WorldWideScience

Sample records for high-density field reversed

  1. Experimental profile evolution of a high-density field-reversed configuration

    International Nuclear Information System (INIS)

    Ruden, E. L.; Zhang, Shouyin; Intrator, T. P.; Wurden, G. A.

    2006-01-01

    A field-reversed configuration (FRC) gains angular momentum over time, eventually resulting in an n=2 rotational instability (invariant under rotation by π) terminating confinement. To study this, a laser interferometer probes the time history of line integrated plasma density along eight chords of the high-density (∼10 17 cm -3 ) field-reversed configuration experiment with a liner. Abel and tomographic inversions provide density profiles during the FRC's azimuthally symmetric phase, and over a period when the rotational mode has saturated and rotates with a roughly fixed profile, respectively. During the latter part of the symmetric phase, the FRC approximates a magnetohydrodynamic (MHD) equilibrium, allowing the axial magnetic-field profile to be calculated from pressure balance. Basic FRC properties such as temperature and poloidal flux are then inferred. The subsequent two-dimensional n=2 density profiles provide angular momentum information needed to set bounds on prior values of the stability relevant parameter α (rotational to ion diamagnetic drift frequency ratio), in addition to a view of plasma kinematics useful for benchmarking plasma models of higher order than MHD

  2. High-β, improved confinement reversed-field pinch plasmas at high density

    International Nuclear Information System (INIS)

    Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.

    2008-01-01

    In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n e =4x10 19 m -3 . Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch

  3. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  4. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  5. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  6. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall

  7. High density, high magnetic field concepts for compact fusion reactors

    International Nuclear Information System (INIS)

    Perkins, L.J.

    1996-01-01

    One rather discouraging feature of our conventional approaches to fusion energy is that they do not appear to lend themselves to a small reactor for developmental purposes. This is in contrast with the normal evolution of a new technology which typically proceeds to a full scale commercial plant via a set of graduated steps. Accordingly' several concepts concerned with dense plasma fusion systems are being studied theoretically and experimentally. A common aspect is that they employ: (a) high to very high plasma densities (∼10 16 cm -3 to ∼10 26 cm -3 ) and (b) magnetic fields. If they could be shown to be viable at high fusion Q, they could conceivably lead to compact and inexpensive commercial reactors. At least, their compactness suggests that both proof of principle experiments and development costs will be relatively inexpensive compared with the present conventional approaches. In this paper, the following concepts are considered: (1) The staged Z-pinch, (2) Liner implosion of closed-field-line configurations, (3) Magnetic ''fast'' ignition of inertial fusion targets, (4) The continuous flow Z-pinch

  8. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança

    2016-01-01

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...

  9. Reversed field pinch diagnostics

    International Nuclear Information System (INIS)

    Weber, P.G.

    1986-01-01

    The Reversed Field Pinch (RFP) is a toroidal, axisymmetric magnetic confinement configuration characterized by a magnetic field configuration in which the toroidal magnetic field is of similar strength to the poloidal field, and is reversed at the edge compared to the center. The RFP routinely operates at high beta, and is a strong candidate for a compact fusion device. Relevant attributes of the configuration will be presented, together with an overview of present and planned experiments and their diagnostics. RFP diagnostics are in many ways similar to those of other magnetic confinement devices (such as tokamaks); these lectures will point out pertinent differences, and will present some diagnostics which provide special insights into unique attributes of the RFP

  10. High-density near-field optical disc recording using phase change media and polycarbonate substrate

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2004-09-01

    We developed a high density near field optical recording disc system with a solid immersion lens and two laser sources. In order to realize the near field optical recording, we used a phase change recording media and a molded polycarbonate substrate. The near field optical pick-up consists of a solid immersion lens with numerical aperture of 1.84. The clear eye pattern of 90.2 GB capacity (160nm track pitch and 62 nm per bit) was observed. The jitter using a limit equalizer was 10.0 % without cross-talk. The bit error rate using an adaptive PRML with 8 taps was 3.7e-6 without cross-talk. We confirmed that the near field optical disc system is a promising technology for a next generation high density optical disc system.

  11. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  12. Field reversal experiments (FRX)

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10 15 cm -3 . After the plasma reaches equilibrium, the RFC remains stable for up to 30 μs followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value

  13. Field reversal experiments (FRX)

    International Nuclear Information System (INIS)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1979-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centres the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFCs with a major radius R=2-6cm, a minor radius a approximately 2cm, and a total length l approximately 35cm. The observed temperatures are Tsub(e) approximately 100eV and Tsub(i)=150-350eV with a peak density n approximately 2x10 15 cm -3 . After the plasma has reached equilibrium, the RFC remains stable for up to 30μs, followed by the rapid growth of the rotational m=2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behaviour of the m=2 mode agrees qualitatively with the theoretically predicted instability for rotational velocities exceeding some critical value. (author)

  14. Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  15. High-Density Near-Field Readout Using Diamond Solid Immersion Lens

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.

    2006-02-01

    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  16. Field reversal in mirror machines

    International Nuclear Information System (INIS)

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  17. Coaxial plasma gun in the high density regime and injection into a helical field

    Energy Technology Data Exchange (ETDEWEB)

    Schaer, S.F. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in a potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/{mu}sec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs.

  18. Coaxial plasma gun in the high density regime and injection into a helical field

    International Nuclear Information System (INIS)

    Schaer, S.F.

    1994-02-01

    A modified coaxial gun in the high density regime of 20-70 mT of He restgas, energized by a 1200 HV sinusoidally damped capacitor discharge with peak currents of 86 kA in the potential range of 10-15 kV, was investigated. The acceleration of the current sheet inside the gun was studied, and an MHD current element model derived, in good agreement with experiment, indicating that thermal diffusion can be neglected during the acceleration phase and furthermore explains the sheet velocity limitation. At the muzzle the plasma is magnetized by inducing a toroidal current through a permanent radial field, generating poloidal field. The injection of the generated current-carrying plasma torus into the driftspace was studied by means of a diamagnetic probe array, for 1) toroidal bias field, and 2) helical bias field. The inner electrode (negative polarity) is continued into the driftspace by a considerably thinner, pyrex insulated central conductor, generating the toroidal bias. Quasi-Tokamak geometry is reached in the helical case. The necessary axial bias field strength was then calculated. Second half-period breakdown was observed, thus a positive electrode was present most of the time. This is a unique way to achieve autopreionisation. Plasma gun operation is very much breakdown dependent, specially in the region of the muzzle. This made it necessary to construct a special compensation coil for the axial field coil. The mean torus speed in the driftspace was 2.2 cm/μsec. The tori were azimuthally homogeneous and exhibited enhanced stability. Transverse expansion at ejection and in the driftspace is prevented by a unique rarefaction wave-pattern resulting from the Mach 50 flow. The toroidal current was observed to decay continuously, not abruptly. No n type or oscillatory instabilities were encountered. These findings are important for future designs of guns where a stable and homogenous torus is needed, such as magnetic confinement injectors. (author) 39 figs., 38 refs

  19. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  20. Reversed field pinch experiments

    International Nuclear Information System (INIS)

    Roberston, S.

    1991-05-01

    The Reversatron RFP is usually operated with toroidal field windings which are a continuous helix of 144 turns. These windings produce a poloidal current which is uniform around the torus. The distribution of current is fixed by the geometry so that the applied field has only an m = 0, n = 0 component. The windings cannot act to stabilize an m = 0 mode with |n| > 0 or any m = 1 mode because these modes will excite no current in the windings. It has recently been suggested that parallel connected field coils might act as a shell by forcing the flux within each winding to be the same. Coils connected in parallel must have the same voltage at their terminals and thus must enclose the same volt-seconds or flux. Data from ZT-40 show that the discharges are more quiescent when parallel or series-parallel connected windings are used

  1. High-Density Near-Field Readout over 50 GB Capacity Using Solid Immersion Lens with High Refractive Index

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Ishimoto, Tsutomu; Nakaoki, Ariyoshi

    2003-02-01

    We have investigated high-density near-field readout using a solid immersion lens with a high refractive index. By using a glass material with a high refractive index of 2.08, we developed an optical pick-up with the effective numerical aperture of 1.8. We could observe a clear eye pattern for a 50 GB capacity disc in 120 mm diameter. We confirmed that the near-field readout system is promising method of realizing a high-density optical disc system.

  2. The Geomagnetic Field During a Reversal

    Science.gov (United States)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  3. Theory of field reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    This final report surveys the results of work conducted on the theory of field reversed configurations. This project has spanned ten years, beginning in early 1980. During this period, Spectra Technology was one of the leading contributors to the advances in understanding FRC. The report is organized into technical topic areas, FRC formation, equilibrium, stability, and transport. Included as an appendix are papers published in archival journals that were generated in the course of this report. 33 refs

  4. Field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1978-01-01

    The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe

  5. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  6. Irish study of high-density Schizophrenia families: Field methods and power to detect linkage

    Energy Technology Data Exchange (ETDEWEB)

    Kendler, K.S.; Straub, R.E.; MacLean, C.J. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1996-04-09

    Large samples of multiplex pedigrees will probably be needed to detect susceptibility loci for schizophrenia by linkage analysis. Standardized ascertainment of such pedigrees from culturally and ethnically homogeneous populations may improve the probability of detection and replication of linkage. The Irish Study of High-Density Schizophrenia Families (ISHDSF) was formed from standardized ascertainment of multiplex schizophrenia families in 39 psychiatric facilities covering over 90% of the population in Ireland and Northern Ireland. We here describe a phenotypic sample and a subset thereof, the linkage sample. Individuals were included in the phenotypic sample if adequate diagnostic information, based on personal interview and/or hospital record, was available. Only individuals with available DNA were included in the linkage sample. Inclusion of a pedigree into the phenotypic sample required at least two first, second, or third degree relatives with non-affective psychosis (NAP), one of whom had schizophrenia (S) or poor-outcome schizoaffective disorder (PO-SAD). Entry into the linkage sample required DNA samples on at least two individuals with NAP, of whom at least one had S or PO-SAD. Affection was defined by narrow, intermediate, and broad criteria. 75 refs., 6 tabs.

  7. A reversed-field theta-pinch plasma machine

    International Nuclear Information System (INIS)

    Yasojima, Yoshiyuki; Ueda, Yoshihiro; Sasao, Hiroyuki; Ueno, Noboru; Tanaka, Toshihide

    1984-01-01

    Mitsubishi Electric has constructed a reversed-field theta-pinch machine at its Central Research Laboratory and initiated a series of plasma diagnostics and control studies for development of nuclear-fusion technology. Although the device has a linear configuration, a stable high-temperature, high-density toroidal plasma can be generated. The article describes the overall structure, vacuum system, power-supply system, and diagnostics and control system of the plasma machine. (author)

  8. Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff

    Science.gov (United States)

    Zhang, Ying; Hu, Jinniu; Liu, Peng

    2018-01-01

    The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.

  9. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    International Nuclear Information System (INIS)

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Kim, Jae-Woo; Song, Yoon-Ho; Ahn, Seungjoon

    2013-01-01

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  10. Influence of lubricant oil residual fraction on recycled high density polyethylene properties and plastic packaging reverse logistics proposal

    Directory of Open Access Journals (Sweden)

    Harley Moraes Martins

    2015-10-01

    Full Text Available Abstract To recycle post-consumer HDPE contaminated with waste lubricating oils, companies include prior washing and drying in the process. This consumes large amounts of water and energy, generates significant effluent requiring treatment. This study assesses lubricating oil influence on HDPE properties to evaluate the feasibility of its direct mechanical recycling without washing. The current lubricating oil packaging reverse logistics in Rio de Janeiro municipality is also analyzed. HDPE bottle samples were processed with seven oil contents ranging from 1.6-29.4 (wt%. The results indicated the possibility to reprocess the polymer with oily residue not exceeding 3.2%. At higher levels, the external oil lubricating action affects the plastic matrix processing in the extruder and injection, and the recycled material has a burnt oil odor and free oil on the surface. Small residual oil amounts retain the plastic properties comparable to the washed recycled polymer and exhibited benefits associated with the oil plasticizer action. However, oil presence above 7.7% significantly changes the properties and reduces the elasticity and flexural modulus and the plastic matrix crystallinity.

  11. DEALS magnet concept and its applcations to high density, high field tokamak systems

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.; Bezler, P.; Laverick, C.; Finkelman, M.; Brown, T.; Bundy, J.

    1977-01-01

    The goal of the DEALS program is to develop a demountable TF magnet system concept that will reduce construction and life cycle costs, enhance the accessibility of components inside the coil system, and increase the chances for being able to use large high-field magnet systems in post TFTR reactor experiments. These experiments are projected to occur during the mid 1980's, with conceptual designs beginning in two or three years. A number of recent studies have highlighted the need for Tokamak fusion reactor systems with reasonable down time for maintenance and repair and realistic operating capacity factors, as well as the need for smaller, lower cost reactors. Two scoping studies were carried out of recent Tokamak system concepts incorporating conventionally wound coils to assess the possibilities of using demountable coils of rectangular section with an active support system and a third more intensive study using a passive support with slight movement of the joints. These studies are described briefly

  12. Zero field reversal probability in thermally assisted magnetization reversal

    Science.gov (United States)

    Prasetya, E. B.; Utari; Purnama, B.

    2017-11-01

    This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.

  13. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  14. Development of high-density bentonite barriers by means of spraying methods. Part 2. Investigation of field conditions

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Kobayashi, Ichizo; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    The authors have developed a method of constructing high-density bentonite by means of wet spraying to act as a backfill material in narrow places in radioactive waste disposal facilities. On the basis of the results of laboratory tests, they conducted field spraying tests to investigate the field conditions. The results of these tests are summarized as follows: 1) The bentonite could be sprayed smoothly by using a rotary spraying machine and a screw conveyor. 2) Provided that the air flow was at least 18.5 m 3 /min and the nozzle diameter did not exceed 25 mm, an average dry density of bentonite of 1.6 Mg/m 3 or higher could be achieved. 3) The dry density was constant within the spraying distance range 500 mm ∼ 2000 mm. 4) With a nozzle diameter of 19 mm, a spraying distance of 1000 mm, and a water content of 19.5%, an average dry density of the sprayed bentonite of 1.6 Mg/m 3 or higher and a rebound ratio not exceeding 30% was achieved. 5) The dry density of the sprayed bentonite decreased as the volume of bentonite supplied was increased, and it was shows to be closely related to the rotational speed of the spraying machine and the volume of bentonite sprayed from each hole. (author)

  15. How the geomagnetic field vector reverses polarity

    Science.gov (United States)

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  16. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  17. Stability of the field-reversed mirror

    International Nuclear Information System (INIS)

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  18. Turbulent transport in reversed field pinches

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Roberts, K.V.

    1976-01-01

    MHD stability of the Reversed Field Pinch (RFP) relies on reversal of the toroidal field component in the outer plasma region. Interest in this configuration comes from its potential economic advantages as a thermonuclear reactor, since compared to a Tokamak the RFP supports a higher value of β, the ratio between plasma and total magnetic pressure. Results of computations on the time-evolution of the RFP using a 1D MHD model are reported. (orig./GG) [de

  19. Earth's magnetic field is probably not reversing.

    Science.gov (United States)

    Brown, Maxwell; Korte, Monika; Holme, Richard; Wardinski, Ingo; Gunnarson, Sydney

    2018-04-30

    The geomagnetic field has been decaying at a rate of [Formula: see text]5% per century from at least 1840, with indirect observations suggesting a decay since 1600 or even earlier. This has led to the assertion that the geomagnetic field may be undergoing a reversal or an excursion. We have derived a model of the geomagnetic field spanning 30-50 ka, constructed to study the behavior of the two most recent excursions: the Laschamp and Mono Lake, centered at 41 and 34 ka, respectively. Here, we show that neither excursion demonstrates field evolution similar to current changes in the geomagnetic field. At earlier times, centered at 49 and 46 ka, the field is comparable to today's field, with an intensity structure similar to today's South Atlantic Anomaly (SAA); however, neither of these SAA-like fields develop into an excursion or reversal. This suggests that the current weakened field will also recover without an extreme event such as an excursion or reversal. The SAA-like field structure at 46 ka appears to be coeval with published increases in geomagnetically modulated beryllium and chlorine nuclide production, despite the global dipole field not weakening significantly in our model during this time. This agreement suggests a greater complexity in the relationship between cosmogenic nuclide production and the geomagnetic field than is commonly assumed.

  20. Computational methods for reversed-field equilibrium

    International Nuclear Information System (INIS)

    Boyd, J.K.; Auerbach, S.P.; Willmann, P.A.; Berk, H.L.; McNamara, B.

    1980-01-01

    Investigating the temporal evolution of reversed-field equilibrium caused by transport processes requires the solution of the Grad-Shafranov equation and computation of field-line-averaged quantities. The technique for field-line averaging and the computation of the Grad-Shafranov equation are presented. Application of Green's function to specify the Grad-Shafranov equation boundary condition is discussed. Hill's vortex formulas used to verify certain computations are detailed. Use of computer software to implement computational methods is described

  1. Dynamical similarity of geomagnetic field reversals.

    Science.gov (United States)

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-04

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

  2. Laser heating of field-reversed configurations

    International Nuclear Information System (INIS)

    Carson, R.S.; Vlases, G.C.

    1983-01-01

    The experimental facility is a 21-cm-long solenoid with a 5.5-cm bore. The 4-cm ID quartz tube is filled with slowly flowing H 2 to 0.5-3.0 torr. Fields up to 6.5 T in 3.7 μsec are produced, with reverse-bias fields up -1.9 T. Preionization is by 40kA axial discharge 4.5 μsec before field-reversal is begun. The CO 2 laser used produces 300 to 400 J in 2 μsec, in an annular beam that can be defocused for preheating the outer edges of the plasma, or focused tightly for central-column heating and beam propagation during formation. The focusing system includes a return mirror for multiple passing of the laser energy. Diagnostics include compensated, diamagnetic flux loops, internal field probes, cross-tube and axial interferometers, fast photography, and spectroscopy

  3. Particle transort in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.; Lipson, J.; Sgro, A.G.

    1981-01-01

    A field reversed configuration (FRC) is a compact toroid that contains no toroidal field. These plasmas are observed to be grossly stable for about 10-100 ..mu..sec. The lifetimes appear limited by an n = 2 rotational instability which may be caused by particle loss. Particle transport is therefore an important issue for these configurations. We investigate particle loss with a steady-state, 1-D model which approximates the experimental observation of elongated FRC equilibrium with about constant separatrix radius.

  4. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    Science.gov (United States)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  5. Field reversal produced by a plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Condit, W.; Granneman, E.H.A.; Prono, D.; Smith, A.C. Jr.; Taska, J.; Turner, W.C.

    1980-01-01

    Experimental results are presented of the production of Field-Reversed Plasma with a high energy coaxial plasma gun. The gun is magnetized with solenoids inside the center electrode and outside the outer electrode so that plasma emerging from the gun entrains the radial fringer field at the muzzle. The plasma flow extends field lines propagating a high electrical conductivity, the flux inside the center electrode should be preserved. However, for low flux, the trapped flux exceeds by 2 or more the initial flux, possibly because of helical deformation of the current channel extending from the center electrode

  6. Reversed-Field Pinch plasma model

    International Nuclear Information System (INIS)

    Miley, G.H.; Nebel, R.A.; Moses, R.W.

    1979-01-01

    The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile

  7. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  8. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  9. Flux trapping during field reversal in a field reversed theta pinch

    International Nuclear Information System (INIS)

    Milroy, R.D.; Hoffman, A.L.; Slough, J.T.; Harding, D.G.

    1983-01-01

    In this paper we present new results from both numerical and experimental studies of the formation of the conducting sheath near the tube wall and its effectiveness in trapping bias flux during field reversal

  10. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients

    Science.gov (United States)

    Li, Heng; Zeng, Yajie; Lu, Zhuofan; Cao, Xiaofei; Su, Xiaofan; Sui, Xiaohong; Wang, Jing; Chai, Xinyu

    2018-04-01

    Objective. Retinal prosthesis devices have shown great value in restoring some sight for individuals with profoundly impaired vision, but the visual acuity and visual field provided by prostheses greatly limit recipients’ visual experience. In this paper, we employ computer vision approaches to seek to expand the perceptible visual field in patients implanted potentially with a high-density retinal prosthesis while maintaining visual acuity as much as possible. Approach. We propose an optimized content-aware image retargeting method, by introducing salient object detection based on color and intensity-difference contrast, aiming to remap important information of a scene into a small visual field and preserve their original scale as much as possible. It may improve prosthetic recipients’ perceived visual field and aid in performing some visual tasks (e.g. object detection and object recognition). To verify our method, psychophysical experiments, detecting object number and recognizing objects, are conducted under simulated prosthetic vision. As control, we use three other image retargeting techniques, including Cropping, Scaling, and seam-assisted shrinkability. Main results. Results show that our method outperforms in preserving more key features and has significantly higher recognition accuracy in comparison with other three image retargeting methods under the condition of small visual field and low-resolution. Significance. The proposed method is beneficial to expand the perceived visual field of prosthesis recipients and improve their object detection and recognition performance. It suggests that our method may provide an effective option for image processing module in future high-density retinal implants.

  11. Reversed-field multiple mirror concept

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Grossmann, W.; Seyler, C.E.

    1978-01-01

    The reversed-field multiple mirror (RFMM), is a promising technique for end-stoppering linear magnetic fusion plasmas. By this means the physics and engineering advantages of a linear plasma are gained while circumventing the endloss problem, allowing the projection of very short (less than or equal to 100 m) conceptual reactors. RFMM end-stoppering is accomplished by a string of closed field-line cells on the plasma column axis; these cells strongly retard the axial flow of particles and energy. We describe the reactor implications of the RFMM

  12. Interchange stability of noncircular reversed field pinches

    International Nuclear Information System (INIS)

    Skinner, D.A.; Prager, S.C.; Todd, A.M.M.

    1987-08-01

    Interchange (Mercier) stability of toroidal reversed-field-pinch plasmas with noncircular cross-section is evaluated numerically. Marginally stable pressure profiles and beta values are produced. Most shapes, such as indented or vertically elongated, reduce stability by making the net magnetic curvature of the poloidal-field-dominated plasmas yet worse than that of the circle. Horizontally elongated plasmas slightly enhance stability beyond that of the circle as a result of increased shear produced by toroidicity. Such shear enhancement by the toroidal shift of magnetic surfaces might be exploited for future, more comprehensive studies

  13. Particle transport in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.

    1982-05-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.

  14. Particle transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Linford, R.K.

    1982-01-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement

  15. Domino model for geomagnetic field reversals.

    Science.gov (United States)

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.

  16. Magnetization reversal in ultrashort magnetic field pulses

    International Nuclear Information System (INIS)

    Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.

    2000-01-01

    We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question

  17. Kinetic Stability of the Field Reversed Configuration

    International Nuclear Information System (INIS)

    E.V. Belova; R.C. Davidson; H. Ji; and M. Yamada

    2002-01-01

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments

  18. Confinement dynamics in the reversed field pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.

    1988-01-01

    The study of basic transport and confinement dynamics is central to the development of the reversed field pinch (RFP) as a confinement concept. Thus, the goal of RFP research is to understand the connection between processes that sustain the RFP configuration and related transport/confinement properties. Recently, new insights into confinement have emerged from a detailed investigation of RFP electron and ion physics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and strongly coupled role in RFP sustainment and confinement dynamics. In this paper, we summarize the results of these studies on the ZT-40M experiment. 8 refs

  19. ANTHEM simulation of the early time magnetic field penetration of the plasma surrounding a high density Z-pinch

    International Nuclear Information System (INIS)

    Mason, R.J.

    1989-01-01

    The early time penetration of magnetic field into the low density coronal plasma of a Z-pinch fiber is studied with the implicit plasma simulation code ANTHEM. Calculations show the emission of electrons from the cathode, pinching of the electron flow, magnetic insulation of the electrons near the anode, and low density ion blow off. PIC-particle ion calculations show a late time clumping of the ion density not seen with a fluid ion treatment. 4 refs., 4 figs

  20. Tilting mode in field-reversed configurations

    International Nuclear Information System (INIS)

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  1. Atmospheric helium and geomagnetic field reversals.

    Science.gov (United States)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  2. Coupled transport in field-reversed configurations

    Science.gov (United States)

    Steinhauer, L. C.; Berk, H. L.; TAE Team

    2018-02-01

    Coupled transport is the close interconnection between the cross-field and parallel fluxes in different regions due to topological changes in the magnetic field. This occurs because perpendicular transport is necessary for particles or energy to leave closed field-line regions, while parallel transport strongly affects evolution of open field-line regions. In most toroidal confinement systems, the periphery, namely, the portion with open magnetic surfaces, is small in thickness and volume compared to the core plasma, the portion with closed surfaces. In field-reversed configurations (FRCs), the periphery plays an outsized role in overall confinement. This effect is addressed by an FRC-relevant model of coupled particle transport that is well suited for immediate interpretation of experiments. The focus here is particle confinement rather than energy confinement since the two track together in FRCs. The interpretive tool yields both the particle transport rate χn and the end-loss time τǁ. The results indicate that particle confinement depends on both χn across magnetic surfaces throughout the plasma and τǁ along open surfaces and that they provide roughly equal transport barriers, inhibiting particle loss. The interpretation of traditional FRCs shows Bohm-like χn and inertial (free-streaming) τǁ. However, in recent advanced beam-driven FRC experiments, χn approaches the classical rate and τǁ is comparable to classic empty-loss-cone mirrors.

  3. Reversible flow of cholesteryl ester between high-density lipoproteins and triacylglycerol-rich particles is modulated by the fatty acid composition and concentration of triacylglycerols

    Directory of Open Access Journals (Sweden)

    E.C.R. Quintão

    2010-12-01

    Full Text Available We determined the influence of fasting (FAST and feeding (FED on cholesteryl ester (CE flow between high-density lipoproteins (HDL and plasma apoB-lipoprotein and triacylglycerol (TG-rich emulsions (EM prepared with TG-fatty acids (FAs. TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001 and a negative correlation from EM to HDL (r = -041, P = 0.0088. Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.

  4. Magnetic islands at the field reversal surface in reversed field pinches

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Reiman, A.H.

    1985-09-01

    In the reversed field pinch (RFP), magnetic field perturbations having zero poloidal mode number and any toroidal mode number are resonant at the field reversal surface. Such perturbations are a particular threat to the RFP because of their weak radial dependence at low toroidal mode number, and because the toroidal field ripple is essentially of this type. The widths of the resulting islands are calculated in this paper. The self-consistent plasma response is included through the assumption that the plasma relaxes to a Taylor force-free state. The connection with linear tearing mode theory is established for those limits where arbitrarily large islands result from infinitesimal perturbations. Toroidal effects are considered, and application of the theory to RFP experiments is discussed

  5. Inhibitory control and visuo-spatial reversibility in Piaget’s seminal number conservation task: A high-density ERP study.

    Directory of Open Access Journals (Sweden)

    Gregoire eBorst

    2013-12-01

    Full Text Available The present high-density ERP study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition and then, the tokens in one of the two rows were spread apart (INT condition. Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults.

  6. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  7. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Hagenson, R.L.; Copenhaver, C.; Werley, K.A.

    1986-01-01

    The unique confinement properties of the Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact, high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media power cycle driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) with a power density and mass approaching values characteristic of pressurized-water fission rectors. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. After describing the main physics and technology issues for this base-case reactor, directions for future study are suggested

  8. Theory of field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1993-01-01

    This report summarizes results from the theoretical program on field reversed configurations (FRC) at STI Optronics. The program, which has spanned the last 13 years, has included analytical as well as computational components. It has led to published papers on every major topic of FRC theory. The report is outlined to summarize results from each of these topic areas: formation, equilibrium, stability, and confinement. Also briefly described are Steinhauer's activities as Compact Toroid Theory Listening Post. Appendix A is a brief listing of the major advances achieved in this program. Attached at the back of this report is a collection of technical papers in archival journals that resulted from work in this program. The discussion within each subsection is given chronologically in order to give a historical sense of the evolution of understanding of FRC physics

  9. LASL toroidal reversed-field pinch programme

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1979-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show that over half the energy loss is accounted for by this mechanism. Thomson-scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced, indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport is needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low-temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given. (author)

  10. Rotational instabilities in field reversed configurations

    International Nuclear Information System (INIS)

    Santiago, M.A.M.; Tsui, K.H.; Ponciano, B.M.B.; Sakanaka, P.H.

    1988-01-01

    The rotational instability (n = 2 toroidal mode) in field reversed configurations (FRC) using the ideal MHD equations in cylindrical geometry is studied. These equations are solved using a realistic densite profile, and the influence of some plasma parameters on the growth rate is analysed. The model shows good qualitative results. The growth rate increases rapidly as rotational frequency goes up and the mode m = 2 dominates over the m = 1 mode. With the variation of the density profile, it is observed that the growth rate decreases as the density dip at the center fills up. Calculated value ranges from 1/2 to 1/7 of the rotational frequency Ω whereas the measured value is around Ω/50. The developed analysis is valid for larger machines. The influence of the plasma resistivity on the mode stabilization is also analysed. The resistivity, which is the fundamental factor in the formation of compact torus, tends to decrease the growth rate. (author) [pt

  11. LASL toroidal reversed-field pinch program

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1978-01-01

    The determination of the absolute energy loss due to radiation from impurities in the LASL toroidal reversed-field pinch experiment ZT-S is reported. The measurements show over half of the energy loss is accounted for by this mechanism. Thomson scattering electron density measurements indicate only a gradual increase in temperature as the filling pressure is reduced indicating an increased energy loss at lower pressures. Cylindrical and toroidal simulations of the experiment indicate either that a highly radiative pinch boundary or anomalous transport are needed to match the experimental results. New effects on the equilibrium due to plasma flows induced by the toroidal geometry are predicted by the toroidal simulations. The preliminary results on the low temperature discharge cleaning of the ZT-S torus are reported. A description of the upgrade of the ZT-S experiment and the objectives, construction and theoretical predictions for the new ZT-40 experiment are given

  12. Reversed field pinch reactor study 3

    International Nuclear Information System (INIS)

    Hollis, A.A.; Mitchell, J.T.D.

    1977-12-01

    This report, the third of a series on the Reversed Field Pinch Reactor, describes a preliminary concept of the engineering design and layout of this pulsed toroidal reactor, which uses the stable plasma behaviour first observed in ZETA. The basic parameters of the 600 MW(e) reactor are taken from a companion study by Hancox and Spears. The plasma volume is 1.75m minor radius and 16m major radius surrounded by a 1.8m blanket-shield region - with the blanket divided into 14 removable segments for servicing. The magnetic confinement system consists of 28 toroidal field coils situated just outside the blanket and inside the poloidal and vertical field coils and all coils have normal copper conductors. The requirement to incorporate a conducting shell at the front of the blanket to provide a short-time plasma stability has a marked effect on the design. It sets the size of the blanket segment and the scale of the servicing operations, limits the breeding gain and complicates the blanket cooling and its integration with the heat engine. An extensive study will be required to confirm the overall reactor potential of the concept. (author)

  13. Reversed-field pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. The 5-s dwell period between burn pulses for plasma quench and refueling allows steady-state operation of all thermal systems outside the first wall; no auxiliary thermal capacity is required. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented water/steam coolant tubes. The slightly superheated steam emerging from this blanket directly drives a turbine that produces electrical power at an efficiency of 30%. A borated-water shield is located immediately outside the thermal blanket to protect the superconducting magnet coils. Both the superconducting poloidal and toroidal field coils are energized by homopolar motor/generators. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  14. Kinetic stability of field-reversed configurations

    International Nuclear Information System (INIS)

    Staudenmeier, J.L.; Hsiao, M.-Y.

    1991-01-01

    The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria

  15. Reversed-Field Pinch Reactor (RFPR) concept

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Cort, G.E.

    1979-08-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a Reversed-Field Pinch (FRP) configuration is presented. A 50% atomic mixture of deuterium and tritium (DT) is ohmically heated to ignition by currents flowing in the toroidal plasma; this plasma current also inherently produces the confining magnetic fields in a toroidal chamber having a major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and burns at 10 to 20 keV for approx. 20 s to give a fuel burnup of approx. 50%. Tritium breeding occurs in a granular Li 2 O blanket which is packed around an array of radially oriented coolant tubes carrying a mixture of high-pressure steam and water. The slightly superheated steam emerging from this blanket would be used to drive a turbine directly. Low-pressure helium containing trace amounts of oxygen is circulated through the packed Li 2 O bed to extract the tritium. A 20-mm-thick copper first wall serves as a neutron multiplier, acts as a tritium barrier, and supports image currents to provide plasma stabilization on a 0.1-s timescale; external windings provide stability for longer times

  16. Compact reversed-field pinch reactors (CRFPR)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.; Schnurr, N.M.; Copenhaver, C.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.

    1986-01-01

    The unique confinement properties of the poloidal-field-dominated Reversed-Field Pinch (RFP) are exploited to examine physics and technical issues related to a compact high-power-density fusion reactor. This resistive-coil, steady-state, toroidal device would use a dual-media (i.e., two separate coolants) power cycle that would be driven by a fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, and coils) having a power density and mass approaching pressurized-water-fission reactor values. A 1000-MWe(net) base case is selected from a comprehensive trade-off study to examine technological issues related to operating a high-power-density FPC. A general rationale outlining the need for improved fusion concepts is given, followed by a description of the RFP principle, a detailed systems and trade-off analysis, and a conceptual FPC design for the ∝ 20-MW/m 2 (neutrons) compact RFP reactor, CRFPR(20). Key FPC components are quantified, and full power-balance, thermal, and mechanical FPC integrations are given. (orig.)

  17. Oscillating field current drive for reversed field pinch discharges

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Baker, D.A.

    1984-06-01

    Oscillating Field Current Drive (OFCD), also known as F-THETA pumping, is a steady-state current-drive technique proposed for the Reversed Field Pinch (RFP). Unlike other current-drive techniques, which employ high-technology, invasive, and power intensive schemes using radio frequency or neutral particle injection, F-THETA pumping entails driving the toroidal and poloidal magnetic field circuits with low-frequency (audio) oscillating voltage sources. Current drive by this technique is a consequence of the strong nonlinear plasma coupling in the RFP. Because of its low frequency and efficient plasma coupling, F-THETA pumping shows excellent promise as a reactor-relevant current-drive technique. A conceptual and computational study of this concept, including its experimental and reactor relevance, is explored in this paper

  18. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    International Nuclear Information System (INIS)

    Melrose, D. B.

    2010-01-01

    The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  19. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  20. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  1. Poloidal flux loss in a field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Milroy, R.D.; Steinhauer, L.C.

    1981-01-01

    Poloidal flux loss has been measured in field-reversed configurations and related to anomalous resistivity near the magnetic field null. The results indicate that mechanisms in addition to the lower-hybrid drift instability are affecting transport

  2. The physics of reversed-field pinch profile sustainment

    International Nuclear Information System (INIS)

    Moses, R.W.

    1985-01-01

    A description of the Reversed-Field Pinch (RFP) is given. There is experimental evidence that indicates that an RFP dynamo effect sustains field reversal in steady state. Three sustainment mechanisms are reviewed: the MHD model, the tangled discharge model, and the kinetic dynamo model. The relationship of these models to each another is discussed briefly

  3. The topology of intrasector reversals of the interplanetary magnetic field

    Science.gov (United States)

    Kahler, S. W.; Crooker, N. U.; Gosling, J. T.

    1996-11-01

    A technique has been developed recently to determine the polarities of interplanetary magnetic fields relative to their origins at the Sun by comparing energetic electron flow directions with local magnetic field directions. Here we use heat flux electrons from the Los Alamos National Laboratory (LANL) plasma detector on the ISEE 3 spacecraft to determine the field polarities. We examine periods within well-defined magnetic sectors when the field directions appear to be reversed from the normal spiral direction of the sector. About half of these intrasector field reversals (IFRs) are cases in which the polarities match those of the surrounding sectors, indicating that those fields have been folded back toward the Sun. The more interesting cases are those with polarity reversals. We find no clear cases of isolated reverse polarity fields, which suggests that islands of reverse polarity in the solar source dipole field probably do not exist. The IFRs with polarity reversals are strongly associated with periods of bidirectional electron flows, suggesting that those fields occur only in conjunction with closed fields. We propose that both those IFRs and the bidirectional flows are signatures of coronal mass ejections (CMEs). In that case, many interplanetary CMEs are larger and more complex than previously thought, consisting of both open and closed field components.

  4. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  5. Field reversed theta pinch TC-I UNICAMP

    International Nuclear Information System (INIS)

    Honda, R.Y.; Machida, M.; Aramaki, E.A.; Porto, P.; Berni, L.A.

    1990-01-01

    Field reversed configuration TC-I device is 16 cm diameter, 1 meter long with two mirror coils and 30 kJ field reversed theta pinch working for over two years at University of Campinas. Its implosion dynamics and field reversal parameters have been studied using flux excluded loops, internal magnetic probe, visible spectroscopy, photodiode array and image converter camera. The vacuum vessel is a pyrex tube of 14,5 cm diameter pumped with a liquid nitrogen cooled diffusion pump to a base pressure of 6 x 10 -7 Torr. The schematic view of the machine and experimental set up are shown. (Author)

  6. The TITAN reversed-field-pinch fusion reactor study

    International Nuclear Information System (INIS)

    1990-01-01

    This paper on titan plasma engineering contains papers on the following topics: reversed-field pinch as a fusion reactor; parametric systems studies; magnetics; burning-plasma simulations; plasma transient operations; current drive; and physics issues for compact RFP reactors

  7. Paleomagnetic Study of a Reversal of the Earth's Magnetic Field.

    Science.gov (United States)

    Dunn, J R; Fuller, M; Ito, H; Schmidt, V A

    1971-05-21

    A detailed record of a field reversal has been obtained from the natural remanent magnetization of the Tatoosh intrusion in Mount Rainier National Park, Washington. The reversal took place at 14.7 +/- 1 million years and is interpreted to be from reverse to normal. A decrease in the intensity of the field of about an order of magnitude occurs immediately before the reversal, while its orientation remains substantially unchanged. The onset of the reversal is marked by abrupt swinging of the virtual geomagnetic pole along an arc of a great circle. During the reversal the pole traces a path across the Pacific. In the last stage of the process recorded in the sections, the succession of virtual geomagnetic poles is very similar to those generated by secular variation in the recent past. Although the cooling rate of the intrusion is not sufficiently well known to permit a useful calculation of the duration of the reversal process, an estimate based on the length of the supposed secular variation cycles gives 1 to 4 x 103 years for the reversal of field direction and approximately 1 x 104 years for the time scale of the intensity changes.

  8. Electrical circuit modeling of reversed field pinches

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1988-02-01

    Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab

  9. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    International Nuclear Information System (INIS)

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  10. 3-dimensional simulation of dynamo effect of reversed field pinch

    International Nuclear Information System (INIS)

    Koide, Shinji.

    1990-09-01

    A non-linear numerical simulation of the dynamo effect of a reversed field pinch (RFP) with finite beta is presented. It is shown that the m=-1, n=(9,10,11,....,19) modes cause the dynamo effect and sustain the field reversed configuration. The role of the m=0 modes on the dynamo effect is carefully examined. Our simulation shows that the magnetic field fluctuation level scales as S -0.2 or S -0.3 in the range of 10 3 5 , while Nebel, Caramana and Schnack obtained the fluctuation level is independent of S for a pressureless RFP plasma. (author)

  11. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    Science.gov (United States)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  12. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... in the particle fluid. For nuclear densities above 2 to 3 rho(0), where rho(0) is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 10(17) Gauss....

  13. Physics of reversed-field pinch profile sustainment

    International Nuclear Information System (INIS)

    Moses, R.W.

    1984-01-01

    A description of the Reversed-Field Pinch (RFP) is given, emphasizing the necessity of a magnetohydrodynamic (MHD) or kinetic process to sustain field reversal. Three sustainment mechanisms are reviewed: the MHD dynamo, the tangled discharge model, and nonlocal resistivity. A slab model of steady (ohmic) states is described. A relationship between ohmic state wave numbers and the minimum amplitude of nonsymmetric field components is given. If ohmic states are the sole source of the sustainment process, their wave lengths are probably much longer than the minor diameter of the plasma. Otherwise field asymmetries would exceed those observed in experiments. It is noted that internal field data are still limited, restricting the generality of our comments

  14. High Density Digital Data Storage System

    Science.gov (United States)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  15. Switching field distribution and magnetization reversal process of FePt dot patterns

    Energy Technology Data Exchange (ETDEWEB)

    Ishio, S., E-mail: ishio@gipc.akita-u.ac.jp [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Takahashi, S.; Hasegawa, T.; Arakawa, A.; Sasaki, H. [Department of Materials Science and Engineering, Akita University, Akita 010-8502 (Japan); Yan, Z.; Liu, X. [Venture Business Laboratory, Akita University, Tegata Gakuen-machi, Akita 010-8502 (Japan); Kondo, Y.; Yamane, H.; Ariake, J. [Akita Prefectural R and D Center, 4-21 Sanuki, Akita 010-1623 (Japan); Suzuki, M.; Kawamura, N.; Mizumaki, M. [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2014-06-01

    The fabrication of FePt nanodots with a high structural quality and the control of their switching fields are key issues in realizing high density bit pattern recording. We have prepared FePt dot patterns for dots with 15–300 nm diameters by electron beam lithography and re-annealing, and studied the relation between magnetization reversal process and structure of FePt nanodots. The switching field (H{sub sw}) of dot patterns re-annealed at 710 °C for 240 min showed a bimodal distribution, where a higher peak was found at 5–6 T, and a lower peak was found at ∼2 T. It was revealed by cross-sectional TEM analysis that the structure of dots in the pattern can be classified into two groups. One group has a high degree of order with well-defined [0 0 1] crystalline growth, and the other group includes structurally-disturbed dots like [1 1 1] growth and twin crystals. This structural inhomogeneity causes the magnetic switching field distribution observed. - Highlights: • FePt dot patterns with 15–100 nm dot diameters were prepared by EB lithography. • Maximum coercivity of 30 kOe was found in the dot pattern with 30 nm in diameter. • Magnetization reversal was studied on the base of TEM analysis and LLG simulation.

  16. Plasma behaviors in the open field region of reversed-field theta-pinch

    International Nuclear Information System (INIS)

    Aso, Yoshiyuki; Hirano, Keiichi.

    1983-03-01

    A characteristic behavior of the plasma in an open field region of reversed field theta pinch has been studied with the guide field (GF) which extends the field line along the axial direction. The experimental result suggests that the rotaional instability may be induced in FRC after the plasma touches the wall at the ends of the open field. (author)

  17. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    Science.gov (United States)

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to 40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux.

  18. Toroidal equilibrium in an iron-core reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1984-04-01

    An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale

  19. A Mirnov loop array for field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.

    1990-01-01

    An array of 64 magnetic pick-up loops has been used for stability studies of large field-reversed configurations in the FRX-C/LSM device. This array proved reliable, could resolve signals of a few Gauss, and allowed the detection of several plasma instabilities. 3 refs., 4 figs

  20. Overview of quasi single helicity experiments in reversed field pinches

    International Nuclear Information System (INIS)

    Martin, P.; Marrelli, L.; Spizzo, G.

    2003-01-01

    We report the results of an experimental and theoretical project dedicated to the study of Quasi Single Helicity Reversed Field Pinch plasmas. The project has involved several RFP devices and numerical codes. It appears that QSH spectra are a feature common to all the experiments. (author)

  1. Time-reversal symmetry breaking by ac field: Effect of ...

    Indian Academy of Sciences (India)

    deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.

  2. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  3. MHD turbulence models for the reversed field pinch

    International Nuclear Information System (INIS)

    Gimblett, C.G.; Watkins, M.L.

    1976-01-01

    A kinematic model which describes the effect of isotropic, non-mirror symmetric turbulence on a mean magnetic field is used to examine the temporal behaviour of magnetic field in high beta pinch experiments. Solutions to the model can indicate the formation of a steady-state, force-free configuration that corresponds to the state of lowest magnetic energy and the reversal of the toroidal magnetic field at the plasma boundary in accordance with experimental observations on toroidal pinches such as ZETA and HBTX. This model neglects both the dynamic interaction between fluid and field and the associated anisotropy. These effects are examined in a further model. (author)

  4. The basic research on a high-density ratio gas-liquid flow. 1995 fiscal year report on the study in advanced fundamental field

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Nishihara, Hideaki; Hibiki, Takashi; Tobita, Yoshiharu.

    1996-05-01

    This study is the basic research on boiling behavior of mixing pool which consists of fuel and steel formed in the reactor core during the core damage accident of fast breeder reactor. This study is performed under the cooperative research between Power Reactor and Nuclear Fuel Development Corp. and Res. Reactor Inst., Kyoto Univ.. The objective of this study is the visualization using the neutron radiography technique for the simulation test which injects bubbles from the bottom of molten metal pool. This experiments serves basic data such as bubble diameter, movement, and void fraction of a high-density ratio gas-liquid flow. In addition, these experimental data will be applied for the model verification and improvement of the SIMMER-III code. As a first year of the cooperative research, in this fiscal year, the visualization performance of the radiography technique was tested using the solid sample with the void space which simulated a bubble. The result of this experiment is described in this report. (author)

  5. Experimental studies of field-reversed configuration translation

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.; Milroy, R.D.

    1986-03-01

    In the FRX-C/T experiment (Proceedings of the 9th Symposium for Engineering Problems of Fusion Research (IEEE, New York, 1981), p. 1751), field-reversed configuration (FRC) plasmas have been formed in, and launched from, a field-reversed theta-pinch source and subsequently trapped in an adjacent confinement region. No destructive instabilities or enhanced losses of poloidal flux, particles, or thermal energy are observed for FRC total trajectories of up to 16 m. The observed translation dynamics agree with two-dimensional magnetohydrodynamic (MHD) simulations. When translated into reduced external magnetic fields, FRC's are observed to accelerate, expand, and cool in partial agreement with adiabatic theory. The plasmas reflect from an external mirror and after each reflection, the axial kinetic energy is reduced by approximately 50%. Because of this reduction, FRC's are readily trapped without the need of pulsed gate magnet coils.

  6. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  7. The effect of quadrupole fields on particle confinement in a field-reversed mirror

    International Nuclear Information System (INIS)

    McColl, D.B.; Berk, H.L.; Hammer, J.; Morse, E.C.

    1982-01-01

    A particle simulation code has been modified to simulate particle loss caused by quadrupole magnetic fields on a field-reversed mirror plasma device. Since analytic fields are chosen for the equilibrium, the numerical algorithm is highly accurate for long-time integrations of particle orbits. The resultant particle loss due to the quadrupole fields can be competitive with collisional loss in the device

  8. Photoionization and High Density Gas

    Science.gov (United States)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  9. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  10. Nonlinear tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Miller, G.

    1989-01-01

    Finite-amplitude islands, which are the saturated states of tearing modes in the reversed field pinch, are calculated. These states are bifurcated noncylindrical equilibrium states. With σ(r) (σequivalentj x B/B 2 ) nonuniform across the plasma, as is consistent with experiment, a variety of m = 1 and m = 0 bifurcated equilibria are possible, instead of just the m = 1 helix calculated for uniform σ(r) by Taylor [in Pulsed High Beta Plasmas, edited by D. Evans (Pergamon, Oxford, 1976), p. 59]. Assuming the magnetic field lines in the reversed field pinch are weakly stochastic, the growth time of an unstable tearing mode is on the inertial time scale, as in the Taylor model, in constrast to growth on the resistive time scale predicted from nonlinear tearing mode theory when magnetic surfaces exist. The dependence of the saturated island width on radius of a conducting shell is investigated. Islands in the reversed field pinch often have magnetic wells in the island interior, which may result in improved confinement in the island regions

  11. Studies of a poloidal divertor reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Dexter, R.N.; Prager, S.C.; Sprott, J.C.

    1988-07-01

    An attempt has been made to form a reversed field pinch (RFP) in a poloidal divertor configuration which position the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four internal aluminum rings. Plasmas were formed with plasma current /approximately/135 kA, toroidal field reversal lasting /approximately/1 msec, line-averaged density /approximately/1--2 /times/ 10 13 cm/sup /minus/3/ and central electron temperature /approximately/55 eV, but a large asymmetry in the magnetic field (δB/B /approximately/40%) onset at about the time the toroidal field reversed at the wall. Symmetric, poloidal divertor RFP equilibria were not formed. This behavior might be expected based on linear MHD stability analysis of a cylindrical plasma bounded by a large vacuum region and distant conducting wall. The symmetric equilibrium before the asymmetry develops and the asymmetry itself are described. 15 refs., 3 figs

  12. Dynamic processes in field-reversed-configuration compact toroids

    International Nuclear Information System (INIS)

    Rej, D.J.

    1987-01-01

    In this lecture, the dynamic processes involved in field-reversed configuration (FRC) formation, translation, and compression will be reviewed. Though the FRC is related to the field-reversed mirror concept, the formation method used in most experiments is a variant of the field-reversed Θ-pinch. Formation of the FRC eqilibrium occurs rapidly, usually in less than 20 μs. The formation sequence consists of several coupled processes: preionization; radial implosion and compression; magnetic field line closure; axial contraction; equilibrium formation. Recent experiments and theory have led to a significantly improved understanding of these processes; however, the experimental method still relies on a somewhat empirical approach which involves the optimization of initial preionization plasma parameters and symmetry. New improvements in FRC formation methods include the use of lower voltages which extrapolate better to larger devices. The axial translation of compact toroid plasmas offers an attractive engineering convenience in a fusion reactor. FRC translation has been demonstrated in several experiments worldwide, and these plasmas are found to be robust, moving at speeds up to the Alfven velocity over distances of up to 16 m, with no degradation in the confinement. Compact toroids are ideal for magnetic compression. Translated FRCs have been compressed and heated by imploding liners. Upcoming experiments will rely on external flux compression to heat a translater FRC at 1-GW power levels. 39 refs

  13. Rotational stability of a long field-reversed configuration

    International Nuclear Information System (INIS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-01-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone

  14. Rotational stability of a long field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  15. Topological Field Theory of Time-Reversal Invariant Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.

  16. Antioxidant activity of high-density lipoprotein (HDL) using different ...

    African Journals Online (AJOL)

    HDL is a potent antioxidant in terms of inhibition of lipid peroxidation, ROS production and LDL oxidation. These may to some extent add to the antiatherogenic beyond reverse-cholesterol transport properties of HDL. Keywords: high-density lipoprotein; reverse cholesterol transport; apolipoprotein A1; antioxidant; in vitro.

  17. Field-reversed configuration confinement in TRX-1

    International Nuclear Information System (INIS)

    Steinhauer, L.; Slough, J.

    1984-01-01

    Particle and poloidal flux lifetime data from the TRX-1, field-reversed theta pinch experiment, have been used to infer information on the basic transport behavior. The field-reversed configurations were created over a broad range of plasma parameters: separatrix radii, 4-8 cm; lengths, 35-80 cm; and temperature T/sub e/ + T/sub i/, 150-1000 eV. The confinement times covered a wide range as well: Particles, tau/sub N/ = 30-170 μs; poloidal flux, tau/sub phi/ = 30-140 μs; and energy tau/sub E/ = 20-75 μs. The experimental data was divided, a priori, into three classes: 1) the triggered-reconnection mode; 2) the programmed-formation mode with a good preionization (PI); and 3) programmed formation with poor PI

  18. The reversal of the Sun's magnetic field in cycle 24

    OpenAIRE

    Mordvinov, Alexander V.; Pevtsov, Alexei A.; Bertello, Luca; Petrie, Gordon J. D.

    2016-01-01

    Analysis of synoptic data from the Vector Stokes Magnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) and the NASA/NSO Spectromagnetograph (SPM) at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between northern and southern hemispheres. The presence of su...

  19. Analytic, two fluid, field reversed configuration equilibrium with sheared rotation

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1989-01-01

    A two fluid model is used to derive an analytical equilibrium for elongated field reversed configurations containing shear in both the electron and ion velocity profiles. Like some semiempirical models used previously, the analytical expressions obtained provide a satisfactory fit to the experimental results for all radii with a few key parameters. The present results reduce to the rigid rotor model and the infinite conductivity case for a specific choice of the parameters

  20. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  1. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  2. Stochastic behaviour of particle orbits in field reversed geometries

    International Nuclear Information System (INIS)

    Finn, J.M.

    1979-01-01

    Studies of stochastic or ergodic behaviour of beam particle orbits in axisymmetric systems with field reversal produced by ion rings or by neutral injection are presented. In the former case a large class of orbits is ergodic, whereas in the latter most are integrable. Effects of ergodic behaviour on particle confinement, equilibrium, magnetic compression, and stability are discussed. The modification, due to ergodic orbits of the stability criterion for low frequency (ω << ωsub(ci)) resonant instabilities is presented. (author)

  3. Prospects for fusion applications of reversed-field pinches

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx.1-MW/m 2 (neutron) driven operation are reported. 10 refs

  4. Waveguide propagation of electromagnetic waves in high-density ducts aligned along the geomagnetic field in the near-equatorial magnetospheric region

    International Nuclear Information System (INIS)

    Kaufman, R.N.

    1988-01-01

    Waveguide propagation of electromagnetic waves in axial symmetric ducts with increased plasma density aligned along the constant external magnetic field is considered for frequencies, being higher than low-hybrid, in the WKB approximation. In this case tunnel effects leading to captured wave damping are taken into account. Conditions for waveguide propagation and the logarithmic decrement of damping are found. Field construction is performed using the systems of axially symmetric WKB solutions of the Maxwell equations

  5. Statistical theory of field fluctuations in a reversed-field pinch

    International Nuclear Information System (INIS)

    Turner, L.

    1982-01-01

    A statistical description of three-dimensional, incompressible turbulence in an ideal, current-bearing, bounded magnetofluid is given both analytically and numerically. Our results are then compared with existing data taken from reversed-field pinch experiments

  6. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  7. Magnetic field reversals, polar wander, and core-mantle coupling.

    Science.gov (United States)

    Courtillot, V; Besse, J

    1987-09-04

    True polar wander, the shifting of the entire mantle relative to the earth's spin axis, has been reanalyzed. Over the last 200 million years, true polar wander has been fast (approximately 5 centimeters per year) most of the time, except for a remarkable standstill from 170 to 110 million years ago. This standstill correlates with a decrease in the reversal frequency of the geomagnetic field and episodes of continental breakup. Conversely, true polar wander is high when reversal frequency increases. It is proposed that intermittent convection modulates the thickness of a thermal boundary layer at the base of the mantle and consequently the core-to-mantle heat flux. Emission of hot thermals from the boundary layer leads to increases in mantle convection and true polar wander. In conjunction, cold thermals released from a boundary layer at the top of the liquid core eventually lead to reversals. Changes in the locations of subduction zones may also affect true polar wander. Exceptional volcanism and mass extinctions at the Cretaceous-Tertiary and Permo-Triassic boundaries may be related to thermals released after two unusually long periods with no magnetic reversals. These environmental catastrophes may therefore be a consequence of thermal and chemical couplings in the earth's multilayer heat engine rather than have an extraterrestrial cause.

  8. Simulation study of dynamo structure in reversed field pinch

    International Nuclear Information System (INIS)

    Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.

    1992-10-01

    The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)

  9. Advanced-fuel reversed-field pinch reactor (RFPR)

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-10-01

    The utilization of deuterium-based fuels offers the potential advantages of greater flexibility in blanket design, significantly reduced tritium inventory, potential reduction in radioactivity level, and utilization of an inexhaustible fuel supply. The conventional DT-fueled Reversed-Field Pinch Reactor (RFPR) designs are reviewed, and the recent extension of these devices to advanced-fuel (catalyzed-DD) operation is presented. Attractive and economically competitive DD/RFPR systems are identified having power densities and plasma parameters comparable to the DT systems. Converting an RFP reactor from DT to DD primarily requires increasing the magnetic field levels a factor of two, still requiring only modest magnet coil fields (less than or equal to 4 T). When compared to the mainline tokamak, the unique advantages of the RFP (e.g., high beta, low fields at the coils, high ohmic-heating power densities, unrestricted aspect ratio) are particularly apparent for the utilization of advanced fuels

  10. Experimental studies on high density, short-term farming of shrimp Penaeus indicus in a Pokkali field in Vypeen Island, Kerala

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalan, U.K.; Purushan, K.S.; Santhakumari, V.; Kunjamma, P.P.M.

    short-term crops of 12 weeks duration, it is reasonable to assume that at 80% harvesting efficiency, the production of about 1750 kg/ha of marketable shrimps valued at Rs. 35,000 - could be possible from fertile 'Pokkali' fields of Kerala. During...

  11. High Density Lipoprotein Structural Changes and Drug Response in Lipidomic Profiles following the Long-Term Fenofibrate Therapy in the FIELD Substudy

    DEFF Research Database (Denmark)

    Yetukuri, L.; Huopaniemi, I.; Koivuniemi, A.

    2011-01-01

    In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular...... of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number...

  12. Classical transport in field reversed mirrors: reactor implications

    International Nuclear Information System (INIS)

    Auerbach, S.P.; Condit, W.C.

    1980-01-01

    Assuming that the field-reversed mirror (or the closely related spheromak) turns out to be stable, the next crucial issue is transport of particles and heat. Of particular concern is the field null on axis (the X-point), which at first glance seems to allow particles to flow out unhindered. We have evaluated the classical diffusion coefficients for particles and heat in field-reversed mirrors, with particular reference to a class of Hill's vortex models. Two fairly surprising results emerge from this study. First, the diffusion-driven flow of particles and heat is finite at the X-points. This may be traced to the geometrical constraint that the current (and hence the ion-electron drag force, which causes cross-field transport) must vanish on axis. This conclusion holds for any transport model. Second, the classical diffusion coefficient D(psi), which governs both particle and heat flux, is finite on the separatrix. Indeed, in a wide class of Hill's vortex equilibria (spherical, oblate, or prolate) D(psi) is essentially independent of psi (except for the usual factor of n

  13. Magnetohydrodynamic effects of current profile control in reversed field pinches

    International Nuclear Information System (INIS)

    Sovinec, C.R.; Prager, S.C.

    1999-01-01

    Linear and non-linear MHD computations are used to investigate reversed field pinch configurations with magnetic fluctuations reduced through current profile control. Simulations with reduced ohmic drive and moderate auxiliary current drive, represented generically with an electron force term, applied locally in radius near the plasma edge show magnetic fluctuation energies that are orders of magnitude smaller than those in simulations without profile control. The core of the improved configurations has reduced magnetic shear and closed flux surfaces in some cases, and reversal is sustained through the auxiliary current drive. Modes resonant near the edge may become unstable with auxiliary drive, but their saturation levels can be controlled. The space of auxiliary drive parameters is explored, and the ill effects of deviating far from optimal conditions is demonstrated in non-linear simulations. (author)

  14. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  15. High density lipoprotein structural changes and drug response in lipidomic profiles following the long-term fenofibrate therapy in the FIELD substudy.

    Directory of Open Access Journals (Sweden)

    Laxman Yetukuri

    Full Text Available In a recent FIELD study the fenofibrate therapy surprisingly failed to achieve significant benefit over placebo in the primary endpoint of coronary heart disease events. Increased levels of atherogenic homocysteine were observed in some patients assigned to fenofibrate therapy but the molecular mechanisms behind this are poorly understood. Herein we investigated HDL lipidomic profiles associated with fenofibrate treatment and the drug-induced Hcy levels in the FIELD substudy. We found that fenofibrate leads to complex HDL compositional changes including increased apoA-II, diminishment of lysophosphatidylcholines and increase of sphingomyelins. Ethanolamine plasmalogens were diminished only in a subgroup of fenofibrate-treated patients with elevated homocysteine levels. Finally we performed molecular dynamics simulations to qualitatively reconstitute HDL particles in silico. We found that increased number of apoA-II excludes neutral lipids from HDL surface and apoA-II is more deeply buried in the lipid matrix than apoA-I. In conclusion, a detailed molecular characterization of HDL may provide surrogates for predictors of drug response and thus help identify the patients who might benefit from fenofibrate treatment.

  16. Los Alamos field-reversed configuration (FRC) research

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R/sup 2/. A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction.

  17. Los Alamos field-reversed configuration (FRC) research

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Bartsch, R.R.; Cochrane, J.C.; Linford, R.K.; Lipson, J.; McKenna, K.F.; Platts, D.A.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1981-01-01

    Recent experimental results are discussed for a compact toroid produced by a field-reversed theta-pinch and containing purely poloidal magnetic fields. The confinement time is found to vary inversely with the ion gyro-radius and to be approximately independent of ion temperature for fixed gyro-radius. Within a coil of fixed radius, the plasmoid major radius R was varied by approx. 30% and the confinement appears to scale as R 2 . A semi-empirical formation model has been formulated that predicts reasonably well the plasma parameters as magnetic field and fill pressure are varied in present experiments. The model is used to predict parameters in larger devices under construction

  18. Electron temperature diagnostics in the RFX reversed field pinch experiment

    International Nuclear Information System (INIS)

    Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.

    2000-01-01

    The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)

  19. Reactor prospects and present status of field-reversed configurations

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1995-01-01

    Field-Reversed Configurations (FRC) have an ideal geometry for a reactor, combining high beta toroidal confinement, with a linear external geometry. Present small diameter FRCs are thought to be stabilized by kinetic effects, but recent experiments in the Large s Experiment (LSX) have demonstrated stability as well into the MHD regime. Present empirical transport coefficients are already sufficient for a small pulsed reactor, but small steady state reactors will require about an order of magnitude reduction in plasma diffusivity. 13 refs., 4 figs., 1 tab

  20. Fueling moving ring field-reversed mirror reactor plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.

    1980-01-01

    The concept of small fusion reactors is being studied jointly by Lawrence Livermore Laboratory General Atomic Company, and Pacific Gas and Electric Company. The objective is to investigate alternatives and then to develop a conceptual design for a small reactor that could produce useful, though not necessarily economical, energy by the late 1980s. Three methods of fueling a small moving ring field-reversed mirror are considered: injection of fuel pellets accelerated by laser ablation, injection of fuel pellets accelerated by deflagration-gun ablation, and direct injection of plasma by a deflagration gun. 13 refs

  1. Tilting mode in rigidly rotating field-reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Milovich, J.L.

    1983-01-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant

  2. Asymmetric flux generation and its relaxation in reversed field pinch

    International Nuclear Information System (INIS)

    Arimoto, H.; Masamune, S.; Nagata, A.

    1985-02-01

    The toroidally asymmetric flux enhancement [''dynamo effect''] and the axisymmetrization of the enhanced fluxes that follows in the setting up phase of Reversed Field Pinch are investigated on the STP-3[M] device. A rapid increase in the toroidal flux generated by the dynamo effect is first observed near the poloidal and toroidal current feeders. Then, this inhomogeneity of the flux propagates toroidally towards the plasma current. The axisymmetrization of the flux is attained just after the maximum of plasma current. The MHD activities decrease significantly after this axisymmetrization and the quiescent period is obtained. (author)

  3. Non-stationary classical diffusion in field - reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Sakanaka, P.H.; Mania, A.J.

    1988-01-01

    Plasma decay in field-reversed configurations (FRC) is described using resistive MHD equations. Assuming non-stationariety together with uniform but time dependent plasma temperature and neglecting inertial effects in the momentum balance equation, it is possible to show that the functional dependence of the plasma pressure with the poloidal magnetic flux remains fixed during diffusion. This allows to describe FRC evolution as a continuous sequence of plasma equilibria satisfying proper boundary conditions. The method is applied to pressure profiles linear with the poloidal magnetic flux obtaining the evolution of the flux, the number of confined particles and the size of the plasma boundary. (author) [pt

  4. Maintenance of a multi-cell field reversed mirror reactor

    International Nuclear Information System (INIS)

    Neef, W.S. Jr.

    1978-01-01

    The Field Reversed Mirror Reactor is composed of a horizontal linear chain of cells, each of which requires neutral beam injection. Blanket replacement is achieved by lifting one complete cell module from the reactor and replacing it with a preassembled and tested identical module. Ioffe bar connectors eliminate redundant bus bars. Asymmetric cell design simplifies magnet construction and reduces replacement time. A tapered cylindrical coolant distributor simplifies blanket removal. An evacuated housing surrounds the reactor reducing cell-to-cell sealing problems related to maintenance. Remote couplings are used for coolant and accessories. Hot-cell location and design permits immediate reconditioning or storage of replacement cells

  5. Behaviour of the peripheral plasma in the reversed field pinch

    International Nuclear Information System (INIS)

    Matsuoka, A.; Sato, K.I.; Arimoto, H.; Yamada, S.; Nagata, A.; Murata, H.

    1986-01-01

    By using Langmuir probes installed behind limiters, time behaviour of the peripheral plasma in the Reversed Field Pinch (RFP) are investigated. They are strongly affected by the confined RFP plasma and are divided into three phases (the initial phase before setting up the RFP configuration, the current rising phase, and the quiescent phase), which are just the same as those of the confined RFP plasma. Typical behaviour of the peripheral plasma have relations to the pump out phenomena and of the toroidal flux generation. (author)

  6. Field reversal experiments (FRX). [Equilibrium, confinement, and stability

    Energy Technology Data Exchange (ETDEWEB)

    Linford, R.K.; Armstrong, W.T.; Platts, D.A.; Sherwood, E.G.

    1978-01-01

    The equilibrium, confinement, and stability properties of the reversed-field configuration (RFC) are being studied in two theta-pinch facilities. The RFC is an elongated toroidal plasma confined in a purely poloidal field geometry. The open field lines of the linear theta pinch support the closed-field RFC much like the vertical field centers the toroidal plasma in a tokamak. Depending on stability and confinement properties, the RFC might be used to greatly reduce the axial losses in linear fusion devices such as mirrors, theta pinches, and liners. The FRX systems produce RFC's with a major radius R = 2-6 cm, minor radius a approximately 2 cm, and a total length l approximately 35 cm. The observed temperatures are T/sub e/ approximately 100 eV and T/sub i/ = 150-350 eV with a peak density n approximately 2 x 10/sup 15/ cm/sup -3/. After the plasma reaches equilibrium, the RFC remains stable for up to 30 ..mu..s followed by the rapid growth of the rotational m = 2 instability, which terminates the confinement. During the stable equilibrium, the particle and energy confinement times are more than 10 times longer than in an open-field system. The behavior of the m = 2 mode qualitatively agrees with the theoretically predicted instability for rotational velocities exceeding some critical value.

  7. Physics considerations of the Reversed-Field Pinch fusion reactor

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    A conceptual engineering design of a fusion reactor based on plasma confinement in a toroidal Reversed-Field Pinch (RFP) configuration is described. The plasma is ohmically ignited by toroidal plasma currents which also inherently provide the confining magnetic fields in a toroidal chamber having major and minor radii of 12.7 and 1.5 m, respectively. The DT plasma ignites in 2 to 3 s and undergoes a transient, unrefueled burn at 10 to 20 keV for approx. 20 s to give a DT burnup of approx. 50%. Accounting for all major energy sinks yields a cost-optimized system with a recirculating power fraction of 0.17; the power output is 750 MWe

  8. Resistive m=o mode in reverse-field configurations

    International Nuclear Information System (INIS)

    Galvao, R.M.O.; Santiago, M.A.M.

    1982-01-01

    The resistive m=0 mode is studied. Where m is the azimuthal mode number in magnetic confinement configurations with parallel field lines such that the magnetic field reverses direction inside the plasma. A cylindrical plasma column which rotates rigidly with a rotation velocity Ω is considered. It is found that the growth rate of the mode γ scales differently with the plasma resistivity depending on whether Ω vanishes or not; γα sup(3/5) for Ω=0 and γα sup(1/3) for Ω different 0. When the Hall term is also included in the generalized Ohm's law, γα sup(1/2) is obtained. This last result is in disagreement with the results of Krappraff et al. (Author) [pt

  9. Divertor design for the TITAN reversed-field-pinch reactor

    International Nuclear Information System (INIS)

    Cooke, P.I.H.; Bathke, C.G.; Blanchard, J.P.; Creedon, R.L.; Grotz, S.P.; Hasan, M.Z.; Orient, G.; Sharafat, S.; Werley, K.A.

    1987-01-01

    The design of the toroidal-field divertor for the TITAN high-power-density reversed-field-pinch reactor is described. The heat flux on the divertor target is limited to acceptable levels (≤ 10 MW/m 2 ) for liquid-lithium cooling by use of an open divertor geometry, strong radiation from the core and edge plasma, and careful shaping of the target surface. The divertor coils are based on the Integrated-Blanket-Coil approach to minimize the loss in breeding-blanket coverage due to the divertor. A tungsten-rhenium armour plate, chosen for reasons of sputtering resistance, and good thermal and mechanical properties, protects the vanadium-alloy coolant tubes

  10. Turbulent transport in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Rempel, T.D.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Hokin, S.A.; Prager, S.C.; Sarff, J.S.; Shen, W.; Sidikman, K.L.; Spragins, C.W.; Sprott, J.C.; Stoneking, M.R.; Zita, E.J.

    1991-11-01

    Measurements of edge turbulence and the associated transport are ongoing in the Madison Symmetric Torus (R = 1.5 m, a = 0.52 m) reversed-field pinch using magnetic and electrostatic probes. Magnetic fluctuations are dominated by m = 1 and n ∼ 2R/a tearing modes. Particle losses induced by magnetic field fluctuations have been found to be ambipolar ( parallel B r > = O). Electrostatic fluctuations are broadband and turbulent, with mode widths δm ∼ 3--7 and δn ∼70--150. Particle, parallel current, and energy transport arising from coherent motion with the fluctuating ExB drift has been measured. Particle transport via this channel is comparable to the total particle loss from MST. Energy transport (from phi >/B o ) due to electrostatic fluctuations is relatively small, and parallel current transport (from parallel E chi >/B o ) may be small as well

  11. Recent studies of Reversed-Field Pinch reactors

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    The reactor prognoses of a class of confinement scheme that relies primarily on self-fields induced by axial currents flowing within a plasma column are presented. The primary focus has been placed on the toroidal Reversed-Field Pinch (RFP). At the limit of very large current densities is the gas-embedded Dense Z-Pinch (DZP), a small-radius, linear device. Past conventional RFP reactor designs are reviewed. The extention of these conventional RFP reactors to DD advanced-fuel operation is described. The implications are summarized of operating higher-density, compact RFPs as reactors, wherein the current density rather than physical dimensions are scaled. Lastly, the application of very high current densities supported in a sub-millimeter linear current channel, as embodied in the DZP reactor, is reviewed

  12. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1987-05-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab

  13. Plasma behaviour in large reversed-field pinches and reactors

    International Nuclear Information System (INIS)

    Christiansen, J.P.; Bodin, H.A.B.; Carolan, P.G.; Johnston, J.W.; Newton, A.A.; Roberts, K.V.; Robinson, D.C.; Watts, M.R.C.; Piotrowicz, V.A.

    1981-01-01

    Recent analytic and numerical results on large reversed-field-pinch (RFP) systems and RFP reactors are presented. Predictions are made of the plasma behaviour in Eta Beta II, HBTXIA (under construction) and RFX (planned). The setting-up phase of an RFP is studied by using turbulence theory in transport equilibrium calculations, and estimates are made of the volt-seconds consumption for four different modes of field control. A prescription is given for a dynamo producing self-reversal which yields finite-β configurations. Residual instabilities of these equilibria may be resistive pressure-driven g-modes, and a new study of these modes that includes parallel viscosity indicates stability for anti β approximately 10%. The sustainment phase of the RFP is examined with tokamak scaling laws assumed for the energy confinement time. Temperatures in excess of 1keV are predicted for currents of 2MA in RFX. An operating cycle for a pulsed RFP reactor including gas puffing to reach ignition is proposed following a study of the energy replacement time for an Ohmically heated plasma. The scaling of the reactor parameters with minor radius is also investigated. (author)

  14. Conceptual design of the field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.; Condit, W.C.; Devoto, R.S.; Fink, J.H.; Hanson, J.D.; Neef, W.S.; Smith, A.C. Jr.

    1978-01-01

    For this reactor a reference case conceptual design was developed in some detail. The parameters of the design result partly from somewhat arbitrary physics assumptions and partly from optimization procedures. Two of the assumptions--that only 10% of the alpha-particle energy is deposited in the plasma and that particle confinement scales with the ion-ion collision time--may prove to be overly conservative. A number of possible start-up scenarios for the field-reversed plasmas were considered, but the choice of a specific start-up method for the conceptual design was deferred, pending experimental demonstration of one or more of the schemes in a mirror machine. Basic to our plasma model is the assumption that, once created, the plasma can be stably maintained by injection of a neutral-beam current sufficient to balance the particle-loss rate. The reference design is a multicell configuration with 11 field-reversed toroidal plasma layers arranged along the horizontal axis of a long-superconducting solenoid. Each plasma layer requires the injection of 3.6 MW of 200-keV deuterium and tritium, and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe. The preliminary estimate for the direct capital cost of the reference design is $1200/kWe. A balance-of-plant study is now underway and will result in a more accurate cost estimate

  15. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1988-01-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments

  16. Field-reversed mirror pilot reactor. Annual report

    International Nuclear Information System (INIS)

    Devoto, R.S.; Erickson, J.L.; Fink, J.H.

    1980-09-01

    This report concludes a two-year effort to design a near-term small-scale fusion power plant which, through its construction and operation, would be a direct and important step toward the commercialization of fusion energy. The fusion reactor pilot plant was designed under the ground rules that it must produce net power, be compact, have minimum total cost, and use near-term (late 1980's) engineering technology. The neutral beam driven, field-reversed mirror (FRM) was selected as the fusion plasma confinement concept around which the pilot plant was designed. Although the physics data base for this design is not yet well in hand, it is being pursued within the magnetic field-reversal framework of the US Mirror Fusion Program. Depending on the plasma size, the pilot plant would gross up to 19.8 MW(e) and would produce up to 10.7 MW(e) net, with the recirculated power used principally for the neutral beam injectors and refrigeration for the superconducting magnets

  17. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  18. Nanotechnology for Synthetic High Density Lipoproteins

    Science.gov (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  19. Confinement in TPE-RX reversed field pinch

    International Nuclear Information System (INIS)

    Yagi, Y.; Bolzonella, T.; Canton, A.

    2001-01-01

    Characteristics of the confinement properties of a reversed field pinch (RFP), the TPE-RX (R/a=1.72/0.45 m, R and a are major and minor radii), are presented for the plasma current, I p of 0.2-0.4 MA. TPE-RX has been operational since 1998, and I p =0.5 MA and duration time of up to 0.1 s have been obtained separately. It is found that I p /N (=12x10 -14 Am, N is the line density) is higher than those of other RFPs and poloidal beta, β p , and energy confinement time, τ E , are 5-10% and 0.5-1 ms, respectively, which are comparable with those of other RFPs of comparable sizes (RFX and MST). Pulsed poloidal current drive has recently been tested and the result has shown a twofold improvement of β p and τ E . The improvement is discussed in terms of the dynamic trajectories in the F-Θ plane, where F and Θ are reversal and pinch parameters, respectively. The global confinement properties are compared between the locked and non-locked discharges, which yields a better understanding of the mode-locking phenomena in RFP plasmas. (author)

  20. Profile stabilization of tilt mode in a Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.; Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies; Barnes, D.C. [Los Alamos National Lab., NM (United States)

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P({Psi}), are chosen, including ``hollow`` profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, {beta}{sub sep}. The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed.

  1. Profile stabilization of tilt mode in a Field Reversed Configuration

    International Nuclear Information System (INIS)

    Cobb, J.W.; Tajima, T.

    1993-06-01

    The possibility of stabilizing the tilt mode in Field Reversed Configurations without resorting to explicit kinetic effects such as large ion orbits is investigated. Various pressure profiles, P(Ψ), are chosen, including ''hollow'' profiles where current is strongly peaked near the separatrix. Numerical equilibria are used as input for an initial value simulation which uses an extended Magnetohydrodynamic (MHD) model that includes viscous and Hall terms. Tilt stability is found for specific hollow profiles when accompanied by high values of separatrix beta, β sep . The stable profiles also have moderate to large elongation, racetrack separatrix shape, and lower values of 3, average ratio of Larmor radius to device radius. The stability is unaffected by changes in viscosity, but the neglect of the Hall term does cause stable results to become marginal or unstable. Implications for interpretation of recent experiments are discussed

  2. Compact toroid development: activity plan for field reversed configurations

    International Nuclear Information System (INIS)

    1984-06-01

    This document contains the description, goals, status, plans, and approach for the investigation of the properties of a magnetic configuration for plasma confinement identified as the field reversed configuration (FRC). This component of the magnetic fusion development program has been characterized by its potential for physical compactness and a flexible range of output power. The included material represents the second phase of FRC program planning. The first was completed in February 1983, and was reported in DOE/ER-0160; Compact Toroid Development. This planning builds on that previous report and concentrates on the detailed plans for the next several years of the current DOE sponsored program. It has been deliberately restricted to the experimental and theoretical efforts possible within the present scale of effort. A third phase of this planning exercise will examine the subsequent effort and resources needed to achieve near term (1987 to 1990) FRC technical objectives

  3. Catalyzed deuterium fueled reversed-field pinch reactor assessment

    International Nuclear Information System (INIS)

    Dobrott, D.

    1985-01-01

    This study is part of a Department of Energy supported alternate fusion fuels program at Science Applications International Corporation. The purpose of this portion of the study is to perform an assessment of a conceptual compact reversed-field pinch reactor (CRFPR) that is fueled by the catalyzed-deuterium (Cat-d) fuel cycle with respect to physics, technology, safety, and cost. The Cat-d CRFPR is compared to a d-t fueled fusion reactor with respect to several issues in this study. The comparison includes cost, reactor performance, and technology requirements for a Cat-d fueled CRFPR and a comparable cost-optimized d-t fueled conceptual design developed by LANL

  4. A vented pump limiter for the reversed field pinch RFX

    International Nuclear Information System (INIS)

    Sonato, P.

    1998-01-01

    The reversed field pinch (RFP) plasma performance, as in the Tokamak, is strongly correlated with the edge neutral particle control. The drawbacks of the conventional magnetic divertors and throat limiters on the RFP plasma have slackened the application of an active particle control system in existing devices. An advanced solution, based on the idea of the 'vented pump limiter' experimented on Tore Supra, has been conceived for RFX. This type of pump limiter is very attractive for a RFP. In this paper, the design of a 'vented limiter' prototype for RFX is presented. Up to six modules of this limiter can be installed at the equatorial plane of RFX, allowing a particle exhaust efficiency comparable with a divertor or a throat limiter working in a Tokamak. Finally, the optimization of this concept for the next step RFP device is presented. (orig.)

  5. The large-s field-reversed configuration experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Carey, L.N.; Crawford, E.A.; Harding, D.G.; DeHart, T.E.; McDonald, K.F.; McNeil, J.L.; Milroy, R.D.; Slough, J.T.; Maqueda, R.; Wurden, G.A.

    1993-01-01

    The Large-s Experiment (LSX) was built to study the formation and equilibrium properties of field-reversed configurations (FRCs) as the scale size increases. The dynamic, field-reversed theta-pinch method of FRC creation produces axial and azimuthal deformations and makes formation difficult, especially in large devices with large s (number of internal gyroradii) where it is difficult to achieve initial plasma uniformity. However, with the proper technique, these formation distortions can be minimized and are then observed to decay with time. This suggests that the basic stability and robustness of FRCs formed, and in some cases translated, in smaller devices may also characterize larger FRCs. Elaborate formation controls were included on LSX to provide the initial uniformity and symmetry necessary to minimize formation disturbances, and stable FRCs could be formed up to the design goal of s = 8. For x ≤ 4, the formation distortions decayed away completely, resulting in symmetric equilibrium FRCs with record confinement times up to 0.5 ms, agreeing with previous empirical scaling laws (τ∝sR). Above s = 4, reasonably long-lived (up to 0.3 ms) configurations could still be formed, but the initial formation distortions were so large that they never completely decayed away, and the equilibrium confinement was degraded from the empirical expectations. The LSX was only operational for 1 yr, and it is not known whether s = 4 represents a fundamental limit for good confinement in simple (no ion beam stabilization) FRCs or whether it simply reflects a limit of present formation technology. Ideally, s could be increased through flux buildup from neutral beams. Since the addition of kinetic or beam ions will probably be desirable for heating, sustainment, and further stabilization of magnetohydrodynamic modes at reactor-level s values, neutral beam injection is the next logical step in FRC development. 24 refs., 21 figs., 2 tabs

  6. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  7. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  8. Pellet injection in the RFP (Reversed Field Pinch)

    Science.gov (United States)

    Wurden, G. A.; Weber, P. G.; Munson, C. P.; Cayton, T. E.; Bunting, C. A.; Carolan, P. G.

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (xi sub drift approx. 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50 percent were observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D sub alpha light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 microsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta.

  9. Overview of results from the MST reversed field pinch experiment

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Anderson, J.K.; Borchardt, M.; Carmody, D.; Caspary, K.; Chapman, B.E.; Den Hartog, D.J.; Duff, J.; Eilerman, S.; Falkowski, A.; Forest, C.B.; Goetz, J.A.; Holly, D.J.; Kim, J.-H.; King, J.; Ko, J.; Koliner, J.; Kumar, S.; Lee, J.D.

    2013-01-01

    An overview of recent results from the MST programme on physics important for the advancement of the reversed field pinch (RFP) as well as for improved understanding of toroidal magnetic confinement more generally is reported. Evidence for the classical confinement of ions in the RFP is provided by analysis of impurity ions and energetic ions created by 1 MW neutral beam injection (NBI). The first appearance of energetic-particle-driven modes by NBI in a RFP plasma is described. MST plasmas robustly access the quasi-single-helicity state that has commonalities to the stellarator and ‘snake’ formation in tokamaks. In MST the dominant mode grows to 8% of the axisymmetric field strength, while the remaining modes are reduced. Predictive capability for tearing mode behaviour has been improved through nonlinear, 3D, resistive magnetohydrodynamic computation using the measured resistivity profile and Lundquist number, which reproduces the sawtooth cycle dynamics. Experimental evidence and computational analysis indicates two-fluid effects, e.g., Hall physics and gyro-viscosity, are needed to understand the coupling of parallel momentum transport and current profile relaxation. Large Reynolds and Maxwell stresses, plus separately measured kinetic stress, indicate an intricate momentum balance and a possible origin for MST's intrinsic plasma rotation. Gyrokinetic analysis indicates that micro-tearing modes can be unstable at high beta, with a critical gradient for the electron temperature that is larger than for tokamak plasmas by roughly the aspect ratio. (paper)

  10. Classical diffusion in a field-reversed mirror

    International Nuclear Information System (INIS)

    Auerbach, S.P.; Condit, W.C.

    1981-01-01

    Classical transport of particles and heat in field-reversed mirrors is discussed. The X-points (field nulls on axis) are shown to have no deleterious effect on transport; this conclusion is true for any transport model. For an elongated Hill's vortex equilibrium the classical diffusion coefficient is calculated analytically and used to construct an analytic solution to the transport equation for particles or energy; this yields exact results for particle and energy confinement times. These life-times are roughly 3 to 6 times shorter than previous heuristic estimates. Experimentally determined life-times are within a factor of 3 to 4 of our estimates. To assess the impact of these results on reactor designs, the authors construct an analytic reactor model in which neutral-beam input balances ion heat loss. Energy loss due to synchrotron radiation is calculated analytically and shown to be negligible, even with no wall reflection. Formulas are presented which give the reactor parameters in terms of plasma temperature, energy multiplication factor Q, and allowed neutron wall loading. The effect of anomalous resistivity is incorporated heuristically by assuming an anomalous resistivity which is enhanced by a factor A over classical resistivity. For large A the minimum power of a reactor scales as Asup(11/6). A=50 gives a reactor design which still seems reasonable, but A=200 leads to extremely large, high-power reactors. (author)

  11. Confinement properties of the RFP [Reversed Field Pinch

    International Nuclear Information System (INIS)

    Weber, P.G.; Schoenberg, K.F.; Ingraham, J.C.; Miller, G.; Munson, C.P.; Pickrell, M.M.; Wurden; Tsui, H.Y.W.; Ritz, Ch.P.

    1990-01-01

    Research in ZT-40M has been focused on elucidating the confinement properties of the Reversed Field Pinch (RFP). Recent improvements in diagnostic capability have permitted measurement of radial profiles, as well as a detailed study of the edge plasma. The emerging confinement picture for ZT-40M has several ingredients: Typically 0.3 of the Ohmic input power to ZT-40M is available to drive fluctuations. Evidence points to this fluctuational power heating the ions. Approximately one quarter of the input power is lost through radiation, with metal impurities playing a key role. Magnetic fluctations in ZT-40M are at the percent level, as measured in the edge plasma. Extrapolating these data to small radii shows stochasticity in the core plasma. Suprathermal electrons are measured in the edge plasma. These electrons originate in the core, and transport to the edge along the fluctuating magnetic field lines. Under typical conditions, these electrons constitute the major electron energy loss channel in ZT-40M. Electrostatic fluctuations dominate the edge electron particle flux, but not the electron thermal flux. The major ion loss process is charge exchange, with smaller contributions from conduction and convection. In examining these observations, and the parametric dependences of confinement, a working model for RFP confinement emerges. An overview of this model, together with implications for the multi-mega-ampere ZTH experiment will be presented

  12. Transport and equilibrium in field-reversed mirrors

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior

  13. Pellet injection in the RFP [Reversed Field Pinch

    International Nuclear Information System (INIS)

    Wurden, G.A.; Weber, P.G.; Munson, C.P.; Cayton, T.E.; Bunting, C.A.; Carolan, P.G.

    1988-01-01

    Observation of pellets injected into the ZT-40M Reversed Field Pinch has allowed a new twist on the usual tokamak ablation physics modeling. The RFP provides a strong ohmic heating regime with relatively high electron drift parameter (ξ/sub drift/ /approximately/ 0.2), in the presence of a highly sheared magnetic field geometry. In situ photos of the pellet ablation cloud using a grated-intensified CCD camera, as well as two-view integrated photos of the pellet trajectory show substantial modification of the original pellet trajectory, in both direction and speed. Depending on the launch geometry, increases in the initial 500 m/s pellet speed by 50% have been observed, and a ski jump deflector plate in the launch port has been used to counteract strong poloidal curvature. In contrast to the tokamak, the D/sub α/ light signature is strongest near the edge, and weaker in the plasma center. Additional information on ion temperature response to pellet injection with 20 μsec time resolution has been obtained using a 5-channel neutral particle analyzer (NPA). The energy confinement is transiently degraded while the beta is largely unchanged. This may be indicative of pellet injection into a high-beta plasma operating at fixed beta. 10 refs., 6 figs

  14. High Density Lipoprotein and it's Dysfunction.

    Science.gov (United States)

    Eren, Esin; Yilmaz, Necat; Aydin, Ozgur

    2012-01-01

    Plasma high-density lipoprotein cholesterol(HDL-C) levels do not predict functionality and composition of high-density lipoprotein(HDL). Traditionally, keeping levels of low-density lipoprotein cholesterol(LDL-C) down and HDL-C up have been the goal of patients to prevent atherosclerosis that can lead to coronary vascular disease(CVD). People think about the HDL present in their cholesterol test, but not about its functional capability. Up to 65% of cardiovascular death cannot be prevented by putative LDL-C lowering agents. It well explains the strong interest in HDL increasing strategies. However, recent studies have questioned the good in using drugs to increase level of HDL. While raising HDL is a theoretically attractive target, the optimal approach remains uncertain. The attention has turned to the quality, rather than the quantity, of HDL-C. An alternative to elevations in HDL involves strategies to enhance HDL functionality. The situation poses an opportunity for clinical chemists to take the lead in the development and validation of such biomarkers. The best known function of HDL is the capacity to promote cellular cholesterol efflux from peripheral cells and deliver cholesterol to the liver for excretion, thereby playing a key role in reverse cholesterol transport (RCT). The functions of HDL that have recently attracted attention include anti-inflammatory and anti-oxidant activities. High antioxidant and anti-inflammatory activities of HDL are associated with protection from CVD.This review addresses the current state of knowledge regarding assays of HDL functions and their relationship to CVD. HDL as a therapeutic target is the new frontier with huge potential for positive public health implications.

  15. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    Science.gov (United States)

    Sabel, B A

    2017-02-01

    local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.

  16. Edge topology and flows in the reversed-field pinch

    International Nuclear Information System (INIS)

    Spizzo, G.; Agostini, M.; Scarin, P.; Vianello, N.; Cappello, S.; Puiatti, M. E.; Valisa, M.; White, R. B.

    2012-01-01

    Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices, playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010 Plasma Phys. Control. Fusion 52 095011). A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct the potential in the form Φ(ψ p , θ, ζ) (ψ p radial coordinate, θ, ζ angles), by means of the Hamiltonian guiding-centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more uniform over the toroidal angle. The final spatial distribution of Φ(ψ p , θ, ζ) results in a complex 3D pattern, with convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs and tokamaks. (paper)

  17. Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.

    1985-01-01

    Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line tracings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented

  18. Moving ring field-reversed mirror blanket design considerations

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.

    1981-01-01

    A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered

  19. Scaling of sustained ZT-40 M reversed field pinches

    International Nuclear Information System (INIS)

    Graham, J.; Haberstich, A.; Baker, D.A.; Buchenauer, C.J.; Caramana, E.J.; DiMarco, J.N.; Erickson, R.M.; Ingraham, J.C.; Jacobson, A.R.; Little, E.M.; Massey, R.S.; Phillips, J.A.; Schoenberg, K.F.; Schofield, A.E.; Thomas, K.S.; Watt, R.G.; Weber, P.G.

    1993-12-01

    Experiments aimed at evaluating the scaling properties of the ZT-40M Reversed-Field Pinch (RFP) facility were conducted in 1983 at Los Alamos. Sustained discharges were produced at nominal toroidal currents ranging from 60 to 240 kA. The standard fill pressure was kept close to the lower limit of the usable pressure range, and the scaling data were acquired at a fixed time in the discharges while the plasma was in a quasi-steady state. Scalings of the diameter-averaged electron density, electron temperature on axis, product of these two parameters, and of various definitions of the electrical resistivity are presented. Trends of the toroidal voltage, energy containment time, and poloidal beta are shown. The impurity contents, particle containment time, and total radiation losses are described, and results obtained with and without poloidal limiters are compared. In addition, the performance of the facility at higher than standard density and at a constant ratio of the toroidal current over the electron line density is examined

  20. Compact Reversed-Field Pinch Reactors (CRFPR): preliminary engineering considerations

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Embrechts, M.J.; Schnurr, N.M.; Battat, M.E.; LaBauve, R.J.; Davidson, J.W.

    1984-08-01

    The unique confinement physics of the Reversed-Field Pinch (RFP) projects to a compact, high-power-density fusion reactor that promises a significant reduction in the cost of electricity. The compact reactor also promises a factor-of-two reduction in the fraction of total cost devoted to the reactor plant equipment [i.e., fusion power core (FPC) plus support systems]. In addition to operational and developmental benefits, these physically smaller systems can operate economically over a range of total power output. After giving an extended background and rationale for the compact fusion approaches, key FPC subsystems for the Compact RFP Reactor (CRFPR) are developed, designed, and integrated for a minimum-cost, 1000-MWe(net) system. Both the problems and promise of the compact, high-power-density fusion reactor are quantitatively evaluated on the basis of this conceptual design. The material presented in this report both forms a framework for a broader, more expanded conceptual design as well as suggests directions and emphases for related research and development

  1. Chaos in reversed-field-pinch plasma simulation and experiment

    International Nuclear Information System (INIS)

    Watts, C.; Newman, D.E.; Sprott, J.C.

    1994-01-01

    We investigate the possibility that chaos and simple determinism are governing the dynamics of reversed-field-pinch (RFP) plasmas using data from both numerical simulations and experiment. A large repertoire of nonlinear-analysis techniques is used to identify low-dimensional chaos. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents, and short-term predictability. In addition, nonlinear-noise-reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS computer code, which models global RFP dynamics, and the dissipative trapped-electron-mode model, which models drift-wave turbulence. Data from both simulations show strong indications of low-dimensional chaos and simple determinism. Experimental data were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low-dimensional chaos or other simple determinism. Moreover, most of the analysis tools indicate that the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system

  2. Does shaping bring an advantage for reversed field pinch plasmas?

    International Nuclear Information System (INIS)

    Guo, S.C.; Xu, X.Y.; Wang, Z.R.; Liu, Y.Q.

    2013-01-01

    The MHD–kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall β (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. (paper)

  3. Radio frequency wave experiments on the MST reversed field pinch

    International Nuclear Information System (INIS)

    Forest, C.B.; Chattopadhyay, P.K.; Nornberg, M.D.; Prager, S.C.; Thomas, M.A.; Harvey, R.W.; Ram, A.K.

    1999-04-01

    Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-n parallel lower hybrid (LH) waves and electron Bernstein waves (EBWs)

  4. Design of a new large s field reversed configuration experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Slough, J.T.

    1986-01-01

    The present TRX facility utilizes programmed formation techniques to form s = 2 plasmas in a 20 cm diameter by 1 m long plasma tube. LSX will have an 80 cm diameter by 4 m long plasma tube and will employ the same programmed formation techniques as TRX. This should result in s = 8 plasmas and FRC flux and energy lifetimes in the msec range if the presently measured scaling persists. LSX will be initially restricted to an external field of 7.5 kG, and typical plasma conditions will be 300 eV electron and ion temperatures and electron or ion densities of about 2x10/sup 15/ cm/sup -3/. The low voltage formation techniques developed in TRX-2 (Eθ /sub values of about 100 volts/cm) will also be employed on LSX, so that relatively low voltage power supplies can be utilized. A modified form of second half cycle circuitry is planned to replace the function of a large reverse bias capacitor bank. The increase in total power supply efficiency allows the primary magnet energy storage to be less that 1 MJ

  5. Results from TRX-2 slow field-reversed-theta-pinch

    International Nuclear Information System (INIS)

    Slough, J.T.; Harding, D.; Hoffman, A.L.

    1984-01-01

    FRCs have been successfully generated in the TRX-2 slow risetime theta pinch. Initial studies indicate that the flux trapping through field reversal is about as good (''50%) as on TRX-1, although the quarter cycle time of the main coil was increased from 3 to 10 μsec. Formation studies have been started using the programmed formation techniques developed on TRX-1. The plasma dynamics are very similar to those exhibited in the faster rise TRX-1 experiments. The formation phase shows the same high degree of symmetry and reproducibility that was observed in TRX-1. Equilibrium behaviour of the FRCs formed is very similar to that observed on TRX-1, as long as impurity content is kept low. T/sub e/ + T/sub i/ temperatures of 400 to 500 eV are obtained and confirmed by impurity line broadening and decay rates. Flux and particle lifetimes ≅ 100 μsec have been observed and show the same strong scaling with x/sub s/ that was observed on TRX-1

  6. Fusion proton diagnostic for the C-2 field reversed configurationa)

    Science.gov (United States)

    Magee, R. M.; Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-01

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50 cm2), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (˜100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  7. Study of fusion product effects in field-reversed mirrors

    International Nuclear Information System (INIS)

    Driemeyer, D.E.

    1980-01-01

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included

  8. Murakami density limit in tokamaks and reversed-field pinches

    International Nuclear Information System (INIS)

    Perkins, F.W.; Hulse, R.A.

    1984-03-01

    A theoretical upper limit for the density in an ohmically heated tokamak discharge follows from the requirement that the ohmic heating power deposited in the central current-carrying channel exceed the impurity radiative cooling in this critical region. A compact summary of our results gives this limit n/sub M/ for the central density as n/sub M/ = [Z/sub e//(Z/sub e/-1]/sup 1/2/n/sub eo/ (B/sub T//1T)(1m/R) where n/sub eo/ depends strongly on the impurity species and is remarkably independent of the central electron temperature T/sub e/(0). For T/sub e/(0) approx. 1 keV, we have n/sub eo/ = 1.5 x 10 14 cm -3 for beryllium, n/sub eo/ = 5 x 10 13 cm -3 for oxygen, n/sub eo/ = 1.0 x 10 13 cm -3 for iron, and n/sub eo/ = 0.5 x 10 13 cm -3 for tungsten. The results agree quantitatively with Murakami's original observations. A similar density limit, known as the I/N limit, exists for reversed-field pinch devices and this limit has also been evaluated for a variety of impurity species

  9. Field-reversed experiments (FRX) on compact toroids

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-11-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10/sup 15/ cm/sup -3/ to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10/sup 15/ cm/sup -3/. Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 ..mu..sec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed.

  10. Field-reversed experiments (FRX) on compact toroids

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    Equilibrium, stability, and confinement properties of compact toroids produced in field-reversed theta-pinch experiments (FRX) are reported. Two experimental facilities, FRX-A and FRX-B, have been used to study highly elongated compact toroid plasmas confined in a purely poloidal field geometry. Spatial scans and fill pressure scaling of the equilibrium plasma parameters are presented. Plasma conditions range from T/sub e/approx.150 eV, T/sub i/approx.800 eV, n/sub m/approx.1 x 10 15 cm -3 to T/sub e/approx.100 eV, T/sub i/approx.150 eV, n/sub m/approx.4 x 10 15 cm -3 . Typical confined plasma dimensions are: major radius Rapprox.4 cm, minor radius aapprox.2 cm, and total length 35--50 cm. The plasma configuration remains in a stable equilibrium for up to 50 μsec followed by the destructive n = 2 rotational instability. The stable period prior to the onset of the rotational mode is up to one hundred times greater than characteristic Alfven transit times of the plasma. This stable period increases and the mode growth rate decreases with increased a/rho/sub i/ (where rho/sub i/ is the ion gyroradius). Agreement of experimental and theoretical mode frequencies for the instability is observed. Preferential particle loss has been proposed as a likely cause of rotation. The particle inventory at the onset of the instability is consistent with this hypothesis. The particle loss rate is also consistent with the predicted anomalous transport near the separatrix. Contributions to rotational instability from diffusion, end-shorting, equipartition, and compression are also discussed

  11. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky

    2005-04-13

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.

  12. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    International Nuclear Information System (INIS)

    Landsman, A.S.; Cohen, S.A.; Edelman, M.; Zaslavsky, G.M.

    2005-01-01

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar(copyright) surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics

  13. Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations

    International Nuclear Information System (INIS)

    Finn, J.M.; Sudan, R.N.

    We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed

  14. Electric-Field-Induced Magnetization Reversal in a Ferromagnet-Multiferroic Heterostructure

    Science.gov (United States)

    Heron, J. T.; Trassin, M.; Ashraf, K.; Gajek, M.; He, Q.; Yang, S. Y.; Nikonov, D. E.; Chu, Y.-H.; Salahuddin, S.; Ramesh, R.

    2011-11-01

    A reversal of magnetization requiring only the application of an electric field can lead to low-power spintronic devices by eliminating conventional magnetic switching methods. Here we show a nonvolatile, room temperature magnetization reversal determined by an electric field in a ferromagnet-multiferroic system. The effect is reversible and mediated by an interfacial magnetic coupling dictated by the multiferroic. Such electric-field control of a magnetoelectric device demonstrates an avenue for next-generation, low-energy consumption spintronics.

  15. Microinstabilities and turbulent transport in the reversed field pinch

    Science.gov (United States)

    Carmody, Daniel Richard

    The work presented in this thesis is concerned with addressing the nature of drift wave microturbulence in the reversed field pinch (RFP). Microturbulence is an important phenomenon and contributor to heat and particle transport in tokamaks, where it has been studied for several decades, but its role in the RFP is a rather new topic of study. As such, the nature of RFP drift waves and their relationship to their tokamak counterparts is still developing, and many of the results in this work are focused on addressing this challenge. Fundamental advances in microturbulence research have been made in recent decades through two parallel developments: the theoretical framework encompassed in the gyrokinetic model, and the computational power offered by massively-parallel, high-performance computing systems. Gyrokinetics is a formulation of kinetic theory in such a way that the fast timescale gyromotion of particles around magnetic field lines is averaged out. The implementation and use of RFP equilibrium models in gyrokinetic codes constitutes the bulk of this thesis. A simplified analytic equilibrium, the toroidal Bessel function model (TBFM), is used in the gyrokinetic code GYRO to explore the fundamental scaling properties of drift waves in the RFP geometry. Two drift wave instabilities, the ion temperature gradient (ITG) mode and the microtearing mode (MTM) are found to occur, and the relationship of their critical threshold in driving gradients and plasma beta is explored. The critical values in these parameters are found to be above those of similar tokamak cases by roughly a factor of the flux surface aspect ratio. The MTM is found to be stabilized by increasing the RFP pinch parameter theta, making it unlikely for it to unstable in the high-theta improved confinement pulsed poloidal current drive (PPCD) discharges. Efforts are also made to address microinstabilities in specific experimental discharges of the Madison Symmetric Torus (MST). A semi

  16. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal

    2012-01-01

    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  17. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Melton, J.G.; Linton, T.W.

    1983-01-01

    The engineering design of the toroidal magnetic field (TF) system for a 2-MA Reversed-Field Pinch experiment (ZT-H) is described. ZT-H is designed with major radius 2.15 meters, minor radius 0.40 meters, and a peak toroidal magnetic field of 0.85 Tesla. The requirement for highly uniform fields, with spatial ripple <0.2% leads to a design with 72 equally spaced circular TF coils, located at minor radius 0.6 meters, carrying a maximum current of 9.0 MA. The coils are driven by a 12-MJ capacitor bank which is allowed to ring in order to aid the reversal of magnetic field. A stress analysis is presented, based upon calculated hoop tension, centering force, and overturning moment, treating these as a combination of static loads and considering that the periodic nature of the loading causes little amplification. The load transfer of forces and moments is considered as a stress distribution resisted by the coils, support structures, wedges, and the structural shell

  18. Electron temperature in field reversed configurations and theta pinches with closed magnetic field lines

    International Nuclear Information System (INIS)

    Newton, A.A.

    1986-01-01

    Field-reversed configurations (FRC) and theta pinches with trapped reversed bias field are essentially the same magnetic confinement systems using closed magnetic field lines inside an open-ended magnetic flux tube. A simple model of joule heating and parallel electron thermal conduction along the open flux lines to an external heat sink gives the electron temperature as Tsub(e)(eV) approx.= 0.05 Bsup(2/3)(G)Lsup(1/3)(cm), where B is the magnetic field and L is the coil length. This model appears to agree with measurements from present FRC experiments and past theta-pinch experiments which cover a range of 40-900 eV. The energy balance in the model is dominated by (a) parallel electron thermal conduction along the open field lines which has a steep temperature dependence, Q is proportional to Tsub(e)sup(7/2), and (b) the assumed rapid perpendicular transport in the plasma bulk which, in experiments to date, may be due to the small number of ion gyroradii across the plasma. (author)

  19. The TITAN Reversed-Field Pinch fusion reactor study

    International Nuclear Information System (INIS)

    1988-03-01

    The TITAN Reversed-Field Pinch (RFP) fusion reactor study is a multi-institutional research effort to determine the technical feasibility and key developmental issues of an RFP fusion reactor, especially at high power density, and to determine the potential economics, operations, safety, and environmental features of high-mass-power-density fusion systems. The TITAN conceptual designs are DT burning, 1000 MWe power reactors based on the RFP confinement concept. The designs are compact, have a high neutron wall loading of 18 MW/m 2 and a mass power density of 700 kWe/tonne. The inherent characteristics of the RFP confinement concept make fusion reactors with such a high mass power density possible. Two different detailed designs have emerged: the TITAN-I lithium-vanadium design, incorporating the integrated-blanket-coil concept; and the TITAN-II aqueous loop-in-pool design with ferritic steel structure. This report contains a collection of 16 papers on the results of the TITAN study which were presented at the International Symposium on Fusion Nuclear Technology. This collection describes the TITAN research effort, and specifically the TITAN-I and TITAN-II designs, summarizing the major results, the key technical issues, and the central conclusions and recommendations. Overall, the basic conclusions are that high-mass power-density fusion reactors appear to be technically feasible even with neutron wall loadings up to 20 MW/m 2 ; that single-piece maintenance of the FPC is possible and advantageous; that the economics of the reactor is enhanced by its compactness; and the safety and environmental features need not to be sacrificed in high-power-density designs. The fact that two design approaches have emerged, and others may also be possible, in some sense indicates the robustness of the general findings

  20. Internal magnetic field measurements in a translating field-reversed configuration

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  1. High density operation in pulsator

    International Nuclear Information System (INIS)

    Klueber, O.; Cannici, B.; Engelhardt, W.; Gernhardt, J.; Glock, E.; Karger, F.; Lisitano, G.; Mayer, H.M.; Meisel, D.; Morandi, P.

    1976-03-01

    This report summarizes the results of experiments at high electron densities (>10 14 cm -3 ) which have been achieved by pulsed gas inflow during the discharge. At these densities a regime is established which is characterized by βsub(p) > 1, nsub(i) approximately nsub(e), Tsub(i) approximately Tsub(e) and tausub(E) proportional to nsub(e). Thus the toroidal magnetic field contributes considerably to the plasma confinement and the ions constitute almost half of the plasma pressure. Furthermore, the confinement is appreciably improved and the plasma becomes impermeable to hot neutrals. (orig.) [de

  2. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons

    International Nuclear Information System (INIS)

    Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.

    2010-01-01

    We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.

  3. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  4. Theory of field-reversed mirrors and field-reversed plasma-gun experiments. Paper IAEA-CN-38/R-2

    International Nuclear Information System (INIS)

    Anderson, D.V.; Auerbach, S.P.; Berk, H.L.

    1980-01-01

    Experimental and theoretical studies of field reversal in a mirror machine are reported. Plasma-gun experiments demonstrate that reversed-field plasma layers are formed. Low energy plasma flowing behind the initially produced plasma front prevents tearing of the layer from the gun muzzle. MHD simulation shows that tearing can be obtained by impeding the slow plasma flow with a plasma divider. It is demonstrated theoretically that a field-reversed mirror imbedded in a multipole field can be sustained in steady state with neutral-beam injection even in the absence of impurities. MHD stability analysis shows that growth rates of elongated reversed-field theta-pinch configurations decrease with axial extension, which indicates the importance of including finite Larmor radius in the analysis. Tilting-mode criteria are dramatically improved by proper shaping, and a problimak shape is proposed. Tearing mode stability of reversed-field theta-pinches is greatly enhanced by flux exclusion. Self-consistent, 1-1/2-dimensional transport codes have been developed, and initial results are presented

  5. Proposal for the ZT-40 reversed-field Z-pinch experiment

    International Nuclear Information System (INIS)

    Baker, D.A.; Machalek, M.D.

    1977-08-01

    A next-generation, toroidal, reversed-field Z-pinch experiment to be constructed at LASL is proposed. On the basis of encouraging ZT-I and ZT-S experimental results, a larger device with a 40-cm bore and a 114-cm major radius is proposed, to extend the confinement time by about an order of magnitude. The new experiment will explore the physics of programming reversed-field pinches in a size range unexplored by previous reversed-field pinch experiments. Model reversed-field pinch reactor calculations show that, if stability is assumed, small fusion reactors are possible if the pinch current density is high. A basic aim will be to delineate the plasma and current density ranges in which stable reversed-field pinches can be produced. Improved vacuum techniques will be used to overcome the radiation losses that probably kept electron temperatures low in the earlier, smaller experiments

  6. A bi-stable SOC model for Earth's magnetic field reversals

    International Nuclear Information System (INIS)

    Papa, A.R.R.; Espírito Santo, M.A. do; Barbosa, C.S.; Oliva, D.

    2013-01-01

    We introduce a simple model for Earth's magnetic field reversals. The model consists in random nodes simulating vortices in the liquid core which through a simple updating algorithm converge to a self-organized critical state, with inter-reversal time probability distributions functions in the form of power-laws for long persistence times (as supposed to be in actual reversals). A detailed description of reversals should not be expected. However, we hope to reach a profounder knowledge on reversals through some of the basic characteristic that are well reproduced. The work opens several future research trends.

  7. Field-effect magnetization reversal in ferromagnetic semiconductor quantum wellls

    Czech Academy of Sciences Publication Activity Database

    Lee, B.; Jungwirth, Tomáš; MacDonald, A. H.

    2002-01-01

    Roč. 65, č. 19 (2002), s. 193311-1-193311-4 ISSN 0163-1829 R&D Projects: GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductor quantum wells * magnetization reversal process Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  8. Flux loss and heating during the formation of a field-reversed configuration

    International Nuclear Information System (INIS)

    Sgro, A.G.; Armstrong, W.T.; Lipson, J.; Tuszewski, M.G.; Cochrane, J.C.

    1982-01-01

    The simulated time evolution of magnetic field profiles and trapped flux in a field-reversed configuration, when compared with the experiment, implies that the rapid decay of the initial reversed flux is due to a resistivity that is anomalously enhanced over its classical value. A tenuous plasma between the field-reversed configuration and the wall carries a significant fraction of the current, and about half of the anomalous Joule heating must be deposited directly in the ions in order to calculate the correct ion temperature. The fractional flux retention is most sensitive to an increase of applied bias field

  9. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  10. Quantum memory for nonstationary light fields based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Kraus, B.; Tittel, W.; Gisin, N.; Nilsson, M.; Kroell, S.; Cirac, J. I.

    2006-01-01

    We propose a method for efficient storage and recall of arbitrary nonstationary light fields, such as, for instance, single photon time-bin qubits or intense fields, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening and relies on a hidden time-reversal symmetry of the optical Bloch equations describing the propagation of the light field. We briefly discuss experimental realizations of our proposal

  11. Estimation of neutral-beam-induced field reversal in MFTF by an approximate scaling law

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1980-01-01

    Scaling rules are derived for field-reversed plasmas whose dimensions are common multiples of the ion gyroradius in the vacuum field. These rules are then applied to the tandem MFTF configuration, and it is shown that field reversal appears to be possible for neutral beam currents of the order of 150 amperes, provided that the electron temperature is at least 500 eV

  12. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  13. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  14. Initial reversed-field pinch experiments on ZT-40 and recent advances in RFP theory

    International Nuclear Information System (INIS)

    Baker, D.A.; Buchenauer, C.J.; Burkhardt, L.C.

    1980-01-01

    The ZT-40 reversed-field pinch (RFP) has been operated in several modes: (1) without reversed toroidal field, (2) with self reversal, and (3) with aided reversal. An analytic ohmic heating and ignition model both confirm and provide guidance for transport codes. Nondissipative formation schemes have been analyzed and ideal MHD stable evolution and burn scenarios have been found. Particle and fluid simulations have produced qualitative agreement with respect to the nonlinear behavior of m = 0 resistive g-modes. Helical ohmic reversed field states are produced by a 2-D dynamical simulation, and nonlinear analytic work describes the final state. A fast resistive MHD code for linear stability has clarified the relations between several kinds of resistive instabilities. Ballooning modes and g-modes in systems with arbitrary magnetic shear including resistivity and viscosity, have been studied in a unified treatment with growth rate vs wavenumber showing the existence of important cutoffs

  15. The reversed-field pinch as a poloidal-field-dominated, compact, high-power-density fusion system

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1988-01-01

    This paper discusses the feasibility of reversed-field pinch devices as future thermonuclear reactors. Safety, cost, ion temperatures, Lawson numbers, and power densities are reviewed for these types of devices. 12 refs., 2 figs., 1 tab

  16. Ultra-stretchable Interconnects for high-density stretchable electronics

    NARCIS (Netherlands)

    Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.

    2017-01-01

    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for

  17. Los Alamos Compact Toroid, fast liner, and High-Density Z-Pinch programs

    International Nuclear Information System (INIS)

    Linford, R.K.; Hammel, J.E.; Sherwood, H.R.

    1982-01-01

    The compact Toroid and High Density Z-Pinch are two of the plasma configurations presently being studied at Los Alamos. This paper summarizes these two programs along with the recently terminated Fast Liner Program. Included in this discussion is an analysis of compact Toroid formation techniques showing the tearing and reconnection of the fields that separate the spheromak from the radial fields of the coaxial source, and the final equilibrium state of the elongated FRC in the theta-pinch coil. In addition the typical dimensions of the geometry of the Fast Liner experiments are delineated Z-pinch and electrode assembly is displayed as is a graphic of the temporal behavior of the current required for radial equilibrium. Spheromak is examined in terms of formation, gross stability, and equilibrium and field reversed configuration is discussed in terms of gross stability, equilibrium, and confinement scaling

  18. Joint interpretation of two tracer tests with reversed flow fields

    International Nuclear Information System (INIS)

    Kunstmann, H.; Kinzelbach, W.; Marschall, P.; Li, G.

    1995-01-01

    Two dipole tracer experiments were performed in a fractured rock at the Grimsel Test Site in February/March 1993. In both experiments NaCl was used as a tracer. The extraction rate was twice the injection rate. In the second experiment injection and extraction were interchanged (Reverse-Experiment). Long tailing was characteristic for the breakthrough curves in both experiments. The tests were interpreted using a single fracture flow model. Tracer transport is described by advection/dispersion along the fracture allowing for diffusion into an immobile matrix. The authors were able to interpret the breakthrough curves for both experiments by one unique set of parameters, describing transport and baseflow. Uniqueness could only be achieved when using the information of both experiments. The authors conclude that performing a Reverse-Experiment is an indispensable tool for parameter identification in dipole tracer tests. A sensitivity analysis suggested that not only matrix diffusion is responsible for the tailing in the breakthrough curves but also transversal dispersivity. Further, the typical exchange time between mobile and immobile media was too small to be attributed to matrix diffusion in the strict sense which will cause tailing even at large spatial and temporal scales. Analysis of the covariance matrices showed that the parameters have small errors but high correlation

  19. Formation of field reversed configurations in a slow, multi-turn coil system: Appendix B

    International Nuclear Information System (INIS)

    Slough, J.T.; Hoffman, A.L.

    1987-01-01

    A previous field-reversed theta pinch, TRX-1, has been modified by replacing the single turn main compression coil with an array of three-turn coils. Field reversed configurations (FRCs) have been formed at relatively low values of azimuthal electric field, where ohmic dissipation and axial compressive heating are substituted for the radial shock heating which is dominant in high voltage theta pinches. The longer magnetic field risetime has allowed various controls to be applied to the formation timing, so that the axial implosion can be made to coincide with the peak of the applied magnetic field. This 'programmed formation' control results in maximum plasma heating, and minimizes the formation dynamics

  20. Production of field-reversed plasma with a magnetized coaxial plasma gun

    International Nuclear Information System (INIS)

    Turner, W.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Smith, A.C. Jr.

    1981-01-01

    Experimental data are presented on the production of field-reversed deuterium plasma by a modified coaxial plasma gun. The coaxial gun is constructed with solenoid coils along the inner and outer electrodes that, together with an external guide field solenoid, form a magnetic cusp at the gun muzzle. The net flux inside the inner electrode is arranged to be opposite the external guide field and is the source of field-reversed flux trapped by the plasma. The electrode length is 145 cm, the diameter of the inner (outer) electrode is 15 cm (32 cm). The gun discharge is driven with a 232-μF 40-kV capacitor bank. Acceleration of plasma through the magnetic cusp at the gun muzzle results in entrainment of field-reversed flux that is detected by magnetic probes 75 cm from the gun muzzle. Field-reversed plasma has been produced for a variety of experimental conditions. In one typical case, the guide magnetic field was B 0 =4.8 kG and the change in axial magnetic field ΔB/sub z/ normalized to B 0 was ΔB/sub z/ /B 0 =-3.1. Total field-reversed flux (poloidal flux) obtained by integrating ΔB/sub z/ profiles is in the range 2 x 10 3 kG cm 2 . Measurement of the orthogonal field component indicates a sizable toroidal field peaked off axis at rapprox. =10 cm with a magnitude of roughly one-half the poloidal field component that is measured on magnetic axis. Reconnection of the poloidal field lines has not been established for the data reported in the paper and will be addressed in future experiments which attempt to trap and confine the field-reversed plasma in a magnetic mirror

  1. Tokamak-like confinement at high beta and low field in the reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J S; Anderson, J K; Biewer, T M; Brower, D L; Chapman, B E; Chattopadhyay, P K; Craig, D; Deng, B; Hartog, D J Den; Ding, W X; Fiksel, G; Forest, C B; Goetz, J A; O'Connell, R; Prager, S C; Thomas, M A

    2003-01-01

    For several reasons, improved-confinement achieved in the reversed field pinch (RFP) during the last few years can be characterized as 'tokamak-like'. Historically, RFP plasmas have had relatively poor confinement due to tearing instability which causes magnetic stochasticity and enhanced transport. Tearing reduction is achieved through modification of the inductive current drive, which dramatically improves confinement. The electron temperature increases to >1 keV and the electron heat diffusivity decreases to approx. 5 m 2 s -1 , comparable with the transport level expected in a tokamak plasma of the same size and current. This corresponds to a 10-fold increase in global energy confinement. Runaway electrons are confined, and Fokker-Planck modelling of the electron distribution reveals that the diffusion at high energy is independent of the parallel velocity, uncharacteristic of stochastic transport. Improved-confinement occurs simultaneously with increased beta approx. 15%, while maintaining a magnetic field strength ten times weaker than a comparable tokamak. Measurements of the current, magnetic, and electric field profiles show that a simple Ohm's Law applies to this RFP sustained without dynamo relaxation

  2. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  3. Electron transport in the stochastic fields of the reversed-field pinch

    International Nuclear Information System (INIS)

    Kim, M.-H.; Punjabi, A.

    1996-01-01

    We employ the Monte Carlo method for the calculation of anomalous transport developed by Punjabi and Boozer to calculate the particle diffusion coefficient for electrons in the stochastic magnetic fields of the reversed-field pinch (RFP). In the Monte Carlo calculations represented here, the transport mechanism is the loss of magnetic surfaces due to resistive perturbations. The equilibrium magnetic fields are represented by the Bessel function model for the RFP. The diffusion coefficient D is calculated as a function of a, the amplitude of the perturbation. We see three regimes as the amplitude of the tearing modes is increased: the Rechester-Rosenbluth regime where D scales as a 2 ; the anomalous regime where D scales more rapidly than a 2 ; and the Mynick-Krommes regime where D scales more slowly than a 2 . Inclusion of the effects of loop voltage on the particle drift orbits in the RFP does not affect the intervals in the amplitude a where these regimes operate. (Author)

  4. Field-reversal experiments in the mirror fusion test facility (MFTF)

    International Nuclear Information System (INIS)

    Shearer, J.W.; Condit, W.C.

    1977-01-01

    Detailed consideration of several aspects of a field-reversal experiment was begun in the Mirror Fusion Test Facility (MFTF): Model calculations have provided some plausible parameters for a field-reversed deuterium plasma in the MFTF, and a buildup calculation indicates that the MFTF neutral-beam system is marginally sufficient to achieve field reversal by neutral injection alone. However, the many uncertainties indicate the need for further research and development on alternate buildup methods. A discussion of experimental objectives is presented and important diagnostics are listed. The range of parameter space accessible with the MFTF magnet design is explored, and we find that with proper aiming of the neutral beams, meaningful experiments can be performed to advance toward these objectives. Finally, it is pointed out that if we achieve enhanced n tau confinement by means of field reversal, then quasi-steady-state operation of MFTF is conceivable

  5. Importance of field-reversing ion ring formation in hot electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K.

    1975-11-01

    Formation of the field reversing ion ring in the mirror confined hot electron plasma may offer a device to confine the fusion plasma even under the restriction of the present technology. (Author) (GRA)

  6. Observations of plasma tearing instabilities and associated axial translation in field-reversed experiments

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Cochrane, J.C.; Lipson, J.; Tuszewski, M.

    1981-02-01

    Tearing and reconnection processes during the formation and quiescent periods of a field-reversed configuration are studied with an axial array of compensated diamagnetic loops. Several representative plasma shots are documented

  7. Flux loss during the equilibrium phase of field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.

    1982-01-01

    Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations

  8. Flux loss during the equilibrium phase of field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Armstrong, W.T.; Bartsch, R.R.; Chrien, R.E.; Cochrane, J.C. Jr.; Kewish, R.W. Jr.; Klingner, P.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.

    1982-10-01

    Field-reversed configurations are consistently formed at low filling pressures in the FRX-C device, with decay time of the trapped flux after formation much larger than the stable period. This contrasts with previous experimental observations.

  9. Torus C-I field reversed theta-pinch at UNICAMP

    International Nuclear Information System (INIS)

    Machida, M.; Collares, M.P.; Honda, R.Y.; Sakanaka, P.H.; Scheid, V.H.B.

    1984-01-01

    The influence of multipole fields (octopole and quadrupole) on supressing the n=2 rotational instability, field reconnection, particle loss effects is studied, and the viability of transforming the theta-pinch from Campinas, Brazil (100Kv, 55Kj) to the field reversed theta-pinch with plasma translation program is analyzed. (E.G.) [pt

  10. Necessary stability condition for field-reversed theta pinches

    International Nuclear Information System (INIS)

    Cary, J.R.

    1981-03-01

    Toroidal systems of arbitrary cross section without toroidal magnetic field are analyzed via the double adiabatic fluid equations. Such systems are shown to be unstable if there exists one closed field line on which the average of kapparB 2 is positive, where kappa is the curvature. A similar criterion is derived for linear systems and is applied to a noncircular z-pinch

  11. Global properties of ohmically heated reversed-field pinches

    International Nuclear Information System (INIS)

    Gerwin, R.A.

    The simultaneous requirements of power balance and pressure balance have been considered. The treatment generalizes the Pease-Braginskii pinch current limit by including toroidal magnetic field, anomalous resistivity, nonradiative losses, and time-dependent fields. The rise of the temperature to a state of power balance proves to be amenable to a very simple and unified description. Finally, the practical parameter windows implied by the joint action of power balance and pressure balance are displayed

  12. Compressibility Effects in the Dynamics of the Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2008-01-01

    We study the reversed-field pinch through the numerical solution of the compressible magnetohydrodynamic equations. Two cases are investigated: In the first case the pressure is derived from an adiabatic condition, and in the second case the pressure equation includes heating terms due to resistivity and viscosity. In the adiabatic case a single helicity state is observed, and the reversed-field pinch configuration is formed for short time intervals and is finally lost. In the nonadiabatic case the system reaches a multiple helicity state, and the reversal parameter remains negative for a longer time. The results show the importance of compressibility in determining the large scale dynamics of the system

  13. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  14. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given

  15. Polar Magnetic Field Reversals of the Sun in Maunder Minimum

    Indian Academy of Sciences (India)

    tribpo

    The data on polar migration of solar magnetic fields were obtained on the basis of. Η alpha magnetic synoptic charts for 1880 1991 using Kodaikanal, Kislovodsk and Italian observations, and Atlas of Η alpha charts (Mclntosh 1979; Makarov &. Fatianov 1980; Makarov & Sivaraman 1989; Makarov 1994). The Wolf numbers ...

  16. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    Science.gov (United States)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  17. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  18. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    International Nuclear Information System (INIS)

    Trukhin, Vladimir I.; Bezaeva, Natalia; Kurochkina, Evgeniya

    2006-01-01

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented

  19. The paleomagnetic field and possible mechanisms for the formation of reversed rock magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Trukhin, Vladimir I. [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)]. E-mail: trukhin@phys.msu.ru; Bezaeva, Natalia [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation); Kurochkina, Evgeniya [Faculty of Physics, Moscow State University, 119992 Moscow (Russian Federation)

    2006-05-15

    Investigations of ancient magnetized rocks show that their natural remanent magnetization (NRM) can be oriented in the direction of modern geomagnetic field (GMF) as well as in the opposite direction. It is supposed that reversed NRM is related to reversals of the GMF in the past geological periods. During reversals, the strength of the GMF is near zero and can cause the destruction of living organisms as a result of powerful space and solar radiation, which, in the absence of the GMF, can reach the Earth's surface. That is why the question of reality of the GMF reversals is of global ecological importance. There is also another natural mechanism for the formation of reversed NRM-the self-reversal of magnetization as a result of thermomagnetization of rocks. In the paper, both natural processes for the formation of reversed NRM in rocks are discussed, and the results of experimental research on the physical mechanism of self-reversal of magnetization in continental and oceanic rocks are presented. The results of computer modeling of the self-reversal phenomenon are also presented.

  20. Transport simulations of the oscillating field current drive experiment in the ZT-40M reversed field pinch

    International Nuclear Information System (INIS)

    Scardovelli, R.A.; Nebel, R.A.; Werley, K.A.; Miley, G.H.

    1987-01-01

    Oscillating Field Current Drive (OFCD) is based on the premise that in order to sustain a relaxing Reversed Field Pinch (RFP) plasma, one needs only to supply magnetic helicity at the same rate it is consumed. The purpose of this work is to try to better understand the possible mechanisms underlying these relaxations within the context of different kinds of resistive MHD instabilities

  1. Stable Alfven wave dynamo action in the reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. Static quasi-linear Alfven wave calculations have shown that dynamo emfs on the order of eta vector J are possible. This suggested a possible explanation of RFP behavior and a new (externally driven) mechanism for extending operation and controlling field profiles (possibly reducing plasma transport). This thesis demonstrates that the dynamo emf can quickly induce plasma currents whose emf cancels the dynamo effect. This thesis also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  2. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  3. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  4. Theoretical and experimental studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.

    1986-01-01

    The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (≤8 mWb) and s (≤4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment

  5. Theoretical and experimental studies of field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.; Caramana, E.J.; Lewis, H.R.; Linford, R.K.; Ling, K.M.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.

    1986-01-01

    The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (less than or equal to8 mWb) and s (less than or equal to4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment.

  6. Non ideal instabilities in field reversed O-pinches

    International Nuclear Information System (INIS)

    Santiago, M.A.M.; Gomes, A.S.

    1987-01-01

    Rotational instabilities and resistive tearing modes are the most striking modes observed in high temperature θ-pinches with zero orversed bias field. The configurations which have the effect of a rigid rotation of the plasma column are studied. Some recent experimental data indicate that an m=2 mode appears after the rotation reaches a critical value. It is shown that the growth rate of the m=2 mode may be greater than that of the m=1 resistive kink mode, depending on the experimental conditions. The result are applied to several experimental data in the literature. (author) [pt

  7. Statistical magnetohydrodynamics and reversed-field-pinch quiescence

    International Nuclear Information System (INIS)

    Turner, L.

    1982-01-01

    A statistical model of a bounded, incompressible, cylindrical magnetofluid is presented. This model predicts the presence of magnetic fluctuations about a cylindrically-symmetric, Bessel-function-model, mean magnetic field, which satisfies del x = μ . As theta → 1.56, the model predicts that the significant region of the fluctuation spectrum narrows down to a single (coherent) m = 1 mode. An analogy between the Debye length of an electrostatic plasma and μ -1 suggests the physical validity o the model's prediction of when /r - r'/ greater than or equal to μ -1

  8. Supernovae and high density nuclear matter

    International Nuclear Information System (INIS)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs

  9. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.

    1986-01-01

    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  10. High Density GEOSAT/GM Altimeter Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  11. High density aseismic spent fuel storage racks

    International Nuclear Information System (INIS)

    Louvat, J.P.

    1985-05-01

    After the reasons of the development of high density aseismic spent fuel racks by FRAMATOME and LEMER, a description is presented, as also the codes, standards and regulations used to design this FRAMATOME storage rack. Tests have been carried out concerning criticality, irradiation of Cadminox, corrosion of the cell, and the seismic behaviour

  12. Compact-Toroid Fusion Reactor (CTOR) based on the Field-Reversed Theta Pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-01-01

    Scoping studies of a translating Compact Torus Reactor (CTOR) have been made on the basis of a dynamic plasma model and an overall systems approach. This CTOR embodiment uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plamoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radition shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  13. Compact-Toroid fusion reactor based on the field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1981-03-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CTOR) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conducting shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach, a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  14. Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-04-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  15. Edge plasmas and plasma/wall interactions in an ignition-class reversed field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1987-01-01

    A range of limiter, armor, and divertor options are examined as a means to minimize plasma/wall interactions for a high-power-density, ignition-class reversed field pinch. An open, toroidal-field divertor can operate at maximum powers, while isolating the core plasma from impurities and protecting the wall. 16 refs

  16. Chrometric properties of curvilinear beam transport channels with reverses of longitudinal magnetic field

    International Nuclear Information System (INIS)

    Kapchinskij, M.I.; Korenev, I.L.; Roginskij, L.A.

    1990-01-01

    Dynamics of charged particle beams in curvilinear transport channels comprising sections with counter direction of longitudinal focusing magnetic field is considered. It is shown that such magnetic field reverses reduce sufficiently the particle deflections conditioned by momentum spread of longitudinal motion and their application allows one to completely project the achromatic channel

  17. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    International Nuclear Information System (INIS)

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  18. Ohmic heating of the reversed-field pinch

    International Nuclear Information System (INIS)

    Gerwin, R.

    1980-04-01

    Simple analytic expressions are found for the global heating rate and the time needed to achieve global power balance with radiation and other losses, in useful agreement with large RFP transport codes. A simple condition is noted, which insures that the heating can be accomplished before appreciable resistive evolution occurs in the pinch profile. The product of poloidal beta, β/sub theta/, and toroidal current, I, that characterizes a condition of global power balance is derived subject to the above-mentioned condition without making key assumptions used by earlier investigators. First, a perfectly steady state (with local power balance) is not assumed, nor is it appropriate to do so. Secondly, the cross-field resistivity is not required to be classical. Since the value of (β/sub theta/ I) plays a fundamental role in determining the kind of device one requires, the foundations of this value are important

  19. Observation of tilt asymmetries in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Barnes, D.C.; Klingner, P.; Ng, Chung.

    1989-01-01

    In recent years, part of the experimental effort on the FRX-C/LSM device has been devoted to understanding why good FRC confinement is observed only in a narrow window of the operating parameter space (fill pressures less than 5 mtorr and bias fields less than 0.8--0.9 kG). The transition from good to bad confinement has been shown for some time to correlate with strong axial shocks, suggesting a formation or stability problem. More recently, FRC magnetic asymmetries have been observed whenever the confinement was poor. To gain further understanding, a 64-coil probe array was built, and data from over 700 discharges were collected during the summer of 1989. We summarize in this paper the results of a preliminary analysis of these data. 5 refs., 4 figs

  20. Possible relationship between the Earth's rotation variations and geomagnetic field reversals over the past 510 Myr

    OpenAIRE

    Pacca, Igor G.; Frigo, Everton; Hartmann, Gelvam A.

    2015-01-01

    The Earth's rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth's rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can...

  1. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    Science.gov (United States)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  2. Damping Dependence of Reversal Magnetic Field on Co-based Nano-Ferromagnetic with Thermal Activation

    Directory of Open Access Journals (Sweden)

    Nadia Ananda Herianto

    2015-02-01

    Full Text Available Currently, hard disk development has used HAMR technology that applies heat to perpendicular media until near Curie temperature, then cools it down to room temperature. The use of HAMR technology is significantly influence by Gilbert damping constants. Damping affects the magnetization reversal and coercivity field. Simulation is used to evaluate magnetization reversal by completing Landau-Lifshitz-Gilbert explicit equation. A strong ferromagnetic cobalt based material with size 50×50×20 nm3 is used which parameters are anisotropy materials 3.51×106 erg/cm3, magnetic saturation 5697.5 G, exchange constant 1×10-7 erg/cm, and various Gilbert damping from 0.09 to 0.5. To observe the thermal effect, two schemes are used which are Reduced Barrier Writing and Curie Point Writing. As a result, materials with high damping is able to reverse the magnetizations faster and reduce the energy barrier. Moreover, it can lower the minimum field to start the magnetizations reversal, threshold field, and probability rate. The heating near Curie temperature has succeeded in reducing the reversal field to 1/10 compared to writing process in absence of thermal field.

  3. Mode dynamics and confinement in the reversed field pinch

    International Nuclear Information System (INIS)

    Brunsell, P.R.; Bergsaker, H.; Brzozowski, J.H.; Cecconello, M.; Drake, J.R.; Malmberg, J.-A.; Scheffel, J.; Schnack, D.D.

    2001-01-01

    Tearing mode dynamics and toroidal plasma flow in the RFP has been experimentally studied in the Extrap T2 device. A toroidally localised, stationary magnetic field perturbation, the 'slinky mode' is formed in nearly all discharges. There is a tendency of increased phase alignment of different toroidal Fourier modes, resulting in higher localised mode amplitudes, with higher magnetic fluctuation level. The fluctuation level increases slightly with increasing plasma current and plasma density. The toroidal plasma flow velocity and the ion temperature has been measured with Doppler spectroscopy. Both the toroidal plasma velocity and the ion temperature clearly increase with I/N. Initial, preliminary experimental results obtained very recently after a complete change of the Extrap T2 front-end system (first wall, shell, TF coil), show that an operational window with mode rotation most likely exists in the rebuilt device, in contrast to the earlier case discussed above. A numerical code DEBSP has been developed to simulate the behaviour of RFP confinement in realistic geometry, including essential transport physics. Resulting scaling laws are presented and compared with results from Extrap T2 and other RFP experiments. (author)

  4. Particle-confinement criteria for axisymmetric field-reversed magnetic configurations

    International Nuclear Information System (INIS)

    Hsiao, M.Y.; Miley, G.H.

    1984-01-01

    Based on two constants of motion, H and Psub(theta), where H is the total energy of a particle and Psub(theta) is its canonical angular momentum, particle confinement criteria are derived which impose constraints on H and Psub(theta). With no electric field at the ends of field-reversed magnetic configurations, confinement criteria for closed-field and absolute confinements are obtained explicitly, including both lower and upper bounds of Psub(theta)/q, where q is the charge of the species considered, for a class of Hill's vortex field-reversed magnetic configurations. The commonly used criterion for the Hamiltonian, H 0 Psub(theta), where ω 0 is identical to qB 0 /mc, is deduced from a more general form as a special case. In this special case, it is found necessary to impose a new criterion, -B 0 R 2 sub(w)/2c 0 is the vacuum field, which reduces the confinement region in (H,Psub(theta)) space. With the presence of electric fields at the ends of field-reversed magnetic configurations, confinement criteria are obtained for two interesting cases. In addition to lower and upper bounds of H, both lower and upper bounds of Psub(theta)/q are found. For axially confined particles, the lower bound of Psub(theta)/q reduces the confinement region in (H,Psub(theta)) space and represents a new criterion. These results can be applied to calculations for field-reversed mirrors and field-reversed theta pinches. (author)

  5. Stochastic disk dynamo as a model of reversals of the Earth's magnetic field

    International Nuclear Information System (INIS)

    Ito, H.M.

    1988-01-01

    A stochastic model is given of a system composed of N similar disk dynamos interacting with one another. The time evolution of the system is governed by a master equation of the class introduced by van Kampen as relevant to stochastic macrosystems. In the model, reversals of the Earth's magnetic field are regarded as large deviations caused by a small random force of O(N/sup -1/2/) from one of the field polarities to the other. Reversal processes are studied by simulation, which shows that the model explains well the activities of the paleomagnetic field inclusive of statistical laws of the reversal sequence and the intensity distribution. Comparison are made between the model and dynamical disk dynamo models

  6. Detailed Jaramillo field reversals recorded in lake sediments from Armenia - Lower mantle influence on the magnetic field revisited

    Science.gov (United States)

    Kirscher, U.; Winklhofer, M.; Hackl, M.; Bachtadse, V.

    2018-02-01

    While it is well established that the Earth's magnetic field is generated by a self sustaining dynamo that reversed its polarity at irregular intervals in the geological past, the very mechanisms causing field reversals remain obscure. Paleomagnetic reconstructions of polarity transitions have been essential for physically constraining the underlying mechanisms in terms of time scale, but thus far remain ambiguous with regard to the transitional field geometry. Here we present new paleomagnetic records from a rapidly deposited lacustrine sediment sequence with extraordinarily stable paleomagnetic signals, which has captured in unprecedented detail the bottom (reverse to normal: R-N) and top (normal to reverse: N-R) transitions of the Jaramillo subchron (at 1.072 Ma and at 0.988 Ma). The obtained virtual geomagnetic pole (VGP) path indicates an oscillatory transitional field behavior with four abrupt transequatorial precursory jumps across the Pacific. The distribution of VGP positions indicates regions of preferred occurrence. Our results are in agreement with previously proposed bands of transitional VGP occurrence over the Americas and Australia/northwest Pacific. Additionally, our VGP positions seem to avoid large low shear velocity provinces (LLSVPs) above the core mantle boundary (CMB). Thus, our data supports the idea that the transitional field geometry is controlled by heat flux heterogeneities at the CMB linked to LLSVPs.

  7. Some recent efforts toward high density implosions

    International Nuclear Information System (INIS)

    McClellan, G.E.

    1980-01-01

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented

  8. Framatome offers new high density Cadminox racks

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Framatome have developed a new material called Cadminox for use in high density spent fuel storage racks. It is claimed that Cadminox will remain stable stable in pond storage when racks submerged in boronated water are irradiated by the spent fuel they contain. A brief description of the storage module is given, including the aseismic bearing device which minimises loads on pond walls, racks and fuel assemblies. (UK)

  9. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca

    2013-01-01

    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...... the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP....

  10. The car parking problem at high densities

    Science.gov (United States)

    Burgos, E.; Bonadeo, H.

    1989-04-01

    The radial distribution functions of random 1-D systems of sequential hard rods have been studied in the range of very high densities. It is found that as the number of samples rejected before completion increases, anomalies in the pairwise distribution functions arise. These are discussed using analytical solutions for systems of three rods and numerical simulations with twelve rods. The probabilities of different spatial orderings with respect to the sequential order are examined.

  11. Reversed-field pinch configuration with minimum energy and finite beta

    International Nuclear Information System (INIS)

    Zhang Peng

    1989-01-01

    The reversed-field pinch (RFP) configuration has been studied for the case of finite beta. Suydam's condition and the sufficient criterion have been used to examine this configuration. Results of numerical calculations show that the critical value of the pinch parameter Θ for the appearance of the reverse toroidal field increases as the β-value increases. The critical value of Θ for the helical state increases with β as well. Suydam's and Robinson's stability regions increase and shift towards higher values of Θ with increasing β. Theoretical results for finite β coincide with recent RFP experimental results

  12. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  13. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  14. On the reversal of the dipolar field of the sun and its possible implication for the reversal of the earth's field

    International Nuclear Information System (INIS)

    Saito, T.; Akasofu, S.

    1987-01-01

    Changes of the neutral line on the source surface (analogous to the magnetic dip equator of the earth) during the period between 1976 and 1983 are examined on the basis of the Stanford solar magnetic field data. Instead of the standard Mercator-like projection, the neutral line is shown on a spherical surface for 16 selected Carrington rotations. In spite of great complexity of the field variations, this presentation depicts clearly a fairly systematic rotational reversal of the dipolar field on the source surface during the sunspot maximum years. It is suggested that this solar situation is somewhat analogous to the planet earth in the sense that the core surface and the earth's surface may correspond to the photosphere and the source surface, respectively. Copyright American Geophysical Union 1987

  15. On the origin of pre-reversal enhancement of the zonal equatorial electric field

    Directory of Open Access Journals (Sweden)

    M. C. Kelley

    2009-05-01

    Full Text Available In November 2004, a large and variable interplanetary electric field (IEF was felt in the reference frame of the Earth. This electric field penetrated to the magnetic equator and, when the Jicamarca Radio Observatory (JRO was in the dusk sector, resulted in a reversal of the normal zonal component of the field. In turn, this caused a counter-electrojet (CEJ, a westward current rather than the usual eastward current. At the time of the normal pre-reversal enhancement (PRE of the eastward field, the Jicamarca incoherent scatter radar (ISR observed that the westward component became even more westward. Two of the three current explanations for the PRE depend on the neutral wind patterns. However, this unique event was such that the neutral wind-driven dynamos could not have changed. The implication is that the Haerendel-Eccles mechanism, which involves partial closure of the equatorial electrojet (EEJ after sunset, must be the dominant mechanism for the PRE.

  16. Role of magnetic reconnection phenomena in the reversed-field pinch

    International Nuclear Information System (INIS)

    Baker, D.A.

    1983-01-01

    The reversed-field pinch (RFP), an axisymmetric toroidal magnetic confinement experiment, has physics rich in the area commonly called field line reconnection or merging. This paper reviews the topics where reconnection plays a vital role: (a) RFP formation and the phenomenon of self-reversal, (b) RFP sustainment in which the RFP configuration has been shown to be capable of maintaining itself for times much longer than earlier predictions from classical resistive MHD theory, (c) steady state current drive in which dynamo action and associated reconnection processes give rise to the possibility of sustaining the configuration indefinitely by means of low frequency ac modulation of the toroidal and poloidal magnetic fields, (d) the effects of reconnection on the formation and evolution of the magnetic surfaces which are intimately related to the plasma containment properties. It appears that all phases of the RFP operation are intimately related to the reconnection and field regeneration processes similar to those encountered in space and astrophysics

  17. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Hedqvist, A.; Rachlew-Kaellne, E.

    1998-01-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and Z eff together with a description of the interpretation and the equipment are presented. (author)

  18. Changes in transport and confinement in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, E.; Sallander, J.; Hedqvist, A.

    1999-09-01

    At the EXTRAP-T2 reversed field pinch a non-intrusive approach has been undertaken to monitor transport driven by magnetic fluctuations. Correlations are presented between fluctuations observed in the core and at the edge of the plasma. The fluctuations are characterized and their effect on the confinement of core electron energy is estimated.

  19. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  20. Changes in transport and confinement in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Sallander, E.; Sallander, J.; Hedqvist, A.

    1999-01-01

    At the EXTRAP-T2 reversed field pinch a non-intrusive approach has been undertaken to monitor transport driven by magnetic fluctuations. Correlations are presented between fluctuations observed in the core and at the edge of the plasma. The fluctuations are characterized and their effect on the confinement of core electron energy is estimated. (author)

  1. Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch

    International Nuclear Information System (INIS)

    Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.

    1990-10-01

    Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs

  2. Use of coaxial plasma guns to start up field-reversed-mirror reactors

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Carlson, G.A.; Eddleman, J.L.; Hartman, C.W.; Neef, W.S. Jr.

    1980-01-01

    Application of a magnetized coaxial plasma gun for start-up of a field-reversed-mirror reactor is considered. The design is based on preliminary scaling laws and is compared to the design of the start-up gun used in the Beta II experiment

  3. Computational study of the influence of mirror parameters on FRC (field-reversed configuration) equilibria:

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Sakanaka, P.H.

    1990-01-01

    Field-reversed configuration equilibria are studied by solving the Grad-Shafranov equation. A multiple coil system (main coil and end mirrors) is considered to simulate the coil geometry of CNEA device. First results are presented for computed two-dimensional FRC equilibria produced varying the mirror coil current with two different mirror lenghts. (Author)

  4. Analytical study of a reversed-field pinch with rectangular cross section

    International Nuclear Information System (INIS)

    Zhang Peng

    1990-01-01

    An analyic solution of the force-free equation for a toroidal configuration of rectangular cross section is presented. It is shown that the critical value of contraction ratio for the appearance of a reversed field as well as of the ohmic current increases as the elongation of the cross section increases

  5. Experiments on the ZT-S reversed-field pinch, August--December 1978

    International Nuclear Information System (INIS)

    Jacobson, A.R.

    1979-06-01

    During the latter half of 1978 the ZT-S reversed-field pinch was used to explore the utility of pitch-programming techniques in setting up stable diffuse pinch profiles. Several experimental observations relating to this goal are presented

  6. Plasma engineering design of a compact reversed-field pinch reactor (CRFPR)

    International Nuclear Information System (INIS)

    Bathke, C.G.; Embrechts, M.J.; Hagenson, R.L.; Krakowski, R.A.; Miller, R.L.

    1983-01-01

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given

  7. Hall magnetohydrodynamics simulations of end-shorting induced rotation in field-reversed configurations

    International Nuclear Information System (INIS)

    Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-01-01

    End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E T is set to zero at the axial boundaries in an extended MHD model that includes the Hall and ∇P e terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed

  8. Production of field-reversed mirror plasma with a coaxial plasma gun

    Science.gov (United States)

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  9. Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain.

    Science.gov (United States)

    González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R

    2015-06-01

    Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.

  10. Production of field-reversed mirror plasma with a coaxial plasma gun

    International Nuclear Information System (INIS)

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  11. High density data recording for SSCL linac

    International Nuclear Information System (INIS)

    VanDeusen, A.L.; Crist, C.

    1993-01-01

    The Superconducting Super Collider Laboratory and AlliedSignal Aerospace have collaboratively developed a high density data monitoring system for beam diagnostic activities. The 128 channel data system is based on a custom multi-channel high speed digitizer card for the VXI bus. The card is referred to as a Modular Input VXI (MIX) digitizer. Multiple MIX cards are used in the complete system to achieve the necessary high channel density requirements. Each MIX digitizer card also contains programmable signal conditioning, and enough local memory to complete an entire beam scan without assistance from the host processor

  12. Magnetic divertor design for the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Miller, R.L.; Krakowski, R.A.

    1984-01-01

    A recently completed design of a pumped-limiter-based Compact Reversed-Field Pinch Reactor is used to estimate for the first time the impact of magnetic divertors. A range of divertor options for the low-toroidal-field RFP is examined, and a design selection is made constrained by consideration of field ripple (magnetic island), blanket displacement, recirculating power, cost, heat flux, and access. Design choices based on diversion of minority (toroidal) field lead to a preference for (poloidally) symmetric or bundle divertor geometries

  13. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Walker, R.C.; Villante, U.; Lazarus, A.J.

    1975-01-01

    We present the results of an extensive analysis of plasma and magnetic field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 R/sub E/ downstream from earth. The principal observations are (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma

  14. Pioneer 7 observations of plasma flow and field reversal regions in the distant geomagnetic tail

    Science.gov (United States)

    Walker, R. C.; Lazarus, A. J.; Villante, U.

    1975-01-01

    The present paper gives the results of an extensive analysis of plasma and magnetic-field data from Pioneer 7 taken in the geomagnetic tail approximately 1000 earth radii downstream from earth. The principal observations are: (1) measurable fluxes of protons in the tail, flowing away from earth, sometimes with a double-peaked velocity distribution; (2) field reversal regions in which the field changes from radial to antiradial by a vector rotation in the north-south plane; and (3) general characteristics of the tail similar to those observed near earth with good correlation between taillike magnetic fields and plasma.

  15. CFRX, a one-and-a-quarter-dimensional transport code for field-reversed configuration studies

    International Nuclear Information System (INIS)

    Hsiao Mingyuan

    1989-01-01

    A one-and-a-quarter-dimensional transport code, which includes radial as well as some two-dimensional effects for field-reversed configurations, is described. The set of transport equations is transformed to a set of new independent and dependent variables and is solved as a coupled initial-boundary value problem. The code simulation includes both the closed and open field regions. The axial effects incorporated include global axial force balance, axial losses in the open field region, and flux surface averaging over the closed field region. A typical example of the code results is also given. (orig.)

  16. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  17. Rapid Identification of Dengue Virus by Reverse Transcription-Polymerase Chain Reaction Using Field-Deployable Instrumentation

    National Research Council Canada - National Science Library

    McAvin, James C; Escamilla, Elizabeth M; Blow, James A; Turell, Micahel J; Quintana, Miguel; Bowles, David E; Swaby, James A; Barnes, William J; Huff, William B; Lahman, Kenton L

    2005-01-01

    ...) reverse transcription-polymerase chain reaction assays were developed for screening and seroype identification of infected mosquito vectors and human sera using a field-deployable, fluorometric thermocycler...

  18. Reassessment of the requirements to obtain field reversal in mirror machines

    International Nuclear Information System (INIS)

    Baldwin, D.E.; Fowler, T.K.

    1977-01-01

    Requirements to obtain field reversal by neutral injection are re-examined to take account of a cancellation of currents at a field null caused by electron-ion collisions that drag the electrons along with the moving ions. We find that for cases of interest even a small admixture of higher-Z ions generates a residual current (the Ohkawa current) that is sufficient to maintain field reversal in steady state with a lifetime comparable to the usual magnetic diffusion time. An approximate prescription is given for buildup to such a state; namely, the neutral injection current must be sufficient to reduce the field to zero on axis with open confinement for an initial plasma radius of r 1 = 4r/sub Li/, where r/sub Li/ is the ion Larmor radius in the vacuum field. Again high-Z ions are needed to bring about the transition to a field-reversed state, r 1 = 4r/sub Li/ being the initial radius that minimizes the injection current needed to do this for a reasonable high-Z ion content (10% helium, or less of a higher-Z gas). Since 4r/sub Li/ is about 2 times the radius in past 2XIIB experiments, it is concluded that either the injection current or the energy confinement time must be substantially increased, by about a factor of 3, if field reversal is to be achieved in 2XIIB. Auxiliary injection by pulsed ion sources or plasma guns might reduce the current requirements significantly if 6 kilojoules of energy could be deposited in the plasma

  19. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  20. Models for Experimental High Density Housing

    Science.gov (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  1. Relativistic many-body theory of high density matter

    International Nuclear Information System (INIS)

    Chin, S.A.

    1977-01-01

    A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined

  2. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  3. Effects of compressibility and heating in magnetohydrodynamics simulations of a reversed field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2009-01-01

    The reversed field pinch is studied using numerical simulations of the compressible magnetohydrodynamics equations. Contrary to what has been done in previous works, the hypotheses of constant density and vanishing pressure are not used. Two cases are investigated. In the first case the pressure is derived from an adiabatic condition and in the second case the pressure equation includes heating terms due to resistivity and viscosity. The evolution of the reversal parameter and the production of single helicity or multiple helicity states are different in the two cases. The simulations show that the results are affected by compressibility and are very sensitive to hypotheses on heat production.

  4. MHD computation of feedback of resistive-shell instabilities in the reversed field pinch

    International Nuclear Information System (INIS)

    Zita, E.J.; Prager, S.C.

    1992-05-01

    MHD computation demonstrates that feedback can sustain reversal and reduce loop voltage in resistive-shell reversed field pinch (RFP) plasmas. Edge feedback on ∼2R/a tearing modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a few helical modes

  5. Heating of field-reversed plasma rings estimated with two scaling models

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, J.W.

    1978-05-18

    Scaling calculations are presented of the one temperature heating of a field-reversed plasma ring. Two sharp-boundary models of the ring are considered: the long thin approximation and a pinch model. Isobaric, adiabatic, and isovolumetric cases are considered, corresponding to various ways of heating the plasma in a real experiment by using neutral beams, or by raising the magnetic field. It is found that the shape of the plasma changes markedly with heating. The least sensitive shape change (as a function of temperature) is found for the isovolumetric heating case, which can be achieved by combining neutral beam heating with compression. The complications introduced by this heating problem suggest that it is desirable, if possible, to create a field reversed ring which is already quite hot, rather than cold.

  6. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    Science.gov (United States)

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.

  7. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, R. J. [Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  8. Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch

    Science.gov (United States)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.

    2015-04-01

    Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.

  9. Effects of spin-polarized current on pulse field-induced precessional magnetization reversal

    Directory of Open Access Journals (Sweden)

    Guang-fu Zhang

    2012-12-01

    Full Text Available We investigate effects of a small DC spin-polarized current on the pulse field-induced precessional magnetization reversal in a thin elliptic magnetic element by micromagnetic simulations. We find that the spin-polarized current not only broadens the time window of the pulse duration, in which a successful precessional reversal is achievable, but also significantly suppresses the magnetization ringing after the reversal. The pulse time window as well as the decay rate of the ringing increase with increasing the current density. When a spin-polarized current with 5 MA/cm2 is applied, the time window increases from 80 ps to 112 ps, and the relaxation time of the ringing decreases from 1.1 ns to 0.32 ns. Our results provide useful information to achieve magnetic nanodevices based on precessional switching.

  10. 40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal.

    Science.gov (United States)

    Baksi, A K; Hsu, V; McWilliams, M O; Farrar, E

    1992-04-17

    Magnetostratigraphic studies are widely used in conjunction with the geomagnetic polarity time scale (GPTS) to date events in the range 0 to 5 million years ago. A critical tie point on the GPTS is the potassium-argon age of the most recent (Brunhes-Matuyama) geomagnetic field reversal. Astronomical values for the forcing frequencies observed in the oxygen isotope record in Ocean Drilling Project site 677 suggest that the age of this last reversal is 780 ka (thousand years ago), whereas the potassium-argon-based estimate is 730 ka. Results from 4039; Ar incremental heating studies on a series of lavas from Maui that straddle the Brunhes-Matuyama reversal give an age of 783 + 11 ka, in agreement with the astronomically derived value. The astronomically based technique appears to be a viable tool for dating young sedimentary sequences.

  11. FRC formation studies in a field reversed theta pinch with a variable length coil

    International Nuclear Information System (INIS)

    Maqueda, R.; Sobehart, J.; Rodrigo, A.B.

    1987-01-01

    The formation phase of field reversed configurations (FRC) produced using a theta pinch has received considerable attention lately in connection with the possibility of developing formation methods in time scales longer than the Alven radial time, which would permit the use of low-voltage technology and represent an important engineering simplification in the trend towards larger scale machines sup (1)). The mechanisms leading to the loss of trapped reversed flux during the preheating 2 ) and formation sup (3,4)) stages, looking for maximization of this quantity in order to improve on the stability and transport properties of the configuration in its final equilibrium state are investigated. As a result, semi-emperical scaling laws have been obtained relating the reversed flux loss with experimental operating parameters during the early stages of the formation process 1 ). (author) [pt

  12. Control of coercive field in lithium niobate crystals with repeated polarization reversal

    International Nuclear Information System (INIS)

    Ro, Jung Hoon; Jeong, Doun; Park, Taeyong; Kim, Chulhan; Kwon, Soon-Bok; Cha, Myoungsik; Choi, Byeong Cheol; Yu, Nanei; Kurimura, Sunao; Jeon, Gyerok

    2005-01-01

    In this study, the amount of decrease in coercive field of congruent lithium niobate during repeated poling and back-poling was measured. The polarization is reversed in 300 ms and then back-poled during the rest period. The coercive field can be decreased around 1 kV/mm with a repeated poling interval of 5 s. As the interval prolonged, the poling field decrease became smaller, and a stretched exponential function is suggested for the experimental fitting resulting in a set of meaningful parameters. These values are essential for the design of high quality domain engineering

  13. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  14. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  15. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  16. Effect of double-shell structure on reduction of field errors in the STP-3(M) reversed-field pinch

    International Nuclear Information System (INIS)

    Yamada, S.; Masamune, S.; Nagata, A.; Arimoto, H.; Oshiyama, H.; Sato, K.I.

    1988-08-01

    Reversed-field pinch (RFP) operation on STP-3 (M) proved that the adition of a quasistational vertical field B sub(perpendicular) together with large reduction of irregular magnetic field at the shell gap could remarkably improve properties of the plasma confinement. Here, the gaps of a thick shell is wholely covered with the single primary coil having a shell shape. The measured field error at the gap is as small as 7.5 % of the poloidal field. The application of B sub(perpendicular) sets the plasma at a more perfect equilibrium. In this operation, the plasma resistivety much decreased by a factor 2 and the electron temperature rose up to 0.8 keV. (author)

  17. Macroscopic electromagnetic properties of the Irvine Field-Reversed Configuration: Equilibrium, power balance and fluctuations

    Science.gov (United States)

    Trask, Erik Harold

    The plasma parameters and characteristics of the Irvine Field-Reversed Configuration (IFRC) are summarized in this thesis. Particular emphasis is placed on the development of the different diagnostics used to make measurements in the experiment, as well as the measurements themselves. Whenever possible, actual measurements are used in lieu of theoretical or analytical fits to data. Analysis of magnetic probes (B-dots) comprises the bulk of what is known about the IFRC. From these B-dot probes, the magnetic field structure in a two dimensional plane at constant toroidal position has been determined, and has been found to be consistent with a field-reversed configuration. Peak reversed fields of approximately 250 Gauss have been observed. Further analyses have been developed to extract information from the magnetic field structure, including components of the electric field, the current density, and plasma pressure in the same two dimensional plane. Electric field magnitudes reach 600 V/m, concurrent with current densities greater than 105 Amps/m2 and thermal pressures over 200 Pa. Spectroscopic analysis of hydrogen lines has been done to make estimates of the electron temperature, while spectroscopic measurements of the Doppler broadening of the Halpha line31 have allowed an estimate of the ion temperature. Particle losses out one axial end plane measured by an array of Faraday cups quantify the how well the configuration traps particles. Spectral information derived from B-dot probes indicates that there is substantial power present at frequencies lying between the hydrogen cyclotron and mean gyrofrequency. These various measurements are used to find the following parameters that characterize the Irvine FRC: (1) Electromagnetic and thermal stored energies as functions of time. (2) Power balance, including input power from the field coils, resistive heating, power lost by particle transport and radiation, and particle and energy confinement times. (3) Strong

  18. Electron currents in field reversed mirror dynamics: Theory and hybrid simulation

    International Nuclear Information System (INIS)

    Stark, R.A.

    1987-01-01

    To model the dynamics of the Field-Reversed Mirror (FRM) as a whole we have developed a 1-D radical hybrid code which also incorporates the above electron null current model. This code, named FROST, models the plasma as azimuthally symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. Massless fluid equations describe electrons and low energy ions. Since a fluid treatment for electrons is invalid near a field null, the null region electron current model discussed above has been included for this region, a unique feature. Results of simulation of neutral beam start-up in a 2XIIB-like plasma is discussed. There FROST predicts that electron currents will retard, but not prevent reversal of the magnetic field at the plasma center. These results are optimistic when compared to actual reversal experiments in 2XIIB, because there finite axial length effects and micro-instabilities substantially deteriorated the ion confinement. Nevertheless, because of the importance of the electron current in a low field region in the FRM, FROST represents a valuable intermediate step toward a more complete description of FRM dynamics. 54 refs., 50 figs., 3 tabs

  19. Plasma current sustained by fusion charged particles in a field reversed configuration

    International Nuclear Information System (INIS)

    Berk, H.L.; Momota, H.; Tajima, T.

    1987-04-01

    The distribution of energetic charged particles generated by thermonuclear fusion reactions in a field reversed configuration (FRC) are studied analytically and numerically. A fraction of the charged fusion products escapes directly while the others are trapped to form a directed particle flow parallel to the plasma current. It is shown that the resultant current density produced by these fusion charged particles can be comparable to background plasma current density that produces the original field reversed configuration in a D- 3 He reactor. Self-consistent equilibria arising from the currents of the background plasma and proton fusion products are constructed where the Larmor radius of the fusion product is of arbitrary size. Reactor relevant parameters are examined, such as how the fusion reactivity rate varies as a result of supporting the pressure associated with the fusion products. We also model the synchrotron emission from various pressure profiles and quantitatively show how synchrotron losses vary with different pressure profiles in an FRC configuration

  20. Method and apparatus for producing average magnetic well in a reversed field pinch

    International Nuclear Information System (INIS)

    Ohkawa, T.

    1983-01-01

    A magnetic well reversed field plasma pinch method and apparatus produces hot magnetically confined pinch plasma in a toroidal chamber having a major toroidal axis and a minor toroidal axis and a small aspect ratio, e.g. < 6. A pinch current channel within the plasma and at least one hyperbolic magnetic axis outside substantially all of the plasma form a region of average magnetic well in a region surrounding the plasma current channel. The apparatus is operated so that reversal of the safety factor q and of the toroidal magnetic field takes place within the plasma. The well-producing plasma cross section shape is produced by a conductive shell surrounding the shaped envelope and by coils. A shell is of copper or aluminium with non-conductive breaks, and is bonded to a thin aluminium envelope by silicone rubber. (author)

  1. FIREBIRD - a conceptual design of a field reversed configuration compact torus fusion reactor (CTFR)

    International Nuclear Information System (INIS)

    Raman, R.; Zubrin, R.M.

    1987-01-01

    This paper is a summary of the work carried out by the Nuclear Engineering 512 design team at the University of Washington on a conceptual design study of a Compact-Torus (Field-Reversed) Fusion Reactor Configuration (CTFR). The primary objective of the study was to develop a reactor design that strived for high engineering power density, modest recirculating power and competitive cost of electrical power. A Conceptual design was developed for a translating field-reversed configuration reactor; based on the Physics developed by Tuszewski and Lindford at LANL and by Hoffman and Milroy at MSNW. Furthermore, it also appears possible to operate a simplified form of this reactor using a pure D-D fuel cycle after an initial D-T ignition ramp to reach the advanced fuel operating regime. One optimistic reactor so designed has a length of about 35 meters, producing a net electrical power of about 375 MWe

  2. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Grotz, S.; Cheng, E.T.; Sharafat, S.; Cooke, P.I.H.

    1988-03-01

    TITAN-II is a compact, high power density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MWm/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a passive safety assurance design. 13 refs., 3 figs., 1 tab.

  3. Overview of the TITAN-II reversed-field pinch aqueous fusion power core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Creedon, R.L.; Cheng, E.T. (General Atomic Co., San Diego, CA (USA)); Grotz, S.P.; Sharafat, S.; Cooke, P.I.H. (California Univ., Los Angeles (USA). Dept. of Mechanical, Aerospace and Nuclear Engineering; California Univ., Los Angeles, CA (USA). Inst. for Plasma and Fusion Research); TITAN Research Group

    1989-04-01

    TITAN-II is a compact, high-power-density Reversed-Field Pinch fusion power reactor design based on the aqueous lithium solution fusion power core concept. The selected breeding and structural materials are LiNO/sub 3/ and 9-C low activation ferritic steel, respectively. TITAN-II is a viable alternative to the TITAN-I lithium self-cooled design for the Reversed-Field Pinch reactor to operate at a neutron wall loading of 18 MW/m/sup 2/. Submerging the complete fusion power core and the primary loop in a large pool of cool water will minimize the probability of radioactivity release. Since the protection of the large pool integrity is the only requirement for the protection of the public, TITAN-II is a level 2 of passive safety assurance design. (orig.).

  4. High Fidelity Modeling of Field-Reversed Configuration (FRC) Thrusters (Briefing Charts)

    Science.gov (United States)

    2017-05-24

    THRUSTERS (Briefing Charts) Robert Martin , Eder Sousa, Jonathan Tran Air Force Research Laboratory (AFMC) AFRL/RQRS 1 Ara Drive Edwards AFB, CA 93524... Martin N/A HIGH FIDELITY MODELING OF FIELD-REVERSED CONFIGURATION (FRC) THRUSTERS Robert Martin1, Eder Sousa2, Jonathan Tran2 1AIR FORCE RESEARCH...Distribution is unlimited. PA Clearance No. 17314 MARTIN , SOUSA, TRAN (AFRL/RQRS) DISTRIBUTION A - APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA

  5. Enhanced confinement with plasma biasing in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Craig, D.; Almagri, A.F.; Anderson, J.K.

    1997-06-01

    We report an increase in particle confinement with plasma biasing in a reversed field pinch. Miniature plasma sources are used as electrodes to negatively bias the plasma at the edge (r/a ∼ 0.9). Particle content increases and H α radiation decreases upon application of bias and global particle confinement roughly doubles as a result. Measurements of plasma potential, impurity flow, and floating potential fluctuations indicate that strong flows are produced and that electrostatic fluctuations are reduced

  6. Translation of field-reversed configurations in the FRX C/T experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.

    1984-01-01

    One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device

  7. Translation of field-reversed configurations in the FRX C/T experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rej, D.J.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Milroy, R.D.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    One of the unique features inherent to compact toroids is the potential ability to translate the plasma along its geometric axis. CT translation has proven useful in reactor design studies, and has been the focus of several experimental investigations. In this paper, we report on the initial results from translation experiments performed with the field-reversed configuration (FRC) plasmas generated in the FRX-C/T device.

  8. Final report for the field-reversed configuration power plant critical-issue scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.

    2001-03-01

    This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.

  9. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  10. Kink stability of a field-reversed ion layer in a background plasma

    International Nuclear Information System (INIS)

    Ishida, A.; Sudan, R.N.; Rosenbluth, M.N.; Engquist, M.G.

    1986-01-01

    By means of the two-fluid energy principle, the kink stability boundary of a field-reversed ion layer of arbitrary thickness immersed in a dense low-temperature background plasma is investigated theoretically. This system is found to have a stability window against kinks. The dependence of the kink stability regime on the equilibrium properties of the system is also shown. In the thin layer limit, a comparison is made between the previous theories and the present theory

  11. The reversal of the Sun’s magnetic field in cycle 24

    Directory of Open Access Journals (Sweden)

    Mordvinov A.V.

    2016-03-01

    Full Text Available Analysis of synoptic data from the Vector Spectromagnetograph (VSM of the Synoptic Optical Long-term Investigations of the Sun (SOLIS and the NASA/NSO Spectromagnetograph (SPM at the NSO/Kitt Peak Vacuum Telescope facility shows that the reversals of solar polar magnetic fields exhibit elements of a stochastic process, which may include the development of specific patterns of emerging magnetic flux, and the asymmetry in activity between Northern and Southern hemispheres. The presence of such irregularities makes the modeling and prediction of polar field reversals extremely hard if possible. In a classical model of solar activity cycle, the unipolar magnetic regions (UMRs of predominantly following polarity fields are transported polewards due to meridional flows and diffusion. The UMRs gradually cancel out the polar magnetic field of the previous cycle, and rebuild the polar field of opposite polarity setting the stage for the next cycle. We show, however, that this deterministic picture can be easily altered by the developing of a strong center of activity, or by the emergence of an extremely large active region, or by a ‘strategically placed’ coronal hole. We demonstrate that the activity occurring during the current cycle 24 may be the result of this randomness in the evolution of the solar surface magnetic field.

  12. Effects of Anisotropic Thermal Conductivity in Magnetohydrodynamics Simulations of a Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.

  13. Electrical design of a high current density air-core reversed-field pinch ''ZTP''

    International Nuclear Information System (INIS)

    Reass, W.A.; Cribble, R.F.; Melton, J.G.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  14. Ohm close-quote s law for plasmas in reversed field pinch configuration

    International Nuclear Information System (INIS)

    Martines, E.; Vallone, F.

    1997-01-01

    An analytical relationship between current density and applied electric field in reversed field pinch (RFP) plasmas has been derived in the framework of the kinetic dynamo theory, that is assuming a radial field-aligned momentum transport caused by the magnetic field stochasticity. This Ohm close-quote s law yields current density profiles with a poloidal current density at the edge which can sustain the magnetic field configuration against resistive diffusion. The dependence of the loop voltage on plasma current and other plasma parameters for RFP experiments has been obtained. The results of the theoretical work have been compared with experimental data from the RFX experiment, and a good agreement has been found. copyright 1997 The American Physical Society

  15. Electrical design of a high current density air-core reversed-field pinch ZTP

    International Nuclear Information System (INIS)

    Reass, W.A.; Melton, J.G.; Gribble, R.F.

    1983-01-01

    This paper describes the electrical design of a small, high current density (10 MA/m 2 ) toroidal reversed-field Z-Pinch (RFP) presently being constructed at Los Alamos. Special purpose magnetic field programs were used to calculate self and mutual inductances for the poloidal field windings. The network analysis program MINI-SCEPTRE was then used to predict plasma current, including the interaction between toroidal and poloidal field circuits, as described by the Bessel function model for RFP's. Using these programs, coil geometry was obtained for minimal field errors and the pulse power systems were optimized to minimize equilibrium control power. Results of computer modeling and implementation of the electrical circuits are presented

  16. Measurement of core velocity fluctuations and the dynamo in a reversed-field pinch

    International Nuclear Information System (INIS)

    Den Hartog, D.J.; Craig, D.; Fiksel, G.; Fontana, P.W.; Prager, S.C.; Sarff, J.S.; Chapman, J.T.

    1998-01-01

    Plasma flow velocity fluctuations have been directly measured in the high temperature magnetically confined plasma in the Madison Symmetric Torus (MST) Reversed-Field Pinch (RFP). These measurements show that the flow velocity fluctuations are correlated with magnetic field fluctuations. This initial measurement is subject to limitations of spatial localization and other uncertainties, but is evidence for sustainment of the RFP magnetic field configuration by the magnetohydrodynamic (MHD) dynamo. Both the flow velocity and magnetic field fluctuations are the result of global resistive MHD modes of helicity m = 1, n = 5--10 in the core of MST. Chord-averaged flow velocity fluctuations are measured in the core of MST by recording the Doppler shift of impurity line emission with a specialized high resolution and throughput grating spectrometer. Magnetic field fluctuations are recorded with a large array of small edge pickup coils, which allows spectral decomposition into discrete modes and subsequent correlation with the velocity fluctuation data

  17. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMFo)

    International Nuclear Information System (INIS)

    Glasser, A.H.; Cohen, S.A.

    2001-01-01

    The trajectories of individual electrons are studied numerically in a 3D, prolate, FRC [field-reversed configuration] equilibrium magnetic geometry with added small-amplitude, slowly rotating, odd-parity magnetic fields (RMFos). RMFos cause electron heating by toroidal acceleration near the O-point line and by field-parallel acceleration away from it, both followed by scattering from magnetic-field inhomogeneities. Electrons accelerated along the O-point line move antiparallel to the FRC's current and attain average toroidal angular speeds near that of the RMFo, independent of the sense of RMFo rotation. A conserved transformed Hamiltonian, dependent on electron energy and RMFo sense, controls electron flux-surface coordinate

  18. Poloidal field system design for the ZT-H reversed field pinch experiment

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Linton, T.W.; Reass, W.R.

    1983-01-01

    This report discusses each of the following areas: (1) equilibrium specification, (2) the equilibrium winding, (3) the magnetizing winding, (4) numerical poloidal field system analysis, (5) coil cross section, turns, minimum field error, (6) coil stresses and cooling, (7) the upper structure, (8) the loads, (9) boundary conditions and method of analysis, and (10) design description

  19. END effects on the n = 2 rotational instability in the reversed field theta-pinch

    International Nuclear Information System (INIS)

    Aso, Y.; Wu, Ch.; Himeno, S.; Hirano, K.

    1981-07-01

    It is observed that n = 2 rotational mode which appears in the field reversed configuration created by a theta-pinch can be stabilized if the ejected plasmas from the ends are guided out to the far ends of the apparatus by long axial solenoidal fields. This is understood from the fact that endshorting becomes no longer possible before the ejecting plasma tips reach to the ends. Measurement of plasma rotations just outside the separatrix suggests that both preferential diffusion loss and endshorting play a very important role for the n = 2 mode. (author)

  20. The separatrix radius measurement of field-reversed configuration plasma in FRX-L

    International Nuclear Information System (INIS)

    Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.

    2004-01-01

    Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  1. Alpha effect of Alfven waves and current drive in reversed field pinches

    International Nuclear Information System (INIS)

    Litwin, C.; Prager, S.C.

    1997-10-01

    Circularly polarized Alfven waves give rise to an α-dynamo effect that can be exploited to drive parallel current. In a open-quotes laminarclose quotes magnetic the effect is weak and does not give rise to significant currents for realistic parameters (e.g., in tokamaks). However, in reversed field pinches (RFPs) in which magnetic field in the plasma core is stochastic, a significant enhancement of the α-effect occurs. Estimates of this effect show that it may be a realistic method of current generation in the present-day RFP experiments and possibly also in future RFP-based fusion reactors

  2. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.; Hokin, S.; Watts, C.; Mattor, N.

    1992-01-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus reversed-field pinch with a five channel charge exchange analyzer. The ion temperature, T i ∼ 200 eV for I = 350 kA, increases by as much as 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5--5 MHz were also measured. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion gyro-orbit scales

  3. Numerical studies of active current profile control in the reversed-field pinch

    International Nuclear Information System (INIS)

    Dahlin, J-E; Scheffel, J; Anderson, J K

    2007-01-01

    Quenching of the reversed-field pinch (RFP) dynamo is observed in numerical simulations using current profile control. A novel algorithm employing active feedback of the dynamo field has been utilized. The quasi-steady state achieved represents an important improvement as compared with earlier numerical work and may indicate a direction for the design of future experiments. Both earlier and the novel schemes of feedback control result in quasi-single helicity states. The energy confinement time and poloidal beta are observed to be substantially increased, as compared with the conventional RFP, in both the cases. Different techniques for experimental implementation are discussed

  4. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  5. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    Science.gov (United States)

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  6. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  7. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  8. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  9. Effects of the resistivity profile on the formation of a reversed configuration and single helicity states in compressible simulations of the reversed-field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.

    2013-01-01

    Compressible magnetohydrodynamics simulations of the reversed-field pinch (RFP) are presented. Previous simulations of the RFP, including density and pressure evolution, showed that a stationary state with a reversed toroidal magnetic field could not be obtained, contrary to the results produced with numerical codes neglecting density and pressure dynamics. The simulations described in the present paper show that including density and pressure evolution, a stationary RFP configuration can be obtained if the resistivity has a radial profile steeply increasing close to the wall. Such resistivity profile is more realistic than a uniform resistivity, since the temperature at the wall is lower than in the plasma core

  10. Temperature evolution in a magnetohydrodynamics simulation of a reversed-field pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    The temperature evolution in a magnetohydrodynamics (MHD) simulation of a reversed-field pinch (RFP) is investigated including thermal conductivity. For numerical reasons, an isotropic thermal conductivity is used, even though in a RFP plasma the parallel conductivity is much larger than the perpendicular one so that magnetic field lines tend to become isothermal. The system shows alternating multiple helicity states and quasi-single helicity states. Single-helical-axis states are formed when the amplitude of the dominant mode is above a determined threshold, as observed in experiments. The relation between heat transport and magnetic field topology that is observed in RFP experiments cannot be found in the simulation, since thermal conductivity is independent of the magnetic field. This difficulty should be taken into account in the numerical investigation of the RFP dynamics. In this paper, the first description of the temperature evolution in a compressible MHD simulation of a RFP is given.

  11. Compact toroid formation using barrier fields and controlled reconnection in the TRX-1 field reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Armstrong, W.T.

    1982-01-01

    TRX-1 is a new 20 cm diameter, 1-m long field reversed theta pinch with a magnetic field swing of 10 kG in 3 μsec. It employs z discharge preionization and octopole barrier fields to maximize flux trapping on first half cycle operation. Cusp coils are used at the theta pinch ends to delay reconnection and fast mirror coils are used to trigger reconnection at a time designed to maximize axial heating efficiency and toroid lifetime. These controls are designed to study toroid formation methods which are claimed to be especially efficient by Russian experimenters. Studies have been conducted on flux trapping efficiency, triggered reconnection, and equilibrium and lifetime

  12. Possible relationship between the Earth’s rotation variations and geomagnetic field reversals over the past 510 Myr

    Directory of Open Access Journals (Sweden)

    Igor Gil Pacca

    2015-04-01

    Full Text Available The Earth’s rotation can change as a result of several internal and external processes, each of which is at a different timescale. Here, we present some possible connections between the Earth’s rotation variations and the geomagnetic reversal frequency rates over the past 120 Myr. In addition, we show the possible relationship between the geomagnetic field reversal frequency and the δ18O oscillations. Because the latter reflects the glacial and interglacial periods, we hypothesize that it can be used as a possible indicator to explain the length of day (LOD variations and consequently the reversal field frequency over the past 510 Myr. Therefore, our analysis suggests that the relationships between the geomagnetic reversal frequency rates and the Earth’s rotation changes during the Phanerozoic. However, more reversal data are required for periods before the KRS to strengthen the perspective of using the geomagnetic reversal data as a marker for the LOD variations through geological times.

  13. A Statistical Model of the Fluctuations in the Geomagnetic Field from Paleosecular Variation to Reversal

    Science.gov (United States)

    Camps; Prevot

    1996-08-09

    The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.

  14. The effects of field reversal on the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Hutchinson, I.H.; LaBombard, B.; Goetz, J.A.; Lipschultz, B.; McCracken, G.M.; Snipes, J.A.; Terry, J.L.

    1995-01-01

    Imbalances between the inboard and outboard legs of the single null divertor in tokamak Alcator C-Mod are observed to reverse when the direction of the toroidal field is reversed. These imbalances are measured by embedded probes in the target plates, tomographic reconstructions of bolometry and line radiation, and visible imaging. Density imbalances of about a factor of ten at the targets are observed at moderate density, decreasing as the density is raised until they are almost balanced. The data indicate that the electron pressure is not imbalanced, thus arguing against momentum imbalance as the cause of these drift-induced effects. Instead, power flux imbalance caused by E r ''and'' B convection, and enhanced by radiation, is suggested as the underlying cause. (Author)

  15. Permutation entropy and statistical complexity in characterising low-aspect-ratio reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Onchi, T; Fujisawa, A; Sanpei, A; Himura, H; Masamune, S

    2017-01-01

    Permutation entropy and statistical complexity are measures for complex time series. The Bandt–Pompe methodology evaluates probability distribution using permutation. The method is robust and effective to quantify information of time series data. Statistical complexity is the product of Jensen–Shannon divergence and permutation entropy. These physical parameters are introduced to analyse time series of emission and magnetic fluctuations in low-aspect-ratio reversed-field pinch (RFP) plasma. The observed time-series data aggregates in a region of the plane, the so-called C – H plane, determined by entropy versus complexity. The C – H plane is a representation space used for distinguishing periodic, chaos, stochastic and noisy processes of time series data. The characteristics of the emissions and magnetic fluctuation change under different RFP-plasma conditions. The statistical complexities of soft x-ray emissions and magnetic fluctuations depend on the relationships between reversal and pinch parameters. (paper)

  16. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-01-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases. (author)

  17. Kaon Condensation in Neutron Stars and High Density Behaviour of Nuclear Symmetry Energy

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1999-04-01

    We study the influence of a high density behaviour of the nuclear symmetry energy on a kaon condensation in neutron stars. We find that the symmetry energy typical for several realistic nuclear potentials, which decreases at high densities, inhibits kaon condensation for weaker kaon-nucleon couplings at any density. There exists a threshold coupling above which the kaon condensate forms at densities exceeding some critical value. This is in contrast to the case of rising symmetry energy, as e.g. for relativistic mean field models, when the kaon condensate can form for any coupling at a sufficiently high density. Properties of the condensate are also different in both cases

  18. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  19. Collisional tearing in a field-reversed sheet pinch assuming nonparallel propagation

    International Nuclear Information System (INIS)

    Quest, K.B.; Coroniti, F.V.

    1985-01-01

    We examine the linear stability properties of the collisional tearing mode in a reversed-field sheet pinch assuming that the wave vector is not parallel to B, where B is the equilibrium magnetic field. We show that pressure balance in the direction of the equilibrium current requires a nonzero perturbed current component deltaJ/sub z/ that is driven toward tyhe center of the pinch. At the center of the pinch, deltaJ/sub z/ goes to zero, and momentum is balanced by coupling to the ion-acoustic mode. In order to achieve current closure, a large perturbed field-aligned current is generated that is strongly localized about the dissipative tearing layer. The relation of this work to the collisionless case is discussed

  20. Role of anisotropic thermal conductivity in the reversed-field pinch dynamics

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2011-01-01

    Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.

  1. Research on external flow field of a car based on reverse engineering

    Science.gov (United States)

    Hu, Shushan; Liu, Ronge

    2018-05-01

    In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.

  2. Conceptual design for an air core 2 meg-amp reversed field experiment

    International Nuclear Information System (INIS)

    Hammer, C.F.

    1983-01-01

    The Los Alamos CTR Division is involved in the conceptual design of a next phase Reversed Field Pinch experiment. The paper will discuss, in general, some of the physics questions that the experiment will address. Also in more detail it will discuss the engineering parameters and the possible hardware design solutions. The experiment is designed to produce a plasma current of about 2 MA which can be sustained for about 200 ms. The electrical energy for the system is provided by a large motor generator set. An inductive energy store is used to drive the magnetizing and poloidal field windings. A capacitor bank provides the energy for the toroidal field windings. The current in both circuits is maintained by using SCR controlled transformer rectifiers

  3. Conceptual design for an AIR CORE 2 MEG-AMP Reversed field experiment

    International Nuclear Information System (INIS)

    Hammer, C.F.

    1983-01-01

    The Los Alamos CTR Division is involved in the conceptual design of a next phase Reversed Field Pinch experiment. The paper will discuss, in general, some of the physics questions that the experiment will address. Also in more detail it will discuss the engineering parameters and the possible hardware design solutions. The experiment is designed to produce a plasma current of about 2 MA which can be sustained for about 200 ms. The electrical energy for the system is provided by a large motor generator set. An inductive energy store is used to drive the magnetizing and poloidal field windings. A capacitor bank provides the energy for the toroidal field windings. The current in both circuits is maintained by using SCR controlled transformer rectifiers

  4. Edge-plasmas and wall protection in RFPs [Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.; Krakowski, R.A.

    1988-01-01

    The Reverse-Field Pinch (RFP) has the ability to operate as a compact, moderate-to-high beta, high-power-density system. A compact system requires careful control of the particle and heat fluxes impinging on plasma-facing components. A strongly recycling, toroidal-field open divertor combined with a highly radiating (>90% of plasma heating power) core plasma is required. An open divertor configuration locates the plate near the field null to take advantage of the flux expansion and minimum poloidal asymmetries to minimize peak heat fluxes. The physics and engineering requirements are quantitatively discussed for an evolutionary sequence of impurity/ash-control schemes for AT-40M (0.4 MA) → ZT-P (0.08 MA) → ZTH (2-4 MA) → FTF/RFP (10 MA) → TITAN (18 MA). 13 refs., 5 figs., 2 tabs

  5. Tilt stability and compression heating studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.

    1990-01-01

    The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs

  6. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    Science.gov (United States)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  7. Fusion core start-up, ignition, and burn simulations of reversed-field pinch (RFP) reactors

    International Nuclear Information System (INIS)

    Chu, Y.Y.

    1988-01-01

    A transient reactor simulation model is developed to investigate and simulate the start-up, ignition, and burn of a reversed-field pinch reactor. The simulation is based upon a spatially averaged plasma balance model with field profiles obtained from MHD quasi-equilibrium analysis. Alpha particle heating is estimated from Fokker-Planck calculations. The instantaneous plasma current is derived from a self-consistent circuit analysis for plasma/coil/eddy current interactions. The simulation code is applied to the TITAN RFP reactor design which features a compact, high-power-density reversed-field pinch fusion system. A contour analysis is performed using the steady-state global plasma balance. The results are presented with contours of constant plasma current. A saddle point is identified in the contour plot which determined the minimum value of plasma current required to achieve ignition. In the simulations of the TITAN RFP reactor, the OH-driven super-conducting EF coils are found to deviate from the required equilibrium values as the induced plasma current increases. A set of basic results from the simulation of TITAN RFP reactor yield a picture of RFP plasma operation in a reactor. Investigations of eddy currents are also presented and have very important in reactor design

  8. Toroidal fusion reactor design based on the reversed-field pinch

    International Nuclear Information System (INIS)

    Hagenson, R.L.

    1978-07-01

    The toroidal reversed-field pinch (RFP) achieves gross equilibrium and stability with a combination of high shear and wall stabilization, rather than the imposition of tokamak-like q-constraints. Consequently, confinement is provided primarily by poloidal magnetic fields, poloidal betas as large as approximately 0.58 are obtainable, the high ohmic-heating (toroidal) current densities promise a sole means of heating a D-T plasma to ignition, and the plasma aspect ratio is not limited by stability/equilibrium constraints. A reactor-like plasma model has been developed in order to quantify and to assess the general features of a power system based upon RFP confinement. An ''operating point'' has been generated on the basis of this plasma model and a relatively detailed engineering energy balance. These results are used to generate a conceptual engineering model of the reversed-field pinch reactor (RFPR) which includes a general description of a 750 MWe power plant and the preliminary consideration of vacuum/fueling, first wall, blanket, magnet coils, iron core, and the energy storage/transfer system

  9. Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

    Directory of Open Access Journals (Sweden)

    Thomas Reichert

    2017-05-01

    Full Text Available We present magnetoresistive organic field-effect transistors featuring ultrasmall magnetic field-effects as well as a sign reversal. The employed material systems are coevaporated thin films with different compositions consisting of the electron donor 2,2',7,7'-tetrakis-(N,N-di-p-methylphenylamino-9,9'-spirobifluorene (Spiro-TTB and the electron acceptor 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN. Intermolecular charge transfer between Spiro-TTB and HAT-CN results in a high intrinsic charge carrier density in the coevaporated films. This enhances the probability of bipolaron formation, which is the process responsible for magnetoresistance effects in our system. Thereby even ultrasmall magnetic fields as low as 0.7 mT can influence the resistance of the charge transport channel. Moreover, the magnetoresistance is drastically influenced by the drain voltage, resulting in a sign reversal. An average B0 value of ≈2.1 mT is obtained for all mixing compositions, indicating that only one specific quasiparticle is responsible for the magnetoresistance effects. All magnetoresistance effects can be thoroughly clarified within the framework of the bipolaron model.

  10. A study of reversed field pinch experiments using a new programming mode

    International Nuclear Information System (INIS)

    Kita, Y.

    1979-08-01

    A new mode of external-field programming for setting up a reversed-field pinch (RFP) is tested in STP-1. It involves creating an initial plasma with a screw pinch followed by external-field reversal. The program is done carefully so as to satisfy the equilibrium relation with respect to the minor radius throughout the setting-up phase. Increase of the trapped flux in the plasma by a factor of two is consequently attained, as compared with previous usual programming mode. Actually, at a plasma current of 58 kA, a stable operation time of 13 μsec is achieved with a density of 3.5 x 10 15 cm -3 and a temperature of 20 eV. After 13 μsec stable operation time, the plasma is suddenly crashed down by a violent MHD instability. One dimensional stability analysis based on ideal MHD model is applied to the experimental results. It is found that the instability is m = 1 resistive tearing mode under the influence of viscosity. Using the new programming high current operation at 110 kA is done and results in higher plasma temperature and density of 40 eV and 4.5 x 10 15 cm -3 , respectively. The duration of stable discharge, however, is limited to about 10 μsec, in spite of the expected longer confinement time at the higher temperature. (author)

  11. Numerical modeling of formation of helical structures in reversed-field-pinch plasma

    International Nuclear Information System (INIS)

    Mizuguchi, N.; Ichiguchi, K.; Todo, Y.; Sanpei, A.; Oki, K.; Masamune, S.; Himura, H.

    2012-11-01

    Nonlinear three-dimensional magnetohydrodynamic(MHD) simulations have been executed for the low-aspect-ratio reversed-field-pinch (RFP) plasma to reveal the physical mechanism of the formation processes of helical structures. The simulation results show a clear formation of n=4 structure as a result of dominant growth of resistive modes, where n represents the toroidal mode number. The resultant relaxed helical state consists of a unique bean-shaped and hollow pressure profile in the poloidal cross section for both cases of resonant and non-resonant triggering instability modes. The results are partially comparable to the experimental observations. The physical mechanisms of those processes are examined. (author)

  12. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    Science.gov (United States)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2005-08-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E × B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport.

  13. Reynolds and Maxwell stress measurements in the reversed field pinch experiment Extrap-T2R

    International Nuclear Information System (INIS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsaaker, H.; Cecconello, M.; Drake, J.R.

    2005-01-01

    The complete Reynolds stress (RS) has been measured in the edge region of the Extrap-T2R reversed field pinch experiment. The RS exhibits a strong gradient in the region where a high E x B shear takes place. Experimental results show this gradient to be almost entirely due to the electrostatic contribution. This has been interpreted as experimental evidence of flow generation via turbulence mechanism. The scales involved in flow generation are deduced from the frequency decomposition of RS tensor. They are found related to magnetohydrodynamic activity but are different with respect to the scales responsible for turbulent transport

  14. Characteristics of a large reversed field pinch machine, TPE-RX

    International Nuclear Information System (INIS)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K.; Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K.; Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K.

    1998-01-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  15. Characteristics of a large reversed field pinch machine, TPE-RX

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K. [Electrotechnical Lab., Tsukuba-shi, Ibaraki (Japan); Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K. [Mitsubishi Electric Corp. (Japan); Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K. [Mitsubishi Heavy Industries Ltd. (Japan)

    1998-07-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  16. Data-acquisition system of the reversed field pinch device REPUTE-1

    International Nuclear Information System (INIS)

    Tsuzuki, N.; Aoki, H.; Shinohara, H.; Toyama, H.; Morikawa, J.

    1988-01-01

    The new, compact data-acquisition system of the reversed field pinch device, REPUTE-1, is reported. Its distinctive feature is high flexibility and easy handling. The interface between the computer and measurement devices is CAMAC. The computer and the CAMAC devices are connected to a CAMAC byte serial highway that transmits setup parameters and acquisition data. The computer carries out setup of CAMAC devices and data acquisition automatically by use of CAMAC parameters and the acquisition data base. The maintenance tools for the data base are also provided. The computer system, which consists of a ''TOSBAC DS-600,'' has been in operation for REPUTE-1 since 1985

  17. Velocity-space particle loss in field-reversed theta pinches

    International Nuclear Information System (INIS)

    Hsiao, M.Y.

    1983-01-01

    A field-reversed theta pinch (FRTP) is a compact device for magnetic fusion. It has attracted much attention in recent years since encouraging experimental results have been obtained. However, the definite causes for the observed particle loss rate and plasma rotation are not well known. In this work, we study the velocity-space particle loss (VSPL), i.e., particle loss due to the existence of a loss region in velocity space, in FRTP's in order to have a better understanding about the characteristics of this device

  18. Tearing relaxation and the globalization of transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren; Barnes, D. C.

    2009-01-01

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  19. The reversed-field-pinch (RFP) fusion neutron source: A conceptual design

    International Nuclear Information System (INIS)

    Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Werley, K.A.

    1989-01-01

    The conceptual design of an ohmically heated, reversed-field pinch (RFP) operating at ∼5-MW/m 2 steady-state DT fusion neutron wall loading and ∼124-MW total fusion power is presented. These results are useful in projecting the development of a cost effective, low input power (∼206 MW) source of DT neutrons for large-volume (∼10 m 3 ), high-fluence (3.4 MW yr/m 2 ) fusion nuclear materials and technology testing. 19 refs., 15 figs., 9 tabs

  20. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    International Nuclear Information System (INIS)

    Heidrich, J.E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10 16 cm -3 and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10 16 cm -3 and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil

  1. How important is the spatiotemporal structure of a rainfall field when generating a streamflow hydrograph? An investigation using Reverse Hydrology

    Science.gov (United States)

    Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick

    2017-04-01

    the UK of a similar size would only have data available for 1 to 3 raingauges. The high density of the Brue raingauge network allows a good estimate of the 'True' catchment rainfall to be made and compared with data from an individual raingauge as if that was the only data available. In addition the rainfall from each raingauge is compared with rainfall inferred from streamflow using data from the selected individual raingauge, and also inferred from the full catchment network. The stochastic structure of the rainfall from all of these datasets is compared using a combination of traditional statistical measures, i.e., the first 4 moments of rainfall totals and its residuals; plus the number, length and distribution of wet and dry periods; rainfall intensity characteristics; and their ability to generate the observed stream hydrograph. Reverse Hydrology, which utilises information present in both the input rainfall and the output hydrograph, has provided a method of investigating the quality of the information each gauge adds to the catchment-average (Kretzschmar et al 2016 Procedia Eng.). Further, it has been used to ascertain how important reproducing the detailed rainfall structure really is, when used for flow prediction.

  2. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  3. Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge

    KAUST Repository

    Van Der Merwe, Riaan; Hammes, Frederik A.; Lattemann, Sabine; Amy, Gary L.

    2014-01-01

    The discharge of concentrate and other process waters from seawater reverse osmosis (SWRO) plant operations into the marine environment may adversely affect water quality in the near-field area surrounding the outfall. The main concerns

  4. The magnetic source imaging of pattern reversal stimuli of various visual fields

    International Nuclear Information System (INIS)

    Zhang Shuqian; Ye Yufang; Sun Jilin; Wu Jie; Jia Xiuchuan; Li Sumin; Wu Jing; Zhao Huadong; Liu Lianxiang; Wu Yujin

    2006-01-01

    Objective: To have acknowledgement of characteristics of normal volunteers visual evoked fields about full field, vertical half field and quadrant field and their dipole location by magnetoencephalography. Methods: The visual evoked fields of full field, vertical half field and quadrant field were detected with 13 subjects. The latency, dipole strength and dipoles' location on x, y and z axis were analyzed. The exact locations of the dipoles were detected by overlapping on MR images. Results: The isocontour map of M100 of full field stimulation demonstrated two separate sources. The two M100 dipoles had same peak latency and different strength. And for vertical half field and quadrant field stimulation, evoked magnetic fields of M100 distributed contralateral to the stimulated side. The M100 dipoles on the z-axis to the lower quadrant field stimulation were located significantly higher than those to the upper quadrant field stimulation. The Z value median of left upper quadrant was 49.6 (35.1-72.8) mm. The Z value median of left lower quadrant was 53.5 (44.8-76.3) mm. The different of two left quadrant medians, 3.9 mm, was significant (P<0.05). The Z value median of right upper quadrant was 40.0 (34.8-44.6) mm. The Z value median of right lower quadrant was 53.8 (40.6-61.3) mm. The different of two right quadrant medians, 13.8 mm, was also significant (P<0.05). Although each of the visual evoked fields waveforms and dipole locations demonstrated large intra- and inter-individual variations, the dipole of M100 was mainly located at area Brodmann 17, which includes superior lingual gyrus, posterior cuneus-lingual gyrus and inferior cuneus gyms. Conclusion: The M100 of visual evoked fields of pattern reversal stimulation is mainly generated by the neurons of striate cortex of contralateral to the stimulated side, which is at the lateral bottom of the calcarine fissure. (authors)

  5. Electric-field-controlled spin reversal in a quantum dot with ferromagnetic contacts

    Science.gov (United States)

    Hauptmann, J. R.; Paaske, J.; Lindelof, P. E.

    2008-05-01

    Manipulation of the spin states of a quantum dot by purely electrical means is a highly desirable property of fundamental importance for the development of spintronic devices such as spin filters, spin transistors and single spin memories as well as for solid-state qubits. An electrically gated quantum dot in the Coulomb blockade regime can be tuned to hold a single unpaired spin-1/2, which is routinely spin polarized by an applied magnetic field. Using ferromagnetic electrodes, however, the quantum dot becomes spin polarized by the local exchange field. Here, we report on the experimental realization of this tunnelling-induced spin splitting in a carbon-nanotube quantum dot coupled to ferromagnetic nickel electrodes with a strong tunnel coupling ensuring a sizeable exchange field. As charge transport in this regime is dominated by the Kondo effect, we can use this sharp many-body resonance to read off the local spin polarization from the measured bias spectroscopy. We demonstrate that the exchange field can be compensated by an external magnetic field, thus restoring a zero-bias Kondo resonance, and we demonstrate that the exchange field itself, and hence the local spin polarization, can be tuned and reversed merely by tuning the gate voltage.

  6. Star tracker operation in a high density proton field

    Science.gov (United States)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  7. High density submicron magnetoresistive random access memory (invited)

    Science.gov (United States)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  8. Neutron shielding properties of a borated high-density glass

    Directory of Open Access Journals (Sweden)

    Saeed Aly Abdallah

    2017-01-01

    Full Text Available The neutron shielding properties of a borated high density glass system was characterized experimentally. The total removal macroscopic cross-section of fast neutrons, slow neutrons as well as the linear attenuation coefficient of total gamma rays, primary in addition to secondary, were measured experimentally under good geometric condition to characterize the attenuation properties of (75-x B2O3-1Li2O-5MgO-5ZnO-14Na2O-xBaO glassy system. Slabs of different thicknesses from the investigated glass system were exposed to a collimated beam of neutrons emitted from 252Cf and 241Am-Be neutron sources in order to measure the attenuation properties of fast and slow neutrons as well as total gamma rays. Results confirmed that barium borate glass was suitable for practical use in the field of radiation shielding.

  9. Plasma performance and scaling laws in the RFX-mod reversed-field pinch experiment

    International Nuclear Information System (INIS)

    Innocente, P.; Alfier, A.; Canton, A.; Pasqualotto, R.

    2009-01-01

    The large range of plasma currents (I p = 0.2-1.6 MA) and feedback-controlled magnetic boundary conditions of the RFX-mod experiment make it well suited to performing scaling studies. The assessment of such scaling, in particular those on temperature and energy confinement, is crucial both for improving the operating reversed-field pinch (RFP) devices and for validating the RFP configuration as a candidate for the future fusion reactors. For such a purpose scaling laws for magnetic fluctuations, temperature and energy confinement have been evaluated in stationary operation. RFX-mod scaling laws have been compared with those obtained from other RFP devices and numerical simulations. The role of the magnetic boundary has been analysed, comparing discharges performed with different active control schemes of the edge radial magnetic field.

  10. Symmetric dynamic behaviour of a superconducting proximity array with respect to field reversal

    International Nuclear Information System (INIS)

    Lankhorst, M; Poccia, N

    2017-01-01

    As the complexity of strongly correlated systems and high temperature superconductors increases, so does also the essential complexity of defects found in these materials and the complexity of the supercurrent pathways. It can be therefore convenient to realize a solid-state system with regular supercurrent pathways and without the disguising effects of disorder in order to capture the essential characteristics of a collective dynamics. Using a square array of superconducting islands placed on a normal metal, we observe a state in which magnetic field-induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion interaction. In this system a dynamic vortex Mott insulator transition has been previously observed. In this work, we will show the symmetric dynamic behaviour with respect to field reversal and we will compare it with the asymmetric behaviour observed at the dynamic vortex Mott transition. (paper)

  11. Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma

    Science.gov (United States)

    Rostoker, Norman; Binderbauer, Michl

    2003-12-16

    A system and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions they are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.

  12. Field-reversed configuration produced by a linear theta-pinch, Tupa-1

    International Nuclear Information System (INIS)

    Kayama, M.E.; Boeckelmann, H.K.; Sakanaka, P.H.; Machida, M.

    1987-01-01

    The formation of field reversed configuration, FRC, in one meter mirrorless linear theta-pinch device Tupa-I was observed. This configuration was studied during the first half magnetic cycle of ringing main bank discharge using magnetic probes. The separatrix radius by the exclude flux probe and the ion temperature by visible spectroscopy were measured. The plasma dynamics was observed by the image converter camera. A clear indication of the formation of FRC due to reconnection of the antiparallel bias to the main field and a fast reconnection, less than 0.2 microsec, that is explained in terms of forced reconnection driven by the Kruskal-Schwarzschild instability, are also observed. (author) [pt

  13. Thermal instabilities in the edge region of reversed-field pinches

    International Nuclear Information System (INIS)

    Goedert, J.; Mondt, J.P.

    1984-04-01

    Thermal stability of the edge region of reversed-field pinch configurations is analyzed within the context of a two-fluid model. Two major sources of instability are identified in combination with a parallel electric field: either an electron temperature gradient and/or a density gradient that leads to rapid growth (of several to many ohmic heating rates) over a region of several millimeters around the mode-rational surfaces in the edge region. The basic signature of both instabilities is electrostatic. In the case of the density gradient mode, the signature relies on the effects of electron compressibility, whereas the temperature gradient mode can be identified as the current-convective instability by taking the limit of zero diamagnetic drift, density gradient, thermal force, drift heat flux, and electron compressibility

  14. A comprehensive theory of the equilibria in a tokamak and a reversed field pinch

    International Nuclear Information System (INIS)

    Chiyoda, Katsuji

    1996-01-01

    The equilibrium configuration of a tokamak is analysed by the equilibrium equations derived for analysing a reversed field pinch (RFP). The expressions of the magnetic field and the toroidal shift in the internal plasma region and the external vacuum region are obtained. The expressions in the vacuum region become the Shafranov's expressions, when the plasma-center coordinates is used. Discontinuities of the equilibrium quantities are considered. It is concluded that the equilibrium equations are applicable also to the tokamak plasma and that the difference of the equilibria between the tokamak and the RFP stems from the choices of the pressure and the toroidal current function. A feature of our theory is that any ordering to the safety factor is not imposed. (author)

  15. A review of the experimental and theoretical status of the reversed-field pinch

    International Nuclear Information System (INIS)

    Baker, D.A.

    1987-01-01

    This paper reviews the status of the reversed-field pinch (RFP) approach to the development of a compact nuclear fusion reactor. Two RFP papers in this conference are complementary; the first paper contains the historical origins and basic concepts concerning MHD instabilities, relaxation and RFP confinement properties as well as a discussion of future prospects of the RFP. This paper gives an overview of the status of plasma parameters of the present main RFP experiments and of the status of theory and experiment of the interesting RFP plasma phenomena of relaxation, self reversal and flux generation (these effects are often referred to as the dynamo effect). The low frequency oscillating-field current drive concept which exploits these effects is discussed. Particular emphasis is given to the theoretical results obtained from plasma simulation codes used in these active areas of study. Selected topics of recent research on the Los Alamos ZT-40M experiments are reported. The paper concludes with descriptions of the next generation Los Alamos RFP experiment ZTH, to be located in the new Confinement Physics Research Facility (CPRF) presently under construction, and the characteristics of an RFP compact reactor. 68 refs

  16. Design and development of a lower-hybrid antenna for the MST reversed field pinch

    International Nuclear Information System (INIS)

    Thomas, M.; Cekic, M.; Lovell, T.W.; Prager, S.C.; Sarff, J.S.; Uchimoto, E.

    1995-01-01

    Recent theoretical studies strongly motivated the development of a radio-frequency current drive scheme for current density gradient reduction in the outer region of a reversed field pinch. The preliminary experiments using inductive current drive indicate that such current density profile modification reduces the magnetic fluctuation amplitude and related energy and particle losses. To test the theoretical predictions and to further improve confinement in the MST, the authors are planning a series of lower-hybrid wave experiments. The initial phase is the design and optimization of a low-power antenna to study slow wave propagation in a frequency range 2--3 f LH (200--300 MHz) with parallel index of refraction n parallel ∼10. Ray-tracing calculations, for typical MST plasma parameters, indicate that such a wave will spiral radially into a target zone inside the reversal layer. The antenna consists of an array of tunable loops arranged in the poloidal direction. The design is compatible with the existing box-port openings in the MST conductive shell to prevent additional magnetic field errors associated with large portholes. Antenna vacuum characteristics are studied on a test-stand designed to approximate the geometry of the MST shell. For the initial measurements of plasma response and antenna loading, the authors designed a reduced, easily insertable, vacuum antenna structure. The results of plasma impedance measurements will be compared with the numerical modeling results and incorporated in the optimized design of the antenna for wave propagation experiments

  17. Compact Reversed-Field Pinch Reactors (CRFPR): fusion-power-core integration study

    International Nuclear Information System (INIS)

    Copenhaver, C.; Krakowski, R.A.; Schnurr, N.M.

    1985-08-01

    Using detailed two-dimensional neutronics studies based on the results of a previous framework study (LA-10200-MS), the fusion-power-core (FPC) integration, maintenance, and radio-activity/afterheat control are examined for the Compact Reversed-Field Pinch Reactor (CRFPR). While maintaining as a base case the nominal 20-MW/m 2 neutron first-wall loading design, CRFPR(20), the cost and technology impact of lower-wall-loading designs are also examined. The additional detail developed as part of this follow-on study also allows the cost estimates to be refined. The cost impact of multiplexing lower-wall-loading FPCs into a approx. 1000-MWe(net) plant is also examined. The CRFPR(20) design remains based on a PbLi-cooled FPC with pressurized-water used as a coolant for first-wall, pumped-limiter, and structural-shield systems. Single-piece FPC maintenance of this steady-state power plant is envisaged and evaluated on the basis of a preliminary layout of the reactor building. This follow-on study also develops the groundwork for assessing the feasibility and impact of impurity/ash control by magnetic divertors as an alternative to previously considered pumped-limiter systems. Lastly, directions for future, more-detailed power-plant designs based on the Reversed-Field Pinch are suggested

  18. Far-infrared laser interferometry measurements on the STP-3(M) reversed-field pinch

    International Nuclear Information System (INIS)

    Kubota, Shigeyuki; Nagatsu, Masaaki; Tsukishima, Takashige; Arimoto, Hideki; Sato, Koichi; Matsuoka, Akio.

    1993-09-01

    Far-infrared laser interferometry at 432 μm was carried out on the STP-3(M) reversed-field pinch. Measurements along two vertical chords showed a change from a parabolic-like to a flat-like electron density profile after field reversal. A density profile inversion and a correlated toroidal magnetic flux perturbation were also observed during the transition from the current rising to the current decay phase. Measurements of electron density fluctuations indicated relative fluctuation levels of ∼10% for both chords during the current rising phase and ∼5% and ∼15% during the current decay phase for the central and outer chords, respectively. Spectral analysis showed a ∼30 kHz mode consistent with poloidal mode number m=0 magnetic fluctuations, and a ∼90 kHz mode localized to the outer region of the plasma, which was strongly excited during the current decay phase and may be connected to particle and energy transport in STP-3(M). (author)

  19. High density operation on the HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Xiang Gao

    2000-01-01

    The structure of the operation region has been studied in the HT-7 superconducting tokamak, and progress on the extension of the HT-7 ohmic discharge operation region is reported. A density corresponding to 1.2 times the Greenwald limit was achieved by RF boronization. The density limit appears to be connected to the impurity content and the edge parameters, so the best results are obtained with very clean plasmas and peaked electron density profiles. The peaking factors of electron density profiles for different current and line averaged densities were observed. The density behaviour and the fuelling efficiency for gas puffing (20-30%), pellet injection (70-80%) and molecular beam injection (40-50%) were studied. The core crash sawteeth and MHD behaviour, which were induced by an injected pellet, were observed and the events correlated with the change of current profile and reversed magnetic shear. The MARFE phenomena on HT-7 are summarized. The best correlation has been found between the total input ohmic power and the product of the edge line averaged density and Z eff . HT-7 could be easily operated in the high density region MARFE-free using RF boronization. (author)

  20. Energetic electron measurements in the edge of a reversed-field pinch

    International Nuclear Information System (INIS)

    Ingraham, J.C.; Ellis, R.F.; Downing, J.N.; Munson, C.P.; Weber, P.G.; Wurden, G.A.

    1990-01-01

    The edge plasma of the ZT-40M [Fusion Technol. 8, 1571 (1985)] reversed-field pinch has been studied using a combination of three different plasma probes: a double-swept Langmuir probe, an electrostatic energy analyzer, and a calorimeter--Langmuir probe. The edge plasma has been measured both with and without a movable graphite tile limiter present nearby in the plasma. Without a limiter a fast nonthermal tail of electrons (T congruent 350 eV) is detected in the edge plasma with nearly unidirectional flow along B and having a density between 2% and 10% of the cold edge plasma (T congruent 20 eV). The toroidal sense of this fast electron flow is against the force of the applied electric field. A large power flux along B is measured flowing in the same direction as the fast electrons and is apparently carried by the fast electrons. With the limiter present the fast electrons are still detected in the plasma, but are strongly attenuated in the shadow of the limiter. The measured scrape-off lengths for both the fast electrons and the cold plasma indicate cross-field transport at the rate of, or less than, Bohm diffusion. Estimates indicate that the fast electrons could carry the reversed-field pinch current density at the edge and, from the measured transverse diffusion rates, could also account for the electron energy loss channel in ZT-40 M. The long mean-free-path kinetic nature of these fast electrons suggests that a kinetic process, rather than a magnetohydrodynamic process that is based upon a local Ohm's law formulation, is responsible for their generation

  1. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    Science.gov (United States)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.

    2006-11-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  2. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    International Nuclear Information System (INIS)

    Brunsell, P.R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J.R.; Rachlew, E.

    2006-01-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size

  3. Analysis of resistive tearing-mode in the reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Oshiyama, Hiroshi; Masamune, Sadao; Hamuro, Eitaro; Tamaki, Reiji.

    1985-01-01

    As one of the methods of confining high temperature plasma by magnetic stress, attention has been paid to reversed field pinch (RFP). This RFP is the method of maintaining plasma pressure by combining the poloidal field generated by plasma current and the toroidal field having nearly same intensity, thus forming the toroidal shape, closed magnetic surface. As the typical RFP equipment, there have been TPE-1R(M), HBTX-1A, ZT-40M and OHTE, but in order to anticipate the further development, one of the problems is the resistive instability. In this study, the critical beta value determined by the tearing mode in RFP configuration was examined by analytical and numerical calculation methods. The position of a wall required for the stability was determined by solving a second order differential equation for a radial perturbed magnetic field. The propriety of the computer code for determining the position was examined. The magnetic field configuration having a finite beta value was determined, and its stability against a tearing mode was investigated. For this judgement of the stability, the developed computer code was used. The tearing mode in a Bessel function model, the tearing mode of a finite beta value and others are described. (Kako, I.)

  4. High-density limit of quantum chromodynamics

    International Nuclear Information System (INIS)

    Alvarez, E.

    1983-01-01

    By means of a formal expansion of the partition function presumably valid at large baryon densities, the propagator of the quarks is expressed in terms of the gluon propagator. This result is interpreted as implying that correlations between quarks and gluons are unimportant at high enough density, so that a kind of mean-field approximation gives a very accurate description of the physical system

  5. High Density Metamaterials for Visible Light

    Science.gov (United States)

    2016-11-28

    longitudinal plasmons with magnetic characteristics , whose field distribution is qualitatively similar to that in m0 mode for isolated SRR structure. On...gold first and then extend the techniques to other metals for better characteristics . Bio-chemical sensors will be developed based on different split...and Discussion (1) Observation of the kinetic inductance limitation for the fundamental magnetic resonance in ultrasmall gold v-shape split ring

  6. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.; Capecchi, W.; Eilerman, S.; Nornberg, M. D.; Sarff, J. S.; Sears, S. H. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution. Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.

  7. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-07-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.

  8. Advanced feedback control methods in EXTRAP T2R reversed field pinch

    International Nuclear Information System (INIS)

    Yadikin, D.; Brunsell, P. R.; Paccagnella, R.

    2006-01-01

    Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of t d ≅10τ w is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system

  9. ZT-P: an advanced air core reversed field pinch prototype

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Buchenauer, C.J.; Burkhardt, L.C.

    1986-01-01

    The ZT-P experiment, with a major radius of 0.45 m and a minor radius of 0.07 m, was designed to prototype the next generation of reversed field pinch (RFP) machines at Los Alamos. ZT-P utilizes an air-core poloidal field system, with precisely wound and positioned rigid copper coils, to drive the plasma current and provide plasma equilibrium with intrinsically low magnetic field errors. ZT-P's compact configuration is adaptable to test various first wall and limiter designs at reactor-relevant current densities in the range of 5 to 20 MA/m 2 . In addition, the load assembly design allows for the installation of toroidal field divertors. Design of ZT-P began in October 1983, and assembly was completed in October 1984. This report describes the magnetic, electrical, mechanical, vacuum, diagnostic, data acquisition, and control aspects of the machine design. In addition, preliminary data from initial ZT-P operation are presented. Because of ZT-P's prototypical function, many of its design aspects and experimental results are directly applicable to the design of a next generation RFP. 17 refs., 47 figs

  10. Rethermalization of a field-reversed configuration plasma in translation experiments

    International Nuclear Information System (INIS)

    Himura, H.; Okada, S.; Sugimoto, S.; Goto, S.

    1995-01-01

    A translation experiment of field-reversed configuration (FRC) plasma is performed on the FIX machine [Shiokawa and Goto, Phys. Fluids B 5, 534 (1993)]. The translated FRC bounces between magnetic mirror fields at both ends of a confinement region. The plasma loses some of its axial kinetic energy when it is reflected by the magnetic mirror field, and eventually settles down in the confinement region. In this reflection process, the plasma temperature rises significantly. Such plasma rethermalization has been observed in OCT-L1 experiments [Ito et al., Phys. Fluids 30, 168 (1987)], but rarely in FRX-C/T experiments [Rej et al., Phys. Fluids 29, 852 (1986)]. It is found that the rethermalization depends on the relation between the plasma temperature and the translation velocity. The rethermalization occurs only in the case where the translation velocity exceeds the sound velocity. This result implies the rethermalization is caused by a shock wave induced within the FRC when the plasma is reflected by the magnetic mirror field. copyright 1995 American Institute of Physics

  11. Magnetized Reverse Shock: Density-fluctuation-induced Field Distortion, Polarization Degree Reduction, and Application to GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Deng Wei; Zhang Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States); Li Hui [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stone, James M., E-mail: deng@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hli@lanl.gov, E-mail: jstone@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States)

    2017-08-10

    The early optical afterglow emission of several gamma-ray bursts (GRBs) shows a high linear polarization degree (PD) of tens of percent, suggesting an ordered magnetic field in the emission region. The light curves are consistent with being of a reverse shock (RS) origin. However, the magnetization parameter, σ , of the outflow is unknown. If σ is too small, an ordered field in the RS may be quickly randomized due to turbulence driven by various perturbations so that the PD may not be as high as observed. Here we use the “Athena++” relativistic MHD code to simulate a relativistic jet with an ordered magnetic field propagating into a clumpy ambient medium, with a focus on how density fluctuations may distort the ordered magnetic field and reduce PD in the RS emission for different σ values. For a given density fluctuation, we discover a clear power-law relationship between the relative PD reduction and the σ value of the outflow. Such a relation may be applied to estimate σ of the GRB outflows using the polarization data of early afterglows.

  12. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    Science.gov (United States)

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  13. New reversing freeform lens design method for LED uniform illumination with extended source and near field

    Science.gov (United States)

    Zhao, Zhili; Zhang, Honghai; Zheng, Huai; Liu, Sheng

    2018-03-01

    In light-emitting diode (LED) array illumination (e.g. LED backlighting), obtainment of high uniformity in the harsh condition of the large distance height ratio (DHR), extended source and near field is a key as well as challenging issue. In this study, we present a new reversing freeform lens design algorithm based on the illuminance distribution function (IDF) instead of the traditional light intensity distribution, which allows uniform LED illumination in the above mentioned harsh conditions. IDF of freeform lens can be obtained by the proposed mathematical method, considering the effects of large DHR, extended source and near field target at the same time. In order to prove the claims, a slim direct-lit LED backlighting with DHR equal to 4 is designed. In comparison with the traditional lenses, illuminance uniformity of LED backlighting with the new lens increases significantly from 0.45 to 0.84, and CV(RMSE) decreases dramatically from 0.24 to 0.03 in the harsh condition. Meanwhile, luminance uniformity of LED backlighting with the new lens is obtained as high as 0.92 at the condition of extended source and near field. This new method provides a practical and effective way to solve the problem of large DHR, extended source and near field for LED array illumination.

  14. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    Science.gov (United States)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  15. Experimental studies of tearing mode and resistive wall mode dynamics in the reversed field pinch configuration

    International Nuclear Information System (INIS)

    Malmberg, Jenny-Ann

    2003-06-01

    It is relatively straightforward to establish equilibrium in magnetically confined plasmas, but the plasma is frequently susceptible to a variety of instabilities that are driven by the free energy in the magnetic field or in the pressure gradient. These unstable modes exhibit effects that affect the particle, momentum and heat confinement properties of the configuration. Studies of the dynamics of several of the most important modes are the subject of this thesis. The studies are carried out on plasmas in the reversed field pinch (RFP) configuration. One phenomenon commonly observed in RFPs is mode wall locking. The localized nature of these phase- and wall locked structures results in localized power loads on the wall which are detrimental for confinement. A detailed study of the wall locked mode phenomenon is performed based on magnetic measurements from three RFP devices. The two possible mechanisms for wall locking are investigated. Locking as a result of tearing modes interacting with a static field error and locking due to the presence of a non-ideal boundary. The characteristics of the wall locked mode are qualitatively similar in a device with a conducting shell system (TPE-RX) compared to a device with a resistive shell (Extrap T2). A theoretical model is used for evaluating the threshold values for wall locking due to eddy currents in the vacuum vessel in these devices. A good correlation with experiment is observed for the conducting shell device. The possibility of successfully sustaining discharges in a resistive shell RFP is introduced in the recently rebuilt device Extrap T2R. Fast spontaneous mode rotation is observed, resulting in low magnetic fluctuations, low loop voltage and improved confinement. Wall locking is rarely observed. The low tearing mode amplitudes allow for the theoretically predicted internal non-resonant on-axis resistive wall modes to be observed. These modes have not previously been distinguished due to the formation of wall

  16. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    Science.gov (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  17. The correlation between geomagnetic field reversals, Hawaiian volcanism, and the motion of the Pacific plate

    Directory of Open Access Journals (Sweden)

    W. Dong

    1996-06-01

    Full Text Available The correlation between geomagnetic field reversals and volcanism is investigated, according to the speculated consequence on volcanoes of the transient electric currents in the geodynamo, through Joule's heating, before and after every reversal event. We evaluate the temporal variation during the last ~ 70 Ma both of the magma emplacement rate Q(t from the Hawaii hot spot, and of the speed v(t of the Pacific plate, by means of the observed volumes of islands and seamounts along the Hawaii/Emperor Seamounts chain, and their respective radiometric datings. Results confirm expectations. A justification of the volcanic crises that lead to the generation of the large igneous provinces during the last ~ 250 Ma also emerged. We describe in detail the complex pattern of the timings of the different effects. Joule's power is generally responsible for ~ 75-80% of magmatism, and friction power only for ~ 20-25%; but, on some occasions almost ~ 100% is fuelled by friction alone. The visco-elastic coupling between lithosphere and asthenosphere results ~ 96% viscous, and ~ 4% elastic.

  18. Single-piece maintenance procedures for the TITAN reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Grotz, S.P.; Creedon, R.L.; Cooke, P.I.H.; Duggan, W.P.; Krakowski, R.A.; Najmabadi, F.; Wong, C.P.C.

    1987-01-01

    The TITAN reactor is a compact (major radius of 3.9 m and minor plasma radius of 0.6 m), high neutron wall loading (--18MW/m 2 ) fusion energy system based on the reversed-field pinch (RFP) concept. The TITAN-I fusion power core (FPC) is a lithium, self-cooled design with vanadium alloy (V-3Ti-1Si) structural material. The compact design of the TITAN fusion power core (FPC) reduces the system to a few small and relatively low mass components, making toroidal segmentation of the FPC unnecessary. A single-piece maintenance procedure in which the replaceable first wall and blanket is removed as a single unit is, therefore, possible. The TITAN FPC design provides for top access to the reactor with vertical lifts used to remove the components. The number of remote handling procedures is few and the movements are uncomplicated. The annual torus replacement requires that the reusable ohmic-heating coil set and hot-shield assembly be removed and temporarily stored in a hot cell. The used first wall and blanket assembly is drained and disconnected from the coolant supply system, then lifted to a processing room where it is cooled and prepared for Class-C waste burial. The new, pre-tested first wall and blanket assembly is then lowered into position and the removal procedure is reversed to complete the replacement process

  19. TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules.

    Science.gov (United States)

    Weishaupt, Ramon; Siqueira, Gilberto; Schubert, Mark; Tingaut, Philippe; Maniura-Weber, Katharina; Zimmermann, Tanja; Thöny-Meyer, Linda; Faccio, Greta; Ihssen, Julian

    2015-11-09

    Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized nanofibrillated cellulose (TO-NFC). The introduction of carboxylate groups to NFC by TEMPO oxidation provided a high surface density of negative charges able to drive the adsorption of biomolecules and take part in covalent cross-linking reactions with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) and glutaraldehyde (Ga) chemistry. Up to 0.27 μmol of different biomolecules per mg of TO-NFC could be reversibly immobilized by electrostatic interaction. An additional chemical cross-linking step prevented desorption of more than 80% of these molecules. Using the cysteine-protease papain as model, a highly active papain-TO-NFC conjugate was achieved. Once papain was immobilized, 40% of the initial enzymatic activity was retained, with an increase in kcat from 213 to >700 s(-1) for the covalently immobilized enzymes. The methodology presented in this work expands the range of application for TO-NFC in the biomedical field by enabling well-defined hybrid biomaterials with a high density of functionalization.

  20. Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S K

    2006-02-09

    We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.

  1. Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device

    Science.gov (United States)

    Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team

    2014-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.

  2. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Sallander, J.

    1999-01-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities. (author)

  3. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Malmberg, J.-A.; Cecconello, M.; Brunsell, P.R.; Yadikin, D.; Drake, J.R.

    2003-01-01

    The EXTRAP T2R reversed-field pinch has a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<2ms) and the pulse length (∼20ms). The resonant tearing modes do not wall-lock. They rotate with angular phase velocities in the range of 20 to 600 krad/s. As a result of the rotation the radial component of the perturbations at the shell from the resonant modes is suppressed. Non-resonant (resistive-wall) kink modes are unstable and their linear growth rates have been measured. The measured growth rates follow the trend expected from theoretical estimates for a range of equilibrium parameters. Furthermore, when the resonant modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting shell RFP. The poloidal beta is around 10% for a range of current and density. (author)

  4. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  5. Economically attractive features of steady-state neoclassical reversed field pinch equilibrium with low aspect ratio

    International Nuclear Information System (INIS)

    Shiina, S.; Yagi, Y.; Sugimoto, H.; Ashida, H.; Hirano, Y.; Koguchi, H.; Sakakita, H.; Taguchi, M.; Nagamine, Y.; Osanai, Y.; Saito, K.; Watanabe, M.; Aizawa, M.

    2005-01-01

    Dominant plasma self-induced current equilibrium is achieved together with the high β for the steady-state neoclassical reversed field pinch (RFP) equilibrium with low aspect ratio by broadening the plasma pressure profile. The RF-driven current, when the safety factor is smaller than unity, is much less than the self-induced current, which dominates (96%) the toroidal current. This neoclassical RFP equilibrium has strong magnetic shear or a high-stability beta (β t = 63%) due to its hollow current profile. It is shown that the obtained equilibrium is close to the relaxed-equilibrium state with a minimum energy, and is also robust against microinstabilities. These attractive features allow the economical design of compact steady-state fusion power plants with low cost of electricity (COE). (author)

  6. Tritium systems for the TITAN reversed-field pinch fusion reactor design

    International Nuclear Information System (INIS)

    Martin, R.C.; Sze, D.K.; Bartlit, J.R.; Gierszewski, P.J.

    1987-01-01

    Tritium systems for the TITAN reversed-field pinch (RFP) fusion reactor study have been designed for two blanket concepts. The TITAN-1 design uses a self-cooled liquid-lithium blanket. The TITAN-2 design uses a self-cooled aqueous-solution blanket, with lithium nitrate dissolved in the water for tritium breeding. Tritium inventory, release, and safety margins are within regulatory limits, at acceptable costs. Major issues for TITAN-1 are plasma-driven permeation, the need for a secondary coolant loop, tritium storage requirements, redundancy in the plasma exhaust system, and minimal isotopic distillation of the exhaust. TITAN-1 fuel cleanup, reprocessing, and air detritiation systems are described in detail

  7. Equilibrium of field reversed configurations with rotation. II. One space dimension and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2002-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] it was shown that a complete description of equilibria of field reversed configurations with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. In this paper we show how to solve this equation in the case of one space dimension and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using a Green's function the generalized Grad-Shafranov equation is converted to an equivalent integral equation. The integral equation can be solved by iteration. Approximate analytic solutions for a plasma with many ion species are found. They are used as starting trial functions of the iterations. They turn out to be so close to the true solutions that only a few iterations are needed

  8. Equilibrium of field reversed configurations with rotation. IV. Two space dimensions and many ion species

    International Nuclear Information System (INIS)

    Qerushi, Artan; Rostoker, Norman

    2003-01-01

    In a previous paper [N. Rostoker and A. Qerushi, Phys. Plasmas 9, 3057 (2002)] a generalized Grad-Shafranov equation for the plasma flux function was derived which provides a complete description of equilibria of field reversed configurations with rotation. In this paper this fundamental equation is solved for two space dimensions and many ion species. The following fusion fuels are considered: D-T, D-He 3 , and p-B 11 . Using periodic boundary conditions the original differential equation is converted to an equivalent integral equation which involves a Green's function. The integral equation is solved by iteration. Approximate solutions are found for all the fusion fuels considered using a two-dimensional equilibrium model for one type of ion [A. Qerushi and N. Rostoker, Phys. Plasmas 9, 5001 (2002)]. They are used as starting trial functions of the iterations. They turn out to be so close to the real solutions that only a few iterations are needed

  9. Soft x-ray measurement of internal tearing mode structure in a reversed-field pinch

    International Nuclear Information System (INIS)

    Chartas, G.; Hokin, S.

    1991-01-01

    The structure of internally resonant tearing modes has been studied in the Madison Symmetric Torus reversed-field pinch with a soft x-ray detector system consisting of an imaging array at one toroidal location and several detectors at different toroidal locations. The toroidal mode numbers of m = 1 structures are in the range n = -5, -6, -7. The modes propagate with phase velocity v = 1--6 x 10 6 cm/s, larger than the diamagnetic drift velocity v d ∼ 5 x 10 5 cm/s. Phase locking between modes with different n in manifested as a beating of soft x-ray signals which is found to be strongest near the resonant surfaces of the modes (r/a = 0.1 -- 0.5). 15 refs., 5 figs

  10. The reversed-field pinch: a compact approach to fusion power

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.; Bathke, C.G.; Miller, R.L.

    1985-01-01

    The potential of the reversed-field pinch (RFP) for development into an efficient, compact, copper-coil fusion reactor has been quantified by comprehensive parametric tradeoff studies. This compact system promises to be competitive in size, power density, and cost to alternative energy sources. Conceptual engineering designs that substantiate these promising results have been completed. This 1000 MW(e) (net) design is described along with a detailed rationale and physics/technology assessment for the compact approach to fusion. The RFP presents a robust plasma confinement system capable of providing a range of reactor systems that are compact in both physical size and/or net power output while ensuring acceptable cost and engineering feasibility for a range of assumed physics performance. (author)

  11. Field-Reversed Configuration Formation Scheme Utilizing a Spheromak and Solenoid Induction

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Belova, E.V.; Yamada, M.; Ji, H.; Ren, Y.; McGeehan, B.; Inomoto, M.

    2008-01-01

    A new field-reversed configuration (FRC) formation technique is described, where a spheromak transitions to a FRC with inductive current drive. The transition is accomplished only in argon and krypton plasmas, where low-n kink modes are suppressed; spheromaks with a lighter majority species, such as neon and helium, either display a terminal tilt-mode, or an n=2 kink instability, both resulting in discharge termination. The stability of argon and krypton plasmas through the transition is attributed to the rapid magnetic diffusion of the currents that drive the kink-instability. The decay of helicity during the transition is consistent with that expected from resistivity. This observation indicates a new scheme to form a FRC plasma, provided stability to low-n modes is maintained, as well as a unique situation where the FRC is a preferred state

  12. Confinement dynamics and boundary condition studies in the Reversed Field Pinch

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Ingraham, J.C.; Moses, R.W. Jr.

    1988-01-01

    The study of confinement dynamics, including investigation of the boundary conditions required for plasma sustainment, are central to the development of the Reversed Field Pinch (RFP) concept. Recently, several insights into confinement have emerged from a detailed investigation RFP electron and ion dynamics. These insights derive from the recognition that both magnetohydrodynamic (MHD) and electron kinetic effects play an important and coupled role in RFP stability, sustainment, and confinement. In this paper, we summarize the results of confinement studies on the ZT-40M experiment, and boundary condition studies on the Wisconsin non-circular RFP experiment. A brief description of the newly commissioned Madison Symmetric Torus (MST) is also presented. 28 refs., 3 figs

  13. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  14. Adiabatic, chaotic and quasi-adiabatic charged particle motion in two-dimensional magnetic field reversals

    International Nuclear Information System (INIS)

    Buechner, J.M.

    1989-01-01

    For a number of problems in the Plasma Astrophysics it is necessary to know the laws, which govern the non adiabatic charged particle dynamics in strongly curves magnetic field reversals. These are, e.q., the kinetic theory of the microscopic and macroscopicstability of current sheets in collionless plasma, of microturbulence, causing anomalous resistivity and dissipating currents, the problem of spontaneous reconnection, the formation of non Maxwellian distribution functions, particle acceleration and the use of particles as a diagnostic tool ('tracers'). To find such laws we derived from the differential equations of motion discrete mappings. These mappings allow an investigation of the motion after the break down of the adiabaticity of the magnetic moment. (author). 32 refs.; 5 figs.; 1 tab

  15. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-03-31

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.

  16. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    International Nuclear Information System (INIS)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.; Khater, H. Y.; Nguyen, C. N.; Ryzhkov, S. V.; Stubna, M. D.

    2000-01-01

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, good thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics

  17. A one-dimensional plasma and impurity transport model for reversed field pinches

    International Nuclear Information System (INIS)

    Veerasingam, R.

    1991-11-01

    In this thesis a one-dimensional (1-D) plasma and impurity transport model is developed to address issues related to impurity behavior in Reversed Field Pinch (RFP) fusion plasmas. A coronal non-equilibrium model is used for impurities. The impurity model is incorporated into an existing one dimensional plasma transport model creating a multi-species plasma transport model which treats the plasma and impurity evolution self-consistently. Neutral deuterium particles are treated using a one-dimensional (slab) model of neutral transport. The resulting mode, RFPBI, is then applied to existing RFP devices such as ZT-40M and MST, and also to examine steady state behavior of ZTH based on the design parameters. A parallel algorithm for the impurity transport equations is implemented and tested to determine speedup and efficiency

  18. One-dimensional modeling of plasma diffusion in field reversed configurations

    International Nuclear Information System (INIS)

    Hamasaki, S.; Krall, N.A.

    1986-03-01

    Over the past several years, a picture has emerged of transport in field reversed configuration (FRC) which explains many, though not all, of the loss phenomena observed in that device. That picture is complicated by the geometry, which includes both magnetically connected and magnetically isolated regions, and by the transport process, which includes a substantial contribution from short wavelength, fast time scale processes. This paper extends our previous work on this topic by carrying a one-dimensional model as far as it can be carried, in terms of goemetrical and physical consistency, and isolates the difference between the model and experiment as coming from phenomena beyond the scope of 1-D anomalous transport

  19. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2003-01-01

    The profile relaxation from a magnetic hydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  20. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-10-01

    The profile relaxation from a magnetohydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) is investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulation is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  1. Profile relaxation and tilt instability in a field-reversed configuration

    International Nuclear Information System (INIS)

    Ohtani, H.; Horiuchi, R.; Sato, T.

    2002-01-01

    The profile relaxation from a magnetichydrodynamic (MHD) profile to a kinetic equilibrium in field-reversed configurations (FRCs) in investigated by two-dimensional electromagnetic particle simulation. The radial oscillation takes place in order to relax an excess energy in the MHD profile, and the system spontaneously relaxes toward a kinetic equilibrium. In this kinetic equilibrium, the hollow electron current profile is realized as a result of the combined effects of the single particle orbits and the ion finite Larmor radius, and the ion current profile becomes peaked due to the effect of the ion meandering motion. Three-dimensional full electromagnetic particle simulations is also performed to study the stability of these kinetic equilibrium against the tilt mode. The growth rate of the tilt instability is reduced by the kinetic is effects. It is found that the stabilization effect of tilt mode becomes much distinct when the current density changes from the peaked profile to the hollow one. (author)

  2. Simulations of the lower-hybrid antenna in the Madison Symmetric Torus reversed-field pinch

    International Nuclear Information System (INIS)

    Carlsson, Johan; Smithe, David; Kaufman, Michael; Goetz, John; Thomas, Mark

    2014-01-01

    Due to constraints inherent to a reversed-field pinch plasma configuration, an unusual launch structure—the interdigital line—was used for lower-hybrid current-drive experiments in the Madison Symmetric Torus. The antenna design and performance were analyzed using an array of codes (including RANT3D/AORSA1D-H, Microwave Studio and VORPAL). It was found that the voltage phasing was not the intended one. As a result, the parallel-wavenumber spectrum of the launched wave peaks at a value lower than desired, making the accessibility marginal. Further simulations demonstrated that the error can largely be corrected by either lowering the antenna operating frequency or shortening the length of the resonators. (paper)

  3. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-01-01

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size

  4. Positional stability of field-reversed-configurations in the presence of resistive walls

    Energy Technology Data Exchange (ETDEWEB)

    Rath, N., E-mail: nrath@trialphanenergy.com; Onofri, M.; Barnes, D. C. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-06-15

    We show that in a field-reversed-configuration, the plasma is unstable to either transverse or axial rigid displacement, but never to both. Driving forces are found to be parallel to the direction of displacement with no orthogonal components. Furthermore, we demonstrate that the properties of a resistive wall (geometry and resistivity) in the vicinity of the plasma do not affect whether the plasma is stable or unstable, but in the case of an unstable system determine the instability growth rate. Depending on the properties of the wall, the instability growth is dominated by plasma inertia (and not affected by wall resistivity) or dominated by ohmic dissipation of wall eddy currents (and thus proportional to the wall resistivity).

  5. A short introduction to the status and motivation for reversed field pinch and compact toroid research

    International Nuclear Information System (INIS)

    Dreicer, H.

    1987-09-01

    Potential commercial fusion power systems must be acceptable from a safety and environmental standpoint. They must also promise to be competitive with other sources of energy (i.e., fossil, fission, etc.) when considered from the standpoint of the cost of electricity (COE) and the unit direst cost (UDC) in ($/kWe). These costs are affected by a host of factors including recirculating power, plant availability, construction time, capital cost etc., and are, thus, influenced by technological complexity. In a attempt to meet these requirements, the emphasis of fusion research in the United States has been moving toward smaller, lower-cost systems. There is increased interest in higher beta tokamaks and stellarators, and in compact alternate concepts such as the Reversed Field Pinch (RFP) and the Compact Toroids (CTs) which are, in part, the subject of this paper

  6. Comparison between the boundary layer and global resistivity methods for tearing modes in reversed field configurations

    International Nuclear Information System (INIS)

    Santiago, M.A.M.

    1987-01-01

    A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt

  7. Compact-toroid fusion reactor based on the field-reversed theta pinch: reactor scaling and optimization for CTOR

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1980-01-01

    Early scoping studies based on approximate, analytic models have been extended on the basis of a dynamic plasma model and an overall systems approach to examine a Compact Toroid (CT) reactor embodiment that uses a Field-Reversed Theta Pinch as a plasma source. The field-reversed plasmoid would be formed and compressionally heated to ignition prior to injection into and translation through a linear burn chamber, thereby removing the high-technology plasmoid source from the hostile reactor environment. Stabilization of the field-reversed plasmoid would be provided by a passive conduction shell located outside the high-temperature blanket but within the low-field superconducting magnets and associated radiation shielding. On the basis of this batch-burn but thermally steady-state approach a reactor concept emerges with a length below approx. 40 m that generates 300 to 400 MWe of net electrical power with a recirculating power fraction less than 0.15

  8. Current-driven instabilities of the kinetic shear Alfven wave: Application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-01-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  9. Compatibility of advanced tokamak plasma with high density and high radiation loss operation in JT-60U

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Kubo, H.; Higashijima, S.; Konoshima, S.; Nakano, T.; Oyama, N.; Ide, S.; Fujita, T.; Takizuka, T.; Kamada, Y.; Miura, Y.; Porter, G.D.; Rognlien, T.D.; Rensink, M.E.

    2005-01-01

    Compatibility of advanced tokamak plasmas with high density and high radiation loss has been investigated in both reversed shear (RS) plasmas and high β p H-mode plasmas with a weak positive shear on JT-60U. In the RS plasmas, the operation regime is extended to high density above the Greenwald density (n GW ) with high confinement (HH y2 >1) and high radiation loss fraction (f rad >0.9) by tailoring the internal transport barriers (ITBs). High confinement of HH y2 =1.2 is sustained even with 80% radiation from the main plasma enhanced by accumulated metal impurity. The divertor radiation is enhanced by Ne seeding and the ratio of the divertor radiation to the total radiation is increased from 20% without seeding to 40% with Ne seeding. In the high β p H-mode plasmas, high confinement (HH y2 =0.96) is maintained at high density (n-bar e /n GW =0.92) with high radiation loss fraction (f rad ∼1) by utilizing high-field-side pellets and Ar injections. The high n-bar e /n GW is obtained due to a formation of clear density ITB. Strong core-edge parameter linkage is observed, as well as without Ar injection. In this linkage, the pedestal β p , defined as β p ped =p ped /(B p 2 /2μ 0 ) where p ped is the plasma pressure at the pedestal top, is enhanced with the total β p . The radiation profile in the main plasma is peaked due to Ar accumulation inside the ITB and the measured central radiation is ascribed to Ar. The impurity transport analyses indicate that Ar accumulation by a factor of 2 more than the electron, as observed in the high β p H-mode plasma, is acceptable even with peaked density profile in a fusion reactor for impurity seeding. (author)

  10. Fluctuation reduction and enhanced confinement in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Chapman, B.E.

    1997-10-01

    Plasmas with a factor of ≥3 improvement in energy confinement have been achieved in the MST reversed-field pinch (RFP). These plasmas occur spontaneously, following sawtooth crashes, subject to constraints on, eg, toroidal magnetic field reversal and wall conditioning. Possible contributors to the improved confinement include a reduction of core-resonant, global magnetic fluctuations and a reduction of electrostatic fluctuations over the entire plasma edge. One feature of these plasmas is a region of strong ExB flow shear in the edge. Never before observed in conjunction with enhanced confinement in the RFP, such shear is common in enhanced confinement discharges in tokamaks and stellarators. Another feature of these plasmas is a new type of discrete dynamo event. Like sawtooth crashes, a common form of discrete dynamo, these events correspond to bursts of edge parallel current. The reduction of electrostatic fluctuations in these plasmas occurs within and beyond the region of strong ExB flow shear, similar to what is observed in tokamaks and stellarators. However, the reductions in the MST include fluctuations whose correlation lengths are larger than the width of the shear region. The reduction of the global magnetic fluctuations is most likely due to flattening of the μ=μ 0 rvec J· rvec B/B 2 profile. Flattening can occur, eg, due to the new type of discrete dynamo event and reduced edge resistivity. Enhanced confinement plasmas are also achieved in the MST when auxiliary current is applied to flatten the μ profile and reduce magnetic fluctuations. Unexpectedly, these plasmas also exhibit a region (broader than in the case above) of strong ExB flow shear in the edge, an edge-wide reduction of electrostatic fluctuations, and the new type of discrete dynamo event. Auxiliary current drive has historically been viewed as the principal route to fusion reactor viability for the RFP

  11. Increasing The Electric Field For An Improved Search For Time-Reversal Violation Using Radium-225

    Science.gov (United States)

    Powers, Adam

    2017-09-01

    Radium-225 atoms, because of their unusual pear-shaped nuclei, have an enhanced sensitivity to the violation of time reversal symmetry. A breakdown of this fundamental symmetry could help explain the apparent scarcity of antimatter in the Universe. Our goal is to improve the statistical sensitivity of an ongoing experiment that precisely measures the EDM of Radium-225. This can be done by increasing the electric field acting on the Radium atoms. We do this by increasing the voltage that can be reliably applied between two electrodes, and narrowing the gap between them. We use a varying high voltage system to condition the electrodes using incremental voltage ramp tests to achieve higher voltage potential differences. Using an adjustable gap mount to change the distance between the electrodes, specific metals for their composition, and a clean room procedure to keep particulates out of the system, we produce a higher and more stable electric field. Progress is marked by measurements of the leakage current between the electrodes during our incremental voltage ramp tests or emulated tests of the actual experiment, with low and constant current showing stability of the field. This project is supported by Michigan State University, and the US DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.

  12. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    Science.gov (United States)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  13. Core fluctuations and current profile dynamics in the MST reversed-field pinch

    International Nuclear Information System (INIS)

    Brower, D.L.; Ding, W.X.; Lei, J.

    2003-01-01

    First measurements of the current density profile, magnetic field fluctuations and electrostatic (e.s.) particle flux in the core of a high-temperature reversed-field pinch (RFP) are presented. We report three new results: (1) The current density peaks during the slow ramp phase of the sawtooth cycle and flattens promptly at the crash. Profile flattening can be linked to magnetic relaxation and the dynamo which is predicted to drive anti-parallel current in the core. Measured core magnetic fluctuations are observed to increases four-fold at the crash. Between sawtooth crashes, measurements indicate the particle flux driven by e.s. fluctuations is too small to account for the total radial particle flux. (2) Core magnetic fluctuations are observed to decrease at least twofold in plasmas where energy confinement time improves ten-fold. In this case, the radial particle flux is also reduced, suggesting core e.s. fluctuation-induced transport may play role in confinement. (3) The parallel current density increases in the outer region of the plasma during high confinement, as expected, due to the applied edge parallel electric field. However, the core current density also increases due to dynamo reduction and the emergence of runaway electrons. (author)

  14. Field reversal experiments: FRX-A and FRX-B results

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Linford, R.K.; Lipson, J.; Platts, D.A.; Sherwood, E.G.

    1981-01-01

    The equilibrium, stability, and confinement properties of the Field Reversed Configuration (FRC) are being studied in two theta pinch facilities referred to as FRX-A, and FRX-B. The configuration is a toroidal plasma confined in a purely poloidal field configuration containing both closed and open field lines. The FRX system produces highly elongated tori with major radius R=3 to 5 cm, minor radius a approx. 2 cm, and a full length l approx. 35 to 50 cm. Plasma conditions have ranged from T/sub e/ approx. 150 eV, T/sub i/ approx. 800 eV, and n/sub max/ approx. 10 15 /cm 3 to T/sub e/ approx. 100 eV, T/sub i/ approx. 150 eV, and n/sub max/ approx. 4 x 10 15 /cm 3 . The plasma remains in a stable equilibrium for up to 50 μs followed by an n = 2 rotational instability which results in termination of the FRC. The plasma behavior with respect to equilibrium, stability, and rotation is consistent with recent theoretical work in these areas

  15. Field-reversed configuration translation studies in FRX-C/T

    International Nuclear Information System (INIS)

    Chrien, R.E.; Armstrong, W.T.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Field-Reversed Configuration (FRC) translation is being studied in the FRX-C/T device. The main goals of this experiment are to demonstrate translation into a dc field region with minimal losses and to study modification of the equilibrium profiles of the FRC by varying x/sub s/, the ratio of separatrix radius (r/sub s/) to conducting wall radius (r/sub w/), through translation. FRC's are formed with a range of densities (1→5 x 10/sup 15/ cm/sup -3/) and x/sub s/ (0.35→0.55) in the FRX-C source, configured as a slightly conical theta pinch coil (r/sub w/ increases from 0.22 m to 0.28 m in four steps over 2 m). In 10→40 μs after formation, the FRC enters a 0.20-m radius stainless steel vessel with a dc field up to 8 kG. The translation velocity varies from 5→12 cm/μs and is typically about one-half the FRC Alfven velocity

  16. Plasma-column instabilities in a reversed-field pinch without a shell

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell.

  17. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  18. Plasma-column instabilities in a reversed-field pinch without a shell

    International Nuclear Information System (INIS)

    Schmid, P.G.

    1988-01-01

    Plasma column instabilities in a Reversed Field Pinch (RFP) without a shell were investigated in the Colorado Reversatron RFP. The Reversatron RFP (aspect ration R/a = 50 cm/8cm) is a toroidal plasma containment device consisting of a vacuum chamber, a thick conducting shell, modular shells, magnetic field producing coils and diagnostics to characterize the plasma. RFP discharges were set up in the Reversatron in three different experimental configurations: with a thick conducting shell, with a modular shell and with no shell. In two of the configurations, a shell enclosed the plasma column to provide some plasma stability. A vertical magnetic field provided equilibrium in experiments without a shell. Data from discharges without a shell indicated that the plasma duration was greatly reduced and the plasma resistance increased compared to the discharges with a thick shell. Plasma position probes indicated large plasma centriod displacements corresponding to a n = 1 and a n = 3 kink coincident with the peak of the plasma current and the start of a discharge termination phase. The modular shell lengthened the discharge duration and lowered the plasma resistance to values intermediate between the plasma with a thick shell and the plasma with no shell. The modular shell suppressed the large plasma column displacements observed in the RFP plasma without a shell

  19. Use of a high density lead glass tubing projection chamber in positron emission tomography and in high energy physics

    International Nuclear Information System (INIS)

    Conti, M.; Guerra, A.D.; Habel, R.; Mulera, T.; Perez-Mendez, V.; Schwartz, G.

    1985-10-01

    We describe the principle of operation of a high density Projection Chamber, in which the converter/radiator and drift field shaping structures are combined in the form of high density (5 to 6 g/cm 3 ) lead glass tubing. The main applications of this type of detector to Medical Physics (Positron Emission Tomography) and High Energy Physics (Electromagnetic Calorimetry) are discussed

  20. Resistive Wall Mode Stability and Control in the Reversed Field Pinch

    International Nuclear Information System (INIS)

    Yadikin, Dmitriy

    2006-03-01

    Control of MHD instabilities using a conducting wall together with external magnetic fields is an important route to improved performance and reliability in fusion devices. Active control of MHD modes is of interest for both the Advanced Tokamak and the Reversed Field Pinch (RFP) configurations. A wide range of unstable, current driven MHD modes is present in the RFP. An ideally conducting wall facing the plasma can in principle provide stabilization to these modes. However, a real, resistive wall characterized by a wall field diffusion time, cannot stabilize the ideal MHD modes unless they rotate with Alfvenic velocity, which is usually not the case. With a resistive wall, the ideal modes are converted into resistive wall modes (RWM) with growth rates comparable to the inverse wall time. Resistive wall modes have been studied in the EXTRAP T2R thin shell RFP device. Growth rates have been measured and found in agreement with linear MHD stability calculations. An advanced system for active control has been developed and installed on the EXTRAP T2R device. The system includes an array of 128 active saddle coils, fully covering the torus surface. Experiments on EXTRAP T2R have for the first time demonstrated simultaneous active suppression of multiple independent RWMs. In experiments with a partial array, coupling of different modes due to the limited number of feedback coils has been observed, in agreement with theory. Different feedback strategies, such as the intelligent shell, the rotating shell, and mode control have been studied. Further, feedback operation with different types of magnetic field sensors, measuring either the radial or the toroidal field components have been compared

  1. FRC [field-reversed configuration] translation studies on FRX-C/LSM

    International Nuclear Information System (INIS)

    Rej, D.; Barnes, G.; Baron, M.

    1989-01-01

    In preparation for upcoming compression-heating experiments, field-reversed configurations (FRCs) have been translated out of the FRX-C/LSM θ-pinch source, and into the 0.4-m-id, 6.7-m-long translation region formerly used on FRX-C/T. Unlike earlier experiments FRCs are generated without magnetic tearing in the larger FRX-C/LSM source (nominal coil id = 0.70 m, length = 2 m); larger, lower-energy-density FRCs are formed: r/sub s/ ≅ 0.17 m, B/sub ext/ ≅ 0.35 T, ≅ 7 /times/ 10 20 m/sup /minus/3/ and T/sub e/ + T/sub i/ ≅ 400 eV. An initial 3-mtorr D 2 pressure is introduced by either static or puff fill. Asymmetric fields from auxiliary end coils (used for non-tearing formation) provide the accelerating force on the FRC, thereby eliminating the need for a conical θ-pinch coil. An important feature is the abrupt 44% decrease in the flux-conserving wall radius at the transition between the θ-pinch and translation region, similar to that in the compressor. In this paper we review a variety of issues addressed by the recent translation experiments: translation dynamics; translation through a modulated magnetic field; stabilization of the n = 2 rotational instability by weak helical quadrupole fields; and confinement properties. Results from internal magnetic field measurements in translating FRCs may be found in a companion paper. 10 refs., 5 figs

  2. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  3. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  4. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  5. Formation of Field Reversed Configuration (FRC on the Yingguang-I device

    Directory of Open Access Journals (Sweden)

    Qizhi Sun

    2017-09-01

    Full Text Available As a hybrid approach to realizing fusion energy, Magnetized Target Fusion (MTF based on the Field Reversed Configuration (FRC, which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion, has been recently widely pursued around the world. To investigate the formation and confinement of the FRC plasma injector for MTF, the Yingguang-I, which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system, was constructed at the Institute of Fluid Physics (IFP, China. This paper presents the pulsed power components and their parameters of the device in detail, then gives a brief description of progress in experiments of FRC formation. Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T, 10 kA/1.2 T and 1.7 MA/3.4 T were achieved in the bias, mirror and θ-pinch circuits with quarter cycle of 80 μs, 700 μs and 3.8 μs respectively. The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV. With H2 gas of 8 Pa, the plasma target of density 1016 cm−3, separatrix radius 4 cm, half-length 17 cm, equilibrium temperature 200 eV and lifetime 3 μs (approximately the half pulse width of the reversed field have been obtained through the θ-pinch method when the bias, mirror, ionization and θ-pinch banks were charged to 5 kV, 5 kV, 55 kV and ±45 kV respectively. The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code (2D-MHD.

  6. Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew H.

    The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.

  7. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  8. Compact reversed-field pinch reactors (CRFPR): sensitivity study and design-point determination

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1982-07-01

    If the costing assumptions upon which the positive assessment of conventional large superconducting fusion reactors are based proves overly optimistic, approaches that promise considerably increased system power density and reduced mass utilization will be required. These more compact reactor embodiments generally must operate with reduced shield thickness and resistive magnets. Because of the unique, magnetic topology associated with the Reversed-Field Pinch (RFP), the compact reactor embodiment for this approach is particularly attractive from the viewpoint of low-field resistive coils operating with Ohmic losses that can be made small relative to the fusion power. A comprehensive system model is developed and described for a steady-state, compact RFP reactor (CRFPR). This model is used to select a unique cost-optimized design point that will be used for a conceptual engineering design. The cost-optimized CRFPR design presented herein would operate with system power densities and mass utilizations that are comparable to fission power plants and are an order of magnitude more favorable than the conventional approaches to magnetic fusion power. The sensitivity of the base-case design point to changes in plasma transport, profiles, beta, blanket thickness, normal vs superconducting coils, and fuel cycle (DT vs DD) is examined. The RFP approach is found to yield a point design for a high-power-density reactor that is surprisingly resilient to changes in key, but relatively unknown, physics and systems parameters

  9. Reversed-field pinch experiments in EXTRAP T2R with a resistive shell boundary

    International Nuclear Information System (INIS)

    Drake, J.R.

    2002-01-01

    The EXTRAP T2R reversed-field pinch is operated with a resistive shell with a magnetic penetration time of 6 ms. This time is intermediate between the dynamo/relaxation cycle time scale (<1 ms) and the pulse length (= 20 ms). The internally-resonant tearing modes do not wall lock and exhibit natural rotation with velocities in the range of 20 to 600 krad/s. Under these conditions the radial component of the tearing mode perturbation at the shell is suppressed. Therefore the linear growth rates of the unstable, non-resonant, ideal (resistive-wall) kink modes can be observed even at very low amplitudes (0.01% of the equilibrium field). Both internally-non-resonant and externally non-resonant RW mode types are observed. The growth rates have been measured for a range of equilibrium current profile parameters and are compared with theoretical estimates. Previous observations and simulations for the resistive-shell RFP have shown an increased loop voltage associated with altered dynamo dynamics. When the tearing modes are rotating, the loop voltage and confinement parameters have values comparable to those of a conducting-shell RFP. (author)

  10. Cost-constrained design point for the Reversed-Field Pinch Reactor (RFPR)

    International Nuclear Information System (INIS)

    Hagenson, R.L.; Krakowski, R.A.

    1978-01-01

    A broad spectrum of Reversed-Field Pinch Reactor (RFPR) operating modes are compared on an economics basis. An RFPR with superconducting coils and an air-core poloidal field transformer optimizes to give a minimum cost system when compared to normal-conducting coils and the iron-core transformer used in earlier designs. An interim design is described that exhibits a thermally stable, unrefueled, 21 s burn (burnup 50 percent) with an energy containment time equal to 200 times the Bohm time, which is consistent with present-day tokamak experiments. This design operates near the minimum energy state (THETA = B/sub THETA/(r/sub w/)/[B/sub z/] = 2.0 and F = B/sub z/(r/sub w/)/[B/sub z/] = 1.0 from the High Beta Model) of the RFP configuration. This cost-optimized design produces a reactor of 1.5-m minor radius and 12.8-m major radius, that generates 1000 MWe (net) with a recirculating power fraction of 0.15 at a direct capital cost of 970 $/kWe

  11. Ion heating and MHD dynamo fluctuations in the reversed field pinch

    International Nuclear Information System (INIS)

    Scime, E.E.

    1992-05-01

    Ion temperature measurements, time resolved to 10 μs, have been made in the Madison Symmetric Torus (MST) reversed field pinch (RFP) with a five channel charge exchange analyzer. The characteristic anomalously high ion temperature of RFP discharges has been observed in the MST. The evolution of the ion and electron temperature, as well as density and charge exchange power loss, were measured for a series of reproducible discharges. The ion heating expected from collisional processes with the electrons is calculated and shown too small to explain the measured ion temperatures. The charge exchange determined ion temperature is also compared to measurements of the thermally broadened CV 227.1 nm line. The ion temperature, T i ∼ 250 eV for I = 360 kA, increases by more than 100% during discrete dynamo bursts in MST discharges. Magnetic field fluctuations in the range 0.5 endash 5 MHz were also measured during the dynamo bursts. Structure in the fluctuation frequency spectrum at the ion cyclotron frequency appears as the bursts terminate, suggesting that the mechanism of ion heating involves the dissipation of dynamo fluctuations at ion cyclotron frequencies. Theoretical models for ion heating are reviewed and discussed in light of the experimental results. Similar electron heating mechanisms may be responsible for the discrepancy between measured and expected loop voltages in the RFP. The electrons, as well as the ions, may be heated by turbulent mechanisms, and a RFP energy budget including such phenomena is described

  12. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    Science.gov (United States)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  13. Stable Alfven-wave dynamo action in the reversed-field pinch

    International Nuclear Information System (INIS)

    Werley, K.A.

    1984-01-01

    Previous theoretical work has suggested that Alfven waves may be related to the anomalous toroidal magnetic flux generation and extended (over classical expectations) discharge times observed in the reversed-field pinch. This thesis examines the dynamo action of stable Alfven waves as a means of generating toroidal flux. Recent advances in linear resistive MHD stability analysis are used to calculate the quasi-linear dynamo mean electromotive force of Alfven waves. This emf is incorporated into a one-dimensional transport and mean-field evolution code. The changing equilibrium is then fed back to the stability code to complete a computational framework that self-consistently evaluates a dynamic plasma dynamo. This technique is readily extendable to other plasmas in which dynamic stable model action is of interest. Such plasmas include Alfven wave current-drive and plasma heating for fusion devices, as well as astrophysical and geophysical dynamo systems. This study also contains extensive studies of resistive Alfven wave properties. This includes behavior versus spectral location, magnetic Reynolds number and wave number

  14. Numerical Study of Field-reversed Configurations: The Formation and Ion Spin-up

    International Nuclear Information System (INIS)

    Belova, E.V.; Davidson, R.C.; Ji, H.; Yamada, M.; Cothran, C.D.; Brown, M.R.; Schaffer, M.J.

    2005-01-01

    Results of three-dimensional numerical simulations of field-reversed configurations (FRCs) are presented. Emphasis of this work is on the nonlinear evolution of magnetohydrodynamic (MHD) instabilities in kinetic FRCs, and the new FRC formation method by counter-helicity spheromak merging. Kinetic simulations show nonlinear saturation of the n = 1 tilt mode, where n is the toroidal mode number. The n = 2 and n = 3 rotational modes are observed to grow during the nonlinear phase of the tilt instability due to the ion spin-up in the toroidal direction. The ion toroidal spin-up is shown to be related to the resistive decay of the internal flux, and the resulting loss of particle confinement. Three-dimensional MHD simulations of counter-helicity spheromak merging and FRC formation show good qualitative agreement with results from the SSX-FRC experiment. The simulations show formation of an FRC in about 20-30 Alfven times for typical experimental parameters. The growth rate of the n = 1 tilt mode is shown to be significantly reduced compared to the MHD growth rate due to the large plasma viscosity and field-line-tying effects

  15. Effects of background neutral particles on a field-reversed configuration plasma in the translation process

    International Nuclear Information System (INIS)

    Matsuzawa, Yoshiki; Asai, Tomohiko; Takahashi, Tsutomu; Takahashi, Toshiki

    2008-01-01

    A field-reversed configuration (FRC) plasma was translated into a weakly ionized plasma and the effects of heating and particle buildup of the FRC plasma due to the background neutral particles and plasma injection in the translation process were investigated. Improvement of the particle and poloidal flux confinements and delay of onset of n=2 rotational instability were observed in the translation process. It was found that the internal structure of the plasma pressure (plasma temperature and density) at the separatrix and field null was deformed by the particle injection. FRC plasma translation through the background particles was equivalent to an end-on particle beam injection to the FRC plasma. Particles and energy were supplied during the translation. The results obtained for the phenomena of particle supply and plasma heating were also supported by the results of two-dimensional particle simulation. The effects of background particle injection appear to be a promising process for the regeneration of translation kinetic energy to plasma internal energy

  16. Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.

    Science.gov (United States)

    Huang, G-H; Lin, C-H; Lee, L C

    2017-08-25

    Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.

  17. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasaka, Naotaka

    2004-04-01

    Effects of Coulomb collisions on neutral beam (NB) injected fast ions into Field-Reversed Configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing down and pitch angle collisions. The Monte-Carlo method is used for the pitch angle scattering, and the friction term is added to the equation of motion to show effects of slowing down collision such as the deposited power profile. Calculation parameters used are relevant to the NB injection on the FRC Injection Experiment (FIX) device. It is found that the dominant local power deposition occurs in the open field region between the X-point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found negligible. The loss mechanism due to non-adiabatic fast ion motion, which is intrinsic in non-uniform FRC plasmas, affects much greater than the pitch angle scattering by Coulomb collision. (author)

  18. Power deposition by neutral beam injected fast ions in field-reversed configurations

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Kato, Takayuki; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-01-01

    The effects of Coulomb collisions on neutral beam (NB) injected fast ions into field-reversed configuration (FRC) plasmas are investigated by calculating the single particle orbits, where the ions are subject to the slowing-down and pitch-angle collisions. The Monte Carlo method is used for the pitch-angle scattering, and the friction term is added to the equation of motion to show the effects of the slowing-down collision, such as the deposited power profile. The calculation parameters used are relevant to the NB injection on the FRC injection experiment device [T. Asai, Y. Suzuki, T. Yoneda, F. Kodera, M. Okubo, and S. Goto, Phys. Plasmas 7, 2294 (2000)]. It is found that the dominant local power deposition occurs in the open field region between the X point and the mirror point because of a concentration of fast ions and a longer duration travel at the mirror reflection point. In the present calculation, the maximum deposited power to the FRC plasma is about 10% of the injected power. Although the pitch-angle scattering by Coulomb collision destroys the mirror confinement of NB injected fast ions, this effect is found to be negligible. The loss mechanism due to nonadiabatic fast ion motion, which is intrinsic in nonuniform FRC plasmas, has a much greater effect than the pitch-angle scattering by Coulomb collision

  19. Reversal mechanisms and interactions in magnetic systems: coercivity versus switching field and thermally assisted demagnetization

    Directory of Open Access Journals (Sweden)

    Cebollada, F.

    2005-06-01

    Full Text Available In this paper we present a comparative analysis of the magnetic interactions and reversal mechanisms of two different systems: NdFeB-type alloys with grain sizes in the single domain range and Fe-SiO2 nanocomposites with Fe concentrations above and below the percolation threshold. We evidence that the use of the coercivity as the main parameter to analyse them might be misleading due to the convolution of both reversible and irreversible magnetization variations. We show that the switching field and thermally assisted demagnetization allow a better understanding of these mechanisms since they involve just irreversible magnetization changes. Specifically, the experimental analysis of the coercivity adquisition process for the NdFeB-type system suggests that the magnetization reversal is nucleated at the spin misalignments present due to intergranular exchange interactions. On the other hand, the study of the magnetic viscosity and of the isothermal remanent magnetization (IRM and direct field demagnetization (DCD remanence curves indicates that the dipolar interactions are responsible for the propagation of the switching started at individual particles.

    En este artículo presentamos un análisis comparativo de la influencia de la microestructura a través de las interacciones magnéticas en los mecanismos de inversión de la magnetización en dos sistemas diferentes: aleaciones tipo NdFeB con tamaños de grano en el rango de monodominio y nanocompuestos de Fe-SiO2 con concentraciones de Fe tanto por encima como por debajo del umbral de percolación. Ponemos de manifiesto que el uso del campo coercitivo como parámetro de análisis puede llevar a equívocos debido a la coexistencia de variaciones reversibles e irreversibles de la magnetización. También mostramos que el campo de conmutación y la desimanación térmicamente asistida permiten una mejor comprensión de dichos mecanismos ya que reflejan exclusivamente cambios irreversibles de

  20. Importance of radial profiles in spectroscopic diagnostics applied to the EXTRAP-T2R reversed-field pinch

    OpenAIRE

    Gravestijn, Bob

    2003-01-01

    The determination of the plasma confinement propertiesdemand data as the electron temperature, the ionic and electrondensity profiles and the radiative emissivity profiles. Thefocus of this thesis is the importance of radial profiles inspectroscopic diagnostics applied to the EXTRAP-T2Rreversed-field pinch. EXTRAP-T2R is a resistive shell reversed-field pinch with amagnetic field shell penetration time much longer than therelaxation cycle time scale. Significant improvements inconfinement pro...

  1. Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates

    Science.gov (United States)

    Wei, Mao; Wei-Bo, She; Cui, Yang; Jin-Feng, Zhang; Xue-Feng, Zheng; Chong, Wang; Yue, Hao

    2016-01-01

    In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204085, 61334002, 61306017, 61474091, 61574112, and 61574110).

  2. Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates

    International Nuclear Information System (INIS)

    Mao Wei; She Wei-Bo; Zhang Jin-Feng; Zheng Xue-Feng; Wang Chong; Hao Yue; Yang Cui

    2016-01-01

    In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs. (paper)

  3. Temperature-dependent magnetic field effect study on exciplex luminescence: probing the triton X-100 reverse micelle in cyclohexane.

    Science.gov (United States)

    Das, Doyel; Nath, Deb Narayan

    2007-09-20

    The microenvironment within the reverse micelle of the nonionic surfactant Triton X-100 (TX-100) in cyclohexane has been investigated by studying the magnetic field effect (MFE) on pyrene-dimethylaniline exciplex luminescence. The nature of exciplex fluorescence and its behavior in the presence of a magnetic field have been found to vary significantly with the water content of the medium. Results are discussed in light of multiple exciplex formation within the micelle which is further supported by the fluorescence lifetime measurements. Those exciplexes emitting at longer wavelength are found to be magnetic field sensitive while those emitting toward the blue region of the spectrum are insensitive toward magnetic field. Since the exciplex's emission characteristics and magnetic field sensitivity depend on its immediate surrounding, it has been concluded that the environment within the micelle is nonuniform. With an increase in hydration level, different zones of varying polarity are created within the reverse micelle. It has been pointed out that the magnetic field sensitive components reside inside the polar core of the micelle while those located near the hydrocarbon tail are field insensitive. However it has been presumed that an interconversion between the different types of exciplexes is possible. The environment within the reverse micelle is found to be largely affected by the change in temperature, and this is reflected in the exciplex emission property and the extent of magnetic field effect. Interestingly, the variation of MFE with temperature follows different trends in the dry and the wet reverse micelle. A comparison has been drawn with the reverse micelle of the ionic surfactant to get an insight into the difference between the various types of micellar environment.

  4. Strain-assisted current-induced magnetization reversal in magnetic tunnel junctions: A micromagnetic study with phase-field microelasticity

    International Nuclear Information System (INIS)

    Huang, H. B.; Hu, J. M.; Yang, T. N.; Chen, L. Q.; Ma, X. Q.

    2014-01-01

    Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.

  5. Phenomenology of high density disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.M.; Bell, M.G.

    1993-01-01

    Studies of high density disruptions on TFTR, including a comparison of minor and major disruptions at high density, provide important new information regarding the nature of the disruption mechanism. Further, for the first time, an (m,n)=(1,1) 'cold bubble' precursor to high density disruptions has been experimentally observed in the electron temperature profile. The precursor to major disruptions resembles the 'vacuum bubble' model of disruptions first proposed by B.B. Kadomtsev and O.P. Pogutse (Sov. Phys. - JETP 38 (1974) 283). (author). Letter-to-the-editor. 25 refs, 3 figs

  6. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    International Nuclear Information System (INIS)

    Veranda, M; Bonfiglio, D; Cappello, S; Chacón, L; Escande, D F

    2013-01-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (I P above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values. (paper)

  7. Reversed field pinch magnetic equilibrium and profile dynamics in Extrap T1-upgrade

    International Nuclear Information System (INIS)

    Nordlund, P.; Mazur, S.; Drake, J.R.

    1992-05-01

    An eight station insertable magnetic probe has been installed on the Extrap T1-U machine. The structure of the reversed field pinch magnetic equilibrium and the time evolution of the profiles has been studied. The probe was inserted into sustained high current density RFP plasma, typically 12-16 MA/m 2 on axis. When the probe was inserted there was a somewhat shorter pulse duration and a slightly decaying current. The magnetic field profiles are shift corrected and expressed in a cylindrically symmetric form. All quantities are then derived from cylindrically symmetric equations. In the beginning of the sustainment phase, where the best reproducibility is achieved, we have been able to obtain estimates of the pressure profile consistent with independent measurements of the central pressure. Values of βθ approx = 0.19 and approx = 0.09 are found leading to an estimation of the energy confinement time, with the probe inserted, of τε approx = 5 μs. Profiles of the effective parallel conductivity clearly indicates the presence of a 'dynamo mechanism' sustaining the field configuration. Higher Θ discharges usually exhibit large oscillations in the F-Θ plane. We find that these oscillations represents macroscopic redistribution of the current in the plasma. A cyclic process is found where the parallel current density (μ-profile) tends to peak in the center and then relax towards a flatter and broader configuration. Towards the end of the discharge there is an increasing fluctuation level along with an increasing V loop /I p - Here we find a relative increase in the current density in the edge region resulting in a hollow μ-profile. (au) (15 refs., 31 figs.)

  8. Current, temperature and confinement time scaling in toroidal reversed-field pinch experiments ZT-I and ZT-S

    International Nuclear Information System (INIS)

    Baker, D.A.; Burkhardt, L.C.; Di Marco, J.N.; Haberstich, A.; Hagenson, R.L.; Howell, R.B.; Karr, H.J.; Schofield, A.E.

    1977-01-01

    The scaling properties of a toroidal reversed-field Z pinch have been investigated over a limited range by comparing two experiments having conducting walls and discharge-tube minor diameters which differ by a factor of approximately 1.5. Both the confinement time of the plasma column and the electron temperature were found to increase about a factor of two with the increased minor diameter. Both the poloidal field diffusion and the decay of the toroidal reversed field were significantly reduced with the larger tube diameter. These results support the hypothesis that the loss of stability later in the discharge is caused by diffusion-induced deterioration of initially favourable plasma-field profiles to MHD unstable ones. This conclusion has been verified by stability analysis of the magnetic field profiles. Fusion reactor calculations show that small reactors are conceptually possible assuming good containment can be achieved for current densities approximately >20MAm -2 . (author)

  9. High density turbulent plasma processes from a shock tube

    International Nuclear Information System (INIS)

    Oyedeji, O.; Johnson, J.A. III

    1991-01-01

    We have finished the first stages of our experimental and theoretical investigations on models for energy and momentum transport and for photon-particle collision processes in a turbulent quasi-stationary high density plasma. The system is explored by beginning to determine the turbulence phenomenology associated with an ionizing shock wave. The theoretical underpinnings are explored for phonon particle collisions by determining the collisional redistribution function, using Lioville Space Green's Function, which will characterize the inelastic scattering of the radiation from one frequency to another. We have observed that a weak magnetic field tends to increase the apparent random-like behaviors in a collisional turbulent plasma. On the theoretical side, we have been able to achieve a form for the collisional redistribution function. It remains to apply these concepts to a stationary turbulent plasma in the reflected ionizing shock wave and to exercise the implications of evaluations of the collisional redistribution function for such a system when it is probed by a strong radiation source. These results are discussed in detail in the publications, which have resulted from the this effort, cited at the end of the report

  10. High-Density Quantum Sensing with Dissipative First Order Transitions.

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-13

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to sqrt[N]. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T_{2} coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  11. The physics of the high density Z-pinch

    International Nuclear Information System (INIS)

    Glasser, A.H.; Hammel, J.E.; Lewis, H.R.

    1988-01-01

    The fiber-initiated High-Density Z-Pinch (HDZP) is a novel concept in which fusion plasma could be produced by applying 2 MV along a thin filament of frozen deuterium, 20-30 μm in diameter, 5-10 cm long. The megamp-range currents that result would ohmically heat the fiber to fusion temperatures in 100 ns while maintaining nearly constant radius. The plasma pressure would be held stably by the self-magnetic field for many radial sound transit times during the current-rise phase while, in the case of D-T, a significant fraction of the fiber undergoes thermonuclear fusion. This paper presents results of Los Alamos HDZP studies. Existing and new experiments are described. A succession of theoretical studies, including 1D self-similar and numerical studies of the hot plasma phase, 1D and 2D numerical studies of the cold startup phase, and 3D numerical studies of stability in the hot regime, are then presented. 9 refs., 4 figs

  12. High-Density Quantum Sensing with Dissipative First Order Transitions

    Science.gov (United States)

    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik

    2018-04-01

    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of N independent particles is proportional to √{N }. However, interactions invariably occurring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be transformed from a nuisance into an advantage when strong interactions trigger a dissipative phase transition in an open quantum system. We demonstrate this behavior by analyzing dissipative quantum sensors based upon nitrogen-vacancy defect centers in diamond. Using both a variational method and a numerical simulation of the master equation describing the open quantum many-body system, we establish the existence of a dissipative first order transition that can be used for quantum sensing. We investigate the properties of this phase transition for two- and three-dimensional setups, demonstrating that the transition can be observed using current experimental technology. Finally, we show that quantum sensors based on dissipative phase transitions are particularly robust against imperfections such as disorder or decoherence, with the sensitivity of the sensor not being limited by the T2 coherence time of the device. Our results can readily be applied to other applications in quantum sensing and quantum metrology where interactions are currently a limiting factor.

  13. Absolute paleointensities during a mid Miocene reversal of the Earth's magnetic field recorded on Gran Canaria (Canary Islands)

    Science.gov (United States)

    Leonhardt, R.; Soffel, H. C.

    2001-12-01

    An extensive paleointensity study was carried out on an approximately 14.1 Myr old reverse to normal transition of the geomagnetic field. One hundred eighty-eight samples from a mid Miocene volcanic sequence on Gran Canaria (Canary Islands) were subjected to Thellier-type paleointensity determinations. Samples for paleointensity experiments were selected on the basis of high Curie temperatures, low viscosity indexes, and limited variations of the remanence-carrying magnetic content during thermal treatment. A modified Thellier technique, which facilitates the recognition of MD tails and the formation of new magnetic remanences with higher blocking temperatures than the actual heating step, was used on the majority of the samples. The application of this technique proved to be very successful and we obtained reliable paleointensity results for 35% of the 87 sampled lava flows. In general, the intensity of the reversed and normal magnetized parts of the sequence, before and after the transition, is lower than the field intensity expected for the mid Miocene. This observation is very likely related to a long term reduction of the field close to transitions. The mean field intensity after the reversal ( ~ 17 μ T) is about twice the value of that recorded in the rocks prior to the reversal. This observation points at a fast recovery of the dipolar structure of the field after this reversal. Very low paleointensities with values < 5 μ T were obtained during an excursion, preceding the actual transition, and also close to significant changes of the local field directions during the reversal. This is interpreted as non-dipolar components becoming dominant for short periods and provoking a rapid change of local field directions. During the transition 15 successive lava flows recorded similar local field directions corresponding to a cluster of virtual geomagnetic poles close to South America. Chronologically, within this cluster the paleointensity increases from about 9

  14. Some new approaches to the study of the Earth's magnetic field reversals

    Directory of Open Access Journals (Sweden)

    G. Consolini

    2003-06-01

    Full Text Available Paleomagnetic studies clearly show that the polarity of the magnetic fi eld has been subject to reversals. It is generally assumed that polarity intervals are exponentially distributed. Here, the geomagnetic polarity reversal record, for the past 166 Ma, is analysed and a new approach to the study of the reversals is presented. In detail, the occurrence of 1/f-noise in the Power Spectral Density (PSD, relative to geomagnetic fi eld reversals, the existence of a Zipf's law behaviour for the cumulative distribution of polarity intervals, and the occurrence of punctuated equilibrium, as shown by a sort of Devil's staircase for the reversal time series, are investigated. Our results give a preliminary picture of the dynamical state of the geomagnetic dynamo suggesting that the geodynamo works in a marginally stable out-of-equilibrium confi guration, and that polarity reversals are equivalent to a sort of phase transition between two metastable states.

  15. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  16. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.

  17. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.

    1998-01-01

    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  18. High density UO2 powder preparation for HWR fuel

    International Nuclear Information System (INIS)

    Hwang, S. T.; Chang, I. S.; Choi, Y. D.; Cho, B. R.; Kwon, S. W.; Kim, B. H.; Moon, B. H.; Kim, S. D.; Phyu, K. M.; Lee, K. A.

    1992-01-01

    The objective of this project is to study on the preparation of method high density UO 2 powder for HWR Fuel. Accordingly, it is necessary to character ize the AUC processed UO 2 powder and to search method for the preparation of high density UO 2 powder for HWR Fuel. Therefore, it is expected that the results of this study can effect the producing of AUC processed UO 2 powder having sinterability. (Author)

  19. The high density effects in the Drell-Yan process

    International Nuclear Information System (INIS)

    Betemps, M.A.; Gay Ducati, M.B.; Ayala Filho, A.L.

    2003-01-01

    The high density effects in the Drell-Yan process (q q-bar → γ * →l + l - ) are investigated for pA collisions at RHIC and LHC energies. In particular, we use a set of nuclear parton distributions that describes the present nuclear eA and pA data in the DGLAP approach including the high density effects introduced in the perturbative Glauber-Mueller approach. (author)

  20. Modelling of SOL flows and target asymmetries in JET field reversal experiments with EDGE2D code

    International Nuclear Information System (INIS)

    Chankin, A.; Coad, J.; Corrigan, G.

    1999-11-01

    The EDGE2D code with drifts can reproduce the main trends of target asymmetries observed in field reversal experiments. It also re-produces qualitatively the main feature of recent JET results obtained with double-sided reciprocating Langmuir probes introduced near the top of the torus: the reversal of parallel plasma flow with toroidal field reversal. The code results suggest that the major contributor to the observed target asymmetries is the co-current toroidal momentum generated inside the scrape-off layer (SOL) by j r xB forces due to the presence of large up-down pressure asymmetries. Contrary to previous expectations of the predominant role of ExB drifts in creating target asymmetries, ∇B and centrifugal drifts were found to be mainly responsible for both parallel flows and target asymmetries. (author)