WorldWideScience

Sample records for high-convergence ignition-like double-shell

  1. Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P; Robey, H F; Park, H S; Tipton, R E; Turner, R E; Milovich, J L; Bono, M; Hibbard, R; Louis, H; Wallace, R

    2004-10-01

    High-convergence ignition-like double-shell implosion experiments have been performed on the Omega laser facility [T.R. Boehly et al., Opt. Commun. 133, 495 (1997)] using cylindrical gold hohlraums with 40 drive beams. Repeatable, dominant primary (2.45 MeV) neutron production from the mix-susceptible compressional phase of a double-shell implosion, using fall-line design optimization and exacting fabrication standards, is experimentally inferred from time-resolved core x-ray imaging. Effective control of fuel-pusher mix during final compression is essential for achieving noncryogenic ignition with double-shell targets on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)].

  2. Hohlraum-Driven Ignition-Like Double-Shell Implosion Experiments on Omega: Analysis and Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, P; Robey, H F; Park, H-S; Tipton, R E; Turner, R E; Milovich, J; Rowley, D; Hibbard, R; Louis, H; Wallace, R; Garbett, W; Dunne, A M; Varnum, W S; Watt, R G; Wilson, D C

    2003-08-22

    An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significant fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.

  3. Advances in the Manufacture of Omega-scale Double-shell Targets

    Science.gov (United States)

    Bono, M.

    2005-10-01

    The double-shell ignition target design consists of a low-Z outer shell that absorbs hohlraum-generated x-rays, implodes, and collides with a high-Z inner shell containing DT fuel. Efforts are continuing to field scaled ignition-like double shells on the Omega laser facility over a range of inner-shell Z. Previous ignition-like double-shell implosions on Omega used a low-Z CH inner shell [1]. The current target contains a higher-Z glass inner shell of diameter 216 microns, which is supported by SiO2 aerogel inside a Br-doped CH ablator shell of diameter 550 microns. Fielding double-shell targets has historically been limited by the ability to successfully fabricate them, but several technological advances have recently been made in the manufacturing process. The inner capsule will be cast in SiO2 aerogel of density 50 mg/cc, whose outer contour will be machined concentric to the inner capsule. This piece will then be assembled between two hemispherical ablator shells that mate at a step-joint with an adhesive-filled gap of thickness 100 nm. Three-dimensional tomographs made of each target using an x-ray micro-tomography system will allow precise characterization of the targets. [1] P. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005).

  4. NIF Double Shell outer-shell experiments

    Science.gov (United States)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  5. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  6. Double Shell Tank (DST) Monitor and Control Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    BAFUS, R.R.

    2000-11-03

    This specification revises the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery.

  7. Double Shell Tank (DST) Process Waste Sampling Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    RASMUSSEN, J.H.

    2000-05-03

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Process Waste Sampling Subsystem which supports the first phase of Waste Feed Delivery.

  8. Functional Analysis for Double Shell Tank (DST) Subsystems

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, D.F.

    2000-08-22

    This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only.

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  10. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  11. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, Dennis J.

    2014-04-10

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford’s Double-Shell Tank Integrity Program.

  12. Industrial mixing techniques for Hanford double-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks.

  13. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    GRAVES, C.E.

    2000-03-22

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  14. Vibration and Acoustic Radiation from Submerged Spherical Double-Shell

    Institute of Scientific and Technical Information of China (English)

    陈军明; 黄玉盈; 陈应波

    2003-01-01

    Based on the motion differential equations of vibration and acoustic coupling system for a thin elastic spherical double-shell with several elastic plates attached to the shells, in which Dirac-δ functions are employed to introduce the forces and moments applied by the attachments, and by means of expanding field quantities as the Legendre series, a semi-analytic solution is derived for the solution to the vibration and acoustic radiation from a submerged spherical double-shell. This solution has a satisfying computational effectiveness and precision for arbitrary frequency range excitation. It is concluded that the internal plates attached to shells can change significantly the mechanical and acoustical characteristics of shells, and make the coupling system have a very rich resonance frequency spectrum. Moreover, the present method can be used to study the acoustic radiation mechanism of the type of structure.

  15. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  16. 241-AZ Double Shell Tanks (DST) Integrity Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.

  17. Hazard assessments of double-shell flammable gas tanks

    Energy Technology Data Exchange (ETDEWEB)

    Fox, G.L.; Stepnewski, D.D.

    1994-09-28

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures.

  18. Double Shell Tank (DST) Monitor and Control Subsystem Specification

    Energy Technology Data Exchange (ETDEWEB)

    BAFUS, R.R.

    2000-04-27

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery. This subsystem specification establishes the interface and performance requirements and provides references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Monitor and Control Subsystem. The DST Monitor and Control Subsystem consists of the new and existing equipment that will be used to provide tank farm operators with integrated local monitoring and control of the DST systems to support Waste Feed Delivery (WFD). New equipment will provide automatic control and safety interlocks where required and provide operators with visibility into the status of DST subsystem operations (e.g., DST mixer pump operation and DST waste transfers) and the ability to manually control specified DST functions as necessary. This specification is intended to be the basis for new project/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program.

  19. Analysis of sound radiation characteristics of complex double shells

    Institute of Scientific and Technical Information of China (English)

    CHEN Meixia; LUO Dongping; CHEN Xiaoning; SHEN Ruixi

    2004-01-01

    The double stiffened shell connected by annular plates is systematically studied.The shell motion is obtained using the classical Fliigge operator, the effects of stiffeners are induced into the vibration equation by treating them as reverse included in forces and moments on the shell, and the fluid field between the inner shell and outer shell is solved by applying Helmholtz equation and the continuity conditions of the displacement on the surface of fluidstructure. At last the vibration equation coupled by the sound-fluid-structure are constituted and solved. The effects of the double shell parameters and linked types between the double shells on the sound radiation are discussed in detail. The following conclusions can be gotten:The smaller the space between the inner shell and outer shell, the stronger the coupling of the inner shell and outer shell, the higher the radiated power and radial quadratic velocity, and the more indistinct the shield of the outer shell. The changes of the thickness of the inner shell and outer shell influenced the radial quadratic velocity greatly, and influenced the radiated power indistinctly. The thicker the thickness, the lower the radial quadratic velocity.

  20. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  1. Double-shell tank remaining useful life estimates

    Energy Technology Data Exchange (ETDEWEB)

    Anantatmula, R.P., Westinghouse Hanford

    1996-12-02

    The existing 28 double-shell tanks (DSTS) at Hanford are currently planned to continue operation through the year 2028 when disposal schedules show removal of waste. This schedule will place the DSTs in a service life window of 4O to 60 years depending on tank construction date and actual retirement date. This paper examines corrosion- related life-limiting conditions of DSTs and reports the results of remaining useful life models developed for estimating remaining tank life. Three models based on controllable parameters such as temperature, chemistry, and relative humidity are presented for estimates to the year in which a particular DST may receive a breach in the primary tank due to pitting in the liquid or vapor region. Pitting is believed to be the life-limiting condition for DSTs,however, the region of the most aggressive pitting (vapor space or liquid) requires further investigation. The results of the models presented suggest none of the existing DSTs should fail by through-wall pitting until well beyond scheduled retrieval in 2028. The estimates of tank breach years (the year in which a tank may be expected to breach the primary tank wall) range from 2056 for pitting corrosion in the liquid region of tank 104-AW to beyond the next millennium for several tanks in the vapor region.

  2. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    Energy Technology Data Exchange (ETDEWEB)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome of this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.

  3. Double-shell tank ultrasonic inspection plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1994-09-30

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws.

  4. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double shell waste tanks. The analysis is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raise by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review (in April and May 2001) of work being performed on the double-shell tank farms, and the operation of the aging waste facility (AWF) primary tank ventilation system.

  5. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  6. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  7. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  8. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton; Czajkowski, Carl J; Divine, James R; Posakony, Gerald J; Johnson, A B; Elmore, Monte R; Reynolds, D A; Anantatmula, Ramamohan P; Sindelar, Robert L; Zapp, Philip E

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  9. Performance Requirements for the Double Shell Tank (DST) System Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    SMITH, D.F.

    2000-04-20

    This document describes the performance requirements for the Double-Shell Tank (DST) System. These requirements reflect the Case 3, Project Planning Case from the Tank Waste Remediation System Operation and Utilization Plan, Revision 1. These requirements, in turn, will be incorporated into a specification for the DST System.

  10. Machining, Assembly, and Characterization of a Meso-Scale Double Shell Target

    Energy Technology Data Exchange (ETDEWEB)

    Bono, M J; Hibbard, R L

    2003-10-21

    Several issues related to the manufacture of precision meso-scale assemblies have been identified as part of an effort to fabricate an assembly consisting of machined polymer hemispherical shells and machined aerogel. The assembly, a double shell laser target, is composed of concentric spherical layers that were machined on a lathe and then assembled. This production effort revealed several meso-scale manufacturing techniques that worked well, such as the machining of aerogel with cutting tools to form low density structures, and the development of an assembly manipulator that allows control of the assembly forces to within a few milliNewtons. Limitations on the use of vacuum chucks for meso-scale components were also identified. Many of the lessons learned in this effort are not specific to double shell targets and may be relevant to the production of other meso-scale devices.

  11. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    1999-06-04

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

  12. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  13. Tank characterization report for double-shell tank 241-AP-102

    Energy Technology Data Exchange (ETDEWEB)

    LAMBERT, S.L.

    1999-02-23

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues.

  14. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-08-23

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.

  15. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  16. Double-Shelled TiO2 Hollow Spheres Assembled with TiO2 Nanosheets.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Zhang, Yiwei; Zhao, Shuo; Fang, Jiasheng; Sheng, Xiaoli; Zhang, Tao; Zhang, Hongxing

    2017-02-08

    High-quality double-shelled TiO2 hollow spheres (DHS-Ti) assembled with TiO2 nanosheets have been synthesized for the first time through a simple hydrothermal treatment of sSiO2 @TiO2 (TiO2 -coated solid SiO2 spheres). The double-shelled structure shows a high BET surface area up to 417.6 m(2)  g(-1) . Anatase DHS-Ti of high crystallinity can be obtained without structural collapse by calcination treatment. The effects of cetyl trimethylammonium bromide (CTAB) concentration, pH, and hydrothermal reaction temperature have also been investigated with a series of contrast experiments. A formation mechanism involving the in situ growth of amorphous TiO2 nanosheets followed by the redeposition of dissolved silica species is proposed. Lastly, the DHS-Ti forming strategy can be extended as a general strategy to fabricate various morphological hollow nanostructures and double-shelled Pt nanocatalysts by rationally selecting functional sSiO2 nanoparticles as core materials. This work could open up a new strategy for controllable synthesis of complex hollow structures and other functional materials.

  17. Double Shell Plans and First Results from Outer Shell Keyhole Experiments

    Science.gov (United States)

    Montgomery, D. S.; Merritt, E. C.; Daughton, W. S.; Loomis, E. N.; Wilson, D. C.; Dodd, E. S.; Kline, J. L.; Batha, S. H.; Robey, H. F.

    2016-10-01

    Double-shells are an alternative approach to achieving indirect drive ignition on NIF. These targets consist of a low-Z ablatively-driven outer shell that impacts a high-Z inner shell filled with DT fuel. In contrast to single-shell designs, double-shell targets burn the fuel via volume ignition, albeit with a lower gain. While double-shell capsules are complicated to fabricate, their design includes several beneficial metrics such as a low convergence pusher (C.R. NIF, and discuss challenges as well as uncertainties and trade-offs in the physics issues compared to single-shells, such as sensitivity to hard x-ray preheat of the inner shell. First experimental results measuring hard x-ray preheat, shock breakout and shock symmetry from outer-shell experiments using the NIF Keyhole platform will be presented. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  18. Double-shell CuS nanocages as advanced supercapacitor electrode materials

    Science.gov (United States)

    Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao

    2017-07-01

    Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.

  19. A risk management approach to double-shell tank waste volume versus storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  20. Numerical Investigation on Double Shell-Pass Shell-and-Tube Heat Exchanger with Continuous Helical Baffles

    Directory of Open Access Journals (Sweden)

    Shui Ji

    2011-01-01

    Full Text Available A double shell-pass shell-and-tube heat exchanger with continuous helical baffles (STHXCH has been invented to improve the shell-side performance of STHXCH. At the same flow area, the double shell-pass STHXCH is compared with a single shell-pass STHXCH and a conventional shell-and-tube heat exchanger with segmental baffles (STHXSG by means of numerical method. The numerical results show that the shell-side heat transfer coefficients of the novel heat exchanger are 12–17% and 14–25% higher than those of STHXSG and single shell-pass STHXCH, respectively; the shell-side pressure drop of the novel heat exchanger is slightly lower than that of STHXSG and 29–35% higher than that of single shell-pass STHXCH. Analyses of shell-side flow field show that, under the same flow rate, double shell-pass STHXCH has the largest shell-side volume average velocity and the most uniform velocity distribution of the three STHXs. The shell-side helical flow pattern of double shell-pass STHXCH is more similar to longitudinal flow than that of single shell-pass STHXCH. Its distribution of fluid mechanical energy dissipation is also uniform. The double shell-pass STHXCH might be used to replace the STHXSG in industrial applications to save energy, reduce cost, and prolong the service life.

  1. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    Energy Technology Data Exchange (ETDEWEB)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-11-14

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable "lessons-learned" information about expected difficulties as well as construction practices and techniques that are likely to be successful.

  2. Core-double-shell, carbon nanotube@polypyrrole@MnO₂ sponge as freestanding, compressible supercapacitor electrode.

    Science.gov (United States)

    Li, Peixu; Yang, Yanbing; Shi, Enzheng; Shen, Qicang; Shang, Yuanyuan; Wu, Shiting; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Yuan, Quan; Cao, Anyuan; Wu, Dehai

    2014-04-09

    Design and fabrication of structurally optimized electrode materials are important for many energy applications such as supercapacitors and batteries. Here, we report a three-component, hierarchical, bulk electrode with tailored microstructure and electrochemical properties. Our supercapacitor electrode consists of a three-dimensional carbon nanotube (CNT) network (also called sponge) as a flexible and conductive skeleton, an intermediate polymer layer (polypyrrole, PPy) with good interface, and a metal oxide layer outside providing more surface area. These three components form a well-defined core-double-shell configuration that is distinct from simple core-shell or hybrid structures, and the synergistic effect leads to enhanced supercapacitor performance including high specific capacitance (even under severe compression) and excellent cycling stability. The mechanism study reveals that the shell sequence is a key factor; in our system, the CNT-PPy-MnO2 structure shows higher capacitance than the CNT-MnO2-PPy sequence. Our porous core-double-shell sponges can serve as freestanding, compressible electrodes for various energy devices.

  3. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (``double-shell slurry``) containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however.

  4. Hanford Double-Shell Tank Extent-of-Condition Review - 15498

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J. M.; Baide, D. D.; Barnes, T. J.; Boomer, K. D.; Gunter, J. R.; Venetz, T. J.

    2014-11-19

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford’s remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.

  5. Numerical Investigation on Double Shell-Pass Shell-and-Tube Heat Exchanger with Continuous Helical Baffles

    OpenAIRE

    Shui Ji; Wen-jing Du; Peng Wang; Lin Cheng

    2011-01-01

    A double shell-pass shell-and-tube heat exchanger with continuous helical baffles (STHXCH) has been invented to improve the shell-side performance of STHXCH. At the same flow area, the double shell-pass STHXCH is compared with a single shell-pass STHXCH and a conventional shell-and-tube heat exchanger with segmental baffles (STHXSG) by means of numerical method. The numerical results show that the shell-side heat transfer coefficients of the novel heat exchanger are 12–17% and 14–25% higher t...

  6. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  7. Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.; Meyer, Perry A.; Greenwood, Margaret S.; Titzler, Patricia A.; Terrones, Guillermo

    2007-09-01

    The objectives of these 1/12-scale scoping experiments were to: Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks; Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks; Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101; Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development; Analyze the effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste

  9. Facile synthesis of hierarchical double-shell WO3 microspheres with enhanced photocatalytic activity

    Science.gov (United States)

    Wang, Zhenfeng; Chu, Deqing; Wang, Limin; Wang, Lipeng; Hu, Wenhui; Chen, Xiangyu; Yang, Huifang; Sun, Jingjing

    2017-02-01

    Hierarchical double-shell WO3 microspheres (HDS-WO3) have been successfully obtained through the thermal decomposition of WO3·H2O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO3 microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO3 exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO3 sample under visible light illumination.

  10. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update - 15302

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Johnson, J. M.

    2014-12-22

    Tank AY-102 was the first of 28 double-shell radioactive waste storage tanks constructed at the U. S. Department of Energy’s Hanford Site, near Richland, WA. The tank was completed in 1970, and entered service in 1971. In August, 2012, an accumulation of material was discovered at two sites on the floor of the annulus that separates the primary tank from the secondary liner. The material was sampled and determined to originate from the primary tank. This paper summarizes the changes in leak behavior that have occurred during the past two years, inspections to determine the capability of the secondary liner to continue safely containing the leakage, and the initial results of testing to determine the leak mechanism.

  11. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  12. Test report of evaluation of primary exhaust ventilation flowmeters for double shell hydrogen watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, W.E., Westinghouse Hanford

    1996-09-03

    This document reports the results of testing four different flowmeters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101,241-AN- 103, 241-AN-104, 241-AN-105 and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1/78 m/s (350 ft/min). Past experiences at Hanford have forced the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter has been chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  13. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  14. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting in dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.

  15. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Stephanie J.; Sams, Terry L.

    2013-11-06

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints.

  16. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    Science.gov (United States)

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  17. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications

    Science.gov (United States)

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-09-01

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus

  18. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; JOHNSON KI; PILLI SP; KARRI NK; RINKER MW; ABATT FG; CARPENTER BG

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the SDT System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  19. DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    WASHENFELDER DJ

    2008-01-22

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  20. Evaluation of scaling correlations for mobilization of double-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekarriz, A.; Hammad, K.J.; Powell, M.R.

    1997-09-01

    In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding.

  1. Durability of double-shell slurry feed grouts: FY-90 results

    Energy Technology Data Exchange (ETDEWEB)

    Lokken, R.O.; Martin, P.F.C.

    1992-12-01

    Plans for disposal of the low-level fraction of selected double-shell tank wastes at Hanford include grouting. Grout disposal is the process of mixing low-level liquid waste with cementitious powders and pumping the slurry to near-surface, underground concrete vaults; hydration results in the formation of a solid product that binds/encapsulates the radioactive/hazardous constituents. In this durability program, previous studies have indicated a strong impact from curing temperature/time on strength and leach resistance of DSSF grouts. The current studies were expanded to determine whether these impacts could be attributed to other factors, such as dry blend composition and waste concentration. Major conclusions: grouts from dry blends with 40 wt% limestone had lower strengths; compressive strengths and leach resistance decreased with increased curing temperature/time; leach resistance increased for grouts prepared with dilute DSSF; nitrate leach resistance increased with high slag/cement ratios, dilute DSSF, and low curing temperatures; amount of drainable liquids for grouts using diluted DSSF was lowest when slag content was high; the 2 most significant factors affecting grout properties were the slag/cement ratio and waste dilution (slag-waste reactions appear to dominate the properties of DSSF grouts).

  2. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F. [Sandia National Labs., Albuquerque, NM (United States); Svitra, Z.V.; Bowen, S.M. [Los Alamos National Lab., NM (United States)

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.

  3. Tank characterization report for double-shell tank 241-AN-105

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J.

    1997-05-02

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  4. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  5. Performance assessment on grouted double-shell tank waste at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.H; McNair, G.W. [Pacific Northwest Lab., Richland, WA (United States); Allison, J.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1989-11-01

    The low-level fraction of liquid waste stored in double-shell tanks at Hanford will be solidified in a cementitious matrix (grout) and disposed in subsurface vaults. This paper discusses activities related to the preparation of a site-specific performance assessment as required by DOE Order 5820.2A. A draft performance assessment has been prepared for the planned grout disposal system at Hanford using site-specific data. The assessment estimates the incremental increase in the dose to future populations who, after loss of institutional control at the site, use groundwater downgradient of the disposal site. Increases in nonradiological species in water from a hypothetical well are also estimated. Two-dimensional transport models were used to estimate contaminant concentrations in groundwater. Based on diffusional release from the waste package, the projected radiological dose to an individual on a hypothetical farm using water from a well at the disposal facility boundary is estimated at less than one percent of the 25 mrem/yr standard in Order 5820.2. Technetium accounted for about 95% of the dose. Nitrate was the principle chemical contaminant at 0.3% to 0.5% of apportioned drinking water standards. Sensitivity studies on various parameters are in progress. This performance assessment will be updated as additional data become available.

  6. Tank characterization report for Double-Shell Tank 241-SY-102

    Energy Technology Data Exchange (ETDEWEB)

    DiCenso, A.T.; Amato, L.C. [Los Alamos Technical Associates, Inc., NM (United States); Winters, W.I. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-09

    This tank characterization report presents an overview of Double-Shell Tank 241-SY-102 (hereafter, Tank 241-SY-102) and its waste contents. It provides estimated concentrations and inventories for the waste components based on the latest sampling and analysis activities and background tank information. This report describes the results of three sampling events. The first core sample was taken in October 1988. The tank supernate and sludge were next core sampled in February and March of 1990 (Tingey and Sasaki 1995). A grab sample of the supernate was taken in March of 1994. Tank 241-SY-102 is in active service and can be expected to have additional transfers to and from the tank that will alter the composition of the waste. The concentration and inventory estimates reported in this document no longer reflect the exact composition of the waste but represent the best estimates based on the most recent and available data. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-08 (Ecology, EPA, DOE 1994).

  7. Evaluation of Ultrasonic Measurement Variation in the Double-Shell Tank Integrity Project

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, Allan F.; Weier, Dennis R.; Crawford, Susan L.; Munley, John T.

    2010-01-12

    Washington River Protection Solutions (WRPS) under contract from the U.S. Department of Energy (DOE) is responsible for assessing the condition of the double-shell tanks (DST) on the Hanford nuclear site. WRPS has contracted with AREVA Federal Services LLC (AFS) to perform ultrasonic testing (UT) inspections of the 28 DSTs to assess the condition of the tanks, judge the effects of past corrosion control practices, and satisfy a regulatory requirement to periodically assess the integrity of the tanks. Since measurement inception in 1997, nine waste tanks have been examined twice (at the time of this report) providing UT data that can now be compared over specific areas. During initial reviews of these two comparable data sets, average UT wall-thickness measurement reductions were noted in most of the tanks. This variation could be a result of actual wall thinning occurring on the waste-tanks walls, or some other unexplained anomaly resulting from measurement error due to causes such as the then-current measurement procedures, operator setup, or equipment differences. WRPS contracted with the Pacific Northwest National Laboratory (PNNL) to assist in understanding why this variation exists and where it stems from.

  8. HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    THIEN MG; WELLS BE; ADAMSON DJ

    2010-01-14

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

  9. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.L.

    1996-02-23

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed.

  10. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  11. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  12. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  13. Indirectly driven, high-convergence implosions (HEP1)

    Energy Technology Data Exchange (ETDEWEB)

    Hatchett, S.P.; Cable, M.D.; Caird, J.A. [and others

    1996-06-01

    High-gain inertial confinement fusion will most readily be achieved with hot-spot ignition, in which a relatively small mass of gaseous fuel at the center of the target is heated to 5-10 keV, igniting a larger surrounding mass of approximately isobaric fuel at higher density but lower temperature. Existing lasers are too low in energy to achieve thermonuclear gain, but hydrodynamically equivalent implosions using these lasers can demonstrate that the important, scalable parameters of ignition capsules are scientifically and technologically achievable. The experiments described in this article used gas-filled glass shells driven by x rays produced in a surrounding cavity, or hohlraum. These implosions achieved convergence ratios (initial capsule radius/ final fuel radius) high enough to fall in the range required for ignition-scale capsules, and they produced an imploded configuration (high-density glass with hot gas fill) that is equivalent to the hot-spot configuration of an ignition-scale capsule. Other recent laser-driven implosions have achieved high shell density but at lower convergences and without a well defined hot spot. Still other experiments have used very-low-density gas fill to reach high convergence with unshaped drive, but that approach results in a relatively low shell density. Moreover, even at the highest convergence ratios the implosions described here had neutron yields averaging 8% of that calculated for an idealized, clean, spherically symmetric implosion - much higher than previous high-convergence experiments.

  14. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  15. Maximum credibly yield for deuteriuim-filled double shell imaging targets meeting requirements for yield bin Category A

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Douglas Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 1010 to a few 1011 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 1014 neutrons). It also pertains to fills of gas diluted with hydrogen, helium (3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.

  16. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  17. Hidden symmetry of small spherical viruses and organization principles in "anomalous" and double-shelled capsid nanoassemblies.

    Science.gov (United States)

    Rochal, S B; Konevtsova, O V; Myasnikova, A E; Lorman, V L

    2016-09-29

    We propose the principles of structural organization in spherical nanoassemblies with icosahedral symmetry constituted by asymmetric protein molecules. The approach modifies the paradigmatic geometrical Caspar and Klug (CK) model of icosahedral viral capsids and demonstrates the common origin of both the "anomalous" and conventional capsid structures. In contrast to all previous models of "anomalous" viral capsids the proposed modified model conserves the basic structural principles of the CK approach and reveals the common hidden symmetry underlying all small viral shells. We demonstrate the common genesis of the "anomalous" and conventional capsids and explain their structures in the same frame. The organization principles are derived from the group theory analysis of the positional order on the spherical surface. The relationship between the modified CK geometrical model and the theory of two-dimensional spherical crystallization is discussed. We also apply the proposed approach to complex double-shelled capsids and capsids with protruding knob-like proteins. The introduced notion of commensurability for the concentric nanoshells explains the peculiarities of their organization and helps to predict analogous, but yet undiscovered, double-shelled viral capsid nanostructures.

  18. A methodology to define the flow rate and pressure requirements for transfer of double-shell tank waste slurries. Strategy plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Liljegren, L.M.

    1993-04-01

    This document presents an analysis of the pressure drop and flow rate double-shell tank slurries. Experiments to requirements for transport of characterize the transport of double-shell tank slurries through piping networks and to resuspend materials that settle during pump outages are proposed. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the flow regimes that are likely to occur during transport. The results of these evaluations indicate that the slurry will be pseudohomogeneous during transport and that the slurry rheology is sufficiently non-Newtonian to affect both the pressure drop achieved during transport and the critical Reynolds number. The transport data collected in the non-Newtonian experiment will be used to determine whether a non-Newtonian correlation developed by Hanks (1978) adequately describes the experimental results.

  19. SUMMARY AND RECOMMENDATIONS OF THE EXPERT PANEL OVERSIGHT COMMITTEE MEETING ON DOUBLE-SHELL TANK CORROSION MONITORING AND TESTING HELD AUGUST 4-5 2008

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) on Double-Shell Tank Corrosion Monitoring and Testing has been overseeing the Fiscal Year FY 2008 experimental program being performed at CC Technologies (CCT) to optimize the chemistry control for corrosion limits in Double-Shell Tanks (DSTs). The EPOC met at the M & D Professional Services Conference Facility on August 4 and 5, 2008 to discuss various aspects of that responsibility including FY 2009 planning. Formal presentations were made to update the EPOC on the these subjects.

  20. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  1. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, W.E. [Kaiser Engineers Hanford Co., Richland, WA (United States)

    1996-05-02

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks.

  2. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings.

  3. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-06-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I- V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  4. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  5. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  6. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  7. KAJIAN TEKNIS DAN EKONOMIS KONSTRUKSI SINGLE DAN DOUBLE SHELL PADA 18.500 DWT DRY CARGO VESSEL DENGAN MENGGUNAKAN PROGRAM KOMPUTER YANG BERBASIS METODE ELEMEN HINGGA DITINJAU DARI PENGGUNAAN MATERIAL,HARGA,BIAYA PEKERJA DAN DAYA MUAT KAPAL

    Directory of Open Access Journals (Sweden)

    Sukanto Jatmiko

    2012-02-01

    Full Text Available Konstruksi single dan double shell memiliki kelebihan dan kekurangan   dari segi teknis dan ekonomis.Dari segi teknis,kekuatan konstruksi double shell lebih baik dibandingkan konstruksi single shell.Sedangkan dari segi ekonomis, konstruksi single shell memiliki nilai ekonomis yang lebih tinggi dibandingkan konstruksi double shell .                 Dalam tugas akhir ini akan dijelaskan tentang analisa beban statis yang dari analisa tersebut akan diketahui karakteristik dan letak tegangan terbesar dari struktur konstruksi single dan double shell berdasarkan skenario variasi kondisi keadaan kapal menggunakan metode elemen hingga.Hasil analisa menggunakan program komputer yang berbasis metode elemen hingga pada Dry Cargo Vessel 18.500 DWT menunjukkan selisih nilai faktor keamanan terendah (safety of factor untuk stress tensor sebesar 3,08 pada konstruksi single shell dan 3,20 pada konstruksi double shell yang terjadi saat kondisi hogging.Sehingga dari segi teknis,konstruksi single shell memiliki faktor keamanan yang lebih rendah dibandingkan konstruksi double shell.                  Hasil perhitungan menggunakan program Microsoft Office Excel menunjukkan bahwa konstruksi double shell menggunakan material plat dan profil 1.379.249,5 kg (54,38% lebih banyak dibandingkan konstruksi single shell atau setara dengan Rp 13.769.953.250,00.Untuk selisih biaya pekerja senilai Rp 1.613.721.915,00 dan selisih volume ruang muat kapal sebesar 476.078 m3  

  8. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal.

    Science.gov (United States)

    Zhu, Jiahua; Wei, Suying; Gu, Hongbo; Rapole, Sowjanya B; Wang, Qiang; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Guo, Zhanhu

    2012-01-17

    A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.

  9. Designed Formation of Co₃O₄/NiCo₂O₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties.

    Science.gov (United States)

    Hu, Han; Guan, Buyuan; Xia, Baoyu; Lou, Xiong Wen David

    2015-04-29

    Hollow structures with high complexity in shell architecture and composition have attracted tremendous interest because of their great importance for both fundamental studies and practical applications. Herein we report the designed synthesis of novel box-in-box nanocages (NCs) with different shell compositions, namely, Co3O4/NiCo2O4 double-shelled nanocages (DSNCs). Uniform zeolitic imidazolate framework-67/Ni-Co layered double hydroxides yolk-shelled structures are first synthesized and then transformed into Co3O4/NiCo2O4 DSNCs by thermal annealing in air. Importantly, this strategy can be easily extended to prepare other complex DSNCs. When evaluated as electrodes for pseudocapacitors, the Co3O4/NiCo2O4 DSNCs show a high specific capacitance of 972 F g(-1) at a current density of 5 A g(-1) and excellent stability with 92.5% capacitance retention after 12 000 cycles, superior to that of Co3O4 NCs with simple configuration and Co3O4/Co3O4 DSNCs. Besides, the Co3O4/NiCo2O4 DSNCs also exhibit much better electrocatalytic activity for the oxygen evolution reaction than Co3O4 NCs. The greatly improved electrochemical performance of Co3O4/NiCo2O4 DSNCs demonstrates the importance of rational design and synthesis of hollow structures with higher complexity.

  10. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    Science.gov (United States)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  11. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole.

    Science.gov (United States)

    Liao, Xue; Chen, Yanhua; Qin, Meihong; Chen, Yang; Yang, Lei; Zhang, Hanqi; Tian, Yuan

    2013-12-15

    In this paper, Au-Ag-Au double shell nanoparticles were prepared based on the reduction of the metal salts HAuCl4 and AgNO3 at the surface of seed particles. Due to the synergistic effect between Au and Ag, the hybrid nanoparticles are particularly stable and show excellent performances on the detection of 2-mercapto-1-methylimidazole (methimazole). The binding of target molecule at the surface of Au-Ag-Au double shell nanoparticles was demonstrated based on both localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) spectra. The LSPR intensity is directly proportional to the methimazole concentration in the range of 0.10-3.00×10(-7) mol L(-1). The SERS spectrum can be applied in identification of methimazole molecule. The LSPR coupled with SERS based on the Au-Ag-Au double shell nanoparticles would be very attractive for the quantitative determination and qualitative analysis of the analytes in medicines.

  12. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping.

  13. Nitrogen-enriched, double-shelled carbon/layered double hydroxide hollow microspheres for excellent electrochemical performance

    Science.gov (United States)

    Xu, Jie; He, Fei; Gai, Shili; Zhang, Shenghuan; Li, Lei; Yang, Piaoping

    2014-08-01

    A unique, double-shelled, hollow, carbon-based composite with enriched nitrogen has been prepared through a facile and versatile synthetic strategy. The hierarchical composite employs the nitrogen-enriched carbon hollow sphere as an interior shell and intercrossed Ni/Al layered double hydroxide (LDH) nanosheets as an exterior shell. The obtained N-C@LDH hollow microspheres (HMS) have high nitrogen enrichment, large specific surface area (337 m2 g-1), and uniform and open mesoporous structure. Taking advantage of these characteristics, the composite exhibits obviously superior capacitive behavior, including high specific capacitance, excellent rate capability and good cycling stability, compared with nitrogen-free carbon@LDH composite and hollow LDH without carbon shell. The composite displays high specific capacitance of 1711.51 F g-1 at a current density of 1 A g-1. In particular, the high specific capacitance can be kept to 997.3 F g-1 at a high current density of 10 A g-1, which still retains 94.97% of the initial specific capacitance after 500 cycles at this high current density. This N-enriched, hollow carbon/LDH composite can be expected to be a promising electrode material for electrochemical capacitors due to its high electrochemical performance.A unique, double-shelled, hollow, carbon-based composite with enriched nitrogen has been prepared through a facile and versatile synthetic strategy. The hierarchical composite employs the nitrogen-enriched carbon hollow sphere as an interior shell and intercrossed Ni/Al layered double hydroxide (LDH) nanosheets as an exterior shell. The obtained N-C@LDH hollow microspheres (HMS) have high nitrogen enrichment, large specific surface area (337 m2 g-1), and uniform and open mesoporous structure. Taking advantage of these characteristics, the composite exhibits obviously superior capacitive behavior, including high specific capacitance, excellent rate capability and good cycling stability, compared with nitrogen

  14. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor`s controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first.

  15. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  16. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2016-08-15

    Highlights: • A novel Au@C@Pt core-double shell nanocomposite was synthesized and characterized by SEM(*), TEM and EDS, etc. • The synthesized Au@C@Pt core-double shell nanocomposite showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide (H{sub 2}O{sub 2}) and can be used to fabricate enzyme-free H{sub 2}O{sub 2} electrochemical sensor. • The H{sub 2}O{sub 2} sensor has two linear range of 9.0 μM–1.86 mM and 1.86 mM–7.11 mM, respectively, with a low limit of detection of 0.13 μM. • The H{sub 2}O{sub 2} sensor also displays high anti-interference ability, good stability and reproducibility. - Abstract: A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H{sub 2}O{sub 2}). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H{sub 2}O{sub 2} reduction at 0.0 V and can be used as H{sub 2}O{sub 2} sensor. The sensor displays two wide linear ranges towards H{sub 2}O{sub 2} detection. The one is 9.0 μM–1.86 mM with high sensitivity of 144.7 μA mM{sup −1} cm{sup −2}, and the other is 1.86 mM–7.11 mM with sensitivity of 80.1 μA mM{sup −1} cm{sup −2}. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H{sub 2}O{sub 2} detection. Additionally, the H{sub 2}O{sub 2} sensor also displays good stability and reproducibility.

  17. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    Science.gov (United States)

    Parani, Sundararajan; Bupesh, Giridharan; Manikandan, Elayaperumal; Pandian, Kannaiyan; Oluwafemi, Oluwatobi Samuel

    2016-11-01

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdSthin core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ˜3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  18. Double-shelled plasmonic Ag-TiO{sub 2} hollow spheres toward visible light-active photocatalytic conversion of CO{sub 2} into solar fuel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shichao; Wang, Meng; Li, Ping; Tu, Wenguang [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Zhou, Yong [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093 (China); Zou, Zhigang [National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093 (China)

    2015-10-01

    Double-shelled hollow hybrid spheres consisting of plasmonic Ag and TiO{sub 2} nanoparticles were successfully synthesized through a simple reaction process. The analysis reveals that Ag nanoparticles were dispersed uniformly in the TiO{sub 2} nanoparticle shell. The plasmonic Ag-TiO{sub 2} hollow sphere proves to greatly enhance the photocatalytic activity toward reduction of CO{sub 2} into renewable hydrocarbon fuel (CH{sub 4}) in the presence of water vapor under visible-light irradiation. The possible formation mechanism of the hollow sphere and related plasmon-enhanced photocatalytic performance were also briefly discussed.

  19. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if

  20. Fabrication of Double Shell Targets with a Glass Inner Capsule Supported by SiO2 Aerogel for Shots on the Omega Laser in 2006

    Energy Technology Data Exchange (ETDEWEB)

    Bono, M; Bennett, D; Castro, C; Satcher, J; Poco, J; Brown, W; Martz, H; Teslich, N; Hibbard, R; Hamza, A; Amendt, P; Robey, H; Milovich, J; Wallace, R

    2006-10-26

    Indirectly driven double shell implosions are being investigated as a possible noncryogenic path to ignition on the National Ignition Facility. Lawrence Livermore National Laboratory has made several technological advances that have produced double shell targets that represent a significant improvement to previously fielded targets. The inner capsule is supported inside the ablator shell by SiO{sub 2} aerogel with a nominal density of 50 mg/cm{sup 3}. The aerogel is cast around the inner capsule and then machined concentric to it. The seamless sphere of aerogel containing the embedded capsule is then assembled between the two halves of the ablator shell. The concentricity between the two shells has been improved to less than 1.5 {micro}m. The ablator shell consists of two hemispherical shells that mate at a step joint that incorporates a gap with a nominal thickness of 0.1 {micro}m. Using a new flexure-based tool holder that precisely positions the diamond cutting tool on the diamond turning machine, step discontinuities on the inner surface of the ablator of less than 0.5 {micro}m have been achieved. New methods have been used to comprehensively characterize each of the targets using high-resolution x-ray imaging systems.

  1. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  2. Total synthesis of (+)-discodermolide: a highly convergent fourth-generation approach.

    Science.gov (United States)

    Smith, Amos B; Freeze, B Scott; Xian, Ming; Hirose, Tomoyasu

    2005-04-28

    [structure: see text] A highly convergent, fourth-generation total synthesis of (+)-discodermolide (1), with a longest linear sequence of 17 steps and an overall yield of 9.0%, has been achieved. Highlighting the strategy is the efficient construction and sequential, bidirectional union of a linchpin comprising the C(9)-C(14) Wittig salt-vinyl iodide (-)-18. Importantly, Wittig salt generation proceeded in excellent yield under ambient pressure.

  3. Double-Shelled Nanocages with Cobalt Hydroxide Inner Shell and Layered Double Hydroxides Outer Shell as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Jintao; Hu, Han; Li, Zhen; Lou, Xiong Wen David

    2016-03-14

    Lithium-sulfur (Li-S) batteries have been considered as a promising candidate for next-generation electrochemical energy-storage technologies because of their overwhelming advantages in energy density. Suppression of the polysulfide dissolution while maintaining a high sulfur utilization is the main challenge for Li-S batteries. Here, we have designed and synthesized double-shelled nanocages with two shells of cobalt hydroxide and layered double hydroxides (CH@LDH) as a conceptually new sulfur host for Li-S batteries. Specifically, the hollow CH@LDH polyhedra with complex shell structures not only maximize the advantages of hollow nanostructures for encapsulating a high content of sulfur (75 wt %), but also provide sufficient self-functionalized surfaces for chemically bonding with polysulfides to suppress their outward dissolution. When evaluated as cathode material for Li-S batteries, the CH@LDH/S composite shows a significantly improved electrochemical performance.

  4. Synergistic effect of double-shelled and sandwiched TiO₂@Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity.

    Science.gov (United States)

    Cai, Jiabai; Wu, Xueqing; Li, Shunxing; Zheng, Fengying; Zhu, Licong; Lai, Zhanghua

    2015-02-18

    A novel approach for the fabrication of double-shelled, sandwiched, and nanostructured hollow spheres was proposed, using hydrotherm reaction and calcination. The negatively charged nanoparticles (e.g., Au, Ag, and Pt) could be adsorbed successively onto the positively charged hollow spheres (e.g., TiO2, ZnO, and ZrO2). The resulted nanocomposites (TiO2@Au, as a proof-of-concept) were dispersed in glucose solution under hydrothermal conditions. After calcination, uniform double-shelled and sandwiched TiO2@Au@C hollow spheres were obtained and Au nanoparticles were sandwiched between the shell wall of TiO2 and C. The samples were characterized by SEM, TEM, XRD, XPS, BET, and UV-vis DRS. The photocatalytic activity for the degradation of 4-nitroaniline was in the order of TiO2@Au@C > TiO2@C > TiO2/Au > P25. The visible-light photodegradation rate of 92.65% for 4-nitroaniline was achieved by TiO2@Au@C, which exhibited an increase of 75% compared to Degussa P25 TiO2. Furthermore, no deactivation occurred during catalytic reaction for three times, i.e., the TiO2@Au@C microspheres exhibited superior photocatalytic stability. TiO2@Au@C microspheres could also enhance the photocatalytic activity for hydrogen generation from methanol/water solutions. The synergistic effect of coupling TiO2 hollow spheres with Au nanoparticles and C shell on photocatalytic performance was proved by us. The photoexcited electrons from Au nanoparticles could be captured by the conduction band of TiO2 and then the electron-hole separation was improved. Moreover, both the visible light absorption and the affinity between TiO2 and pollutants could be improved by the coexistence of carbonaceous materials, which could facilitate the photocatalytic interface reaction.

  5. A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity

    Science.gov (United States)

    Liu, Yu; Yu, Le; Hu, Yong; Guo, Changfa; Zhang, Fumin; Wen (David) Lou, Xiong

    2011-12-01

    Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly.Magnetic nest-like γ-Fe2O3/ZnO double-shelled hollow nanostructures have been successfully synthesized via a multi-step process. The materials have been thoroughly characterized by different techniques. These interesting nest-like hollow nanostructures are composed of ZnO nanoflakes grown on the surface of γ-Fe2O3 hollow spheres. Importantly, these magnetic hollow nanostructures show very high visible-light photocatalytic activity for the degradation of different organic dyes including methylene blue (MB), Rhodamine-B (RhB), and methyl orange (MO). It is further demonstrated that these γ-Fe2O3/ZnO hybrid photocatalysts are highly stable and can be used repeatedly. Electronic supplementary information (ESI) available: XRD/TEM/schematic illustration of charge transfer. See DOI: 10.1039/c1nr11114k

  6. Magnetic C-C@Fe3O4 double-shelled hollow microspheres via aerosol-based Fe3O4@C-SiO2 core-shell particles.

    Science.gov (United States)

    Zhu, Yangzhi; Li, Xiangcun; He, Gaohong; Qi, Xinhong

    2015-02-18

    Magnetic C-C@Fe3O4 hollow microspheres were prepared by using aerosol-based Fe3O4@C-SiO2 core-shell particles as templates. The magnetic double-shelled microspheres efficiently worked as carriers to load Pt nanoparticles, thus making the catalyst recyclable and reusable.

  7. High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions

    Science.gov (United States)

    Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; Rauenzahn, R. M.; Wingate, C. A.

    2017-05-01

    In this paper, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularly well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation, consistent with previous

  8. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    Science.gov (United States)

    Wu, Zexing; Wang, Jie; Han, Lili; Lin, Ruoqian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-02-01

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N-C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N-C/C core-shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N-C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. The progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N-C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N-C/C core-shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N-C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement over the commercial Pt/C catalyst. The progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07929b

  9. Freestanding one-dimensional manganese dioxide nanoflakes-titanium cabide/carbon core/double shell arrays as ultra-high performance supercapacitor electrode

    Science.gov (United States)

    Kong, Shuying; Cheng, Kui; Ouyang, Tian; Ye, Ke; Gao, Yinyi; Wang, Guiling; Cao, Dianxue

    2015-10-01

    In this paper, freestanding one-dimensional MnO2 nanoflakes are successful prepared through a simple hydrothermal reaction by using the carbon shell of TiC/C core/shell arrays as the sacrificial template. Its structure and morphology are characterized by X-ray diffractometer, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometer and transmission electron microscopy. Results show that the thickness of the carbon shell decreased but also remained and the ultrathin MnO2 nanoflakes with thickness less than 5 nm uniformly grow on the surfaces of the TiC/C nanowire to form a core/double shell structure after the hydrothermal reaction. The electrochemical performance of the as-prepared electrode is evaluated by cyclic voltammetrys, galvanostatic charging-discharging tests and electrochemical impedance spectroscopy, and high capacities, excellent rate capabilities and exemplary cycling performance is obtained. The as-prepared electrode shows a high specific capacitance of 598.8 F g-1 and 85.8% of its initial capacitance is retained after 10,000 cycles at a high discharge current density of 10 A g-1, suggesting that this structure has a promising future as high-performance supercapacitor electrode.

  10. Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Science.gov (United States)

    Chen, Biao; Zhao, Naiqin; Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2017-04-01

    Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS2 and TiO2 in the MoS2/C/TiO2 composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS2 nanosheet (P25@C@FL-MoS2) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS2 and TiO2 in the obtained P25@C@FL-MoS2 hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS2 shell and coats the P25 core via Tisbnd Osbnd C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS2 anode are achieved.

  11. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    Science.gov (United States)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co3O4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co3O4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co3O4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g-1, Energy density of (95.42 Wh kg-1 at 1 A g-1) and power density of (1549 W kg-1 at 3 A g-1) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too.

  12. Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent.

    Science.gov (United States)

    Rubio-Garrido, Pablo; Pérez-de-Manzo, Flor; Porrero, César; Galazo, Maria J; Clascá, Francisco

    2009-10-01

    Input to apical dendritic tufts is now deemed crucial for associative learning, attention, and similar "feedback" interactions in the cerebral cortex. Excitatory input to apical tufts in neocortical layer 1 has been traditionally assumed to be predominantly cortical, as thalamic pathways directed to this layer were regarded relatively scant and diffuse. However, the sensitive tracing methods used in the present study show that, throughout the rat neocortex, large numbers (mean approximately 4500/mm(2)) of thalamocortical neurons converge in layer 1 and that this convergence gives rise to a very high local density of thalamic terminals. Moreover, we show that the layer 1-projecting neurons are present in large numbers in most, but not all, motor, association, limbic, and sensory nuclei of the rodent thalamus. Some layer 1-projecting axons branch to innervate large swaths of the cerebral hemisphere, whereas others arborize within only a single cortical area. Present data imply that realistic modeling of cortical circuitry should factor in a dense axonal canopy carrying highly convergent thalamocortical input to pyramidal cell apical tufts. In addition, they are consistent with the notion that layer 1-projecting axons may be a robust anatomical substrate for extensive "feedback" interactions between cortical areas via the thalamus.

  13. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability

    Science.gov (United States)

    Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Zhao, Shuo; Zhang, Hongxing; Sheng, Xiaoli

    2017-01-01

    A facile strategy has been developed for the synthesis of H-TS-Au microspheres (MCs) with double-shelled hollow architecture and sub-5 nm Au nanoparticles (Au NPs). The synthetic procedure involves the successive sol-gel template-assisted method for the preparation of uniform hierarchical hollow-in-hollow H-TS MCs with TiO2/mSiO2 as yolks/shells, and the unique deposition-precipitation method mediated with Au(en)2Cl3 precursors for the in-situ construction of extremely stable Au NPs under a low-temperature hydrogen reduction. The synthesized H-TS-Au MCs were characterized by TEM, SEM, FTIR, XRD, BET and UV-vis absorption spectra. Catalytic activity of H-TS-Au was evaluated using the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4. Results established that H-TS-Au MCs possessed a large-size double-shelled architecture with high structural integrity and robustness,which can effectively confine numerous tiny Au NPs and restrict them from sintering aggregation even up to further calcination at 800 °C. Owing to the advantageous structural configuration and the synergistic effect of TiO2/mSiO2 double shells, the H-TS-Au MCs were demonstrated to exhibit a remarkable catalytic activity and stability, and preserve the intact morphology after 6 repeating reduction of 4-NP.

  14. Simulation for double shell pinch

    Institute of Scientific and Technical Information of China (English)

    Wang Gang-Hua; Hu Xi-Jing; Sun Cheng-Wei

    2004-01-01

    Basic shock phenomena are presented in a composite pinch, a hybrid of the Z-pinch. The successive transfer of current within the plasma structure is demonstrated by our calculations. Properties of the shock wave are described.The current distribution between the two shells after the outer shell hitting the inner shell is also discussed.

  15. 新型高效扭曲管双壳程换热器的研制%Research and Manufacture of New Effective Double Shell Twised Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    张铁钢; 梁学峰; 王朝平

    2014-01-01

    The heat transfer performances of twisted tubes with different twist pitchs were compared through numerical simulation of fluid dynamics .The heat transfer performances of the twisted tube heat exchanger and baffled heat exchanger were tested and compared in laboratory .The structure design inno-vations for the double shell twisted tube heat exchanger were introduced .The successful application of in-dustrial test heat exchanger shows that the enhanced heat transfer capability of the double shell twisted tube heat exchangers was increased by 30%~40%compared with conventional baffled heat exchangers . Its benefit of energy conservation is notable .The double shell twisted tube heat exchanger can be widely used in the field of industry .%应用计算流体力学模拟了不同扭距下扭曲管的传热性能。通过实验室测试并比较扭曲管换热器和弓形折流板换热器的传热性能差异;介绍了扭曲管双壳程换热器的结构设计创新。通过工业试验产品在某厂的成功应用,验证了该新型高效扭曲管双壳程换热器的综合强化传热能力比传统折流板换热器提高30%~40%,节能效益显著,工业应用前景广阔。

  16. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in

  17. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the

  18. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  19. Design and Preparation of MnO2/CeO2-MnO2 Double-Shelled Binary Oxide Hollow Spheres and Their Application in CO Oxidation.

    Science.gov (United States)

    Zhang, Jian; Cao, Yidan; Wang, Chang-An; Ran, Rui

    2016-04-06

    Herein, we designed an extremely facile method to prepare well-defined MnO2@CeO2-MnO2 ball-in-ball binary oxide hollow spheres by employing carbon spheres (CSs) as sacrificial templates. The synthesis process involves a novel self-assembled approach to prepare core-shell CSs@CeO2 precursor, which would directly react with KMnO4 aqueous solution to form yolk-shell CSs@MnO2/CeO2-MnO2 precursor in the following step. Well-dispersed Ce-Mn binary oxide with double-shelled hollow sphere structure could be achieved after annealing the precursor in air. The evolution process and formation mechanism of this novel structure were thoroughly studied in this paper. Especially the as-prepared double-shell MnO2/CeO2-MnO2 hollow spheres exhibited enhanced catalytic activity for CO oxidation compared with the pure MnO2 hollow spheres and pure CeO2 hollow spheres. We believe the high surface area, hierarchical porous structures, and strong synergistic interaction between CeO2 and MnO2 contribute to the excellent catalytic activity. Most importantly, this method could be extended to prepare other transition metal oxides. As an example, triple-shelled Co-Mn composite hollow spheres assembled by ultrathin nanoplates were successfully prepared.

  20. Y2O3:Yb,Er@mSiO2-Cu(x)S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging.

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-28

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small Cu(x)S nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-Cu(x)S composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached Cu(x)S nanoparticles and the enhanced chemotherapy promoted by the heat from the Cu(x)S-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.

  1. 极高地应力软岩隧道双层支护技术%Technologies for Double-shell Support of Tunnels in Soft Rock with Extra-high Ground Stress

    Institute of Scientific and Technical Information of China (English)

    司剑钧

    2014-01-01

    Liangshui tunnel on Lanzhou-Chongqing railway is located in soft rock of carbon phyllite.The rock has extra-high ground stress,with the maximum horizontal principal stress ranging from 6.5 MPa to 11.3 MPa.In the early stage of the tunnel construction,serious deformation occurred to the primary support structure,which resulted in distorted and fractured steel arches,instability of the support structure and interference of the primary support structure into the lining clearance.Therefore,the distorted primary support structure had to be dismantled and even cracks occurred to the secondary lining at local positions.In the paper,double-shell primary support experiment and double-shell secondary lining experiment are made,so as to solve the above-mentioned problems.In the experiments,the primary support deformation,the surrounding rock pressure,the contact pressure,the steel arch stress,the steel bar stress and the concrete stress are studied.Conclusions drawn are as follows:1 )The deformation of the double-shell primary support is relatively small,the stress of the shotcrete,steel arches,secondary lining concrete and secondary lining steel bars have not exceeded the allowable stresses of these materials,and the double-shell primary support works well;2 )Due to the adoption of the double-shell primary support,the steel bar binding process can be reduced,no additional lining formwork jumbos are needed,the construction organization is more convenient,and construction efficiency is relatively high.%兰渝铁路两水隧道洞身主要通过炭质千枚岩软岩地层,隧道为极高地应力状态,最大水平主应力值为6.5~11.3 MPa。施工前期,隧道初期支护结构变形较大,部分钢拱架扭曲、断裂,支护结构失稳,初期支护结构侵入衬砌净空,拆换拱情况频繁发生,局部地段二次衬砌开裂。针对前期施工中出现的问题,分别开展双层初期支护和双层衬砌试验,对试验段初期支护

  2. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT TOP TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2007-02-16

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed

  3. Fabrication of mechanically robust, self-cleaning and optically high-performance hybrid thin films by SiO2&TiO2 double-shelled hollow nanospheres

    Science.gov (United States)

    Yao, Lin; He, Junhui; Geng, Zhi; Ren, Tingting

    2015-07-01

    Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings.Low-cost antireflection (AR) thin films on large-area optical surfaces are important for high-performance optical devices, display devices and photovoltaic cells. In the current work, SiO2&TiO2 double-shell hollow nanospheres (DSHNs) were designed, synthesized and utilized as building blocks for fabricating multifunctional AR thin films. By optimizing the porosity of SiO2&TiO2 DSHN and thin film structure, substrates with DSHN thin films attained transmittance as high as 99.4% and average transmittance up to 98.5% in the visible region. The nano-composite SiO2-TiO2 films exhibited intrinsic superhydrophilicity, anti-fogging and high photocatalytic activity. Tape peeling test, sponge washing test, and high temperature and moisture proof test showed favorable robustness and functional durability of the thin films, which make them extremely attractive for applications in lenses, photovoltaic cells and windows of high-rise buildings. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02467f

  4. Core/Double-Shell Type Gradient Ni-Rich LiNi0.76Co0.10Mn0.14O2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries.

    Science.gov (United States)

    Liao, Jin-Yun; Oh, Seung-Min; Manthiram, Arumugam

    2016-09-21

    A concentration-gradient Ni-rich LiNi0.76Co0.1Mn0.14O2 layered oxide cathode has been developed by firing a core/double-shell [Ni0.9Co0.1]0.4[Ni0.7Co0.1Mn0.2]0.5[Ni0.5Co0.1Mn0.4]0.1(OH)2 hydroxide precursor with LiOH·H2O, where the Ni-rich interior (core) delivers high capacity and the Mn-rich exterior (shells) provides a protection layer to improve the cyclability and thermal stability for the Ni-rich oxide cathodes. The content of nickel and manganese, respectively, decreases and increases gradually from the center to the surface of each gradient sample particle, offering a high capacity with enhanced surface/structural stability and cyclability. The obtained concentration-gradient oxide cathode exhibits high-energy density with long cycle life in both half and full cells. With high-loading electrode half cells, the concentration-gradient sample delivers 3.3 mA h cm(-2) with 99% retention after 100 cycles. The material morphology, phase, and gradient structure are also maintained after cycling. The pouch-type full cells fabricated with a graphite anode delivers high capacity with 89% capacity retention after 500 cycles at C/3 rate.

  5. 双层包裹聚磷酸铵微胶囊合成及其在环氧树脂中阻燃研究%PREPARATION OF DOUBLE SHELL MICROENCAPSULATED AMMONIUM POLYPHOSPHATE AND ITS FLAME RETARDANCY IN EPOXY COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    张延奎; 吴昆; 张卡; 魏续瑞; 沈敏敏

    2012-01-01

    采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃C残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.%Microencapsulated ammonium polyphosphate ( EMFAPP ) with double shell ( melamine-formaldehyde resin and epoxy resin) is prepared by in situ polymerization,which is a typical intumescent flame retardant containning an acid source ammonium polyphosphate ( APP ) , a blowing agent melamine formaldehyde (MF) and a carbonization agent epoxy resin (EP). Its structure is characterized by Fourier transform infrared spectroscopy ( FTIR) and scanning electron microscopy ( SEM ) . The flame retardancy of EMFAPP in EP is studied by limiting oxygen index ( LOI) and UL 94 tests. EP/EMFAPP samples can pass V-0 in UL 94 test when the content of EMFAPP is more than 7% , and their LOI value is higher than 21.0% . After water treatment ( 75℃, 6 days), EP/EMFAPP maintains good flame retardancy while the flame retardancy of APP in EP decreases greatly. So after microencapsulation, the water resistance of EP/EMFAPP was improved remarkably. The thermal stability of EMFAPP and EP/EMFAPP is evaluated by thermogravimetric analysis ( TGA). Residue char of EP/EMFAPP (8 wt% ) is as high as 16. 2% at 700X1. EMFAPP can

  6. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kearn P.; Thien, Michael G.

    2013-11-07

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

  7. Tank characterization report for double shell tank 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    Winkelman, W.D., Westinghouse Hanford

    1996-08-07

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AP-104. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  8. Double-shell inertial confinement fusion target fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, C.W.; Lorensen, L.E.; Weinstein, B.W.

    1980-08-26

    First generation hemishells, from which spherical shells are constructed, were fabricated by micromachining coated mandrels and by molding. The remachining of coated mandrels are described in detail. Techniques were developed for coating the microsized mandrels with polymeric and metallic materials by methods including conformal coating, vapor deposition, plasma polymerization and thermoforming. Micropositioning equipment and bonding techniques have also been developed to assemble the hemishells about a fuel pellet maintaining a spherical concentricity of better than 2 ..mu..m and voids in the hemishell bonding line of a few hundred angstroms or less.

  9. Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, B.J.

    1996-09-27

    Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

  10. In situ rheology and gas volume in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G. [Pacific Northwest National Lab., Richland, WA (United States); Mendoza, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the `hazard signature` of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior.

  11. Tank characterization report for double-shell tank 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    Jo, J., Westinghouse Hanford

    1996-08-15

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AN-107. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  12. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of simulant materials that give the desired density and viscosity or rheological parameters.

  13. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    OGDEN DM; KIRCH NW

    2007-10-31

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  14. Mechanical Analysis of a Pneumatically Actuated Concentric Double-Shell Structure for Cell Stretching

    Directory of Open Access Journals (Sweden)

    Feihu Zhao

    2014-10-01

    Full Text Available An available novel system for studying the cellular mechanobiology applies an equiaxial strain field to cells cultured on a PolyDiMethylSiloxane (PDMS substrate membrane, which is stretched over the deformation of a cylindrical shell. In its application of in vitro cell culture, the in-plane strain of the substrate membrane provides mechanical stimulation to cells, and out-of-plane displacement plays an important role in monitoring the cells by a microscope. However, no analysis of the parameters has been reported yet. Therefore, in this paper, we employ analytical and computational models to investigate the mechanical behavior of the device, in terms of in-plane strain and out-of-plane displacement of the substrate membrane. As a result, mathematical descriptions are given, which are not only for quantitatively determining the applied load, but also provide the theoretical basis for the researchers to carry out structural modification, according to their needs in specific cell culture experiments. Furthermore, by computational study, the elastic modulus of PDMS is determined to allow the mechanical behavior analysis of a fabricated device. Finally, compared to the experimental results of characterizing a fabricated device, good agreement is obtained between the predicted and experimental results.

  15. Technical Information to Support Double Shell Tank (DST) Emergency Annulus Pumping [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    REBERGER, D.W.

    2000-09-14

    This document provides the design calculations for the DST Annulus Emergency Pumping Project. This document also contains essential information relative to DST annulus emergency pumping that may not be found in other documents. This information consists of the following: Index drawing for annulus pumping; References to the Acceptance Test Report, DST Emergency Pumping Guide, Time Deployment study, etc.; Statements of work; and Reference CEIS and RMIS numbers. A Vendor Information document, VI-50121, is not included in this document, but a copy can be obtained by contacting Document Control Services. This document contains various information regarding the Hydrostar pumps, such as the air motor, cylinder size, pump installation and operation manual. It also contains information regarding the Flygt BS2060 submersible pump, such as parts list, pump handling, preventative maintenance, overhaul and repair. In addition, this document also has information on 3-way PM ball valves, electrical skid components and the alternate Gurman-Rupp stainless steel submersible pump.

  16. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  17. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  18. Structural analysis and design optimization of double shell system for fuel irradiation capsule

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. S.; Choi, Y. J.; Choi, M. H.; Rhu, C. H.; Go, J. H.; Hong, S. J.; Lee, H. C. [Chungnam National Univ., Taejeon (Korea)

    2001-04-01

    During irradiation tests, the fuel capsule expect that the high temperature will be occur. Thus, to estimate the structural integrity of fuel capsule during irradiation tests, it is needed to perform structural analysis and to obtain the information of mechanical characteristics for the system. In this study, the structure analysis of the circular capsule is performed using the finite element analysis program, ANSYS and analysis calculation. To obtain the mechanical characteristics of the circular capsule structure such as stresses, critical buckling loads and natural frequencies et al. the static nd model analysis are conducted. The effects of various wall thicknesses of capsule outer tube and support tube for circular capsule are obtained. Also, the effects of boundary conditions and principal materials of the fuel capsule on the structural behavior are investigated. The FE results are compared with the analysis results in case of possible. 13 refs., 34 figs., 10 tabs. (Author)

  19. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

  20. Planetary nebulae with double shells and haloes: insights from hydrodynamical simulations

    Directory of Open Access Journals (Sweden)

    D. Schönberner

    2002-01-01

    Full Text Available Se combinan simulaciones hidrodin amicas con c alculos de evoluci on estelar basados en recetas de tasas de p erdida de masa para obtener una mejor comprensi on de c omo se desarrolla con el tiempo la estructura y cinem atica de la materia circumestelar durante la fase tard a de la Rama Gigante Asint otica (RGA y las fases posteriores: post-RGA y evoluci on de la Nebulosa Planetaria.

  1. Tank characterization report for double-shell tank 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, N.E.

    1997-08-22

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-AN-103. This report supports the requirements of the Tri-Party Agreement Milestone M-44-10. (This tank has been designated an Hydrogen Watch List tank.)

  2. Tank characterization report for double-shell tank 241-SY-103

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.M., Westinghouse Hanford

    1996-09-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SY-103. This report supports the requirements of Tri-Party Agreement Milestone M-44 09.

  3. Double Shell Tank (DST) Ventilation System Vapor Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    2000-06-08

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples from the primary ventilation systems of the AN, AP, AW, and AY/AZ tank farms. Sampling will be performed in accordance with Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Air DQO) (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications. Vapor samples will be obtained from tank farm ventilation systems, downstream from the tanks and upstream of any filtration. Samples taken in support of the DQO will consist of SUMMA{trademark} canisters, triple sorbent traps (TSTs), sorbent tube trains (STTs), polyurethane foam (PUF) samples. Particulate filter samples and tritium traps will be taken for radiation screening to allow the release of the samples for analysis. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from the vapor samples.

  4. Tank Characterization Report for Double Shell Tank (DST) 241-AN-107

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, M.R.

    2000-03-23

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  5. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  6. Hanford double shell waste tank corrosion studies - final report FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    SRNL tasks for FY14 included studies to evaluate the susceptibility of carbon steel to vapor space corrosion (VSC), liquid-air interface (LAI) corrosion, and pitting corrosion. Additionally, SRNL evaluated the susceptibility of carbon steel to pitting corrosion under buffered waste conditions, with the objective of determining the adequate amount of inhibitor (e.g., nitrite) necessary to mitigate pitting corrosion. Other CPP experiments were performed in historical waste simulants and the results were compared to previously gathered results. The results of these activities were utilized to assess the robustness of the standardized CPP protocol

  7. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of simulant materials that give the desired density and viscosity or rheological parameters.

  8. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  9. Nonradioactive Environmental Emissions Chemical Source Term for the Double Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    Energy Technology Data Exchange (ETDEWEB)

    MAY, T.H.

    2000-04-21

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated.

  10. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    Energy Technology Data Exchange (ETDEWEB)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  11. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning

    Science.gov (United States)

    Chandra, Sourov; Ghosh, Batu; Beaune, Grégory; Nagarajan, Usharani; Yasui, Takao; Nakamura, Jin; Tsuruoka, Tohru; Baba, Yoshinobu; Shirahata, Naoto; Winnik, Françoise M.

    2016-04-01

    Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles.Functional near-IR (NIR) emitting nanoparticles (NPs) adapted for two-photon excitation fluorescence cell imaging were obtained starting from octadecyl-terminated silicon nanocrystals (ncSi-OD) of narrow photoluminescence (PL) spectra having no long emission tails, continuously tunable over the 700-1000 nm window, PL quantum yields exceeding 30%, and PL lifetimes of 300 μs or longer. These NPs, consisting of a Pluronic F127 shell and a core made up of assembled ncSi-OD kept apart by an octadecyl (OD) layer, were readily internalized into the cytosol, but not the nucleus, of NIH3T3 cells and were non-toxic. Asymmetrical field-flow fractionation (AF4) analysis was carried out to determine the size of the NPs in water. HiLyte Fluor 750 amine was linked via an amide link to NPs prepared with Pluronic-F127-COOH, as a first demonstration of functional NIR-emitting water dispersible ncSi-based nanoparticles. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01437b

  12. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  13. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, Allan F.; Alzheimer, James M.; Crawford, Susan L.; Diaz, Aaron A.; Gervais, Kevin L.; Harris, Robert V.; Riechers, Douglas M.; Samuel, Todd J.; Schuster, George J.; Tucker, Joseph C.; Roberts, R. A.

    2001-09-28

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques.

  14. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; RINKER MW

    2009-08-18

    This report (Rev 1) incorporates corrections and clarifications regarding the interpretation of solutions in BNL (1995) per reviewer comments from a June 7-8, 2007 review meeting. The review comments affect Appendixes C and D of this report - the body of the report is unchanged.

  15. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.L.

    1996-04-19

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory`s Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete filling of the bottles so as to exclude all headspace. These actions were consistent with safety procedures, which attempt to limit personnel exposure to hazardous ionizing radiation.

  16. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; RINKER MW

    2009-08-18

    This report (Rev 1) incorporates corrections and clarifications regarding the interpretation of solutions in BNL (1995) per reviewer comments from a June 7-8, 2007 review meeting. The review comments affect Appendixes C and D of this report - the body of the report is unchanged.

  17. Nuclear structure of 140Te with N = 88: Structural symmetry and asymmetry in Te isotopes with respect to the double-shell closure Z = 50 and N = 82

    CERN Document Server

    Moon, C -B; Lee, C S; Odahara, A; Lozeva, R; Yagi, A; Browne, F; Nishimura, S; Doornenbal, P; Lorusso, G; Söderström, P -A; Sumikama, T; Watanabe, H; Isobe, T; Baba, H; Sakurai, H; Daido, R; Fang, Y; Nishibata, H; Patel, Z; Rice, S; Sinclair, L; Wu, J; Xu, Z Y; Yokoyama, R; Kubo, T; Inabe, N; Suzuki, H; Fukuda, N; Kameda, D; Takeda, H; Ahn, D S; Murai, D; Garrote, F L Bello; Daugas, J M; Didierjean, F; Ideguchi, E; Ishigaki, T; Jung, H S; Komatsubara, T; Kwon, Y K; Morimoto, S; Niikura, M; Nishizuka, I; Tshoo, K

    2015-01-01

    We study for the first time the internal structure of 140Te through the beta-delayed gamma-ray spectroscopy of 140Sb. The very neutron-rich 140Sb, Z = 51 and N = 89, ions were produced by the in-flight fission of 238U beam on a 9Be target at 345 MeV per nucleon at the Radioactive Ion Beam Factory, RIKEN. The half-life and spin-parity of 140Sb are reported as 124(30) ms and (4-), respectively. In addition to the excited states of 140Te produced by the beta-decay branch, the beta-delayed one-neutron and two-neutron emission branches were also established. By identifying the first 2+ and 4+ excited states of 140Te, we found that Te isotopes persist their vibrator character with E(4+)/E(2+) = 2. We discuss the distinctive features manifest in this region, such as valence neutron symmetry and asymmetry, revealed in pairs of isotopes with the same neutron holes and particles with respect to N = 82.

  18. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.L.

    1996-04-19

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory`s Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete filling of the bottles so as to exclude all headspace. These actions were consistent with safety procedures, which attempt to limit personnel exposure to hazardous ionizing radiation.

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  20. Core-double-shell Fe3O4@carbon@poly(In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)-Salen bifunctional catalysts.

    Science.gov (United States)

    An, Qiao; Li, Zifeng; Graff, Robert; Guo, Jia; Gao, Haifeng; Wang, Changchun

    2015-03-01

    A hydrid microsphere Fe3O4@carbon@poly(In(III)-carboxylate) consisting of a cluster of Fe3O4 nanoparticles as the core, a carbon layer as the inner shell and a porous In(III)-carboxylate coordination polymer as the outer shell was prepared and applied as a recyclable catalyst for the cycloaddition reaction of CO2 and epoxides. Construction of this hybrid microsphere was achieved in the two steps, including (1) the one-pot solvothermal synthesis of Fe3O4@C particles with the abundant carboxylic groups on the carbon surface and (2) the subsequent growth of the outer shell polymers based on the precipitation coordination polymerization. Imidazolium-substituted Salen ligands were synthesized and chelated with the In(III) ions using the terminal carboxylic groups. The coordination polymer shell was formed on the Fe3O4@C particles, and the structures including shell thickness, surface area and porosity could be varied by tuning the feeding ratios of the In(III) ions and the ligands. The optimal structure of the coordination polymers showed a shell thickness of ca. 45 nm with ∼5 nm of mesopore, 174.7 m(2)/g of surface area and 0.2175 cm(3)/g of pore volume. In light of gas uptake capability, catalytic activity and magnetic susceptibility, cycloaddition of CO2 with a series of epoxides were studied by using Al-complexed Fe3O4@C@In(III)-[IL-Salen] microspheres. The results validated that the self-supporting catalytic layer with high surface area was of remarkable advantages, which were attributed from great increment of effective active sites and combination of nucleophilic/electrophilic synergistic property and CO2 uptake capability. Therefore, these hybrid microspheres provided excellent catalytic activity, prominent selectivity to cyclic carbonates and outstanding recyclability with the assistance of an applied magnetic field.

  1. 棉织物的双壳光致变色微胶囊印花和涂层%Printing and coating of cotton fabric with double-shell photochromic microcapsules

    Institute of Scientific and Technical Information of China (English)

    范菲

    2016-01-01

    对比明胶、瓜尔豆胶、琼脂粉和非离子型缔合式增稠剂对双壳聚氨酯-壳聚糖光致变色微胶囊的增稠效果,并将增稠后的微胶囊整理液用于棉织物的印花和涂层整理,观察整理后棉织物的颜色,并测定其光响应变色性能.结果表明,瓜尔豆胶对双壳聚氨酯-壳聚糖光致变色微胶囊整理液的增稠效果较好,当微胶囊/瓜尔豆胶质量比为10∶1,柠檬酸质量分数为7%时,处理棉织物的印花效果较好.

  2. 扭曲管双壳程换热器的研究及性能分析%RESEARCH AND PERFORMANCE ANALYSIS OF THE DOUBLE SHELL TWISTED TUBE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    宋丹; 蹇江海; 张迎恺

    2012-01-01

    This paper introduces the difference between the special structure of the twisted tube heat exchanger and that of the common heat exchanger. It found out the advantages of the twisted tube heat exchanger over the common one. The paper makes an in-depth analysis on the comprehensive performance of the twisted tube heat exchanger and discusses various factors that may influence its performance. It focuses on the pressure drop within and without the tube and the heat transfer coefficient of the twisted tube heat exchanger. The paper also presents the prospects for further research of the twisted tube heat exchanger.%介绍了扭曲管换热器的特殊结构以及与普通换热器的区别,得出了扭曲管换热器相比于普通换热器的优点;深入分析了扭曲管换热器的综合性能,并对影响其综合性能的各种因素进行了讨论,重点讨论了扭曲管换热器管内及管外的压降和传热系数;对扭曲管换热器的进一步研究进行了展望.

  3. Maximizing 1D “like” implosion performance for inertial confinement fusion science

    Energy Technology Data Exchange (ETDEWEB)

    Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    While the march towards achieving indirectly driven inertial confinement fusion at the NIF has made great progress, the experiments show that multi-dimensional effects still dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seed by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of ICF implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. To this end, LANL has adopted three main approaches to develop a 1D implosion platform where 1D means high yield over 1D clean calculations. Taking advantage of the properties of beryllium capsules, a high adiabat, low convergence platform is being developed. The higher drive efficiency for beryllium enables larger case-to-capsule ratios to improve symmetry at the expense of drive. Smaller capsules with a high adiabat drive are expected to reduce the convergence and thus increase predictability. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the initial mass in the hot spot can be controlled via the target fielding temperature which changes the liquid vapor pressure. Varying the initial hot spot mass via the vapor pressure controls the implosion convergence and minimizes the need to vaporize the dense fuel layer during the implosion to achieve ignition relevant hot spot densities. The last method is double shell targets. Unlike hot spot ignition, double shells ignite volumetrically. The inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. Radiation trapping and the longer confinement times relax the conditions required to ignite the fuel. Key challenges for double shell targets are coupling the momentum of the outer shell to

  4. Numerical Studies on Performance of Double Shell-pass Heat Exchangers With Sleeve Tubes and Continuous Helical Baffles%套管双壳程连续螺旋折流板换热器性能数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    宋素芳

    2013-01-01

    研究了一种新型套管双壳程连续螺旋折流板换热器,套管将壳程分为内外两部分,内壳程无折流板,外壳程采用连续螺旋折流板.建立了换热器的三维模型,采用分离式求解器,SIMPLE算法,k-ε湍流模型,借用CFD软件FLUENT对套管双壳程连续螺旋折流板换热器和传统弓形折流板及传统单壳程连续螺旋折流板换热器壳程流动和换热特性进行模拟研究,结果表明:相同壳程进口流速下,套管双壳程连续螺旋折流板换热器的壳程压力降比弓形折流板和单壳程连续螺旋折流板换热器降低平均值分别为62.17%和22.76%,传热速率比这两种换热器均提高了25.98%和21.79%,单位传热量的压力降相比于这两种换热器降低平均值分别为68.93%和38.69%.

  5. Characterization data needs for development, design, and operation of retrieval equipment developed through the data quality objective process

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, G.R., Westinghouse Hanford

    1996-08-13

    This Data Quality Objective identifies the specific characterization data required to support the development,design, and operation of systems to retrieve and transfer to storage waste from both single- shell tanks and double-shell tanks.

  6. 207-A retention basins system design description

    Energy Technology Data Exchange (ETDEWEB)

    Wahlquist, R.A.

    1994-09-29

    The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage. The process effluent is transferred to various retention/treatment facilities for eventual release to the environment. The process utilizes an evaporator vessel and various supporting systems for heating, evaporating, and condensing low-heat-generating liquid waste produced it the Hanford Site. The process reduces the total volume of the liquid waste requiring storage in a double shell tank, making it more manageable for current storage as well as for future treatment and disposal. The main components of the 242-A Evaporator are the Reboiler, Vapor-Liquid Separator, Recirculation Pump and Pump Loop, Slurry System, Condenser System, Steam Jet Vacuum System, Condensate Collection Tank, and Ion Exchange System.

  7. EXPERT PANEL OVERSIGHT COMMITTEE ASSESSMENT OF FY2008 CORROSION AND STRESS CORROSION CRACKING SIMULANT TESTING PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) has been overseeing the implementation of selected parts of Recommendation III of the final report, Expert Panel workshop for Hanford Site Double-Shell Tank Waste Chemistry Optimization, RPP-RPT-22126. Recommendation III provided four specific requirements necessary for Panel approval of a proposal to revise the chemistry control limits for the Double-Shell Tanks (DSTs). One of the more significant requirements was successful performance of an accelerated stress corrosion cracking (SCC) experimental program. This testing program has evaluated the optimization of the chemistry controls to prevent corrosion in the interstitial liquid and supernatant regions of the DSTs.

  8. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  9. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    Energy Technology Data Exchange (ETDEWEB)

    HARMSEN, R.W.

    1999-10-28

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement.

  10. Steady State Flammable Gas Release Rate Calculation and Lower Flammability Level Evaluation for Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2000-04-27

    This work is to assess the steady-state flammability level at normal and off-normal ventilation conditions in the tank dome space for 177 double-shell and single-shell tanks at Hanford. Hydrogen generation rate was calculated for 177 tanks using rate equation model developed recently.

  11. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.G.; Badden, J.J.

    1995-02-13

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford.

  12. Tank 241-BX-106: Tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-03-06

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, and WHC 222-S Laboratory. Scope of this plan is to provide guidance for sampling and analysis of samples for tank 241-BX-106. (Waste from this tank shall be transferred to a double-shell tank.)

  13. Hanford Waste Tank Bump Accident and Consequence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    BRATZEL, D.R.

    2000-06-20

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

  14. Structural evaluation of mixer pump installed in Tank 241-AN-107 for caustic addition project

    Energy Technology Data Exchange (ETDEWEB)

    Leshikar, G.A.

    1995-06-16

    This report documents the structural analysis and evaluation of a mixer pump and caustic addition system to be used in Tank 107-AN. This pump will be installed in the central pump pit of this double- shell tank for the purpose of bringing the hydroxide ion concentration into compliance with Tank Farm operating specifications.

  15. Immune modulation in chronic hepatitis B patients

    NARCIS (Netherlands)

    A.B. van Nunen

    2002-01-01

    textabstractThe hepatitis B virus (HBV) is a 42 nm viral particle and member of the hepadnaviridae family. Its double-shelled structure consists of an outer envelop composed of surface proteins (HBsAg) and an inner capsid formed by core-proteins (HBcAg) surrounding the partially double stranded DNA

  16. Bases for solid waste volume estimates for tank waste remediation system

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, G.W., Westinghouse Hanford

    1996-08-01

    This document presents the background and basis for the Tank Waste Remediation System forecast for solid waste submitted in June 1996. The forecast was generated for single-shell tank and double-shell tank activities including operations through retrieval and disposal of chemical tank waste.

  17. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  18. Preparation of SnO 2 /Carbon Composite Hollow Spheres and Their Lithium Storage Properties

    KAUST Repository

    Lou, Xiong Wen

    2008-10-28

    In this work, we present a novel concept of structural design for preparing functional composite hollow spheres and derived double-shelled hollow spheres. The approach involves two main steps: preparation of porous hollow spheres of one component and deposition of the other component onto both the interior and exterior surfaces of the shell as well as in the pores. We demonstrate the concept by preparing SnO2/carbon composite hollow spheres and evaluate them as potential anode materials for lithium-ion batteries. These SnO2/carbon hollow spheres are able to deliver a reversible Li storage capacity of 473 mA h g-1 after 50 cycles. Unusual double-shelled carbon hollow spheres are obtained by selective removal of the sandwiched porous SnO2 shells. © 2008 American Chemical Society.

  19. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust.

  20. Operational waste volume projection

    Energy Technology Data Exchange (ETDEWEB)

    Koreski, G.M.

    1996-09-20

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  1. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  2. Conceptual design report for tank farm restoration and safe operations, project W-314

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, S.R., Westinghouse Hanford

    1996-05-02

    This Conceptual Design Report (CDR) presents the conceptual level design approach that satisfies the established technical requirements for Project W-314, `Tank Farm Restoration and Safe Operations.` The CDR also addresses the initial cost and schedule baselines for performing the proposed Tank Farm infrastructure upgrades. The scope of this project includes capital improvements to Hanford`s existing tank farm facilities(primarily focused on Double- Shell Tank Farms) in the areas of instrumentation/control, tank ventilation, waste transfer, and electrical systems.

  3. Repository of not readily available documents for project W-320

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  4. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  5. Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JULYK, L.J.

    2000-05-05

    This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.

  6. Engineering Task Plan for the Integrity Assessment Examination of Double Contained Receiver Tanks (DCRT) Catch Tanks and Ancillary facilities

    Energy Technology Data Exchange (ETDEWEB)

    BECKER, D.L.

    2000-05-23

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan.

  7. ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION SUMMARY OF PRIOR LAB-SCALE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GUILLOT S

    2011-01-27

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  8. Recent developments at the GSI Online Mass Separator

    CERN Document Server

    Schmidt, K; Burkard, K; Döring, J; aGórska, M; Grawe, H; Hüller, W; Janas, Z; Kirchner, R; La Commara, M; Mazzocchi, C; Roeckl, E

    2002-01-01

    The research programme at the GSI Online Mass Separator focuses on the study of exotic nuclei far from the valley of stability. Special emphasis is placed on the investigation of decay properties of isotopes along the N=Z line between the double shell closures at sup 5 sup 6 Ni and sup 1 sup 0 sup 0 Sn. In this contribution, the major recent achievements along with the corresponding experimental methods are reviewed.

  9. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  10. KOEKSISTENSI HBsAg DAN ANTI-HBs DI MAKASSAR

    OpenAIRE

    uleng, -

    2015-01-01

    - Infeksi virus hipatitis B (VHB) merupakan penyakit endemik dengan insidensi tinggi di indonesia dan merupakan persoalan kesehatan global. Virus hepatitis B adalah suatu virus DNA yang berlapis ganda (double shelled) yang terdiri dari bagian luar yang dikenal sebagai hepatitis B surface antigen (HbsAG) dan bagian dalam atau hepatitis core antigen (HbcAg). Keberadaan HbsAg dalam serum merupakan tanda infeksi VHB. pembersihan VHB ditandai dengan didapatkannya anti-HBs dalam serum. Anti...

  11. Preliminary flowsheet: Ion exchange process for the separation of cesium from Hanford tank waste using Duolite{trademark} CS-100 resin

    Energy Technology Data Exchange (ETDEWEB)

    Eager, K.M.; Penwell, D.L.; Knutson, B.J.

    1994-12-01

    This preliminary flowsheet document describes an ion exchange process which uses Duolite{trademark} CS-100 resin to remove cesium from Hanford Tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. Process alternatives, unresolved issues, and development needs are discussed which relate to the process.

  12. Treatment options for tank farms long-length contaminated equipment

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  13. FRACTIONAL CRYSTALLIZATION LABORATORY TESTING WITH INTERIM PRETREATMENT SYSTEM FEEDS

    Energy Technology Data Exchange (ETDEWEB)

    HERTING DL

    2008-09-17

    The fractional crystallization process was developed as a pretreatment method for saltcake waste retrieved from Hanford single-shell tanks (SST). The process separates the retrieved SST waste into a high-level waste stream containing the bulk of the radionuclides and a low-activity waste stream containing the bulk of the nonradioactive sodium salts. The Interim Pretreatment System project shifted the focus on pretreatment planning from SST waste to double-shell tank waste.

  14. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Groth, B.D.

    1995-01-11

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  15. Recent developments at the ISOL facility of GSI Darmstadt

    CERN Document Server

    Roeckl, E; Burkard, K; Döring, J; Grawe, H; Hüller, W; Kirchner, R; Mazzocchi, C; Mukha, I; Plettner, C

    2003-01-01

    The research programme pursued at the ISOL facility of GSI Darmstadt focuses on the study of decay properties of nuclei along the N congruent with Z line between the double shell closures at sup 5 sup 6 Ni and sup 1 sup 0 sup 0 Sn. In this report, the major scientific achievements obtained in the past two years are reviewed, with particular emphasis being put on the detection techniques.

  16. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  17. Initial results from the DSPlanar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Daughton, W.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Batha, S. H.

    2016-10-01

    Recently, LANL has begun a project aimed ultimately at fielding a neutron-producing double-shell capsule at the National Ignition Facility (NIF). Initial experiments have begun at both the NIF and OMEGA laser facilities over the last year. At OMEGA, halfraum-driven planar targets will be used to study physics issues important to double shell implosions, but outside of a convergent geometry. In particular, side-on radiography through a tube has advantages over imaging through the hohlraum and double-shell capsule at NIF. We plan to study a number physics issues with this platform, including both 1-d and higher dimensional effects. In 1-d, momentum transfer from the ablator to the inner shell, and the effect of pre-heat on the inner shell can be studied. Higher dimensional effects, in the form of hydrodynamic instabilities, can also be studied. Pre-heat expansion of the inner shell can lead to an unstable interface, which can be mitigated by a tamper layer. Manufacturing tolerances can be used to mitigate against feature-driven instability growth, such as from a glue joint or fill tube. Initial results on the amount pre-heat from various ablator materials will be given, along with a discussion of future plans. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-16-25044.

  18. Development of Antibody-Coated Magnetite Nanoparticles for Biomarker Immobilization

    Directory of Open Access Journals (Sweden)

    Christian Chapa Gonzalez

    2014-01-01

    Full Text Available Magnetic nanoparticles (MNPs have great potential in biomedical applications because of their magnetic response offers the possibility to direct them to specific areas and target biological entities. Magnetic separation of biomolecules is one of the most important applications of MNPs because their versatility in detecting cancer biomarkers. However, the effectiveness of this method depends on many factors, including the type of functionalization onto MNPs. Therefore, in this study, magnetite nanoparticles have been developed in order to separate the 5′-nucleotidase enzyme (5eNT. The 5eNT is used as a bio-indicator for diagnosing diseases such as hepatic ischaemia, liver tumor, and hepatotoxic drugs damage. Magnetic nanoparticles were covered in a core/shell type with silica, aminosilane, and a double shell of silica-aminosilane. A ScFv (fragment antibody and anti-CD73 antibody were attached to the coated nanoparticles in order to separate the enzyme. The magnetic separation of this enzyme with fragment antibody was found to be 28% higher than anti-CD73 antibody and the enzyme adsorption was improved with the double shell due to the increased length of the polymeric chain. Magnetite nanoparticles with a double shell (silica-aminosilane were also found to be more sensitive than magnetite with a single shell in the detection of biomarkers.

  19. Designed synthesis of MOx (M = Zn, Fe, Sn, Ni, Mn, Co, Ce, Mg, Ag), Pt, and Au nanoparticles supported on hierarchical CuO hollow structures.

    Science.gov (United States)

    Zhang, Zailei; Jung, Ji Chul; Yan, Ning

    2016-12-01

    Despite intensive research into support substrates for the dispersal of nanoparticles and their applications, there has been a lack of general methods to produce metal oxide hollow substrates supporting a wide range of metal and metal oxides. Herein, a synthetic protocol for the preparation of CuO hollow structure-supported MOx (M = Zn, Fe, Ni, Sn, Mn, Co, Ce, Mg, and Ag) and noble metals (Pt and Au) with the desired properties and shell structure, such as CuO/Fe2O3, CuO/ZnO, CuO/SnO2, CuO/MgO, CuO/NiO, CuO/Mn2O3, CuO/CoO, CuO/CeO2, CuO/Ag2O, CuO/Pt, CuO/Au hollow cubes, CuO/ZnO double-shell hollow cubes, CuO/SnO2 double-shell hollow octahedra, CuO/SnO2/Fe2O3 and CuO/Mn2O3/NiO double-shell hollow cubes, was developed based on controlled calcination and etching. These hybrid hollow structures were employed not only as support substrates but also as active constituents for catalytic reactions. As an example, we demonstrated that CuO/ZnO hollow cubes are remarkably efficient in converting solid chitin biomass to liquid chemicals in methanol. In addition, CuO/ZnO double-shell hollow cubes were highly effective in the oxidation of benzyl alcohol in the presence of H2O2, whereas CuO/Pt and CuO/Au hollow cubes promoted the oxidation of benzyl alcohol in pure O2. The strategy developed in this work extends the controllable fabrication of high-quality CuO hollow structure-supported nanoparticles using various compositions and shell structures, paving the way to the exploration and systematic comparison of these materials in a wider range of applications.

  20. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values.

  1. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Klem, M.J.

    1996-10-23

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  2. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  3. New Products and Technologies, Based on Calculations Developed Areas

    Directory of Open Access Journals (Sweden)

    Gheorghe Vertan

    2013-09-01

    Full Text Available Following statistics, currently prosperous and have high GDP / capita, only countries that have and fructify intensively large natural resources and/or produce and export products massive based on patented inventions accordingly. Without great natural wealth and the lowest GDP / capita in the EU, Romania will prosper only with such products. Starting from the top experience in the country, some patented, can develop new and competitive technologies and patentable and exportable products, based on exact calculations of developed areas, such as that double shells welded assemblies and plating of ships' propellers and blade pump and hydraulic turbines.

  4. Resolve! Version 2.5: Flammable Gas Accident Analysis Tool Acceptance Test Plan and Test Results

    Energy Technology Data Exchange (ETDEWEB)

    LAVENDER, J.C.

    2000-10-17

    RESOLVE! Version 2 .5 is designed to quantify the risk and uncertainty of combustion accidents in double-shell tanks (DSTs) and single-shell tanks (SSTs). The purpose of the acceptance testing is to ensure that all of the options and features of the computer code run; to verify that the calculated results are consistent with each other; and to evaluate the effects of the changes to the parameter values on the frequency and consequence trends associated with flammable gas deflagrations or detonations.

  5. Functional design criteria, Project W-211, Initial Tank Retrieval Systems. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, C.A.

    1995-02-07

    This document provides the technical baseline for retrieval of waste from ten double-shell tanks in the SY, AN, AP, AW, AY, and AZ tank farms. In order to retrieve waste from these tanks, systems are needed to mix the sludge with the supernate and pump the waste mixture from the tank. For 101-SY, the existing mitigation pump will be used to mix the waste and Project W-211 will provide for waste removal. The retrieval scope for the other nine tanks includes both the waste mixing and removal functions.

  6. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  7. 241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2014-04-04

    This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

  8. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  9. High Level Waste (HLW) Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  10. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    Energy Technology Data Exchange (ETDEWEB)

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  11. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  12. TANK SPACE OPTIONS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  13. 気球利用型微少重力実験機用コールドガスジェットスラスタの開発

    OpenAIRE

    Kobayashi, Hiroaki; Sawai, Shujiro; Bando, Nobutaka; Sakai, Shinichiro; Ishikawa, Takehiko; Inatomi, Yuko; Fujita, Kazuhisa; Maru, Yusuke; Hashimoto, Tatsuaki; 小林, 弘明; 澤井, 秀次郎; 坂東, 信尚; 坂井, 真一郎; 石川, 毅彦; 稲富, 裕光

    2009-01-01

    A novel method for micro-gravity experiments using high altitude balloon is now under development in JAXA. The notable feature of this system is its double-shell structure. Dropped from the high altitude balloon, the inner shell falls freely for 30 to 60 seconds because the outer shell is controlled not to collide with the inner shell. Sixteen number of cold gas thrusters are installed on the vehicle to control not only its falling attitude but also spacing between the inner shell and the out...

  14. Preliminary Design and Analysis of ITER In-Wall Shielding

    Institute of Scientific and Technical Information of China (English)

    LIU Changle; YU Jie; WU Songtao; CAI Yingxiang; PAN Wanjiang

    2007-01-01

    ITER in-wall shielding (IIS) is situated between the doubled shells of the ITER Vacuum Vessel (IVV). Its main functions are applied in shielding neutron, gamma-ray and toroidal field ripple reduction. The structure of IIS has been modelled according to the IVV design criteria which has been updated by the ITER team (IT). Static analysis and thermal expansion analysis were performed for the structure. Thermal-hydraulic analysis verified the heat removal capability and resulting temperature, pressure, and velocity changes in the coolant flow. Consequently, our design work is possibly suitable as a reference for IT's updated or final design in its next step.

  15. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  16. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents.

  17. TANK SPACE ALTERNATIVES ANALYSIS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    TURNER DA; KIRCH NW; WASHENFELDER DJ; SCHAUS PS; WODRICH DD; WIEGMAN SA

    2010-04-27

    This report addresses the projected shortfall of double-shell tank (DST) space starting in 2018. Using a multi-variant methodology, a total of eight new-term options and 17 long-term options for recovering DST space were evaluated. These include 11 options that were previously evaluated in RPP-7702, Tank Space Options Report (Rev. 1). Based on the results of this evaluation, two near-term and three long-term options have been identified as being sufficient to overcome the shortfall of DST space projected to occur between 2018 and 2025.

  18. Parametric Study to Characterize Low Activity Waste Tank Heat Removal Alternatives for Phase 1 Specification Development

    Energy Technology Data Exchange (ETDEWEB)

    GRENARD, C.E.

    2000-09-11

    Alternative for removing heat from Phase 1, low-activity waste feed double-shell tanks using the ventilation systems have been analyzed for Phase 1 waste feed delivery. The analysis was a parametric study using a model that predicted the waste temperatures for a range of primary and annulus ventilation system flow rates. The analysis was performed to determine the ventilation flow required to prevent the waste temperature from exceeding the Limiting Conditions for Operation limits during normal operation and the Safety Limits during off-normal events.

  19. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1996-09-16

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single- and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and its performance as early as possible in the project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  20. Hanford low-level tank waste interim performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1997-09-12

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives.

  1. Review of Waste Retrieval Sluicing System Operations and Data for Tanks 241-C-106 and 241-AY-102

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Carothers, Kelly G.; Damschen, Dennis W.; Kuhn, William L.; Lechelt, Jeanne A.; Sathyanarayana, Kurabalakota; Stauffer, Leslie A.

    2000-09-26

    Sluicing operations were performed to retrieve high-heat sludge from single-shell tank 241-C-106 and transfer it to double-shell tank 241-AY-102 using the Waste Retrieval Sluicing System. This eliminated the high-heat safety issue for C-106 and demonstrated a technology for retrieval of single-shell tank waste. Both AY-102 and C-106 were monitored during the waste transfer operations, providing a clear picture of general trends in each tank. Specific issues addressed were evaluation of the data for evidence of flammable gas accumulation in AY-102 and thermal performance of AY-102 under the increasing heat load.

  2. Life-cycle cost analysis of advanced design mixer pump

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.N., Westinghouse Hanford

    1996-07-23

    This analysis provides cost justification for the Advanced Design Mixer Pump program based on the cost benefit to the Hanford Site of 4 mixer pump systems defined in terms of the life-cycle cost.A computer model is used to estimate the total number of service hours necessary for each mixer pump to operate over the 20-year retrieval sequence period for single-shell tank waste. This study also considered the double-shell tank waste retrieved prior to the single-shell tank waste which is considered the initial retrieval.

  3. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  4. Low Activity Waste Feed Process Control Strategy

    Energy Technology Data Exchange (ETDEWEB)

    STAEHR, T.W.

    2000-06-14

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system.

  5. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  6. RESULTS OF PHYSICOCHEMICAL CHARACTERIZATION AND CAUSTIC DISSOLUTION TESTS ON TANK 241-C-108 HEEL SOLIDS

    Energy Technology Data Exchange (ETDEWEB)

    CALLAWAY WS; HUBER HJ

    2010-07-01

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 241-AN-106 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 91.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-106 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, Tank Farms Technical Safety Requirements, Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' (The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-151-00007, Operating Specifications for the Double-Shell Storage Tanks.) Problem evaluation request WRPS-PER-2009-0218 was submitted February 9, 2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  7. Standard-D hydrogen monitoring system, system design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1996-09-26

    During most of the year, it is assumed that the vapor space in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty-five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gasses to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gasses from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. The Standard Hydrogen Monitoring System (SHMS) is designed to monitor and quantify the percent hydrogen concentration during these potential gas releases. This document describes the design of the Standard-D Hydrogen Monitoring System, (SHMS-D) and its components as it differs from the original SHMS.

  8. Standard-B Hydrogen Monitoring System, system design description

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, T.C.

    1995-01-16

    During most of the year, it is assumed that the vapor in the 177 radioactive waste tanks on the Hanford Project site contain a uniform mixture of gases. Several of these waste tanks (currently twenty five, 6 Double Shell Tanks and 19 Single Shell Tanks) were identified as having the potential for the buildup of gases to a flammable level. An active ventilation system in the Double Shell Tanks and a passive ventilation system in the Single Shell Tanks provides a method of expelling gases from the tanks. A gas release from a tank causes a temporary rise in the tank pressure, and a potential for increased concentration of hydrogen gas in the vapor space. The gas is released via the ventilation systems until a uniform gas mixture in the vapor space is once again achieved. This document describes the design of the Standard-B Hydrogen Monitoring System, (SHMS) and its components as it differs from the original SHMS. The differences are derived from changes made to improve the system performance but not implemented in all the installed enclosures.

  9. Development of the hull inspection robot (RTV-SHIP); Sentai kensayo suichu robot (RTV-SHIP) no kaihatsu (atarashii sentai kensaho no ichiteian)

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Y.; Otsuka, M.; Ozawa, H.; Konosu, M. [Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan)

    1997-08-01

    A compact and lightweight underwater RTV robot (RTV-SHIP) that enables the remote sensing in the double-shell structure of a tanker and the six-freedom motion control was developed based on the technology of the conventional portable underwater robot. The motion performance test in a water tank showed that the RTV-SHIP can freely access the manhole in the double-shell structure of a tanker and completely satisfies the thrust and swing force required for movement and measurement in a tank. The in-tank function confirmation test also shows that the main measurement items such as positioning in the tank, large deflection of panels, and plate thickness have a satisfactory measurement accuracy and that the RTV-SHIP has the same tone discrimination function as for a visual check. The method of inputting the tank shape during measurement and miniaturizing the recording unit should be improved until the RTV-SHIP is put to practical use. This system can be widely used by improving the above points according to the result of a future measurement test for the actual ships. 1 ref., 9 figs.

  10. Chemical composition of Hanford Tank SY-102

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

  11. Supporting document for the historical tank content estimate for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  12. Data Quality Objectives for Tank Farms Waste Compatibility Program

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-07-02

    There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.

  13. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Siskova, Karolina, E-mail: karolina.siskova@upol.cz; Tucek, Jiri; Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic); Otyepkova, Eva [Palacky University, Department of Physical Chemistry, Faculty of Science (Czech Republic); Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic)

    2012-03-15

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  14. REPORT ON ELECTROCHEMICAL CORROSION TESTING FOR TANK 241-AN-106 USING 2009 SAMPLING CAMPAIGN GRAB SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB

    2010-05-11

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 24l-AN-l06 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 9l.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-l06 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, 'Tank Farms Technical Safety Requirements', Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-15l-00007, 'Operating Specifications for the Double-Shell Storage Tanks.' Problem evaluation request WRPS-PER-2009-0218 was submitted February 9,2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  15. Waste volume reduction factors for potential 242-A evaporator feed

    Energy Technology Data Exchange (ETDEWEB)

    Sederburg, J.P.

    1995-05-04

    Double-shell tank (DST) storage space requirements have been shown to be highly dependent on the end point of 242-A operations. Consequences to the DST of various waste volumes, and concentrations, are evaluated. Only waste streams that are currently planned to be stored in the DST system before the year 2004 are discussed. As of January 1, 1995, approximately 27-million L (7.2-million gal) of dilute wastes are stored in the DSTs available for evaporator processing. Waste streams planned to be transferred to the DSTs before December 31, 2004, are identified. The DST volume for storing slurry from these wastes is presented in this document. At a final slurry specific gravity of -1.35, 22.5-million L (5.93-million gal) of DST space would be needed on December 31, 2004, to store the product from evaporator processing of these feedstocks. The expected volume needed if the resultant slurry were concentrated to the traditional double-shell slurry feed (DSSF) phase boundary (a specific gravity of {approximately}1.5) would be 17.7-million L (4.67-million gal). An additional 4.8-million L (1.26-million gal) is therefore needed if these wastes are concentrated to a specific gravity of 1.35 instead of the DSSF limit.

  16. Project Delivery Acquisition and Contracting Plan for the Tank Farm Contractor

    Energy Technology Data Exchange (ETDEWEB)

    MERCADO, L.C.

    2000-04-22

    This document is a plan presenting the process, strategies and approaches for vendor contracting by the Tank Farm Contractor. The plan focuses on contracting structures, practices, methods, and desired approaches in contracting. The U.S. Department of Energy (DOE), Office of River Protection (ORP) has contracted with the CH2M HILL Hanford Group, Inc. (CHG), as the Tank Farm Contractor (TFC), to support vitrification of Hanford Site tank waste by the Privatization Contractor. During Waste Feed Delivery Phase 1, waste will be retrieved from certain double-shell tanks and delivered to the Privatization Contractor to meet contract feed delivery requirements. Near-term project goals include upgrading infrastructure systems; retrieving and delivering the waste; and accepting the waste packages for interim onsite storage and disposal. Project Delivery includes individual projects assigned to provide the infrastructure and systems responsible to provide engineering, design, procurement, installation/construction, and testing/turnover of systems for retrieval of waste from Hanford double-shell tanks. This plan sets the requirements for projects work scope, contracting practices, structures, methods, and performance measurements. The plan is designed to integrate Life-Cycle Projects acquisitions and provide a consistent contracting approach. This effort will serve as a step improvement in contract reform implementing commercial practices into DOE projects.

  17. Anti-foam System design description

    Energy Technology Data Exchange (ETDEWEB)

    White, M.A.

    1994-09-30

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment.

  18. Robust hybrid raspberry-like hollow particles with complex structures: a facile method of swelling polymerization towards composite spheres.

    Science.gov (United States)

    Zhang, Xu; Yao, Xiaohui; Wang, Xiaomei; Feng, Lei; Qu, Jiayan; Liu, Pange

    2014-02-14

    A novel robust hybrid raspberry-like TiO2/PS hollow particles with complex double-shelled structures have been fabricated in large quantities by a facile swelling polymerization approach based on commercially available hollow polystyrene (PS) spheres. The crosslinked-PS protrusions are wedged firmly into the TiO2 shell, making the resultant particles both chemically and mechanically robust. By simply tuning the monomer concentration, the hierarchical morphology (the size and number of protrusion) of the surfaces can be well-controlled. Due to the dual-sized hierarchical morphology, the particulate coating possesses superhydrophobicity (water contact angle ≈ 161°). Moreover, the well-compartmentalized character is similar to that of typical Janus particles. The special particles with interfacial activity can stabilize water-in-toluene (w/o) emulsions well. Meanwhile, a TiO2 double-shelled hollow sphere with a complex structure is achieved by calcination or solvent treatment. All these unique features derived from a readily available method will endow the products with a broader range of applications.

  19. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  20. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  1. Activation of the Solid Silica Layer of Aerosol-Based C/SiO₂ Particles for Preparation of Various Functional Multishelled Hollow Microspheres.

    Science.gov (United States)

    Li, Xiangcun; Luo, Fan; He, Gaohong

    2015-05-12

    Double-shelled C/SiO2 hollow microspheres with an outer nanosheet-like silica shell and an inner carbon shell were reported. C/SiO2 aerosol particles were synthesized first by a one-step rapid aerosol process. Then the solid silica layer of the aerosol particles was dissolved and regrown on the carbon surface to obtain novel C/SiO2 double-shelled hollow microspheres. The new microspheres prepared by the facile approach possess high surface area and pore volume (226.3 m(2) g(-1), 0.51 cm(3) g(-1)) compared with the original aerosol particles (64.3 m(2) g(-1), 0.176 cm(3) g(-1)), providing its enhanced enzyme loading capacity. The nanosheet-like silica shell of the hollow microspheres favors the fixation of Au NPs (C/SiO2/Au) and prevents them from growing and migrating at 500 °C. Novel C/C and C/Au/C (C/Pt/C) hollow microspheres were also prepared based on the hollow nanostructure. C/C microspheres (482.0 m(2) g(-1), 0.92 cm(3) g(-1)) were ideal electrode materials. In particular, the Au NPs embedded into the two carbon layers (C/Au/C, 431.2 m(2) g(-1), 0.774 cm(3) g(-1)) show a high catalytic activity and extremely chemical stability even at 850 °C. Moreover, C/SiO2/Au, C/Au/C microspheres can be easily recycled and reused by an external magnetic field because of the presence of Fe3O4 species in the inner carbon shell. The synthetic route reported here is expected to simplify the fabrication process of double-shelled or yolk-shell microspheres, which usually entails multiple steps and a previously synthesized hard template. Such a capability can facilitate the preparation of various functional hollow microspheres by interfacial design.

  2. Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

    1994-10-20

    This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

  3. Structural Features and In-service Inspection of the LTNHR-200 Pressure Vessel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pressure vessel of 200 MW low temperature nuclear heating reactor (LTNHR-200) is the main part of primary pressure boundary and its reasonable and reliable structural design is the key point to assure the safe operation of LTNHR-200. The double-shell pressure vessels were designed. LTNHR-200 pressure vessel meets the condition of Leak Before Break and has a relatively low failure probability. Metal containment (outer pressure vessel) has the similar features to LTNHR-200 pressure vessel. There exists no LOCA and core melting with the double vessel. The in-service inspection of the pressure vessel can be simplified greatly because of the safety and structural features of the reactor.

  4. Prediction of Peak Hydrogen Concentrations for Deep Sludge Retrieval in Tanks AN-101 and AN-106 from Historical Data of Spontaneous Gas Release Events

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Cooley, Scott K.; Meacham, Joseph E.

    2013-10-21

    Radioactive and chemical wastes from nuclear fuel processing are stored in large underground storage tanks at the Hanford Site. The Tank Operations Contractor is continuing a program of moving solid wastes from single-shell tanks (SSTs) to double-shell tanks (DSTs) and preparing for waste feed delivery (WFD). A new mechanism for a large spontaneous gas release event (GRE) in deep sludge sediments has been postulated. The creation of this potential new GRE hazard, deep sludge gas release events (DSGREs), is the retrieval of sludge waste into a single DST that results in a sediment depth greater than operating experience has demonstrated is safe. The Tank Operations Contractor program of moving solid wastes from SSTs to DSTs and preparing for WFD is being negatively impacted by this sediment depth limit.

  5. REPORT ON THE EFFECT OF TEMPERATURE AND AMMONIA CONCENTRATION ON A515 CARBON STEEL IN TANK 241 AY 101 SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; FRYE DP; WYRWAS RB

    2008-11-20

    This report documents the results from RPP-PLAN-38676, Effect of Temperature and Ammonia Concentration on A515 Carbon Steel in Tank 241-AY-101 Simulant. The purpose of this test plan was to investigate the simulant formulated for the double-shell tank (DST) 241 AY 101 (AY 101) with the addition of ammonia. The simulant was formulated from the AY-101 condensate surface layer recipe used by CC Technologies{reg_sign} in the investigation of Hanford DST chemistry, under the Expert Panel on Corrosion. AY-101 is constructed from A515 grade 60 steel. The laboratory investigation used a cylindrical corrosion coupon from this steel formulation with a surface area of 5.64 square centimeters.

  6. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    ANDA VS; EDGEMON GL; HAGENSEN AR; BOOMER KD; CAROTHERS KG

    2009-01-08

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation.

  7. Effects of Globally Waste Disturbing Activities on Gas Generation, Retention, and Release in Hanford Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Fountain, Matthew S.; Huckaby, James L.; Mahoney, Lenna A.; Meyer, Perry A.; Wells, Beric E.

    2005-08-02

    Various operations are authorized in Hanford single- and double-shell tanks that disturb all or a large fraction of the waste. These globally waste-disturbing activities have the potential to release a large fraction of the retained flammable gas and to affect future gas generation, retention, and release behavior. This report presents analyses of the expected flammable gas release mechanisms and the potential release rates and volumes resulting from these activities. The background of the flammable gas safety issue at Hanford is summarized, as is the current understanding of gas generation, retention, and release phenomena. Considerations for gas monitoring and assessment of the potential for changes in tank classification and steady-state flammability are given.

  8. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.

    2006-09-29

    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  9. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  10. Preliminary low-level waste feed staging plan

    Energy Technology Data Exchange (ETDEWEB)

    Certa, P.J.

    1996-02-05

    A Preliminary Low-Level Waste Feed Staging Plan was prepared. The plan supports the Phase I privatization effort by providing recommendations that may influence the technical content of the final request for proposal, and the interface control documents for the turnover of two double-shell tanks (DST) to the private contractors for use as feed tanks and the transfer of supernate to these tanks. Additionally, the preliminary schedule of feed staging activities will be useful to both RL and the private bidders during the contract negotiation period. A revised feed staging plan will be issued in August 1996 reflecting anticipated changes in the request for proposal, resolution of issues identified in this report, and completion of additional work scope.

  11. Ammonium vanadate@polypyrrole@manganese dioxide nanowire arrays with enhanced reversible lithium storage

    Science.gov (United States)

    Wang, Chang; Liu, Hui; Jiang, Ming; Wang, Yingde; Liu, Ruina; Luo, Zhiping; Liu, Xiaoqing; Xu, Weilin; Xiong, Chuanxi; Fang, Dong

    2017-09-01

    Design and fabrication of novel optimized electrode materials are important for the development of new batteries for energy storage applications. Herein, we report on a hierarchical bulk electrode material with a tailored nanostructure that which consists of three components: a NH4V4O10 nanowire as an active skeleton, an intermediate polymer layer (polypyrrole, PPy), and a metal oxide layer (MnO2) as the outside shell. The NH4V4O10-PPy-MnO2 nanowires exhibit present higher capacitance than that of the simple NH4V4O10-PPy core@shell or NH4V4O10 nanowires. The structure of double shells of combined PPy and MnO2 is a key factor in enhancing their electrochemical performance including high specific capacitance and excellent cycling stability. Our V-based core@shell@shell structure can serve as freestanding, compressible electrodes for various energy devices.

  12. Analysis of characteristics of sound radiation from double cylindrical shell coated with viscoelastic layer

    Institute of Scientific and Technical Information of China (English)

    CHEN Meixia; LUO Dongping; PENG Xu; LUO Bin

    2004-01-01

    The characteristics of vibration and sound radiation from a double shell with the outer shell coated with viscoelastic layer are systematically studied. The shell's motion funcby three-dimensional Navier equations, whose displacement solutions are expressed by Taylor expansion along the layer thickness. The continuity conditions of displacement and stress between the shell and the layers are used in obtaining the vibration equations. The effects of layer thickness, modulus of elasticity, the loss factor, and the hydro-compressibility on the structural acoustic characteristic are discussed in detail. It showed that the higher the modulus of elasticity is, or the thinner the thickness of layer is, or the smaller the loss factor is, the higher the sound radiation power is.

  13. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability.

  14. Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2014-03-01

    Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.

  15. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.; Reisenauer, A.E.; Landstrom, D.K.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removal level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.

  16. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

  17. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document.

  18. An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    JA Bamberger

    2000-08-02

    The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

  19. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  20. Science & Technology Review September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Radousky, H B

    2006-07-18

    This month's article has the following articles: (1) Simulations Help Plan for Large Earthquakes--Commentary by Jane C. S. Long; (2) Re-creating the 1906 San Francisco Earthquake--Supercomputer simulations of Bay Area earthquakes are providing insight into the great 1906 quake and future temblors along several faults; (3) Decoding the Origin of a Bioagent--The microstructure of a bacterial organism can be linked to the methods used to formulate the pathogen; (4) A New Look at How Aging Bones Fracture--Livermore scientists find that the increased risk of fracture from osteoporosis may be due to a change in the physical structure of trabecular bone; and (5) Fusion Targets on the Double--Advances in precision manufacturing allow the production of double-shell fusion targets with submicrometer tolerances.

  1. Alternatives generation and analysis for the Phase I intermediate waste feed staging system design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Claghorn, R.D., Fluor Daniel Hanford

    1997-02-06

    This alternatives generation and analysis (AGA) addresses the question: What is the design basis for the facilities required to stage low-level waste (LLW) feed to the Phase I private contractors? Alternative designs for the intermediate waste feed staging system were developed, analyzed, and compared. Based on these analyses, this document recommends installing mixer pumps in the central pump pit of double-shell tanks 241-AP-102 and 241-AP-104. Also recommended is installing decant/transfer pumps at these tanks. These recommendations have clear advantages in that they provide a low shedule impact/risk and the highest operability of all the alternatives investigated. This revision incorporates comments from the decision board.

  2. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  3. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminants of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).

  4. Advanced high-pressure bench-scale reactor for testing with hot corrosive gases

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Bachta, R.P.; Wangerow, J.R. (Inst. of Gas Technology, Chicago, IL (United States)); Mojtahedi, W.; Salo, K. (Enviropower Inc., Espoo (Finland))

    1994-01-01

    A bench-scale, high-pressure/high-temperature fluidized-bed reactor (HPTR) system is described that is capable of operating at a maximum temperature and pressure of 1,000 C and 30 bar in a corrosive atmosphere. The design of the unit is based on a double-shell balanced-pressure system. All the hot parts of the reactor that are wetted by the corrosive (and/or reactive) gases and the entire sampling line are constructed of inert material to prevent corrosion and loss of the reactant gases. The unit has been used for over 200 high-pressure hot coal gas desulfurization tests at 20 bars and up to 750 C without any experimental problem and with excellent sulfur balance, indicating that this reactor system is ideal for testing with reactive and corrosive gases at elevated pressures and temperatures.

  5. Destruction of polyphasic systems in supercritical water reaction media; Etude de la destruction de systemes polyphasiques en milieu eau supercritique

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.

    2009-12-15

    Spent ion exchange resins (IER) are, hence, radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable alternative treatment to destroy the organic structure of resins by using supercritical water properties. The reactor used in Supercritical Fluids and Membranes Laboratory is a double shell stirred reactor. Total Organic Carbon reduction rates higher than 99% were obtained thanks to POSCEA2 experimental set-up when using a co-fuel, isopropyl alcohol. Influence of operating parameters was studied. A detailed reactional mechanism for cationic and anionic resins is created. For the solubilization of the particles in supercritical water, a mechanism has been created with the identified rate determining species and implemented into Fluent software through the EDC approach. Experimental temperature profiles are well represented by EDC model. Reaction rates are hence controlled by the chemical species mixing. (author)

  6. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  7. Tank waste source term inventory validation. Volume 1. Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1995-04-28

    The sample data for selection of 11 radionuclides and 24 chemical analytes were extracted from six separate sample data sets, were arranged in a tabular format and were plotted on scatter plots for all of the 149 single-shell tanks, the 24 double-shell tanks and the four aging waste tanks. The solid and liquid sample data was placed in separate tables and plots. The sample data and plots were compiled from the following data sets: characterization raw sample data, recent core samples, D. Braun data base, Wastren (Van Vleet) data base, TRAC and HTCE inventories. This document is Volume I of the Letter Report entitled Tank Waste Source Term Inventory Validation.

  8. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability.

  9. Annual report of tank waste treatability

    Energy Technology Data Exchange (ETDEWEB)

    Lane, A.G. [Los Alamos Technical Associates, Inc., NM (United States); Kirkbride, R.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-01

    This report has been prepared as part of the Hanford Federal Facility Agreement and Consent Order* (Tri-Party Agreement) and constitutes completion of Tri-Party Agreement milestone M-04-00D for fiscal year 1993. This report provides a summary of treatment activities for newly generated waste, existing double-shell tank waste, and existing single-shell tank waste, as well as a summary of grout disposal feasibility, glass disposal feasibility, alternate methods for disposal, and safety issues which may impact the treatment and disposal of existing defense nuclear wastes. This report is an update of the 1992 report and is intended to provide traceability for the documentation by statusing the studies, activities, and issues which occurred in these areas listed above over the period of March 1, 1992, through February 28, 1993. Therefore, ongoing studies, activities, and issues which were documented in the previous (1992) report are addressed in this (1993) report.

  10. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-11-11

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles.

  11. Protection against noise and cold. Futuristic noise and heat protection in dwelling houses. Schutz vor Laerm und Kaelte. Zukunftsorientierter Schall- und Waermeschutz im Wohnungsbau

    Energy Technology Data Exchange (ETDEWEB)

    Prepens, M.

    1987-01-01

    Noise protection, particularly in dwelling houses, has great importance for the health and well-being of human beings. This report is concerned with sensible and futuristic noise protection and the associated environmental protection by economical use of energy, using the example of outside and inside walls. Methods of building using sand lime bricks are considered here. Heat and noise insulation is examined on double-shelled KS outside walls with core insulation and on single shell outside walls with a thermal skin. In order to make use in the optimum way of direct and indirect solar irradiation, the method of construction should be aimed at thermal storage capability. The energy saving effect on a highly insulated house is given as an example.

  12. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    Science.gov (United States)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  13. First results from the CARIBU facility: mass measurements on the r-process path.

    Science.gov (United States)

    Van Schelt, J; Lascar, D; Savard, G; Clark, J A; Bertone, P F; Caldwell, S; Chaudhuri, A; Levand, A F; Li, G; Morgan, G E; Orford, R; Segel, R E; Sharma, K S; Sternberg, M G

    2013-08-09

    The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A=135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

  14. Three-dimensional structure of the inner core of rice dwarf virus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Rice dwarf virus (RDV) is a double-shelled icosahedral virus.Using electron cryomicroscopy and computer reconstruction techniques, we have determined a 3.3 nm resolution three-dimensional (3D) structure of the inner shell capsid without the outer shell and viral RNA. The results show that the inner shell is a thin, densely packed, smooth structure, which provides a scaffold for the full virus. A total of 120 copies of the major inner shell capsid protein P3 forms 60 dimers arranged in a T=1 icosahedral lattice. A close examination on the subunit packing of the T=1 inner core P3 with that of the T=13l outer shell P8 indicated that P8 trimers connect with P3 through completely non-equivalent, yet highly specific, intermolecular interactions.

  15. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  16. Rotary Mode Core Sample System availability improvement

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, W.W.; Bennett, K.L.; Potter, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Cross, B.T.; Burkes, J.M.; Rogers, A.C. [Southwest Research Institute (United States)

    1995-02-28

    The Rotary Mode Core Sample System (RMCSS) is used to obtain stratified samples of the waste deposits in single-shell and double-shell waste tanks at the Hanford Site. The samples are used to characterize the waste in support of ongoing and future waste remediation efforts. Four sampling trucks have been developed to obtain these samples. Truck I was the first in operation and is currently being used to obtain samples where the push mode is appropriate (i.e., no rotation of drill). Truck 2 is similar to truck 1, except for added safety features, and is in operation to obtain samples using either a push mode or rotary drill mode. Trucks 3 and 4 are now being fabricated to be essentially identical to truck 2.

  17. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  18. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-12-31

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

  19. Proposed pushered single shell capsule design for the investigation of mid/high Z mix on the NIF

    Science.gov (United States)

    Sacks, Ryan; Tipton, Robert; Graziani, Frank

    2016-05-01

    The CD Mix campaign has given a detailed explination of the mix mechanics in the current ignition capsule designs by investigating the relationship between material mixing, shell-fuel interfaces, and the change in thermonuclear yield given a deuterated layer in the capsule. Alternative ignition scenarios include the use of double shell designs that incorporate high-Z material in the capsule. Simulations are conducted on a proposed capsule platform using the ARES code on a scaled capsule design using a partially reduced glass capsule design. This allows for the inclusion of deuterium on the inner surface of the pusher layer similar to the CD mix experiments. The presence of silicon dioxide allows for the investigation of the influence of higher Z material on the mixing characteristics.

  20. Toxic chemical considerations for tank farm releases

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  1. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  2. TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices.

    Science.gov (United States)

    Han, Hyun Soo; Kim, Ju Seong; Kim, Dong Hoe; Han, Gil Sang; Jung, Hyun Suk; Noh, Jun Hong; Hong, Kug Sun

    2013-04-21

    We demonstrated a highly efficient conducting indium tin oxide (ITO) core-TiO2 nanocrystals shell nanowire array for a photoelectrode in dye-sensitized solar cells with regard to light harvest and charge collection. The TiO2 shell layer, consisting of anatase nanocrystals of ~2 nm, were successfully formed on a single crystalline ITO nanowire prepared via a vapor transport method using repetitive TiCl4 aqueous solution treatments at 50 °C. We found that the nanocrystal size and number of Cl(-) ions remaining on the formed shell layer critically influence the dye loading properties. Moreover, these factors can be controlled by means of a post-annealing process. We also found that the dye loading and the back electron transport from the conductive ITO nanowire to the electrolyte mainly determine the final cell performance. The proposed double-shell layer structure consisting of dense and porous layers showed significantly improved cell performance.

  3. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  4. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank's structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was {approximately}4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel.

  5. Corrosion studies of carbon steel under impinging jets of simulated slurries of neutralized current acid waste (NCAW) and neutralized cladding removal waste (NCRW)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Elmore, M.R.

    1992-01-01

    Plans for the disposal of radioactive liquid and solid wastes presently stored in double-shell tanks at the Hanford Site call for retrieval and processing of the waste to create forms suitable for permanent disposal. Waste will be retrieved from a tank using a submerged slurry pump in conjunction with one or more rotating slurry jet mixer pumps. Pacific Northwest Laboratory (PNL) has conducted tests using simulated waste slurries to assess the effects of a impinging slurry jet on the corrosion rate of the tank wall and floor, an action that could potentially compromise the tank`s structural integrity. Corrosion processes were investigated on a laboratory scale with a simulated neutralized cladding removal waste (NCRW) slurry and in a subsequent test with simulated neutralized current acid waste (NCAW) slurry. The test slurries simulated the actual NCRW and NCAW both chemically and physically. The tests simulated those conditions expected to exist in the respective double-shell tanks during waste retrieval operations. Results of both tests indicate that, because of the action of the mixer pump slurry jets, the waste retrieval operations proposed for NCAW and NCRW will moderately accelerate corrosion of the tank wall and floor. Based on the corrosion of initially unoxidized test specimens, and the removal of corrosion products from those specimens, the maximum time-averaged corrosion rates of carbon steel in both waste simulants for the length of the test was {approximately}4 mil/yr. The protective oxide layer that exists in each storage tank is expected to inhibit corrosion of the carbon steel.

  6. Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures: synthesis and enhanced photocatalytic properties.

    Science.gov (United States)

    Tian, Qingyong; Wu, Wei; Sun, Lingling; Yang, Shuanglei; Lei, Mei; Zhou, Juan; Liu, Ying; Xiao, Xiangheng; Ren, Feng; Jiang, Changzhong; Roy, Vellaisamy A L

    2014-08-13

    Heterogeneous photocatalysis is of great interest for environmental remediation applications. However, fast recombination of photogenerated electron-hole pair and a low utilization rate of sunlight hinder the commercialization of currently available semiconductor photocatalysts. In this regard, we developed a unique ternary single core-double shell heterostructure that consists of α-Fe2O3@SnO2@Cu2O. This heterostructure exhibits a tube-like morphology possessing broad spectral response for the sunlight due to the combination of narrow bandgap and wide bandgap semiconductors forming a p-n heterojunction. To fabricate such a short nanotube (SNT), we used an anion-assisted hydrothermal route for deposition of α-Fe2O3, a seed-mediated deposition strategy for SnO2, and finally an aging process to deposit a Cu2O layer to complete the tube-like ternary α-Fe2O3@SnO2@Cu2O single core-double shell heterostructures. The morphology, composition, and photocatalytic properties of those ternary core-shell-shell heterostructures were characterized by various analytical techniques. These ternary heterostructures exhibited enhanced photocatalytic properties on the photodegradation of the organic dye of Rhodamine B (RhB) under simulated sunlight irradiation. The origin of enhanced photocatalytic activity is due to the synergistic effect of broad spectral response by combining narrow bandgap and wide bandgap semiconductors and, hence, an efficient charge separation of photogenerated electron-hole pairs facilitated through the p-n heterojunction. Furthermore, our unique structure provides an insight on the fabrication and controlled preparation of multilayer heterostructural photocatalysts that have intriguing properties.

  7. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  8. One-pot synthesis of Size-Controllable core-shell CdS and derivative CdS@ZnxCd1-xS structures for dramatic Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Kai, Shuangshuang; Xi, Baojuan; Wang, Yifeng; Xiong, Shenglin

    2017-09-18

    Chalcogenide micro/nano composite structures have been attracting world-wide attention due to the enormous prospect of applications in photocatalytic hydrogen production. Well-defined micro/nanostructures, featured with predominant properties, are of extraordinary importance. Herein, we reported a facile one-pot method on synthesis of monodispersed size-controllable CdS and CdS@ZnxCd1-xS core-shell submicrospheres, which were engineered with respect to the structural conformation and size. CdS core-shell submicrospheres with different size were selectively prepared for the first time. The growth mechanism was investigated in detail by monitoring the time-dependent morphology of intermediates via TEM technique. By introduction of zinc precursor in the synthetic system, CdS@ZnxCd1-xS core-double shell submicrospheres had been obtained by cation exchange of CdS with zinc ions, experiencing the process of diffusion of CdS towards outside and transformation of ZnxCd1-xS crystallites. The H2 evolution rate over CdS@CdxZn1-xS (5.17 mmol h-1 g -1) is 12.3 times that of CdS core-shell (0.42 mmol h- 1 g -1) under visible light, owing to the efficient charge separation demonstrated by the electrochemical impedance and transient-state time-resolved photoluminescence spectra. Furthermore, CdS@ZnxCd1-xS core-double shell structures exhibited excellent stability over 20 h hydrogen production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets

    Energy Technology Data Exchange (ETDEWEB)

    Romero, S.A. [Instituto de Fisica da Universidade de Sao Paulo, Sao Paulo (Brazil); Escola Politecnica da Universidade de Sao Paulo, Sao Paulo (Brazil); Campos, M.F. de, E-mail: mcampos@metal.eeimvr.uff.br [PUVR - Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, Volta Redonda, RJ 27255-125 (Brazil); Castro, J.A. de [PUVR - Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, Volta Redonda, RJ 27255-125 (Brazil); Moreira, A.J. [Escola Politecnica da Universidade de Sao Paulo, Sao Paulo (Brazil); Landgraf, F.J.G. [Escola Politecnica da Universidade de Sao Paulo, Sao Paulo (Brazil); Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo, Sao Paulo (Brazil)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Use of the Stoner-Wohlfarth Callen Liu Cullen model in 2:17 type magnets. Black-Right-Pointing-Pointer Data suggest exchange coupling between Sm2(CoFe)17 and Sm(CoCu)5 phases. Black-Right-Pointing-Pointer It is given structural data for phase Sm0.33Zr0.67TM3, with TM=Co,Fe,Cu. Black-Right-Pointing-Pointer The beneficial effect of the slow cooling treatment is explained. - Abstract: The microstructure and magnetic properties of 2:17 type isotropic magnets were investigated. The slow cooling heat treatment (cooling at 1 Degree-Sign C/min from 820 to 400 Degree-Sign C, and isothermal treatment during 24 h) was interrupted after the temperatures of 820, 700, 600 and 500 Degree-Sign C and their hysteresis were measured with fields up to 9 T. The fully heat treated sample presented coercivity ({mu}{sub 0}H) of 3.32 T, after 24 h at 400 Degree-Sign C. The microstructure was investigated with SEM-FEG (Scanning Electron Microscope with Field Emission Gun) and X-ray Diffraction Rietveld analysis. The application of the Stoner-Wohlfarth-Callen-Liu-Cullen (SW-CLC) model points out exchange coupling between ferromagnetic Sm{sub 2}(CoFe){sub 17} nanocells and ferromagnetic Sm(CoCu){sub 5} present at the cell boundary phase. The results are interpreted with the double shell model: first-a cobalt-rich ferromagnetic Sm(CoCu){sub 5} shell originates exchange coupling and second-a copper-rich paramagnetic Sm(CuCo){sub 5} shell produces magnetic decoupling. This double shell helps to maximize coercivity and remanence. The anisotropy field of the Sm{sub 2}(CoFe){sub 17} cell phase was estimated in 7 T with the SW-CLC model.

  10. First results from simultaneous 527 nm and 351 nm probe beam interactions in a long scalelength plasma

    Science.gov (United States)

    Moody, J. D.; MacKinnon, A.; Glenzer, S. H.; Froula, D.; Gregori, G.; Berger, R. L.; Campbell, K.; Divol, L.; Dixit, S.; Suter, L. J.; Williams, E. A.; Bahr, R.; Seka, W.

    2002-11-01

    We investigate the stimulated Raman and Brillouin backscattered light from simultaneous 527 nm and 351 nm probe beams incident on a long scalelength ignition-like plasma. These experiments are important for both determining backscattering physics mechanisms and for evaluating laser power loss expected in planned ignition experiments. The plasma is formed using 18 kJ of 351 nm light from the Omega laser in a 1 ns pulse incident on a gas-filled balloon target. The two probe beams, which are delayed 0.5 ns relative to the plasma forming beams, are separated by 42^rc, have vacuum intensity of CO2 plasma. We describe the experimental results and simulations using the LASNEX hydrodynamic code and the pF3D laser-plasma wave propagation code. Work performed under the auspicies of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W--7405--ENG--48.

  11. A new propagation method for the radial Schroedinger equation

    Science.gov (United States)

    Devries, P. L.

    1979-01-01

    A new method for propagating the solution of the radial Schroedinger equation is derived from a Taylor series expansion of the wavefunction and partial re-summation of the infinite series. Truncation of the series yields an approximation to the exact propagator which is applied to a model calculation and found to be highly convergent.

  12. The incremental validity of communication styles over personality traits for leader outcomes

    NARCIS (Netherlands)

    Bakker-Pieper, A.; de Vries, R.E.

    2013-01-01

    Personality traits and communication styles are interlinked, as evidenced by high convergent correlations. Nevertheless, communication styles may have a stronger conceptual link to leader outcomes than broad personality traits do, as they are represented by a subset of behavior that is specifically

  13. Lifted system iterative learning control applied to an industrial robot

    NARCIS (Netherlands)

    Hakvoort, W.B.J.; Aarts, R.G.K.M.; Dijk, van J.; Jonker, J.B.

    2008-01-01

    This paper proposes a model-based iterative learning control algorithm for time-varying systems with a high convergence speed. The convergence of components of the tracking error can be controlled individually with the algorithm. The convergence speed of each error component can be maximised unless

  14. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2003-09-30

    Flammable gases such as hydrogen, ammonia, and methane are observed in the tank dome space of the Hanford Site high-level waste tanks. This report assesses the steady-state flammability level under normal and off-normal ventilation conditions in the tank dome space for 177 double-shell tanks and single-shell tanks at the Hanford Site. The steady-state flammability level was estimated from the gas concentration of the mixture in the dome space using estimated gas release rates, Le Chatelier's rule and lower flammability limits of fuels in an air mixture. A time-dependent equation of gas concentration, which is a function of the gas release and ventilation rates in the dome space, has been developed for both soluble and insoluble gases. With this dynamic model, the time required to reach the specified flammability level at a given ventilation condition can be calculated. In the evaluation, hydrogen generation rates can be calculated for a given tank waste composition and its physical condition (e.g., waste density, waste volume, temperature, etc.) using the empirical rate equation model provided in Empirical Rate Equation Model and Rate Calculations of Hydrogen Generation for Hanford Tank Waste, HNF-3851. The release rate of other insoluble gases and the mass transport properties of the soluble gas can be derived from the observed steady-state gas concentration under normal ventilation conditions. The off-normal ventilation rate is assumed to be natural barometric breathing only. A large body of data is required to do both the hydrogen generation rate calculation and the flammability level evaluation. For tank waste that does not have sample-based data, a statistical-based value from probability distribution regression was used based on data from tanks belonging to a similar waste group. This report (Revision 3) updates the input data of hydrogen generation rates calculation for 177 tanks using the waste composition information in the Best-Basis Inventory Detail

  15. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both

  16. A controllable asymmetrical/symmetrical coating strategy for architectural mesoporous organosilica nanostructures

    Science.gov (United States)

    Wang, Xue; He, Yapeng; Liu, Chong; Liu, Yunling; Qiao, Zhen-An; Huo, Qisheng

    2016-07-01

    We describe a facile and controllable asymmetrical/symmetrical coating strategy for the preparation of various novel periodic mesoporous organosilica (PMO) nanostructures, including Au&PMO Janus, Au@PMO yolk-shell and Au@PMO/mSiO2 yolk-double shell nanoparticles, by using Au@SiO2 nanoparticles as seeds. During this process, ammonia first functions as a basic catalyst facilitating the hydrolyzation and condensation of the organosilica precursor, and additionally as an etching agent selectively in situ dissolving the SiO2 shells of Au@SiO2 nanoparticles to form these unique nanostructures. All these three types of nanoparticles have high surface areas, large pore volumes and tailorable cavity structures. Both the Au&PMO and Au@PMO nanoparticles exhibit excellent catalytic activity for the decomposition of H2O2 and the reduction of 4-nitrophenol. Based on these unique structural merits and organic-inorganic hybrid components, the fabricated Janus and hollow PMO nanoparticles show much improved hemocompatibility, which could be further applied in nano-biomedicines without the need for surface modification.We describe a facile and controllable asymmetrical/symmetrical coating strategy for the preparation of various novel periodic mesoporous organosilica (PMO) nanostructures, including Au&PMO Janus, Au@PMO yolk-shell and Au@PMO/mSiO2 yolk-double shell nanoparticles, by using Au@SiO2 nanoparticles as seeds. During this process, ammonia first functions as a basic catalyst facilitating the hydrolyzation and condensation of the organosilica precursor, and additionally as an etching agent selectively in situ dissolving the SiO2 shells of Au@SiO2 nanoparticles to form these unique nanostructures. All these three types of nanoparticles have high surface areas, large pore volumes and tailorable cavity structures. Both the Au&PMO and Au@PMO nanoparticles exhibit excellent catalytic activity for the decomposition of H2O2 and the reduction of 4-nitrophenol. Based on these unique

  17. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    Science.gov (United States)

    Song, Hyunjoon

    2015-03-17

    functions, such as magnetism and light absorption, to the catalytic properties. In particular, metal-semiconductor hybrid nanostructures could behave as effective visible photocatalysts for hydrogen evolution and CO oxidation reactions. Resulting from the large surface area and high local concentration of the reactants, a double-shell hollow structure showed reaction activities higher than those of filled nanoparticles. The introduction of plasmonic Au probes into the Pt-CdS double-shell hollow particles facilitated the monitoring of photocatalytic hydrogen generation that occurred on an individual particle surface by single particle measurements. Further development of catalysis research using well-defined metal hybrid nanocatalysts with various in situ spectroscopic tools provides a means of maximizing catalytic performances until they are comparable to or better than those of homogeneous catalysts, and this would have possibly useful implications for industrial applications.

  18. INNOVATIVE TECHNIQUES AND TECHNOLOGY APPLICATION IN MANAGEMENT OF REMOTE HANDLED AND LARGE SIZED MIXED WASTE FORMS

    Energy Technology Data Exchange (ETDEWEB)

    BLACKFORD LT

    2008-02-04

    CH2M HILL Hanford Group, Inc. (CH2M HILL) plays a critical role in Hanford Site cleanup for the U. S. Department of Energy, Office of River Protection (ORP). CH2M HILL is responsible for the management of 177 tanks containing 53 million gallons of highly radioactive wastes generated from weapons production activities from 1943 through 1990. In that time, 149 single-shell tanks, ranging in capacity from 50,000 gallons to 500,000 gallons, and 28 double-shell tanks with a capacity of 1 million gallons each, were constructed and filled with toxic liquid wastes and sludges. The cleanup mission includes removing these radioactive waste solids from the single-shell tanks to double-shell tanks for staging as feed to the Waste Treatment Plant (WTP) on the Hanford Site for vitrification of the wastes and disposal on the Hanford Site and Yucca Mountain repository. Concentrated efforts in retrieving residual solid and sludges from the single-shell tanks began in 2003; the first tank retrieved was C-106 in the 200 East Area of the site. The process for retrieval requires installation of modified sluicing systems, vacuum systems, and pumping systems into existing tank risers. Inherent with this process is the removal of existing pumps, thermo-couples, and agitating and monitoring equipment from the tank to be retrieved. Historically, these types of equipment have been extremely difficult to manage from the aspect of radiological dose, size, and weight of the equipment, as well as their attendant operating and support systems such as electrical distribution and control panels, filter systems, and mobile retrieval systems. Significant effort and expense were required to manage this new waste stream and resulted in several events over time that were both determined to be unsafe for workers and potentially unsound for protection of the environment. Over the last four years, processes and systems have been developed that reduce worker exposures to these hazards, eliminate violations

  19. Modified cuckoo search: A new gradient free optimisation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Walton, S., E-mail: 512465@swansea.ac.uk [College of Engineering, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Hassan, O.; Morgan, K.; Brown, M.R. [College of Engineering, Swansea University, Swansea SA2 8PP, Wales (United Kingdom)

    2011-09-15

    Highlights: > Modified cuckoo search (MCS) is a new gradient free optimisation algorithm. > MCS shows a high convergence rate, able to outperform other optimisers. > MCS is particularly strong at high dimension objective functions. > MCS performs well when applied to engineering problems. - Abstract: A new robust optimisation algorithm, which can be regarded as a modification of the recently developed cuckoo search, is presented. The modification involves the addition of information exchange between the top eggs, or the best solutions. Standard optimisation benchmarking functions are used to test the effects of these modifications and it is demonstrated that, in most cases, the modified cuckoo search performs as well as, or better than, the standard cuckoo search, a particle swarm optimiser, and a differential evolution strategy. In particular the modified cuckoo search shows a high convergence rate to the true global minimum even at high numbers of dimensions.

  20. THE FAST FIXED-POINT ALGORITHM FOR SPECKLE REDUCTION OF POLARIMETRIC SAR IMAGE

    Institute of Scientific and Technical Information of China (English)

    Fu Yusheng; Chen Xiaoning; Pi Yiming; Hou Yinming

    2005-01-01

    In this letter, a simple and efficient method of image speckle reduction for polarimetric SAR is put forward. It is based on the fast fixed-point ICA (Independent Component Analysis) algorithm of orthogonal and symmetric matrix. Simulation experiment is carried out to separate speckle noise from the polarimetric SAR images, and it indicates that this algorithm has high convergency speed and stability, the image speckle noise is reduced effectively and the speckle index is low, and the image quality is improved obviously.

  1. Intelligent Intrusion Detection System Model Using Rough Neural Network

    Institute of Scientific and Technical Information of China (English)

    YAN Huai-zhi; HU Chang-zhen; TAN Hui-min

    2005-01-01

    A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality,high convergence speed, easy upgrading and management.

  2. Total Synthesis of (+)-Batzelladine A and (−)-Batzelladine D via [4 + 2]-Annulation of Vinyl Carbodiimides with N-Alkyl Imines

    Science.gov (United States)

    Arnold, Michael A.; Day, Kenneth A.; Durón, Sergio G.; Gin, David Y.

    2008-01-01

    A diastereoselective [4 + 2]-annulation of vinyl carbodiimides with chiral N-alkyl imines has been developed to access the stereochemically rich polycyclic guanidine cores of the batzelladine alkaloids. Application of this strategy, together with additional key steps such as long-range directed hydrogenation and diastereoselective intramolecular iodo-amination, led to highly convergent total syntheses of (−)-batzelladine D and (+)-batzelladine A with excellent stereocontrol. PMID:17017806

  3. IMMUNE GENETIC ALGORITHM FOR THE PATH PLANNING OF TIGHTLY COORDINATED TWO-ROBOT MANIPULATORS

    Institute of Scientific and Technical Information of China (English)

    Gao Sheng; Zhao Jie; Cai Hegao

    2004-01-01

    A novel algorithm, the immune genetic algorithm based on multi-agent, is proposed for the path planning of tightly coordinated two-robot manipulators, which constructs mainly immune operators accomplished by three steps: defining strategies and methods of multi-agent, calculating virtual forces acting on an agent, and constructing immune operators and performing immunization during the evolutionary process. It is illustrated to be able to restrain the degenerate phenomenon effectively and improve the searching ability with high converging speed.

  4. Validation of the fatigue scale for motor and cognitive functions in a danish multiple sclerosis cohort

    DEFF Research Database (Denmark)

    Oervik, M. S.; Sejbaek, T.; Penner, I. K.

    2017-01-01

    ) and a healthy control cohort (n = 147). The Modified Fatigue Impact Scale (MFIS) was used as reference scale and Becks Depression Inventory-Fast Screen (BDI-FS) and Expanded Disability Status Scale (EDSS) for confounding factors. We assessed internal consistencies; convergent, divergent, and predictive validity...... positive correlations between the two fatigue scales implied high convergent validity (total scores: r = 0.851, p EDSS score; age; gender). Correcting for depression did not result in any significant adjustments of the correlations...

  5. Total synthesis of teixobactin

    Science.gov (United States)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  6. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  7. Glass optimization for vitrification of Hanford Site low-level tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr. [and others

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design.

  8. Trade study for the feed tank fill status issue for low-activity waste feed issue 19D

    Energy Technology Data Exchange (ETDEWEB)

    Slaathaug, E.J.

    1998-05-18

    This document identifies and evaluates alternatives that will provide DOE-RL sufficient information from which a decision can be negotiated regarding the Project Hanford Management Contractor team`s use of tanks 241-AP-106 and -108 versus the private contractors need to upgrade them for their purposes. The desired alternatives to be evaluated and the measures for comparison were selected in a separate meeting with the customer (RL). These are defined in the sections that follow. The following summarizes the results of this study. More detailed explanations of the results can be found later in Section 6.0 of the document. Relinquishing the use of tanks early increases the programmatic risk when compared to the baseline via the following areas: (1) Tank Space -- The amount of usable tank space decreases. This also impacts the amount of spare and contingency space available. (2) Waste Transfer Complexity -- The complexity of tankfarm transfers increases. As double-shell tank (DST) space becomes limited, the number and interdependency of waste transfers increases. (3) Float -- Float time for low-activity waste (LAW) feed staging operations decreases. (4) Waste Segregation -- The segregation of tank wastes may be violated.

  9. Tank safety screening data quality objective. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.W.

    1995-04-27

    The Tank Safety Screening Data Quality Objective (DQO) will be used to classify 149 single shell tanks and 28 double shell tanks containing high-level radioactive waste into safety categories for safety issues dealing with the presence of ferrocyanide, organics, flammable gases, and criticality. Decision rules used to classify a tank as ``safe`` or ``not safe`` are presented. Primary and secondary decision variables used for safety status classification are discussed. The number and type of samples required are presented. A tabular identification of each analyte to be measured to support the safety classification, the analytical method to be used, the type of sample, the decision threshold for each analyte that would, if violated, place the tank on the safety issue watch list, and the assumed (desired) analytical uncertainty are provided. This is a living document that should be evaluated for updates on a semiannual basis. Evaluation areas consist of: identification of tanks that have been added or deleted from the specific safety issue watch lists, changes in primary and secondary decision variables, changes in decision rules used for the safety status classification, and changes in analytical requirements. This document directly supports all safety issue specific DQOs and additional characterization DQO efforts associated with pretreatment and retrieval. Additionally, information obtained during implementation can assist in resolving assumptions for revised safety strategies, and in addition, obtaining information which will support the determination of error tolerances, confidence levels, and optimization schemes for later revised safety strategy documentation.

  10. Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu [Yale University, New Haven, CT 06520 (United States); Wing, Richard A. [The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Yale University, New Haven, CT 06520 (United States)

    2014-05-01

    Here, new evidence is provided to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry averaging. Overwhelming evidence exists to show that the inclusion of weak-intensity, high-resolution X-ray diffraction data helps improve the refinement of atomic models by imposing strong constraints on individual and overall temperature B factors and thus the quality of crystal structures. Some researchers consider these data to be of little value and opt to discard them during data processing, particularly at medium and low resolution, at which individual B factors of atomic models cannot be refined. Here, new evidence is provided to show that the inclusion of these data helps to improve the quality of experimental phases by imposing proper constraints on electron-density models during noncrystallographic symmetry (NCS) averaging. Using electron-density correlation coefficients as criteria, the resolution of data has successfully been extended from 3.1 to 2.5 Å resolution with redundancy-independent merging R factors from below 100% to about 310%. It is further demonstrated that phase information can be fully extracted from observed amplitudes through de novo NCS averaging. Averaging starts with uniform density inside double-shelled spherical masks and NCS matrices that are derived from bound heavy-atom clusters at the vertices of cuboctahedrally symmetric protein particles.

  11. A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-02

    The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.

  12. Fiscal year 1994 1/25-scale sludge mobilization testing

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Gates, C.M.; Hymas, C.R.; Sprecher, M.A. [Pacific Northwest Lab., Richland, WA (United States); Morter, N.J. [Associated Western Universities, Inc., Salt Lake City, UT (United States). Northwest Div.

    1995-07-01

    There are 28 one-million-gallon double-shell radioactive waste tanks on the Hanford Reservation in southeastern Washington State. The waste in these tanks was generated during processing of nuclear materials. Solids-laden slurries were placed into many of the tanks. Over time, the waste solids have settled to form a layer of sludge in the bottom of these tanks. The sludge layer thickness varies from tank to tank with some having only a few centimeters or no sludge up to some tanks which have about 4.5 m (15 ft) of sludge. It is planned that the waste will be removed from these tanks as part of the overall Hanford site cleanup efforts. Jet mixer pumps are to be placed into the tanks to stir up (mobilize) the sludge and form a uniform slurry suitable for pumping to downstream processing facilities. These mixer pumps use powerful jets of tank fluid directed horizontally out of two, diametrically opposed nozzles near the tank bottom. These fluid jets impinge upon the sludge and stir it up. The amount of sludge mobilized by the mixer pump jets depends not only on the jet properties, but also on the ability of the sludge to resist the jets. It is the goal of the work described in this document to develop the ability to predict how much sludge will be mobilized by the mixer pumps based on the size and velocity of the mixer pump jets and the physical and chemical properties of the tank sludge.

  13. The Measurable Effects of Germanium Loaded into the Pusher of a Pushered Single Shell Capsule Designed for the National Ignition Facility

    Science.gov (United States)

    Tipton, Robert; Baker, Kevin; Casey, Daniel; Dewald, Eduard; Graziani, Frank; MacLaren, Steve; Nikroo, Abass; Pino, Jesse; Ralph, Joe; Remington, Bruce; Sacks, Ryan; Salmonson, Jay; Smalyuk, Vladimir

    2016-10-01

    Germanium loaded pushered single shells (PSS) have been designed as a vehicle to study the effects of turbulent mixing between the DT fuel and a pusher which is not fully ionized. This is intended as a surrogate for the high-Z mixing expected in future double-shell ignition capsules. These PSS experiments will be diagnosed by loading deuterium along with the germanium into the GDP pusher and filling the capsule with a mixture of tritium and hydrogen. In such CD mix experiments, the measured number of DT neutrons along with the inferred ion temperature from the time-of-flight thermal broadening provides detailed information about the annular mixing of the fuel and the pusher. This paper will compare the expected DT mix signals from capsules loaded with germanium to control capsules fired without any germanium. Leading turbulent mix models predict the germanium loaded capsules and no-germanium control capsules will produce significantly different results. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344,LLNS, LLC.

  14. Laser Fusion Program at LASL. Progress report, July 1--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Skoberne, F. (comp.)

    1978-12-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Among the achievements discussed are an increase in on-target energy of the Two-Beam System to 375 J per beam; operation of one Eight-Beam System module at the design point of 1.2 kJ at a power of > 2 TW; and the on-schedule development of our 100- to 200-TW laser Antares. Target designs based on the LASNEX code incorporating new theoretical insights are described, culminating in a double-shell exploding-pusher target that attains a high degree of symmetry through hot-electron transport in an exploding outer shell. Studies of laser light absorption are outlined, which confirmed that the values for CO/sub 2/ are nearly identical to those obtained with Nd:glass lasers. Unique diagnostics are described, which allow one to measure properties of x-ray emission not previously accessible, and which provide absorption data of sufficient accuracy for direct comparison with theory. Finally, various feasibility and systems studies are summarized, such as the successful modeling of short-pulse amplification in large three-pass CO/sub 2/ laser amplifiers, as verified experimentally.

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

  16. Grout disposal facility vault exhauster: Technical background document on demonstration of best available control technology for toxics

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Glantz, C.S. [Pacific Northwest Lab., Richland, WA (United States); Rittman, P.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-09-01

    The Grout Disposal Facility (GDF) is currently operated on the US Department of Energy`s Hanford Site. The GDF is located near the east end of the Hanford Site`s 200 East operations area, and is used for the treatment and disposal of low-level radioactive liquid wastes. In the grout treatment process, selected radioactive wastes from double-shell tanks are mixed with grout-forming solids; the resulting grout slurry is pumped to near-surface concrete vaults for solidification and permanent disposal. As part of this treatment process, small amounts of toxic particles and volatile organic compounds (VOCs) may be released to the atmosphere through the GDF`s exhaust system. This analysis constitutes a Best Available Control Technology for Toxics (T-BACT) study, as required in the Washington Administrative Code (WAC 173-460) to support a Notice of Construction for the operation of the GDF exhaust system at a modified flow rate that exceeds the previously permitted value. This report accomplishes the following: assesses the potential emissions from the GDF; estimates air quality impacts to the public from toxic air pollutants; identifies control technologies that could reduce GDF emissions; evaluates impacts of the control technologies; and recommends appropriate emissions controls.

  17. Development and Qualification of Advancements in Submersible Transfer Pump Performance and Life, and Implications for Advancing and Supporting Processing Options - 13343

    Energy Technology Data Exchange (ETDEWEB)

    Stover, David L. [Curtiss-Wright EMD, Cheswick, PA 15024 (United States); Bryan, Wes; Kelly, James [Washington River Protection Solutions, Richland, WA 99352 (United States)

    2013-07-01

    From the 1950's through the 1990's, relatively inexpensive, 'off-the-shelf' type, vertical turbine pumps (VTP) were used to transfer Hanford waste. The technology of those pumps was rooted primarily in the mining and agricultural (irrigation) industries. HNF-3218, Double Shell Tank (DST) Transfer Pump History and Reliability Report, 1998, provides a summary of Hanford DST pump history to that date. Such pumps operated in the Hanford radioactive waste environment for an average of only 400 hours before failure. However, at that time, operating life was not a driving criteria within the Department of Energy (DOE) complex, as the failure of transfer pumps represented a relatively low replacement and disposal cost. The Environmental Protection Agency (EPA) issuance of the 'Debris Rule' in 1992, which mandated that mixed radioactive waste contaminated equipment be decontaminated to a 'low level waste' category prior to burial, elevated the significance of transfer pump reliability and decontamination capability as life-cycle cost criteria. Minimizing the frequency of transfer pump failures and design for decontamination became significantly important and served to drive the need toward specific, designed for application pumps to meet this challenge. To this end, Washington River Protection Solutions (WRPS) and the supplier, Curtiss-Wright EMD (EMD), have recently collaborated on an intense program to further transfer pump technology and performance. (authors)

  18. One-pot aqueous-phase synthesis of ultra-small CdSe/CdS/CdZnS core-shell-shell quantum dots with high-luminescent efficiency and good stability

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Hongju; Zhou Peijiang, E-mail: 2010102050026@whu.edu.cn; Pan Keliang; He Ting; He Xuan; Zhou Chuanyun; He Yuning [Wuhan University, School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory (China)

    2013-06-15

    We describe the preparation and structural characterization of ultra-small water-dispersible CdSe semiconductor nanocrystal quantum dots (QDs), which are covered by a double-shell structure from CdS and CdZnS through a one-pot microwave-assisted synthesis technique. Because of the radial increase of the respective valence- and conduction-band offsets, the resulting core-shell-shell CdSe/CdS/CdZnS QDs are well electronically passivated, which endows them with high-fluorescence quantum yield of 90 % and high crystallinity, as was investigated by optical characterization, X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Also, due to the stepwise adjustment of the lattice parameters in the radial direction, the obtained QDs display remarkable photostability, acid stability, and oxidation stability both in the aqueous solutions and the intracellular environment. The cytotoxicity experiment further substantiates the good biocompatibility of the core-shell-shell particles, though the size of the obtained QDs was very small (about 3.2 nm). This implied that the CdSe/CdS/CdZnS core-shell-shell QDs can be used as a promising candidate for fluorescent QDs-based biological applications.

  19. Seismic design and evaluation guidelines for the Department of Energy High-Level Waste Storage Tanks and Appurtenances

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1995-10-01

    This document provides seismic design and evaluation guidelines for underground high-level waste storage tanks. The guidelines reflect the knowledge acquired in the last two decades in defining seismic ground motion and calculating hydrodynamic loads, dynamic soil pressures and other loads for underground tank structures, piping and equipment. The application of the guidelines is illustrated with examples. The guidelines are developed for a specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document. The original version of this document was published in January 1993. Since then, additional studies have been performed in several areas and the results are included in this revision. Comments received from the users are also addressed. Fundamental concepts supporting the basic seismic criteria contained in the original version have since then been incorporated and published in DOE-STD-1020-94 and its technical basis documents. This information has been deleted in the current revision.

  20. Building Composite Fe-Mn Oxide Flower-Like Nanostructures: A Detailed Magnetic Study

    KAUST Repository

    Zuddas, Efisio

    2017-07-21

    Here we show that it’s possible to produce different magnetic core-multiple shells heterostructures from monodispersed iron oxide spherical magnetic seeds by finely controlling the amount of a manganese precursor and using in a smart and simple way a cation exchange synthetic approach. In particular, by increasing the amount of precursor we were able to produce nanostructures ranging from Fe3O4/Mn-ferrite core/single shell nanospheres to larger, flower-like Fe3O4/Mn-ferrite/Mn3O4 core-double shell nanoparticles. We first demonstrate how the formation of the initial thin manganese-ferrite shell determines a dramatic reduction of the superficial disorder in the starting iron oxide, bringing to nanomagnets with lower hardness. Then, the growth of the second and most external manganese oxide shell causes the magnetical hardening of the heterostructures, while its magnetic exchange coupling with the rest of the heterostructure can be antiferromagentic or ferromagnetic, depending on the strength of the applied external magnetic field. This response is similar to that of an iron oxide-manganese oxide core-shell system but differs from what observed in multiple-shell heterostructures. Finally, we report as the most external shell becomes magnetically irrelevant above the ferrimagnetic-paramagnetic transition of the manganese oxide and the resulting magnetic behavior of the flower-like structures is then studied in-depth.

  1. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.

    1996-05-03

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  2. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2 ·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirements from AMS, and satisfies the strict safety standards of NASA.

  3. Permanent magnet system of alpha magnetic spectrometer

    Institute of Scientific and Technical Information of China (English)

    陈和生

    2000-01-01

    Alpha magnetic spectrometer (AMS) is the first large magnetic spectrometer in space. Its precursor flight was completed successfully in June 1998. The key part of AMS is the permanent magnet system, which was built by the Institute of Electric Engineering, the Institute of High Energy Physics and the Chinese Academy of Launch Vehicle Technology. This system includes a permanent magnet made of high grade NdFeB and a support structure. The unique design of the permanent magnet based on the magic ring fulfills the severe requirements on the magnetic field leakage and the dipole moment for space experiments. The permanent magnet weighs about 2 tons, and provides a geometric acceptance of 0.6 m2·sr and an analyzing power BL2 of 0.135 T·m2. It works up to 40℃ without demagnetization. The main structure is a thin double shell, which undergoes the strong magnetic force and torque of the permanent magnet, as well as the large load during launching and landing. The permanent magnet system fulfills the requirem

  4. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  5. Safety equipment list for 241-C-106 waste retrieval, Project W-320: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Conner, J.C.

    1994-11-15

    The goals of the C-106 sluicing operation are: (1) to stabilize the tank by reducing the heat load in the tank to less than 42 MJ/hr (40,000 Btu/hour), and (2) to initiate demonstration of single-shell tank (SST) retrieval technology. The purpose of this supporting document (SD) is as follows: (1) to provide safety classifications for items (systems, structures, equipment, components, or parts) for the waste retrieval sluicing system (WRSS), and (2) to document and methodology used to develop safety classifications. Appropriate references are made with regard to use of existing systems, structures, equipments, components, and parts for C-106 single-shell transfer tank located in the C Tank Farm, and 241-AY-102 (AY-102) double shell receiver tanks (DST) located in the Aging Waste Facility (AWF). The Waste Retrieval Sluicing System consists of two transfer lines that would connect the two tanks, one to carry the sluiced waste slurry to AY-102, and the other to return the supernatant liquid to C-106. The supernatant, or alternate fluid, will be used to mobilize waste in C-106 for the sluicing process. The equipment necessary for the WRSS include pumps in each tank, sluicers to direct the supernatant stream in C-106, a slurry distributor in AY-102, HVAC for C-106, instrumentation and control devices, and other existing components as required.

  6. The Structure of the Homunculus: I. Shape and Latitude Dependence from H2 and [Fe II] Velocity Maps of Eta Carinae

    CERN Document Server

    Smith, N

    2006-01-01

    High resolution long-slit spectra obtained with the Phoenix spectrograph on Gemini South provide our most accurate probe of the three dimensional structure of the Homunculus around eta Car. The new near-infrared spectra dramatically confirm the double-shell structure inferred previously from thermal dust emission, resolving the nebula into a very thin outer shell seen in H2 21218, and a warmer, thicker inner layer seen in [Fe II] 16435. The thin H2 skin hints that the most important mass loss during the 19th century eruption had a very short duration of less than 5 yr. H2 emission traces the majority of the mass in the nebula, and has an average density of order 10^6.5 cm-3. This emission, in turn, yields our first definitive picture of the exact shape of the nebula, plus a distance of 2350pm50 pc and an inclination angle of 41deg (the polar axis is tilted 49deg from the plane of the sky). The distribution of the H2 emission provides the first measure of the latitude dependence of the speed, mass loss, and ki...

  7. Preliminary Study of Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.

    2010-10-12

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy’s River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize initial progress and results on new experiments focused on understanding the conditions that result in low gas retention. The work is ongoing; this report provides a summary of the initial findings. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments will begin with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments.

  8. Evolution of form in metal–organic frameworks

    Science.gov (United States)

    Lee, Jiyoung; Kwak, Ja Hun; Choe, Wonyoung

    2017-01-01

    Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal–organic materials (MOMs), an emerging class of porous materials consisting of metal–organic frameworks (MOFs) and metal–organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of MOM crystals. Here we demonstrate sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF. Moreover, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs. We anticipate that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future. PMID:28051066

  9. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  10. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  11. Aqueous-phase synthesis and color-tuning of core/shell/shell inorganic nanocrystals consisting of ZnSe, (Cu, Mn)-doped ZnS, and ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongwan; Yoon, Sujin [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of); Kim, Felix Sunjoo, E-mail: fskim@cau.ac.kr [School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Kim, Nakjoong, E-mail: kimnj@hanyang.ac.kr [Department of Chemistry and Research Institute for Natural Science, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2016-06-25

    We report synthesis of colloidal nanocrystals based on ZnSe core, (Cu,Mn)-doped ZnS inner-shell, and ZnS outer-shell by using an eco-friendly method and their optical properties. Synthesis of core/shell/shell nanocrystals was performed by using a one-pot/three-step colloidal method with 3-mercaptopropionic acid as a stabilizer in aqueous phase at low temperature. A double-shell structure was employed with inner-shell as a host for doping and outer-shell as a passivation layer for covering surface defects. Copper and manganese were introduced as single- or co-dopants during inner-shell formation, providing an effective means to control the emission color of the nanocrystals. The synthesized nanocrystals showed fluorescent emission ranging from blue to green, to white, and to orange, adjusted by doping components, amounts, and ratios. The photoluminescence quantum yields of the core/doped-shell/shell nanocrystals approached 36%. - Highlights: • ZnSe/ZnS:(Cu,Ms)/ZnS core/(doped)shell/shell nanocrystals were synthesized in an aqueous phase. • Emission color of nanocrystals was controlled from blue to white to orange by adjusting the atomic ratio of Cu and Mn co-dopants. • Photoluminescence quantum yields of the colloidal nanocrystals approached 36%.

  12. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  13. Organized thiol functional groups in mesoporous core shell colloids

    Energy Technology Data Exchange (ETDEWEB)

    Marchena, Martin H. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Granada, Mara [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Bordoni, Andrea V. [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina); Joselevich, Maria [Asociacion Civil Expedicion Ciencia, Cabrera 4948, C1414BGP Buenos Aires (Argentina); Troiani, Horacio [Centro Atomico Bariloche-CNEA, 8400 San Carlos de Bariloche (Argentina); Instituto Balseiro-Centro Atomico Bariloche-CNEA, San Carlos de Bariloche 8400 (Argentina); Williams, Federico J. [DQIAQyF-INQUIMAE FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA Buenos Aires (Argentina); Wolosiuk, Alejandro, E-mail: wolosiuk@cnea.gov.ar [Gerencia Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), Avda. Gral. Paz 1499, B1650KNA Buenos Aires (Argentina)

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  14. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  15. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  16. Hanford tank clean up: A guide to understanding the technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Lundgren, R.E.

    1995-12-31

    One of the most difficult technical challenges in cleaning up the US Department of Energy`s (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site`s 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation`s best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford`s tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use.

  17. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan

    2015-06-11

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high conductivity have been investigated as new class of electrode materials for pseudocapacitor applications. Herein, we report a novel self-templating strategy to fabricate well-defined single and double-shell NiCo2S4 hollow spheres, as a promising electrode material for pseudocapacitors. The surfaces of the NiCo2S4 hollow spheres consist of self-assembled 2D mesoporous nanosheets. This unique morphology results in a high specific capacitance (1257 F g-1 at 2 A g-1), remarkable rate performance (76.4% retention of initial capacitance from 2 A g-1 to 60 A g-1) and exceptional reversibility with a cycling efficiency of 93.8% and 87% after 10,000 and 20,000 cycles, respectively, at a high current density of 10 A g-1. The cycling stability of our ternary chalcogenides is comparable to carbonaceous electrode materials, but with much higher specific capacitance (higher than any previously reported ternary chalcogenide), suggesting that these unique chalcogenide structures have potential application in next-generation commercial pseudocapacitors.

  18. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.

  19. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  20. Status of LDRD-DR 20070518 development of a magnetically driven target for thermo-nuclear burn studies (u)

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Robert G [Los Alamos National Laboratory; Atchison, W L [Los Alamos National Laboratory; Colgate, S A [Los Alamos National Laboratory; Goforth, J [Los Alamos National Laboratory; Griego, J [Los Alamos National Laboratory; Guzik, J [Los Alamos National Laboratory; Holtkamp, D [Los Alamos National Laboratory; Idzorek, G [Los Alamos National Laboratory; Kirkpatrick, R [Los Alamos National Laboratory; Menikoff, R [Los Alamos National Laboratory; Meyer, R [Los Alamos National Laboratory; Oona, H [Los Alamos National Laboratory; Reardon, P [Los Alamos National Laboratory; Rousculp, C L [Los Alamos National Laboratory; Sgro, A G [Los Alamos National Laboratory; Tabaka, L [Los Alamos National Laboratory

    2010-01-20

    This project is developing a magnetically driven cylindrical confinement system for the creation of a small region of material existing under extreme conditions. Using a Ranchero High Explosive Pulsed Power generator (HEPP) with maximum current ranging from 25- 50 MA depending on the load, a current driven Al cylinder will impact a series of nested, less massive Au shells. Each subsequent shell's inner surface velocity will increase due to it's smaller mass by the ratio 2.01( 1+ m{sub i+ 1}/m i), along with radial convergence. Attaining this ideal result requires highly efficient energy transfer which in turn requires plastic cushions. The final velocity of the last sequential shell will be used to drive a central experimental package in which extreme material conditions will be produced. The inexpensive nature of HEPP and the extreme conditions attainable allow many studies to be conducted in regimes not currently available in the laboratory. One potential central experimental package consists of a cylindrical Inertial Confinement Fusion (ICF) target; a cylindrical Au pusher surrounding frozen DT. This target is used as a design tool. The ICF conditions achieved with such a target would be similar to those created in a double shell ignition capsule at the National Ignition Facility. The system being developed has a range of potential applications.

  1. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  2. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  3. X-ray Digital Radiography and Computed Tomography of ICF and HEDP Materials, Subassemblies and Targets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W D; Martz Jr., H E

    2006-05-31

    Inertial confinement fusion (ICF) and high energy density physics (HEDP) research are being conducted at large laser facilities, such as the University of Rochester's Laboratory for Laser Energetics OMEGA facility and the Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF). At such facilities, millimeter-sized targets with micrometer structures are studied in a variety of hydrodynamic, radiation transport, equation-of-state, inertial confinement fusion and high-energy density experiments. The extreme temperatures and pressures achieved in these experiments make the results susceptible to imperfections in the fabricated targets. Targets include materials varying widely in composition ({approx}3 < Z < {approx}82), density ({approx}0.03 to {approx}20 g/cm{sup 3}), geometry (planar to spherical) and embedded structures (joints to subassemblies). Fabricating these targets with structures to the tolerances required is a challenging engineering problem the ICF and HEDP community are currently undertaking. Nondestructive characterization (NDC) provides a valuable tool in material selection, component inspection, and the final pre-shot assemblies inspection. X-rays are a key method used to NDC these targets. In this paper we discuss X-ray attenuation, X-ray phase effects, and the X-ray system used, its performance and application to characterize low-temperature Raleigh-Taylor and non-cryogenic double-shell targets.

  4. Glass-NiP-CoFeP triplex-shell particles with hollow cores and tunable magnetic properties.

    Science.gov (United States)

    An, Zhenguo; Zhang, Jingjie

    2013-02-01

    Low density (0.55-0.92g/mL, depending on the shell thickness and composition) glass-metal-metal triplex-shell hollow particles (TSHP) were prepared by a three-step route. First, micrometer-sized silicate glass particles with hollow cores, uniform shells, and high sphericity were prepared through spray drying and subsequent melting. NiP shell was uniformly assembled to the previously obtained glass hollow particles by silver seed induced chemical reduction of Ni(2+) by sodium hypophosphite, and glass-NiP double-shell hollow particles (DSHP) with compact and uniform shells were formed. The as-formed NiP particles further acted as the seeds for the directed formation and assembly of the CoFeP shell on the NiP shell to form the final glass-NiP-CoFeP triplex-shell hollow particles (TSHP). The influences of the component of the reaction system on the composition, structure, and magnetic properties of the hollow particles were studied. The multishell hollow particles thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, microwave absorbers, catalysis, etc. This work provides an additional strategy to fabricate multishell structured hollow particles with tailored shell composition and magnetic properties, which can be extended to the controlled preparation of multishell composite particles with the shells consisting of metal, oxides, or other compounds.

  5. Are the nuclei beyond 132Sn very exotic?

    Science.gov (United States)

    Lozeva, R.; Naïdja, H.; Nowacki, F.; Odahara, A.; Moon, C.-B.; NP1112-RIBF87 Collaboration

    2016-06-01

    The term exotic nucleus is used for nuclei that have different from normal behavior. However, it turns out that the term normal is valid only for nuclei close to stability and more particularly for regions close to double-shell closures. As long as one drives away in the neutron-rich nuclei, especially at intermediate mass number, interplay between normal single-particle and many collective particle-hole excitations compete. In some cases with the addition of neutrons, these may turn to evolve as a skin, acting against the core nucleus that may also influence its shell evolution. Knowledge of these nuclear ingredients is especially interesting beyond the doubly-magic 132Sn, however a little is known on how the excitations modes develop with the addition of both protons and neutrons. Especially for the Sb nuclei, where one gradually increases these valence particles, the orbital evolution and its impact on exoticness is very intriguing. Experimental studies were conducted on several such isotopes using isomer and, β-decay spectroscopy at RIBF within EURICA. In particular, new data on 140Sb and 136Sb are examined and investigated in the framework of shell model calculations.

  6. Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal.

    Science.gov (United States)

    Marková, Zdenka; Šišková, Karolína Machalová; Filip, Jan; Čuda, Jan; Kolář, Milan; Šafářová, Klára; Medřík, Ivo; Zbořil, Radek

    2013-05-21

    We report on new magnetic bimetallic Fe-Ag nanoparticles (NPs) which exhibit significant antibacterial and antifungal activities against a variety of microorganisms including disease causing pathogens, as well as prolonged action and high efficiency of phosphorus removal. The preparation of these multifunctional hybrids, based on direct reduction of silver ions by commercially available zerovalent iron nanoparticles (nZVI) is fast, simple, feasible in a large scale with a controllable silver NP content and size. The microscopic observations (transmission electron microscopy, scanning electron microscopy/electron diffraction spectroscopy) and phase analyses (X-ray diffraction, Mössbauer spectroscopy) reveal the formation of Fe₃O₄/γ-FeOOH double shell on a "redox" active nZVI surface. This shell is probably responsible for high stability of magnetic bimetallic Fe-Ag NPs during storage in air. Silver NPs, ranging between 10 and 30 nm depending on the initial concentration of AgNO₃, are firmly bound to Fe NPs, which prevents their release even during a long-term sonication. Taking into account the possibility of easy magnetic separation of the novel bimetallic Fe-Ag NPs, they represent a highly promising material for advanced antimicrobial and reductive water treatment technologies.

  7. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  8. Technetium in alkaline, high-salt, radioactive tank waste supernate: Preliminary characterization and removal

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, D.L. Jr.; Brown, G.N.; Conradson, S.D. [and others

    1997-01-01

    This report describes the initial work conducted at Pacific Northwest National Laboratory to study technetium (Tc) removal from Hanford tank waste supernates and Tc oxidation state in the supernates. Filtered supernate samples from four tanks were studied: a composite double shell slurry feed (DSSF) consisting of 70% from Tank AW-101, 20% from AP-106, and 10% from AP-102; and three complexant concentrate (CC) wastes (Tanks AN-107, SY-101, ANS SY-103) that are distinguished by having a high concentration of organic complexants. The work included batch contacts of these waste samples with Reillex{trademark}-HPQ (anion exchanger from Reilly Industries) and ABEC 5000 (a sorbent from Eichrom Industries), materials designed to effectively remove Tc as pertechnetate from tank wastes. A short study of Tc analysis methods was completed. A preliminary identification of the oxidation state of non-pertechnetate species in the supernates was made by analyzing the technetium x-ray absorption spectra of four CC waste samples. Molybdenum (Mo) and rhenium (Re) spiked test solutions and simulants were tested with electrospray ionization-mass spectrometry to evaluate the feasibility of the technique for identifying Tc species in waste samples.

  9. Evaluation of Low Activity Waste Feed Supplemental Treatment Options by the C3T Mission Acceleration Initiative Team for DOE-ORP

    Energy Technology Data Exchange (ETDEWEB)

    CHOHO, A F; GASPER, K A

    2002-07-02

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation of the Hanford Site tank farms, including the 53 million gallons of highly radioactive mixed waste contained in 149 single-shell tanks (SST) and 28 double-shell tanks (DST). ORP manages the River Protection Project (RPP). Under the RPP, wastes retrieved from the tanks will be partitioned to separate the highly radioactive constituents from the very large volumes of chemical wastes that exist in the tanks. The volume of waste is the result of chemicals used in various Hanford Site processes, chemicals that were added to the tanks to reduce tank corrosion, and chemicals used in reprocessing and extraction of cesium and strontium. The highly radioactive constituents are to be vitrified, stored onsite, and ultimately disposed of as high-level waste (HLW) in the offsite national repository. The less radioactive chemical waste, referred to as low-activity waste (LAW), also would be vitrified and then disposed of onsite in trenches that comply with the Resource Conservation Act of 1976 (RCRA) and in compliance with DOE O 435.1, Radioactive Waste Management.

  10. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  11. Minor component study for simulated high-level nuclear waste glasses (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation.

  12. Thylakoid-Inspired Multishell g-C3N4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis.

    Science.gov (United States)

    Tong, Zhenwei; Yang, Dong; Li, Zhen; Nan, Yanhu; Ding, Fei; Shen, Yichun; Jiang, Zhongyi

    2017-01-24

    Inspired by the orderly stacked nanostructure and highly integrated function of thylakoids in a natural photosynthesis system, multishell g-C3N4 (MSCN) nanocapsule photocatalysts have been prepared by SiO2 hard template with different shell layers. The resultant triple-shell g-C3N4 (TSCN) nanocapsules display superior photocatalysis performance to single-shell and double-shell counterparts owing to excellent visible-light harvesting and electron transfer properties. Specially, with the increase of the shell layer number, light harvesting is greatly enhanced. There is an increase of the entire visible range absorption arising from the multiple scattering and reflection of the incident light within multishell nanoarchitectures as well as the light transmission within the porous thin shells, and an increase of absorption edge arising from the decreased quantum size effect. The electron transfer is greatly accelerated by the mesopores in the thin shells as nanoconduits and the high specific surface area of TSCN (310.7 m(2) g(-1)). With the tailored hierarchical nanostructure features, TSCN exhibits a superior visible-light H2-generation activity of 630 μmol h(-1) g(-1) (λ > 420 nm), which is among one of the most efficient metal-free g-C3N4 photocatalysts. This study demonstrates a bioinspired approach to the rational design of high-performance nanostructured visible-light photocatalysts.

  13. Mitigation of Tank 241-SY-101 by pump mixing: Results of testing phases A and B

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Chvala, W.D.; Friley, J.R.; Gregory, W.B.; Hudson, J.D.; Michener, T.E.; Panisko, F.E.; Stewart, C.W.; Wise, B.M. [Pacific Northwest Lab., Richland, WA (United States); Efferding, L.E.; Fadeff, J.G.; Irwin, J.J.; Kirch, N.W. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-03-01

    A spare mixing pump from the Hanford Grout Program was installed in Hanford double-shell waste Tank 241-SY-101 on July 3, 1993, after being modified to take advantage of waste stratification. It was anticipated that pump mixing would prevent large episodic flammable gas releases that had been occurring about every 100-150 days. A cautious initial test plan, called Phase A, was run to find how the pump and tank would behave in response to very brief and gentle pump operation. No large gas releases were triggered, and the pump performed well except for two incidents of nozzle plugging. On October 21, 1993, the next test series, Phase B, began, and the pump was applied more aggressively to mix the tank contents and mitigate uncontrolled gas releases. Orienting the pump in new directions released large volumes of gas and reduced the waste level to a near-record low. Results of the entire period from pump installation to the end of Phase B on December 17, 1993, are presented in detail in this document. Though long-term effects require further evaluation, we conclude from these data that the jet mixer pump is an effective means of controlling flammable gas release and that it has met the success criteria for mitigation in this tank.

  14. Thermal stability of a free nanotube from single-layer black phosphorus

    CERN Document Server

    Cai, Kun; Wei, Ning; Cai, Haifang; Qin, Qing-Hua

    2015-01-01

    Similar to the carbon nanotube fabricated from graphene sheet, a black phosphorus nanotube (BPNT) also can theoretically be produced by curling the rectangular single-layer black phosphorus (SLBP). In present study, the effect of thermal vibration of atoms on the failure of a BPNT is investigated using molecular dynamics simulations. Two types of double-shell BPNTs, which are obtained by curling the rectangular SLBP along its armchair/pucker direction and zigzag direction (in-plane normal) respectively, are involved in simulation. At finite temperature, a bond on the outer shell of tube is under tension due to both of curvature of tube and serious thermal vibration of atoms. As the length of a bond with such elongation approaches its critical value, i.e., 0.279 nm, or the smallest distance between two nonbonding phosphorus atoms is over 0.389nm caused by great variation of bond angle, the tube fails quickly. The critical stable states of either an armchair or a zigzag BPNT at finite temperature are calculated...

  15. Neutron Knockout on Beams of $^{108,106}$Sn and $^{106}$Cd

    CERN Document Server

    Cerizza, Giordano

    2015-01-01

    Characterizing the nature of single-particle states outside of double shell closures is essential to a fundamental understanding of nuclear structure. This is especially true for those doubly magic nuclei that lie far from stability and where the shell closures influence nucleo-synthetic pathways. The region around $^{100}$Sn is one of the most important due to the proximity of the N=Z=50 magic numbers, the proton-drip line, and the end of the rp-process. However, owing to the low production rates, there is a lack of spectroscopic information and no firm spin-parity assignment for ground states of odd-A isotopes close to $^{100}$Sn. Neutron knockout reaction experiments on beams of $^{108,106}$Sn and $^{106}$Cd have been performed at the NSCL. By measuring gamma rays and momentum distributions from reaction residues, the spin of ground state and first excited state for $^{107,105}$Sn have been established. The results also show a degree of mixing in the ground states of the isotopes $^{108,106}$Sn between the...

  16. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    Science.gov (United States)

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-05-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible.

  17. Electromagnetic Moments of Radioactive Te 136 and the Emergence of Collectivity 2 p ⊕2 n Outside of Double-Magic Sn 132

    Science.gov (United States)

    Allmond, J. M.; Stuchbery, A. E.; Baktash, C.; Gargano, A.; Galindo-Uribarri, A.; Radford, D. C.; Bingham, C. R.; Brown, B. A.; Coraggio, L.; Covello, A.; Danchev, M.; Gross, C. J.; Hausladen, P. A.; Itaco, N.; Lagergren, K.; Padilla-Rodal, E.; Pavan, J.; Riley, M. A.; Stone, N. J.; Stracener, D. W.; Varner, R. L.; Yu, C.-H.

    2017-03-01

    Radioactive Te 136 has two valence protons and two valence neutrons outside of the Sn 132 double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of Te 136 on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B (E 2 ;01+→21+) , Q (21+), and g (21+). The results indicate that the first-excited state, 21+, composed of the simple 2 p ⊕2 n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g (21+) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g (21+) was used to differentiate among several state-of-the-art theoretical calculations. Our results are best described by the most recent shell model calculations.

  18. Electromagnetic Moments of Radioactive ^{136}Te and the Emergence of Collectivity 2p⊕2n Outside of Double-Magic ^{132}Sn.

    Science.gov (United States)

    Allmond, J M; Stuchbery, A E; Baktash, C; Gargano, A; Galindo-Uribarri, A; Radford, D C; Bingham, C R; Brown, B A; Coraggio, L; Covello, A; Danchev, M; Gross, C J; Hausladen, P A; Itaco, N; Lagergren, K; Padilla-Rodal, E; Pavan, J; Riley, M A; Stone, N J; Stracener, D W; Varner, R L; Yu, C-H

    2017-03-03

    Radioactive ^{136}Te has two valence protons and two valence neutrons outside of the ^{132}Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of ^{136}Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0_{1}^{+}→2_{1}^{+}), Q(2_{1}^{+}), and g(2_{1}^{+}). The results indicate that the first-excited state, 2_{1}^{+}, composed of the simple 2p⊕2n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2_{1}^{+}) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2_{1}^{+}) was used to differentiate among several state-of-the-art theoretical calculations. Our results are best described by the most recent shell model calculations.

  19. Use of Optical and Imaging Techniques for Inspection of Off-Line Joule-Heated Melter at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, M. J.; Jang, P-R; Long, Z.; Monts, D. L.; Philip, T.; Su, Y.

    2003-02-25

    The West Valley melter has been taken out of service. Its design is the direct ancestor of the current melter design for the Hanford Waste Treatment Plant. Over its eight years of service, the West Valley melter has endured many of the same challenges that the Hanford melter will encounter with feeds that are similar to many of the Hanford double shell tank wastes. Thus, inspection of the West Valley melter prior to its disposal could provide valuable--even crucial--information to the designers of the melters to be used at the Hanford Site, particularly if quantitative information can be obtained. The objective of Mississippi State University's Diagnostic Instrumentation and Analysis Laboratory's (DIAL) efforts is to develop, fabricate, and deploy inspection tools for the West Valley melter that will (i) be remotely operable in the West Valley process cell; (ii) provide quantitative information on melter refractory wear and deposits on the refractory; and (iii) indicate areas of heterogeneity (e.g., deposits) requiring more detailed characterization. A collaborative arrangement has been established with the West Valley Demonstration Project (WVDP) to inspect their melter.

  20. Reduction And Sequestration Of Pertechnetate To Technetium Dioxide And Protection From Reoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J. B. [Washington River Protection Solutions LLC, Richland , WA (United States); Johnson, J. M. [Center for Laboratory Sciences, Pasco, WA (United States); Moore, R. C. [Sandia National Laboratories, Albuquerque, NM (United States); Hagerty, K. [AREVA Federal Services LLC, Richland , WA (United States); Rhodes, R. N. [Center for Laboratory Sciences, Pasco, WA (United States); Huber, H. J. [Washington River Protection Solutions LLC, Richland , WA (United States); Moore, W. P. [Center for Laboratory Sciences, Pasco, WA (United States)

    2012-11-07

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(lI)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO{sub 4}). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(ll)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II) apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(lI)apatite exhibited a direct correlation with the pH of the technetium-spiked simulant media.

  1. Probing the N=50 shell gap near $^{78}$Ni

    CERN Multimedia

    Reiter, P; Blazhev, A A; Franchoo, S; Hadinia, B; Raabe, R; Diriken, J V J; Angus, L J

    An experiment is proposed to study the properties of low-lying states close to the N=50 shell gap by single nucleon transfer. The d($^{78}$Zn,p)$\\,^{79}$Zn reaction will be studied using the T-REX silicon-detector array coupled to the MINIBALL $\\gamma$-ray spectrometer. A $^{78}$Zn beam intensity of 5 x 10$^{4}$ pps is expected. The isotope $^{79}$Zn, with Z=30 and N =49, lies two protons above and one neutron below the double-shell closure at $^{78}$Ni. Determination of the single-particle structure of low-lying states in $^{79}$Zn will provide valuable information about the persistence of the N=50 shell gap in this neutron-rich region. In particular the behaviour of the g$_{9/2}$ and d$_{5/2}$ orbitals will be investigated. In total, 27 shifts of beam time are requested. This experiment is envisaged to be the first of a series of measurements on progressively more neutron-rich Zn isotopes.

  2. Ferro-deformation and shape phase transitions over the nuclear chart: 50 < protons (Z) < 82 and 50 < neutrons (N) < 126

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We study a global nuclear structure in the framework of experimental observables. With the aid of large nuclear structure data at the national nuclear data center, NNDC, we present the distinctive systematic patterns emerged in the first 2+ excited energies, E(2+) and their energy ratios to the first 4+ levels, R = E(4+)/E(2+), in the even-even nuclei, over 50 < Z < 82 for protons, and 50 < N < 126 for neutrons. We introduce the so-called pseudo-shell configurations from the subshells mixture in order to explain a semi-double shell closure, a shape phase transition, and a reinforced deformation. It is found that the reinforced deformation arises when Z = 64 or 66 correlates with N = 90 and reaches its maximum, indicating R = 3.3. Such a saturated reinforced deformation spans over Z = 58 to 72 and N = 100 to 106 as showing its center at Z = 64 or 66 and at N = 102 or 104. We define this reinforced deformation 'a ferro-deformation' like a ferro-magnetism in condensed matter physics. The shape coexis...

  3. Ferro-deformation and shape coexistence over the nuclear chart: 28 < protons (Z) < 50 and 40 < neutrons (N) < 70

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    With the experimental data at the national nuclear data center, NNDC, we investigate systematically the emerging nuclear structure properties in the first 2+ excited energies, E(2+) and their energy ratios to the first 4+ levels, R = E(4+)/E(2+) in the nuclei over 28 < Z < 50 for protons, and 40 < N < 70 for neutrons. By introducing the pseudo-shell configurations built on the combined subshells, we explain the following phenomena; a semi-double shell closure, a shape phase transition, and a reinforced deformation. The reinforced deformation arises suddenly at Z = 40 (or 38), N = 60 and approaches a maximum value, R = 3.3, as being centered at Z = 40, N = 64. We define this reinforced deformation 'a ferro-deformation', as in the previous study [arXiv:1604.01017]. The shape coexistence would be expected to be, as forming a ferro-deformation, with a strong rotational mode, and a near spherical shape, with a vibrational mode, in the transitional region at N = 58, 60, and 62 for the nuclei, with Z = 3...

  4. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Megan M. [ARES Corporation, Richland, WA (United States); Pikas, Joseph [Schiff Associates, Sugar Land TX (United States); Edgemon, Glenn L. [ARES Corporation, Richland, WA (United States); Philo, Sarah [ARES Corporation, Richland, WA (United States)

    2013-01-22

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines.

  5. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    Energy Technology Data Exchange (ETDEWEB)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-07-07

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency.

  6. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  7. Toxic chemical considerations for tank farm releases. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  8. Washing of the AW-101 entrained solids

    Energy Technology Data Exchange (ETDEWEB)

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  9. Evolution of form in metal-organic frameworks

    Science.gov (United States)

    Lee, Jiyoung; Kwak, Ja Hun; Choe, Wonyoung

    2017-01-01

    Self-assembly has proven to be a widely successful synthetic strategy for functional materials, especially for metal-organic materials (MOMs), an emerging class of porous materials consisting of metal-organic frameworks (MOFs) and metal-organic polyhedra (MOPs). However, there are areas in MOM synthesis in which such self-assembly has not been fully utilized, such as controlling the interior of MOM crystals. Here we demonstrate sequential self-assembly strategy for synthesizing various forms of MOM crystals, including double-shell hollow MOMs, based on single-crystal to single-crystal transformation from MOP to MOF. Moreover, this synthetic strategy also yields other forms, such as solid, core-shell, double and triple matryoshka, and single-shell hollow MOMs, thereby exhibiting form evolution in MOMs. We anticipate that this synthetic approach might open up a new direction for the development of diverse forms in MOMs, with highly advanced areas such as sequential drug delivery/release and heterogeneous cascade catalysis targeted in the foreseeable future.

  10. Density matrix renormalization group (DMRG) method as a common tool for large active-space CASSCF/CASPT2 calculations

    Science.gov (United States)

    Nakatani, Naoki; Guo, Sheng

    2017-03-01

    This paper describes an interface between the density matrix renormalization group (DMRG) method and the complete active-space self-consistent field (CASSCF) method and its analytical gradient, as well as an extension to the second-order perturbation theory (CASPT2) method. This interfacing allows large active-space multi-reference computations to be easily performed. The interface and its extension are both implemented in terms of reduced density matrices (RDMs) which can be efficiently computed via the DMRG sweep algorithm. We also present benchmark results showing that, in practice, the DMRG-CASSCF calculations scale with active-space size in a polynomial manner in the case of quasi-1D systems. Geometry optimization of a binuclear iron-sulfur cluster using the DMRG-CASSCF analytical gradient is demonstrated, indicating that the inclusion of the valence p-orbitals of sulfur and double-shell d-orbitals of iron lead to non-negligible changes in the geometry compared to the results of small active-space calculations. With the exception of the selection of M values, many computational settings in these practical DMRG calculations have been tuned and black-boxed in our interface, and so the resulting DMRG-CASSCF and DMRG-CASPT2 calculations are now available to novice users as a common tool to compute strongly correlated electronic wavefunctions.

  11. Complexant stability investigation. Task 2. Organic complexants

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E.C.

    1985-06-01

    The safety of high-level defense waste operations has always been given highest priority at the Hanford site. This document is part of the continued effort to appraise and reevaluate the safety of the waste stored in underground tanks on the Hanford Reservation. Hanford high-level defense waste consists mainly of moist, inorganic salts, NaNO/sub 3/, NaAl(OH)/sub 4/, Na/sub 2/CO/sub 3/, and other sodium salts. However, in addition to these salts, quantities of organic compounds constitute a significant portion of the waste. The potential reaction of the organic compounds with inorganic salts to form explosive substances is examined and found to be nonexistent or negligible. The concept that the waste mixture might react exothermically is found to be untenable under the present storage conditions. The phenomenon of slurry growth in double-shell waste storage tanks is expected to cause no increase in exothermic reaction potential within the waste. The results of this study indicate that the presence of organic material in the high-level defense waste does not constitute undue hazard under the present storage conditions.

  12. TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    WYRWAS RB; PAGE JS; COOKE GS

    2012-04-19

    This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

  13. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  14. The magic nature of 132Sn explored through the single-particle states of 133Sn

    CERN Document Server

    Jones, K L; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S; 10.1038/nature09048

    2010-01-01

    Atomic nuclei have a shell structure where nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons. Knowledge of the properties of single-particle states outside nuclear shell closures in exotic nuclei is important for a fundamental understanding of nuclear structure and nucleosynthesis (for example the r-process, which is responsible for the production of about half of the heavy elements). However, as a result of their short lifetimes, there is a paucity of knowledge about the nature of single-particle states outside exotic doubly magic nuclei. Here we measure the single-particle character of the levels in 133Sn that lie outside the double shell clos...

  15. 242-A evaporator quality assurance project plan: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, B.J.

    1994-11-04

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal.

  16. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  17. Waste segregation analysis for salt well pumping in the 200 W Area -- Task 3.4

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.

    1995-04-28

    There is an estimated 7 million liters (1.9 million gallons) of potentially complexed waste that need to be pumped from single-shell tanks (SST) in the 200 West Area. This represents up to 40% of the salt well liquor that needs to be pumped in the 200 West Area. There are three double-shell (DST) tanks in the 241-SY tank farm in the 200 West Area. Tank 241-SY-101 is full and not usable. Tank 241-SY-102 has a transuranic (TRU) sludge in the bottom. Current rules prohibit mixing complexed waste with TRU waste. Tank 241-SY-103 has three major problems. First, 241-SY-103 is on the Flammable Watch list. Second, adding waste to tank 241-SY-103 has the potential for an episodic release of hydrogen gas. Third, 241-SY-103 will not hold all of the potentially complexed waste from the SSTs. This document looks at more details regarding the salt well pumping of the 200 West Area tank farm. Some options are considered but it is beyond the scope of this document to provide an in-depth study necessary to provide a defensible solution to the complexed waste problem.

  18. Morpho-kinematics of the planetary nebula NGC 3242: an analysis beyond its multiple-shell structure

    CERN Document Server

    Gómez-Muñoz, M A; Vázquez, R; Zavala, S; Guillén, P F; Ayala, S

    2015-01-01

    In this paper we present the results of optical high-resolution imaging and spectroscopy of the complex planetary nebula (PN) NGC~3242. Our study is based on the analysis of the narrowband H$\\alpha$ $\\lambda$6563\\AA , [O III] $\\lambda$5007\\AA , [N II] $\\lambda$6584\\AA , and [S II] $\\lambda$6724{\\AA} images, and high- resolution spectroscopy using spectral ranges centered on the H$\\alpha$ $\\lambda$6564\\AA , [N II] $\\lambda$6583\\AA , and [O III] $\\lambda$5007\\AA . We detected and analysed morphological components beyond the multiple shell structure of this PN, to investigate the small-scale morphological components aligned towards its major axis (such as knots and ansae, as well as the arc-like features) and its surroundings. Thus, we investigated the morpho-kinematical properties of NGC~3242, as well as their nature and formation. Our results regarding the elliptical double-shell structure and the distance to this nebula are in concordance with previous studies. Furthermore, we have used the software SHAPE to ...

  19. 核电站双层安全壳施工技术的创新和需要研讨的问题%The Construction Technique Innovation for the Double-wall Containment of NPP and the Problems Needed for Discussion

    Institute of Scientific and Technical Information of China (English)

    王开华; 魏建国; 秦亚林; 钱伏华; 孙春峰; 周书奎; 杨金辉

    2015-01-01

    This paper describes the innovation of construction techniques of nuclear power plant double wall containment. Such as double hull construction sequence, template selection,reinforcing bar banding,embedded parts of installation,concrete configuration,prestressed tensioning,steel lining board installation,digitization and innovation of management information systems, etc. And according to the characteristics of the double shell construction,the need to continue improving the technical problems is put forward.%本文叙述了核电站双层安全壳施工技术的创新。诸如双壳施工顺序、模板选用、钢筋绑扎、预埋件安装、混凝土配置、预应力张拉、钢衬里安装、数字化和管理信息系统等方面的创新。并根据双壳施工特点,提出了需要继续改进的技术问题。

  20. The Cultural Scope of Chromatic Spaces - The Building of the ICMC/IKMZ Cottbus

    Directory of Open Access Journals (Sweden)

    Andreas Degkwitz

    2006-06-01

    Full Text Available The ICMC/IKMZ-Building was designed by the Swiss architects Herzog & de Meuron and finished, after a three year construction phase, in November 2004; it is a 32 meter high reinforced concrete construction covered by a double-shell, glass facade embossed with stylized graffiti. The ground plan of the building has a curved outline resembling a clover leaf which does not explicitly have front and back sides. The amazing external architecture continues internally with a spiral staircase extending from the 1st to the 6th floor, and a striking colour scheme (in vibrant yellow, green, magenta, red, and blue for parts of the floor covering and walls. In addition a further characteristic of the building is that within the ground plan none of the floor plans are the same. With the exception of the management and business areas (7th floor and the technical and pool areas (1st and 2nd underground level there are only a few truly separate areas. This allows a flexible and open concept for the use of the building which consciously allows for many work and communication forms for single users or user groups. The work and reading areas are in coves related to each of the floors, while the open access stacks of the library - floor related - arranged according to subject areas are located in the core of the building.

  1. LABORATORY REPORT ON THE REMOVAL OF PERTECHNETATE FROM TANK 241-AN-105 SIMULANT USING PUROLITE A530E

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HAGERTY KJ; MOORE WP; JOHNSON JM

    2012-06-29

    This effort falls under the technetium management initiative and will provide data for those who will make decisions regarding the handling and disposition of technetium. To that end, the objective of this effort is to challenge Purolite{reg_sign} A530E against a double-shell tank simulant from tank 241-AN-105 spiked with pertechnetate (TcO{sub 4}{sup -}). The Purolite{reg_sign} A530E is commercially available and is currently being used at the 200 West Pump and Treat Groundwater Treatment Plant to remove pertechnetate. It has been demonstrated that Purolite{reg_sign} A530E is highly effective in removing TcO{sub 4}{sup -} from a water matrix. Purolite{reg_sign} A530E is the commercial product of the Oak Ridge National Laboratory's Biquat{trademark} resin. Further work has demonstrated that technetium-loaded A530E achieves a leachability index in Cast Stone of 12.5 (RPP-RPT-39195, Assessment of Technetium Leachability in Cement-Stabilized Basin 43 Groundwater Brine).

  2. Electron cyclotron heating and current drive in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  3. Electron cyclotron heating and current drive in toroidal geometry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  4. Quadrupolar magic angle spinning NMR spectra fitted using the Pearson IV function.

    Science.gov (United States)

    Mironenko, Roman M; Belskaya, Olga B; Talsi, Valentin P; Likholobov, Vladimir A

    2014-01-01

    The Pearson IV function was used to fit the asymmetric solid-state (27)Al NMR spectra of alumina based catalysts. A high convergence (correlation coefficient is no less than 0.997) between experimental and simulated spectra was achieved. The decomposition of the (27)Al NMR spectra of zinc/aluminum mixed oxides with different Zn/Al molar ratio revealed an increased fraction (6-9%) of pentacoordinated aluminum atoms in these oxides as compared to γ-Al2O3. As the Zn/Al ratio is raised, the fraction of [AlO6] octahedral units decreases, while the fraction of [AlO4] tetrahedra increases.

  5. Synthesis of mucin-type O-glycan probes as aminopropyl glycosides

    Directory of Open Access Journals (Sweden)

    David Benito-Alifonso

    2013-09-01

    Full Text Available The chemical synthesis of a series of mucin-type oligosaccharide fragments 1–7 containing an α-linked aminopropyl spacer ready for glycoarray attachment is reported. A highly convergent and stereoselective strategy that employs two different orthogonal protected galactosamine building blocks was used to access all of the targets. A tandem deprotection sequence, that did not require chromatography-based purification between steps, was employed to globally unmask all protecting groups and all final targets were isolated in good to excellent yields.

  6. An Improved Particle Swarm Optimization for Traveling Salesman Problem

    Science.gov (United States)

    Liu, Xinmei; Su, Jinrong; Han, Yan

    In allusion to particle swarm optimization being prone to get into local minimum, an improved particle swarm optimization algorithm is proposed. The algorithm draws on the thinking of the greedy algorithm to initialize the particle swarm. Two swarms are used to optimize synchronously. Crossover and mutation operators in genetic algorithm are introduced into the new algorithm to realize the sharing of information among swarms. We test the algorithm with Traveling Salesman Problem with 14 nodes and 30 nodes. The result shows that the algorithm can break away from local minimum earlier and it has high convergence speed and convergence ratio.

  7. An Evolutionary Approach for Joint Blind Multichannel Estimation and Order Detection

    Directory of Open Access Journals (Sweden)

    Chen Fangjiong

    2003-07-01

    Full Text Available A joint blind order-detection and parameter-estimation algorithm for a single-input multiple-output (SIMO channel is presented. Based on the subspace decomposition of the channel output, an objective function including channel order and channel parameters is proposed. The problem is resolved by using a specifically designed genetic algorithm (GA. In the proposed GA, we encode both the channel order and parameters into a single chromosome, so they can be estimated simultaneously. Novel GA operators and convergence criteria are used to guarantee correct and high convergence speed. Simulation results show that the proposed GA achieves satisfactory convergence speed and performance.

  8. Selection of Environmental Conditions for Nearshore Structure Design

    Institute of Scientific and Technical Information of China (English)

    DONG Sheng; GAN Buhong; HAO Xiaoli

    2004-01-01

    Different from the traditional one-dimensional extreme value statistical method, practical design criteria for nearshore structure design are presented based on joint probability theory in this paper. The proposed procedure considers the combined effect of tide level, huge waves and wind affecting coastal structures. The Importance Sampling Procedure (ISP) is utilized to solve the joint distribution of non-Gaussian correlated multivariate distributions. The calculation results show that the ISP is a simulating technique with the advantages of efficiency and high convergency. Finally the environmental conditions are given using this technique for near-shore structure design in the Qingdao area.

  9. Detached-Eddy Simulation of Flow Non-Linearity of Fluid-Structural Interactions Using High Order Schemes

    Science.gov (United States)

    2009-05-01

    numbers and achieve high convergence rates for the algebraic Baldwin-Lomax turbulence model. For the Spalart-Allmaras one equation turbulence model...are computed using the LDE scheme and the Roe scheme to compare their performance. Both S-A one equation model and B-L algebraic model are used for...AIAA J., Vol. 28, 1990, pp. 253–262. 182 [113] Rogers, S. E. and Menter, F. R. and Mansour, N. N. and Durbin , P. A. , “A compari- son of turbulence

  10. A Convergent Solid-Phase Synthesis of Actinomycin Analogues - Towards Implementation of Double-Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Tong, Glenn; Nielsen, John

    1996-01-01

    The actinomycin antibiotics bind to nucleic acids via both intercalation and hydrogen bonding. We found this 'double-action attack' mechanism very attractive in our search for a novel class of nucleic acid binders. A highly convergent, solid-phase synthetic strategy has been developed for a class...... with the requirements for combinatorial synthesis and furthermore, the final segment condensation allows, for the first time, double-combinatorial chemistry to be performed where two combinatorial libraries can be reacted with each other. Copyright (C) 1996 Elsevier Science Ltd....

  11. Spectrum Assignment Algorithm for Cognitive Machine-to-Machine Networks

    Directory of Open Access Journals (Sweden)

    Soheil Rostami

    2016-01-01

    Full Text Available A novel aggregation-based spectrum assignment algorithm for Cognitive Machine-To-Machine (CM2M networks is proposed. The introduced algorithm takes practical constraints including interference to the Licensed Users (LUs, co-channel interference (CCI among CM2M devices, and Maximum Aggregation Span (MAS into consideration. Simulation results show clearly that the proposed algorithm outperforms State-Of-The-Art (SOTA algorithms in terms of spectrum utilisation and network capacity. Furthermore, the convergence analysis of the proposed algorithm verifies its high convergence rate.

  12. Yolk-shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis

    Science.gov (United States)

    Choi, Seung Ho; Hong, Young Jun; Kang, Yun Chan

    2013-08-01

    A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 mA h g-1 at 10 C. The discharge capacities are as high as 103, 95, and 91 mA h g-1 at extremely high discharge rates of 100, 200, and 300 C and the corresponding specific energy densities are 420, 370, and 328 W h kg-1. The capacity retention at a constant discharge rate of 200 C is 90% after 500 cycles.A facile, continuous preparation process of yolk-shell-structured lithium-metal oxide powders without a template for use as cathode materials in lithium ion batteries is introduced for the first time. Single and double-shelled LiNi0.5Mn1.5O4 yolk-shell powders as the first target materials are prepared directly by spray pyrolysis from a spray solution with sucrose, at a short residence time of 4 s. Fast combustion and contraction of a carbon-mixed oxide composite intermediate, formed from a micro-sized droplet inside a hot wall reactor maintained at 700 °C, produces the yolk-shell powders. The yolk-shell structure of the precursor powders directly prepared by spray pyrolysis is well maintained even at a high post-treatment temperature of 750 °C. The yolk-shell LiNi0.5Mn1.5O4 powders delivered a 1000th high discharge capacity of 108 m

  13. Nuclear criticality project plan for the Hanford Site tank farms

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R., Westinghouse Hanford

    1996-08-06

    The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste

  14. Design of second generation Hanford tank corrosion monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Edgemon, G.L.

    1998-04-02

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  15. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  16. Tank waste remediation system operation and utilization plan,vol. I {ampersand} II

    Energy Technology Data Exchange (ETDEWEB)

    Kirkbride, R.A.

    1997-09-01

    The U.S. Department of Energy Richland Operations Office (RL) is in the first stages of contracting with private companies for the treatment and immobilization of tank wastes. The components of tank waste retrieval, treatment, and immobilization have been conceived in two phases (Figure 1.0-1). To meet RL's anticipated contractual requirements, the Project Hanford Management Contractor (PHMC) companies will be required to provide waste feeds to the private companies consistent with waste envelopes that define the feeds in terms of quantity, and concentration of both chemicals and radionuclides. The planning that supports delivery of the feed must be well thought out in four basic areas: (1) Low-activity waste (LAW)/high-level waste (HLW) feed staging plans. How is waste moved within the existing tanks to deliver waste that corresponds to the defined feed envelopes to support the Private Contractor's processing schedule and processing rate? (2) Single-shell tank (SST) retrieval sequence. How are Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1994) milestones for SST retrieval integrated into the Phase I processing to set the stage for Phase II processing to complete the mission? (3) Tank Waste Remediation System (TWRS) process flowsheet. How do materials flow from existing tank inventories through: (1) blending and pretreatment functions in the double-shell tanks (DSTs), (2) contractor processing facilities, and (3) stored waste forms (Figure 1.0-2); (4) Storage and disposal of the immobilized low-activity waste (ILAW) and immobilized high-level waste (IHLW) product. How is the ILAW and IHLW product received from the private companies, the ILAW disposed onsite, and the IHLW stored onsite until final disposal?

  17. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    BURKE CA; LANDON MR; HANSON CE

    2012-01-30

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

  18. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    BURKE CA; LANDON MR; HANSON CE

    2011-11-08

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.

  19. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life.

    Science.gov (United States)

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-09-12

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni(2+) and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g(-1) at 1 A g(-1), and still keep a high value of 704 F g(-1) even at 20 A g(-1). The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg(-1) at a power density of 800 W kg(-1), and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min(-1) g(-1)Ni for catalytic hydrolysis of NH3BH3 (AB).

  20. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  1. Nanostructured multifunctional core/shell ternary composite of polyaniline-chitosan-cobalt oxide: Preparation, electrical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mini, V., E-mail: vminijay@gmail.com; Archana, Kamath, E-mail: archana.kamath91@gmail.com; Raghu, S., E-mail: raghumona@gmail.com; Sharanappa, C.; Devendrappa, H., E-mail: dehu2010@gmail.com

    2016-02-15

    This paper is a report on synthesis and analysis of the structure, morphology, and physicochemical properties of a three-component-Polyaniline/Chitosan/Co{sub 3}O{sub 4} – (CPAESCO)-hierarchical core/shell ternary nanocomposite. This was achieved by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Thermo Gravimetric Analysis (TGA), Electrical Conductivity and UV–Visible analysis. The chemical bonding established in the composites were confirmed by using FT-IR. XRD patterns helped analysis of intensity variation of Co{sub 3}O{sub 4} peaks, polyaniline (PAES) peaks, Crystallite size (D) and inter-crystallite separation (R) of the composites. Thermal stability increases and electrical property shows a step wise increase with increase in nanoparticle addition. Morphological changes from granular PAES to plate like CPAESCO is visible in SEM. The polaron lattice structures, hypsochromic shift, and crystallite size dependent band gaps in CPAESCO due to energy confinement produced from ligand-metal charge transfer (LMCT) interaction of Co{sub 3}O{sub 4} in PAES matrix, are visible in UV–Vis spectra. The improved properties of the composite are as a result of the formation of core/double shell as shown in TEM. This nanocomposite can be used in optoelectronic and biomedical applications, catalysis, chemical and bio sensors, and energy storage devices because of its enhanced properties. - Highlights: • An advanced ternary Core/shellnano compositewith novel properties prepared. • Small amounts of Nanoparticles to the Polyaniline –Chitosan matrix showed dramatic changes in properties. • Introduced Multifunctionality to emaraldine salt-Structural, Electrical, optical and Biocompatibility. • Step wise change in conductivity and band structure modifications are discussed in detail.

  2. 1999 Annual Report on Waste Generation and Pollution Prevention Progress as Required by DOE Order 5400.1

    Energy Technology Data Exchange (ETDEWEB)

    SEGALL, P.

    2000-03-01

    Hanford's missions are to safely clean-up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or clean-up mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infrastructure, and site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The clean-up activity is an immense and challenging undertaking. Including characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  3. Rheological evaluation of simulated neutralized current acid waste - transuranics

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.; Scott, P.A.; Bray, L.A.

    1986-09-01

    At the Hanford Plutonium and Uranium Extraction Plant (PUREX), in Richland, Washington, plutonium and uranium products are recovered from irradiated fuel by a solvent extraction process. A byproduct of this process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste (CAW), is chemically neutralized and stored in double shell tanks (DSTs) on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant located nearby. In B-Plant, the transuranic (TRU) elements in NCAW are separated from the non-TRU elements. The majority of the TRU elements in NCAW are in the solids. Therefore, the primary processing operation is to separate the NCAW solids (NCAW-TRU) from the NCAW liquid. These two waste streams will be pumped to suitable holding tanks before being further processed for permanent disposal. To ensure that the retrieval and transportation of NCAW and NCAW-TRU are successful, researchers at Pacific Northwest Laboratory (PNL) evaluated the rheological and transport properties of the slurries. This evaluation had two phases. First, researchers conducted laboratory rheological evaluations of simulated NCAW and NCAW-TRU. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. This scale-up procedure has already been successfully used to predict the critical transport properties of a slurry (Neutralized Cladding Removal Waste) with rheological properties similar to those displayed by NCAW and NCAW-TRU.

  4. Retained gas sampler extractor mixing and mass transfer rate study: Experimental and simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, K.P.; Bates, J.M.; Shekarriz, A.

    1997-11-01

    Research staff at Pacific Northwest National Laboratory conducted experimental testing and computer simulations of the impeller-stirred Retained Gas Sampler (RGS) gas extractor system. This work was performed to verify experimentally the effectiveness of the extractor at mixing viscous fluids of both Newtonian and non-Newtonian rheology representative of Hanford single- and double-shell wastes, respectively. Developing the computational models and validating their results by comparing them with experimental results would enable simulations of the mixing process for a range of fluid properties and mixing speeds. Five tests were performed with a full-scale, optically transparent model extractor to provide the data needed to compare mixing times for fluid rheology, mixer rotational direction, and mixing speed variation. The computer model was developed and exercised to simulate the tests. The tests demonstrated that rotational direction of the pitched impeller blades was not as important as fluid rheology in determining mixing time. The Newtonian fluid required at least six hours to mix at the hot cell operating speed of 3 rpm, and the non-Newtonian fluid required at least 46 hours at 3 rpm to become significantly mixed. In the non-Newtonian fluid tests, stagnant regions within the fluid sometimes required days to be fully mixed. Higher-speed (30 rpm) testing showed that the laminar mixing time was correlated to mixing speed. The tests demonstrated that, using the RGS extractor and current procedures, complete mixing of the waste samples in the hot cell should not be expected. The computer simulation of Newtonian fluid mixing gave results comparable to the test while simulation of non-Newtonian fluid mixing would require further development. In light of the laboratory test results, detailed parametric analysis of the mixing process was not performed.

  5. Rheological evaluation of simulated neutralized current acid waste

    Energy Technology Data Exchange (ETDEWEB)

    Fow, C.L.; McCarthy, D.; Thornton, G.T.

    1986-06-01

    A byproduct of the Purex process is an aqueous waste stream that contains fission products. This waste stream, called current acid waste, is chemically neutralized and stored in double shell tanks on the Hanford Site. This neutralized current acid waste (NCAW) will be transported by pipe to B-Plant, a processing plant on the Hanford Site. Rheological and transport properties of NCAW slurry were evaluated. First, researchers conducted lab rheological evaluations of simulated NCAW. The results of these evaluations were then correlated with classical rheological models and scaled up to predict the performance that is likely to occur in the full-scale system. The NCAW in the tank will either be retrieved as is, i.e., no change in the concentration presently in the tank, or will be slightly concentrated before retrieval. Sluicing may be required to retrieve the solids. Three concentrations of simulated NCAW were evaluated that would simulate the different retrieval options: NCAW in the concentration that is presently in the tank; a slightly concentrated NCAW, called NCAW5.5; and equal parts of NCAW settled solids and water (simulating the sluicing stage), called NCAW1:1. The physical and rheological properties of three samples of each concentration at 25 and 100/sup 0/C were evaluated in the laboratory. The properties displayed by NCAW and NCAW5.5 at 25 and 100/sup 0/C allowed it to be classified as a pseudoplastic non-Newtonian fluid. NCAW1:1 at 25 and 100/sup 0/C displayed properties of a yield-pseudoplastic non-Newtonian fluid. The classical non-Newtonian models for pseudoplastic and yield-pseudoplastic fluids were used with the laboratory data to predict the full-scale pump-pipe network parameters.

  6. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, T.J.

    2006-12-20

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  7. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    Energy Technology Data Exchange (ETDEWEB)

    HUBER HJ; DUNCAN JB; COOKE GA

    2010-05-11

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  8. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Science.gov (United States)

    Takacs, H.; Viala, B.; Tortai, J.-H.; Hermán, V.; Duclairoir, F.

    2016-03-01

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P1/P2, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P1 = pyrene-terminated polystyrene is the second shell for electrical insulation, and P2 = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (˜0.6 T) and ultra-high resistivity (˜1010 μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P1. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  9. Tank 241-AZ-101 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

  10. Tank 241-AZ-102 tank characterization plan

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters.

  11. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations

  12. Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

    2007-10-01

    The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of “Envelopes,” each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward.

  13. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  14. An approximate-reasoning-based method for screening flammable gas tanks

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhawer, S.W.; Bott, T.F.; Smith, R.E.

    1998-03-01

    High-level waste (HLW) produces flammable gases as a result of radiolysis and thermal decomposition of organics. Under certain conditions, these gases can accumulate within the waste for extended periods and then be released quickly into the dome space of the storage tank. As part of the effort to reduce the safety concerns associated with flammable gas in HLW tanks at Hanford, a flammable gas watch list (FGWL) has been established. Inclusion on the FGWL is based on criteria intended to measure the risk associated with the presence of flammable gas. It is important that all high-risk tanks be identified with high confidence so that they may be controlled. Conversely, to minimize operational complexity, the number of tanks on the watchlist should be reduced as near to the true number of flammable risk tanks as the current state of knowledge will support. This report presents an alternative to existing approaches for FGWL screening based on the theory of approximate reasoning (AR) (Zadeh 1976). The AR-based model emulates the inference process used by an expert when asked to make an evaluation. The FGWL model described here was exercised by performing two evaluations. (1) A complete tank evaluation where the entire algorithm is used. This was done for two tanks, U-106 and AW-104. U-106 is a single shell tank with large sludge and saltcake layers. AW-104 is a double shell tank with over one million gallons of supernate. Both of these tanks had failed the screening performed by Hodgson et al. (2) Partial evaluations using a submodule for the predictor likelihood for all of the tanks on the FGWL that had been flagged previously by Whitney (1995).

  15. Leach and EP (extraction procedure) toxicity tests on grouted waste from Tank 106-AN

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Martin, W.J.; Lokken, R.O.; LeGore, V.L.; Lindenmeier, C.W.; Martin, P.F.C.

    1989-09-01

    Pacific Northwest Laboratory is conducting laboratory experiments to produce leach rate data for various waste species that will be contained in grout at Hanford. In the work reported here, grout made from Tank 106-AN liquid waste was used to produce empirical leach rate data for several radionuclides ({sup 60}Co, {sup 90}Sr, {99}Tc, {129}I, {137}Cs, and {sup 241}Am), stable major components (NO{sub 3}{sup {minus}}, NO{sub 2}{sup {minus}}, F, Cl, and Na), and trace metals (Cr, Mo, and Ni). Two types of tests were used to produce leach rate data: an intermittent replacement leach test (ANS 16.1 leach test) and a static leach test. Measured effective diffusivities of key species are as follows: 4 to 6 {times} 10{sup {minus}8} cm{sup 2}/sec for {sup 99}Tc, 3 to 7 {times} 10{sup {minus}8} cm{sup 2}/sec for {sup 129}I, 4 to 6 {times} 10{sup {minus}9} cm{sup 2}/sec for nitrate, and 6 to 7 {times} 10{sup {minus}9} cm{sup 2}/sec for nitrite. The leach indices of all species studied are above (more favorable than) the waste form criteria. The leach indices for {sup 99}Tc and {sup 129}I are 7.4 {plus minus} 1.2 and 7.6 {plus minus} 0.4, respectively, and are being further investigated in continuing studies of double-shell slurry feed grouts. An Extraction Procedure (EP) toxicity test was also conducted and the grouted water is considered nontoxic per this test protocol. 19 refs., 9 figs., 8 tabs.

  16. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  17. Hydrodynamically induced loads on components submerged in high-level waste-storage tanks

    Science.gov (United States)

    Weiner, E. O.; Julyk, J. L.; Rezvani, M. A.

    1994-06-01

    This paper addresses the effects of added mass on components submerged in fluids. In particular, as new equipment is designed for installation in the double-shell waste-storage tanks at the Hanford Site near Richland, Washington, the equipment and the tank must be evaluated for the anticipated loads. Seismically induced loads combined with loadings from other sources must be considered during this evaluation. A literature review shows that, for components in fluids confined to a narrow annulus or without a free surface, drastic reductions in response to seismic excitation are predicted by two-dimensional analysis. This phenomenon has been supported by testing. The reductions are explained in terms of mass coupling and buoyancy effects. For equipment submerged in fluids having a free surface and large annulus, practice suggest that it is appropriate to lump the added-mass terms with the component to address the hydrodynamic effects adequately. As in the case of a narrow annulus, this practice will reduce the natural frequency of the submerged component, but generally will increase the loads. This paper presents the structural evaluations of submerged components using computer models that employ mock fluid elements that determine the appropriateness of considering fluid added-mass and buoyancy effects. The results indicate that if a free surface exists and the submerged component has a wide fluid annulus about it, then the added mass should be lumped with the model, and buoyancy effects are not significant. The component then may be considered to be in an air environment, and the stresses are calculated from the application of standard response spectrum procedures.

  18. Multishelled NiO Hollow Microspheres for High-performance Supercapacitors with Ultrahigh Energy Density and Robust Cycle Life

    Science.gov (United States)

    Qi, Xinhong; Zheng, Wenji; Li, Xiangcun; He, Gaohong

    2016-09-01

    Multishelled NiO hollow microspheres for high-performance supercapacitors have been prepared and the formation mechanism has been investigated. By using resin microspheres to absorb Ni2+ and subsequent proper calcinations, the shell numbers, shell spacing and exterior shell structure were facilely controlled via varying synthetic parameters. Particularly, the exterior shell structure that accurately associated with the ion transfer is finely controlled by forming a single shell or closed exterior double-shells. Among multishelled NiO hollow microspheres, the triple-shelled NiO with an outer single-shelled microspheres show a remarkable capacity of 1280 F g-1 at 1 A g-1, and still keep a high value of 704 F g-1 even at 20 A g-1. The outstanding performances are attributed to its fast ion/electron transfer, high specific surface area and large shell space. The specific capacitance gradually increases to 108% of its initial value after 2500 cycles, demonstrating its high stability. Importantly, the 3S-NiO-HMS//RGO@Fe3O4 asymmetric supercapacitor shows an ultrahigh energy density of 51.0 Wh kg-1 at a power density of 800 W kg-1, and 78.8% capacitance retention after 10,000 cycles. Furthermore, multishelled NiO can be transferred into multishelled Ni microspheres with high-efficient H2 generation rate of 598.5 mL H2 min-1 g-1Ni for catalytic hydrolysis of NH3BH3 (AB).

  19. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  20. Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.

    2012-02-24

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.

  1. Soil load above Hanford waste storage tanks (2 volumes)

    Energy Technology Data Exchange (ETDEWEB)

    Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

  2. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  3. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  4. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  5. Controllable preparation of hierarchically core–shell structure NiO/C microspheres for non-enzymatic glucose sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenzhen; Yin, Haoyong; Nie, Qiulin, E-mail: nieqiulin@hdu.edu.cn

    2015-05-25

    Highlights: • Hierarchically core–shell structure NiO/C microspheres were prepared. • The NiO/C microspheres were obtained via layer-by-layer assembly methods. • The NiO/C sensor shows excellent performance in glucose detection. • Good stability and anti-interference were also obtained on the NiO/C sensor. - Abstract: Hierarchically core–shell structure NiO/C microspheres were controllably fabricated with a facile hydrothermal method via layer-by-layer assembly. The single-/double-/triple-/quadri-shelled NiO/C microspheres were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). The results showed that the NiO/C composites are flower-like hierarchically structured microspheres composed of the interconnecting porous nanoplates with the thickness of about 50 nm. Every nanoplate is assembled by NiO nanoparticles with diameter about 10 nm. All the multi-shelled NiO/C microspheres show high electro-catalytic activity toward the oxidation of glucose. The double-shelled NiO/C glucose sensor exhibits the best performance with a much wider linear range of 2 μM–1.279 mM, higher sensitivity of 30.19 mA mM{sup −1} cm{sup −2} and lower detection limit of 2 μM. Importantly, long-term stability and favorable anti-interference were obtained thanks to the hierarchically core–shell structure.

  6. Thermophysical properties of Hanford high-level tank wastes: A preliminary survey of recent data

    Energy Technology Data Exchange (ETDEWEB)

    Willingham, C.E.

    1994-03-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving thermophysical properties of Hanford high-level tank wastes. PNL has gathered and summarized the available information on density, viscosity, thermal conductivity, heat capacity, particle size, shear strength, and heat generation. The information was compiled from documented characterization reports of Hanford single-shell and double-shell tanks. The report summarizes the thermophysical properties of the various waste materials, the anticipated range for the various waste forms, and estimates of the variability of the measured data. The thermophysical information compiled in this study is useful as input to sensitivity and parametric studies for the Multi-Function Waste Tank Facility Project. Information from only 33 of the 177 high-level waste storage tanks was compiled. Density data are well characterized for the tanks selected in this study. It was found that the reported viscosity of the wastes varies widely and that a single value should not be used to represent viscosity for all waste. Significant variations in reported shear strength and heat generation values were also found. Very few of the tank characterization reports described information on waste heat capacity. In addition, there was no supernatant vapor pressure information reported in the waste characterization reports examined in this study. Although thermal conductivity measurements were made for a number of tanks, most of the measurements were made in 1975. Finally, particle size distribution measurements of waste in 20 tanks were compiled. The analyst must be cognizant of differences between the number and volume distributions reported for particle size.

  7. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    DODD, R.A.

    2006-01-17

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met.

  8. Synthesis of poly(methacrylic acid)-manganese oxide dihydroxide/silica core-shell and the corresponding hollow microspheres.

    Science.gov (United States)

    Sun, Shuxuan; Liu, Bin; Fu, Xiaomeng; Zhou, Meijun; Liu, Wei; Bian, Guomin; Qi, Yonglin; Yang, Xinlin

    2015-01-15

    Poly(methacrylic acid)-MnO(OH)2/SiO2 core-shell microspheres were prepared by sol-gel hydrolysis of tetraethylorthosilicate (TEOS) in the presence of poly(methacrylic acid)-Mn(II) (PMAA-Mn(2+)) as template with ammonium hydroxide anion as catalyst and n-octadecyltrimethoxysilane (C18TMS) as pore-directing reagent. The PMAA-Mn(2+) core was prepared by incubation of Mn(2+) cations with PMAA microspheres via the coordination between carboxylate anion group on PMAA microsphere and Mn(2+) cations. During this process, the Mn(II) species were formed as white Mn(OH)2 precipitates at first, which were subsequently oxidized into brown MnO(OH)2 in air. The Mn2O3/mesoporous silica (Mn2O3/m-SiO2) double-shelled hollow microspheres (DSHMs) were prepared through calcination of the PMAA-MnO(OH)2/SiO2 core-shell microspheres at 600 °C for the selective removal of PMAA template and pore-directing organic component from C18TMS, during which the crystalline structure of DSHM was developed into Braunite-1Q via the reaction between Mn2O3 inner-shell and silica outer-shell by annealing the DSHMs under higher temperatures of 800 and 900 °C. The Mn2O3 hollow microspheres (HMs) were prepared through the selective removal of the silica layer from the DSHMs by sodium hydroxide aqueous solution, which exhibited structure integrity and good ethanol dispersity due to the presence of mesoporous structure. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    PD Meyer; RJ Serne

    1999-12-21

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

  10. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Christopher A.; Landon, Matthew R. [Washington River Protection Solutions, Richland, Washington 99352 (United States); Hanson, Carl E. [AREVA Federal Services, Richland, Washington 99352 (United States)

    2012-07-01

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pump (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)

  11. Investigation of flammable gas and thermal safety issues for retrieval of waste from Tank 241-AN-105

    Energy Technology Data Exchange (ETDEWEB)

    Caley, S.M.; Stewart, C.W.; Antoniak, Z.I.; Cuta, J.M.; Mahoney, L.A.; Panisko, F.E.

    1998-09-01

    The primary purpose of this report is to identify and resolve some of the flammable gas and thermal safety issues potentially associated with the retrieval of waste from Tank 241-AN-105 (AN-105), which is the first double-shell tank scheduled for waste retrieval at Hanford. The planned retrieval scenario includes the following steps in AN-105: (1) degas the tank using two submerged mixing pumps, (2) turn off the mixer pump(s) and allow any suspended solids to settle, (3) decant the supernatant to the intermediate feed staging tank(s) (IFSTs) (AP-102 and/or AP-104) using water/caustic dilution at the transfer pump inlet, (4) add the remaining dilution water/caustic to the slurry remaining in AN-105, (5) mix the tank with the mixer pump(s) until the soluble solids dissolve, (6) turn off the mixer pump(s) and let the insoluble solids settle, and (7) decant the new supernatant to the IFST(s), leaving the insoluble solids behind. Three waste retrieval safety issues are addressed in this report. They are (1) the controlled degassing of AN-105 to ensure that the headspace remains <25% of the lower flammability limit (LFL), (2) an assessment of how dissolved gas (mainly ammonia) released during the transfer of the supernatant in AN-105 to the IFSTs and the water/caustic dilution of the remaining slurry in AN-105 will affect the flammability in these tanks; and (3) an assessment of the maximum waste temperatures that might occur in AN-105 during retrieval operations.

  12. Ab initio density matrix renormalization group study of magnetic coupling in dinuclear iron and chromium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Travis V.; Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103 (Japan); Kurashige, Yuki; Yanai, Takeshi [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2014-02-07

    The applicability of ab initio multireference wavefunction-based methods to the study of magnetic complexes has been restricted by the quickly rising active-space requirements of oligonuclear systems and dinuclear complexes with S > 1 spin centers. Ab initio density matrix renormalization group (DMRG) methods built upon an efficient parameterization of the correlation network enable the use of much larger active spaces, and therefore may offer a way forward. Here, we apply DMRG-CASSCF to the dinuclear complexes [Fe{sub 2}OCl{sub 6}]{sup 2−} and [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+}. After developing the methodology through systematic basis set and DMRG M testing, we explore the effects of extended active spaces that are beyond the limit of conventional methods. We find that DMRG-CASSCF with active spaces including the metal d orbitals, occupied bridging-ligand orbitals, and their virtual double shells already capture a major portion of the dynamic correlation effects, accurately reproducing the experimental magnetic coupling constant (J) of [Fe{sub 2}OCl{sub 6}]{sup 2−} with (16e,26o), and considerably improving the smaller active space results for [Cr{sub 2}O(NH{sub 3}){sub 10}]{sup 4+} with (12e,32o). For comparison, we perform conventional MRCI+Q calculations and find the J values to be consistent with those from DMRG-CASSCF. In contrast to previous studies, the higher spin states of the two systems show similar deviations from the Heisenberg spectrum, regardless of the computational method.

  13. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    Energy Technology Data Exchange (ETDEWEB)

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  14. RETRIEVAL & TREATMENT OF HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    EACKER, J.A.; SPEARS, J.A.; STURGES, M.H.; MAUSS, B.M.

    2006-01-20

    The Hanford Tank Farms contain 53 million gal of radioactive waste accumulated during over 50 years of operations. The waste is stored in 177 single-shell and double-shell tanks in the Hanford 200 Areas. The single-shell tanks were put into operation from the early 1940s through the 1960s with wastes received from several generations of processing facilities for the recovery of plutonium and uranium, and from laboratories and other ancillary facilities. The overall hanford Tank Farm system represents one of the largest nuclear legacies in the world driving towards completion of retrieval and treatment in 2028 and the associated closure activity completion by 2035. Remote operations, significant radiation/contamination levels, limited access, and old facilities are just some of the challenges faced by retrieval and treatment systems. These systems also need to be able to successfully remove 99% or more of the waste, and support waste treatment, and tank closure. The Tank Farm retrieval program has ramped up dramatically in the past three years with design, fabrication, installation, testing, and operations ongoing on over 20 of the 149 single-shell tanks. A variety of technologies are currently being pursued to retrieve different waste types, applications, and to help establish a baseline for recovery/operational efficiencies. The paper/presentation describes the current status of retrieval system design, fabrication, installation, testing, readiness, and operations, including: (1) Saltcake removal progress in Tanks S-102, S-109, and S-112 using saltcake dissolution, modified sluicing, and high pressure water lancing techniques; (2) Sludge vacuum retrieval experience from Tanks C-201, C-202, C-203, and C-204; (3) Modified sluicing experience in Tank C-103; (4) Progress on design and installation of the mobile retrieval system for sludge in potentially leaking single-shell tanks, particularly Tank C-101; and (5) Ongoing installation of various systems in the next

  15. 基于AUTODYN的潜艇典型舱段水中爆炸冲击损伤研究%Impact Damage Analysis of Typical Submarine Compartment Subjected to Underwater BlastingBased on AUTODYN

    Institute of Scientific and Technical Information of China (English)

    姜涛; 王桂芹; 詹发民; 周方毅

    2015-01-01

    The damage and deformation of submarine with double shell, in underwater blasting by underwater weapon such as torpedo, were studied based on AUTODYN. For typical submarine compartment,damage and deformation of the submarine hull in explosionhit contact and with standoff distance of 2, 4, 6 m were analyzed. The results show that the shell appears crevasse damage while torpedo contacts blast, the pressure hull appears crevasse and no-pressure hull presents plastic deformation while distance is 2m from the explosion source, and the pressure hull and no- pressure hull has plastic deformation while distance is 4mand 6m from the explosive.%针对双层壳体潜艇在鱼雷等水中兵器爆炸作用下壳体的变形及破损问题,采用AUTODYN有限元软件,分析了潜艇典型舱段,在鱼雷接触命中及爆距分别为2、4、6m条件下,双层壳体潜艇的壳体破口及变形。计算结果表明,潜艇在鱼雷接触命中条件下,耐压及非耐压壳体均出现较大破口,且耐压壳体破口范围更大;在鱼雷2m爆距条件下,潜艇耐压壳体出现较大破口,非耐压壳体出现较大塑性变形;在鱼雷4、6m爆距条件下,耐压及非耐压壳体均有较大塑性变形。

  16. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    Energy Technology Data Exchange (ETDEWEB)

    DH Bacon; MD White; BP McGrail

    2000-03-07

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  17. Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@N-Doped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection.

    Science.gov (United States)

    Xi, Jiangbo; Xie, Chuyi; Zhang, Yan; Wang, Lu; Xiao, Jian; Duan, Xianming; Ren, Jinghua; Xiao, Fei; Wang, Shuai

    2016-08-31

    The development of carbon based hollow-structured nanospheres (HNSs) materials has stimulated growing interest due to their controllable structure, high specific surface area, large void space, enhanced mass transport, and good biocompatibility. The incorporation of functional nanomaterials into their core and/or shell opens new horizons in designing functionalized HNSs for a wider spectrum of promising applications. In this work, we report a new type of functionalized HNSs based on Pd nanoparticles (NPs) decorated double shell structured N-doped graphene quantum dots (NGQDs)@N-doped carbon (NC) HNSs, with ultrafine Pd NPs and "nanozyme" NGQDs as dual signal-amplifying nanoprobes, and explore their promising application as a highly efficient electrocatalyst in electrochemical sensing of a newly emerging biomarker, i.e., hydrogen peroxide (H2O2), for cancer detection. Due to the synergistic effect of the robust and conductive HNS supports and catalytically active Pd NPs and NGQD in facilitating electron transfer, the NGQD@NC@Pd HNS hybrid material exhibits high electrocatalytic activity toward the direct reduction of H2O2 and can promote the electrochemical reduction reaction of H2O2 at a favorable potential of 0 V, which effectively restrains the redox of most electroactive species in physiological samples and eliminates interference signals. The resultant electrochemical H2O2 biosensor based hybrid HNSs materials demonstrates attractive performance, including low detection limit down to nanomole level, short response time within 2 s, as well as high sensitivity, reproducibility, selectivity, and stability, and have been used in real-time tracking of trace amounts of H2O2 secreted from different living cancer cells in a normal state and treated with chemotherapy and radiotherapy.

  18. The incorporation of P, S, Cr, F, Cl, I, Mn, Ti, U, and Bi into simulated nuclear waste glasses: Literature study

    Energy Technology Data Exchange (ETDEWEB)

    Langowski, M.H.

    1996-02-01

    Waste currently stored on the Hanford Reservation in underground tanks will be into High Level Waste (HLW) and Low Level Waste (LLW). The HLW melter will high-level and transuranic wastes to a vitrified form for disposal in a geological repository. The LLW melter will vitrify the low-level waste which is mainly a sodium solution. Characterization of the tank wastes is still in progress, and the pretreatment processes are still under development Apart from tank-to-tank variations, the feed delivered to the HLW melter will be subject to process control variability which consists of blending and pretreating the waste. The challenge is then to develop glass formulation models which can produce durable and processable glass compositions for all potential vitrification feed compositions and processing conditions. The work under HLW glass formulation is to study and model glass and melt pro functions of glass composition and temperature. The properties of interest include viscosity, electrical conductivity, liquidus temperature, crystallization, immiscibility durability. It is these properties that determine the glass processability and ac waste glass. Apart from composition, some properties, such as viscosity are affected by temperature. The processing temperature may vary from 1050{degrees}C to 1550{degrees}C dependent upon the melter type. The glass will also experience a temperature profile upon cooling. The purpose of this letter report is to assess the expected vitrification feed compositions for critical components with the greatest potential impact on waste loading for double shell tank (DST) and single shell tank (SST) wastes. The basis for critical component selection is identified along with the planned approach for evaluation. The proposed experimental work is a crucial part of model development and verification.

  19. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Bamberger, Judith A.; Fort, James A.; Chun, Jaehun; Jenks, Jeromy WJ

    2010-04-01

    Radioactive waste that is currently stored in large underground tanks at the Hanford Site will be staged in selected double-shell tanks (DSTs) and then transferred to the Waste Treatment and Immobilization Plant (WTP). Before being transferred, the waste will be mixed, sampled, and characterized to determine if the waste composition and meets the waste feed specifications. Washington River Protection Solutions is conducting a Tank Mixing and Sampling Demonstration Program to determine the mixing effectiveness of the current baseline mixing system that uses two jet mixer pumps and the adequacy of the planned sampling method. The overall purpose of the demonstration program is to mitigate the technical risk associated with the mixing and sampling systems meeting the feed certification requirements for transferring waste to the WTP.The purpose of this report is to analyze existing data and evaluate whether scaled mixing tests with cohesive simulants are needed to meet the overall objectives of the small-scale mixing demonstration program. This evaluation will focus on estimating the role of cohesive particle interactions on various physical phenomena that occur in parts of the mixing process. A specific focus of the evaluation will be on the uniformity of suspended solids in the mixed region. Based on the evaluation presented in this report and the absence of definitive studies, the recommendation is to conduct scaled mixing tests with cohesive particles and augment the initial testing with non-cohesive particles. In addition, planning for the quantitative tests would benefit from having test results from some scoping experiments that would provide results on the general behavior when cohesive inter-particle forces are important.

  20. UNSAT-H Version 3.0: Unsaturated Soil Water and Heat Flow Model Theory, User Manual, and Examples

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer

    2000-06-12

    The UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent to waste disposal facilities. During the last 4 years, the UNSAT-H model received support from the Immobilized Waste Program (IWP) of the Hanford Site's River Protection Project. This program is designing and assessing the performance of on-site disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site (LMHC 1999). The IWP is interested in estimates of recharge rates for current conditions and long-term scenarios involving the vadose zone disposal of tank wastes. Simulation modeling with UNSAT-H is one of the methods being used to provide those estimates (e.g., Rockhold et al. 1995; Fayer et al. 1999). To achieve the above goals for assessing water dynamics and estimating recharge rates, the UNSAT-H model addresses soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as one-dimensional processes. The UNSAT-H model simulates liquid water flow using Richards' equation (Richards 1931), water vapor diffusion using Fick's law, and sensible heat flow using the Fourier equation. This report documents UNSAT-H .Version 3.0. The report includes the bases for the conceptual model and its numerical implementation, benchmark test cases, example simulations involving layered soils and plants, and the code manual. Version 3.0 is an, enhanced-capability update of UNSAT-H Version 2.0 (Fayer and Jones 1990). New features include hysteresis, an iterative solution of head and temperature, an energy balance check, the modified Picard solution technique, additional hydraulic functions, multiple-year simulation capability, and general enhancements.

  1. Measurement of picosecond lifetimes in neutron-rich Xe isotopes

    Science.gov (United States)

    Ilieva, S.; Kröll, Th.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; Bruce, A. M.; Fraile, L. M.; de France, G.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Jentschel, M.; Jolie, J.; Korten, W.; Köster, U.; Lalkovski, S.; Lozeva, R.; Mach, H.; Mǎrginean, N.; Mutti, P.; Paziy, V.; Regan, P. H.; Simpson, G. S.; Soldner, T.; Thürauf, M.; Ur, C. A.; Urban, W.; Warr, N.

    2016-09-01

    Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of 235U and 241Pu, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even 138,140,142Xe isotopes lying between the double shell closure N =82 and Z =50 and a deformed region with octupole collectivity. Method: The γ rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N =82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N =90 .

  2. Test Plan - Solids Accumulation Scouting Studies

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  3. Surface modified superparamagnetic nanoparticles: Interaction with fibroblasts in primary cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Chapa Gonzalez, Christian; Roacho Pérez, Jorge A.; Martínez Pérez, Carlos A.; Olivas Armendáriz, Imelda [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Jimenez Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Castrejon Parga, Karen Y. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico); Garcia Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua, México (Mexico)

    2014-12-05

    Highlights: • An inorganic layer before an organic material shell onto MNPs improves cell viability. • The coating type and the concentration of nanoparticles directly affect cell viability. • Modified magnetite nanoparticles with organic and inorganic materials was developed. - Abstract: The development of a variety of medical applications such as drug delivery, cell labeling, and medical imaging have been possible owing to the unique features exhibited by magnetic nanoparticles. Nanoparticle–cell interaction is related to the surface aspects of nanoparticle, which may be described based on their chemistry or inorganic/organic characteristics. The coating on particle surface reduces the inter-particle interactions and provides properties such as biocompatibility. Among the coating materials used for nanoparticles employed in biomedical applications, oleic acid is one of the most utilized due to its biocompatibility. However, a major drawback with this naturally occurring fatty acid is that it is easily oxidized by cells and this reduces their performance in biomedical applications. In order to avoid the direct contact of the cell with the magnetite particle, coating with an inorganic material prior to the oleic acid shell would be effective. This would retard the magnetite dissociation thereby improve the cell viability. Here we report our investigation on the effect of surface modified magnetite nanoparticles (MNPs) on the cell viability using primary cultures incubated with those particles. We prepared magnetite nanoparticles by chemical co-precipitation method; nanoparticle surface was first modified by silanol condensation followed by chemisorption of oleic acid. All nanostructures have a particle size less than 100 nm, depending on the material coating and superparamagnetic behavior. The saturated magnetizations (M{sub s}) of the magnetite samples coated with oleic acid (MAO; 49.15 emu/g) and double shell silica-oleic acid (MSAO; 46.16 emu/g) are

  4. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  5. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    Science.gov (United States)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  6. The near vacuum hohlraum campaign at the NIF: A new approach

    Science.gov (United States)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.

    2016-05-01

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  7. The near vacuum hohlraum campaign at the NIF: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2016-05-15

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  8. Design and Construction of a Modular Lunar Base

    Science.gov (United States)

    Grandl, Dipl. Ing Werner

    DESIGN and CONSTRUCTION of a MODULAR LUNAR BASE Purpose: The Lunar Base Design Study is a concept for the return of humans from 2020 to the end of the century. Structure: The proposed lunar station is built of 6 cylindrical modules, each one 17 m long and 6 m in diameter. Each module is made of aluminium sheets and trapezoidal aluminium sheeting and has a weight (on earth) of approx.10.2 tonnes, including the interior equipment and furnishing. The outer wall of the cylinders is built as a double-shell system, stiffened by radial bulkheads. 8 astronauts or scientists can live and work in the station, using the modules as follows: -1 Central Living Module -2 Living Quater Modules, with private rooms for each person -1 Laboratory Module for scientific research and engineering -1 Airlock Module, containing outdoor equipment, space suits, etc. -1 Energy Plant Module, carrying solar panels a small nuclear reactor and antennas for communication. Shielding: To protect the astronauts micrometeorites and radiation, the caves between the two shells of the outer wall are filled with a 0.6 m thick layer or regolith in situ by a small teleoperated digger vehicle. Using lunar material for shielding the payload for launching can be minimized. Launch and Transport: For launching a modified ARIANE 5 launcher or similar US, Russian, Chinese or Indian rockets can be used. For the flight from Earth Orbit to Lunar Orbit a "Space-Tug", which is deployed in Earth Orbit, can be used. To land the modules on the lunar surface a "Teleoperated Rocket Crane" has been developed by the author. This vehicle will be assembled in lunar orbit and is built as a structural framework, carrying rocket engines, fuel tanks and teleoperated crawlers to move the modules on the lunar surface. To establish this basic stage of the Lunar Base 11 launches are necessary: -1 Lunar Orbiter, a small manned spaceship (3 astronauts) -1 Manned Lander and docking module for the orbiter -1 Teleoperated Rocket Crane -6

  9. Modal Analysis of Submerged Structure Based on Operating Modal Parameters Identification%基于工作模态参数辨识的水下复杂结构模态分析方法

    Institute of Scientific and Technical Information of China (English)

    金广文; 缪旭弘; 匡贡献; 章林柯

    2011-01-01

    To overcome the difficulties in the modal analysis of large-scale complex submerged structures based on the conventional experiment method, a new modal analysis method is presented in this paper which combines the operational modal analysis and finite element calculation.The response signals in different positions are decomposed by empirical mode decomposition (EMD), and the modal parameters are identified by using the time domain peak picking method, then the identified modal parameters are used to guide and revise the calculated results of the finite element model.To avoid the modal mixing in EMD, wavelet packets analysis is introduced to decompose the response signal into different frequency bands.The underwater experiment results of ribbed cylindrical double-shell show that the presented methods can effectively identify integrated modal parameters, and engineering availability is validated.%针对传统实验方法很难对水下复杂结构进行模态分析,提出了工作模态参数辨识与有限元计算相结合的模态分析方法.对工作状态下的测点振动响应信号进行EMD分解,用时域峰值序列法进行模态参数辨识,辨识出的模态参数与计算模态结果进行匹配,以指导修正有限元模型,计算得到完整的模态参数.为解决EMD分解出现的模态混叠,提出先对信号进行小波包分解预处理的 方法.双层加肋圆柱壳体模型水下振动试验研究结果表明,该方法现实可行,能有效辨识出比较完整的模态参数.

  10. Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere

    Science.gov (United States)

    Klir, D.; Shishlov, A. V.; Kubes, P.; Rezac, K.; Fursov, F. I.; Kokshenev, V. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.

    2012-03-01

    Deuterium gas-puff experiments have been carried out on the GIT-12 generator at the Institute of High Current Electronics in Tomsk. The emphasis was put on the study of plasma dynamics and neutron production in double shell gas puffs. A linear mass density of deuterium (D2) varied between 50 and 85 μg/cm. Somewhat problematic was a spread of the D2 gas at a large diameter in the central anode-cathode region. The generator operated in two regimes, with and without a plasma opening switch (POS). When the POS was used, a current reached a peak of 2.7 MA with a 200 ns rise time. Without the POS, a current rise time approached 1500 ns. The influence of different current rise times on neutron production was researched. Obtained results were important for comparison of fast deuterium Z-pinches with plasma foci. Average DD neutron yields with and without the POS were about 1011. The neutron yield seems to be dependent on a peak voltage at the Z-pinch load. In all shots, the neutron emission started during stagnation. At the beginning of the neutron production, the neutron emission correlated with soft x-rays and a significant fraction of neutrons could be explained by the thermonuclear mechanism. Nevertheless, a peak of the neutron emission occurred 40 ns after a soft x-ray peak. At this very moment, hard x-rays above 1 MeV were detected and a rapid expansion with a velocity of 3×105 m/s was observed. In the case of the POS, 1 MeV widths of radial neutron spectra implied that there are deuterons with the energy above 200 keV moving in the radial direction. On the basis of D2 gas puff experiments in the 0.3-17 MA region, the neutron yield dependence on a current as Y∝I3.0±0.2 was proposed.

  11. Analytic view at alpha clustering in even-even heavy nuclei near magic numbers 82 and 126

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Saad M.S. [Universiti Kebangsaan Malaysia, School of Applied Physics, Faculty of Science and Technology, Selangor (Malaysia); University of Malaya, Department of Physics, Faculty of Science, Kuala Lumpur (Malaysia); University of Malaya, Quantum Science Centre, Department of Physics, Faculty of Science, Kuala Lumpur (Malaysia); Yahaya, Redzuwan; Radiman, Shahidan; Yasir, Muhamad Samudi [Universiti Kebangsaan Malaysia, School of Applied Physics, Faculty of Science and Technology, Selangor (Malaysia); Kassim, Hasan Abu; Khandaker, Mayeen Uddin [University of Malaya, Department of Physics, Faculty of Science, Kuala Lumpur (Malaysia); University of Malaya, Quantum Science Centre, Department of Physics, Faculty of Science, Kuala Lumpur (Malaysia)

    2015-02-01

    Most studies on the determination of the alpha-decay preformation factor have used decay formulae. The preformation factor is known to contain abundant information on the nuclear structure. The successful determination of the preformation factor through the cluster formation model (CFM) motivates this study to determine the factor for nuclei near the magic numbers and present results in an analytic study based on different comparisons and observations. The difference between preformation factors obtained from CFM and from the decay formula method is significant. The formula method is used for the entire process of alpha decay as a transition between two states, whereas CFM is applied for the initial state of alpha formation. The preformation factor obtained using CFM and clusterization state representation was first compared with that obtained from the decay formula. Results were used to investigate alpha formation in even-even heavy nuclei, including 72 < Z < 92 and 92 < N < 142, near the magic numbers Z = 82 and N = 126. The values of the preformation factor were discussed and explained in detail according to the clusterization state representation to describe the most possible states of ground-state nuclei. The alpha clustering described through CFM is found to be consistent with that described using the decay formula for the open-shell nuclei of N < 126. The presence of more nucleons in the open-shell nuclei results in lower probability for alpha clustering and lower value of the preformation factor. However, few nucleons beyond the closed shell can cause higher probability for alpha clustering and larger value of the preformation factor. The maximum and minimum of the alpha-cluster formation occur in the nucleus of the double-shell closure (with N = 126 and Z = 82) and in the nucleus of two protons and two neutrons more. This formation probability is sensitive to the subshells, leading to the possibility of more clusterization states, including core

  12. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    SD Rassat; PA Gauglitz; SM Caley; LA Mahoney; DP Mendoza

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann et al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  13. DEMONSTRATION OF MIXING AND TRANSFERRING SETTLING COHESIVE SLURRY SIMULANTS IN THE AY-102 TANK

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D.; Gauglitz, P.

    2012-01-03

    In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non-Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work addresses the impacts cohesive simulants have on mixing and batch transfer performance. This work is follow-on to the previous tasks 'Demonstration of Mixer Jet Pump Rotational Sensitivity on Mixing and Transfers of the AY-102 Tank' and 'Demonstration of Simulated Waste Transfers from Tank AY-102 to the Hanford Waste Treatment Facility'. The cohesive simulants were investigated and selected jointly by SRNL and PNNL and a white paper was written on this evaluation. The testing and

  14. Three-dimensional structure of the inner core of rice dwarf virus

    Institute of Scientific and Technical Information of China (English)

    SHAO; Chenghua

    2001-01-01

    [1]Suzuki, N., Sugawara, M., Kusano, T. et al., Immunodetection of rice dwarf phytoreoviral protein in both insect and plant hosts, Virology, 1994, 202: 41.[2]Omura, T., Ishikawa, K., Hirano, H. et al., The outer capid protein of rice dwarf virus is encoded by genome segment S8, J. Gen. Virol., 1989, 70: 2759.[3]Lu, G. Y., Zhou, Z. H., Baker, M. L. et al., Structure of double-shelled rice dwarf virus, J.Virol., 1998, 72: 8541.[4]Reinisch, K. M., Nibert, M. L., Harrison, S. C., Structure of the reovirus core at 3.6 ? resolution, Nature, 2000, 404: 960.[5]Zhang, H., Zhang, J., Yu, X. et al., Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus, J. Virol., 1999, 73: 1624.[6]Zhou, Z. H., Hardt, S., Wang, B. et al., CTF determination of images of ice-embedded single particles using a graphics inter-face, J. Struct. Biol., 1996, 116: 216.[7]Zhou, Z. H., Chiu, W., Haskell, K. et al., Refinement of herpesvirus B-capsid using parallel supercomputers, Biophys. J., 1998, 74: 576.[8]Zhou, Z. H., He, J., Jakana, J. et al., Assembly of VP26 in HSV-1 inferred from structures of wild-type and recombinant cap-sids, Nature Struct. Biol., 1995, 2: 1026.[9]Grimes, J. M., Burroughs, J. N., Patrice, G. et al., The atomic structure of the bluetongue virus core, Nature, 1998, 395: 470.[10] Lawton, J. A., Estes, M. K., Prasad, B. V. V., Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles, Nat. Struc. Bio., 1997, 4: 118.[11] Ueda, S., Masuta, C., Uyeda, I., Hypothesis on particle structure and assembly of rice dwarf phytoreovirus: interactions among multiple structural proteins, J.Gen.Virol., 1997, 78: 3135.[12] Kano, H., Koizumi, M., Noda, H. et al., Nucleotide sequence of rice dwarf virus(RDV) genome segment S3 coding for 114 K major core protein, Nucleic Acids Res., 1990, 18: 6700.[13] Nakata, M., Fukunaga, K., Suzuki, N., Polypeptide components of rice dwarf virus, Ann

  15. γ strength function and level density of 208Pb from forward-angle proton scattering at 295 MeV

    Science.gov (United States)

    Bassauer, S.; von Neumann-Cosel, P.; Tamii, A.

    2016-11-01

    Background: γ strength functions (GSFs) and level densities (LDs) are essential ingredients of statistical nuclear reaction theory with many applications in astrophysics, reactor design, and waste transmutation. Purpose: The aim of the present work is a test of systematic parametrizations of the GSF recommended by the RIPL-3 database for the case of 208Pb. The upward GSF and LD in 208Pb are compared to γ decay data from an Oslo-type experiment to examine the validity of the Brink-Axel (BA) hypothesis. Methods: The E 1 and M1 parts of the total GSF are determined from high-resolution forward angle inelastic proton scattering data taken at 295 MeV at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. The total LD in 208Pb is derived from the 1- LD extracted with a fluctuation analysis in the energy region of the isovector giant dipole resonance. Results: The E 1 GSF is compared to parametrizations recommended by the RIPL-3 database showing systematic deficiencies of all models in the energy region around neutron threshold. The new data for the poorly known spin-flip M 1 resonance call for a substantial revision of the model suggested in RIPL-3. The total GSF derived from the present data is larger in the PDR energy region than the Oslo data but the strong fluctuations due to the low LD resulting from the double shell closure of 208Pb prevent a conclusion on a possible violation of the BA hypothesis. Using the parameters suggested by RIPL-3 for a description of the LD in 208Pb with the back-shifted Fermi gas model, remarkable agreement between the two experiments spanning a wide excitation energy range is obtained. Conclusions: Systematic parametrizations of the E 1 and M 1 GSF parts need to be reconsidered at low excitation energies. The good agreement of the LD provides an independent confirmation of the approach underlying the decomposition of GSF and LD in Oslo-type experiments.

  16. Safety assessment of A92 reactor building for large commercial aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, M., E-mail: marin.kostov@riskeng.bg [Risk Engineering Ltd., Sofia (Bulgaria); Henkel, F.O. [Woelfel Beratende Ingenieure, Hoechberg (Germany); Andonov, A. [Risk Engineering Ltd., Sofia (Bulgaria)

    2014-04-01

    The current paper presents key elements of the comprehensive analyses of the effects due to a large aircraft collision with the reactor building of Belene NPP in Bulgaria. The reactor building is a VVER A92; it belongs to the third+ generation and includes structural measures for protection against an aircraft impact as standard design. The A92 reactor building implements a double shell concept and is composed of thick RC external walls and an external shell which surrounds an internal pre-stressed containment and the internal walls of the auxiliary building. The malevolent large aircraft impact is considered as a beyond design base accident (Design Extended Conditions, DEC). The main issues under consideration are the structural integrity, the equipment safety due to the induced vibrations, and the fire safety of the entire installation. Many impact scenarios are analyzed varying both impact locations and loading intensity. A large number of non-linear dynamic analyses are used for assessment of the structural response and capacity, including different type of structural models, different finite element codes, and different material laws. The corresponding impact loadings are represented by load time functions calculated according to three different approaches, i.e. loading determined by Riera's method (Riera, 1968), load time function calculated by finite element analysis (Henkel and Klein, 2007), and coupled dynamic analysis with dynamic interaction between target and projectile. Based on the numerical results and engineering assessments the capacity of the A92 reactor building to resist a malevolent impact of a large aircraft is evaluated. Significant efforts are spent on safety assessment of equipment by using an evaluation procedure based on damage indicating parameters. As a result of these analyses several design modifications of structure elements are performed. There are changes of the layout of reinforcement, special arrangements and spatial

  17. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  18. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    Energy Technology Data Exchange (ETDEWEB)

    MCCAIN, D.J.

    2000-07-26

    Hanford Site high-level waste tanks are interim stabilized by pumping supernatant and interstitial waste liquids to double-shell tanks (DSTs) through a saltwell pump (SWP). The motor to this SWP is located atop the tank, inside a pump pit. A pumping line extends down from the pump motor into the well area, located in the salt/sludge solids in the tank below. Pumping of these wastes is complicated by the fact that some of the wastes generate and retain potentially hazardous amounts of hydrogen, nitrous oxide, and ammonia. Monitoring of flammable gas concentrations during saltwell pumping activities has shown that one effect of pumping is acceleration in the release of accumulated hydrogen. A second effect is that of a temporarily increased hydrogen concentration in both the dome space and pump pit. There is a safety concern that the hydrogen concentration during saltwell pumping activities might approach the lower flammability limit (LFL) in either the tank dome space or the pump pit. The current Final Safety Analysis Report (FSAR) (CHG 2000) for saltwell pumping requires continuous flammable gas monitoring in both the pump pit and the tank vapor space during saltwell pumping. The FSAR also requires that portable exhauster fans be available by most of the passively ventilated tanks to be saltwell pumped in the event that additional air flow is required to dilute the headspace concentration of flammable gases to acceptable levels. The first objective of this analysis is to review the need for an auxiliary exhauster. Since the purpose of the exhauster is to diffuse unacceptably high flammable gas concentrations, discovery of an alternate method of accomplishing the same task may provide cost savings. The method reviewed is that of temporarily stopping the saltwell pumps. This analysis also examines the typical hydrogen concentration peaks and the rates of increase in hydrogen levels already witnessed in tanks during saltwell pumping activities. The historical data

  19. 不同囊材聚磷酸铵微胶囊在环氧树脂中的阻燃研究%Study on the Flame Retardancy of Microencapsulated Ammonium Polyphosphate with Different Shell in Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    张延奎; 吴昆; 沈敏敏

    2012-01-01

    采用原位聚合法合成制备了以蜜胺树脂(MF)、环氧树脂(EP)以及EP和MF为囊材的微胶囊阻燃剂MFAPP、EPAPP、EMFAPP,用红外光谱(FT-IR)和扫描电镜(SEM)表征微胶囊阻燃剂的核壳结构。采用极限氧指数(LOI)和垂直燃烧等级测试(UL94)对MFAPP、EPAPP、EMFAPP在环氧树脂中的阻燃特性进行了研究。当添加量大于7%时,阻燃复合材料均能通过UL 94 V-0级测试,极限氧指数大于27.0%,表明MFAPP、EPAPP、EMFAPP均为EP的高效阻燃剂,这些阻燃剂在EP阻燃过程中均形成了膨胀炭层,属于膨胀阻燃机理。另外在耐水性实验中发现,添加EPAPP、EMFAPP的EP复合材料具有更好的耐水性,经75℃水浸泡6天后,阻燃性能得到了较好的保持。%Three different microencapsulated flame retardants(MFAPP、EPAPP、EMFAPP) are prepared by in situ polymerization.Although with the same core of ammonium polyphosphate (APP),MFAPP has the shell of melamine-formaldehyde resin(MF),EPAPP has the shell of epoxy resin(EP),and EMFAPP has a double shell of MF and EP.Structures of flame retardants are characterized by fourier transform infrared spectroscopy(FT-IR) and scanning electron microscope(SEM).The flame retardancy of MFAPP,EPAPP and EMFAPP in EP is studied by Limiting Oxygen Index(LOI) and UL 94 tests.When the content of microencapsulated ammonium polyphosphate is more than 7%,all composites can pass V-0 in UL 94 test,and their LOI values are higher than 27.0%.It demonstrates that MFAPP,EPAPP and EMFAPP are great efficient flame retardants for EP.A lot of residual char is formed in the process of flame retardance,its mechanism is intumescent flame retardance.In the experiment of water resistance,composites containing EPAPP and EMFAPP show better water resistance than composites containing other flame retardants.They maintain the good flame retardancy after water treatment(75℃,6 d).

  20. Synthesis and application of Fe3O4@SiO2@TiO2 for photocatalytic decomposition of organic matrix simultaneously with magnetic solid phase extraction of heavy metals prior to ICP-MS analysis.

    Science.gov (United States)

    Habila, Mohamed A; ALOthman, Zeid A; El-Toni, Ahmed Mohamed; Labis, Joselito Puzon; Soylak, Mustafa

    2016-07-01

    Interference of organic compounds in the matrix of heavy metal solution could suppress their pre-concentration and detection processes. Therefore, this work aimed to develop simple and facile methods for separation of heavy metals before ICP-MS analysis. Fe3O4@SiO2@TiO2 core-double shell magnetic adsorbent was prepared and characterized by TEM, SEM, FTIR, XRD and surface area, and tested for Magnetic Solid Phase Extraction (MSPE) of Cu(II), Zn(II), Cd(II) and Pb(II). TEM micrograph of Fe3O4@SiO2@TiO2 reveals the uniform coating of TiO2 layer of about 20nm onto the Fe3O4@SiO2 nanoparticles and indicates that all nanoparticles are monodispersed and uniform. The saturation magnetization from the room-temperature hysteresis loops of Fe3O4 and Fe3O4@SiO2@TiO2 was found to be 72 and 40emug(-1), respectively, suggesting good separability of the nanoparticles. The Fe3O4@SiO2@TiO2 showed maximum adsorption capacity of 125, 137, 148 and 160mgg(-1) for Cu(II), Zn(II), Cd(II) and Pb(II) respectively, and the process was found to fit with the second order kinetic model and Langmuir isotherm. Fe3O4@SiO2@TiO2 showed efficient photocatalytic decomposition for tartrazine and sunset yellow (consider as Interfering organic compounds) in aqueous solution under the irradiation of UV light. The maximum recovery% was achieved at pH 5, by elution with 10mL of 2M nitric acid solution. The LODs were found to be 0.066, 0.049, 0.041 and 0.082µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively while the LOQs were found to be 0.20, 0.15, 0.12 and 0.25µgL(-1) for Cu(II), Zn(II), Cd(II) and Pb(II), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  2. Evaluation of high-level waste vitrification feed preparation chemistry for an NCAW simulant, FY 1994: Alternate flowsheets (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.D.; Merz, M.D.; Wiemers, K.D.; Smith, G.L.

    1996-02-01

    High-level radioactive waste stored in tanks at the U.S. Department of Energy`s (DOE`s) Hanford Site will be pretreated to concentrate radioactive constituents and fed to the vitrification plant A flowsheet for feed preparation within the vitrification plant (based on the Hanford Waste Vitrification Plant (HWVP) design) called for HCOOH addition during the feed preparation step to adjust rheology and glass redox conditions. However, the potential for generating H{sub 2} and NH{sub 3} during treatment of high-level waste (HLW) with HCOOH was identified at Pacific Northwest Laboratory (PNL). Studies at the University of Georgia, under contract with Savannah River Technology Center (SRTC) and PNL, have verified the catalytic role of noble metals (Pd, Rh, Ru), present in the waste, in the generation of H{sub 2} and NH{sub 3}. Both laboratory-scale and pilot-scale studies at SRTC have documented the H{sub 2} and NH{sub 3} generation phenomenal Because H{sub 2} and NH{sub 3} may create hazardous conditions in the vessel vapor space and offgas system of a vitrification plant, reducing the H{sub 2} generation rate and the NH{sub 3} generation to the lowest possible levels consistent with desired melter feed characteristics is important. The Fiscal Year 1993 and 1994 studies were conducted with simulated (non-radioactive), pre-treated neutralized current acid waste (NCAW). Neutralized current acid waste is a high-level waste originating from the plutonium/uranium extraction (PUREX) plant that has been partially denitrated with sugar, neutralized with NaOH, and is presently stored in double-shell tanks. The non-radioactive simulant used for the present study includes all of the trace components found in the waste, or substitutes a chemically similar element for radioactive or very toxic species. The composition and simulant preparation steps were chosen to best simulate the chemical processing characteristics of the actual waste.

  3. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is known as the Hanford ILAW Performance Assessment (PA) Activity, hereafter called the ILAW PA project. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require predictions of contaminant migration from the facility. To make such predictions will require estimates of the fluxes of water moving through the sediments within the vadose zone around and beneath the disposal facility. These fluxes, loosely called recharge rates, are the primary mechanism for transporting contaminants to the groundwater. Pacific Northwest National Laboratory (PNNL) assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of recharge rates for current conditions and long-term scenarios involving the shallow-land disposal of ILAW. Specifically, recharge estimates are needed for a filly functional surface cover; the cover sideslope, and the immediately surrounding terrain. In addition, recharge estimates are needed for degraded cover conditions. The temporal scope of the analysis is 10,000 years, but could be longer if some contaminant peaks occur after 10,000 years. The elements of this report compose the Recharge Data Package, which provides estimates of recharge rates for the scenarios being considered in the 2001 PA. Table S.1 identifies the surface features and

  4. GAS KINEMATICS AND STAR FORMATION IN THE FILAMENTARY IRDC G34.43+0.24

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jin-Long; Li, Di; Zhang, Chuan-Peng; Liu, Xiao-Lan; Wang, Jun-Jie [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Ning, Chang-Chun [NAOC-TU Joint Center for Astrophysics, Lhasa 850000 (China); Ju, Bing-Gang, E-mail: xujl@bao.ac.cn [Purple Mountain Observatory, Qinghai Station, 817000, Delingha (China)

    2016-03-10

    We performed a multiwavelength study toward the infrared dark cloud (IRDC) G34.43+0.24. New maps of {sup 13}CO J = 1–0 and C{sup 18}O J = 1–0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 μm (Spitzer-IRAC), IRDC G34.43+0.24 appears to be a dark filament extended by 18′ along the north–south direction. Based on the association with the 870 μm and C{sup 18}O J = 1–0 emission, we suggest that IRDC G34.43+0.24 should not be 18′ in length, but extend to 34′. IRDC G34.43+0.24 contains some massive protostars, UC H ii regions, and infrared bubbles. The spatial extend of IRDC G34.43+0.24 is about 37 pc, assuming a distance of 3.7 kpc. IRDC G34.43+0.24 has a linear mass density of ∼1.6 × 10{sup 3} M{sub ⊙} pc{sup −1}, which is roughly consistent with its critical mass to length ratio. The turbulent motion may help stabilize the filament against the radial collapse. Both infrared bubbles N61 and N62 show a ringlike structure at 8 μm. In particular, N61 has a double-shell structure that has expanded into IRDC G34.43+0.24. The outer shell is traced by 8 μm and {sup 13}CO J = 1–0 emission, while the inner shell is traced by 24 μm and 20 cm emission. We suggest that the outer shell (9.9 × 10{sup 5} years) is created by the expansion of H ii region G34.172+0.175, while the inner shell (4.1 ∼ 6.3 × 10{sup 5} years) may be produced by the energetic stellar wind of its central massive star. From the GLIMPSE I catalog, we selected some Class I sources with an age of ∼10{sup 5} years. These Class I sources are clustered along the filamentary molecular cloud.

  5. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  6. Test report for run-in acceptance testing of hydrogen mitigation retrieval Pump-3

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, B.G.

    1997-08-15

    This report will provide the findings of the demonstration test conducted on the Double-Shell Tank (DST) 241-SY-101 HMR Pump-3 in accordance with WHC-SDWM-TP-434 ``Test plan for run-in acceptance testing of hydrogen mitigation/retrieval pump-3`` at the 400 Area Maintenance and Storage Facility (MASF) building from 7 June 1996 through 30 July 1996 per work package 4A-96-92/W. The DST 241-SY-101 hydrogen mitigation retrieval Pump-3 is a 200-HP submersible electric driven pump that has been modified for use in the DST 241-SY-101 containing mixed waste located in the 200W area. The pump has a motor driven rotation mechanism that allows the pump column to rotate through 355{degree}. Prior to operation, pre-operational checks were performed which included loop calibration grooming and alignment of instruments, learning how plumb HMR-3 assembly hung in a vertical position and bump test of the motor to determine rotation direction. The pump was tested in the MASF Large Diameter Cleaning Vessel (LDCV) with process water at controlled temperatures and levels. In addition, the water temperature of the cooling water to the motor oil heat exchanger was recorded during testing. A 480-volt source powered a Variable Frequency Drive (VFD). The VFD powered the pump at various frequencies and voltages to control speed and power output of the pump. A second VFD powered the oil cooling pump. A third VFD was not available to operate the rotational drive motor during the 72 hour test, so it was demonstrated as operational before and after the test. A Mini Acquisition and Control System (Mini-DACS) controls pump functions and monitoring of the pump parameters. The Mini-DACS consists of three computers, software and some Programmable Logic Controllers (PLC). Startup and shutdown of either the pump motor or the oil cooling pump can be accomplished by the Mini-DACS. When the pump was in operation, the Mini-DACS monitors automatically collects data electronically. However, some required data

  7. Beyond the local density approximation : improving density functional theory for high energy density physics applications.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann Elisabet; Modine, Normand Arthur; Desjarlais, Michael Paul; Muller, Richard Partain; Sears, Mark P.; Wright, Alan Francis

    2006-11-01

    A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.

  8. The 'Ethereal' nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics.

    Science.gov (United States)

    Bazin, Hélène G; Murray, Tim J; Bowen, William S; Mozaffarian, Afsaneh; Fling, Steven P; Bess, Laura S; Livesay, Mark T; Arnold, Jeffrey S; Johnson, Craig L; Ryter, Kendal T; Cluff, Christopher W; Evans, Jay T; Johnson, David A

    2008-10-15

    To overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic. Glycolipids 2, 4, and 5 were synthesized via a new highly convergent method utilizing a common advanced intermediate strategy. A new method for preparing (R)-3-alkyloxytetradecanoic acids, a key component of ether lipids 4 and 5, is also described.

  9. Clonal Strategy Algorithm Based on the Immune Memory

    Institute of Scientific and Technical Information of China (English)

    Ruo-Chen Liu; Li-Cheng Jiao; Hai-Feng Du

    2005-01-01

    Based on the clonal selection theory and immune memory mechanism in the natural immune system, a novel artificial immune system algorithm, Clonal Strategy Algorithm based on the Immune Memory (CSAIM), is proposed in this paper. The algorithm realizes the evolution of antibody population and the evolution of memory unit at the same time, and by using clonal selection operator, the global optimal computation can be combined with the local searching. According to antibody-antibody (Ab-Ab) affinity and antibody-antigen (Ab-Ag) affinity, the algorithm can allot adaptively the scales of memory unit and antibody population. It is proved theoretically that CSAIM is convergent with probability 1. And with the computer simulations of eight benchmark functions and one instance of traveling salesman problem (TSP), it is shown that CSAIM has strong abilities in having high convergence speed, enhancing the diversity of the population and avoiding the premature convergence to some extent.

  10. Neural networks: Application to medical imaging

    Science.gov (United States)

    Clarke, Laurence P.

    1994-01-01

    The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.

  11. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

    Science.gov (United States)

    Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan

    2017-03-01

    Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.

  12. Unified heuristics to solve routing problem of reverse logistics in sustainable supply chain

    Science.gov (United States)

    Anbuudayasankar, S. P.; Ganesh, K.; Lenny Koh, S. C.; Mohandas, K.

    2010-03-01

    A reverse logistics problem, motivated by many real-life applications, is examined where bottles/cans in which products are delivered from a processing depot to customers in one period are available for return to the depot in the following period. The picked-up bottles/cans need to be adjusted in the place of delivery load. This problem is termed as simultaneous delivery and pick-up problem with constrained capacity (SDPC). We develop three unified heuristics based on extended branch and bound heuristic, genetic algorithm and simulated annealing to solve SDPC. These heuristics are also designed to solve standard travelling salesman problem (TSP) and TSP with simultaneous delivery and pick-up (TSDP). We tested the heuristics on standard, derived and randomly generated datasets of TSP, TSDP and SDPC and obtained satisfying results with high convergence in reasonable time.

  13. Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information.The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation.The results of function optimization show that the algorithm has good searching ability and high convergence speed.The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum.In order to avoid the combinatorial explosion of fuzzy.rules due to multivariable inputs,a state variable synthesis scheme is emploved to reduce the number of fuzzy rules greatly.The simulation results show that the designed controller can control the inverted pendulum successfully.

  14. Convergent-beam low energy electron diffraction (CBLEED) and the measurement of surface dipole layers.

    Science.gov (United States)

    Spence, J C H; Poon, H C; Saldin, D K

    2004-02-01

    We propose the formation of LEED patterns using a highly convergent beam forming a probe of nanometer dimensions. A reflection rocking curve may then be recorded in many diffraction orders simultaneously. Multiple scattering calculations show that the intensity variations within these rocking curves is as sensitive to the parameters describing the surface dipole layer as conventional I/V scans. However the data may be collected from areas sufficiently small to avoid defects and surface steps, radiation damage controlled by use of low voltages, and the information depth selected by choice of the (constant) voltage. We briefly discuss also the application of this method to oxides and the formation of atomic-resolution scanning images in an idealized instrument in which coherent diffracted LEED orders overlap.

  15. Total synthesis of bryostatin 1.

    Science.gov (United States)

    Keck, Gary E; Poudel, Yam B; Cummins, Thomas J; Rudra, Arnab; Covel, Jonathan A

    2011-02-02

    Bryostatin 1 is a marine natural product that is a very promising lead compound because of the potent biological activity it displays against a variety of human disease states. We describe herein the first total synthesis of this agent. The synthetic route adopted is a highly convergent one in which the preformed, heavily functionalized pyran rings A and C are united by "pyran annulation", the TMSOTf-promoted reaction between a hydroxyallylsilane appended to the A-ring fragment and an aldehyde contained in the C-ring fragment, with concomitant formation of the B ring. Further elaborations of the resulting very highly functionalized intermediate include macrolactonization and selective cleavage of just one of five ester linkages present.

  16. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro

    Science.gov (United States)

    Dechristopher, Brian A.; Loy, Brian A.; Marsden, Matthew D.; Schrier, Adam J.; Zack, Jerome A.; Wender, Paul A.

    2012-09-01

    Bryostatin is a unique lead in the development of potentially transformative therapies for cancer, Alzheimer's disease and the eradication of HIV/AIDS. However, the clinical use of bryostatin has been hampered by its limited supply, difficulties in accessing clinically relevant derivatives, and side effects. Here, we address these problems through the step-economical syntheses of seven members of a new family of designed bryostatin analogues using a highly convergent Prins-macrocyclization strategy. We also demonstrate for the first time that such analogues effectively induce latent HIV activation in vitro with potencies similar to or better than bryostatin. Significantly, these analogues are up to 1,000-fold more potent in inducing latent HIV expression than prostratin, the current clinical candidate for latent virus induction. This study provides the first demonstration that designed, synthetically accessible bryostatin analogues could serve as superior candidates for the eradication of HIV/AIDS through induction of latent viral reservoirs in conjunction with current antiretroviral therapy.

  17. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C., E-mail: hagmann1@llnl.gov; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  18. High-Order Numerical-Relativity Simulations of Binary Neutron Stars

    CERN Document Server

    Radice, David; Galeazzi, Filippo

    2015-01-01

    We report simulations of the inspiral and merger of binary neutron stars performed with \\texttt{WhiskyTHC}, the first of a new generation of numerical relativity codes employing higher than second-order methods for both the spacetime and the hydrodynamic evolution. We find that the use of higher-order schemes improves substantially the quality of the gravitational waveforms extracted from the simulations when compared to those computed using traditional second-order schemes. The reduced de-phasing and the faster convergence rate allow us to estimate the phase evolution of the gravitational waves emitted, as well as the magnitude of finite-resolution effects, without the need of phase- or time-alignments or rescalings of the waves, as sometimes done in other works. Furthermore, by using an additional unpublished simulation at very high resolution, we confirm the robustness of our high convergence order of $3.2$.

  19. Casimir Effects in Renormalizable Quantum Field Theories

    CERN Document Server

    Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    2002-01-01

    We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  20. Casimir Effects in Renormalizable Quantum Field Theories

    Science.gov (United States)

    Graham, Noah; Jaffe, Robert L.; Weigel, Herbert

    We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.

  1. Modeling of low convergence liquid layer wetted foam implosions at the National Ignition Facility

    Science.gov (United States)

    Yi, S. A.; Olson, R. E.; Yin, L.; Wilson, D. C.; Herrmann, H. W.; Zylstra, A. B.; Haines, B. M.; Peterson, R. R.; Bradley, P. A.; Shah, R. C.; Kline, J. L.; Leeper, R. J.; Batha, S. H.; Milovich, J. L.; Berzak Hopkins, L. F.; Ho, D. D.; Meezan, N. B.

    2016-10-01

    A new platform has been developed that allows for lower convergence ratio implosions (CR 15) than is possible with traditional DT ice layered capsules (CR 30). We present HYDRA simulation models of the first low convergence DT implosions on NIF utilizing the wetted foam platform. When tuned to match the observed bangtime and hotspot symmetry, our rad-hydro models agree well with many experimental observables. In particular, the inferred hotspot density and pressure are consistent with simulations, and our modeled burn widths are in better relative agreement with the data than in high convergence implosions. The observed neutron yields are approximately 60-70% of postshot calculations. These results indicate that at a reduced convergence ratio CR 15 the hotspot formation process is well modeled by our simulations. This work was performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  2. Adaptive contourlet-wavelet iterative shrinkage/thresholding for remote sensing image restoration

    Institute of Scientific and Technical Information of China (English)

    Nu WEN; Shi-zhi YANG; Cheng-jie ZHU; Sheng-cheng CUI

    2014-01-01

    In this paper, we present an adaptive two-step contourlet-wavelet iterative shrinkage/thresholding (TcwIST) algorithm for remote sensing image restoration. This algorithm can be used to deal with various linear inverse problems (LIPs), including image deconvolution and reconstruction. This algorithm is a new version of the famous two-step iterative shrinkage/thresholding (TwIST) algorithm. First, we use the split Bregman Rudin-Osher-Fatemi (ROF) model, based on a sparse dictionary, to decom-pose the image into cartoon and texture parts, which are represented by wavelet and contourlet, respectively. Second, we use an adaptive method to estimate the regularization parameter and the shrinkage threshold. Finally, we use a linear search method to find a step length and a fast method to accelerate convergence. Results show that our method can achieve a signal-to-noise ratio improvement (ISNR) for image restoration and high convergence speed.

  3. Arsenic poisoning of magnetism in bcc cobalt

    Science.gov (United States)

    Singh, David J.

    1992-04-01

    Highly converged local spin-density approximation calculations are used to determine the effectiveness of As as a poisoning agent for the magnetism of bcc Co films grown on GaAs. To do this, supercell calculations of the magnetization were performed using an extension of the general potential linearized augmented plane-wave method for Co7As, Co15As, and Co31As. The effect of the nearest-neighbor relaxation around As impurities, calculated using total energy techniques, was included. It is found that substitutional As is moderately effective as a poisoning agent, each As atom contributes a moment of -3.8μB, and this may be important in explaining the discrepancy of 0.2-0.3μB between the calculated magnetization of bcc Co and the measured magnetization of bcc Co films on GaAs.

  4. LMI-based robust iterative learning controller design for discrete linear uncertain systems

    Institute of Scientific and Technical Information of China (English)

    Jianming XU; Mingxuan SUN; Li YU

    2005-01-01

    This paper addresses the design problem of robust iterative learning controllers for a class of linear discrete-time systems with norm-bounded parameter uncertainties.An iterative learning algorithm with current cycle feedback is proposed to achieve both robust convergence and robust stability.The synthesis problem of the proposed iterative learning control (ILC) system is reformulated as a γ-suboptimal H-infinity control problem via the linear fractional transformation (LFT).A sufficient condition for the convergence of the ILC algorithm is presented in terms of linear matrix inequalities (LMIs).Furthermore,the linear transfer operators of the ILC algorithm with high convergence speed are obtained by using existing convex optimization techniques.The simulation results demonstrate the effectiveness of the proposed method.

  5. A Variable Step-Size Proportionate Affine Projection Algorithm for Identification of Sparse Impulse Response

    Directory of Open Access Journals (Sweden)

    Ligang Liu

    2009-01-01

    Full Text Available Proportionate adaptive algorithms have been proposed recently to accelerate convergence for the identification of sparse impulse response. When the excitation signal is colored, especially the speech, the convergence performance of proportionate NLMS algorithms demonstrate slow convergence speed. The proportionate affine projection algorithm (PAPA is expected to solve this problem by using more information in the input signals. However, its steady-state performance is limited by the constant step-size parameter. In this article we propose a variable step-size PAPA by canceling the a posteriori estimation error. This can result in high convergence speed using a large step size when the identification error is large, and can then considerably decrease the steady-state misalignment using a small step size after the adaptive filter has converged. Simulation results show that the proposed approach can greatly improve the steady-state misalignment without sacrificing the fast convergence of PAPA.

  6. [Reliability and validity of the Japanese translation of Brief Self-Control Scale (BSCS-J)].

    Science.gov (United States)

    Ozaki, Yuka; Goto, Takayuki; Kobayashi, Mai; Kutsuzawa, Gaku

    2016-06-01

    Self-control refers to the ability to execute goal-oriented behavior despite the presence of temptation(s) to do otherwise. Since self-control has a wide-range impact on our daily lives, it is of critical importance to assess individual differences of self-control with a highly reliable and valid, yet simple, measure. Toward this end, three studies were conducted to test reliability and validity of the Japanese-translated version of Brief Self-Control Scale (Tangney, Baumeister, & Boone, 2004). The scale showed good internal consistency (Study 1) and retest reliability (Study 2). The. total score of the scale was correlated with the self-reported indices of self-control (e.g., daily experience of ego-depletion, study hours) and performance in the Stop Signal Task (Study 3), indicating its high converging validity.

  7. Crotylsilane reagents in the synthesis of complex polyketide natural products: total synthesis of (+)-discodermolide.

    Science.gov (United States)

    Arefolov, Alexander; Panek, James S

    2005-04-20

    An efficient, highly convergent stereocontrolled synthesis of (+)-discodermolide has been achieved with 2.1% overall yield (27 steps longest linear sequence). The absolute stereochemistry of the C1-C6 (12), C7-C14 (13), and C15-C24 (11) subunits was introduced using asymmetric crotylation methodology. Key elements of the synthesis include the use of hydrozirconation-cross-coupling methodology for the construction of C13-C14 (Z)-olefin, acetate aldol reaction to construct the C6-C7 bond and install the C7 stereocenter with high levels of 1,5-anti stereoinduction, and the use of palladium-mediated sp(2)-sp(3) cross-coupling reaction to join the advanced fragments, which assembled the carbon framework of discodermolide.

  8. A new complex variable meshless method for transient heat conduction problems

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Fei; Cheng Yu-Min

    2012-01-01

    In this paper,based on the improved complex variable moving least-square (ICVMLS) approximation,a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented.The variational method is employed to obtain the discrete equations,and the essential boundary conditions are imposed by the penalty method.As the transient heat conduction problems are related to time,the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization.Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained.In order to demonstrate the applicability of the proposed method,numerical examples are given to show the high convergence rate,good accuracy,and high efficiency of the CVMM presented in this paper.

  9. Meshless Least-Squares Method for Solving the Steady-State Heat Conduction Equation

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; ZHANG Xiong; LU Mingwan

    2005-01-01

    The meshless weighted least-squares (MWLS) method is a pure meshless method that combines the moving least-squares approximation scheme and least-square discretization. Previous studies of the MWLS method for elastostatics and wave propagation problems have shown that the MWLS method possesses several advantages, such as high accuracy, high convergence rate, good stability, and high computational efficiency. In this paper, the MWLS method is extended to heat conduction problems. The MWLS computational parameters are chosen based on a thorough numerical study of 1-dimensional problems. Several 2-dimensional examples show that the MWLS method is much faster than the element free Galerkin method (EFGM), while the accuracy of the MWLS method is close to, or even better than the EFGM. These numerical results demonstrate that the MWLS method has good potential for numerical analyses of heat transfer problems.

  10. Predictor-Corrector LU-SGS Discontinuous Galerkin Finite Element Method for Conservation Laws

    Directory of Open Access Journals (Sweden)

    Xinrong Ma

    2015-01-01

    Full Text Available Efficient implicit predictor-corrector LU-SGS discontinuous Galerkin (DG approach for compressible Euler equations on unstructured grids is investigated by adding the error compensation of high-order term. The original LU-SGS and GMRES schemes for DG method are discussed. Van Albada limiter is employed to make the scheme monotone. The numerical experiments performed for the transonic inviscid flows around NACA0012 airfoil, RAE2822 airfoil, and ONERA M6 wing indicate that the present algorithm has the advantages of low storage requirements and high convergence acceleration. The computational efficiency is close to that of GMRES scheme, nearly 2.1 times greater than that of LU-SGS scheme on unstructured grids for 2D cases, and almost 5.5 times greater than that of RK4 on unstructured grids for 3D cases.

  11. Re-expansion method for circular waveguide discontinuities: Application to concentric expansion chambers

    Science.gov (United States)

    Homentcovschi, Dorel; Miles, Ronald N.

    2012-01-01

    The paper applies the re-expansion method for analyzing planar discontinuities at the junction of two axi-symmetrical circular waveguides. The normal modes in the two waveguides are expanded at the junction plane into a system of functions accounting for velocity singularities at the corner points. As the new expansion has a high convergence order, only a few terms have to be considered for obtaining the solution of most practical problems. This paper gives the equivalent impedance accounting for nonplanar waves into a plane-wave analysis and also the scattering matrix describing the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both sides of the duct. The last section applies the re-expansion technique to some concentric expansion chambers providing an explicit formula for the transmission loss coefficient. PMID:22352491

  12. Double hidden layer RBF process neural network based online prediction of steam turbine exhaust enthalpy

    Institute of Scientific and Technical Information of China (English)

    GONG Huanchun

    2014-01-01

    In order to diagnose the unit economic performance online,the radial basis function (RBF) process neural network with two hidden layers was introduced to online prediction of steam turbine exhaust enthalpy.Thus,the model reflecting complicated relationship between the steam turbine exhaust enthalpy and the relative operation parameters was established.Moreover,the enthalpy of final stage extraction steam and exhaust from a 300 MW unit turbine was taken as the example to perform the online calculation. The results show that,the average relative error of this method is less than 1%,so the accuracy of this al-gorithm is higher than that of the BP neutral network.Furthermore,this method has advantages of high convergence rate,simple structure and high accuracy.

  13. Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders

    Science.gov (United States)

    Solov'ev, M. B.

    2010-11-01

    Numerical implementations of a new fast-converging iterative method with boundary condition splitting are constructed for solving the Dirichlet initial-boundary value problem for the nonstationary Stokes system in the gap between two coaxial cylinders. The problem is assumed to be axially symmetric and periodic along the cylinders. The construction is based on finite-difference approximations in time and bilinear finite-element approximations in a cylindrical coordinate system. A numerical study has revealed that the iterative methods constructed have fairly high convergence rates that do not degrade with decreasing viscosity (the error is reduced by approximately 7 times per iteration step). Moreover, the methods are second-order accurate with respect to the mesh size in the max norm for both velocity and pressure.

  14. An Examination of the Food Allergy Quality of Life Questionnaire Performance in a Countrywide American Sample of Children

    DEFF Research Database (Denmark)

    DunnGalvin, Audrey; Koman, Elizabeth; Raver, Elizabeth

    2017-01-01

    , Spain, Portugal, Germany, Italy, Denmark, Israel, and the United Kingdom. RESULTS: The FAQLQ-PF has high convergent validity (child: r = 0.49, n = 695, P = .01; parent: r = 0.36, n = 696, P = .01) and discriminant validity, parent: t (719) = 4.67, P = .001 (anaphylaxis yes vs no); t (513), P = .009......BACKGROUND: It is important to ensure that tools are valid and reliable in the context in which they are used. The development of age and country norms is part of this process. OBJECTIVES: The primary aim of the present study was to examine the performance of the Food Allergy Quality of Life...... Questionnaire - Parent Form (FAQLQ-PF) in a countrywide American sample of children with food allergy. The secondary aim was to compare age differences in impact across 9 European countries. METHODS: In a cross-sectional quantitative design, questionnaires were completed by the parents of 1029 food...

  15. Multiple-image encryption based on phase mask multiplexing in fractional Fourier transform domain.

    Science.gov (United States)

    Liansheng, Sui; Meiting, Xin; Ailing, Tian

    2013-06-01

    A multiple-image encryption scheme is proposed based on the phase retrieval process and phase mask multiplexing in the fractional Fourier transform domain. First, each original gray-scale image is encoded into a phase only function by using the proposed phase retrieval process. Second, all the obtained phase functions are modulated into an interim, which is encrypted into the final ciphertext by using the fractional Fourier transform. From a plaintext image, a group of phase masks is generated in the encryption process. The corresponding decrypted image can be recovered from the ciphertext only with the correct phase mask group in the decryption process. Simulation results show that the proposed phase retrieval process has high convergence speed, and the encryption algorithm can avoid cross-talk; in addition, its encrypted capacity is considerably enhanced.

  16. A Heuristic Algorithm for 3D Bin-packing Problem%三维装箱问题的启发式算法

    Institute of Scientific and Technical Information of China (English)

    罗建军; 吴东辉; 罗细飞

    2012-01-01

    The 3D bin-packing problem is a classic NP-hard combinatorial optimization problem. On the basis of ID and 2D bin-packing problems, this paper develops a heuristic algorithm to overcome the over-reliance on "experience" of the general heuristic algorithm. This algorithm is structurally simple and has high convergence speed as is demonstrated in an experimental study.%三维装箱问题是一类典型的NP-hard组合优化问题.在一维、二维装箱问题基础上,设计了一种启发式算法,借以克服一般启发式算法依赖“经验”的不足,该算法结构简单,实验表明算法收敛速度快.

  17. SPARC: Accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory. Part II: Periodic systems

    CERN Document Server

    Ghosh, Swarnava

    2016-01-01

    As the second component of SPARC (Simulation Package for Ab-initio Real-space Calculations), we present an accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory (DFT) for periodic systems. Specifically, employing a local formulation of the electrostatics, the Chebyshev polynomial filtered self-consistent field iteration, and a reformulation of the non-local force component, we develop a finite-difference framework wherein both the energy and atomic forces can be efficiently calculated to within chemical accuracies. We demonstrate using a wide variety of materials systems that SPARC obtains high convergence rates in energy and forces with respect to spatial discretization to reference plane-wave result; energies and forces that are consistent and display negligible `egg-box' effect; and accurate ground-state properties. We also demonstrate that the weak and strong scaling behavior of SPARC is similar to well-established and optimized plane-wave implementa...

  18. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation.

    Science.gov (United States)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ∼10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  19. Magneto-Rayleigh-Taylor growth and feedthrough in cylindrical liners

    Science.gov (United States)

    Weis, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark

    2013-10-01

    Cylindrical liner implosions in the MagLIF concept are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The linearized ideal MHD equations are solved, including the presence of an axial magnetic field and the effects of sausage and kink modes. The eigenmode solution, using appropriate equilibrium profiles, allows an assessment of the local MRT growth rate and of the instantaneous feedthrough factor during the entire implosion process. Of particular interest will be the high convergence/stagnation phase, which is difficult to image experimentally. Strong axial magnetic fields can mitigate feedthrough and MRT growth, which may be useful at the fuel/liner interface during this phase of the MagLIF implosion. For the MRT growth rate and feedthrough factors, the LLNL code, HYDRA, is used to benchmark with the analytic theory, and with experiments on the Z-machine. This work was supported by DoE and NSF.

  20. 2D HYDRA Calculations of Magneto-Rayleigh-Taylor Growth and Feedthrough in Cylindrical Liners

    Science.gov (United States)

    Weis, Matthew; Zhang, Peng; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark

    2014-10-01

    Cylindrical liner implosions are susceptible to the magneto-Rayleigh-Taylor instability (MRT), along with the azimuthal current-carrying modes (sausage, kink, etc). ``Feedthrough'' of these instabilities has a strong influence on the integrity of the liner/fuel interface in the magnetized liner inertial fusion concept (MagLIF). The linearized ideal MHD equations can be solved to quantify these effects, including the presence of an effective gravity and an axial magnetic field. We investigate the potential of this field to mitigate feedthrough, due to MRT growth from various initial surface finishes (seeded, rough), throughout the implosion using our analytic results and the LLNL code, HYDRA. We will present both low and high convergence cases. Lastly, we illustrate the effect shock compression can have on feedthrough in seeded liners for various fill gases (cold and pre-heated) and magnetic field configurations. M. R. Weis was supported by the Sandia National Laboratories.