristine and H-term showed an AFM ground configuration with considerably weak magnetic coupling strength while S-term and SH-term showed a single edge FM ground configuration in the absence of the electric field. When the external electric field was applied, the positive field intensified the original spin configuration, thus increasing the magnetic moment of the system while the negative field weakened the original spin configuration, thus decreasing the magnetic moment and further reversed the spin configuration from AFM to FM and vice versa in most systems. The magnetic coupling strength of the system increased for both Pristine and H-term regardless of the direction of the field. However, the extent of increase was much higher in Pristine due to the existence of relatively easily transferable dangling electrons compared with the constrained electrons of H-term restricted to chemical bonds. Our results demonstrate a possibility of reversible spin control from AFM to FM and vice versa by applying an electric field and the enhancement of the magnetic coupling strength of zMoS 2 NRs.

  18. Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas

    Science.gov (United States)

    Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.

    2018-01-01

    Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.

  19. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    Science.gov (United States)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  20. Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core

    Science.gov (United States)

    Knezek, Nicholas; Buffett, Bruce

    2018-04-01

    We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.

  1. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  2. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  3. Reduction in the interface-states density of metal-oxide-semiconductor field-effect transistors fabricated on high-index Si (114) surfaces by using an external magnetic field

    International Nuclear Information System (INIS)

    Molina, J.; De La Hidalga, J.; Gutierrez, E.

    2014-01-01

    After fabrication of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) devices on high-index silicon (114) surfaces, their threshold voltage (Vth) and interface-states density (Dit) characteristics were measured under the influence of an externally applied magnetic field of B = 6 μT at room temperature. The electron flow of the MOSFET's channel presents high anisotropy on Si (114), and this effect is enhanced by using an external magnetic field B, applied parallel to the Si (114) surface but perpendicular to the electron flow direction. This special configuration results in the channel electrons experiencing a Lorentzian force which pushes the electrons closer to the Si (114)-SiO 2 interface and therefore to the special morphology of the Si (114) surface. Interestingly, Dit evaluation of n-type MOSFETs fabricated on Si (114) surfaces shows that the Si (114)-SiO 2 interface is of high quality so that Dit as low as ∼10 10  cm −2 ·eV −1 are obtained for MOSFETs with channels aligned at specific orientations. Additionally, using both a small positive Vds ≤ 100 mV and B = 6 μT, the former Dit is reduced by 35% in MOSFETs whose channels are aligned parallel to row-like nanostructures formed atop Si (114) surfaces (channels having a 90° rotation), whereas Dit is increased by 25% in MOSFETs whose channels are aligned perpendicular to these nanostructures (channels having a 0° rotation). From these results, the special morphology of a high-index Si (114) plane having nanochannels on its surface opens the possibility to reduce the electron-trapping characteristics of MOSFET devices having deep-submicron features and operating at very high frequencies

  4. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  5. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  6. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    International Nuclear Information System (INIS)

    Welander, A.

    1999-01-01

    In the Extrap T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a=0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a>0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n 1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures. (author)

  7. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    Science.gov (United States)

    Welander, A.

    1999-01-01

    In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.

  8. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  9. Effects of flux conservation on the field configuration in Scyllac

    International Nuclear Information System (INIS)

    Van der Laan, P.C.T.

    1977-04-01

    Flux conservation in Scyllac-type experiments shows up in two ways. First of all the poloidal flux between the outside edge of the plasma and the inside of the coil is conserved. This requires a net longitudinal current in the plasma, to cancel the poloidal flux caused by the helical stellarator fields. An expression for this net current is derived, and effects that could occur in sector experiments are discussed. The flux conservation inside the conducting plasma leads to a conservation of the local rotational transform. Since the pinch itself is surrounded by a well-conducting low-density plasma, the rotational transform is conserved in a wide region. Depending on the time history of the applied fields, volume currents are induced in this region, as is shown for two examples. Although an additional capacitor bank can be used to cancel the net current, a cancellation of all the volume currents is extremely difficult. The resulting equilibrium configurations differ considerably from the Scyllac equilibria without volume currents, which are used in stability calculations

  10. Observation of tilt asymmetries in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Barnes, D.C.; Klingner, P.; Ng, Chung.

    1989-01-01

    In recent years, part of the experimental effort on the FRX-C/LSM device has been devoted to understanding why good FRC confinement is observed only in a narrow window of the operating parameter space (fill pressures less than 5 mtorr and bias fields less than 0.8--0.9 kG). The transition from good to bad confinement has been shown for some time to correlate with strong axial shocks, suggesting a formation or stability problem. More recently, FRC magnetic asymmetries have been observed whenever the confinement was poor. To gain further understanding, a 64-coil probe array was built, and data from over 700 discharges were collected during the summer of 1989. We summarize in this paper the results of a preliminary analysis of these data. 5 refs., 4 figs

  11. Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.

    Science.gov (United States)

    Dunn, J R; Fuller, M; Ito, H; Schmidt, V A

    1971-05-21

    A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.

  12. Equilibrium: two-dimensional configurations

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In Chapter 6, the problem of toroidal force balance is addressed in the simplest, nontrivial two-dimensional geometry, that of an axisymmetric torus. A derivation is presented of the Grad-Shafranov equation, the basic equation describing axisymmetric toroidal equilibrium. The solutions to equations provide a complete description of ideal MHD equilibria: radial pressure balance, toroidal force balance, equilibrium Beta limits, rotational transform, shear, magnetic wall, etc. A wide number of configurations are accurately modeled by the Grad-Shafranov equation. Among them are all types of tokamaks, the spheromak, the reversed field pinch, and toroidal multipoles. An important aspect of the analysis is the use of asymptotic expansions, with an inverse aspect ratio serving as the expansion parameter. In addition, an equation similar to the Grad-Shafranov equation, but for helically symmetric equilibria, is presented. This equation represents the leading-order description low-Beta and high-Beta stellarators, heliacs, and the Elmo bumpy torus. The solutions all correspond to infinitely long straight helices. Bending such a configuration into a torus requires a full three-dimensional calculation and is discussed in Chapter 7

  13. Characteristics of reverse overwrite process in shingled recording scheme at ultra-high track density

    Energy Technology Data Exchange (ETDEWEB)

    Li Shaoping, E-mail: shaoping_li_2000@yahoo.com [Western Digital Inc. 1250 Reliance Way, Fremont, CA 94539 (United States); Mendez, Hector; Terrill, Dave; Liu Feng; Bai, Daniel; Mao Sining [Western Digital Inc. 1250 Reliance Way, Fremont, CA 94539 (United States)

    2012-02-15

    A systematic experimental study of the reverse overwrite (ReOVW) process in the shingled recording scheme has been conducted in conjunction with characterization of corresponding recording performances from recording heads with different geometries. It was found that there is no ReOVW reduction as the track density increases in a strict shingled recording fashion. Nonetheless, ReOVW is indeed slightly decreased from 300 to 700 kpi in a so-called one write shingled recording process. Overall our obtained data suggest that conventional magnetic recording technology might be able to extend all the way beyond an areal density of one Tbit/in{sup 2} by using the shingled recording scheme. - Research Highlights: > This paper discusses the most advanced recording scheme, e.g., shingled recording process, for next generation magnetic data storage devices. > The paper shows that the write-ability of magnetic recording is sufficient in the shingled recording scheme even when the areal density is beyond 1.0 Tb/in{sup 2}. > Our results also shows that the writer's edge write-ability is essential for reducing noise during the write process in shingled recording scheme. > The paper also demonstrates that a multiple and sequential write process ensures the normal erasure-ability in shingled recording scheme. > Our results also indicate that the noise nature in the write process still could be attributed to the hard-easy transition and imprint effect.

  14. Characteristics of reverse overwrite process in shingled recording scheme at ultra-high track density

    International Nuclear Information System (INIS)

    Li Shaoping; Mendez, Hector; Terrill, Dave; Liu Feng; Bai, Daniel; Mao Sining

    2012-01-01

    A systematic experimental study of the reverse overwrite (ReOVW) process in the shingled recording scheme has been conducted in conjunction with characterization of corresponding recording performances from recording heads with different geometries. It was found that there is no ReOVW reduction as the track density increases in a strict shingled recording fashion. Nonetheless, ReOVW is indeed slightly decreased from 300 to 700 kpi in a so-called one write shingled recording process. Overall our obtained data suggest that conventional magnetic recording technology might be able to extend all the way beyond an areal density of one Tbit/in 2 by using the shingled recording scheme. - Research highlights: → This paper discusses the most advanced recording scheme, e.g., shingled recording process, for next generation magnetic data storage devices. → The paper shows that the write-ability of magnetic recording is sufficient in the shingled recording scheme even when the areal density is beyond 1.0 Tb/in 2 . → Our results also shows that the writer's edge write-ability is essential for reducing noise during the write process in shingled recording scheme. → The paper also demonstrates that a multiple and sequential write process ensures the normal erasure-ability in shingled recording scheme. → Our results also indicate that the noise nature in the write process still could be attributed to the hard-easy transition and imprint effect.

  15. Threshold-voltage modulated phase change heterojunction for application of high density memory

    International Nuclear Information System (INIS)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-01-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current

  16. Threshold-voltage modulated phase change heterojunction for application of high density memory

    Science.gov (United States)

    Yan, Baihan; Tong, Hao; Qian, Hang; Miao, Xiangshui

    2015-09-01

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-ray photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.

  17. Numerical study on rectangular microhollow cathode discharge

    International Nuclear Information System (INIS)

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-01-01

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  18. Spectroscopy of heavy nuclei by configuration mixing of symmetry restored mean-field states: shape coexistence in neutron-deficient Pb isotopes

    International Nuclear Information System (INIS)

    Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.

    2003-01-01

    We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)

  19. Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas

    International Nuclear Information System (INIS)

    Rice, J.E.; Reinke, M.L.; Podpaly, Y.A.; Churchill, R.M.; Cziegler, I.; Dominguez, A.; Ennever, P.C.; Fiore, C.L.; Granetz, R.S.; Greenwald, M.J.; Hubbard, A.E.; Hughes, J.W.; Irby, J.H.; Ma, Y.; Marmar, E.S.; McDermott, R.M.; Porkolab, M.; Duval, B.P.; Bortolon, A.; Diamond, P.H.

    2011-01-01

    Direction reversals of intrinsic toroidal rotation have been observed in Alcator C-Mod ohmic L-mode plasmas following modest electron density or toroidal magnetic field ramps. The reversal process occurs in the plasma interior, inside of the q = 3/2 surface. For low density plasmas, the rotation is in the co-current direction, and can reverse to the counter-current direction following an increase in the electron density above a certain threshold. Reversals from the co- to counter-current direction are correlated with a sharp decrease in density fluctuations with k R ≥ 2 cm -1 and with frequencies above 70 kHz. The density at which the rotation reverses increases linearly with plasma current, and decreases with increasing magnetic field. There is a strong correlation between the reversal density and the density at which the global ohmic L-mode energy confinement changes from the linear to the saturated regime.

  20. Prospects for fusion applications of reversed-field pinches

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx.1-MW/m 2 (neutron) driven operation are reported. 10 refs

  1. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  2. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  3. Laboratory experiments on the magnetic field and neutral density limits on CIV interaction

    International Nuclear Information System (INIS)

    Axnaes, I.; Brenning, N.

    1990-03-01

    Laboratory experiments are reported which determine the magnetic field and neutral density limit for Critical Ionization Velocity (CIV) interaction in the impact configuration. A combination of microwave interferometry and spectroscopy has been used to measure how the electron energy distribution varies with the neutral density and the magnetic field strength. The efficiency of the CIV process is evaluated in terms of the efficiency factor η of energy transfer to the electron. This efficiency is studied as function of the ratio V A /V 0 between the Alfven velocity and the plasma stream velocity and the ratio ν i /ω gi between the ionization frequency and the ion gyro frequency. With other parameters kept constant, V A /V 0 is proportional to the square root of the magnetic field, while ν i /ω gi is proportional to the neutral density. We have found that these two dimensionless parameters are coupled in such a fashion that a stronger magnetic field can compensate for a lower neutral density. For our strongest magnetic field, corresponding to V A /V 0 = 4, CIV interaction is found to occur for a comparatively low value ν i /ω gi ∼ 0.1. For V A /V 0 = 1, we found a clear absence of CIV interaction even for ν i /ω gi approaching unity. (authors)

  4. Computational methods for reversed-field equilibrium

    International Nuclear Information System (INIS)

    Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.

    1980-01-01

    Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described

  5. Current, temperature and confinement time scaling in toroidal reversed-field pinch experiments ZT-I and ZT-S

    International Nuclear Information System (INIS)

    Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.

    1977-01-01

    The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)

  6. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  7. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    Energy Technology Data Exchange (ETDEWEB)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M., E-mail: MuhammadMustafa.Hussain@kaust.edu.sa [Integrated Nanotechnology Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Aljedaani, Abdulrahman B. [High-Speed Fluids Imaging Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  8. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    International Nuclear Information System (INIS)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Hussain, Muhammad M.; Aljedaani, Abdulrahman B.

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties

  9. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Aljedaani, Abdulrahman B.; Hussain, Muhammad Mustafa

    2015-01-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  10. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  11. Reversed-Field Pinch plasma model

    International Nuclear Information System (INIS)

    Miley, G.H.; Nebel, R.A.; Moses, R.W.

    1979-01-01

    The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile

  12. Euclidean self-dual Yang-Mills field configurations

    International Nuclear Information System (INIS)

    Sartori, G.

    1980-01-01

    The determination of a large class of regular and singular Euclidean self-dual Yang-Mills field configurations is reduced to the solution of a set of linear algebraic equations. The matrix of the coefficients is a polynomial functions of x and the rules for its construction are elementary. (author)

  13. Field-reversal experiments in the mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Shearer, J.W.; Condit, W.C.

    1977-01-01

    Detailed consideration of several aspects of a field-reversal experiment was begun in the Mirror Fusion Test Facility (MFTF): Model calculations have provided some plausible parameters for a field-reversed deuterium plasma in the MFTF, and a buildup calculation indicates that the MFTF neutral-beam system is marginally sufficient to achieve field reversal by neutral injection alone. However, the many uncertainties indicate the need for further research and development on alternate buildup methods. A discussion of experimental objectives is presented and important diagnostics are listed. The range of parameter space accessible with the MFTF magnet design is explored, and we find that with proper aiming of the neutral beams, meaningful experiments can be performed to advance toward these objectives. Finally, it is pointed out that if we achieve enhanced n tau confinement by means of field reversal, then quasi-steady-state operation of MFTF is conceivable

  14. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  15. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  16. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    Science.gov (United States)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  17. Reversed-field multiple mirror concept

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.

    1978-01-01

    The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM

  18. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  19. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  20. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    International Nuclear Information System (INIS)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m 2 ) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately

  1. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  2. Isabelle dipole and quadrupole coil configurations

    International Nuclear Information System (INIS)

    Dahl, P.F.; Hahn, H.

    1980-01-01

    The coil configurations of the ISABELLE dipole and quadrupole magnets have been reviewed and a number of improvements were suggested for incorporation into the final design. The coil designs are basically single layer multiple block approximations to cosine current distributions, wound from a high aspect ratio non-keystoned braided conductor. The blocks are separated by knife-edge wedges to maximize the quench propagation velocity. The current density variation is obtained by an appropriate distribution of the spacer turns and, to a lesser degree, by the wedge locations. The use of inert turns is necessary to minimize the peak field enhancement both in the ends and in the two dimensional section. Schemes for deriving turns distributions yielding harmonic coefficients satisfying the stringent ISABELLE tolerances on field uniformity, while allowing for simplicity in winding and taking into account quench propagation considerations, will be discussed, as well as our approach to the coil end configuration

  3. Plasma behaviors in the open field region of reversed-field theta-pinch

    International Nuclear Information System (INIS)

    Aso, Yoshiyuki; Hirano, Keiichi.

    1983-03-01

    A characteristic behavior of the plasma in an open field region of reversed field theta pinch has been studied with the guide field (GF) which extends the field line along the axial direction. The experimental result suggests that the rotaional instability may be induced in FRC after the plasma touches the wall at the ends of the open field. (author)

  4. Relation of twist of magnetic force tube and flare magnetic field

    International Nuclear Information System (INIS)

    Tanaka, H.

    1978-01-01

    The configuration of magnetic field and its development in the regions of big flare were investigated to study the features of magnetic force tubes. The photographs of delta type solar spots taken at Mt. Wilson Observatory were selected. 94 percent of the delta type spots belong to the class B activity or more active class. The features of delta type spots are the reverse configuration and the shear motion. The reverse configuration is divided into the p/f configuration and the f/p configuration. The shear motion is divided into the normal motion, the reverse motion, and the indefinite motion. Vortex structures appeared around the solar spots of reverse configuration showing normal motion. The relation among the direction of twist, reverse configuration and the direction of shear motion was deduced. In the region of normal motion, the p/f configuration corresponds to the reverse S type vortices and the f/p configuration to S type. In the region of reverse motion, the p/f configuration corresponds to the S type vortices and the f/p corresponds to the reverse S type vortices. The mechanism of development of delta type solar spots is discussed. (Kato, T.)

  5. Statistical theory of field fluctuations in a reversed-field pinch

    International Nuclear Information System (INIS)

    Turner, L.

    1982-01-01

    A statistical description of three-dimensional, incompressible turbulence in an ideal, current-bearing, bounded magnetofluid is given both analytically and numerically. Our results are then compared with existing data taken from reversed-field pinch experiments

  6. Achieving a long-lived high-beta plasma state by energetic beam injection

    Science.gov (United States)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  7. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  8. Impact of error fields on equilibrium configurations in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, Lucio [DIEI, Università di Cassino and Lazio Meridionale, Cassino (Italy); Formisano, Alessandro, E-mail: alessandro.formisano@unina2.it [Department of Industrial and Information Engineering, Seconda Univ. di Napoli, Aversa (Italy); Martone, Raffaele [Department of Industrial and Information Engineering, Seconda Univ. di Napoli, Aversa (Italy); Villone, Fabio [DIEI, Università di Cassino and Lazio Meridionale, Cassino (Italy)

    2015-10-15

    Highlights: • Error fields (EF) are discrepancies from nominal magnetic field, and may alter plasma behaviour. • They are due to, e.g., coils manufacturing and assembly errors. • EF impact in ITER equilibria is analyzed using numerical simulations. • A high accuracy 3D field computation module and a Grad-Shafranov solver are used. • Deformations size allow using a linearized model, and performing a sensitivity analysis. - Abstract: Discrepancies between design and actual magnetic field maps in tokamaks are unavoidable, and are associated to a number of causes, e.g. manufacturing and assembly tolerances on magnets, presence of feeders and joints, non-symmetric iron parts. Such error fields may drive plasma to loss of stability, and must be carefully controlled using suitable correction coils. Anyway, even when kept below safety threshold, error fields may alter the behavior of plasma. The present paper, using as example the error fields induced by tolerances in toroidal field coils, quantifies their effect on the plasma boundary shape in equilibrium configurations. In particular, a procedure able to compute the shape perturbations due to given deformations of the coils has been set up and used to carry out a thorough statistical analysis of the error field-shape perturbations relationship.

  9. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  10. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  11. Simulations of a Plasma Thruster Utilizing the FRC Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cohen, B. I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-10

    This report describes work performed by LLNL to model the behavior and performance of a reverse-field configuration (FRC) type of plasma device as a plasma thruster as summarized by Razin et al. [1], which also describes the MNX device at PPPL used to study this concept.

  12. Domino model for geomagnetic field reversals.

    Science.gov (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  13. The ITER poloidal field configuration and operation scenario

    International Nuclear Information System (INIS)

    Gribov, Y.; Portone, A.; Mondino, P.L.

    1995-01-01

    The ITER Poloidal Field (PF) system must satisfy the following requirements. (1) ITER must have a well-controlled, single null divertor magnetic configuration with nominal plasma current 21MA and moderate plasma elongation k95 < 1.65. (2) For a variety of plasma scenarios the ITER PF system must provide: inductive breakdown and start-up in an expanding-aperture limiter configuration near the outboard first wall; an inductive current ramp-up to the nominal plasma current with a reasonable assumption of resistive loss during current ramp-up; a pulse length of 1,000s for ignition and inductively-sustained burn at nominal plasma current; plasma shutdown (following fusion power termination) in a similar contracting-aperture limiter configuration. The present design of the PF system can satisfy the ITER requirements within specified limitations

  14. The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Muniz, Jaime [Department de Fisica de PartIculas, University de Santiago de Compostela, 15782 Santiago, SPAIN (Spain); Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States)

    2006-10-15

    Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 10{sup 18} to 10{sup 19}eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.

  15. Calculation of the effects of pumping, divertor configuration and fueling on density limit in a tokamak model problem

    International Nuclear Information System (INIS)

    Stacey, W. M.

    2001-01-01

    Several series of model problem calculations have been performed to investigate the predicted effect of pumping, divertor configuration and fueling on the maximum achievable density in diverted tokamaks. Density limitations due to thermal instabilities (confinement degradation and multifaceted axisymmetric radiation from the edge) and to divertor choking are considered. For gas fueling the maximum achievable density is relatively insensitive to pumping (on or off), to the divertor configuration (open or closed), or to the location of the gas injection, although the gas fueling rate required to achieve this maximum achievable density is quite sensitive to these choices. Thermal instabilities are predicted to limit the density at lower values than divertor choking. Higher-density limits are predicted for pellet injection than for gas fueling

  16. High density regimes and beta limits in JET

    International Nuclear Information System (INIS)

    Smeulders, P.

    1990-01-01

    Results are first presented on the density limit in JET discharges with graphite (C), Be gettered graphite and Be limiters. There is a clear improvement in the case of Be limiters. The Be gettered phase showed no increase in the gas fueled density limit, except with Ion Cyclotron Resonance Heating (ICRH), but, the limit changed character. During MARFE-formation, any further increase in density was prevented, leading to a soft density limit. The soft density limit was a function of input power and impurity content with a week dependence on q. Helium and pellet fuelled discharges exceeded the gas-fuelled global density limits, but essentially had the same edge limit. In the second part, results are presented of high β operation in low-B Double-Null (DN) X-point configurations with Be-gettered carbon target plates. The Troyon limit was reached during H-mode discharges and toroidal β values of 5.5% were obtained. At high beta, the sawteeth were modified and characterised by very rapid heat-waves and fishbone-like pre- and post-cursors with strongly ballooning character. 17 refs., 5 figs

  17. Simulations of the lower-hybrid antenna in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Carlsson, Johan; Smithe, David; Kaufman, Michael; Goetz, John; Thomas, Mark

    2014-01-01

    Due to constraints inherent to a reversed-field pinch plasma configuration, an unusual launch structure—the interdigital line—was used for lower-hybrid current-drive experiments in the Madison Symmetric Torus. The antenna design and performance were analyzed using an array of codes (including RANT3D/AORSA1D-H, Microwave Studio and VORPAL). It was found that the voltage phasing was not the intended one. As a result, the parallel-wavenumber spectrum of the launched wave peaks at a value lower than desired, making the accessibility marginal. Further simulations demonstrated that the error can largely be corrected by either lowering the antenna operating frequency or shortening the length of the resonators. (paper)

  18. The reversed-field pinch: a compact approach to fusion power

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1985-01-01

    The potential of the reversed-field pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. This compact system promises to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that substantiate these promising results have been completed. This 1000 MW(e) (net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion. The RFP presents a robust plasma confinement system capable of providing a range of reactor systems that are compact in both physical size and/or net power output while ensuring acceptable cost and engineering feasibility for a range of assumed physics performance. (author)

  19. Internal field probing of translating FRCs

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; Milroy, R.D.

    1984-11-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translation velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.40. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Of many translation conditions studied, the condition considered here is translation into a weak guide field resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed. Evidence of island structure is also observed. Fluctuating levels of B/sub THETA/ are observed with amplitudes less than or equal to B 0 /3 and values of flux approx. 4 x the poloidal flux. Values of β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) are implied from the field measurements. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  20. Linear kinetic stability of a field-reversed configuration with two ion components

    International Nuclear Information System (INIS)

    Staudenmeier, J.L.; Barnes, D.C.; Lewis, H.R.

    1990-01-01

    It has been suggested that a small fraction of non-axis encircling high energy ions may be sufficient to stabilize the tilt mode in a large s FRC. Experimental alteration of the ion distribution function in this manner might be achieved by rf heating the tail of the distribution function or by neutral beam injection. A linear Vlasov-fluid eigenfunction-eigenfrequency approach was used to investigate possible stabilization of the tilt mode by a high energy component. The ion distribution function is modeled as the sum of two Maxwellians with separate temperatures and no ion flow velocity. The cold component has a thermal s = 7, where s is the approximate number of ion gyroradii contained between the field null and the separatrix. The temperature ratio of the hot component to the cold component (T H /T T ) was varied from 2 to 100. Global hot particle fractions (n H ) up to ∼ .5 were used in the computations

  1. Improved particle confinement in transition from multiple-helicity to quasi-single-helicity regimes of a reversed-field pinch.

    Science.gov (United States)

    Frassinetti, L; Predebon, I; Koguchi, H; Yagi, Y; Hirano, Y; Sakakita, H; Spizzo, G; White, R B

    2006-10-27

    The quasi-single-helicity (QSH) state of a reversed-field pinch (RFP) plasma is a regime in which the RFP configuration can be sustained by a dynamo produced mainly by a single tearing mode and in which a helical structure with well-defined magnetic flux surfaces arises. In this Letter, we show that spontaneous transitions to the QSH regime enhance the particle confinement. This improvement is originated by the simultaneous and cooperative action of the increase of the magnetic island and the reduction of the magnetic stochasticity.

  2. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    Science.gov (United States)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  3. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Vermaas, David A; Nijmeijer, Kitty; Elimelech, Menachem

    2014-05-06

    Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractable work in a reversible RED process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible process with maximized power density using a constant-resistance load is then examined to assess the energy conversion efficiency and power density. With equal volumes of seawater and river water, energy conversion efficiency of ∼ 33-44% can be obtained in RED, while the rest is lost through dissipation in the internal resistance of the ion-exchange membrane stack. We show that imperfections in the selectivity of typical ion exchange membranes (namely, co-ion transport, osmosis, and electro-osmosis) can detrimentally lower efficiency by up to 26%, with co-ion leakage being the dominant effect. Further inspection of the power density profile during RED revealed inherent ineffectiveness toward the end of the process. By judicious early discontinuation of the controlled mixing process, the overall power density performance can be considerably enhanced by up to 7-fold, without significant compromise to the energy efficiency. Additionally, membrane resistance was found to be an important factor in determining the power densities attainable. Lastly, the performance of an RED stack was examined for different membrane conductivities and intermembrane distances simulating high performance membranes and stack design. By thoughtful selection of the operating parameters, an efficiency of ∼ 37% and an overall gross power density of 3.5 W/m(2) represent the maximum performance that can potentially be achieved in a seawater-river water RED system with low

  4. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    International Nuclear Information System (INIS)

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  5. Improved zero dimensional model of a reversed field pinch fusion device

    International Nuclear Information System (INIS)

    Haynes, K.E.

    1987-01-01

    A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs

  6. Design issues for optimum solar cell configuration

    Science.gov (United States)

    Kumar, Atul; Thakur, Ajay D.

    2018-05-01

    A computer based simulation of solar cell structure is performed to study the optimization of pn junction configuration for photovoltaic action. The fundamental aspects of photovoltaic action viz, absorption, separation collection, and their dependence on material properties and deatails of device structures is discussed. Using SCAPS 1D we have simulated the ideal pn junction and shown the effect of band offset and carrier densities on solar cell performance. The optimum configuration can be achieved by optimizing transport of carriers in pn junction under effect of field dependent recombination (tunneling) and density dependent recombination (SRH, Auger) mechanisms.

  7. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  8. High energy density Z-pinch plasmas using flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)

    2014-12-15

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and

  9. Magnetic and electrostatic confinement of plasma with tuning of electrostatic field

    Science.gov (United States)

    Rostoker, Norman [Irvine, CA; Binderbauer, Michl [Irvine, CA; Qerushi, Artan [Irvine, CA; Tahsiri, Hooshang [Irvine, CA

    2008-10-21

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  10. Compact-toroid fusion reactor based on the field-reversed theta pinch: reactor scaling and optimization for CTOR

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  11. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  12. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  13. Determination of the electromagnetic field in a high-Tc linear superconducting resonator

    International Nuclear Information System (INIS)

    Trotel, A.; Sautrot, S.; Pyee, M.

    1994-01-01

    In this paper, the electromagnetic field configuration in a linear SHTC resonator is described. Two areas are considered: 1) the superconducting strip, 2) the dielectric around the strip. The calculation is based on the current density given by Bowers for an infinite superconducting line. The current density in the resonator is defined by these relations and the resonance conditions. (orig.)

  14. High energy density battery lithium thionyl chloride improved reverse voltage design

    Science.gov (United States)

    Zolla, A. E.

    1981-12-01

    A test program was conducted to demonstrate safety under voltage reversal conditions of the Altus 1400 AH HEDB cell. Eight cells of an improve Anode Grid Design, all cathode (carbon) limited, were forced discharged for 150% of their normal capacity. Minor design variations were tested at 6 amp, 20 C and 12 amp, 0 C with a lithium reference electrode and separate monitoring of current through the internal reverse voltage current shunt feature. There were no ventings and no appreciable increase in cell temperature or internal pressure.

  15. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1988-01-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments

  16. The configuration of the Brazilian scientific field.

    Science.gov (United States)

    Barata, Rita B; Aragão, Erika; de Sousa, Luis E P Fernandes; Santana, Taris M; Barreto, Mauricio L

    2014-03-01

    This article describes the configuration of the scientific field in Brazil, characterizing the scientific communities in every major area of knowledge in terms of installed capacity, ability to train new researchers, and capacity for academic production. Empirical data from several sources of information are used to characterize the different communities. Articulating the theoretical contributions of Pierre Bourdieu, Ludwik Fleck, and Thomas Kuhn, the following types of capital are analyzed for each community: social capital (scientific prestige), symbolic capital (dominant paradigm), political capital (leadership in S & T policy), and economic capital (resources). Scientific prestige is analyzed by taking into account the volume of production, activity index, citations, and other indicators. To characterize symbolic capital, the dominant paradigms that distinguish the natural sciences, the humanities, applied sciences, and technology development are analyzed theoretically. Political capital is measured by presidency in one of the main agencies in the S & T national system, and research resources and fellowships define the economic capital. The article discusses the composition of these different types of capital and their correspondence to structural capacities in various communities with the aim of describing the configuration of the Brazilian scientific field.

  17. Metal-Organic Frameworks as Highly Active Electrocatalysts for High-Energy Density, Aqueous Zinc-Polyiodide Redox Flow Batteries.

    Science.gov (United States)

    Li, Bin; Liu, Jian; Nie, Zimin; Wang, Wei; Reed, David; Liu, Jun; McGrail, Pete; Sprenkle, Vincent

    2016-07-13

    The new aqueous zinc-polyiodide redox flow battery (RFB) system with highly soluble active materials as well as ambipolar and bifunctional designs demonstrated significantly enhanced energy density, which shows great potential to reduce RFB cost. However, the poor kinetic reversibility and electrochemical activity of the redox reaction of I3(-)/I(-) couples on graphite felts (GFs) electrode can result in low energy efficiency. Two nanoporous metal-organic frameworks (MOFs), MIL-125-NH2 and UiO-66-CH3, that have high surface areas when introduced to GF surfaces accelerated the I3(-)/I(-) redox reaction. The flow cell with MOF-modified GFs serving as a positive electrode showed higher energy efficiency than the pristine GFs; increases of about 6.4% and 2.7% occurred at the current density of 30 mA/cm(2) for MIL-125-NH2 and UiO-66-CH3, respectively. Moreover, UiO-66-CH3 is more promising due to its excellent chemical stability in the weakly acidic electrolyte. This letter highlights a way for MOFs to be used in the field of RFBs.

  18. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    Science.gov (United States)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  19. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    Science.gov (United States)

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-07

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  20. Signatures of the high-altitude polar cusp and dayside auroral regions as seen by the Viking electric field experiment

    International Nuclear Information System (INIS)

    Marklund, G.T.; Blomberg, L.G.; Faelthammar, C.G.; Erlandson, R.E.; Potemra, T.A.

    1990-01-01

    Electric field and satellite potential observations along 42 Viking orbits in the high-altitude (2R E ) polar cusp and dayside auroral region have been examined. Within the cusp the plasma density usually reaches a maximum, and it is typically very homogeneous, in contrast to the irregular and lower density in the cleft and dayside auroral regions. The maxima in the plasma density are sometimes anticorrelated with the magnetic field strength, indicating a diamagnetic effect. The entire cusp and dayside auroral regions are characterized by irregular and burstlike electric fields, comprising field reversals on various scales (up to 3 min or 500 km), the larger scales, however, being rare in the cusp. Another common feature in these regions is the high correlation between mutually orthogonal components of the electric and magnetic fields, both for large-scale variations across spatial structures and for wave and pulsations in the ULF frequency range. The electric field signatures in the cusp (in the 1100-1300 MLT sector) are, however, characteristically different from the cleft and oval field signatures in that the electric field is usually less intense and less structured and not correlated with the substorm activity level

  1. Toroidal plasma reactor with low external magnetic field

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.

    1991-01-01

    A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs

  2. Solidity of viscous liquids. IV. Density fluctuations

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    This paper is the fourth in a series exploring the physical consequences of the solidity of highly viscous liquids. It is argued that the two basic characteristics of a flow event (a jump between two energy minima in configuration space) are the local density change and the sum of all particle...... displacements. Based on this it is proposed that density fluctuations are described by a time-dependent Ginzburg-Landau equation with rates in k space of the form C+Dk^2 with D>>C a^2 where a is the average intermolecular distance. The inequality expresses a long-wavelength dominance of the dynamics which...... with Debye behavior at low frequencies and an omega^{−1/2} decay of the loss at high frequencies. Finally, a general formalism for the description of viscous liquid dynamics, which supplements the density dynamics by including stress fields, a potential energy field, and molecular orientational fields...

  3. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  4. Surface flux density distribution characteristics of bulk high-Tc superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Torii, S.; Yuasa, K.

    2004-01-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents

  5. Surface flux density distribution characteristics of bulk high- Tc superconductor in external magnetic field

    Science.gov (United States)

    Torii, S.; Yuasa, K.

    2004-10-01

    Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.

  6. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    Science.gov (United States)

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  7. Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhard, Urs, E-mail: u.aeberhard@fz-juelich.de [IEK-5 Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-07-18

    We discuss the effects of built-in fields and contact configuration on the photovoltaic characteristics of ultra-thin GaAs solar cells. The investigation is based on advanced quantum-kinetic simulations reaching beyond the standard semi-classical bulk picture concerning the consideration of charge carrier states and dynamics in complex potential profiles. The thickness dependence of dark and photocurrent in the ultra-scaled regime is related to the corresponding variation of both, the built-in electric fields and associated modification of the density of states, and the optical intensity in the films. Losses in open-circuit voltage and short-circuit current due to the leakage of electronically and optically injected carriers at minority carrier contacts are investigated for different contact configurations including electron and hole blocking barrier layers. The microscopic picture of leakage currents is connected to the effect of finite surface recombination velocities in the semi-classical description, and the impact of these non-classical contact regions on carrier generation and extraction is analyzed.

  8. Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    Science.gov (United States)

    Zhang, Yin; Yuan, H. Y.; Wang, X. S.; Wang, X. R.

    2018-04-01

    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem is now solved by a new strategy in which the magnitude of the driven current density is fixed while the current direction varies with time. The theoretical limit of minimal reversal current density is only a fraction (the Gilbert damping coefficient) of the threshold current density of the conventional strategy. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse is derived for an arbitrary magnetic cell and arbitrary spin-orbit torque. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are, respectively, of the order of 105 A/cm 2 and 106 A/cm 2 far below 107 A/cm 2 and 108 A/cm 2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy.

  9. Design and development of a lower-hybrid antenna for the MST reversed field pinch

    International Nuclear Information System (INIS)

    Thomas, M.; Cekic, M.; Lovell, T.W.; Prager, S.C.; Sarff, J.S.; Uchimoto, E.

    1995-01-01

    Recent theoretical studies strongly motivated the development of a radio-frequency current drive scheme for current density gradient reduction in the outer region of a reversed field pinch. The preliminary experiments using inductive current drive indicate that such current density profile modification reduces the magnetic fluctuation amplitude and related energy and particle losses. To test the theoretical predictions and to further improve confinement in the MST, the authors are planning a series of lower-hybrid wave experiments. The initial phase is the design and optimization of a low-power antenna to study slow wave propagation in a frequency range 2--3 f LH (200--300 MHz) with parallel index of refraction n parallel ∼10. Ray-tracing calculations, for typical MST plasma parameters, indicate that such a wave will spiral radially into a target zone inside the reversal layer. The antenna consists of an array of tunable loops arranged in the poloidal direction. The design is compatible with the existing box-port openings in the MST conductive shell to prevent additional magnetic field errors associated with large portholes. Antenna vacuum characteristics are studied on a test-stand designed to approximate the geometry of the MST shell. For the initial measurements of plasma response and antenna loading, the authors designed a reduced, easily insertable, vacuum antenna structure. The results of plasma impedance measurements will be compared with the numerical modeling results and incorporated in the optimized design of the antenna for wave propagation experiments

  10. Plasma-wall interaction and locked modes in the toroidal pinch experiment TPE-RX reversed-field pinch

    International Nuclear Information System (INIS)

    Pasqualini, D.; Martin, P.; Koguchi, H.; Yagi, Y.; Hirano, Y.; Sakakita, H.; Spizzo, G.

    2006-01-01

    The MHD instabilities that sustain the reversed-field pinch (RFP) configuration tend to phase-lock together and also to wall-lock, forming a bulging of the plasma column, called 'locked mode'. This phenomenon is of particular interest, since the locked mode causes a larger plasma resistivity, plasma cooling, and, in some cases, anomalous discharge termination. Up to now, studies of the locked mode have been focused on m=1 modes (being m the poloidal mode number). In this Letter we show that m=0 modes also play a role, based on the cross-check between magnetic spectra and toroidally resolved D α array measurements. (author)

  11. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  12. Non ideal instabilities in field reversed O-pinches

    International Nuclear Information System (INIS)

    Santiago, M.A.M.; Gomes, A.S.

    1987-01-01

    Rotational instabilities and resistive tearing modes are the most striking modes observed in high temperature θ-pinches with zero orversed bias field. The configurations which have the effect of a rigid rotation of the plasma column are studied. Some recent experimental data indicate that an m=2 mode appears after the rotation reaches a critical value. It is shown that the growth rate of the m=2 mode may be greater than that of the m=1 resistive kink mode, depending on the experimental conditions. The result are applied to several experimental data in the literature. (author) [pt

  13. A bi-stable SOC model for Earth's magnetic field reversals

    International Nuclear Information System (INIS)

    Papa, A.R.R.; Espírito Santo, M.A. do; Barbosa, C.S.; Oliva, D.

    2013-01-01

    We introduce a simple model for Earth's magnetic field reversals. The model consists in random nodes simulating vortices in the liquid core which through a simple updating algorithm converge to a self-organized critical state, with inter-reversal time probability distributions functions in the form of power-laws for long persistence times (as supposed to be in actual reversals). A detailed description of reversals should not be expected. However, we hope to reach a profounder knowledge on reversals through some of the basic characteristic that are well reproduced. The work opens several future research trends.

  14. Stability of the phenotypic reversion of x-ray transformed C3H/10T1/2 cells depends on cellular proliferation after subcultivation at low cell density

    International Nuclear Information System (INIS)

    Brouty-Boye, D.; Gresser, I.; Bandu, M.T.

    1982-01-01

    Reversion from the transformed to the non-transformed phenotype could be obtained by seeding X-ray transformed C3H/10T1/2 cells at low cell density. Cloned revertant cells of varying degrees of reversion were obtained depending on the time they were isolated after one subculture at low cell density. Most of the revertants isolated 7 and 10 days after seeding at very low cell density eventually returned to the transformed phenotype when passaged serially at high cell density. In contrast, 25-35% of the revertants isolated 17-20 days after seeding at low cell density maintained the non-transformed phenotype despite subsequent serial passages at high cell density. The finding that there was a direct relationship between the time during which transformed cells seeded at low cell density multiplied and the number of stable revertant clones obtained, suggests the possibility that reversion from the transformed to the non-transformed phenotype may be a multistep process. Revertant cells displayed a chromosomal pattern characteristic of the transformed cells rather than that of the parental non-transformed 10T1/2 cells. (author)

  15. Performance of high-recovery recycling reverse osmosis with wash water

    Science.gov (United States)

    Herrmann, Cal C.

    1993-01-01

    Inclusion of a recycling loop for partially-desalted water from second-stage reverse-osmosis permeate has been shown useful for achieving high-recovery at moderate applied pressures. This approach has now been applied to simulated wash waters, to obtain data on retention by the membranes of solutes in a mixture comparable to anticipated spacecraft hygiene wastewaters, and to generate an estimate of the maximum concentration that can be expected without causing membrane fouling. A first experiment set provides selectivity information from a single membrane and an Igepon detergent, as a function of final concentration. A reject concentration of 3.1% Total Organic Carbon has been reached, at a pressure of 1.4 Mega Pascals, without membrane fouling. Further experiments have generated selectivity values for the recycle configuration from two washwater simulations, as a function of applied pump pressure. Reverse osmosis removal has also been tested for washwater containing detergent formulated for plant growth compatibility (containing nitrogen, phosphorous and potassium functional groups.)

  16. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  17. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    Science.gov (United States)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  18. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  19. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  20. Equations for effective nuclear fields taking account of 2p2h configurations

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1977-01-01

    Equations taking into account 1p1h and 2p2h configurations were obta+ned by means of effective fields in the nucleus. The consideration is restricted by the even-even Fermi system only with particle-hole interaction and by the first order with respect to an external field, which corresponds to the case of an even-even nucleus without pairing in a weak external field. The principal results of the investigation are as follows: a set of equations for effective fields V 2 and V 4 is obtained by the Green function method; the solutxon of the set makes it possible to consider 1p1h and 2p2h configurations consecutively and dispense with the Hartree-Fock self-consistence. The equations for V 2 and V 4 can be used to obtain quantum equations taking into account 2p2h configurations and their effect on 1p1h states. Allowance for integration regions far removed from the Fermi surface results in the appearance of the V 4 0 seed portion in the V 4 effective field. Taking into account 2p2h configurations at V 4 0 not equal to 0 changes the form of the seed multipole operator of a nucleus; a new term appears in the expression for transition probability. As a rule, the V 4 0 value was neglected in investigations dealing with the 2p2h configuration